Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.
Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L
1984-11-01
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.
Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.
2013-01-01
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247
Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment
Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron
2017-01-01
Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/switch-off” increase in the average cell-cycle length maintains an active cell population in the long term, with oscillating numbers of proliferative cells and a relatively constant quiescent cell number. PMID:28913178
Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.
2017-01-01
We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M
2016-10-20
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice
2014-07-01
Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.
Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics
Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.
2010-01-01
During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695
Lauder, J M
1977-04-22
The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...
Rossetti, Valentina; Filippini, Manuela; Svercel, Miroslav; Barbour, A D; Bagheri, Homayoun C
2011-12-07
Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.
Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice
NASA Technical Reports Server (NTRS)
Hayes, N. L.; Nowakowski, R. S.
2002-01-01
The output potential of proliferating populations in either the developing or the adult nervous system is critically dependent on the length of the cell cycle (T(c)) and the size of the proliferating population. We developed a new approach for analyzing the cell cycle, the 'Saturate and Survive Method' (SSM), that also reveals the dynamic behaviors in the proliferative population and estimates of the size of the proliferating population. We used this method to analyze the proliferating population of the adult dentate gyrus in 60 day old mice of two inbred strains, C57BL/6J and BALB/cByJ. The results show that the number of cells labeled by exposure to BUdR changes dramatically with time as a function of the number of proliferating cells in the population, the length of the S-phase, cell division, the length of the cell cycle, dilution of the S-phase label, and cell death. The major difference between C57BL/6J and BALB/cByJ mice is the size of the proliferating population, which differs by a factor of two; the lengths of the cell cycle and the S-phase and the probability that a newly produced cell will die within the first 10 days do not differ in these two strains. This indicates that genetic regulation of the size of the proliferating population is independent of the genetic regulation of cell death among those newly produced cells. The dynamic changes in the number of labeled cells as revealed by the SSM protocol also indicate that neither single nor repeated daily injections of BUdR accurately measure 'proliferation.'.
Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang
2016-01-01
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi; ...
2015-12-01
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
Brg1 coordinates multiple processes during retinogenesis and is a tumor suppressor in retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldiri, Issam; Ajioka, Itsuki; Xu, Beisi
Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulatemore » retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. In conclusion, ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
Cytokinetics of adult rat SVZ after EAE.
Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A
2011-01-31
Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.
García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto
2012-01-01
During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293
The G1 restriction point as critical regulator of neocortical neuronogenesis
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.
1999-01-01
Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
Local homogeneity of cell cycle length in developing mouse cortex
NASA Technical Reports Server (NTRS)
Cai, L.; Hayes, N. L.; Nowakowski, R. S.
1997-01-01
We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the proliferating cells in the ventricular zone during early development of the cerebral cortex.
Developmental kinetics of pig embryos by parthenogenetic activation or by handmade cloning.
Li, J; Li, R; Liu, Y; Villemoes, K; Purup, S; Callesen, H
2013-10-01
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time-lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time-lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non-viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro-handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre-implantation developmental kinetics should be observed. © 2013 Blackwell Verlag GmbH.
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
Probing cooperative force generation in collective cancer invasion
NASA Astrophysics Data System (ADS)
Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo
2017-08-01
Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.
Mairet-Coello, Georges; Tury, Anna; Van Buskirk, Elise; Robinson, Kelsey; Genestine, Matthieu; DiCicco-Bloom, Emanuel
2012-01-01
During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57KIP2, an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57KIP2 and p27KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation. PMID:22223678
A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells
Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena
2012-01-01
In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906
Large scale spontaneous synchronization of cell cycles in amoebae
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, Carl
2014-03-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.
Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl
2014-06-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.
Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine
2013-12-01
We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control.
Zhang, Qian-Qian; Li, Ying; Fu, Zhao-Ying; Liu, Xun-Biao; Yuan, Kai; Fang, Ying; Liu, Yan; Li, Gang; Zhang, Xian-Sheng; Chong, Kang; Ge, Lei
2018-05-12
Plant meristem activity depends on accurate execution of transcriptional networks required for establishing optimum functioning of stem cell niches. An Arabidopsis mutant card1-1 (constitutive auxin response with DR5:GFP) that encodes a truncated RPB1 (RNA Polymerase II's largest subunit) with shortened C-terminal domain (CTD) was identified. Phosphorylation of the CTD repeats of RPB1 is coupled to transcription in eukaryotes. Here we uncover that the truncated CTD of RPB1 disturbed cell cycling and enlarged the size of shoot and root meristem. The defects in patterning of root stem cell niche in card1-1 indicates that intact CTD of RPB1 is necessary for fine-tuning the specific expression of genes responsible for cell-fate determination. The gene-edited plants with different CTD length of RPB1, created by CRISPR-CAS9 technology, confirmed that both the full length and the DK-rich tail of RPB1's CTD play roles in the accurate transcription of CYCB1;1 encoding a cell-cycle marker protein in root meristem and hence participate in maintaining root meristem size. Our experiment proves that the intact RPB1 CTD is necessary for stem cell niche maintenance, which is mediated by transcriptional regulation of cell cycling genes. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Timing the start of division in E. coli: a single-cell study
NASA Astrophysics Data System (ADS)
Reshes, G.; Vanounou, S.; Fishov, I.; Feingold, M.
2008-12-01
We monitor the shape dynamics of individual E. coli cells using time-lapse microscopy together with accurate image analysis. This allows measuring the dynamics of single-cell parameters throughout the cell cycle. In previous work, we have used this approach to characterize the main features of single-cell morphogenesis between successive divisions. Here, we focus on the behavior of the parameters that are related to cell division and study their variation over a population of 30 cells. In particular, we show that the single-cell data for the constriction width dynamics collapse onto a unique curve following appropriate rescaling of the corresponding variables. This suggests the presence of an underlying time scale that determines the rate at which the cell cycle advances in each individual cell. For the case of cell length dynamics a similar rescaling of variables emphasizes the presence of a breakpoint in the growth rate at the time when division starts, τc. We also find that the τc of individual cells is correlated with their generation time, τg, and inversely correlated with the corresponding length at birth, L0. Moreover, the extent of the T-period, τg - τc, is apparently independent of τg. The relations between τc, τg and L0 indicate possible compensation mechanisms that maintain cell length variability at about 10%. Similar behavior was observed for both fast-growing cells in a rich medium (LB) and for slower growth in a minimal medium (M9-glucose). To reveal the molecular mechanisms that lead to the observed organization of the cell cycle, we should further extend our approach to monitor the formation of the divisome.
Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M
2011-05-01
The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.
Mathematical models of tumor heterogeneity and drug resistance
NASA Astrophysics Data System (ADS)
Greene, James
In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of transition rates as a function of global density. Finally, we extend the model of cell-cycle heterogeneity to include spatial variables. Cells are modeled as soft spheres and exhibit attraction/repulsion/random forces. A fundamental hypothesis is that cell-cycle length increases with local density, thus producing a distribution of observed division lengths. Apoptosis occurs primarily through an extended period of unsuccessful proliferation, and the explicit mechanism of the drug (Paclitaxel) is modeled as an increase in cell-cycle duration. We show that the distribution of cell-cycle lengths is highly time-dependent, with close time-averaged agreement with the distribution used in the previous work. Furthermore, survival curves are calculated and shown to qualitatively agree with experimental data in different densities and geometries, thus relating the cellular microenvironment to drug resistance.
Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation
Aix, Esther; Gutiérrez-Gutiérrez, Óscar; Sánchez-Ferrer, Carlota; Aguado, Tania
2016-01-01
The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfunctional telomeres and anaphase bridges and positive for the cell-cycle arrest protein p21. We further show that premature telomere dysfunction pushes cardiomyocytes out of the cell cycle. Cardiomyocytes from telomerase-deficient mice with dysfunctional telomeres (G3 Terc−/−) show precocious development of anaphase-bridge formation, p21 up-regulation, and binucleation. In line with these findings, the cardiomyocyte proliferative response after cardiac injury was lost in G3 Terc−/− newborns but rescued in G3 Terc−/−/p21−/− mice. These results reveal telomere dysfunction as a crucial signal for cardiomyocyte cell-cycle arrest after birth and suggest interventions to augment the regeneration capacity of mammalian hearts. PMID:27241915
Cell-free DNA and telomere length among women undergoing in vitro fertilization treatment.
Czamanski-Cohen, J; Sarid, O; Cwikel, J; Douvdevani, A; Levitas, E; Lunenfeld, E; Har-Vardi, I
2015-11-01
The current research is aimed at finding potential non-invasive bio-markers that will help us learn more about the mechanisms at play in failed assisted reproduction treatment. This exploratory pilot study examined the relationship between cell-free DNA (CFD) in plasma and telomere length in lymphocytes among women undergoing in vitro fertilization (IVF) and compared telomere length and CFD levels to a healthy control group. Blood of 20 women undergoing IVF was collected at three time points during the IVF cycle. We assessed the relationship between CFD and telomere length as well as controlling for morning cortisol levels. We also collected blood of 10 healthy controls at two time points (luteal and follicular phases of the menstrual cycle) and compared mean telomere length, CFD, and cortisol levels between the IVF patients and healthy controls. The results revealed an inverse relationship between CFD levels and telomere lengths at several time points that remained significant even after controlling for cortisol levels. Women undergoing IVF had statistically significant higher levels of CFD and shorter telomeres compared to healthy controls. The relationship between telomere length and CFD should be further explored in larger studies in order to uncover potential mechanisms that cause both shortened telomere length and elevated CFD in women undergoing IVF.
1996-01-01
Expression of the bcl-2 gene has been shown to effectively confer resistance to programmed cell death under a variety of circumstances. However, despite a wealth of literature describing this phenomenon, very little is known about the mechanism of resistance. In the experiments described here, we show that bcl-2 gene expression can result in an inhibition of cell division cycle progression. These findings are based upon the analysis of cell cycle distribution, cell cycle kinetics, and relative phosphorylation of the retinoblastoma tumor suppressor protein, using primary tissues in vivo, ex vivo, and in vitro, as well as continuous cell lines. The effects of bcl-2 expression on cell cycle progression appear to be focused at the G1 to S phase transition, which is a critical control point in the decision between continued cell cycle progression or the induction programmed cell death. In all systems tested, bcl-2 expression resulted in a substantial 30-60% increase in the length of G1 phase; such an increase is very substantial in the context of other regulators of cell cycle progression. Based upon our findings, and the related findings of others, we propose a mechanism by which bcl-2 expression might exert its well known inhibition of programmed cell death by regulating the kinetics of cell cycle progression at a critical control point. PMID:8642331
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
NASA Astrophysics Data System (ADS)
Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.
2008-01-01
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.
Tseng, Shun-Fu; Shen, Zih-Jie; Tsai, Hung-Ji; Lin, Yi-Hsuan; Teng, Shu-Chun
2009-06-01
Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.
Mechanisms of mechanical strain memory in airway smooth muscle.
Kim, Hak Rim; Hai, Chi-Ming
2005-10-01
We evaluated the hypothesis that mechanical deformation of airway smooth muscle induces structural remodeling of airway smooth muscle cells, thereby modulating mechanical performance in subsequent contractions. This hypothesis implied that past experience of mechanical deformation was retained (or "memorized") as structural changes in airway smooth muscle cells, which modulated the cell's subsequent contractile responses. We termed this phenomenon mechanical strain memory. Preshortening has been found to induce attenuation of both force and isotonic shortening velocity in cholinergic receptor-activated airway smooth muscle. Rapid stretching of cholinergic receptor-activated airway smooth muscle from an initial length to a final length resulted in post-stretch force and myosin light chain phosphorylation that correlated significantly with initial length. Thus post-stretch muscle strips appeared to retain memory of the initial length prior to rapid stretch (mechanical strain memory). Cytoskeletal recruitment of actin- and integrin-binding proteins and Erk 1/2 MAPK appeared to be important mechanisms of mechanical strain memory. Sinusoidal length oscillation led to force attenuation during oscillation and in subsequent contractions in intact airway smooth muscle, and p38 MAPK appeared to be an important mechanism. In contrast, application of local mechanical strain to cultured airway smooth muscle cells induced local actin polymerization and cytoskeletal stiffening. It is conceivable that deep inspiration-induced bronchoprotection may be a manifestation of mechanical strain memory such that mechanical deformation from past breathing cycles modulated the mechanical performance of airway smooth muscle in subsequent cycles in a continuous and dynamic manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiaohong; Zhang Shuhui; Lin Jing
The role of the hepatitis B virus X protein (HBx) in hepatocarcinogenesis remains controversial. To investigate the biological impact of hepatitis B virus x gene (HBx) mutation on hepatoma cells, plasmids expressing the full-length HBx or HBx deletion mutants were constructed. The biological activities in these transfectants were analyzed by a series of assays. Results showed that HBx3'-20 and HBx3'-40 amino acid deletion mutants exhibited an increase in cellular proliferation, focus formation, tumorigenicity, and invasive growth and metastasis through promotion of the cell cycle from G0/G1 to the S phase, when compared with the full-length HBx. In contrast, HBx3'-30 aminomore » acid deletion mutant repressed cell proliferation by blocking in G1 phase. The expression of P53, p21{sup WAF1}, p14{sup ARF}, and MDM2 proteins was regulated by expression of HBx mutants. In conclusions, HBx variants showed different effects and functions on cell proliferation and invasion by regulation of the cell cycle progression and its associated proteins expression.« less
Wang, Chengrun; Lu, Xianwen; Tian, Yuan; Cheng, Tao; Hu, Lingling; Chen, Fenfen; Jiang, Chuanjun; Wang, Xiaorong
2011-11-01
Effects of lanthanum (La) on mineral nutrients, cell cycles, and root lengthening have been little reported. The present work investigated these physiological responses in roots of Vicia faba seedlings cultivated in La3+-contained solutions for 15 days. The results showed that the increasing contents of La in the roots and leaves contributed to disbalances of contents of Ca, Fe, Cu, Zn, Mg, Mn, P, and K elements, and potential redistributions of some elements in the roots and leaves. These disbalances might be involved in the subsequent alteration of cell cycle phases in the root tips. Low-dose promotion and high-dose inhibition (Hormetic effects) were demonstrated as the dose responses of G0/G1-, S- or G2/M-phase ratios. The cell cycles were most probably arrested at G1/S interphase by La3+ in the root tips. The fact that the root lengths were not consistent with the changes of cell cycle phases suggested that the cell proliferation activities might be masked by other factors (e.g., cell expansion) under long-time exposure to La3+.
Zupan, John R.; Cameron, Todd A.; Anderson-Furgeson, James; Zambryski, Patricia C.
2013-01-01
Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes. PMID:23674672
Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.
Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela
2018-05-01
Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.
Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini
2017-10-10
Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran
2018-03-29
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.
Augustin, Angélique; Spenlehauer, Catherine; Dumond, Hélène; Ménissier-De Murcia, Josiane; Piel, Matthieu; Schmit, Anne-Catherine; Apiou, Françoise; Vonesch, Jean-Luc; Kock, Michael; Bornens, Michel; De Murcia, Gilbert
2003-04-15
A novel member of the poly(ADP-ribose) polymerase (PARP) family, hPARP-3, is identified here as a core component of the centrosome. hPARP-3 is preferentially localized to the daughter centriole throughout the cell cycle. The N-terminal domain (54 amino acids) of hPARP-3 is responsible for its centrosomal localization. Full-length hPAPR-3 (540 amino acids, with an apparent mass of 67 kDa) synthesizes ADP-ribose polymers during its automodification. Overexpression of hPARP-3 or its N-terminal domain does not influence centrosomal duplication or amplification but interferes with the G1/S cell cycle progression. PARP-1 also resides for part of the cell cycle in the centrosome and interacts with hPARP-3. The presence of both PARP-1 and PARP-3 at the centrosome may link the DNA damage surveillance network to the mitotic fidelity checkpoint.
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Goto, T.; Tarui, T.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.
2003-01-01
The neurons of the neocortex are generated over a 6 day neuronogenetic interval that comprises 11 cell cycles. During these 11 cell cycles, the length of cell cycle increases and the proportion of cells that exits (Q) versus re-enters (P) the cell cycle changes systematically. At the same time, the fate of the neurons produced at each of the 11 cell cycles appears to be specified at least in terms of their laminar destination. As a first step towards determining the causal interrelationships of the proliferative process with the process of laminar specification, we present a two-pronged approach. This consists of (i) a mathematical model that integrates the output of the proliferative process with the laminar fate of the output and predicts the effects of induced changes in Q and P during the neuronogenetic interval on the developing and mature cortex and (ii) an experimental system that allows the manipulation of Q and P in vivo. Here we show that the predictions of the model and the results of the experiments agree. The results indicate that events affecting the output of the proliferative population affect both the number of neurons produced and their specification with regard to their laminar fate.
Shrivastava, Preeti; Naoghare, Pravin K; Gandhi, Deepa; Devi, S Saravana; Krishnamurthi, Kannan; Bafana, Amit; Kashyap, Sanjay M; Chakrabarti, Tapan
2017-08-01
Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, p<0.05, outlet, 147.8%, p<0.01) and loss of mitochondrial membrane potential (Δψm: inlet, 74.91%, p<0.01; outlet, 86.70%, p<0.05) compared to the control. These concentrations induced DNA damage (Tail length: inlet: 34.4%, p<0.05, outlet, 26.7%, p<0.05) in treated cells compared to the control (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Lucero, Claudia M.J.; Vega, Oscar A.; Osorio, Mariana M.; Tapia, Julio C.; Antonelli, Marcelo; Stein, Gary S.; Van Wijnen, Andre J.; Galindo, Mario A.
2013-01-01
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. PMID:22949168
Dutta, Soumita
2017-01-01
ABSTRACT The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas. This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia. PMID:28289724
Dutta, Soumita; Avasthi, Prachee
2017-01-01
The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small changes in ciliary length by minimizing variability in the population. We find that this method alters the key relationship between cell size and the amount of protein accumulated for flagellar growth. This provides a rapid alternative to traditional methods of cell synchronization for uncovering novel regulators of cilia.
Mavri-Damelin, Demetra; Eaton, Simon; Damelin, Leonard H; Rees, Myrddin; Hodgson, Humphrey J F; Selden, Clare
2007-01-01
A possible cell source for a bio-artificial liver is the human hepatblastoma-derived cell line HepG2 as it confers many hepatocyte functions, however, the urea cycle is not maintained resulting in the lack of ammonia detoxification via this cycle. We investigated urea cycle activity in HepG2 cells at both a molecular and biochemical level to determine the causes for the lack of urea cycle expression, and subsequently addressed reinstatement of the cycle by gene transfer. Metabolic labelling studies showed that urea production from 15N-ammonium chloride was not detectable in HepG2 conditioned medium, nor could 14C-labelled urea cycle intermediates be detected. Gene expression data from HepG2 cells revealed that although expression of three urea cycle genes Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase was evident, Ornithine Transcarbamylase and Arginase I expression were completely absent. These results were confirmed by Western blot for arginase I, where no protein was detected. Radiolabelled enzyme assays showed that Ornithine Transcarbamylase functional activity was missing but that Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase were functionally expressed at levels comparable to cultured primary human hepatocytes. To restore the urea cycle, HepG2 cells were transfected with full length Ornithine Transcarbamylase and Arginase I cDNA constructs under a CMV promoter. Co-transfected HepG2 cells displayed complete urea cycle activity, producing both labelled urea and urea cycle intermediates. This strategy could provide a cell source capable of urea synthesis, and hence ammonia detoxificatory function, which would be useful in a bio-artificial liver.
NASA Technical Reports Server (NTRS)
Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr
1996-01-01
Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.
Dey, Abhishek; Chakrabarti, Kausik
2018-01-24
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Can Tissue Cilia Lengths and Urine Cilia Proteins Be Markers of Kidney Diseases?
Park, Kwon Moo
2018-05-01
The primary cilium is an organelle which consists of a microtubule in the core and a surrounding cilia membrane, and has long been recognized as a "vestigial organelle". However, new evidence demonstrates that the primary cilium has a notable effect on signal transduction in the cell and is associated with some genetic and non-genetic diseases. In the kidney, the primary cilium protrudes into the Bowman's space and the tubular lumen from the apical side of epithelial cells. The length of primary cilia is dynamically altered during the normal cell cycle, being shortened by retraction into the cell body at the entry of cell division and elongated at differentiation. Furthermore, the length of primary cilia is also dynamically changed in the cells, as a result and/or cause, during the progression of various kidney diseases including acute kidney injury and chronic kidney disease. Notably, recent data has demonstrated that the shortening of the primary cilium in the cell is associated with fragmentation, apart from retraction into the cell body, in the progression of diseases and that the fragmented primary cilia are released into the urine. This data reveals that the alteration of primary cilia length could be related to the progression of diseases. This review will consider if primary cilia length alteration is associated with the progression of kidney diseases and if the length of tissue primary cilia and the presence or increase of cilia proteins in the urine is indicative of kidney diseases.
Guarnieri, S; Pilla, R; Morabito, C; Sacchetti, S; Mancinelli, R; Fanò, G; Mariggiò, M A
2009-04-01
SH-SY5Y neuroblastoma cells, a model for studying neuronal differentiation, are able to differentiate into either cholinergic or dopaminergic/adrenergic phenotypes depending on media conditions. Using this system, we asked whether guanosine (Guo) or guanosine-5'-triphosphate (GTP) are able to drive differentiation towards one particular phenotype. Differentiation was determined by evaluating the frequency of cells bearing neurites and assessing neurite length after exposure to different concentrations of Guo or GTP for different durations. After 6 days, 0.3 mM Guo or GTP induced a significant increase in the number of cells bearing neurites and increased neurite length. Western blot analyses confirmed that purines induced differentiation; cells exposed to purines showed increases in the levels of GAP43, MAP2, and tyrosine hydroxylase. Proliferation assays and cytofluorimetric analyses indicated a significant anti-proliferative effect of purines, and a concentration-dependent accumulation of cells in S-phase, starting after 24 h of purine exposure and extending for up to 6 days. A transcriptional profile analysis using gene arrays showed that an up-regulation of cyclin E2/cdk2 evident after 24 h was responsible for S-phase entry, and a concurrent down-regulation of cell-cycle progression-promoting cyclin B1/B2 prevented S-phase exit. In addition, patch-clamp recordings revealed that 0.3 mM Guo or GTP, after 6 day incubation, significantly decreased Na(+) currents. In conclusion, we showed Guo- and GTP-induced cell-cycle arrest in neuroblastoma cells and suggest that this makes these cells more responsive to differentiation processes that favor the dopaminergic/adrenergic phenotype.
Dumollard, Rémi; Minc, Nicolas; Salez, Gregory; Aicha, Sameh Ben; Bekkouche, Faisal; Hebras, Céline; Besnardeau, Lydia; McDougall, Alex
2017-01-01
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI: http://dx.doi.org/10.7554/eLife.19290.001 PMID:28121291
Ortiz, R E; Ortiz, A C; Gajardo, G; Zepeda, A J; Parraguez, V H; Ortiz, M E; Croxatto, H B
2005-07-01
Few reports on the reproductive physiology of Cebus apella have been published. In this study we characterized menstrual cycle events by means of vaginal cytology, ultrasonography (US), and hormonal measurements in serum during three consecutive cycles in 10 females, and assessed the probability that ovulation would occur in the same ovary in consecutive cycles in 18 females. The lengths and phases of the cycles were determined according to vaginal cytology. Taking the first day of endometrial bleeding as the first day of the cycle, the mean cycle length +/- SEM was 19.5+/-0.4 days, with follicular and luteal phases lasting 8.2+/-0.2 and 11.3+/-0.4 days, respectively. The follicular phase included menstruation and the periovulatory period, which was characterized by the presence of a large number of superficial eosinophilic cells in the vaginal smear. The myometrium, endometrium, and ovaries were clearly distinguished on US examination. During each menstrual cycle a single follicle was recruited at random from either ovary. The follicle grew from 3 mm to a maximum diameter of 8-9 mm over the course of 8 days, in association with increasing estradiol (E(2)) serum levels (from 489+/-41 to 1600+/-92 pmol/L). At ovulation, the mean diameter of the dominant follicle usually decreased by >20%, 1 day after the maximum E(2) level was reached. Ovulation was associated with an abrupt fall in E(2), a decreased number of eosinophilic cells, the presence of leukocytes and intermediate cells in the vaginal smear, and a progressive increase in progesterone (P) levels that reached a maximum of 892+/-65 nmol/L on days 3-6 of the luteal phase. The menstrual cycle of Cebus apella differs in several temporal and quantitative aspects from that in humans and Old World primates, but it exhibits the same correlations between ovarian endocrine and morphologic parameters. (c) 2005 Wiley-Liss, Inc.
2-(4′-CHLOROPHENYL)-1,4-BENZOQUINONE INCREASES THE FREQUENCY OF MICRONUCLEI AND SHORTENS TELOMERES
Jacobus, J.A.; Flor, S.; Klingelhutz, A.; Robertson, L.W.; Ludewig, G.
2008-01-01
The toxicity of polychlorinated biphenyls (PCBs) has been attributed widely to receptor-mediated effects, buttressed by the popularity of the Toxic Equivalency Factor. We propose that a crucial toxic mechanism of lower-chlorinated PCBs is their enzymatic biotransformation to electrophiles, including quinoid metabolites, that bind intracellular sulfhydryl groups, such as those found in microtubulin and enzymes like telomerase. To test this hypothesis, we have examined micronuclei induction, cell cycle, and telomere shortening in cells in culture. Our findings show a large increase in micronuclei frequency and cell cycle perturbation in V79 cells, and a marked decrease in telomere length in HaCaT cells exposed to 2-(4′-chlorophenyl)-1,4-benzoquinone (PCB3pQ). PMID:18438462
Protein PSMD8 may mediate microgravity-induced cell cycle arrest
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning
Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line
Bresler, V; Montgomery, W L; Fishelson, L; Pollak, P E
1998-11-01
Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2, 000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of approximately 30 micrometers to >500 micrometers. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and "pinching" of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines.
Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kanayo; Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp; Tanaka, Satoshi
2014-01-03
Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDKmore » inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.« less
Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.
Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T
2017-09-01
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues. Copyright © 2017 Elsevier Inc. All rights reserved.
Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B
2016-02-15
The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Wei, Duo; Xie, Juanke; Yin, Baoli; Hao, Haoying; Song, Xiaobing; Liu, Qi; Zhang, Cuilian; Sun, Yingpu
2017-07-01
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among women at reproductive age. However, its etiology remains poorly understood. Recent studies indicated that telomere length was related to PCOS. However, the association between telomere length and PCOS has only been shown in leucocytes and remained controversial across different studies. To clarify the association between telomere length and PCOS, the current study interrogated telomere length not only in leucocytes, but also in follicular granulosa cells, which is essential for folliculogenesis and steroidogenesis. Seventy-five patients with PCOS and 81 controls with mechanical infertility undergoing their first in vitro fertilization cycle were enrolled. Their peripheral blood and granulosa cells were collected on the oocyte retrieval day. Telomere length of both leucocytes in the blood and granulosa cells was assayed by quantitative polymerase chain reaction. No significant difference was found in the leucocyte telomere length between controls and PCOS patients (0.99 ± 0.44 vs. 1.00 ± 0.38, p = 0.93). Interestingly, when comparing telomere length in granulosa cells between controls and PCOS subjects, significantly lengthened telomere length was found in PCOS subjects (1.00 ± 0.37 vs. 1.57±0.67, p < 0.0001). After adjustments for age and body mass index, the p value remained significant (p < 0.0001). This finding reinforced the association between telomere abnormalities and PCOS. Given the importance of telomere length in cellular proliferation, our findings provided novel insights into the pathophysiology of PCOS that abnormalities in telomere length possibly disturb folliculogenesis and subsequently result in PCOS.
Oestrous cycle of the common wombat, Vombatus ursinus, in Victoria, Australia.
West, M; Galloway, D; Shaw, J; Trouson, A; Paris, M C J
2004-01-01
Wild-caught female common wombats from Victoria, Australia, were studied in captivity to investigate the oestrous cycle by assessing vaginal cytology and peripheral plasma progesterone concentrations. Eight wombats, five adults (21-29 kg) and three subadults (19-23 kg), which were held for between 2 weeks and 11 months did not cycle in captivity. Their progesterone concentrations were consistently low (< or = 6.9 nmol L(-1)) and vaginal smears contained predominantly superficial epithelial cells. Three wombats (21-27 kg), held in captivity for >1 year, regularly cycled (when bodyweights exceeded 23.5 kg). Information gathered from four consecutive cycles in each of these three wombats revealed a follicular phase with low progesterone concentrations (< or = 6.9 nmol L(-1)) and vaginal smears with a high percentage of superficial epithelial cells alternating with periods of high progesterone concentrations (range 41.6-123.8 nmol L(-1)) and smears in which parabasal-intermediate epithelial cells predominated. The average length of the monitored oestrous cycles was 47.2 days (35-60 days). The follicular phase lasted ~19 days and the luteal phase lasted ~28 days. In conclusion, wombats can cycle regularly in captivity even under conditions of intensive monitoring.
Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis
NASA Astrophysics Data System (ADS)
McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned
2010-03-01
A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthilkumar, P.K.; Robertson, L.W.; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cellmore » cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and telomerase activity was found in NFK. ► Increased intracellular superoxide levels and reduced cell growth was seen in both. ► PCB153 may damage telomerase expressing cells like stem cells.« less
Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z
2016-05-01
This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P < 0.05) sperm motility and membrane integrity, in both nonselected and DCG-selected sperm samples, >60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection. © 2015 Blackwell Verlag GmbH.
Bresler, V.; Montgomery, W. L.; Fishelson, L.; Pollak, P. E.
1998-01-01
Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2,000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of ∼30 μm to >500 μm. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and “pinching” of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines. PMID:9791108
Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos
Tsai, Tony Y.-C.; Theriot, Julie A.; Ferrell, James E.
2014-01-01
During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development. PMID:24523664
Light absorption cell combining variable path and length pump
Prather, William S.
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
Interrogating the Escherichia coli cell cycle by cell dimension perturbations
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli
2016-01-01
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612
Interrogating the Escherichia coli cell cycle by cell dimension perturbations.
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli
2016-12-27
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko
2016-01-01
ABSTRACT The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper‐layer neurons are produced. Based on cumulative 5‐ethynyl‐2′‐deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S‐phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self‐renewal to those of neuron production. Hence, S‐phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. J. Comp. Neurol. 524:456–470, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:25963823
2013-01-01
Background Recently, a direct correlation with telomere length, proliferative potential and telomerase activity has been found in the process of aging in peripheral blood cells. The objective of the study was to evaluate telomere length and proliferative potential in peripheral blood mononuclear cells (PBMCs) after stimulation with Concanavalin A (ConA) of young adults compared with older adults. Methods Blood samples were obtained from 20 healthy young males (20–25 years old) (group Y) and 20 males (60–65 years old) (group O). We compared PBMC proliferation before and after stimulation with ConA. DNA was isolated from cells separated before and after culture with ConA for telomeric measurement by real-time polymerase chain reaction. Results In vitro stimulation of PBMCs from young subjects induced an increase of telomere length as well as a higher replicative capacity of cell proliferation. Samples from older adults showed higher loss of telomeric DNA (p = 0.03) and higher levels of senescent (≤6.2 kb) telomeric DNA (p = 0.02) and displayed a marked decrease of proliferation capacity. Viability cell counts and CFSE tracking in 72-h-old cell cultures indicated that group O PBMCs (CD8+ and CD4+ T cells) underwent fewer mitotic cycles and had shorter telomeres than group Y (p = 0.04). Conclusions Our findings confirm that telomere length in older-age adults is shorter than in younger subjects. After stimulation with ConA, cells are not restored to the previous telomere length and undergo replicative senescence. This is in sharp contrast to the response observed in young adults after ConA stimulation where cells increase in telomere length and replicative capacity. The mechanisms involved in this phenomenon are not yet clear and merit further investigation. PMID:24063536
Fracture mechanics modeling of popping event during daughter cell separation.
Jiang, Yuxuan; Liang, Xudong; Guo, Ming; Cao, Yanping; Cai, Shengqiang
2018-05-10
Most bacteria cells divide by binary fission which is part of a bacteria cell cycle and requires tight regulations and precise coordination. Fast separation of Staphylococcus Aureus (S. Aureus) daughter cells, named as popping event, has been observed in recent experiments. The popping event was proposed to be driven by mechanical crack propagation in the peripheral ring which connected two daughter cells before their separation. It has also been shown that after the fast separation, a small portion of the peripheral ring was left as a hinge. In the article, we develop a fracture mechanics model for the crack growth in the peripheral ring during S. Aureus daughter cell separation. In particular, using finite element analysis, we calculate the energy release rate associated with the crack growth in the peripheral ring, when daughter cells are inflated by a uniform turgor pressure inside. Our results show that with a fixed inflation of daughter cells, the energy release rate depends on the crack length non-monotonically. The energy release rate reaches a maximum value for a crack of an intermediate length. The non-monotonic relationship between the energy release rate and crack length clearly indicates that the crack propagation in the peripheral ring can be unstable. The computed energy release rate as a function of crack length can also be used to explain the existence of a small portion of peripheral ring remained as hinge after the popping event.
Uldahl, Kristine B.; Jensen, Signe B.; Bhoobalan-Chitty, Yuvaraj; Martínez-Álvarez, Laura; Papathanasiou, Pavlos
2016-01-01
ABSTRACT We provide here, for the first time, insights into the initial infection stages of a large spindle-shaped archaeal virus and explore the following life cycle events. Our observations suggest that Sulfolobus monocaudavirus 1 (SMV1) exhibits a high adsorption rate and that virions adsorb to the host cells via three distinct attachment modes: nosecone association, body association, and body/tail association. In the body/tail association mode, the entire virion, including the tail(s), aligns to the host cell surface and the main body is greatly flattened, suggesting a possible fusion entry mechanism. Upon infection, the intracellular replication cycle lasts about 8 h, at which point the virions are released as spindle-shaped tailless particles. Replication of the virus retarded host growth but did not cause lysis of the host cells. Once released from the host and at temperatures resembling that of its natural habitat, SMV1 starts developing one or two tails. This exceptional property of undergoing a major morphological development outside, and independently of, the host cell has been reported only once before for the related Acidianus two-tailed virus. Here, we show that SMV1 can develop tails of more than 900 nm in length, more than quadrupling the total virion length. IMPORTANCE Very little is known about the initial life cycle stages of viruses infecting hosts of the third domain of life, Archaea. This work describes the first example of an archaeal virus employing three distinct association modes. The virus under study, Sulfolobus monocaudavirus 1, is a representative of the large spindle-shaped viruses that are frequently found in acidic hot springs. The results described here will add valuable knowledge about Archaea, the least studied domain in the virology field. PMID:27053548
Uldahl, Kristine B; Jensen, Signe B; Bhoobalan-Chitty, Yuvaraj; Martínez-Álvarez, Laura; Papathanasiou, Pavlos; Peng, Xu
2016-06-15
We provide here, for the first time, insights into the initial infection stages of a large spindle-shaped archaeal virus and explore the following life cycle events. Our observations suggest that Sulfolobus monocaudavirus 1 (SMV1) exhibits a high adsorption rate and that virions adsorb to the host cells via three distinct attachment modes: nosecone association, body association, and body/tail association. In the body/tail association mode, the entire virion, including the tail(s), aligns to the host cell surface and the main body is greatly flattened, suggesting a possible fusion entry mechanism. Upon infection, the intracellular replication cycle lasts about 8 h, at which point the virions are released as spindle-shaped tailless particles. Replication of the virus retarded host growth but did not cause lysis of the host cells. Once released from the host and at temperatures resembling that of its natural habitat, SMV1 starts developing one or two tails. This exceptional property of undergoing a major morphological development outside, and independently of, the host cell has been reported only once before for the related Acidianus two-tailed virus. Here, we show that SMV1 can develop tails of more than 900 nm in length, more than quadrupling the total virion length. Very little is known about the initial life cycle stages of viruses infecting hosts of the third domain of life, Archaea This work describes the first example of an archaeal virus employing three distinct association modes. The virus under study, Sulfolobus monocaudavirus 1, is a representative of the large spindle-shaped viruses that are frequently found in acidic hot springs. The results described here will add valuable knowledge about Archaea, the least studied domain in the virology field. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cellular basis of neuroepithelial bending during mouse spinal neural tube closure
McShane, Suzanne G.; Molè, Matteo A.; Savery, Dawn; Greene, Nicholas D. E; Tam, Patrick P.L.; Copp, Andrew J.
2015-01-01
Summary Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through ‘buckling’ of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density. PMID:26079577
Dewberry, Ebony J.; Dunkerley, Eric; Duffy, Carol
2012-01-01
Summary VP22, encoded by the UL49 gene, is one of the most abundant proteins of the herpes simplex virus type 1 (HSV-1) tegument and has been shown to be important for virus replication and spread. However, the exact role(s) played by VP22 in the HSV-1 replication cycle have yet to be delineated. The lack of a procedure to purify full-length VP22 has limited molecular studies on VP22 function. A procedure was developed for the purification of soluble, full-length VP22 from cells infected with HSV-1. A recombinant virus encoding His-tagged VP22 was generated and found to express VP22 at levels comparable to the wild type virus upon infection of Vero cells. By experimenting with a wide variety of cell lysis buffer conditions, several buffers that promote the solubility of full-length VP22 were identified. Buffers that gave the highest levels of solubility were then used in immobilized metal ion affinity chromatography experiments to identify conditions that provided the greatest level of VP22 binding and recovery from cobalt and nickel affinity resins. Using this strategy soluble, full-length VP22 was purified from cells infected with HSV-1. PMID:22569534
Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong
2017-04-01
Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.
The Echinoid Mitotic Gradient: Effect of Cell Size on the Micromere Cleavage Cycle
Langelan Duncan, Rosalie E.; Whiteley, Arthur H.
2012-01-01
SUMMARY Like other euechinoids, the fertilized eggs of the sand dollar Dendraster excentricus proceed through cleavages that produce a pattern of macromeres, mesomeres, and micromeres at the 4th division. The 8 cells of the macro-mesomere lineage proceed through 6 additional cleavages before hatching. At the fifth overall division, the 4 micromeres produce a lineage of large micromeres that will divide 3 additional times, and a lineage of small micromeres that will divide once more before hatching. Irrespective of lineage, the length of the cell cycles is closely related to the size of the blastomere; cells of the same size have the same cell cycle time. A consequence is that at the fourth cleavage, there is a gradient of mitotic activity from the fastest dividers at the animal pole and the slowest cleacing micromeres at the vegetal pole. By the time of hatching, which is the 10th division of meso-macromeres, all cells are the same small size, the metachronic pattern of division gives way to asynchrony, and the mitotic gradient along the polar axis is lost. Experimental pre-exposure to sodium dodecyl sulfate (SDS), however, blocks the appearance of the gradients in cell size, the mitotic gradient, and the differential in cell cycle times. It is proposed that the mitotic gradients, cell cycle times, and attainment of a state of asynchrony are functions of cell size. Developmental consequences of the transition are large, and include coordinated activation of transcriptions, synthesis of new patterns of proteins, alterations of metabolism, and onset of morphogenesis. PMID:22006441
Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana
2018-03-23
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Ogura, Yosuke; Sasakura, Yasunori
2016-04-18
During neurulation of chordate ascidians, the 11th mitotic division within the epidermal layer shows a posterior-to-anterior wave that is precisely coordinated with the unidirectional progression of the morphogenetic movement. Here we show that the first sign of this patterned mitosis is an asynchronous anterior-to-posterior S-phase length and that mitotic synchrony is reestablished by a compensatory asynchronous G2-phase length. Live imaging combined with genetic experiments demonstrated that compensatory G2-phase regulation requires transcriptional activation of the G2/M regulator cdc25 by the patterning genes GATA and AP-2. The downregulation of GATA and AP-2 at the onset of neurulation leads to loss of compensatory G2-phase regulation and promotes the transition to patterned mitosis. We propose that such developmentally regulated cell-cycle compensation provides an abrupt switch to spatially patterned mitosis in order to achieve the coordination between mitotic timing and morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells
2014-01-01
Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Sherpa, Rinzhin T; Atkinson, Kimberly F; Ferreira, Viviana P; Nauli, Surya M
2016-12-01
Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.
Light absorption cell combining variable path and length pump
Prather, W.S.
1993-12-07
A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.
Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas
2015-11-26
As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations.
Zhu, Zhen; Frey, Olivier; Haandbaek, Niels; Franke, Felix; Rudolf, Fabian; Hierlemann, Andreas
2015-01-01
As a complement and alternative to optical methods, wide-band electrical impedance spectroscopy (EIS) enables multi-parameter, label-free and real-time detection of cellular and subcellular features. We report on a microfluidics-based system designed to reliably capture single rod-shaped Schizosaccharomyces pombe cells by applying suction through orifices in a channel wall. The system enables subsequent culturing of immobilized cells in an upright position, while dynamic changes in cell-cycle state and morphology were continuously monitored through EIS over a broad frequency range. Besides measuring cell growth, clear impedance signals for nuclear division have been obtained. The EIS system has been characterized with respect to sensitivity and detection limits. The spatial resolution in measuring cell length was 0.25 μm, which corresponds to approximately a 5-min interval of cell growth under standard conditions. The comprehensive impedance data sets were also used to determine the occurrence of nuclear division and cytokinesis. The obtained results have been validated through concurrent confocal imaging and plausibilized through comparison with finite-element modeling data. The possibility to monitor cellular and intracellular features of single S. pombe cells during the cell cycle at high spatiotemporal resolution renders the presented microfluidics-based EIS system a suitable tool for dynamic single-cell investigations. PMID:26608589
Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine
2016-08-16
Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum.
Petrella, Antonello; D'Acunto, Cosimo Walter; Rodriquez, Manuela; Festa, Michela; Tosco, Alessandra; Bruno, Ines; Terracciano, Stefania; Taddei, Maurizio; Paloma, Luigi Gomez; Parente, Luca
2008-03-01
FR235222, a novel histone deacetylase inhibitor (HDACi), at 50nM caused accumulation of acetylated histone H4, inhibition of cell proliferation and G1 cycle arrest accompanied by increase of p21 and down-regulation of cyclin E in human promyelocytic leukaemia U937 cells. The compound was also able to increase the protein and mRNA levels of annexin A1 (ANXA1) without effects on apoptosis. Similar effects were observed in human chronic myelogenous leukaemia K562 cells and human T cell leukaemia Jurkat cells. Cycle arrest and ANXA1 expression, without significant effects on apoptosis, were also induced by different HDACi like suberoylanilide hydroxamic acid (SAHA) and trichostatin-A (TSA). FR235222 at 0.5 microM stimulated apoptosis of all leukaemia cell lines associated to an increased expression of the full-length (37kDa) protein and the appearance of a 33kDa N-terminal cleavage product in both cytosol and membrane. These results suggest that ANXA1 expression may mediate cycle arrest induced by low doses FR235222, whereas apoptosis induced by high doses FR235222 is associated to ANXA1 processing.
Length and activity of the root apical meristem revealed in vivo by infrared imaging.
Bizet, François; Hummel, Irène; Bogeat-Triboulot, Marie-Béatrice
2015-03-01
Understanding how cell division and cell elongation influence organ growth and development is a long-standing issue in plant biology. In plant roots, most of the cell divisions occur in a short and specialized region, the root apical meristem (RAM). Although RAM activity has been suggested to be of high importance to understand how roots grow and how the cell cycle is regulated, few experimental and numeric data are currently available. The characterization of the RAM is difficult and essentially based upon cell length measurements through destructive and time-consuming microscopy approaches. Here, a new non-invasive method is described that couples infrared light imaging and kinematic analyses and that allows in vivo measurements of the RAM length. This study provides a detailed description of the RAM activity, especially in terms of cell flux and cell division rate. We focused on roots of hydroponic grown poplars and confirmed our method on maize roots. How the RAM affects root growth rate is studied by taking advantage of the high inter-individual variability of poplar root growth. An osmotic stress was applied and did not significantly affect the RAM length, highlighting its homeostasis in short to middle-term responses. The methodology described here simplifies a lot experimental procedures, allows an increase in the number of individuals that can be taken into account in experiments, and means new experiments can be formulated that allow temporal monitoring of the RAM length. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Tracking of plus-ends reveals microtubule functional diversity in different cell types
NASA Astrophysics Data System (ADS)
Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger
2016-07-01
Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.
Telomeres and replicative senescence: Is it only length that counts?
von Zglinicki, T
2001-07-26
Telomeres are well established as a major 'replicometer', counting the population doublings in primary human cell cultures and ultimately triggering replicative senescence. However, neither is the pace of this biological clock inert, nor is there a fixed threshold telomere length acting as the universal trigger of replicative senescence. The available data suggest that opening of the telomeric loop and unscheduled exposure of the single-stranded G-rich telomeric overhang might act like a semaphore to signal senescent cell cycle arrest. Short telomere length, telomeric single-strand breaks, low levels of loop-stabilizing proteins, or other factors may trigger this opening of the loop. Thus, both telomere shortening and the ultimate signalling into senescence are able to integrate different environmental and genetic factors, especially oxidative stress-mediated damage, which might otherwise become a thread to genomic stability.
Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points
Miga, Karen H.; Sekulic, Nikolina; Soni, Gautam V.; Kim, Dong Hyun; Wong, Adeline K.; Lee, Ah Young; Nguyen, Kristen; Dekker, Cees; Ren, Bing; Black, Ben E.
2017-01-01
Chromatin assembled with centromere protein A (CENP-A) is the epigenetic mark of centromere identity. Using new reference models, we now identify sites of CENP-A and histone H3.1 binding within the megabase, α-satellite repeat–containing centromeres of 23 human chromosomes. The overwhelming majority (97%) of α-satellite DNA is found to be assembled with histone H3.1–containing nucleosomes with wrapped DNA termini. In both G1 and G2 cell cycle phases, the 2–4% of α-satellite assembled with CENP-A protects DNA lengths centered on 133 bp, consistent with octameric nucleosomes with DNA unwrapping at entry and exit. CENP-A chromatin is shown to contain equimolar amounts of CENP-A and histones H2A, H2B, and H4, with no H3. Solid-state nanopore analyses show it to be nucleosomal in size. Thus, in contrast to models for hemisomes that briefly transition to octameric nucleosomes at specific cell cycle points or heterotypic nucleosomes containing both CENP-A and histone H3, human CENP-A chromatin complexes are octameric nucleosomes with two molecules of CENP-A at all cell cycle phases. PMID:28235947
The influence of quarantine on reproductive cycling in wild-caught Baboons (Papio anubis).
Liechty, Emma R; Wang, Diane Y; Chen, Emily; Chai, Daniel; Bell, Jason D; Bergin, Ingrid L
2015-12-01
Stress impacts nonhuman primate menstrual cycle length but the impact of quarantine is unknown. A retrospective analysis was performed on cycle data from 31 wild-caught baboons during and following quarantine. Cycling initiated in 94 days (19-181) and length normalized within 4-6 cycles. Quarantine significantly impacts menstrual cycle length. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Higuchi, Kazuhide; Miyaji, Kousuke; Johguchi, Koh; Takeuchi, Ken
2012-02-01
This paper proposes a verify-programming method for the resistive random access memory (ReRAM) cell which achieves a 50-times higher endurance and a fast set and reset compared with the conventional method. The proposed verify-programming method uses the incremental pulse width with turnback (IPWWT) for the reset and the incremental voltage with turnback (IVWT) for the set. With the combination of IPWWT reset and IVWT set, the endurance-cycle increases from 48 ×103 to 2444 ×103 cycles. Furthermore, the measured data retention-time after 20 ×103 set/reset cycles is estimated to be 10 years. Additionally, the filamentary based physical model is proposed to explain the set/reset failure mechanism with various set/reset pulse shapes. The reset pulse width and set voltage correspond to the width and length of the conductive-filament, respectively. Consequently, since the proposed IPWWT and IVWT recover set and reset failures of ReRAM cells, the endurance-cycles are improved.
A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis
Craig, Errol; Zhang, Zhi-Kai; Davies, Kelvin P.; Kalpana, Ganjam V.
2002-01-01
INI1 (integrase interactor 1)/hSNF5 is a component of the mammalian SWI/SNF complex and a tumor suppressor mutated in malignant rhabdoid tumors (MRT). We have identified a nuclear export signal (NES) in the highly conserved repeat 2 domain of INI1 that is unmasked upon deletion of a downstream sequence. Mutation of conserved hydrophobic residues within the NES, as well as leptomycin B treatment abrogated the nuclear export. Full-length INI1 specifically associated with hCRM1/exportin1 in vivo and in vitro. A mutant INI1 [INI1(1–319) delG950] found in MRT lacking the 66 C-terminal amino acids mislocalized to the cytoplasm. Full-length INI1 but not the INI1(1–319 delG950) mutant caused flat cell formation and cell cycle arrest in cell lines derived from MRT. Disruption of the NES in the delG950 mutant caused nuclear localization of the protein and restored its ability to cause cell cycle arrest. These observations demonstrate that INI1 has a masked NES that mediates regulated hCRM1/exportin1-dependent nuclear export and we propose that mutations that cause deregulated nuclear export of the protein could lead to tumorigenesis. PMID:11782423
Quantification of the degradation of Ni-YSZ anodes upon redox cycling
NASA Astrophysics Data System (ADS)
Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.
2018-01-01
Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.
Chávez, Santiago; Eastman, Guillermo; Smircich, Pablo; Becco, Lorena Lourdes; Oliveira-Rizzo, Carolina; Fort, Rafael; Potenza, Mariana; Garat, Beatriz; Sotelo-Silveira, José Roberto
2017-01-01
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control. PMID:29182646
Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.
2015-01-01
The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668
Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.
2005-01-01
A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.
An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.
van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J
2001-04-01
Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Thomas A.
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman’s last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. PMID:25027273
Where hearing starts: the development of the mammalian cochlea.
Basch, Martin L; Brown, Rogers M; Jen, Hsin-I; Groves, Andrew K
2016-02-01
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length. © 2015 Anatomical Society.
Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo.
Wang, Guang; Chen, En-Ni; Liang, Chang; Liang, Jianxin; Gao, Lin-Rui; Chuai, Manli; Münsterberg, Andrea; Bao, Yongping; Cao, Liu; Yang, Xuesong
2018-04-01
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7 + neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7 + and HNK-1 + cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1 + neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU + neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle.
Telomere lengthening early in development.
Liu, Lin; Bailey, Susan M; Okuka, Maja; Muñoz, Purificación; Li, Chao; Zhou, Lingjun; Wu, Chao; Czerwiec, Eva; Sandler, Laurel; Seyfang, Andreas; Blasco, Maria A; Keefe, David L
2007-12-01
Stem cells and cancer cells maintain telomere length mostly through telomerase. Telomerase activity is high in male germ line and stem cells, but is low or absent in mature oocytes and cleavage stage embryos, and then high again in blastocysts. How early embryos reset telomere length remains poorly understood. Here, we show that oocytes actually have shorter telomeres than somatic cells, but their telomeres lengthen remarkably during early cleavage development. Moreover, parthenogenetically activated oocytes also lengthen their telomeres, thus the capacity to elongate telomeres must reside within oocytes themselves. Notably, telomeres also elongate in the early cleavage embryos of telomerase-null mice, demonstrating that telomerase is unlikely to be responsible for the abrupt lengthening of telomeres in these cells. Coincident with telomere lengthening, extensive telomere sister-chromatid exchange (T-SCE) and colocalization of the DNA recombination proteins Rad50 and TRF1 were observed in early cleavage embryos. Both T-SCE and DNA recombination proteins decrease in blastocyst stage embryos, whereas telomerase activity increases and telomeres elongate only slowly. We suggest that telomeres lengthen during the early cleavage cycles following fertilization through a recombination-based mechanism, and that from the blastocyst stage onwards, telomerase only maintains the telomere length established by this alternative mechanism.
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-07-20
Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.
Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy
NASA Astrophysics Data System (ADS)
Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.
2018-02-01
We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruoxing; Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu
2012-10-01
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remainsmore » unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black-Right-Pointing-Pointer Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.« less
Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai
2016-01-01
Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771
Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP.
Kohlmaier, Gregor; Loncarek, Jadranka; Meng, Xing; McEwen, Bruce F; Mogensen, Mette M; Spektor, Alexander; Dynlacht, Brian D; Khodjakov, Alexey; Gönczy, Pierre
2009-06-23
The centrosome is the principal microtubule organizing center (MTOC) of animal cells. Accurate centrosome duplication is fundamental for genome integrity and entails the formation of one procentriole next to each existing centriole, once per cell cycle. The procentriole then elongates to eventually reach the same size as the centriole. The mechanisms that govern elongation of the centriolar cylinder and their potential relevance for cell division are not known. Here, we show that the SAS-4-related protein CPAP is required for centrosome duplication in cycling human cells. Furthermore, we demonstrate that CPAP overexpression results in the formation of abnormally long centrioles. This also promotes formation of more than one procentriole in the vicinity of such overly long centrioles, eventually resulting in the presence of supernumerary MTOCs. This in turn leads to multipolar spindle assembly and cytokinesis defects. Overall, our findings suggest that centriole length must be carefully regulated to restrict procentriole number and thus ensure accurate cell division.
Lum, Kirsten J; Sundaram, Rajeshwari; Louis, Thomas A
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman's last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Huang, M-Y; Xuan, F; Liu, W; Cui, H-J
2017-01-19
It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model
NASA Astrophysics Data System (ADS)
Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe
2013-10-01
Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest—a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.
Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.
2016-01-01
ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885
Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria
2012-01-01
Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921
The Limits on Trypanosomatid Morphological Diversity
Wheeler, Richard John; Gluenz, Eva; Gull, Keith
2013-01-01
Cell shape is one, often overlooked, way in which protozoan parasites have adapted to a variety of host and vector environments and directional transmissions between these environments. Consequently, different parasite life cycle stages have characteristic morphologies. Trypanosomatid parasites are an excellent example of this in which large morphological variations between species and life cycle stage occur, despite sharing well-conserved cytoskeletal and membranous structures. Here, using previously published reports in the literature of the morphology of 248 isolates of trypanosomatid species from different hosts, we perform a meta-analysis of the occurrence and limits on morphological diversity of different classes of trypanosomatid morphology (trypomastigote, promastigote, etc.) in the vertebrate bloodstream and invertebrate gut environments. We identified several limits on cell body length, cell body width and flagellum length diversity which can be interpreted as biomechanical limits on the capacity of the cell to attain particular dimensions. These limits differed for morphologies with and without a laterally attached flagellum which we suggest represent two morphological superclasses, the ‘juxtaform’ and ‘liberform’ superclasses. Further limits were identified consistent with a selective pressure from the mechanical properties of the vertebrate bloodstream environment; trypanosomatid size showed limits relative to host erythrocyte dimensions. This is the first comprehensive analysis of the limits of morphological diversity in any protozoan parasite, revealing the morphogenetic constraints and extrinsic selection pressures associated with the full diversity of trypanosomatid morphology. PMID:24260255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Dikpati, Mausumi
2013-12-10
Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less
Quantitative proteomic analysis of human breast epithelial cells with differential telomere length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Li-Rong; Chan, King C.; Tahara, Hidetoshi
Telomeres play important functional roles in cell proliferation, cell cycle regulation, and genetic stability, in which telomere length is critical. In this study, quantitative proteome comparisons for the human breast epithelial cells with short and long telomeres (184-hTERT{sub L} vs. 184-hTERT{sub S} and 90P-hTERT{sub L} vs. 90P-hTERT{sub S}), resulting from transfection of the human telomerase reverse transcriptase (hTERT) gene, were performed using cleavable isotope-coded affinity tags. More than 2000 proteins were quantified in each comparative experiment, with approximately 77% of the proteins identified in both analyses. In the cells with long telomeres, significant and consistent alterations were observed in metabolismmore » (amino acid, nucleotide, and lipid metabolism), genetic information transmission (transcription and translation regulation, spliceosome and ribosome complexes), and cell signaling. Interestingly, the DNA excision repair pathway is enhanced, while integrin and its ligands are downregulated in the cells with long telomeres. These results may provide valuable information related to telomere functions.« less
Gudi, Radhika; Haycraft, Courtney J.; Bell, P. Darwin; Li, Zihai; Vasu, Chenthamarakshan
2015-01-01
Microtubule-based centrioles in the centrosome mediate accurate bipolar cell division, spindle orientation, and primary cilia formation. Cellular checkpoints ensure that the centrioles duplicate only once in every cell cycle and achieve precise dimensions, dysregulation of which results in genetic instability and neuro- and ciliopathies. The normal cellular level of centrosomal protein 4.1-associated protein (CPAP), achieved by its degradation at mitosis, is considered as one of the major mechanisms that limits centriole growth at a predetermined length. Here we show that CPAP levels and centriole elongation are regulated by centrobin. Exogenous expression of centrobin causes abnormal elongation of centrioles due to massive accumulation of CPAP in the cell. Conversely, CPAP was undetectable in centrobin-depleted cells, suggesting that it undergoes degradation in the absence of centrobin. Only the reintroduction of full-length centrobin, but not its mutant form that lacks the CPAP binding site, could restore cellular CPAP levels in centrobin-depleted cells, indicating that persistence of CPAP requires its interaction with centrobin. Interestingly, inhibition of the proteasome in centrobin-depleted cells restored the cellular and centriolar CPAP expression, suggesting its ubiquitination and proteasome-mediated degradation when centrobin is absent. Intriguingly, however, centrobin-overexpressing cells also showed proteasome-independent accumulation of ubiquitinated CPAP and abnormal, ubiquitin-positive, elongated centrioles. Overall, our results show that centrobin interacts with ubiquitinated CPAP and prevents its degradation for normal centriole elongation function. Therefore, it appears that loss of centrobin expression destabilizes CPAP and triggers its degradation to restrict the centriole length during biogenesis. PMID:25616662
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less
The role of telomere dynamics in aging and cancer
NASA Astrophysics Data System (ADS)
Blagoev, Krastan; Goodwin, Edwin
2006-03-01
Telomere length changes are far more dynamic than previously thought. In addition to a gradual loss of ˜100 base pairs per telomere in each cell division, losses as well as gains may occur within a single cell cycle. We are investigating how telomere exchange, extension, and deletion affect the proliferative potential of telomerase-negative somatic cells. Experimental techniques are being devised to detect dynamic telomere processes and quantify both the frequency and length changes of each. In parallel, a ``dynamic telomere model'' is being used that incorporates telomere dynamics to study how the telomere size distribution evolves with time. This is an essential step towards understanding the role that telomere dynamics play in the normal aging of tissues and organisms. The model casts light on relationships not otherwise easily explained by a deterministic ``mitotic clock,'' or to what extent the shortest initial telomere determines the onset of senescence. We also expect to identify biomarkers that will correlate with aging better than average telomere length and to shed light on the transition to unlimited growth found in telomerase-negative tumor cells having the ALT (alternative lengthening of telomeres) phenotype, and to evaluate strategies to suppress the growth of these tumors.
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan
In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line
Sohda, Satoshi; Suzuki, Kenta; Igari, Ichiro
2017-11-27
There are many mobile phone apps aimed at helping women map their ovulation and menstrual cycles and facilitating successful conception (or avoiding pregnancy). These apps usually ask users to input various biological features and have accumulated the menstrual cycle data of a vast number of women. The purpose of our study was to clarify how the data obtained from a self-tracking health app for female mobile phone users can be used to improve the accuracy of prediction of the date of next ovulation. Using the data of 7043 women who had reliable menstrual and ovulation records out of 8,000,000 users of a mobile phone app of a health care service, we analyzed the relationship between the menstrual cycle length, follicular phase length, and luteal phase length. Then we fitted a linear function to the relationship between the length of the menstrual cycle and timing of ovulation and compared it with the existing calendar-based methods. The correlation between the length of the menstrual cycle and the length of the follicular phase was stronger than the correlation between the length of the menstrual cycle and the length of the luteal phase, and there was a positive correlation between the lengths of past and future menstrual cycles. A strong positive correlation was also found between the mean length of past cycles and the length of the follicular phase. The correlation between the mean cycle length and the luteal phase length was also statistically significant. In most of the subjects, our method (ie, the calendar-based method based on the optimized function) outperformed the Ogino method of predicting the next ovulation date. Our method also outperformed the ovulation date prediction method that assumes the middle day of a mean menstrual cycle as the date of the next ovulation. The large number of subjects allowed us to capture the relationships between the lengths of the menstrual cycle, follicular phase, and luteal phase in more detail than previous studies. We then demonstrated how the present calendar methods could be improved by the better grouping of women. This study suggested that even without integrating various biological metrics, the dataset collected by a self-tracking app can be used to develop formulas that predict the ovulation day when the data are aggregated. Because the method that we developed requires data only on the first day of menstruation, it would be the best option for couples during the early stages of their attempt to have a baby or for those who want to avoid the cost associated with other methods. Moreover, the result will be the baseline for more advanced methods that integrate other biological metrics. ©Satoshi Sohda, Kenta Suzuki, Ichiro Igari. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.11.2017.
Chlorination by-products in drinking water and menstrual cycle function.
Windham, Gayle C; Waller, Kirsten; Anderson, Meredith; Fenster, Laura; Mendola, Pauline; Swan, Shanna
2003-06-01
We analyzed data from a prospective study of menstrual cycle function and early pregnancy loss to explore further the effects of trihalomethanes (THM) on reproductive end points. Premenopausal women ((italic)n(/italic) = 403) collected urine samples daily during an average of 5.6 cycles for measurement of steroid metabolites that were used to define menstrual parameters such as cycle and phase length. Women were asked about consumption of various types of water as well as other habits and demographics. A THM level was estimated for each cycle based on residence and quarterly measurements made by water utilities during a 90-day period beginning 60 days before the cycle start date. We found a monotonic decrease in mean cycle length with increasing total THM (TTHM) level; at > 60 microg/L, the adjusted decrement was 1.1 days [95% confidence interval (CI), -1.8 to -0.40], compared with less than or equal to 40 microg/L. This finding was also reflected as a reduced follicular phase length (difference -0.94 day; 95% CI, -1.6 to -0.24). A decrement in cycle and follicular phase length of 0.18 days (95% CI, -0.29 to -0.07) per 10 microg/L unit increase in TTHM concentration was found. There was little association with luteal phase length, menses length, or cycle variability. Examining the individual THMs by quartile, we found the greatest association with chlorodibromomethane or the sum of the brominated compounds. Incorporating tap water consumption showed a similar pattern of reduced cycle length with increasing TTHM exposure. These findings suggest that THM exposure may affect ovarian function and should be confirmed in other studies.
Baithalu, Rubina Kumari; Singh, S K; Gupta, Chhavi; Raja, Anuj K; Saxena, Abhishake; Kumar, Yogendra; Singh, R; Agarwal, S K
2013-08-01
In the present paper, cellular composition of buffalo corpus luteum (CL) with its functional characterization based on 3β-HSD and progesterone secretory ability at different stages of estrous cycle and pregnancy was studied. Buffalo uteri along with ovaries bearing CL were collected from the local slaughter house. These were classified into different stages of estrous cycle (Stage I, II, III and IV) and pregnancy (Stage I, II and III) based on morphological appearance of CL, surface follicles on the ovary and crown rump length of conceptus. Luteal cell population, progesterone content and steroidogenic properties were studied by dispersion of luteal cells using collagenase type I enzyme, RIA and 3β-HSD activity, respectively. Large luteal cells (LLC) appeared as polyhedral or spherical in shape with a centrally placed large round nucleus and an abundance of cytoplasmic lipid droplets. However, small luteal cells (SLC) appeared to be spindle shaped with an eccentrically placed irregular nucleus and there was paucity of cytoplasmic lipid droplets. The size of SLC (range 12-23μm) and LLC (range 25-55μm) increased (P<0.01) with the advancement of stage of estrous cycle and pregnancy. The mean progesterone concentration per gram and per CL increased (P<0.01) from Stage I to III of estrous cycle with maximum concentration at Stage III of estrous cycle and pregnancy. The progesterone concentration decreased at Stage IV (day 17-20) of estrous cycle coinciding with CL regression. Total luteal cell number (LLC and SLC) also increased (P<0.01) from Stage I to III of estrous cycle and decreased (P<0.05), thereafter, at Stage IV indicating degeneration of luteal cells and regression of the CL. Total luteal cell population during pregnancy also increased (P<0.01) from Stage I to II and thereafter decreased (P>0.05) indicating cessation of mitosis. Increased (P<0.05) large luteal cell numbers from Stage I to III of estrous cycle and pregnancy coincided with the increased progesterone secretion and 3β-HSD activity of CL. Thus, proportionate increases of large compared with small luteal cells were primarily responsible for increased progesterone secretion during the advanced stages of the estrous cycle and pregnancy. Total luteal cells and progesterone content per CL during the mid-luteal stage in buffalo as observed in the present study seem to be less than with cattle suggesting inherent luteal deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijjar, Tarlochan; Wigington, Don; Garbe, James C.
1999-08-01
The authors have uncovered a novel role for the cyclin-dependent kinase inhibitor, p57KIP2, during the immortalization of cultured human mammary epithelial cells (HMEC). HMEC immortalized following chemical carcinogen exposure initially expressed little or no telomerase activity, and their telomeres continued to shorten with passage. Cell populations whose mean terminal restriction fragment (TRF) length declined and exhibited slow heterogeneous growth, and contained many non-proliferative cells. These conditionally immortal HMEC cultures accumulated large quantities of p57 protein. With continued passage, the conditionally immortal cell populations very graduall2048nverted to a fully immortal phenotype of good uniform growth, expression of high levels of telomerasemore » activity, and stabilization of telomere length. The fully immortal good growing HMEC did not accumulate p57 in G0 or during the cell cycle. DNA and RNA analysis of mass populations and individual subclones of conditionally immortal HMEC line 184A1 showed that continued growth of conditionally immortal cells with critically short telomeres was repeatedly accompanied by loss of the expressed p57 allele, and transient expression of the previously imprinted allele. Conditionally immortal 184A1 with mean TRF > 3 kb infected with retroviruses containing the p57 gene exhibited premature slow heterogeneous growth. Conversely, exogenous expression of hTERT, the catalytic subunit of telomerase, in 184A1 with mean TRF > 3 kb prevented both the slow heterogeneous growth phase and accumulation of p57 in cycling populations. These data indicate that in HMEC which have overcome replicative senescence, p57 may provide an additional barrier against indefinite proliferation. Overcoming p57 mediated growth inhibition in these cells may be crucial for acquisition of the unlimited growth potential thought to be critical for malignant progression.« less
Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Lin, Jiu-Mao; Zheng, Hai-Xia; Yang, Liu-Qing; Huang, Su-Ping; Lan, Yuan-Long; Chen, Ling; Guo, Fang
2013-08-01
To study the toxicity features of high glucose on the endothelial cell cycle and the influence of Dan Gua-Fang, a Chinese herbal compound prescription, on the reproductive cycle of vascular endothelial cells cultivated under a high glucose condition; to reveal the partial mechanisms of Dan Gua-Fang in the prevention and treatment of endothelial injury caused by hyperglycemia in diabetes mellitus (DM); and offer a reference for dealing with the vascular complications of DM patients with long-term high blood glucose. Based on the previous 3-(4,5)-dimethylthiahiazo (z-y1)-3-5-diphenytetrazoliumromide (MTT) experiment, under different medium concentrations of glucose and Dangua liquor, the endothelial cells of vein-304 (ECV-304) were divided into 6 groups as follows: standard culture group (Group A, 5.56 mmol/L glucose); 1/300 herb-standard group (Group B); high glucose culture group (Group C, 16.67 mmol/L glucose); 1/150 herb-high glucose group (Group D); 1/300 herb-high glucose group (Group E); and 1/600 herb-high glucose group (Group F). The cell cycle was assayed using flow cytometry after cells were cultivated for 36, 72 and 108 h, respectively. (1) The percentage of cells in the G0/G1 phase was significantly increased in Group C compared with that in Group A (P<0.05), while the percentage of S-phase (S%) cells in Group C was significantly reduced compared with Group A (P<0.05); the latter difference was dynamically related to the length of growing time of the endothelial cells in a high glucose environment. (2) The S% cells in Group A was decreased by 30.25% (from 40.23% to 28.06%) from 36 h to 72 h, and 12.33% (from 28.06% to 24.60%) from 72 h to 108 h; while in Group C, the corresponding decreases were 23.05% and 21.87%, respectively. The difference of S% cells between the two groups reached statistical significance at 108 h (P<0.05). (3) The percentage difference of cells in the G2/M phase between Group C and Group A was statistically significant at 72 h (P<0.01). (4) 1/300 Dan Gua-Fang completely reversed the harmful effect caused by 16.67 mmol/L high glucose on the cell cycle; moreover it did not disturb the cell cycle when the cell was cultivated in a glucose concentration of 5.56 mmol/L. High glucose produces an independent impact on the cell cycle. Persistent blocking of the cell cycle and its arrest at the G0/G1 phase are toxic effects of high glucose on the endothelial cell cycle. The corresponding variation of the arrest appears in the S phase. 1/300 Dan Gua-Fang completely eliminates the blockage of high glucose on the endothelial cell cycle.
Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.
2000-01-01
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628
Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-01-01
Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748
DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells
Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.
2015-01-01
In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health effects. PMID:26703663
DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.
Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B
2015-12-22
In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Chandramu; Dontula, Ranadheer; Ganji, Purnachandra Nagaraju
2012-01-13
Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reductionmore » in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the effects of SPARC on medulloblastoma tumor cell proliferation.« less
Huang, Yuehua; Tai, Andrew W; Tong, Shuping; Lok, Anna S F
2013-06-01
Hepatitis B virus (HBV) core promoter (CP) mutations have been associated with an increased risk of hepatocellular carcinoma (HCC) in clinical studies. We previously reported that a combination of CP mutations seen in HCC patients, expressed in HBx gene, increased SKP2 (S-phase kinase-associated protein 2) expression, thereby promoting cellular proliferation. Here, we investigate the possible mechanisms by which CP mutations upregulate SKP2. We used immunoblotting and ATPlite assay to validate the effect of CP mutations in full-length HBV genome on cell cycle regulator levels and cell proliferation. Activation of SKP2 mRNA was assessed by quantitative real-time PCR in primary human hepatocytes (PHH) and HCC cell lines. Effect of CP mutations on SKP2 promoter activity was determined by luciferase assay. Target regulation of E2F1 on SKP2 was analyzed by siRNAs. CP mutations in full-length HBV genome upregulated SKP2 expression, thereby downregulating cell cycle inhibitors and accelerating cellular proliferation. CP mutations enhanced SKP2 promoter activity but had no effect on SKP2 protein stability. Mapping of the SKP2 promoter identified a region necessary for activation by CP mutations that contains an E2F1 response element. Knocking down E2F1 reduced the effects of CP mutations on SKP2 and cellular proliferation. The effect of CP mutations on E2F1 might be mediated through hyperphosphorylation of RB. HBV CP mutations enhance SKP2 transcription by activating the E2F1 transcription factor and in turn downregulate cell cycle inhibitors, thus providing a potential mechanism for an association between CP mutations and HCC. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Construction of recombinant FGFR1 containing full-length gene and its potential application.
Zhou, Yali; Luo, Wenjuan; Zheng, Lei; Li, Miao; Zhang, Yanmin
2010-07-01
FGFR1, one of the four fibroblast growth factor receptors, has been found to be over-expressed in many cancers. In this study, a full-length expression plasmid for FGFR1 was obtained by fragment amplification. The amplified PCR product was then digested and inserted into the pcDNA3.1(+) vector. A recombinant eukaryotic expression vector containing the complete CDS region of FGFR1 was successfully constructed. After it was transfected to Hek293 cell, the expression of the FGFR1 receptor in recombinant Hek293/FGFR1 was 18 times higher than that of Hek293 cell. The biological activities of high expression FGFR1 cell (Hek293/FGFR1) were verified by FCM, immunofluorescent, RT-PCR, western blot and cell cycle analysis. Then, Hek293/FGFR1 was used to screen taspine with cell membrane chromatography (CMC). Finally, we analyzed the effects of taspine on Hek293/FGFR1 cell and MCF-7 cell. In conclusion, Hek293/FGFR1 was successfully constructed. The results demonstrate that taspine can down-regulate phosphorylation of FGFR1 and ERK, and inhibit Hek293/FGFR1 and MCF-7 cell proliferation. Copyright 2010 Elsevier Inc. All rights reserved.
Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.
Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J
2013-07-01
Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.
Length of the solar cycle influence on the relationship NAO-Northern Hemisphere Temperature
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Añel, J. A.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
The influence of the length of the solar cycle on the relationship North Atlantic Oscillation (NAO)-Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship is different according to the length of the solar cycle. When the sunspot cycle is 10 or 11 years long, wintertime NAO and NHT are positively correlated, being the signal more intense during 11 years period, but when the sunspot cycle is longer (12 years) correlations between wintertime NAO and NHT are not significant. In fact there are significant negative correlations between wintertime NAO and spring NHT, with predictive potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Guangjin, E-mail: guangjin.ma@mpq.mpg.de; Max-Planck-Institut für Quantenoptik, D-85748 Garching; Dallari, William
2015-03-15
We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.
Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.
LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer
2012-11-22
The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
Uterine length and fertility outcomes: a cohort study in the IVF population.
Hawkins, L K; Correia, K F; Srouji, S S; Hornstein, M D; Missmer, S A
2013-11-01
What is the relationship between pre-cycle uterine length and IVF outcome (chemical pregnancy, clinical pregnancy, spontaneous abortion and live birth)? Women at extremes of uterine length (<7.0 or >9.0 cm) were less likely to achieve live birth and women with uterine lengths <6.0 cm were also more likely to experience spontaneous abortion. A prospective study of 807 women published in 2000 found that implantation and clinical pregnancy rates were highest in women with uterine lengths between 7.0 and 9.0 cm, though the difference was not significant. The relationship between pre-cycle uterine length and live birth has not been evaluated. A retrospective cohort study of all cycles performed after uterine length measurement at an academic hospital IVF clinic from 2001 to 2012. A total of 8981 fresh cycles were performed in 5120 adult women with normal uterine anatomy. Women with uterine anomalies (unicornuate, bicornuate, septate or uterus exposed to diethylstilbestrol) were excluded and women with fibroids were identified for subanalysis. Uterine length was measured by uterine sounding. Cycles were divided by uterine length into groups: <6.0 cm (very short, n = 76), 6.0-6.9 cm (short, n = 2014), 7.0-7.9 cm (referent, n = 4984), 8.0-8.9 cm (long, n = 1664) and ≥9 cm (very long, n = 243). Multivariate logistic regression (first-cycle analyses) and generalized estimating equations (all-cycle analyses) were adjusted for age, fibroids and ART treatment (assisted hatching, intracytoplasmic sperm injection) to generate relative risk (RR) of cycle outcomes by uterine length. Median uterine length in the IVF population was 7.0 cm (interquartile range 7.0-7.8) and was positively associated with BMI (P < 0.001) and fibroids (P = 0.02). Compared with the referent group, women with uterine lengths <6.0 cm were half as likely to achieve live birth (RR: 0.53; 95% confidence interval (CI): 0.35-0.81) and women with lengths of 6.0-6.9 cm were also less likely (RR: 0.91; CI: 0.85-0.98). Cubic regression spline identified a significant inverse U-shaped association whereby women with uterine lengths <7.0 or >9.0 cm were less likely to achieve live birth. Women with lengths <6.0 cm were also more likely to experience spontaneous abortion (RR: 2.16; CI: 1.23-3.78). Results remained consistent when excluding women with a uterine factor diagnosis (n = 8823), when limiting to the first cycle at our institution (n = 5120) and when further restricting to first-ever cycles (n = 3941). Optimal assessment of uterine length by ultrasound was not feasible due to time and cost limitations, though uterine sounding is a clinically relevant measurement allowing for results with practical implications. Findings from our predominantly Caucasian clinic population may not be generalizable to infertile populations with different ethnic compositions. Reproducibility of results would solidify findings and inform patient counseling in women undergoing IVF. No funding was sought for this investigation. MD declares relationships with UpToDate (royalties) and WINFertlity (consultant).
Accreditation status of U.S. military graduate medical education programs.
De Lorenzo, Robert A
2008-07-01
Military graduate medical education (GME) comprises a substantial fraction of U.S. physician training capacity. The wars in Iraq and Afghanistan have placed substantial stress on military medicine, and lay and professional press accounts have raised awareness of the effects on military GME. To date, however, objective data on military GME quality remains sparse. Determine the accreditation status of U.S. military GME programs. Additionally, military GME program data will be compared to national (U.S.) accreditation lengths. Retrospective review of Accreditation Council for Graduate Medical Education (ACGME) data. All military-sponsored core programs in specialties with at least three residencies were included. Military-affiliated but civilian-sponsored programs were excluded. The current and past cycle data were used for the study. For each specialty, the current mean accreditation length and the net change in cycle was calculated. National mean accreditation lengths by specialty for 2005 to 2006 were obtained from the ACGME. Comparison between the overall mean national and military accreditation lengths was performed with a z test. All other comparisons employed descriptive statistics. Ninety-nine military programs in 15 specialties were included in the analysis. During the study period, 1 program was newly accredited, and 6 programs had accreditation withdrawn or were closed. The mean accreditation length of the military programs was 4.0 years. The overall national mean for the same specialties is 3.5 years (p < 0.01). In previous cycles, 68% of programs had accreditation of 4 years or longer, compared to 70% in the current cycle, while 13% had accreditation of 2 years or less in the previous cycle compared to 14% in the current cycle. Ten (68%) of the military specialties had mean accreditation lengths greater than the national average, while 5 (33%) were below it. Ten (68%) specialties had stable or improving cycle lengths when compared to previous cycles. Military GME accreditation cycle lengths are, overall, longer than national averages. Trends show many military programs are experiencing either stable or slightly lengthening accreditation compared to previous cycles. A few specialties show a declining trend. There has been a modest 5% decline in the number of military core residency programs since 2000.
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang
2016-10-01
In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.
Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio
2013-05-01
Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.
The effect of ultradian and orbital cycles on plant growth
NASA Technical Reports Server (NTRS)
Berry, W.; Hoshizaki, T.; Ulrich, A.
1986-01-01
In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.
Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study
Davis, Stephanie I; Blanck, Heidi Michels; Hertzberg, Vicki S; Tolbert, Paige E; Rubin, Carol; Cameron, Lorraine L; Henderson, Alden K; Marcus, Michele
2005-01-01
Background Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. Methods The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. Results Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. Conclusion This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds. PMID:16091135
NASA Astrophysics Data System (ADS)
K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan
2016-05-01
Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.
Novel Technologies for Next Generation Memory
2013-07-25
charge in the capacitor) eventually fades unless the capacitor charge is refreshed , so the memory cells must be periodically refreshed (rewritten). The...reliability issues (such as poor data retention problem and refresh failure). In order to avoid those problems, a 3-dimensional channel structure...states during the refresh cycle (retention time). When the channel length is scaled down, it is difficult to guarantee sufficient retention time
Wang, Ruoxing; Guo, Yan-Lin
2012-10-01
Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.
Jojic, Borka; Amodeo, Simona; Bregy, Irina; Ochsenreiter, Torsten
2018-05-10
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei We identified two paralogs ( TCTP1 and TCTP2 ) that are differentially expressed in the life cycle of the parasite. The genes have identical 5' untranslated regions (UTRs) and almost identical open-reading frames. The 3'UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3'UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. © 2018. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue
Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{supmore » -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.« less
Maslova, S V; Shirman, G A; Gavrilovskaia, I N
1977-01-01
Reproduction of mouse encephalomyocarditis virus (EMC) was studied in 5 continuous primate cell lines: HeLa, Fl, Detroit-6, P/7, and MIO inoculated with guanidine-dependent variant of poliomyelitis virus in the absence of guanidine. Poliomyelitis virus stimulated EMC virus reproduction in all cell lines under study. This stimulation effect was studied at length in HeLa and MIO cells. In HeLa cells, stimulation was observed at a low and moderate multiplicity of infection of EMC virus but not at a high (100 PEU/cell) multiplicity. Also, when EMC virus reproduction was stimulated, a shortening of the latent period of its multiplication cycle, an increase in the number of antigen-containing cells and the number of infectious centers were observed. In MIO cells, stimulation was found to occur both with low and high doses of EMC virus but not to be accompanied by a shortening in the latent period of EMC reproduction cycle, or any increase in the antigen-containing cells or number of infectious centers. In both cell types upon mixed infection the synthesis of virus-specific RNA's of EMC virus was enhanced. It is suggested that the stimulating effect of poliomyelitis virus is realized in HeLa and MIO cells at different stages of EMC virus reproduction.
Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.
Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H
2006-12-01
The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.
Noncoding RNPs of viral origin.
Steitz, Joan; Borah, Sumit; Cazalla, Demian; Fok, Victor; Lytle, Robin; Mitton-Fry, Rachel; Riley, Kasandra; Samji, Tasleem
2011-03-01
Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs.
Noncoding RNPs of Viral Origin
Steitz, Joan; Borah, Sumit; Cazalla, Demian; Fok, Victor; Lytle, Robin; Mitton-Fry, Rachel; Riley, Kasandra; Samji, Tasleem
2011-01-01
SUMMARY Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host’s response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs. PMID:20719877
A gradient in the duration of the G1 phase in the murine neocortical proliferative epithelium
NASA Technical Reports Server (NTRS)
Miyama, S.; Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr
1997-01-01
Neuronogenesis in the neocortical pseudostratified ventricular epithelium (PVE) is initiated rostrolaterally and progresses caudo-medially as development progresses. Here we have measured the cytokinetic parameters and the fractional neuronal output parameter, Q, of laterally located early-maturing regions over the principal embryonic days (E12-E15) of neocortical neuronogenesis in the mouse. These measures are compared with ones previously made of a medial, late-maturing portion of the PVE. Laterally, as medially, the duration of the neuronogenetic interval is 6 days and comprises 11 integer cell cycles. Also, in both lateral and medial areas the length of G1 phase (TG1) increases nearly 4-fold and is the only cell cycle parameter to change. Q progresses essentially identically laterally and medially with respect to the succession of integer cell cycles. Most importantly, from E12 to E13 there is a steeply declining lateral to medial gradient in TG1. The gradient is due both to the lateral to medial graded stage of neuronogenesis and to the stepwise increase in TG1 with each integer cycle during the neuronogenetic interval. To our knowledge this gradient in TG1 of the cerebral PVE is the first cell biological gradient to be demonstrated experimentally in such an extensive proliferative epithelial sheet. We suggest that this gradient in TG1 is the cellular mechanism for positionally encoding a protomap of the neocortex within the PVE.
Upson, Kristen; Harmon, Quaker E.; Baird, Donna D.
2016-01-01
Objective To examine the association between serum 25-hydroxyvitamin D (25(OH)D) and menstrual cycle length and regularity. Design Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women ages 23-34 reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally-adjusted 25(OH)D and the odds of each cycle category. Setting Women from the Detroit, Michigan area attended a study clinic visit. Participants 1102 African-American women ages 23-34. Intervention None Main Outcome Measure Self-reported menstrual cycle length over the previous 12 months excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were “too irregular to estimate” were classified as having irregular cycles. A typical cycle length of <27 days was considered “short,” >34 days was “long,” and 27-34 days was “normal”. Results The median 25(OH)D level was 14.7 ng/ml (interquartile range: 10.9, 19.6). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles (adjusted odds ratio (aOR) (95% Confidence interval (CI): 0.54 (0.32, 0.89)). 25(OH)D was not associated with the occurrence of short (aOR(CI): 1.03 (0.82, 1.29)) or irregular (aOR(CI): 1.46 (0.88, 2.41) menstrual cycles. Results were robust to several sensitivity analyses. Conclusions These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. PMID:26997249
Jukic, Anne Marie Z; Upson, Kristen; Harmon, Quaker E; Baird, Donna D
2016-07-01
To examine the association between serum 25-hydroxyvitamin D [25(OH)D] and menstrual cycle length and regularity. Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women aged 23-34 years reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally adjusted 25(OH)D and the odds of each cycle category. Not applicable. A total of 1,102 African American women. Not applicable. Self-reported menstrual cycle length over the previous 12 months, excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were "too irregular to estimate" were classified as having irregular cycles. A typical cycle length of <27 days was considered "short," >34 days was "long," and 27-34 days was "normal." The median 25(OH)D level was 14.7 ng/mL (interquartile range, 10.9-19.6 ng/mL). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles: adjusted odds ratio (aOR) 0.54, 95% confidence interval (CI) 0.32-0.89. 25-Hydroxyvitamin D was not associated with the occurrence of short (aOR 1.03, 95% CI 0.82-1.29) or irregular (aOR 1.46, 95% CI 0.88-2.41) menstrual cycles. Results were robust to several sensitivity analyses. These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.
Sonoporation as a cellular stress: induction of morphological repression and developmental delays.
Chen, Xian; Wan, Jennifer M F; Yu, Alfred C H
2013-06-01
For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
Behaviour of telomere and telomerase during aging and regeneration in zebrafish.
Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L
2011-02-09
Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.
Cellular manipulation and patterning using ferromagnetic nanowires
NASA Astrophysics Data System (ADS)
Hultgren, Anne
Ferromagnetic nanowires are demonstrated as an effective tool to apply forces to living cells. Both magnetic cell separations and the magnetic patterning of cells on a substrate will be accomplished through the use of cell-nanowire interactions as well as nanowire-magnetic field interactions. When introduced into cultures of NIH-3T3 cells, the nanowires are internalized by cells via the integrin-mediated adhesion pathway without inflicting any toxic effects on the cell cycle over the course of several days. In addition, the length of the nanowires was found to have an effect on the cell-nanowire interactions when the cells were dissociated from the tissue culture dish. To compare the effectiveness of the nanowires as a means of manipulating cells to the current technology which is based on superparamagnetic beads, magnetic cell separations were performed with electrodeposited Ni nanowires 350 nm in diameter and 5--35 mum long in field gradients of 80 T/m. Single-pass separations of NIH-3T3 cells bound to nanowires achieve up to 81% purity with 85% yield, a dramatic improvement over the 55% purity and 20% yield obtained with the beads. The yield for the separations were found to be dependent on the length of the nanowires, and was maximized when the length of the nanowires equaled the diameter of the cells. This dependence was exploited to perform a size-selective magnetic separation. Substrates containing arrays of micro-magnets, fabricated using photolithography, were placed in cell cultures. These micro-magnet arrays create regions of locally strong magnetic field gradients to trap nanowires in specific locations on the substrate. These substrates were used in conjunction with fluid flow and a weak, externally applied magnetic field to create and control patterns of cells bound to nanowires. Controlled isolation of heterogeneous pairs and groups of cells will enable the study of the biochemistry of cell-cell contacts.
Influence of crank length and crank width on maximal hand cycling power and cadence.
Krämer, Christian; Hilker, Lutz; Böhm, Harald
2009-07-01
The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.
Effects of acute administration of ethanol on the rat adrenal cortex.
Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera
2003-09-01
The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.
Heimann, Gábor; Canhos, Luisa L; Frik, Jesica; Jäger, Gabriele; Lepko, Tjasa; Ninkovic, Jovica; Götz, Magdalena; Sirko, Swetlana
2017-08-01
Aging leads to adverse outcomes after traumatic brain injury. The mechanisms underlying these defects, however, are not yet clear. In this study, we found that astrocytes in the aged post-traumatic cerebral cortex develop a significantly reduced proliferative response, resulting in reduced astrocyte numbers in the penumbra. Moreover, experiments of reactive astrocytes in vitro reveal that their diminished proliferation is due to an age-related switch in the division mode with reduced cell-cycle re-entry rather than changes in cell-cycle length. Notably, reactive astrocytes in vivo and in vitro become refractory to stimuli increasing their proliferation during aging, such as Sonic hedgehog signaling. These data demonstrate for the first time that age-dependent, most likely intrinsic changes in the proliferative program of reactive astrocytes result in their severely hampered proliferative response to traumatic injury thereby affecting astrocyte homeostasis. © The Author 2017. Published by Oxford University Press.
Kamlund, Sofia; Strand, Daniel; Janicke, Birgit; Alm, Kersti; Oredsson, Stina
2017-01-01
ABSTRACT Most studies on new cancer drugs are based on population-derived data, where the absence of response of a small population may pass unnoticed. Thus, individual longitudinal tracking of cells is important for the future development of efficient cancer treatments. We have used digital holographic microscopy to track individual JIMT-1 human breast cancer cells and L929 mouse fibroblast cultivated in normoxia or hypoxia. In addition, JIMT-1 cells were treated with salinomycin, a cancer stem cell targeting compound. Three-day time-lapse movies were captured and individual cells were analysed with respect to cell division (cell cycle length) and cell movement. Comparing population-doubling time derived from population-based growth curves and individual cell cycle time data from time-lapse movies show that the former hide a sub-population of dividing cells. Salinomycin treatment increased the motility of cells, however, this motility did not result in an increased distant migration i.e. the cells increased their local movement. MCF-7 breast cancer cells showed similar motility behaviour as salinomycin-treated JIMT-1 cells. We suggest that combining features, such as motility and migration, can be used to distinguish cancer cells with mesenchymal (JIMT-1) and epithelial (MCF-7) features. The data clearly emphasize the importance of longitudinal cell tracking to understand the biology of individual cells under different conditions. PMID:28933990
Tian, Shujuan; Wu, Jingjing; Li, Fen; Zou, Jianwei; Liu, Yuwen; Zhou, Bing; Bai, Yang; Sun, Meng-Xiang
2016-10-25
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.
NASA Astrophysics Data System (ADS)
Carter, Rachel; Huhman, Brett; Love, Corey T.; Zenyuk, Iryna V.
2018-03-01
X-ray computed tomography (X-ray CT) across multiple length scales is utilized for the first time to investigate the physical abuse of high C-rate pulsed discharge on cells wired individually and in parallel.. Manufactured lithium iron phosphate cells boasting high rate capability were pulse power tested in both wiring conditions with high discharge currents of 10C for a high number of cycles (up to 1200) until end of life (<80% of initial discharge capacity retained). The parallel assembly reached end of life more rapidly for reasons unknown prior to CT investigations. The investigation revealed evidence of overdischarge in the most degraded cell from the parallel assembly, compared to more traditional failure in the individual cell. The parallel-wired cell exhibited dissolution of copper from the anode current collector and subsequent deposition throughout the separator near the cathode of the cell. This overdischarge-induced copper deposition, notably impossible to confirm with other state of health (SOH) monitoring methods, is diagnosed using CT by rendering the interior current collector without harm or alteration to the active materials. Correlation of CT observations to the electrochemical pulse data from the parallel-wired cells reveals the risk of parallel wiring during high C-rate pulse discharge.
Higgs, Paul G
2016-06-08
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.
Higgs, Paul G.
2016-01-01
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
AM CAS - Spectral variations during the eruption cycles
NASA Astrophysics Data System (ADS)
Richter, G. A.; Notni, P.; Tiersch, H.
Spectroscopic investigations of AM Cas, the Z Camelopardalis star with the shortest known mean cycle length, were performed during quiescence and eruption. It is shown that, although the cycle length is very small, the spectral behavior of AM Cas during an eruption cycle is similar to that of other Z Camelopardalis stars and other U Geminorum stars. During an outburst, the Balmer emissions are narrower and the Balmer decrement is steeper than during quiescence.
Chemical Reactions in Turbulent Mixing Flows.
1987-06-01
longer in the z-t diagrams for higher fuel flow rates (consistent with longer flame lengths ) and, further, the celerity of a structure at a given axial...clocking rate synchronized with the cycle, while the slower clocking rate data corres- pond to about seven cycles. Flame lengths [61, Z,,D, for various...heat fABlLE I releases studied here are also shown in Table I Flame Lengths and Axial Measurement Stations, These flame lengths are based on 50% intermit
Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone
Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi
2012-01-01
Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209
Pérez-Martínez, Leonor; Jaworski, Diane M.
2005-01-01
Although traditionally recognized for maintaining extracellular matrix integrity during morphogenesis, the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), in the mature nervous system is largely unknown. Here, we report that TIMP-2 induces PC12 cell cycle arrest via regulation of cell cycle regulatory proteins resulting in differentiation and neurite outgrowth. TIMP-2 decreases cyclin B and D expression and increases p21Cip expression. Furthermore, TIMP-2 promotes cell differentiation via activation of the cAMP/Rap1/ERK pathway. Expression of dominant negative Rap1 blocks TIMP-2 mediated neurite outgrowth. Both the cell cycle arrest and neurite outgrowth induced by TIMP-2 was independent of MMP inhibitory activity. Consistent with the PC12 cell data, primary cultures of TIMP-2 knockout cerebral cortical neurons exhibit significantly reduced neurite length, which is rescued by TIMP-2. These in vitro results were corroborated in vivo. TIMP-2 deletion causes a delay in neuronal differentiation as demonstrated by the persistence of nestin-positive progenitors in the neocortical ventricular zone. The interaction of TIMP-2 with α3β1 integrin in the cerebral cortex suggests that TIMP-2 promotes neuronal differentiation and maintains mitotic quiescence in an MMP independent manner through integrin activation. The identification of molecules responsible for neuronal quiescence has significant implications for the adult brain’s ability to generate new neurons in response to injury and neurological disorders such as Alzheimer’s and Parkinson’s disease. PMID:15901773
Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years
NASA Astrophysics Data System (ADS)
Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund
2017-04-01
The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8, doi:10.1038/ncomms9611 (2015).
Peptide promotes overcoming of the division limit in human somatic cell.
Khavinson, V Kh; Bondarev, I E; Butyugov, A A; Smirnova, T D
2004-05-01
We previously showed that treatment of normal human diploid cells with Epithalon (Ala-Glu-Asp-Gly) induced expression of telomerase catalytic subunit, its enzymatic activity, and elongation of telomeres. Here we studied the effect of this peptide on proliferative potential of human fetal fibroblasts. Primary pulmonary fibroblasts derived from a 24-week fetus lost the proliferative potential at the 34th passage. The mean size of telomeres in these cells was appreciably lower than during early passages (passage 10). Addition of Epithalon to aging cells in culture induced elongation of telomeres to the size comparable to their length during early passages. Peptide-treated cells with elongated telomeres made 10 extra divisions (44 passages) in comparison with the control and continued dividing. Hence, Epithalon prolonged the vital cycle of normal human cells due to overcoming the Heyflick limit.
Gold, Daniel R.; Catanzaro, John N.; Makaryus, John N.; Waldman, Cory; Sauer, William H.; Sison, Cristina; Makaryus, Amgad N.; Altman, Erik; Jadonath, Ram; Beldner, Stuart
2010-01-01
Studies have shown the predictive value of inducible ventricular tachycardia and clinical arrhythmia in patients who have structural heart disease. We examined the possible predictive value of electrophysiologic study before the placement of an implantable cardioverter-defibrillator. Our retrospective study group comprised 315 patients who had ventricular tachycardia that was inducible during electrophysiologic study and who had undergone at least 1 month of follow-up (247 men; mean age, 66.9 ± 13.5 yr; mean follow-up, 24.9 ± 14.8 mo). Recorded characteristics included induced ventricular tachycardia cycle length, atrio-His and His-ventricular electrograms, PR and QT intervals, QRS duration, and drug therapy. Of the 315 patients, 97 experienced ventricular arrhythmia during the follow-up period, as registered by 184 of more than 400 interrogations. There were 187 episodes of ventricular arrhythmia (tachycardia, 178; fibrillation, 9) during 652.5 person-years of follow-up. Subjects with a cycle length ≥240 msec were more likely to have an earlier 1st arrhythmia than those with a cycle length <240 msec (P=0.032). A quarter of the subjects with a cycle length ≥240 msec had their 1st arrhythmia by 19.14 months, compared with 23.8 months for a quarter of the subjects with a cycle length <240 msec (P <0.032). Among the electrophysiologic characteristics examined, inducible ventricular tachycardia with a cycle length ≥240 msec is predictive of appropriate implantable cardioverter-defibrillator therapy at an earlier time. This may have prognostic implications that warrant implantable cardioverter-defibrillator programming to enable appropriate antitachycardia pacing in this group of patients. PMID:20548804
2016-01-01
tenance period to achieve planned expected service life ( ESL ), as well as the length, workload, and periodicity of a continuous maintenance...a ship’s service life but extends the length of each deployment. Figure 2.1 compares the number of deployments that can be made over the ESL of...ships in different cycle lengths. The ESL of DDG-51 Arleigh Burke–class destroyers Flight I and II is 35 years, and Flight IIA has an ESL of 40 years
Wolfs, Jason M; Hamilton, Thomas A; Lant, Jeremy T; Laforet, Marcon; Zhang, Jenny; Salemi, Louisa M; Gloor, Gregory B; Schild-Poulter, Caroline; Edgell, David R
2016-12-27
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.
Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter
Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.
2012-01-01
PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters—the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. PMID:23012534
Design parameters of a miniaturized piezoelectric underwater acoustic transmitter.
Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J
2012-01-01
PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters--the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level.
Barrett, E.S.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T.
2013-01-01
STUDY QUESTION How are ovarian steroid concentrations, gonadotrophins and menstrual cycle characteristics inter-related within normal menstrual cycles? SUMMARY ANSWER Within cycles, measures of estradiol production are highly related to one another, as are measures of progesterone production; however, the two hormones also show some independence from one another, and measures of cycle length and gonadotrophin concentrations show even greater independence, indicating minimal integration within cycles. WHAT IS KNOWN ALREADY The menstrual cycle is typically conceptualized as a cohesive unit, with hormone levels, follicular development and ovulation all closely inter-related within a single cycle. Empirical support for this idea is limited, however, and to our knowledge, no analysis has examined the relationships among all of these components simultaneously. STUDY DESIGN, SIZE, DURATION A total of 206 healthy, cycling Norwegian women participated in a prospective cohort study (EBBA-I) over the duration of a single menstrual cycle. Of these, 192 contributed hormonal and cycle data to the current analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Subjects provided daily saliva samples throughout the menstrual cycle from which estradiol and progesterone concentrations were measured. FSH and LH concentrations were measured in serum samples from three points in the same menstrual cycle and cycle length characteristics were calculated based on hormonal data and menstrual records. A factor analysis was conducted to examine the underlying relationships among 22 variables derived from the hormonal data and menstrual cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Six rotated factors emerged, explaining 80% of the variance in the data. Of these, factors representing estradiol and progesterone concentrations accounted for 37 and 13% of the variance, respectively. There was some association between measures of estradiol and progesterone production within cycles; however, cycle length characteristics and gonadotrophin concentrations showed little association with any measure of ovarian hormone concentrations. LIMITATIONS, REASONS FOR CAUTION Our summary measures of ovarian hormones may be imprecise in women with extremely long or short cycles, which could affect the patterns emerging in the factor analysis. Given that we only had data from one cycle on each woman, we cannot address how cycle characteristics may covary within individual women across multiple cycles. WIDER IMPLICATIONS OF THE FINDINGS Our findings are generalizable to other healthy populations with typical cycles, however, may not be applicable to cycles that are anovulatory, extreme in length or otherwise atypical. The results support previous findings that measures of estradiol production are highly correlated across the cycle, as are measures of progesterone production. Estradiol and progesterone concentrations are associated with one another, furthermore. However factor analysis also revealed more complex underlying patterns in the menstrual cycle, highlighting the fact that gonadotrophin concentrations and cycle length characteristics are virtually independent of ovarian hormones. These results suggest that despite integration of follicular and luteal ovarian steroid production across the cycle, cycle quality is a multi-faceted construct, rather than a single dimension. STUDY FUNDING/COMPETING INTEREST(S) The EBBA-I study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695-2000, 5754-2002) and Health Region East. The current analyses were completed under funding from the National Institutes of Health (K12 ES019852). No competing interests declared. PMID:23250924
Fix, Samantha M; Novell, Anthony; Yun, Yeoheung; Dayton, Paul A; Arena, Christopher B
2017-01-01
Phase-change ultrasound contrast agents (PCCAs) offer a solution to the inherent limitations associated with using microbubbles for sonoporation; they are characterized by prolonged circulation lifetimes, and their nanometer-scale sizes may allow for passive accumulation in solid tumors. As a first step towards the goal of extravascular cell permeabilization, we aim to characterize the sonoporation potential of a low-boiling point formulation of PCCAs in vitro. Parameters to induce acoustic droplet vaporization and subsequent microbubble cavitation were optimized in vitro using high-speed optical microscopy. Sonoporation of pancreatic cancer cells in suspension was then characterized at a range of pressures (125-600 kPa) and pulse lengths (5-50 cycles) using propidium iodide as an indicator molecule. We achieved sonoporation efficiencies ranging from 8 ± 1% to 36 ± 4% (percent of viable cells), as evidenced by flow cytometry. Increasing sonoporation efficiency trended with increasing pulse length and peak negative pressure. We conclude that PCCAs can be used to induce the sonoporation of cells in vitro, and our results warrant further investigation into the use of PCCAs as extravascular sonoporation agents in vivo.
Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992
NASA Technical Reports Server (NTRS)
Lary, David J.
2002-01-01
This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.
A site-directed mutagenesis analysis of tNOX functional domains
NASA Technical Reports Server (NTRS)
Chueh, Pin-Ju; Morre, Dorothy M.; Morre, D. James
2002-01-01
Constitutive NADH oxidase proteins of the mammalian cell surface exhibit two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol interchange which alternate to yield oscillatory patterns with period lengths of 24 min. A drug-responsive tNOX (tumor-associated NADH oxidase) has a period length of about 22 min. The tNOX cDNA has been cloned and expressed. These two proteins are representative of cycling oxidase proteins of the plant and animal cell surface. In this report, we describe a series of eight amino acid replacements in tNOX which, when expressed in Escherichia coli, were analyzed for enzymatic activity, drug response and period length. Replacement sites selected include six cysteines that lie within the processed plasma membrane (34 kDa) form of the protein, and amino acids located in putative drug and adenine nucleotide (NADH) binding domains. The latter, plus two of the cysteine replacements, resulted in a loss of enzymatic activity. The recombinant tNOX with the modified drug binding site retained activity but the activity was no longer drug-responsive. The four remaining cysteine replacements were of interest in that both activity and drug response were retained but the period length for both NADH oxidation and protein disulfide-thiol interchange was increased from 22 min to 36 or 42 min. The findings confirm the correctness of the drug and adenine nucleotide binding motifs within the tNOX protein and imply a potential critical role of cysteine residues in determining the period length.
mTORβ Splicing Isoform Promotes Cell Proliferation and Tumorigenesis*
Panasyuk, Ganna; Nemazanyy, Ivan; Zhyvoloup, Aleksander; Filonenko, Valeriy; Davies, Derek; Robson, Mathew; Pedley, R. Barbara; Waterfield, Michael; Gout, Ivan
2009-01-01
The mTOR (mammalian target of rapamycin) promotes growth in response to nutrients and growth factors and is deregulated in numerous pathologies, including cancer. The mechanisms by which mTOR senses and regulates energy metabolism and cell growth are relatively well understood, whereas the molecular events underlining how it mediates survival and proliferation remain to be elucidated. Here, we describe the existence of the mTOR splicing isoform, TORβ, which, in contrast to the full-length protein (mTORα), has the potential to regulate the G1 phase of the cell cycle and to stimulate cell proliferation. mTORβ is an active protein kinase that mediates downstream signaling through complexing with Rictor and Raptor proteins. Remarkably, overexpression of mTORβ transforms immortal cells and is tumorigenic in nude mice and therefore could be a proto-oncogene. PMID:19726679
Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae
Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.
2009-01-01
SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141
Abnormal crystal growth in CH 3NH 3PbI 3-xCl x using a multi-cycle solution coating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan
2015-06-23
Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coatingmore » of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.« less
Lee, Hyun Ah; Kim, Hyunung; Lee, Kwang-Won; Park, Kun-Young
2016-01-01
This study was undertaken to evaluate enhancement of the chemopreventive properties of kimchi by dietary nanosized Lactobacillus (Lab.)plantarum (nLp) in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated colorectal cancer C57BL/6J mouse model. nLp is a dead, shrunken, processed form of Lab. Plantarum isolated from kimchi that is 0.5-1.0 µm in size. The results obtained showed that animals fed kimchi with nLp (K-nLp) had longer colons and lower colon weights/length ratios and developed fewer tumors than mice fed kimchi alone (K). In addition, K-nLp administration reduced levels of proinflammatory cytokine serum levels and mediated the mRNA and protein expressions of inflammatory, apoptotic, and cell-cycle markers to suppress inflammation and induce tumor-cell apoptosis and cell-cycle arrest. Moreover, it elevated natural killer-cell cytotoxicity. The study suggests adding nLp to kimchi could improve the suppressive effect of kimchi on AOM/DSS-induced colorectal cancer. These findings indicate nLp has potential use as a functional chemopreventive ingredient in the food industry.
Serotonergic raphe magnus cell discharge reflects ongoing autonomic and respiratory activities.
Mason, Peggy; Gao, Keming; Genzen, Jonathan R
2007-10-01
Serotonergic cells are located in a restricted number of brain stem nuclei, send projections to virtually all parts of the CNS, and are critical to normal brain function. They discharge tonically at a rate modulated by the sleep-wake cycle and, in the case of medullary serotonergic cells in raphe magnus and the adjacent reticular formation (RM), are excited by cold challenge. Yet, beyond behavioral state and cold, endogenous factors that influence serotonergic cell discharge remain largely mysterious. The present study in the anesthetized rat investigated predictors of serotonergic RM cell discharge by testing whether cell discharge correlated to three rhythms observed in blood pressure recordings that averaged >30 min in length. A very slow frequency rhythm with a period of minutes, a respiratory rhythm, and a cardiac rhythm were derived from the blood pressure recording. Cross-correlations between each of the derived rhythms and cell activity revealed that the discharge of 38 of the 40 serotonergic cells studied was significantly correlated to the very slow and/or respiratory rhythms. Very few serotonergic cells discharged in relation to the cardiac cycle and those that did, did so weakly. The correlations between serotonergic cell discharge and the slow and respiratory rhythms cannot arise from baroreceptive input. Instead we hypothesize that they are by-products of ongoing adjustments to homeostatic functions that happen to alter blood pressure. Thus serotonergic RM cells integrate information about multiple homeostatic activities and challenges and can consequently modulate spinal processes according to the most pressing need of the organism.
Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L
2002-01-01
A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.
Kwack, Mi Hee; Kang, Bo Mi; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan
2011-06-01
It is believed that the length of the actively growing phase of the anagen hair cycle mainly contributes to hair length. Recent studies showed that maintenance of β-catenin activity in the dermal papilla cells (DPCs) enables hair follicles to keep actively growing. Topical minoxidil treatment promotes hair growth in men with androgenetic alopecia, suggesting that minoxidil may prolong the actively growing phase of the anagen hair cycle. To investigate whether minoxidil prolongs the anagen hair cycle in mice and, if so, to investigate whether minoxidil activates β-catenin pathway in human DPCs. Dorsal skins of C57BL/6 mice were depilated to synchronize the hair cycle. After 10 days, 3% minoxidil were topically applied daily for 10 days. Sections of back skins were stained with hematoxylin and eosin. Hair follicles were graded and hair cycle score (HCS) was calculated. Cultured human DPCs were transiently transfected with the β-catenin responsive TCF reporter plasmid (pTopflash) and corresponding negative control reporter (pFopflash) to assess the activity of β-catenin signaling by minoxidil. Immunofluorescence staining and immunoblot were performed to examine the expression and localization of β-catenin in the presence or absence of minoxidil. Phosphorylation of GSK3β, PKA and PKB were also examined by immunoblot after minoxidil treatment. RT-PCR analysis and immunoblot were employed to investigate the expression of β-catenin pathway targets in DPCs, such as Axin2, Lef-1, and EP2. Modest extension of anagen phase thereby delay of catagen progression was observed by application of minoxidil in mice. Minoxidil stimulated the transcriptional activity of pTopflash but not pFopflash. Nuclear accumulation of β-catenin was also observed after minoxidil treatment. Immunoblot further showed that minoxidil treatment increases the phosphorylation of GSK3β, PKA and PKB. Moreover, minoxidil induced Axin2, Lef-1, and EP2 expression. Our results strongly suggest that minoxidil extends the anagen phase by activating β-catenin activity in the DPCs. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl
2009-11-01
Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.
A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling.
Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal
2017-01-01
Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein-EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.
A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling
Das, Debasis; Samanta, Dibyendu; Bhattacharya, Arpita; Basu, Arunima; Das, Anindita; Ghosh, Jaydip; Chakrabarti, Abhijit; Das Gupta, Chanchal
2017-01-01
Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here. PMID:28099529
Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria
Bailey, Jake V; Salman, Verena; Rouse, Gregory W; Schulz-Vogt, Heide N; Levin, Lisa A; Orphan, Victoria J
2011-01-01
We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. PMID:21697959
Boeneman, Kelly; Fossum, Solveig; Yang, Yanhua; Fingland, Nicholas; Skarstad, Kirsten; Crooke, Elliott
2009-05-01
DnaA initiates chromosomal replication in Escherichia coli at a well-regulated time in the cell cycle. To determine how the spatial distribution of DnaA is related to the location of chromosomal replication and other cell cycle events, the localization of DnaA in living cells was visualized by confocal fluorescence microscopy. The gfp gene was randomly inserted into a dnaA-bearing plasmid via in vitro transposition to create a library that included internally GFP-tagged DnaA proteins. The library was screened for the ability to rescue dnaA(ts) mutants, and a candidate gfp-dnaA was used to replace the dnaA gene of wild-type cells. The resulting cells produce close to physiological levels of GFP-DnaA from the endogenous promoter as their only source of DnaA and somewhat under-initiate replication with moderate asynchrony. Visualization of GFP-tagged DnaA in living cells revealed that DnaA adopts a helical pattern that spirals along the long axis of the cell, a pattern also seen in wild-type cells by immunofluorescence with affinity purified anti-DnaA antibody. Although the DnaA helices closely resemble the helices of the actin analogue MreB, co-visualization of GFP-tagged DnaA and RFP-tagged MreB demonstrates that DnaA and MreB adopt discrete helical structures along the length of the longitudinal cell axis.
Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F
2006-03-01
The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.
25-Hydroxyvitamin D and Long Menstrual Cycles in a Prospective Cohort Study.
Jukic, Anne Marie Z; Wilcox, Allen J; McConnaughey, D Robert; Weinberg, Clarice R; Steiner, Anne Z
2018-05-01
Vitamin D insufficiency is associated with subfertility and prolonged estrus cycles in animals, but humans have not been well studied. A prospective time-to-pregnancy study, Time to Conceive (2010-2015), collected up to 4 months of daily diary data. Participants were healthy, late reproductive-aged women in North Carolina who were attempting pregnancy. We examined menstrual cycle length as a continuous variable and in categories: long (35+ days) and short (≤25 days). Follicular phase length and luteal phase length were categorized as long (18+ days) or short (≤10 days). We estimated associations between those lengths and serum 25-hydroxyvitamin D (25[OH]D) using linear mixed models and marginal models. There were 1,278 menstrual cycles from 446 women of whom 5% were vitamin D deficient (25[OH]D, <20 ng/ml), 69% were between 20 and 39 ng/ml, and 26% were 40 ng/ml or higher. There was a dose-response association between vitamin D levels and cycle length. Compared with the highest 25(OH)D level (≥40 ng/ml), 25(OH)D deficiency was associated with almost three times the odds of long cycles (adjusted odds ratio [aOR] = 2.8 [95% confidence interval (CI) = 1.0, 7.5]). The aOR was 1.9 (1.1, 3.5) for 20 to <30 ng/ml. The probability of a long follicular phase and the probability of a short luteal phase both increased with decreasing 25(OH)D. Lower levels of 25(OH)D are associated with longer follicular phase and an overall longer menstrual cycle. Our results are consistent with other evidence supporting vitamin D's role in the reproductive axis, which may have broader implications for reproductive success.
Lum, Kirsten J.; Sundaram, Rajeshwari; Barr, Dana Boyd; Louis, Thomas A.; Louis, Germaine M. Buck
2016-01-01
Background Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample upon enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid-chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF]=1.03, 95% credible interval [CrI]=[1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA) (AF=0.98, 95% CrI=[0.96, 1.00]). When accounting for cycle length, relevant covariates and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of PFNA (odds ratio [OR]=0.6, 95% CrI=[0.4, 1.0]) though not when comparing the highest versus lowest (OR=0.7, 95% CrI=[0.3, 1.1]) tertile. Conclusions In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. PMID:27541842
Differences in Pedaling Technique in Cycling: A Cluster Analysis.
Lanferdini, Fábio J; Bini, Rodrigo R; Figueiredo, Pedro; Diefenthaeler, Fernando; Mota, Carlos B; Arndt, Anton; Vaz, Marco A
2016-10-01
To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (PO VT2 ) compared with cycling at their maximal power output (PO MAX ). Twenty athletes performed an incremental cycling test to determine their power output (PO MAX and PO VT2 ; first session), and pedal forces, muscle activation, muscle-tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in PO MAX and PO VT2 . Athletes were assigned to 2 clusters based on the behavior of outcome variables at PO VT2 and PO MAX using cluster analysis. Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle-tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at PO VT2 vs PO MAX , cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length. Increases in power output lead to greater variations in knee angle, muscle-tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.
The adverse effects of high fat induced obesity on female reproductive cycle and hormones
NASA Astrophysics Data System (ADS)
Donthireddy, Laxminarasimha Reddy
The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.
Singer, Alison B; Whitworth, Kristina W; Haug, Line S; Sabaredzovic, Azemira; Impinen, Antti; Papadopoulou, Eleni; Longnecker, Matthew P
2018-06-04
Perfluoroalkyl substances (PFASs) are fluorinated organic compounds that have been used in a variety of industrial and consumer applications. Menstruation is implicated as a possible route of elimination for PFASs in women. The overall purpose of this study was to examine menstrual cycle characteristics as determinants of plasma PFAS concentrations in women. Our study sample consisted of 1977 pregnant women from the Norwegian Mother and Child Cohort (MoBa) study. The women were asked about menstrual cycle regularity in the year before the pregnancy and typical menstrual cycle length as well as other demographic and reproductive characteristics in a questionnaire completed during the pregnancy. Blood samples were collected around 17-18 weeks gestation and PFAS concentrations were measured in plasma. We examined the association between menstrual cycle characteristics and seven PFASs (perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), and perfluorooctane sulfonate (PFOS)) using multiple linear regression, adjusted for age, pre-pregnancy body mass index, smoking, education, income, parity, oral contraceptive use, inter-pregnancy interval, and breastfeeding duration. Irregular cycles were not associated with PFAS concentrations. Overall, we found no evidence of associations between menstrual cycle length and PFAS concentrations. In subgroup analyses we found some evidence, among parous women, of decreased PFHpS and PFOS with short menstrual cycles; we also found, among recent OC users (in the 12 months before the questionnaire) increased PFNA and PFUnDA with long cycle length. Limitations of our study include misclassification of menstrual cycle characteristics, small sample sizes in the sub-group analyses, and a lack of information on duration and volume of menses. In the entire study sample, we found little evidence of menstrual cycle characteristics as determinants of PFAS concentrations. However, we observed some associations between cycle length and PFAS concentrations with some select PFAS compounds in subgroup analyses. Copyright © 2018 Elsevier Inc. All rights reserved.
Miniature Raman spectroscopy utilizing stabilized diode lasers and 2D CMOS detector arrays
NASA Astrophysics Data System (ADS)
Auz, Bryan; Bonvallet, Joseph; Rodriguez, John; Olmstead, Ty
2017-02-01
A miniature Raman spectrometer was designed in a rapid development cycle (< 4 months) to investigate the performance capabilities achievable with two dimensional (2D) CMOS detectors found in cell phone camera modules and commercial off the shelf optics (COTS). This paper examines the design considerations and tradeoffs made during the development cycle. The final system developed measures 40 mm in length, 40 mm in width, 15 mm tall and couples directly with the cell phone camera optics. Two variants were made: one with an excitation wavelength of 638 nm and the other with a 785 nm excitation wavelength. Raman spectra of the following samples were gathered at both excitations: Toluene, Cyclohexane, Bis(MSB), Aspirin, Urea, and Ammonium Nitrate. The system obtained a resolution of 40 cm-1. The spectra produced at 785 nm excitation required integration times of up to 10 times longer than the 1.5 seconds at 638 nm, however, contained reduced stray light and less fluorescence which led to an overall cleaner signal.
Effects of Plectin Depletion on Keratin Network Dynamics and Organization
Moch, Marcin; Windoffer, Reinhard; Schwarz, Nicole; Pohl, Raphaela; Omenzetter, Andreas; Schnakenberg, Uwe; Herb, Fabian; Chaisaowong, Kraisorn; Merhof, Dorit; Ramms, Lena; Fabris, Gloria; Hoffmann, Bernd; Merkel, Rudolf; Leube, Rudolf E.
2016-01-01
The keratin intermediate filament cytoskeleton protects epithelial cells against various types of stress and is involved in fundamental cellular processes such as signaling, differentiation and organelle trafficking. These functions rely on the cell type-specific arrangement and plasticity of the keratin system. It has been suggested that these properties are regulated by a complex cycle of assembly and disassembly. The exact mechanisms responsible for the underlying molecular processes, however, have not been clarified. Accumulating evidence implicates the cytolinker plectin in various aspects of the keratin cycle, i.e., by acting as a stabilizing anchor at hemidesmosomal adhesion sites and the nucleus, by affecting keratin bundling and branching and by linkage of keratins to actin filament and microtubule dynamics. In the present study we tested these hypotheses. To this end, plectin was downregulated by shRNA in vulvar carcinoma-derived A431 cells. As expected, integrin β4- and BPAG-1-positive hemidesmosomal structures were strongly reduced and cytosolic actin stress fibers were increased. In addition, integrins α3 and β1 were reduced. The experiments furthermore showed that loss of plectin led to a reduction in keratin filament branch length but did not alter overall mechanical properties as assessed by indentation analyses using atomic force microscopy and by displacement analyses of cytoplasmic superparamagnetic beads using magnetic tweezers. An increase in keratin movement was observed in plectin-depleted cells as was the case in control cells lacking hemidesmosome-like structures. Yet, keratin turnover was not significantly affected. We conclude that plectin alone is not needed for keratin assembly and disassembly and that other mechanisms exist to guarantee proper keratin cycling under steady state conditions in cultured single cells. PMID:27007410
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrese, A; Newman, J
This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less
Hu, Meiying; Chen, Shaohua; Muhammad, Rizwan-ul-Haq; Dong, Xiaolin; Gong, Liang
2013-01-01
Deregulated reactive oxygen species (ROS) production can lead to the disruption of structural and functional integrity of cells as a consequence of reactive interaction between ROS and various biological components. Catalase (CAT) is a common enzyme existing in nearly all organisms exposed to oxygen, which decomposes harmful hydrogen peroxide, into water and oxygen. In this study, the full length sequence that encodes CAT-like protein from Spodoptera litura named siltCAT (GenBank accession number: JQ_663444) was cloned and characterized. Amino acid sequence alignment showed siltCAT shared relatively high conservation with other insect, especially the conserved residues which defined heme and NADPH orientation. Expression pattern analysis showed that siltCAT mRNA was mainly expressed in the fat body, midgut, cuticle and malpighian tube, and as well as over last instar larvae, pupa and adult stages. RNA interference was used to silence CAT gene in SL-1 cells and the fourth-instar stage of S. litura larvae respectively. Our results provided evidence that CAT knockdown induced ROS generation, cell cycle arrest and apoptosis in SL-1 cells. It also confirmed the decrease in survival rate because of increased ROS production in experimental groups injected with double-stranded RNA of CAT (dsCAT). This study implied that ROS scavenging by CAT is important for S. litura survival. PMID:23555693
Nutrient Dependence of RNase E Essentiality in Escherichia coli
Tamura, Masaru; Moore, Christopher J.
2013-01-01
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne+ cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells. PMID:23275245
Radiographic screen-film noise power spectrum: variation with microdensitometer slit length.
Sandrik, J M; Wagner, R F
1981-08-15
When the noise power spectrum (NPS) of a radiographic screen-film system is measured by microdensito-metrically scanning the film with a long narrow slit, sufficient slit length allows estimation of a section of the 2-D NPS from the 1-D film scans; insufficient length causes underestimation of the NPS, particularly at low frequencies ( greater, similar1 cycle/mm). Spectra of Hi-Plus, Par Speed, and Detail screens used with XRP films measured as a function of microdensitometer slit length tended to plateau at long slit lengths. The slit length was considered sufficient when NPS components at 0.4 cycle/mm were within 5% of the plateau. This occurred for slit lengths of at least 4.2, 2.6, and 2.5 mm for Hi-Plus, Par Speed, and Detail systems, respectively.
GAS5 long non-coding RNA in malignant pleural mesothelioma.
Renganathan, Arun; Kresoja-Rakic, Jelena; Echeverry, Nohemy; Ziltener, Gabriela; Vrugt, Bart; Opitz, Isabelle; Stahel, Rolf A; Felley-Bosco, Emanuela
2014-05-23
Malignant pleural mesothelioma (MPM) is an aggressive cancer with short overall survival. Long non-coding RNAs (lncRNA) are a class of RNAs more than 200 nucleotides long that do not code for protein and are part of the 90% of the human genome that is transcribed. Earlier experimental studies in mice showed GAS5 (growth arrest specific transcript 5) gene deletion in asbestos driven mesothelioma. GAS5 encodes for a lncRNA whose function is not well known, but it has been shown to act as glucocorticoid receptor decoy and microRNA "sponge". Our aim was to investigate the possible role of the GAS5 in the growth of MPM. Primary MPM cultures grown in serum-free condition in 3% oxygen or MPM cell lines grown in serum-containing medium were used to investigate the modulation of GAS5 by growth arrest after inhibition of Hedgehog or PI3K/mTOR signalling. Cell cycle length was determined by EdU incorporation assay in doxycycline inducible short hairpinGAS5 clones generated from ZL55SPT cells. Gene expression was quantified by quantitative PCR. To investigate the GAS5 promoter, a 0.77 kb sequence was inserted into a pGL3 reporter vector and luciferase activity was determined after transfection into MPM cells. Localization of GAS5 lncRNA was identified by in situ hybridization. To characterize cells expressing GAS5, expression of podoplanin and Ki-67 was assessed by immunohistochemistry. GAS5 expression was lower in MPM cell lines compared to normal mesothelial cells. GAS5 was upregulated upon growth arrest induced by inhibition of Hedgehog and PI3K/mTOR signalling in in vitro MPM models. The increase in GAS5 lncRNA was accompanied by increased promoter activity. Silencing of GAS5 increased the expression of glucocorticoid responsive genes glucocorticoid inducible leucine-zipper and serum/glucocorticoid-regulated kinase-1 and shortened the length of the cell cycle. Drug induced growth arrest was associated with GAS5 accumulation in the nuclei. GAS5 was abundant in tumoral quiescent cells and it was correlated to podoplanin expression. The observations that GAS5 levels modify cell proliferation in vitro, and that GAS5 expression in MPM tissue is associated with cell quiescence and podoplanin expression support a role of GAS5 in MPM biology.
Rapid DNA replication origin licensing protects stem cell pluripotency
Matson, Jacob Peter; Dumitru, Raluca; Coryell, Philip; Baxley, Ryan M; Chen, Weili; Twaroski, Kirk; Webber, Beau R; Tolar, Jakub; Bielinsky, Anja-Katrin; Purvis, Jeremy E
2017-01-01
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. PMID:29148972
A proposal for unification of fatigue crack growth law
NASA Astrophysics Data System (ADS)
Kobelev, V.
2017-05-01
In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.
Mantziaras, I D; Stamou, A; Katsiri, A
2011-06-01
This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-04-01
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
Rejuvenation of human cardiac progenitor cells with Pim-1 kinase.
Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A
2013-10-25
Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.
Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase
Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A.
2014-01-01
Rationale Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Objective Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. Methods and Results C-kit–positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Conclusions Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC. PMID:24044948
Żabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz
2012-01-01
Background and Aims Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. Methods Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). Key Results Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. Conclusions The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus. PMID:23087128
Burghardt, Liana T; Metcalf, C Jessica E; Wilczek, Amity M; Schmitt, Johanna; Donohue, Kathleen
2015-02-01
Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.
Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.
2013-01-01
SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638
On the Importance of Cycle Minimum in Sunspot Cycle Prediction
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.
1996-01-01
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.
Hemispheric Coupling: Comparing Dynamo Simulations and Observations
NASA Astrophysics Data System (ADS)
Norton, A. A.; Charbonneau, P.; Passos, D.
2014-12-01
Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.
Schweigmann, Ulrich; Biliczki, Peter; Ramirez, Rafael J; Marschall, Christoph; Takac, Ina; Brandes, Ralf P; Kotzot, Dieter; Girmatsion, Zenawit; Hohnloser, Stefan H; Ehrlich, Joachim R
2014-01-01
Long QT syndrome (LQTS) leads to arrhythmic events and increased risk for sudden cardiac death (SCD). Homozygous KCNH2 mutations underlying LQTS-2 have previously been termed "human HERG knockout" and typically express severe phenotypes. We studied genotype-phenotype correlations of an LQTS type 2 mutation identified in the homozygous index patient from a consanguineous Turkish family after his brother died suddenly during febrile illness. Clinical work-up, DNA sequencing, mutagenesis, cell culture, patch-clamp, in silico mathematical modelling, protein biochemistry, confocal microscopy were performed. Genetic analysis revealed a homozygous C-terminal KCNH2 mutation (p.R835Q) in the index patient (QTc ∼506 ms with notched T waves). Parents were I° cousins - both heterozygous for the mutation and clinically unremarkable (QTc ∼447 ms, father and ∼396 ms, mother). Heterologous expression of KCNH2-R835Q showed mildly reduced current amplitudes. Biophysical properties of ionic currents were also only nominally changed with slight acceleration of deactivation and more negative V50 in R835Q-currents. Protein biochemistry and confocal microscopy revealed similar expression patterns and trafficking of WT and R835Q, even at elevated temperature. In silico analysis demonstrated mildly prolonged ventricular action potential duration (APD) compared to WT at a cycle length of 1000 ms. At a cycle length of 350 ms M-cell APD remained stable in WT, but displayed APD alternans in R835Q. Kv11.1 channels affected by the C-terminal R835Q mutation display mildly modified biophysical properties, but leads to M-cell APD alternans with elevated heart rate and could precipitate SCD under specific clinical circumstances associated with high heart rates.
The influence of oestrous substances on cyclicity and oestrous behaviour in dairy heifers
2012-01-01
Background Declining fertility is a major concern for dairy farmers today. One explanation is shorter and weaker expression of oestrus in dairy cows making it difficult to determine optimal time for artificial insemination (AI). Chemical communication is of interest in the search for tools to detect oestrus or to synchronise or enhance oestrous periods. Pheromones, used in chemical communication within species, can influence reproduction in different ways. The aim here was to investigate whether oestrous cycle length, and duration and intensity of oestrous expression in dairy heifers could be manipulated through exposure to pheromones in oestrual substances from other females. Methods Beginning on day 16 of two consecutive control oestrous cycles, ten heifers of the Swedish Red Breed (SRB) were exposed to water. During the two following cycles the heifers were exposed to urine and vaginal mucus, obtained from cows in oestrus. Cyclicity parameters were monitored through hormone measurements, oestrus detection and ultrasonographic examination. Results We found no difference in cycle length or in duration of standing oestrus between control and treatment. We did, however, find a tendency of interaction between type of exposure (control or treatment) and cycle number within type of exposure for cycle length (p = 0.068), with the length differing less between the treatment cycles. We also found a tendency of effect of type of exposure on maximal concentration (p = 0.073) and sum of concentrations (p = 0.063) of LH during the LH surge, with values being higher for the control cycles. There were also significant differences in when the different signs of oestrus occurred and in the intensity of oestrous expression. The score for oedema and hyperaemia of external genitalia was significantly higher (p = 0.004) for the control cycles and there was also a significant interaction between type of exposure and time period for restlessness (p = 0.011), with maximum score occurring earlier for treatment cycles. Conclusions No evidence of altered oestrous cycle length or duration of oestrus after exposure of females to oestrous substances from other females was found. Expression of oestrus, and maybe also LH secretion, however, seemed influenced by the exposure, with the effect of treatment being suppressive rather than enhancing. PMID:22510614
Geelen, P; Drolet, B; Rail, J; Bérubé, J; Daleau, P; Rousseau, G; Cardinal, R; O'Hara, G E; Turgeon, J
2000-07-18
BACKGROUND-Several cases of unexpected death have been reported with sildenafil in patients predisposed to ischemic cardiac events. Although acute episodes of ischemia could account for some of these deaths, we hypothesized that sildenafil may have unsuspected electrophysiological effects predisposing some patients to proarrhythmia. METHODS AND RESULTS-Studies were undertaken in 10 isolated guinea pig hearts that demonstrated prolongation of cardiac repolarization in a reverse use-dependent manner by sildenafil 30 mcmol/L. Action potential duration increased 15% from baseline 117+/-3 to 134+/-2 ms with sildenafil during pacing at 250 ms cycle length, whereas a 6% increase from 99+/-2 to 105+/-2 ms was seen with pacing at 150 ms cycle length. Experiments in human ether-a-go-go-related gene (HERG)-transfected HEK293 cells (n=30) demonstrated concentration-dependent block of the rapid component (I(Kr)) of the delayed rectifier potassium current: activating current was 50% decreased at 100 mcmol/L. This effect was confirmed using HERG-transfected Chinese hamster ovary (CHO) cells, which exhibit no endogenous I(K)-like current. CONCLUSIONS-Sildenafil possesses direct cardiac electrophysiological effects similar to class III antiarrhythmic drugs. These effects are observed at concentrations that may be found in conditions of impaired drug elimination such as renal or hepatic insufficiency, during coadministration of another CYP3A substrate/inhibitor, or after drug overdose and offer a new potential explanation for sudden death during sildenafil treatment.
Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan
2015-03-01
The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.
Wood, Simon; Quinn, Alison; Troupe, Stephen; Kingsland, Charles; Lewis-Jones, Iwan
2006-12-01
The effect of seasonality and daylight length on mammalian reproduction leading to spring births has been well established, and is known as photoperiodism. In assisted reproduction there is much greater uncertainty as to the effect of seasonality. This was a 4-year retrospective analysis of 2709 standardised cycles of IVF/ICSI. Data was analysed with regard to the 1642 cycles occurring during the months of extended daylight (Apr-Sept) and those 1067 cycles during winter months of restricted light length (Oct-Mar). The results showed that there was significant improvement in assisted conception outcomes in cycles performed in summer (lighter) months with more efficient ovarian stimulation 766iu v880iu/per oocyte retrieved (p=0.006). There was similarly a significantly improved implantation rate per embryo transferred 11.42% vs 9.35% (p=0.011) and greater clinical pregnancy rate 20% vs 15% (p=0.0033) during summer cycles. This study appears to demonstrate a significant benefit of increased daylight length on outcomes of IVF/ICSI cycles. Whilst the exact mechanism of this is unclear, it would seem probable that melatonin may have actions at multiple sites and on multiple levels of the reproductive tract, and may exert a more profound effect on outcomes of assisted conception cycles than has been previously considered.
Thermal fatigue performance of integrally cast automotive turbine wheels
NASA Technical Reports Server (NTRS)
Humphreys, V. E.; Hofer, K. E.
1980-01-01
Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
Barratt, Paul Richard; Martin, James C; Elmer, Steve J; Korff, Thomas
2016-04-01
During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s(-1) and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system's attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians.
Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle.
Graf, Marco; Bonetti, Diego; Lockhart, Arianna; Serhal, Kamar; Kellner, Vanessa; Maicher, André; Jolivet, Pascale; Teixeira, Maria Teresa; Luke, Brian
2017-06-29
Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence. Copyright © 2017 Elsevier Inc. All rights reserved.
Multifunctional Nature of the Arenavirus RING Finger Protein Z
Fehling, Sarah Katharina; Lennartz, Frank; Strecker, Thomas
2012-01-01
Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle. PMID:23202512
Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven
2015-01-01
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. PMID:25595823
Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R
2017-08-01
Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.
Randall S. Morin; R. Riemann
2015-01-01
This publication provides an overview of forest resources in Vermont based on inventories conducted by the U.S. Forest Service Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2003-2013, the cycle length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2014 inventory,...
De Monte, Gianpiero; Arampatzis, Adamantios
2008-07-19
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.
Self-Elongation with Sequential Folding of a Filament of Bacterial Cells
NASA Astrophysics Data System (ADS)
Honda, Ryojiro; Wakita, Jun-ichi; Katori, Makoto
2015-11-01
Under hard-agar and nutrient-rich conditions, a cell of Bacillus subtilis grows as a single filament owing to the failure of cell separation after each growth and division cycle. The self-elongating filament of cells shows sequential folding processes, and multifold structures extend over an agar plate. We report that the growth process from the exponential phase to the stationary phase is well described by the time evolution of fractal dimensions of the filament configuration. We propose a method of characterizing filament configurations using a set of lengths of multifold parts of a filament. Systems of differential equations are introduced to describe the folding processes that create multifold structures in the early stage of the growth process. We show that the fitting of experimental data to the solutions of equations is excellent, and the parameters involved in our model systems are determined.
Burchard, J F; Nguyen, D H; Block, E
1998-01-01
Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 +/- 65 kg in 150.4 +/- 40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 microT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 +/- 0.17 and 2.25 +/- 0.17; and 24.5 +/- 1.9 vs. 26.4 +/- 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 +/- 0.9 vs. 25.3 +/- 1.4 days).
Exactly energy conserving semi-implicit particle in cell formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less
Alarcón, M Victoria; Lloret, Pedro G; Martín-Partido, Gervasio; Salguero, Julio
2016-03-15
The initiation of lateral roots (LRs) has generally been viewed as a reactivation of proliferative activity in pericycle cells that are committed to initiate primordia. However, it is also possible that pericycle founder cells that initiate LRs never cease proliferative activity but rather are displaced to the most distal root zones while undertaking successive stages of LR initiation. In this study, we tested these two alternative hypotheses by examining the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into the DNA of meristematic root cells of Zea mays. According to the values for the length of the cell cycle and values for cell displacement along the maize root, our results strongly suggest that pericycle cells that initiate LR primordia ceased proliferative activity upon exiting the meristematic zone. This finding is supported by the existence of a root zone between 4 and 20mm from the root cap junction, in which neither mitotic cells nor labelled nuclei were observed in phloem pericycle cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sigle, Steffen; Steblau, Nadja; Wohlleben, Wolfgang; Muth, Günther
2016-09-01
Cell wall glycopolymers (CWG) represent an important component of the Gram-positive cell envelope with many biological functions. The mycelial soil bacterium Streptomyces coelicolor A3(2) incorporates two distinct CWGs, polydiglycosylphosphate (PDP) and teichulosonic acid, into the cell wall of its vegetative mycelium but only little is known about their role in the complex life cycle of this microorganism. In this study we established assays to measure the total amount of CWGs in mycelial cell walls and spore walls, to quantify the individual CWGs and to determine the length of PDP. By applying these assays, we discovered that the relative amount of CWGs, especially of PDP, is reduced in spores compared to vegetative mycelium. Furthermore we found that PDP extracted from mycelial cell walls consisted of at least 19 repeating units, whereas spore walls contained substantially longer PDP polymers. Copyright © 2016 Elsevier B.V. All rights reserved.
Shanle, Erin K.; Zhao, Zibo; Hawse, John; Wisinski, Kari; Keles, Sunduz; Yuan, Ming
2013-01-01
Breast cancers that are negative for estrogen receptor α (ERα), progesterone receptor, and human epidermal growth factor receptor 2 are known as triple-negative breast cancers (TNBC). TNBCs are associated with an overall poor prognosis because they lack expression of therapeutic targets like ERα and are biologically more aggressive. A second estrogen receptor, ERβ, has been found to be expressed in 50% to 90% of ERα-negative breast cancers, and ERβ expression in TNBCs has been shown to correlate with improved disease-free survival and good prognosis. To elucidate the role of ERβ in regulating gene expression and cell proliferation in TNBC cells, the TNBC cell line MDA-MB-468 was engineered with inducible expression of full-length ERβ. In culture, ERβ expression inhibited cell growth by inducing a G1 cell cycle arrest, which was further enhanced by 17β-estradiol treatment. In xenografts, ERβ expression also inhibited tumor formation and growth, and 17β-estradiol treatment resulted in rapid tumor regression. Furthermore, genomic RNA sequencing identified both ligand-dependent and -independent ERβ target genes, some of which were also regulated by ERβ in other TNBC cell lines and correlated with ERβ expression in a cohort of TNBCs from the Cancer Genome Atlas Network. ERβ target genes were enriched in genes that regulate cell death and survival, cell movement, cell development, and growth and proliferation, as well as genes involved in the Wnt/β-catenin and the G1/S cell cycle phase checkpoint pathways. In addition to confirming the anti-proliferative effects of ERβ in TNBC cells, these data provide a comprehensive resource of ERβ target genes and suggest that ERβ may be targeted with ligands that can stimulate its growth inhibitory effects. PMID:23979844
Bernard, D J; Woodruff, T K
2001-04-01
Inhibin binding protein (InhBP) and the transforming growth factor-beta (TGF beta) type III receptor, beta glycan, have been identified as putative inhibin coreceptors. Here we cloned the InhBP cDNA in rats and predict that it encodes a large membrane-spanning protein that is part of the Ig superfamily, as has been described for humans. Two abundant InhBP transcripts (4.4 and 1.8 kb) were detected in the adult rat pituitary. The larger transcript encodes the full-length protein while the 1.8-kb transcript (InhBP-short or InhBP-S) corresponds to a splice variant of the receptor. This truncated isoform contains only the N-terminal signal peptide and first two (of 12) Ig-like domains observed in the full-length InhBP (InhBP-long or InhBP-L). InhBP-S does not contain a transmembrane domain and is predicted to be a soluble protein. Beta glycan was also detected in the pituitary; however, it was most abundant within the intermediate lobe. Although we also observed beta glycan immunopositive cells in the anterior pituitary, they rarely colocalized with FSH beta-producing cells. We next examined physiological regulation of the coreceptors across the rat estrous cycle. Like circulating inhibin A and inhibin B levels, pituitary InhBP-L and InhBP-S mRNA levels were dynamically regulated across the cycle and were negatively correlated with serum FSH levels. Expression of both forms of InhBP was also positively correlated with serum inhibin B, but not inhibin A, levels. These data are particularly interesting in light of our in vitro observations that InhBP may function as an inhibin B-specific coreceptor. Pituitary beta glycan mRNA levels did not fluctuate across the cycle nor did they correlate with serum FSH. These observations, coupled with its pattern of expression within the pituitary, indicate that beta glycan likely functions as more than merely an inhibin coreceptor within the pituitary. A direct role for InhBP or beta glycan in regulation of pituitary FSH by inhibin in vivo has yet to be determined, but the demonstration of dynamic regulation of pituitary InhBP and its negative relation to serum FSH across the estrous cycle is an important step in this direction.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling
BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS
2016-01-01
ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455
Kinematic Variables Evolution During a 200-m Maximum Test in Young Paddlers
Vaquero-Cristóbal, Raquel; Alacid, Fernando; López-Plaza, Daniel; Muyor, José María; López-Miñarro, Pedro A.
2013-01-01
The objective of this research was to determine the kinematic variables evolution in a sprint canoeing maximal test over 200 m, comparing women and men kayak paddlers and men canoeists. Speed evolution, cycle frequency, cycle length and cycle index were analysed each 50 m section in fifty-two young paddlers (20 male kayakers, 17 female kayakers and 15 male canoeists; 13–14 years-old). Recordings were taken from a boat which followed each paddler trial in order to measure the variables cited above. Kinematic evolution was similar in the three categories, the speed and cycle index decreased through the test after the first 50 m. Significant differences were observed among most of the sections in speed and the cycle index (p<0.05 and <0.01, respectively). Cycle length remained stable showing the lowest values in the first section when compared with the others (p<0.01). Cycle frequency progressively decreased along the distance. Significant differences were identified in the majority of the sections (p<0.01). Men kayakers attained higher values in all the variables than women kayakers and men canoeists, but only such variables as speed, cycle length and cycle index were observed to be significantly higher (p<0.01). Moreover, lower kinematic values were obtained from men canoeists. The study of the evolution of kinematic variables can provide valuable information for athletes and coaches while planning training sessions and competitions. PMID:24235980
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-10-03
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-01-01
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242
Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.
Gaustad, Kristine G; Boquest, Andrew C; Anderson, Brent E; Gerdes, A Martin; Collas, Philippe
2004-02-06
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.
Quantitative analysis of circadian single cell oscillations in response to temperature
Kramer, Achim; Herzel, Hanspeter
2018-01-01
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell’s ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation. PMID:29293562
Royauté, Raphaël; Wilson, Elisabeth S; Helm, Bryan R; Mallinger, Rachel E; Prasifka, Jarrad; Greenlee, Kendra J; Bowsher, Julia H
2018-03-02
Structures such as nests and burrows are an essential component of many organisms' life-cycle and require a complex sequence of behaviours. Because behaviours can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would (1) show evidence of among-individual variation, (2) be organized into distinct functional modules and (3) show evidence of trade-offs among functional modules due to limits on energy budgets. We tested these hypotheses using the alfalfa leafcutting bee, Megachile rotundata, a solitary bee and important crop pollinator. Megachile rotundata constructs complex nests by gathering leaf materials to form a linear series of cells in pre-existing cavities. In this study, we examined variation in the following nest construction traits: reproduction (number of cells per nest and nest length), nest protection (cap length and number of leaves per cap), cell construction (cell size and number of leaves per cell) and cell provisioning (cell mass) from 60 nests. We found a general decline in investment in cell construction and provisioning with each new cell built. In addition, we found evidence for both repeatability and plasticity in cell provisioning with little evidence for trade-offs among traits. Instead, most traits were positively, albeit weakly, correlated (r ~ 0.15), and traits were loosely organized into covarying modules. Our results show that individual differences in nest construction are detectable at a level similar to that of other behavioural traits and that these traits are only weakly integrated. This suggests that nest components are capable of independent evolutionary trajectories. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Autocorrelation peaks in congruential pseudorandom number generators
NASA Technical Reports Server (NTRS)
Neuman, F.; Merrick, R. B.
1976-01-01
The complete correlation structure of several congruential pseudorandom number generators (PRNG) of the same type and small cycle length was studied to deal with the problem of congruential PRNG almost repeating themselves at intervals smaller than their cycle lengths, during simulation of bandpass filtered normal random noise. Maximum period multiplicative and mixed congruential generators were studied, with inferences drawn from examination of several tractable members of a class of random number generators, and moduli from 2 to the 5th power to 2 to the 9th power. High correlation is shown to exist in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle length. The random noise sequences in question are required when simulating electrical noise, air turbulence, or time variation of wind parameters.
NASA Astrophysics Data System (ADS)
Liu, Qingfang; Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong; Yu, Lixia; Du, Yan; Jin, Wenjie; Li, Wenjian
2013-06-01
In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of 12C6+ beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of 12C6+ beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.
... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...
Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.
Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L
2013-01-01
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Thankam, Finosh G; Muthu, Jayabalan
2015-11-01
The physiochemical and biological responses of tissue engineering hydrogels are crucial in determining their desired performance. A hybrid comacromer was synthesized by copolymerizing alginate and poly(mannitol fumarate-co-sebacate) (pFMSA). Three bimodal hydrogels pFMSA-AA, pFMSA-MA and pFMSA-NMBA were synthesized by crosslinking with Ca(2+) and vinyl monomers acrylic acid (AA), methacrylic acid (MA) and N,N'-methylene bisacrylamide (NMBA), respectively. Though all the hydrogels were cytocompatible and exhibited a normal cell cycle profile, pFMSA-AA exhibited superior physiochemical properties viz non-freezable water content (58.34%) and water absorption per unit mass (0.97 g water/g gel) and pore length (19.92±3.91 μm) in comparing with other two hydrogels. The increased non-freezable water content and water absorption of pFMSA-AA hydrogels greatly influenced its biological performance, which was evident from long-term viability assay and cell cycle proliferation. The physiochemical and biological favorability of pFMSA-AA hydrogels signifies its suitability for cardiac tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio
2013-12-20
Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-01
Study Objectives: By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Methods: Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Results: Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308–0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175–6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Conclusions: Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. Citation: Rey de Castro J, Liendo A, Ortiz O, Rosales-Mayor E, Liendo C. Ventilatory cycle measurements and loop gain in central apnea in mining drivers exposed to intermittent altitude. J Clin Sleep Med. 2017;13(1):27–32. PMID:27707449
Ribosome biogenesis in replicating cells: Integration of experiment and theory.
Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida
2016-10-01
Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016. © 2016 Wiley Periodicals, Inc.
Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1
YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE
2015-01-01
The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693
Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1.
Yang, Liang; Liu, Ren; Ma, Hong-Bin; Ying, Ming-Zhen; Wang, Ya-Jie
2015-09-01
The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 ( GSTP1 ) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G 2 /M phase arrest in the GSTP1 -expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1 -expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G 2 /M phase arrest.
De Marco, A; De Salvia, R; Polani, S; Ricordy, R; Sorrenti, F; Perticone, P; Cozzi, R; D'Ambrosio, C; De Simone, C; Guidotti, M; Albanesi, T; Duranti, G; Festa, F; Gensabella, G; Owczarek, M
2000-07-01
In a program coordinated by the Italian Ministry of Works, we tested in vitro four pesticides widely employed in a developed agricultural region of central Italy. The four commercial agents were chosen on the basis of their diffusion in agricultural practice, knowledge of their active principle(s), and scant availability of data concerning their toxic and genotoxic activity. The agents were Cirtoxin, Decis, Tramat Combi (TC), and Lasso Micromix (LM). All substances were tested in three in vitro systems: Chinese hamster ovary (CHO) cells, a metabolically competent hamster cell line (Chinese hamster epithelial liver; CHEL), and root tips of Vicia faba (VF). The cytotoxic and genotoxic end points challenged were micronuclei and root tip length (RTL) in VF and mitotic index (MI), proliferation index (PI), cell survival (CS), cell growth (CG), cell cycle length (CCL), sister chromatid exchanges, chromosomal aberrations, and single-cell gel electrophoresis, or comet assay, in CHEL and CHO cells. Tested doses ranged from the field dose up to 200x the field dose to take into account accumulation effects. On the whole, tested agents appear to induce genotoxic damage only at subtoxic or toxic doses, indicating a low clastogenic risk. MI, PI, CS, CG, RTL, and CCL appear to be the less sensitive end points, showing no effects in the presence of a clear positive response in some or all of the other tests. Using cytogenetic tests, we obtained positive results for TC and LM treatments in CHO but not in CHEL cells. These data could be accounted for by postulating a detoxifying activity exerted by this cell line. However, cytogenetic end points appear to be more sensitive than those referring to cytotoxicity.
Role of the vomeronasal organ on the estral cycle reduction by pheromones in the rat.
Mora, O A; Sánchez-Criado, J E; Guisado, S
1985-09-01
The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.
Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin
2015-01-01
In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of Anethum graveolens L. (dill) on Oocyte and Fertility of Adult Female Rats
Monsefi, Malihezaman; Ghasemi, Aazam; Alaee, Sanaz; Aliabadi, Elham
2015-01-01
Background Our previous studies revealed Anethum graveolens L. caused some changes in female reproductive system that induced infertility. Therefore, in this study, oocyte changes as one of probable reasons of infertility were investigated. Methods In this study, 59 adult female rats were divided into 3 groups of control, low dose (0.5 g/kg) and high dose (5 g/kg) of dill seed aqueous extract (LDE and HDE) treated groups that were gavaged with 1 ml of each dose for 10 days (2 estrous cycles). Vaginal smears were prepared daily. Oocytes of superovulated animals were extracted and their morphometrical changes were measured (n = 5). Oocyte cell membrane glycoconjugates were stained with UEA, PNA, and DBA-FITC lectins (n = 5). Ultrastructural studies of oocytes were performed using TEM (n = 5). The number, weight, and crown-rump length of newborns were examined in three groups after mating with untreated males (n = 5). Data were analyzed using SPSS software. Results Results demonstrated that the duration of the estrous cycle, the diestrus phase and progesterone concentration in the experimental groups increased significantly compared to the control group (p < 0.05). Granulosa cells of corpus luteum in HDE-treated group were larger and clearer. The intensity reactions of galactose/Nacetylgalactoseamine terminal sugar of oocyte decreased insignificantly in experimental groups compared to the control group p > 0.05. Duration of mating to pregnancy increased and the weight and crown-rump length of newborns decreased in experimental groups significantly (p < 0.05). Conclusion Dill seed aqueous extract can induce infertility without any effect on oocyte structure. PMID:25717430
I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue
2003-10-01
We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.
Prospective evaluation of luteal phase length and natural fertility.
Crawford, Natalie M; Pritchard, David A; Herring, Amy H; Steiner, Anne Z
2017-03-01
To evaluate the impact of a short luteal phase on fecundity. Prospective time-to-pregnancy cohort study. Not applicable. Women trying to conceive, ages 30-44 years, without known infertility. Daily diaries, ovulation prediction testing, standardized pregnancy testing. Subsequent cycle fecundity. Included in the analysis were 1,635 cycles from 284 women. A short luteal phase (≤11 days including the day of ovulation) occurred in 18% of observed cycles. Mean luteal phase length was 14 days. Significantly more women with a short luteal phase were smokers. After adjustment for age, women with a short luteal phase had 0.82 times the odds of pregnancy in the subsequent cycle immediately following the short luteal phase compared with women without a short luteal phase. Women with a short luteal length in the first observed cycle had significantly lower fertility after the first 6 months of pregnancy attempt, but at 12 months there was no significant difference in cumulative probability of pregnancy. Although an isolated cycle with a short luteal phase may negatively affect short-term fertility, incidence of infertility at 12 months was not significantly higher among these women. NCT01028365. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario
2007-01-01
The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.
Amiad Pavlov, Daria; Landesberg, Amir
2016-01-01
The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.
Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K
2010-01-01
We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. (c) 2009 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackowski, S.; Dumont, J.N.
1979-01-01
The zona pellucida and cell surface of in vivo fertilized mouse ova exhibit time dependent changes which can be detected with the scanning electron microscope. The periods of ovulation, fertilization and first cleavage in superovulated C3D2/F/sub 1/ hybrids were determined and times corresponding to G/sub 1/, S, G/sub 2/, and M were calculated. The zona of a mature unfertilized ovum has a rough texture with deep furrows; at fertilization and thereafter the zona develops a smoother, ropy and seemingly porous surface. The cell surface of the unfertilized ovum is characterized by uniform microvilli, small blebs and rounded, mound-like elevations. Aftermore » fertilization and development to G/sub 1/, the ovum loses its blebs but retains the mound-like elevations and microvilli which are now less uniform. As the ovum progresses toward S, it loses the mound-like elevations but retains microvilli in the same density as found in G/sub 1/. The ovum in G/sub 2/ exhibits smaller but more numerous microvilli which vary considerably in length. Some appear to bifurcate. The fertilized ovum developing through M and G/sub 1/ of the 2 cell stage exhibits a less dense population of relatively uniform microvilli, periodic blebs and, again, rounded elevations. The data are reminiscent of surface changes associated with the cell cycle in tissue culture cells and indicate a cyclic progression of the in vivo fertilized mouse ovum through the first cleavage division to the 2 cell stage.« less
Menstrual cycle perturbation by organohalogens and elements in the Cree of James Bay, Canada.
Wainman, Bruce C; Kesner, James S; Martin, Ian D; Meadows, Juliana W; Krieg, Edward F; Nieboer, Evert; Tsuji, Leonard J
2016-04-01
Persistent organohalogens (POHs) and metals have been linked to alterations in menstrual cycle function and fertility in humans. The Cree First Nations people living near James Bay in Ontario and Quebec, Canada, have elevated levels of POHs, mercury and lead compared to other Canadians. The present study examines the interrelationships between selected POHs and elements on menstrual cycle function in these Cree women. Menstrual cycle characteristics were derived from structured daily diaries and endocrine measurements from daily urine samples collected during one cycle for 42 women age 19-42. We measured 31 POHs in blood plasma and 18 elements in whole blood, for 31 of the participants. POHs and elements detected in ≥ 70% of the participants were transformed by principal component (PC) analysis to reduce the contaminant exposure data to fewer, uncorrelated PCA variables. Multiple regression analysis revealed that, after adjusting for confounders, PC-3 values showed significant negative association with cycle length, after adjusting for confounders (p = 0.002). PC-3 accounted for 9.2% of the variance and shows positive loadings for cadmium, selenium, and PBDE congeners 47 and 153, and a negative loading for copper. Sensitivity analysis of the model to quantify likely effect sizes showed a range of menstrual cycle length from 25.3 to 28.3 days using the lower and upper 95% confidence limits of mean measured contaminant concentrations to predict cycle length. Our observations support the hypothesis that the menstrual cycle function of these women may be altered by exposure to POHs and elements from their environment. Copyright © 2015. Published by Elsevier Ltd.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-15
By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308-0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175-6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. © 2017 American Academy of Sleep Medicine
NASA Astrophysics Data System (ADS)
Brune, S.; Williams, S.; Müller, D.
2017-12-01
The deep carbon cycle links the carbon content of crust and mantle to Earth's surface: extensional plate boundaries and arc volcanoes release CO2 to the ocean and atmosphere while subducted lithosphere carries carbon back into the mantle. The length of extensional and convergent plate boundaries therefore exerts first-order control on solid Earth CO2 degassing rates. Here we provide a global census of plate boundary length for the last 200 million years. Focusing on rift systems, we find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this pervasive rift episode, the global rift length dropped by 60% to 20,000 km. We further find that a second pronounced rift episode with global rift lengths of up to 30,000 km started in Eocene times. A close geological link between CO2 degassing and faulting has been documented in currently active rift systems worldwide. Regional-scale CO2 flux densities at rift segments in Africa, Europe, and New Zealand feature an annual average value of 200 t of CO2 per km2. Assuming that the release of CO2 scales with rift length, we show that rift-related CO2 degassing rates during the two major Mesozoic and Cenozoic rift episodes reached more than 300% of present-day values. Most importantly, the timing of enhanced CO2 degassing from continental rifts correlates with two well-known periods of elevated atmospheric CO2 in the Mesozoic and Cenozoic as evidenced by multiple independent proxy indicators. Compiling the length of other plate boundaries (mid-ocean ridges, subduction zones, continental arcs) through time, we do not reproduce such a correlation. Finally, we conduct numerical carbon cycle models that account for key feedback-mechanisms of the long-term carbon cycle. We find that only those models that feature a strong rift degassing component reproduce the timing and amplitude of the paleo-CO2 record. We therefore suggest that rift-related degassing constitutes a key component of the deep carbon cycle.
Robust measurement of telomere length in single cells
Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.
2013-01-01
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059
2014-01-01
Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of “force transmission pathways”; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior. PMID:24481961
Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)
2016-01-01
High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277
Biphasic Incorporation of Centromeric Histone CENP-A in Fission Yeast
Takayama, Yuko; Sato, Hiroshi; Saitoh, Shigeaki; Ogiyama, Yuki; Masuda, Fumie
2008-01-01
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Δams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Δams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Δams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged. PMID:18077559
Granule size control and targeting in pulsed spray fluid bed granulation.
Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko
2009-07-30
The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.
2009-01-01
In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732
[Telomerase activity in uveal melanomas].
Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M
2000-05-01
The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.
Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales
2013-03-01
Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.
Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven
2015-01-01
To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.
Stossi, Fabio; Dandekar, Radhika D; Bolt, Michael J; Newberg, Justin Y; Mancini, Maureen G; Kaushik, Akash K; Putluri, Vasanta; Sreekumar, Arun; Mancini, Michael A
2016-03-29
Prostate cancer remains a deadly disease especially when patients become resistant to drugs that target the Androgen Receptor (AR) ligand binding domain. At this stage, patients develop recurring castrate-resistant prostate cancers (CRPCs). Interestingly, CRPC tumors maintain dependency on AR for growth; moreover, in CRPCs, constitutively active AR splice variants (e.g., AR-V7) begin to be expressed at higher levels. These splice variants lack the ligand binding domain and are rendered insensitive to current endocrine therapies. Thus, it is of paramount importance to understand what regulates the expression of AR and its splice variants to identify new therapeutic strategies in CRPCs. Here, we used high throughput microscopy and quantitative image analysis to evaluate effects of selected endocrine disruptors on AR levels in multiple breast and prostate cancer cell lines. Bisphenol AP (BPAP), which is used in chemical and medical industries, was identified as a down-regulator of both full length AR and the AR-V7 splice variant. We validated its activity by performing time-course, dose-response, Western blot and qPCR analyses. BPAP also reduced the percent of cells in S phase, which was accompanied by a ~60% loss in cell numbers and colony formation in anchorage-independent growth assays. Moreover, it affected mitochondria size and cell metabolism. In conclusion, our high content analysis-based screening platform was used to classify the effect of compounds on endogenous ARs, and identified BPAP as being capable of causing AR (both full-length and variants) down-regulation, cell cycle arrest and metabolic alterations in CRPC cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Tina Branscombe; Webb, Kristofor J.; Edberg, Dale D.
The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specificallymore » methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation.« less
A map of protein dynamics during cell-cycle progression and cell-cycle exit
Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan
2017-01-01
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491
Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.
Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua
2017-05-01
Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.
P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim
2002-01-01
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...
Drolet, Benoit; Yang, Tao; Daleau, Pascal; Roden, Dan M; Turgeon, Jacques
2003-06-01
Cases of QT prolongation and sudden death have been reported with risperidone, a neuroleptic agent increasingly prescribed worldwide. Although hypokalemia was present in some of these events, we hypothesized that risperidone may have unsuspected electrophysiologic effects predisposing patients to proarrhythmia. In six isolated guinea pig hearts, risperidone elicited prolongation of cardiac repolarization: action potential duration increased from a baseline value of 128 ms +/- 5 to 147 ms +/- 5 (15%) with risperidone 1 microM during pacing at 250-ms cycle length, whereas the increase was only 10%, from 101 ms +/- 2 to 111 ms +/- 4, with pacing at a cycle length of 150 ms. In human ether-a-go-go (HERG)-transfected Chinese hamster ovary cells (n = 16), risperidone caused concentration-dependent block of the rapid component (I(Kr)) of the delayed rectifier potassium current with an IC(50) for tail block of 261 nM. Risperidone did not block I(Ks). Risperidone exerts cardiac electrophysiologic effects similar to those of Class III antiarrhythmic drugs. These effects are observed at clinically relevant concentrations. Because risperidone is metabolized primarily by CYP2D6, these actions likely enhance risk for risperidone-related QT prolongation and proarrhythmia in specific patient subsets (e.g., poor metabolizers and those taking interacting drugs).
Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle
Li, Chunhe; Wang, Jin
2014-01-01
Cell cycles, essential for biological function, have been investigated extensively. However, enabling a global understanding and defining a physical quantification of the stability and function of the cell cycle remains challenging. Based upon a mammalian cell cycle gene network, we uncovered the underlying Mexican hat landscape of the cell cycle. We found the emergence of three local basins of attraction and two major potential barriers along the cell cycle trajectory. The three local basins of attraction characterize the G1, S/G2, and M phases. The barriers characterize the G1 and S/G2 checkpoints, respectively, of the cell cycle, thus providing an explanation of the checkpoint mechanism for the cell cycle from the physical perspective. We found that the progression of a cell cycle is determined by two driving forces: curl flux for acceleration and potential barriers for deceleration along the cycle path. Therefore, the cell cycle can be promoted (suppressed), either by enhancing (suppressing) the flux (representing the energy input) or by lowering (increasing) the barrier along the cell cycle path. We found that both the entropy production rate and energy per cell cycle increase as the growth factor increases. This reflects that cell growth and division are driven by energy or nutrition supply. More energy input increases flux and decreases barrier along the cell cycle path, leading to faster oscillations. We also identified certain key genes and regulations for stability and progression of the cell cycle. Some of these findings were evidenced from experiments whereas others lead to predictions and potential anticancer strategies. PMID:25228772
Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.
Liu, Chenglin; Cui, Peng; Huang, Tao
2017-01-01
The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effects of donor cells' sex on nuclear transfer efficiency and telomere lengths of cloned goats.
Liu, H-J; Peng, H; Hu, C-C; Li, X-Y; Zhang, J-L; Zheng, Z; Zhang, W-C
2016-10-01
The aim of this study was to investigate the effects of donor cells' sex on nuclear transfer efficiency and telomere length of cloned goats from adult skin fibroblast cells. The telomere length of somatic cell cloned goats and their offspring was determined by measuring their mean terminal restriction fragment (TRF) length. The result showed that (i) reconstructed embryos with fibroblast cells from males Boer goats obtained significantly higher kids rate and rate of live kids than those of female embryos and (ii) the telomere lengths of four female cloned goats were shorter compared to their donor cells, but five male cloned goats had the same telomere length with their donor cells, mainly due to great variation existed among them. The offspring from female cloned goats had the same telomere length with their age-matched counterparts. In conclusion, the donor cells' sex had significant effects on nuclear transfer efficiency and telomere lengths of cloned goats. © 2016 Blackwell Verlag GmbH.
Vijay, Srinivasan; Vinh, Dao N.; Hai, Hoang T.; Ha, Vu T. N.; Dung, Vu T. M.; Dinh, Tran D.; Nhung, Hoang N.; Tram, Trinh T. B.; Aldridge, Bree B.; Hanh, Nguyen T.; Thu, Do D. A.; Phu, Nguyen H.; Thwaites, Guy E.; Thuong, Nguyen T. T.
2017-01-01
Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation. PMID:29209302
Size effects on miniature Stirling cycle cryocoolers
NASA Astrophysics Data System (ADS)
Yang, Xiaoqin; Chung, J. N.
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.
The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173
Indirect-fired gas turbine dual fuel cell power cycle
Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.
1996-01-01
A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.
The global regulatory architecture of transcription during the Caulobacter cell cycle.
Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
NASA Astrophysics Data System (ADS)
Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie
2014-03-01
Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.
NASA Astrophysics Data System (ADS)
Rainarli, E.; E Dewi, K.
2017-04-01
The research conducted by Fister & Panetta shown an optimal control model of bone marrow cells against Cell Cycle Specific chemotherapy drugs. The model used was a bilinear system model. Fister & Panetta research has proved existence, uniqueness, and characteristics of optimal control (the chemotherapy effect). However, by using this model, the amount of bone marrow at the final time could achieve less than 50 percent from the amount of bone marrow before given treatment. This could harm patients because the lack of bone marrow cells made the number of leukocytes declining and patients will experience leukemia. This research would examine the optimal control of a bilinear system that applied to fixed final state. It will be used to determine the length of optimal time in administering chemotherapy and kept bone marrow cells on the allowed level at the same time. Before simulation conducted, this paper shows that the system could be controlled by using a theory of Lie Algebra. Afterward, it shows the characteristics of optimal control. Based on the simulation, it indicates that strong chemotherapy drug given in a short time frame is the most optimal condition to keep bone marrow cells spine on the allowed level but still could put playing an effective treatment. It gives preference of the weight of treatment for keeping bone marrow cells. The result of chemotherapy’s effect (u) is not able to reach the maximum value. On the other words, it needs to make adjustments of medicine’s dosage to satisfy the final treatment condition e.g. the number of bone marrow cells should be at the allowed level.
AMP-18 Targets p21 to Maintain Epithelial Homeostasis.
Chen, Peili; Li, Yan Chun; Toback, F Gary
2015-01-01
Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.
Im, Seokjin; Choi, JinTak
2014-06-17
In the pervasive computing environment using smart devices equipped with various sensors, a wireless data broadcasting system for spatial data items is a natural way to efficiently provide a location dependent information service, regardless of the number of clients. A non-flat wireless broadcast system can support the clients in accessing quickly their preferred data items by disseminating the preferred data items more frequently than regular data on the wireless channel. To efficiently support the processing of spatial window queries in a non-flat wireless data broadcasting system, we propose a distributed air index based on a maximum boundary rectangle (MaxBR) over grid-cells (abbreviated DAIM), which uses MaxBRs for filtering out hot data items on the wireless channel. Unlike the existing index that repeats regular data items in close proximity to hot items at same frequency as hot data items in a broadcast cycle, DAIM makes it possible to repeat only hot data items in a cycle and reduces the length of the broadcast cycle. Consequently, DAIM helps the clients access the desired items quickly, improves the access time, and reduces energy consumption. In addition, a MaxBR helps the clients decide whether they have to access regular data items or not. Simulation studies show the proposed DAIM outperforms existing schemes with respect to the access time and energy consumption.
The cell cycle as a brake for β-cell regeneration from embryonic stem cells.
El-Badawy, Ahmed; El-Badri, Nagwa
2016-01-13
The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.
NASA Technical Reports Server (NTRS)
Whitlow, J. B., Jr.
1976-01-01
Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.
Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael
2017-01-01
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1992-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.
Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption
Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.
2004-06-08
The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe
2016-04-01
The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.
Singh, N; Lim, R B; Sawyer, M A
2000-07-01
The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.
Neuron-like differentiation of mesenchymal stem cells on silicon nanowires
NASA Astrophysics Data System (ADS)
Kim, Hyunju; Kim, Ilsoo; Choi, Heon-Jin; Kim, So Yeon; Yang, Eun Gyeong
2015-10-01
The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05787f
Pathological implications of cell cycle re-entry in Alzheimer disease.
Bonda, David J; Lee, Hyun-pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon
2010-06-29
The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.
The detection and stabilisation of limit cycle for deterministic finite automata
NASA Astrophysics Data System (ADS)
Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing
2018-04-01
In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.
NASA Astrophysics Data System (ADS)
Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad
2017-10-01
Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.
Mass transfer effect of the stalk contraction-relaxation cycle of Vorticella convallaria
NASA Astrophysics Data System (ADS)
Zhou, Jiazhong; Admiraal, David; Ryu, Sangjin
2014-11-01
Vorticella convallaria is a genus of protozoa living in freshwater. Its stalk contracts and coil pulling the cell body towards the substrate at a remarkable speed, and then relaxes to its extended state much more slowly than the contraction. However, the reason for Vorticella's stalk contraction is still unknown. It is presumed that water flow induced by the stalk contraction-relaxation cycle may augment mass transfer near the substrate. We investigated this hypothesis using an experimental model with particle tracking velocimetry and a computational fluid dynamics model. In both approaches, Vorticella was modeled as a solid sphere translating perpendicular to a solid surface in water. After having been validated by the experimental model and verified by grid convergence index test, the computational model simulated water flow during the cycle based on the measured time course of stalk length changes of Vorticella. Based on the simulated flow field, we calculated trajectories of particles near the model Vorticella, and then evaluated the mass transfer effect of Vorticella's stalk contraction based on the particles' motion. We acknowlege support from Laymann Seed Grant of the University of Nebraska-Lincoln.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042
Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats
NASA Astrophysics Data System (ADS)
Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-08-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats
NASA Technical Reports Server (NTRS)
Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-01-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Changes in fat distribution (WHR) and body weight across the menstrual cycle.
Kirchengast, S; Gartner, M
2002-12-01
The aim of the present study was to analyze changes of the body weight and waist-to-hip ratio during menstrual cycle, with special respect to changes around ovulation. 32 healthy young women ranging in age between 19 and 30 years (X = 23.5) were enrolled in the study. Beside a basal anthropometric investigation (stature, weight, BMI, waist circumference, hip circumference, fat percentage, waist to hip ratio) the probands were instructed to take body weight, waist and hip circumference and basal body temperature every morning by themselves over a whole cycle. Three proband groups according to cycle length (average, short and long) were defined and eight hormonal contraceptive users served as controls. It turned out that body weight increased only slightly during the second cycle half in all proband groups. A marked decrease of WHR around the time of ovulation was found in the proband group who exhibited average cycle length and a successful ovulation could be assumed. Evolutionary and physiological explanations are discussed.
Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L
2015-12-15
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.
Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan
2014-01-01
DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.
Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce.
Monteiro, Cristina; Santos, Conceição; Pinho, Sónia; Oliveira, Helena; Pedrosa, Tiago; Dias, Maria Celeste
2012-07-16
Cadmium is a priority pollutant. Its mechanisms and effects within different plant organs remain unclear. Here, cyto-genotoxicity biomarkers were evaluated in roots and leaves after Cd exposure (0, 1, 10, and 50 μM) of the model crop Lactuca sativa L. (cv. "Reine de Mai"). Overall, superoxide dismutase (SOD) and catalase (CAT) activities were stimulated in leaves, where Cd accumulation was lower in comparison to that in roots. In roots, SOD and peroxidase (POX, APX) activities were stimulated. Moreover, in both organs glutathione reductase (GR) was not affected by Cd. Overall, the H(2)O(2) content increased in both organs, while the total antioxidant capacity decreased in leaves and increased in roots with Cd concentrations. In both organs, lipid and protein oxidation rose with consequent increase of membrane permeability. Simultaneously, the comet assay showed that tail moment, tail length, and % tail DNA were maximum for 1 μM. For 10 μM, shorter tails were found suggesting induced Cd-DNA adducts that lead to DNA-DNA/DNA-protein cross-links, and/or formation of longer DNA fragments, and/or impairment of DNA repair mechanisms, while at 50 μM, nucleoids sensitivity to the technique was evident. This result was consistent with the maximum micronuclei frequency found for the 10 μM Cd dose in roots, suggesting that the surviving cells in this organ had an increase of mitotic catastrophe and that DNA repair systems for blocking cell cycle were dysfunctional. In lower Cd concentrations, root cells might have developed strategies to repair damaged DNA by blocking the cell cycle at specific checkpoints, thus avoiding mitotic catastrophe. Roots at 1 μM showed a cell cycle blockage trend at the G(2) checkpoint, while those at higher concentrations presented S phase delay. We finally discuss a general model of Cd-organ interaction covering these cyto- and genotoxic effects and the potential use of this cultivar in phytoremediation strategies.
Alteration of cell cycle progression by Sindbis virus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa
We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less
A Bayesian Joint Model of Menstrual Cycle Length and Fecundity
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.
2015-01-01
Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923
Uldry, Laurent; Virag, Nathalie; Jacquemet, Vincent; Vesin, Jean-Marc; Kappenberger, Lukas
2010-12-01
While successful termination by pacing of organized atrial tachycardias has been observed in patients, rapid pacing of AF can induce a local capture of the atrial tissue but in general no termination. The purpose of this study was to perform a systematic evaluation of the ability to capture AF by rapid pacing in a biophysical model of the atria with different dynamics in terms of conduction velocity (CV) and action potential duration (APD). Rapid pacing was applied during 30 s at five locations on the atria, for pacing cycle lengths in the range 60-110% of the mean AF cycle length (AFCL(mean)). Local AF capture could be achieved using rapid pacing at pacing sites located distal to major anatomical obstacles. Optimal pacing cycle lengths were found in the range 74-80% AFCL(mean) (capture window width: 14.6 ± 3% AFCL(mean)). An increase/decrease in CV or APD led to a significant shrinking/stretching of the capture window. Capture did not depend on AFCL, but did depend on the atrial substrate as characterized by an estimate of its wavelength, a better capture being achieved at shorter wavelengths. This model-based study suggests that a proper selection of the pacing site and cycle length can influence local capture results and that atrial tissue properties (CV and APD) are determinants of the response to rapid pacing.
Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.
Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer
2014-03-01
The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J.; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H.; Lieberman, Paul M.; Tzfati, Yehuda
2013-01-01
Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal–Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres. PMID:23959892
Deng, Zhong; Glousker, Galina; Molczan, Aliah; Fox, Alan J; Lamm, Noa; Dheekollu, Jayaraju; Weizman, Orr-El; Schertzer, Michael; Wang, Zhuo; Vladimirova, Olga; Schug, Jonathan; Aker, Memet; Londoño-Vallejo, Arturo; Kaestner, Klaus H; Lieberman, Paul M; Tzfati, Yehuda
2013-09-03
Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.
Saitou, Takashi; Imamura, Takeshi
2016-01-01
Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.
Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L
2015-10-01
The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor, telomerase, is the cellular enzyme that synthesizes DNA repeats at the ends of chromosomes during replication to prevent DNA shortening. In this study, we investigate role of telomerase in HSV infection. The data demonstrate that the telomerase inhibitor MST-312 suppressed HSV replication at multiple steps of viral infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species
Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.
2016-01-01
The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527
Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.
Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G
2018-04-01
Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martin-Ruiz, Carmen; Saretzki, Gabriele; Petrie, Joanne; Ladhoff, Juliane; Jeyapalan, Jessie; Wei, Wenyi; Sedivy, John; von Zglinicki, Thomas
2004-04-23
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.
Modelling cell cycle synchronisation in networks of coupled radial glial cells.
Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R
2015-07-21
Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.
De Sanctis, Vincenzo; Bernasconi, Sergio; Bianchin, Luigi; Bona, Gianni; Bozzola, Mauro; Buzi, Fabio; De Sanctis, Carlo; Rigon, Franco; Tatò, Luciano; Tonini, Giorgio; Perissinotto, Egle
2014-11-01
Healthcare professionals need updated information about what is the range of "normal" variation of menstrual cycle features to support young girls and their parents in managing reproductive health, and to detect diseases early. This cross-sectional study aimed to provide an updated picture of age at menarche and main menstrual cycle characteristics and complaints in an Italian population-based sample of 3,783 adolescents attending secondary school. Girls filled in a self-administered anonymous questionnaire including questions about demography, anthropometry, smoking and drinking habits, use of contraceptive, socioeconomic status, age at menarche, menstrual pattern, and physical/psychological menstrual complaints. Mean age at menarche and prevalence of polymenorrhea (cycle length < 21 days), oligomenorrhea (cycle length > 35 days), irregularity, dysmenorrhea, and of physical/psychological complaints were computed. Factors associated with age at menarche and menstrual disturbances were explored by using multiple logistic models. The girls' mean age was 17.1 years (SD 1.4 years) and the mean age at menarche was 12.4 years (SD 1.3 years); menarche occurred with two monthly peaks of frequency in July-September and in December-January (P < 0.0001). Age at menarche was significantly associated with geographic genetics (as expressed by parents' birth area), mother's menarcheal age, BMI, family size, and age at data collection. The prevalence of polymenorrhea was about 2.5%, oligomenorrhea was declared by 3.7%, irregular length by 8.3%, while long bleeding (>6 days) was shown in 19.6% of girls. Gynecological age was significantly associated with cycle length (P < 0.0001) with long cycles becoming more regular within the fourth year after menarche, while frequency of polymenorrhea stabilized after the second gynecological year. Oligomenorrhea and irregularity were both significantly associated with long menstrual bleeding (adjusted OR = 2.36; 95% CI = 1.55-3.60, and adjusted OR = 2.59; 95% CI = 1.95-3.44, respectively). The findings of the study support the levelling-off of secular trend in menarche anticipation in Italy and confirm the timing in menstrual cycle regularization. The study provides updated epidemiological data on frequency of menstrual abnormalities to help reproductive health professionals in managing adolescent gynecology.
Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.
Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S
2018-06-19
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Chang-Ching; Gopalakrishnan, Veena; Poon, Lai-Fong; Yan, TingDong
2014-01-01
In budding yeast (Saccharomyces cerevisiae), the cell cycle-dependent telomere elongation by telomerase is controlled by the cyclin-dependent kinase 1 (Cdk1). The telomere length homeostasis is balanced between telomerase-unextendable and telomerase-extendable states that both require Cdc13. The recruitment of telomerase complex by Cdc13 promotes telomere elongation, while the formation of Cdc13-Stn1-Ten1 (CST) complex at the telomere blocks telomere elongation by telomerase. However, the cellular signaling that regulates the timing of the telomerase-extendable and telomerase-unextendable states is largely unknown. Phosphorylation of Cdc13 by Cdk1 promotes the interaction between Cdc13 and Est1 and hence telomere elongation. Here, we show that Cdk1 also phosphorylates Stn1 at threonine 223 and serine 250 both in vitro and in vivo, and these phosphorylation events are essential for the stability of the CST complexes at the telomeres. By controlling the timing of Cdc13 and Stn1 phosphorylations during cell cycle progression, Cdk1 regulates the temporal recruitment of telomerase complexes and CST complexes to the telomeres to facilitate telomere maintenance. PMID:24164896
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica
2017-01-01
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.
Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1998-01-01
A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).
Mancebo Quintana, J M; Mancebo Quintana, S
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
Rapid cycling genomic selection in a multiparental tropical maize population
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...
Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.
2013-01-01
Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175
Cycle life test and failure model of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1983-01-01
Six ampere hour individual pressure vessel nickel hydrogen cells were charge/discharge cycled to failure. Failure as used here is defined to occur when the end of discharge voltage degraded to 0.9 volts. They were cycled under a low earth orbit cycle regime to a deep depth of discharge (80 percent of rated ampere hour capacity). Both cell designs were fabricated by the same manufacturer and represent current state of the art. A failure model was advanced which suggests both cell designs have inadequate volume tolerance characteristics. The limited existing data base at a deep depth of discharge (DOD) was expanded. Two cells of each design were cycled. One COMSAT cell failed at cycle 1712 and the other failed at cycle 1875. For the Air Force/Hughes cells, one cell failed at cycle 2250 and the other failed at cycle 2638. All cells, of both designs, failed due to low end of discharge voltage (0.9 volts). No cell failed due to electrical shorts. After cell failure, three different reconditioning tests (deep discharge, physical reorientation, and open circuit voltage stand) were conducted on all cells of each design. A fourth reconditioning test (electrolyte addition) was conducted on one cell of each design. In addition post cycle cell teardown and failure analysis were performed on the one cell of each design which did not have electrolyte added after failure.
González-García, Mary-Paz; Pavelescu, Irina; Canela, Andrés; Sevillano, Xavier; Leehy, Katherine A; Nelson, Andrew D L; Ibañes, Marta; Shippen, Dorothy E; Blasco, Maria A; Caño-Delgado, Ana I
2015-05-12
Telomeres are specialized nucleoprotein caps that protect chromosome ends assuring cell division. Single-cell telomere quantification in animals established a critical role for telomerase in stem cells, yet, in plants, telomere-length quantification has been reported only at the organ level. Here, a quantitative analysis of telomere length of single cells in Arabidopsis root apex uncovered a heterogeneous telomere-length distribution of different cell lineages showing the longest telomeres at the stem cells. The defects in meristem and stem cell renewal observed in tert mutants demonstrate that telomere lengthening by TERT sets a replicative limit in the root meristem. Conversely, the long telomeres of the columella cells and the premature stem cell differentiation plt1,2 mutants suggest that differentiation can prevent telomere erosion. Overall, our results indicate that telomere dynamics are coupled to meristem activity and continuous growth, disclosing a critical association between telomere length, stem cell function, and the extended lifespan of plants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Quezada-Casasola, Andrés; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Ramírez-Godínez, José Alejandro; Correa-Calderón, Abelardo
2014-04-01
In beef and dairy cattle, the number of follicular waves affects endocrine, ovarian, and behavioral events during a normal estrous cycle. However, in Mexican-native Criollo cattle, a shortly and recently domesticated breed, the association between wave patterns and follicular development has not been studied. The objective of this study was to evaluate the effect of number of follicular waves in an estrous cycle on development of anovulatory and ovulatory follicles, corpus luteum (CL) development and functionality, as well as estrual behavior in Criollo cows. Ovarian follicular activities of 22 cycling multiparous Criollo cows were recorded daily by transrectal ultrasound examinations during a complete estrous cycle. Additionally, blood samples were collected daily to determine serum progesterone concentrations. Only two- (n = 17, 77.3%) and three-wave follicular (n = 5, 22.7%) patterns were observed. Duration of estrus, length of estrous cycle, and length of follicular and luteal phases were similar (P > 0.05) between cycles of two and three waves. Two-wave cows ovulated earlier (P < 0.05) after detection of estrus than three-wave cows. Detected day and maximum diameter of first anovulatory follicle were not affected (P > 0.05) by number of waves. Growth rate of first dominant follicle was higher (P < 0.05) in three-wave cycles. Onset of regression of the first dominant follicle was earlier (P < 0.01) in cycles with three waves than in those with two waves. In two-wave cycles, ovulatory follicles were detected earlier (P < 0.01) and had lower (P < 0.01) growth rate than in three-wave cycles. Development (i.e., maximum diameter and volume) and functionality (minimum and maximum progesterone concentration) of CL were similar (P > 0.05) between two- and three-wave patterns. In conclusion, Criollo cows have two or three follicular waves per estrous cycle, which alters partially ovulatory follicle development and ovulation time after detection of estrus. Length of estrous cycle, as well as CL development and functionality, was not affected by number of follicular waves.
Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H
2017-07-21
Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The therapeutic potential of cell cycle targeting in multiple myeloma.
Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke
2017-10-27
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Sugimura, Satoshi; Akai, Tomonori; Somfai, Tamás; Hirayama, Muneyuki; Aikawa, Yoshio; Ohtake, Masaki; Hattori, Hideshi; Kobayashi, Shuji; Hashiyada, Yutaka; Konishi, Kazuyuki; Imai, Kei
2010-12-01
We have developed a polystyrene-based well-of-the-well (WOW) system using injection molding to track individual embryos throughout culture using time-lapse cinematography (TLC). WOW culture of bovine embryos following in vitro fertilization was compared with conventional droplet culture (control). No differences between control- and WOW-cultured embryos were observed during development to the blastocyst stage. Morphological quality and inner cell mass (ICM) and trophectoderm (TE) cell numbers were not different between control- and WOW-derived blastocysts; however, apoptosis in both the ICM and TE cells was reduced in WOW culture (P < 0.01). Oxygen consumption in WOW-derived blastocysts was closer to physiological level than that of control-derived blastocysts. Moreover, WOW culture improved embryo viability, as indicated by increased pregnancy rates at Days 30 and 60 after embryo transfer (P < 0.05). TLC monitoring was performed to evaluate the cleavage pattern and the duration of the first cell cycle of embryos from oocytes collected by ovum pickup; correlations with success of pregnancy were determined. Logistic regression analysis indicated that the cleavage pattern correlated with success of pregnancy (P < 0.05), but cell cycle length did not. Higher pregnancy rates (66.7%) were observed for animals in which transferred blastocysts had undergone normal cleavage, identified by the presence of two blastomeres of the same size without fragmentation, than among those with abnormal cleavage (33.3%). These results suggest that our microwell culture system is a powerful tool for producing and selecting healthy embryos and for identifying viability biomarkers.
Cyclic fatigue of ProTaper instruments.
Lopes, Hélio Pereira; Moreira, Edson Jorge Lima; Elias, Carlos Nelson; de Almeida, Renata Andriola; Neves, Mônica Schultz
2007-01-01
The present work evaluated the influence of the curved segment length of artificial root canals (the arc) and the number of cycles necessary to fracture engine-driven nickel-titanium endodontic instruments. ProTaper F3 25-mm files at 250 rpm were used in two artificial canals. The artificial canals were made of stainless steel with an inner diameter of 1.04 mm, a total length of 20 mm, and arc on the ends with a radius of curvature of 6 mm. The arc length of the first tube measured 9.4 mm, and the straight part measured 10.6 mm. The second tube was 14.1 mm long, and the straight part measured 5.9 mm. We determined the fracture surface distances and the number of cycles necessary to induce fatigue fracture in the ProTaper F3 instruments. The fracture surfaces and the helical shaft of the instruments were investigated using a scanning electron microscope. The results indicated that the required number of cycles to cause a fracture was influenced by the canal arc length, the morphology of the fractured surface presented ductile characteristics, and plastic deformation in the helical shaft of the fractured instruments did not occur.
NASA Lewis advanced IPV nickel-hydrogen technology
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Britton, Doris L.
1993-01-01
Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.
Effect of cycling on the lithium/electrolyte interface in organic electrolytes
NASA Technical Reports Server (NTRS)
Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E.
1993-01-01
Nondestructive methods such as ac impedance spectroscopy and microcalorimetry are used to study the effect of cell cycling on the lithium/electrolyte interface. The reactivity of both uncycled and cycled lithium towards various electrolytes is examined by measuring the heat evolved from the cells under open-circuit conditions at 25 C by microcalorimetry. Cycled cells at the end of charge/discharge exhibited considerably higher heat output compared with the uncycled cells. After 30 d of storage, the heat output of the cycled cells is similar to that of the uncycled cells. The cell internal resistance increases with cycling, and this is attributed to the degradation of the electrolyte with cycling.
Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.
Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer
2017-11-06
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Playing with the cell cycle to build the spinal cord.
Molina, Angie; Pituello, Fabienne
2017-12-01
A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
Cell cycle proteins as promising targets in cancer therapy.
Otto, Tobias; Sicinski, Piotr
2017-01-27
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Cell cycle nucleic acids, polypeptides and uses thereof
Gordon-Kamm, William J [Urbandale, IA; Lowe, Keith S [Johnston, IA; Larkins, Brian A [Tucson, AZ; Dilkes, Brian R [Tucson, AZ; Sun, Yuejin [Westfield, IN
2007-08-14
The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.
Zerjatke, Thomas; Gak, Igor A; Kirova, Dilyana; Fuhrmann, Markus; Daniel, Katrin; Gonciarz, Magdalena; Müller, Doris; Glauche, Ingmar; Mansfeld, Jörg
2017-05-30
Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA) as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Roy, Debmalya; Sheng, Gao Ying; Herve, Semukunzi; Carvalho, Evandro; Mahanty, Arpan; Yuan, Shengtao; Sun, Li
2017-05-01
A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.
Rensing, L; Meyer-Grahle, U; Ruoff, P
2001-05-01
Living organisms have developed a multitude of timing mechanisms--"biological clocks." Their mechanisms are based on either oscillations (oscillatory clocks) or unidirectional processes (hourglass clocks). Oscillatory clocks comprise circatidal, circalunidian, circadian, circalunar, and circannual oscillations--which keep time with environmental periodicities--as well as ultradian oscillations, ovarian cycles, and oscillations in development and in the brain, which keep time with biological timescales. These clocks mainly determine time points at specific phases of their oscillations. Hourglass clocks are predominantly found in development and aging and also in the brain. They determine time intervals (duration). More complex timing systems combine oscillatory and hourglass mechanisms, such as the case for cell cycle, sleep initiation, or brain clocks, whereas others combine external and internal periodicities (photoperiodism, seasonal reproduction). A definition of a biological clock may be derived from its control of functions external to its own processes and its use in determining temporal order (sequences of events) or durations. Biological and chemical oscillators are characterized by positive and negative feedback (or feedforward) mechanisms. During evolution, living organisms made use of the many existing oscillations for signal transmission, movement, and pump mechanisms, as well as for clocks. Some clocks, such as the circadian clock, that time with environmental periodicities are usually compensated (stabilized) against temperature, whereas other clocks, such as the cell cycle, that keep time with an organismic timescale are not compensated. This difference may be related to the predominance of negative feedback in the first class of clocks and a predominance of positive feedback (autocatalytic amplification) in the second class. The present knowledge of a compensated clock (the circadian oscillator) and an uncompensated clock (the cell cycle), as well as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.
Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.
Zhang, Kun; Wang, Jin
2018-05-31
The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for controlling the cell cycle speed. This can help to design an effective strategy for drug discovery against cancer.
Live Imaging of Adult Neural Stem Cells in Rodents
Ortega, Felipe; Costa, Marcos R.
2016-01-01
The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions. PMID:27013941
NASA Technical Reports Server (NTRS)
Ho, C. T.; Mathias, J. D.
1981-01-01
The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
Fully Modulated Turbulent Diffusion Flames in Microgravity*
NASA Astrophysics Data System (ADS)
Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.
2001-11-01
Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.
Transport Imaging of Multi-Junction and CIGS Solar Cell Materials
2011-12-01
solar cells start with the material charge transport parameters, namely the charge mobility, lifetime and diffusion length . It is the goal of...every solar cell manufacturer to maintain high carrier lifetime so as to realize long diffusion lengths . Long diffusion lengths ensure that the charges...Thus, being able to accurately determine the diffusion length of any solar cell material proves advantageous by providing insights
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells-update 2
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in low earth orbit (LEO) cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40 000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. This test was conducted at Hughes Aircraft Company under a NASA Lewis contract. The purpose was to investigate the effect of KOH concentration on cycle life. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The boiler plate test results are in the process of being validated using flight hardware and real time LEO test at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. Six 48 Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16600 cycles during the continuing test.
Cell-cycle control in the face of damage--a matter of life or death.
Clarke, Paul R; Allan, Lindsey A
2009-03-01
Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.
Undariopsis peterseniana Promotes Hair Growth by the Activation of Wnt/β-Catenin and ERK Pathways
Kang, Jung-Il; Kim, Min-Kyoung; Lee, Ji-Hyeok; Jeon, You-Jin; Hwang, Eun-Kyoung; Koh, Young-Sang; Hyun, Jin-Won; Kwon, Soon-Young; Yoo, Eun-Sook; Kang, Hee-Kyoung
2017-01-01
In this study, we investigated the effect and mechanism of Undariopsis peterseniana, an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the KATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/β-catenin signaling proteins such as glycogen synthase kinase-3β (GSK-3β) and β-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/β-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9′-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia. PMID:28475144
Undariopsis peterseniana Promotes Hair Growth by the Activation of Wnt/β-Catenin and ERK Pathways.
Kang, Jung-Il; Kim, Min-Kyoung; Lee, Ji-Hyeok; Jeon, You-Jin; Hwang, Eun-Kyoung; Koh, Young-Sang; Hyun, Jin-Won; Kwon, Soon-Young; Yoo, Eun-Sook; Kang, Hee-Kyoung
2017-05-05
In this study, we investigated the effect and mechanism of Undariopsis peterseniana , an edible brown alga, on hair growth. The treatment of vibrissa follicles with U. peterseniana extract ex vivo for 21 days significantly increased the hair-fiber lengths. The U. peterseniana extract also significantly accelerated anagen initiation in vivo. Moreover, we found that U. peterseniana extract was able to open the K ATP channel, which may contribute to increased hair growth. The U. peterseniana extract decreased 5α-reductase activity and markedly increased the proliferation of dermal papilla cells, a central regulator of the hair cycle. The U. peterseniana extract increased the levels of cell cycle proteins, such as Cyclin D1, phospho(ser780)-pRB, Cyclin E, phospho-CDK2, and CDK2. The U. peterseniana extract also increased the phosphorylation of ERK and the levels of Wnt/β-catenin signaling proteins such as glycogen synthase kinase-3β (GSK-3β) and β-catenin. These results suggested that the U. peterseniana extract had the potential to influence hair growth by dermal papilla cells proliferation through the activation of the Wnt/β-catenin and ERK pathways. We isolated a principal of the U. peterseniana extract, which was subsequently identified as apo-9'-fucoxanthinone, a trichogenic compound. The results suggested that U. peterseniana extract may have a pivotal role in the treatment of alopecia.
Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes
NASA Astrophysics Data System (ADS)
Vehkaoja, A.; Peltokangas, M.; Lekkala, J.
2013-09-01
A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders.
The cell cycle of early mammalian embryos: lessons from genetic mouse models.
Artus, Jérôme; Babinet, Charles; Cohen-Tannoudji, Michel
2006-03-01
Genes coding for cell cycle components predicted to be essential for its regulation have been shown to be dispensable in mice, at the whole organism level. Such studies have highlighted the extraordinary plasticity of the embryonic cell cycle and suggest that many aspects of in vivo cell cycle regulation remain to be discovered. Here, we discuss the particularities of the mouse early embryonic cell cycle and review the mutations that result in cell cycle defects during mouse early embryogenesis, including deficiencies for genes of the cyclin family (cyclin A2 and B1), genes involved in cell cycle checkpoints (Mad2, Bub3, Chk1, Atr), genes involved in ubiquitin and ubiquitin-like pathways (Uba3, Ubc9, Cul1, Cul3, Apc2, Apc10, Csn2) as well as genes the function of which had not been previously ascribed to cell cycle regulation (Cdc2P1, E4F and Omcg1).
Robustness of the p53 network and biological hackers.
Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G
2005-06-06
The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.
Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments
Seaton, Daniel D; Krishnan, J
2016-01-01
Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Engwall, E.; Glimelius, L.; Hynning, E.
2018-05-01
Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.
Mancebo Quintana, J. M.; Mancebo Quintana, S.
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae. PMID:22666626
Golubev, A; Khrustalev, S; Butov, A
2003-11-21
In telomerase-negative cell populations the mean telomere length (TL) decreases with increasing population doubling number (PD). A critically small TL is believed to stop cell proliferation at a cell-, age- and species-specific PD thus defining the Hayflick limit. However, positively skewed TL distributions are broad compared to differences between initial and final mean TL and strongly overlap at middle and late PD, which is inconsistent with a limiting role of TL. We used computer-assisted modelling to define what set of premises may account for the above. Our model incorporates the following concepts. DNA end replication problem: telomeres loose 1 shortening unit (SU) upon each cell division. Free radical-caused TL decrease: telomeres experience random events resulting in the loss of a random SU number within a remaining TL. Stochasticity of gene expression and cell differentiation: cells experience random events inducing mitoses or committing cells to proliferation arrest, the latter option requiring a specified number of mitoses to be passed. Cells whose TL reaches 1SU cannot divide. The proliferation kinetics of such virtual cells conforms to the transition probability model of cell cycle. When no committing events occur and at realistic SU estimates of the initial TL, maximal PD values far exceed the Hayflick limit observed in normal cells and are consistent with the crisis stage entered by transformed cells that have surpassed the Hayflick limit. At intermediate PD, symmetrical TL distributions are yielded. Upon introduction of committing events making the ratio of the rates of proliferating and committing events (P/C) range from 1.10 to 1.25, TL distributions at intermediate PD become positively skewed, and virtual cell clones show bimodal size distributions. At P/C as high as 1.25 the majority of virtual cells at maximal PD contain telomeres with TL>1SU. A 10% increase in P/C within the 1.10-1.25 range produces a two-fold increase in the maximal PD, which can reach values of up to 25 observed in rodent and some human cells. Increasing the number of committed mitoses from 0 to 10 can increases PD to about 50 observed in human fibroblasts. Introduction of the random TL breakage makes the shapes of TL distributions quite dissimilar from those observed in real cells. Telomere length decrease is a correlate of cell proliferation that cannot alone account for the Hayflick limit, which primarily depends on parameters of cell population kinetics. Free radical damage influences the Hayflick limit not through TL but rather by affecting the ratio of the rates of events that commit cells to mitoses or to proliferation arrest.
Cell Cycle Regulation of Stem Cells by MicroRNAs.
Mens, Michelle M J; Ghanbari, Mohsen
2018-06-01
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Mira-Escolano, María-Pilar; Mendiola, Jaime; Mínguez-Alarcón, Lidia; Roca, Manuela; Cutillas-Tolín, Ana; López-Espín, José J; Torres-Cantero, Alberto M
2014-02-01
Animal models suggest that anogenital distance (AGD) at birth reflects androgen concentrations during in-utero development and predicts adult AGD. Several human observational studies show an association between menstrual cycle irregularities and a hyperandrogenic environment and that may result in a potential alteration of the female reproductive tract during in-utero development. This study examined associations between AGD of young women and their mother's gynaecological characteristics before or during pregnancy. This is cross-sectional study of 100 college-age volunteers in southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. Linear regression analysis was used to examine the association between AGD measurements (anus-fourchette (AGDAF) and anus-clitoris (AGDAC)) of women and their mother's gynaecological characteristics. Longer AGDAF was associated with the presence of mother's menstrual cycle irregularities before pregnancy (P=0.03). Longer female AGD has been related to excess androgen exposure in utero in toxicological studies. The current findings may be consistent with studies in which an association between menstrual cycle irregularities and an hyperandrogenic environment has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including AGD. Rodent models suggest that perineal length at birth reflects male hormone concentrations (androgens) during in-utero development and predicts adult perineal length. Several human studies show a relationship between menstrual cycle irregularities and an excessive androgen environment. We hypothesize that androgen excess may result in a potential alteration of the female reproductive tract during in-utero development. Our aim was to examine associations between perineal length of young women and their mother's gynaecological characteristics before or during pregnancy. This is a study of 100 college-age volunteers in Southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. We used multivariate analyses to assess the association between perineal length of women and their mother's gynaecological characteristics. Longer perineal length was associated with the presence of mother's menstrual cycle irregularities before pregnancy. Longer female perineal length has been related to excess androgen exposure in utero in rodent studies. Our findings may be consistent with previous studies in which an association between menstrual cycle irregularities and an excess of androgen has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including perineal length. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-07-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-01-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390
Implications of Extended Solar Minima
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Davis, J. M.
2009-01-01
Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons.
Rodríguez-Aznar, Eva; Barrallo-Gimeno, Alejandro; Nieto, M Angela
2013-03-20
During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.
Pham, Toan; Tran, Kenneth; Mellor, Kimberley M; Hickey, Anthony; Power, Amelia; Ward, Marie-Louise; Taberner, Andrew; Han, June-Chiew; Loiselle, Denis
2017-07-15
The heat of activation of cardiac muscle reflects the metabolic cost of restoring ionic homeostasis following a contraction. The accuracy of its measurement depends critically on the abolition of crossbridge cycling. We abolished crossbridge activity in isolated rat ventricular trabeculae by use of blebbistatin, an agent that selectively inhibits myosin II ATPase. We found cardiac activation heat to be muscle length independent and to account for 15-20% of total heat production at body temperature. We conclude that it can be accurately estimated at minimal muscle length. Activation heat arises from two sources during the contraction of striated muscle. It reflects the metabolic expenditure associated with Ca 2+ pumping by the sarcoplasmic reticular Ca 2+ -ATPase and Ca 2+ translocation by the Na + /Ca 2+ exchanger coupled to the Na + ,K + -ATPase. In cardiac preparations, investigators are constrained in estimating its magnitude by reducing muscle length to the point where macroscopic twitch force vanishes. But this experimental protocol has been criticised since, at zero force, the observed heat may be contaminated by residual crossbridge cycling activity. To eliminate this concern, the putative thermal contribution from crossbridge cycling activity must be abolished, at least at minimal muscle length. We achieved this using blebbistatin, a selective inhibitor of myosin II ATPase. Using a microcalorimeter, we measured the force production and heat output, as functions of muscle length, of isolated rat trabeculae from both ventricles contracting isometrically at 5 Hz and at 37°C. In the presence of blebbistatin (15 μmol l -1 ), active force was zero but heat output remained constant, at all muscle lengths. Activation heat measured in the presence of blebbistatin was not different from that estimated from the intercept of the heat-stress relation in its absence. We thus reached two conclusions. First, activation heat is independent of muscle length. Second, residual crossbridge heat is negligible at zero active force; hence, the intercept of the cardiac heat-force relation provides an estimate of activation heat uncontaminated by crossbridge cycling. Both results resolve long-standing disputes in the literature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
An extensive program of periodic alternative splicing linked to cell cycle progression
Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng
2016-01-01
Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110
Miranda, Tina Branscombe; Webb, Kristofor J; Edberg, Dale D; Reeves, Raymond; Clarke, Steven
2005-10-28
The HMGA family proteins HMGA1a and HMGA1b are nuclear nonhistone species implicated in a wide range of cellular processes including inducible gene transcription, modulation of chromosome structure through nucleosome and chromosome remodeling, and neoplastic transformation. HMGA proteins are highly modified, and changes in their phosphorylation states have been correlated with the phase of the cell cycle and changes in their transcriptional activity. HMGA1a is also methylated in the first DNA-binding AT-hook at Arg25 and other sites, although the enzyme or enzymes responsible have not been identified. We demonstrate here that a GST fusion of protein arginine methyltransferase 6 (PRMT6) specifically methylates full-length recombinant HMGA1a protein in vitro. Although GST fusions of PRMT1 and PRMT3 were also capable of methylating the full-length HMGA1a polypeptide, they recognize its proteolytic degradation products much better. GST fusions of PRMT4 or PRMT7 were unable to methylate the full-length protein or its degradation products. We conclude that PRMT6 is a good candidate for the endogenous enzyme responsible for HGMA1a methylation.
Analysis of growth of tetraploid nuclei in roots of Vicia faba.
Bansal, J; Davidson, D
1978-03-01
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.
Shah, Siddharth; Acholonu, Rhonda Graves; Ohene-Frempong, Kwaku; Asakura, Toshio
2015-12-01
We previously found that blood samples collected from steady-state patients with sickle cell disease (SCD) without exposure to air contain a new type of reversibly sickled cells (RSCs) with blunt edges at a level of as high as 78%. Since partial oxygenation of once-deoxygenated sickled cells with pointy edges to near venous oxygen pressure generates similar sickled cells with blunt edges in vitro, we named them as partially oxygenated sickled cells (POSCs). On the other hand, partial deoxygenation of once-oxygenated SS cells to venous oxygen pressure generates partially deoxygenated sickled cells (PDSCs) with pointy edges. In this study, we obtained blood samples from 6 steady-state patients with SCD under venous oxygen pressure without exposure to air, subjected them to various oxygenation/deoxygenation/reoxygenation cycles, and studied their filterability through a membrane filter with pore diameter of 3μm, the theoretical minimum diameter of a capillary. Our results indicated that discocytes, POSCs with blunt edges, and irreversibly sickled cells could deform and pass through the filter, while PDSCs with pointy edges were rigid and could not. The filterability of SS cells seems to be related to the length and amount of deoxy-hemoglobin S fibers in the cells. Copyright © 2015. Published by Elsevier Inc.
Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate
USDA-ARS?s Scientific Manuscript database
Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...
Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number
NASA Astrophysics Data System (ADS)
Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel
2007-11-01
We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1990-01-01
A breakthrough in low earth orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and a real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana, to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There was two failures, however, for the cells containing 31 percent KOH.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1990-01-01
A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.
Cell cycle in egg cell and its progression during zygotic development in rice.
Sukawa, Yumiko; Okamoto, Takashi
2018-03-01
Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.
NASA Astrophysics Data System (ADS)
Carter, Jason A.; Lind, Christine H.; Truong, M. Phuong; Collins, Eva-Maria S.
2015-10-01
Planarians are among the most complex animals with the ability to regenerate complete organisms from small tissue pieces. This ability allows them to reproduce by splitting themselves into a head and a tail piece, making them a rare example of asexual reproduction via transverse fission in multi-cellular organisms. Due to the stochastic nature of long reproductive cycles, which range from days to months, few and primarily qualitative studies have been conducted to understand the reproductive behaviors of asexual planarians. We have executed the largest long-term study on planarian asexual reproduction to date, tracking more than 23,000 reproductive events of three common planarian species found in Europe, North America, and Asia, respectively: Schmidtea mediterranea, Dugesia tigrina, and Dugesia japonica. This unique data collection allowed us to perform a detailed statistical analysis of their reproductive strategies. Since the three species share a similar anatomy and mode of reproduction by transverse division, we were surprised to find that each species had acquired its own distinct strategy for optimizing its reproductive success. We statistically examined each strategy, associated trade-offs, and the potential regulatory mechanisms on the population level. Interestingly, models for cell cycle length regulation in unicellular organisms could be directly applied to describe reproductive cycle lengths of planarians, despite the difference in underlying biological mechanisms. Finally, we examined the ecological implications of each strategy through intra- and inter-species competition experiments and found that D. japonica outcompeted the other two species due to its relatively equal distribution of resources on head and tail pieces, its cannibalistic behaviors and ability to thrive in crowded environments. These results show that this species would pose a serious threat to endogenous planarian populations if accidentally introduced in their habitats.
Ripetti, V; Escoute, J; Verdeil, J L; Costes, E
2008-01-01
Genetic control of plant size and shape is a promising perspective, particularly in fruit trees, in order to select desirable genotypes. A recent study on architectural traits in an apple progeny showed that internode length was a highly heritable character. However, few studies have been devoted to internode cellular patterning in dicotyledonous stems, and the interplay between the two elementary cell processes that contribute to their length, i.e. cell division and elongation, is not fully understood. The present study aimed at unravelling their contributions in the genetic variation of internode length in a selection of F(1) and parent genotypes of apple tree, by exploring the number of cells and cell shape within mature internodes belonging to the main axes. The results highlighted that both the variables were homogeneous in samples collected either along a sagital line or along the pith width, and suggest that cell lengthening was homogeneous during internode development. They allowed the total number of cells to be estimated on the internode scale and opened up new perspectives for simplifying tissue sampling procedures for further investigations. Differences in internode length were observed between the genotypes, in particular between the parents, and partly resulted from a compensation between cell number and cell length. However, genetic variations in internode length primarily involved the number of cells, while cell length was more secondary. These results argue for an interplay between cellular and organismal control of internode shape that may involve the rib meristem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella
2013-05-25
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H.; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. PMID:22073316
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
A Motor-Driven Mechanism for Cell-Length Sensing
Rishal, Ida; Kam, Naaman; Perry, Rotem Ben-Tov; Shinder, Vera; Fisher, Elizabeth M.C.; Schiavo, Giampietro; Fainzilber, Mike
2012-01-01
Summary Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing. Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development. Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1. Thus, molecular motors critically influence cell-length sensing and growth control. PMID:22773964
Slow-cycling stem cells in hydra contribute to head regeneration
Govindasamy, Niraimathi; Murthy, Supriya; Ghanekar, Yashoda
2014-01-01
ABSTRACT Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals. PMID:25432513
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21.
Gongpan, Pianchou; Lu, Yanting; Wang, Fang; Xu, Yuhui; Xiong, Wenyong
2016-07-02
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.
Borchert, Sophie; Czech-Sioli, Manja; Neumann, Friederike; Schmidt, Claudia; Wimmer, Peter; Dobner, Thomas
2014-01-01
ABSTRACT Interference with tumor suppressor pathways by polyomavirus-encoded tumor antigens (T-Ags) can result in transformation. Consequently, it is thought that T-Ags encoded by Merkel cell polyomavirus (MCPyV), a virus integrated in ∼90% of all Merkel cell carcinoma (MCC) cases, are major contributors to tumorigenesis. The MCPyV large T-Ag (LT-Ag) has preserved the key functional domains present in all family members but has also acquired unique regions that flank the LxCxE motif. As these regions may mediate unique functions, or may modulate those shared with T-Ags of other polyomaviruses, functional studies of MCPyV T-Ags are required. Here, we have performed a comparative study of full-length or MCC-derived truncated LT-Ags with regard to their biochemical characteristics, their ability to bind to retinoblastoma (Rb) and p53 proteins, and their transforming potential. We provide evidence that full-length MCPyV LT-Ag may not directly bind to p53 but nevertheless can significantly reduce p53-dependent transcription in reporter assays. Although early region expression constructs harboring either full-length or MCC-derived truncated LT-Ag genes can transform primary baby rat kidney cells, truncated LT-Ags do not bind to p53 or reduce p53-dependent transcription. Interestingly, shortened LT-Ags exhibit a very high binding affinity for Rb, as shown by coimmunoprecipitation and in vitro binding studies. Additionally, we show that truncated MCPyV LT-Ag proteins are expressed at higher levels than those for the wild-type protein and are able to partially relocalize Rb to the cytoplasm, indicating that truncated LT proteins may have gained additional features that distinguish them from the full-length protein. IMPORTANCE MCPyV is one of the 12 known polyomaviruses that naturally infect humans. Among these, it is of particular interest since it is the only human polyomavirus known to be involved in tumorigenesis. MCPyV is thought to be causally linked to MCC, a rare skin tumor. In these tumors, viral DNA is monoclonally integrated into the genome of the tumor cells in up to 90% of all MCC cases, and the integrated MCV genomes, furthermore, harbor signature mutations in the so-called early region that selectively abrogate viral replication while preserving cell cycle deregulating functions of the virus. This study describes comparative studies of early region T-Ag protein characteristics, their ability to bind to Rb and p53, and their transforming potential. PMID:24371076
van Rijnberk, Lotte M.; van der Horst, Suzanne E. M.; van den Heuvel, Sander; Ruijtenberg, Suzan
2017-01-01
Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit. PMID:28158315
Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M
2017-09-25
Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impedance measurements on a spiral-wound nickel/metal hydride cell cycled in a simulated Leo orbit
NASA Technical Reports Server (NTRS)
Reid, Margaret A.
1993-01-01
A spiral-wound size C cell was cycled at 25 C in a low earth orbit (LEO) regime at 50 percent depth of discharge (DOD) with approximately five percent over-charge. The nominal capacity was 3.5 AH. The cell was cycled for 2000 cycles. Capacity checks and impedance measurements over the complete range of state of charge were made upon receipt and after 500, 1000, and 2000 cycles. The capacity of the cell was essentially unchanged until after the impedance measurements at 2000 cycles. Only small changes in the impedance parameters were observed, but there was somewhat more scatter in the data after 2000 cycles. When the cell was returned to LEO cycling after 2000 cycles, only 38 percent of the capacity could be obtained. It is believed that the cell failed because of an equipment failure at the end of the final impedance measurements which allowed an over-discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells
NASA Technical Reports Server (NTRS)
Jain, R. K.; Weinberg, I.; Flood, D. J.
1993-01-01
Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.
A single cyclin–CDK complex is sufficient for both mitotic and meiotic progression in fission yeast
Gutiérrez-Escribano, Pilar; Nurse, Paul
2015-01-01
The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13–Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes. PMID:25891897
Ancestral telomere shortening: a countdown that will increase mean life span?
Hertzog, Radu G
2006-01-01
Like cells, all mammals have a limited life span. Among cells there are a few exceptions (e.g., immortal cells), among mammals not, even if some of them live longer. Many in vitro and in vivo studies support the consensus that telomere length is strongly correlated with life span. At the somatic cellular level, long telomeres have been associated with longer life span. A different situation can be seen in immortal cells, such as cancer, germ and stem cells, where telomeres are maintained by telomerase, a specialized reverse transcriptase that is involved in synthesis of telomeres. Irrespective of telomere length, if telomerase is active, telomeres can be maintained at a sufficient length to ensure cell survival. To the contrary, telomeres shorten progressively with each cell division and when a critical telomere length (Hayflick limit) is reached, the cells undergo senescence and subsequently apoptosis. In mammals, those with the longest telomeres (e.g., mice) have the shortest life span. Furthermore, the shorter the mean telomere length, the longer the mean life span, as observed in humans (10-14 kpb) and bowhead-whales (undetermined telomere length), which have the longest mean life span among mammals. Over the past centuries, human average life span has increased. The hypothesis presented here suggests that this continual increase in the mean life span could be due to a decrease of mean telomere length over the last hundreds years. Actually, the life span is not directly influenced by length of telomeres, but rather by telomere length - dependent gene expression pattern. According to Greider, "rather than average telomere length, it is the shortest telomere length that makes the biggest difference to a cell". In the context of fast-growing global elderly population due to increase in life expectancy, it also seem to be an age related increase in cancer incidence. Nevertheless, extending healthy life span could depend on how good cells achieve, during the prenatal period and few years after birth, the equilibrium between telomere length and telomerase activity, as seen in germ cells. After all, I suggest that decrease in mean telomere length might result in, on the one hand, an increased life span and, on the other, a higher risk of tumorigenesis.
A High-Speed Design of Montgomery Multiplier
NASA Astrophysics Data System (ADS)
Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi
With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.
Danielsen, T.; Hvidsten, M.; Stokke, T.; Solberg, K.; Rofstad, E. K.
1998-01-01
Hypoxia has been shown to induce accumulation of p53 and of hypophosphorylated retinoblastoma protein (pRb) in tumour cells. In this study, the cell cycle dependence of p53 accumulation and pRb hypophosphorylation in four human melanoma cell lines that are wild type for p53 was investigated using two-parameter flow cytometry measurements of p53 or pRb protein content and DNA content. The hypoxia-induced increase in p53 protein was higher in S-phase than in G1 and G2 phases in all cell lines. The accumulation of p53 in S-phase during hypoxia was not related to hypoxia-induced apoptosis or substantial cell cycle specific cell inactivation during the first 24 h of reoxygenation. pRb was hypophosphorylated in all cell cycle phases by hypoxia treatment. The results did not support a direct link between p53 and pRb during hypoxia because p53 was induced in a cell cycle-specific manner, whereas no cell cycle-dependent differences in pRb hypophosphorylation were detected. Only a fraction of the cell populations (0.60+/-0.10) showed hypophosphorylated pRb. Thus, pRb is probably not the only mediator of the hypoxia-induced cell cycle block seen in all cells and all cell cycle phases. Moreover, the cell cycle-dependent induction of p53 by hypoxia suggests that the primary function of p53 accumulation during hypoxia is other than to arrest the cells. Images Figure 4 Figure 7 PMID:9862563
Fragment Length of Circulating Tumor DNA.
Underhill, Hunter R; Kitzman, Jacob O; Hellwig, Sabine; Welker, Noah C; Daza, Riza; Baker, Daniel N; Gligorich, Keith M; Rostomily, Robert C; Bronner, Mary P; Shendure, Jay
2016-07-01
Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.
Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.
Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127
Cell cycle gene expression under clinorotation
NASA Astrophysics Data System (ADS)
Artemenko, Olga
2016-07-01
Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.
KOH concentration effect on cycle life of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Lim, Hong S.; Verzwyvelt, S. A.
1987-01-01
A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.
Mizejewski, G J
2016-09-01
The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.
Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles
Wheeler, Richard John
2015-01-01
Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196
Persistent organochlorine pollutants and menstrual cycle characteristics
Buck Louis, Germaine M.; Rios, Lisbeth Iglesias; McLain, Alexander; Cooney, Maureen A.; Kostyniak, Paul J.; Sundaram, Rajeshwari
2014-01-01
An evolving body of evidence suggests an adverse relation between persistent organochlorine pollutants (POPs) and menstruation, though prospective longitudinal measurement of menses is limited and served as the impetus for study. We prospectively assessed the relation between a mixture of persistent organochlorine compounds and menstrual cycle length and duration of bleeding in a cohort of women attempting to become pregnant. Eighty-three (83%) women contributing 447 cycles for analysis provided a blood specimen for the quantification of 76 polychlorinated biphenyls and seven organochlorine pesticides, and completed daily diaries on menstruation until a human chorionic gonadotropin confirmed pregnancy or 12 menstrual cycles without conception. Gas chromatography with electron capture detection was used to quantify concentrations (ng g−1 serum); enzymatic methods were used to quantify serum lipids (mg dL−1). A linear regression model with a mixture distribution was used to identify chemicals grouped by purported biologic activity that significantly affected menstrual cycle length and duration of bleeding adjusting for age at menarche and enrollment, body mass index, and cigarette smoking. A significant 3-d increase in cycle length was observed for women in the highest tertile of estrogenic PCB congeners relative to the lowest tertile (β = 3.20; 95% CI 0.36, 6.04). A significant reduction in bleeding (<1 d) was observed among women in the highest versus lowest tertile of aromatic fungicide exposure (γ = −0.15; 95% CI −0.29, −0.00). Select POPs were associated with changes in menstruation underscoring the importance of assessing chemical mixtures for female fecundity. PMID:22018858
The key kinematic determinants of undulatory underwater swimming at maximal velocity.
Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross
2016-01-01
The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Aerobic Exercise, Estrogens, and Breast Cancer Risk
2011-11-01
on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism in sedentary, eumenorrheic, healthy premenopausal women...changes in menstrual cycle length, and 4) limited changes in estrogen metabolism. The resulting increases in urinary 2-hydroxyestrone levels and 2...effects of a 16-week, aerobic exercise intervention on endogenous sex hormone levels, menstrual cycle characteristics, and estrogen metabolism of young
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier
2017-01-01
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size. PMID:28496449
Grimplet, Jérôme; Tello, Javier; Laguna, Natalia; Ibáñez, Javier
2017-01-01
Grapevine cluster compactness has a clear impact on fruit quality and health status, as clusters with greater compactness are more susceptible to pests and diseases and ripen more asynchronously. Different parameters related to inflorescence and cluster architecture (length, width, branching, etc.), fruitfulness (number of berries, number of seeds) and berry size (length, width) contribute to the final level of compactness. From a collection of 501 clones of cultivar Garnacha Tinta, two compact and two loose clones with stable differences for cluster compactness-related traits were selected and phenotyped. Key organs and developmental stages were selected for sampling and transcriptomic analyses. Comparison of global gene expression patterns in flowers at the end of bloom allowed identification of potential gene networks with a role in determining the final berry number, berry size and ultimately cluster compactness. A large portion of the differentially expressed genes were found in networks related to cell division (carbohydrates uptake, cell wall metabolism, cell cycle, nucleic acids metabolism, cell division, DNA repair). Their greater expression level in flowers of compact clones indicated that the number of berries and the berry size at ripening appear related to the rate of cell replication in flowers during the early growth stages after pollination. In addition, fluctuations in auxin and gibberellin signaling and transport related gene expression support that they play a central role in fruit set and impact berry number and size. Other hormones, such as ethylene and jasmonate may differentially regulate indirect effects, such as defense mechanisms activation or polyphenols production. This is the first transcriptomic based analysis focused on the discovery of the underlying gene networks involved in grapevine traits of grapevine cluster compactness, berry number and berry size.
Scaling of chew cycle duration in primates.
Ross, Callum F; Reed, David A; Washington, Rhyan L; Eckhardt, Alison; Anapol, Fred; Shahnoor, Nazima
2009-01-01
The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but is rejected as biomechanically unrealistic. The forced mass-spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielson, Marike; Reizer, Edwin; Stål, Olle
An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclearmore » Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.« less
Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua
2017-06-01
Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Dedov, Vadim N; Dedova, Irina V; Nicholson, Garth A
2004-04-01
Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.
[Effects of methyl tertiary butyl ether on cell cycle and cell apoptosis].
Zhou, W; Huang, G; Zhang, H; Ye, S
2000-07-01
To explore the effects of the new gasoline additive, methyl tertiary butyl ether (MTBE) on cell cycle and cell apoptosis. Flow cytometry was used to evaluate the effect of MTBE (1, 2, 4 microl/ml, 24 h) on NIH/3T3 cell cycles; and the effect of MTBE on Hela cell apoptosis was evaluated by detecting cell survival using crystal violet staining. Flow cytometry showed that MTBE could change NIH/3T3 cell cycles, decrease the number of cells in S stage, and arrest cells at G(2) + M stage. The results suggested that MTBE could affect NIH/3T3 cell cycles and induce cell proliferation. This situation existed 48 hours after the treatment, and cell cycles came back normal 96 hours after the treatment. By detecting cell survival using crystal violet staining, we found that MTBE could inhibit the apoptosis of Hela cells which was induced by tumor necrosis factor (TNF)alpha and cycloheximide. MTBE's carcinogenicity to animals may relate to induction of cell proliferation and inhibition of cell apoptosis.
KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1989-01-01
Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.
The cell-cycle interactome: a source of growth regulators?
Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie
2014-06-01
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mu, Weijie; Wen, Haishen; He, Feng; Li, Jifang; Liu, Miao; Ma, Ruiqin; Zhang, Yuanqing; Hu, Jian; Qi, Baoxia
2013-03-01
Vasa, which is a conserved member of the DEAD-box protein family, plays an indispensable role in primordial germ cell proliferation. However, the expression of vasa gene during the reproductive cycle in ovoviviparous fish has not been documented. In this study, the full-length sequence of vasa was obtained from the ovary of Korean rockfish ( Sebastes schlegeli) using reverse transcription-PCR and rapid amplification of cDNA ends. The Vasa with a mature protein of 650 amino acids showed greatest homology (84%) with giant gourami ( Osphronemus goramy) and Pacific bluefin tuna ( Thunnus orientalis). The expression of vasa mRNA in Korean rockfish was detected in gonads only, suggesting its specific role in gonadal development. In addition, seasonal changes in the vasa expression levels were examined in gonads by quantitative real-time PCR. The vasa transcript levels in adult testis were found higher during spermatogenesis than during spermiation. The vasa transcript levels remained relatively high at the early ovary stage but declined during ovary maturation in adult female fish. These results suggest that the vasa gene play an important role in spermatogenesis and early oogenesis during the reproductive cycle of Korean rockfish.
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
Effects of day-length variations on emotional responses towards unfamiliarity in Swiss mice.
Kopp, C; Misslin, R; Vogel, E; Rettori, M C; Delagrange, P; Guardiola-Lemaitre, B
1997-11-01
Pineal melatonin secretion occurs at night in all vertebrates and the duration of its secretion is negatively correlated with day length. As an anxiolytic activity of melatonin has been shown in rats and mice, this study examined possible changes of emotional reactivity in response to day length variations in Swiss mice. Three groups of mice were observed in a free-exploratory test: a group submitted to a short-day exposure (6:18 h light-dark cycle) for 2 weeks, a group submitted to a long-day exposure (18:6 h light-dark cycle) for 2 weeks and a control group which was maintained in housing 12:12 h light-dark cycle. The short-day exposed group of mice exhibited significantly fewer attempts to enter into the unfamiliar enclosure, spent significantly more time in it and presented significantly more rears than controls whereas the long-day exposed group of mice made more attempts than controls. These results suggest a decreased emotional level in short-day exposed mice and an increased level in long-day exposed mice. This could be interpreted as confirming the idea of anxiolytic-like properties of melatonin; however, the specific role of this hormone in the changes of anxiety related to day length must be assessed by further measures of potential variations of circulating melatonin.
Lisman, John
2005-01-01
In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to that proposed by Singer and von der Malsburg is discussed; in their scheme, theta is not considered. It is argued that what theta provides is the absolute phase reference needed for encoding order. Theta/gamma coding therefore bears some relationship to the concept of "word" in digital computers, with word length corresponding to the number of gamma cycles within a theta cycle, and discrete phase corresponding to the ordered "place" within a word. Copyright 2005 Wiley-Liss, Inc.
hPOC5 is a centrin-binding protein required for assembly of full-length centrioles.
Azimzadeh, Juliette; Hergert, Polla; Delouvée, Annie; Euteneuer, Ursula; Formstecher, Etienne; Khodjakov, Alexey; Bornens, Michel
2009-04-06
Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.
1975-01-01
A wide variety of inhibitors (drugs, antibiotics, and antimetabolites) will block cell division within an ongoing cell cycle in autotrophic cultures of Chlamydomonas reinhardtii. To determine when during the cell cycle a given inhibitor is effective in preventing cell division, a technique is described which does not rely on the use of synchronous cultures. The technique permits the measurement of transition points, the cell cycle stage at which the subsequent cell division becomes insensitive to the effects of an inhibitor. A map of transition points in the cell cycle reveals that they are grouped into two broad periods, the second and fourth quarters. In general, inhibitors which block organellar DNA, RNA, and protein synthesis have second-quarter transition points, while those which inhibit nuclear cytoplasmic macromolecular synthesis have fourth-quarter transition points. The specific grouping of these transition points into two periods suggests that the synthesis of organellar components is completed midway through the cell cycle and that the synthesis of nonorganellar components required for cell division is not completed until late in the cell cycle. PMID:1176526
HIPdb: a database of experimentally validated HIV inhibiting peptides.
Qureshi, Abid; Thakur, Nishant; Kumar, Manoj
2013-01-01
Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Ingrisch, Sigfrid
1986-11-01
In eggs of European Tettigoniidae species, an initial diapause can occur just after blastoderm formation and a final diapause close to the end of embryonic development. The effect of photoperiod experienced maternally on the induction of the initial diapause was studied, using 13 species from Central and Southeastern Europe. In Conocephalus dorsalis and Platycleis albopunctata there was no initial diapause induced by photoperod, while, in Tettigonia-and Saga-species and in Metrioptera saussuriana it occurred independently of day length. In Metrioptera roeseli, M. bicolor, Leptophyes punctatissima, Eupholidoptera smyrnensis, and Decticus verrucivorus, oviposition at short day induced an initial diapause, while after oviposition at long day, the eggs developed directly until final diapause. On the other hand, in up to 1/4 of the eggs of Pholidoptera griseoaptera an initial diapause was induced by long day length. Populations of D. verrucivorus from different latitudes differed with respect to the critical day length. For E. smyrnensis and M. roeseli, a photoperiodic response curve was calculated.In the Rhodian population of E. smyrnensis, the dormancy sequence of initial and final embryonic diapause can be used for aestivation and hibernation within an annual life cycle, while enabling hibernation in successive years for the Central European species. The population of D. verrucivorus near Aachen has an "obligatory" plurennial life cycle, since the critical day length for development without initial diapause is above the range of day length occurring in the field.
On the prospect of using butterfly diagrams to predict cycle minimum
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1987-01-01
Features enabling the prediction of the beginning and the length of a solar cycle, in addition to the turning points in the period-growth dichotomy, have been identified based on butterfly diagrams for the period from 1874 to the present. The present results indicate that cycle 21 will be a long-period cycle ending after July 1987. On the assumption that April 1985 was the first occurrence of high latitude new cycle (cycle 22) spots during the decline of cycle 21 (the old cycle), it is suggested that the last occurrence of high latitude old cycle spots was September 1983 and that the minimum for cycle 22 will be about 1986.7 + or - 1.1 yr.
Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.
2013-01-01
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170
Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar
2016-10-01
Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.
Wani, Willayat Yousuf; Kandimalla, Ramesh J L; Sharma, Deep Raj; Kaushal, Alka; Ruban, Anand; Sunkaria, Aditya; Vallamkondu, Jayalakshmi; Chiarugi, Alberto; Reddy, P Hemachandra; Gill, Kiran Dip
2017-07-01
In the previous study, we demonstrated that dichlorvos induces oxidative stress in dopaminergic neuronal cells and subsequent caspase activation mediates apoptosis. In the present study, we evaluated the effect and mechanism of dichlorvos induced oxidative stress on cell cycle activation in NGF-differentiated PC12 cells. Dichlorvos exposure resulted in oxidative DNA damage along with activation of cell cycle machinery in differentiated PC12 cells. Dichlorvos exposed cells exhibited an increased expression of p53, cyclin-D1, pRb and decreased expression of p21suggesting a re-entry of differentiated cells into the cell cycle. Cell cycle analysis of dichlorvos exposed cells revealed a reduction of cells in the G 0 /G 1 phase of the cell cycle (25%), and a concomitant increase of cells in S phase (30%) and G2/M phase (43.3%) compared to control PC12 cells. Further, immunoblotting of cytochrome c, Bax, Bcl-2 and cleaved caspase-3 revealed that dichlorvos induces a caspase-dependent cell death in PC12 cells. These results suggest that Dichlorvos exposure has the potential to generate oxidative stress which evokes activation of cell cycle machinery leading to apoptotic cell death via cytochrome c release from mitochondria and subsequent caspase-3 activation in differentiated PC12 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Ondracka, Andrej; Dudin, Omaya; Ruiz-Trillo, Iñaki
2018-06-18
Coordination of the cell division cycle with the growth of the cell is critical to achieve cell size homeostasis [1]. Mechanisms coupling the cell division cycle with cell growth have been described across diverse eukaryotic taxa [2-4], but little is known about how these processes are coordinated in organisms that undergo more complex life cycles, such as coenocytic growth. Coenocytes (multinucleate cells formed by sequential nuclear divisions without cytokinesis) are commonly found across the eukaryotic kingdom, including in animal and plant tissues and several lineages of unicellular eukaryotes [5]. Among the organisms that form coenocytes are ichthyosporeans, a lineage of unicellular holozoans that are of significant interest due to their phylogenetic placement as one of the closest relatives of animals [6]. Here, we characterize the coenocytic cell division cycle in the ichthyosporean Sphaeroforma arctica. We observe that, in laboratory conditions, S. arctica cells undergo a uniform and easily synchronizable coenocytic cell cycle, reaching up to 128 nuclei per cell before cellularization and release of daughter cells. Cycles of nuclear division occur synchronously within the coenocyte and in regular time intervals (11-12 hr). We find that the growth of cell volume is dependent on concentration of nutrients in the media; in contrast, the rate of nuclear division cycles is constant over a range of nutrient concentrations. Together, the results suggest that nuclear division cycles in the coenocytic growth of S. arctica are driven by a timer, which ensures periodic and synchronous nuclear cycles independent of the cell size and growth. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Crawford, Sybil L.; El Khoudary, Samar R.; Allshouse, Amanda A.; Burnett-Bowie, Sherri-Ann; Finkelstein, Joel; Derby, Carol; Matthews, Karen; Kravitz, Howard M.; Harlow, Sioban D.; Greendale, Gail A.; Gold, Ellen B.; Kazlauskaite, Rasa; McConnell, Dan; Neal-Perry, Genevieve; Pavlovic, Jelena; Randolph, John; Weiss, Gerson; Chen, Hsiang-Yu; Lasley, Bill
2017-01-01
Context: Menstrual cycle hormone patterns in women approaching menopause are inadequately studied. Objective: To describe day-to-day menstrual cycle hormones in women as they approach menopause from the Study of Women's Health Across the Nation Daily Hormone Study (DHS). Design: DHS enrollees collected daily urine for one entire menstrual cycle or up to 50 days, whichever came first, annually, up to the final menstrual period (FMP) or for up to 10 years. Setting: Seven sites across the United States. Participants: A total of 511 premenopausal or early perimenopausal women at enrollment, within 10 years before menopause. Intervention: Time-to-FMP measurement. Main Outcome Measures: Evidence of luteal activity (ELA), determined using objective algorithms. Menstrual cycle/segment length; whole cycle, and segment integrated urinary luteinizing hormone, follicle-stimulating hormone, estrone conjugates, and pregnanediol glucuronide (Pdg) for each year, organized around the FMP. Results: Mean menstrual cycle length was remarkably preserved at 26 to 27 days in ELA cycles; non-ELA cycles had greater variability. The percentage of cycles that were ELA remained high until 5 years before the FMP (87.9%); only 22.8% of cycles within 1 year of the FMP were ELA. Whole cycle hormones remained relatively stable up to 3 years before the FMP, when gonadotropins began to increase. Pdg excretion declined slowly with progress to the FMP, but Pdg patterns of ELA cycles remained distinguishable from non-ELA. Conclusions: Menstrual cycle hormone patterns in perimenopausal women resemble those of midreproductive-aged women until 5 years before menopause, and presumably ovulatory cycles retain a potentially fertile pattern up to the end of reproductive life. PMID:28368525
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Identification of Cell Cycle-regulated Genes in Fission YeastD⃞
Peng, Xu; Karuturi, R. Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua
2005-01-01
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found ∼140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC. PMID:15616197
Effects of meteorological factors and the lunar cycle on onset of parturition in cows.
Ammann, T; Hässig, M; Rüegg, S; Bleul, U
2016-04-01
The present paper summarizes a comprehensive retrospective study that was undertaken to investigate effects of meteorological factors and lunar cycle on gestation length and daily birth rate in cows. To this end, all cattle births in Switzerland between 2008 and 2010 (n=2,091,159) were related to detailed matched weather recordings. The study revealed some statistically significant effects of climate (temperature, barometric pressure, relative humidity) and weather (thunderstorms, heat index) on gestational length. Thunderstorms on the day before birth reduced the gestation length by 0.5 days. An increase in the birth rate was correlated with the temperature on the day before birth and the barometric pressure 3 days before birth. Differences in the barometric pressure >15hPa increased the birth rate by 4%. Nevertheless, the effects were not consistent and the modeled size of effect was so small that a clinical implication is unlikely. Although the daily birth rate was unevenly distributed across the lunar cycle, no clear pattern could be identified. Compared to the mean birth rate across the lunar cycle the highest daily birth rate was detected on day 4 after new moon (+1.9%) and the lowest on day 20 (-2.1%). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles
2012-09-01
Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Assessment of Telomere Length, Phenotype, and DNA Content
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-01
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113
Assessment of Telomere Length, Phenotype, and DNA Content.
Kelesidis, Theodoros; Schmid, Ingrid
2017-01-05
Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao
2013-01-01
Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435
SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonifati, Serena; Daly, Michele B.; St Gelais, Corine
SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterationsmore » correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.« less
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.
1993-01-01
Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.
Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.
Cooper, Stephen
2017-11-01
Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.
Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S
2009-05-01
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
The Abbreviated Pluripotent Cell Cycle
Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary
2013-01-01
Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993
Revamping High School Accounting Courses.
ERIC Educational Resources Information Center
Bittner, Joseph
2002-01-01
Provides ideas for updating accounting courses: convert to semester length; focus on financial reporting/analysis, financial statements, the accounting cycle; turn textbook exercises into practice sets for the accounting cycle; teach about corporate accounting; and address individual line items on financial statements. (SK)
Effects of adrenalectomy and constant light on the rat estrous cycle.
Hoffmann, J C
1978-01-01
Adult female ARS/Sprague-Dawley rats were allowed to acclimatize to a a lighting schedule of 12L:12D (LD) for 5 weeks. At that time, half the animals were adrenalectomized, and all rats remained in LD for an additional 4 to 5 weeks. Subsequently, half of the control and half of the adrenalectomized rats were exposed to constant light (LL) for an additional 8 weeks, at which time all animals were sacificed. Operated rats with regenerated adrenal tissue, determined either by macroscopic examination or serum corticosterone assay (about 50% of the rats), were excluded from all data calculations. Acute disturbances of estrous cycle length were minor. The long-term effects revealed a significant increase in 5-day cycles among the adrenalectomized rats, although the majority of cycles recorded (80%) were still 4 days in length. None of the rats in LD showed spontaneous persistent estrus. Adrenalectomy did not affect the number of ova shed. When placed in LL, the adrenalectomized rats continued to cycle longer than the unoperated controls, but all rats showed persistent estrus (5 or more consecutive days of vaginal cornification) within 7--8 weeks. Adrenalectomized rats had significantly higher body weights than controls. Relative uterine weight was decreased in these animals in both lighting regimens but only reached statistical significance in LD. Ovarian weight, by contrast, was significantly increased among adrenalectomized rats in LD but was identical in both groups in LL. Adrenal weight of intact rats was not altered by LL. Since estrous cycles can continue for at least 6 months in the absence of the adrenal gland, the persistent estrus that occurs in LL is not merely due to the loss of a diurnal rhythm of corticosteroids. Indeed, when adrenalectomized rats are placed in LL, they continue to show estrous cycles longer than do intact rats. Adrenalectomy does appear to increase the length of the cycle in some animals, and the hormonal basis for this warrants further study.
Proteomic analysis of the bacterial cell cycle
Grünenfelder, Björn; Rummel, Gabriele; Vohradsky, Jiri; Röder, Daniel; Langen, Hanno; Jenal, Urs
2001-01-01
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. PMID:11287652
Zheng, Yingfeng; Murphy, Leigh C.
2016-01-01
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927
[Hair growth effect of minoxidil].
Otomo, Susumu
2002-03-01
The length and size of hair are depend on the anagen term in its hair cycle. It has been reported that the some cell growth factors, such as VEGF, FGF-5S, IGF-1 and KGF, induce the proliferation of cells in the matrix, dermal papilla and dermal papillary vascular system and increase the amount of extra cellular matrix in dermal papilla and then maintain follicles in the anagen phase. On the other hand, negative factors, like FGF-5, thrombospondin, or still unknown ones, terminate the anagen phase. If the negative factors become dominant against cell proliferation factors according to fulfilling some time set by the biological clock for hair follicles, TGF beta induced in the matrix tissues evokes apoptosis of matrix cells and shifts the follicles from anagen to catagen. Androgenetic alopecia is caused by miniaturizing of hair follicles located in the frontal or crown part of scalp and are hereditarily more sensitive to androgen. In their hair cycles, the androgen shortens the anagen phase of follicles and shifts them to the catagen phase earlier than usual. The mode of action of hair growth effect of minoxidil is not completely elucidated, but the most plausible explanation proposed here is that minoxidil works as a sulfonylurea receptor (SUR) activator and prolongs the anagen phase of hair follicles in the following manner: minoxidil (1) induces cell growth factors such as VEGF, HGF, IGF-1 and potentiates HGF and IGF-1 actions by the activation of uncoupled SUR on the plasma membrane of dermal papilla cells, (2) inhibits of TGF beta induced apoptosis of hair matrix cells by opening the Kir 6.0 channel pore coupled with SUR on the mitochondrial inner membrane, and (3) dilates hair follicle arteries and increases blood flow in dermal papilla by opening the Kir 6.0 channel pore coupled with SUR on the plasma membrane of vascular smooth muscle cells.
CDC14A phosphatase is essential for hearing and male fertility in mouse and human.
Imtiaz, Ayesha; Belyantseva, Inna A; Beirl, Alisha J; Fenollar-Ferrer, Cristina; Bashir, Rasheeda; Bukhari, Ihtisham; Bouzid, Amal; Shaukat, Uzma; Azaiez, Hela; Booth, Kevin T; Kahrizi, Kimia; Najmabadi, Hossein; Maqsood, Azra; Wilson, Elizabeth A; Fitzgerald, Tracy S; Tlili, Abdelaziz; Olszewski, Rafal; Lund, Merete; Chaudhry, Taimur; Rehman, Atteeq U; Starost, Matthew F; Waryah, Ali M; Hoa, Michael; Dong, Lijin; Morell, Robert J; Smith, Richard J H; Riazuddin, Sheikh; Masmoudi, Saber; Kindt, Katie S; Naz, Sadaf; Friedman, Thomas B
2018-03-01
The Cell Division-Cycle-14 gene encodes a dual-specificity phosphatase necessary in yeast for exit from mitosis. Numerous disparate roles of vertebrate Cell Division-Cycle-14 (CDC14A) have been proposed largely based on studies of cultured cancer cells in vitro. The in vivo functions of vertebrate CDC14A are largely unknown. We generated and analyzed mutations of zebrafish and mouse CDC14A, developed a computational structural model of human CDC14A protein and report four novel truncating and three missense alleles of CDC14A in human families segregating progressive, moderate-to-profound deafness. In five of these families segregating pathogenic variants of CDC14A, deaf males are infertile, while deaf females are fertile. Several recessive mutations of mouse Cdc14a, including a CRISPR/Cas9-edited phosphatase-dead p.C278S substitution, result in substantial perinatal lethality, but survivors recapitulate the human phenotype of deafness and male infertility. CDC14A protein localizes to inner ear hair cell kinocilia, basal bodies and sound-transducing stereocilia. Auditory hair cells of postnatal Cdc14a mutants develop normally, but subsequently degenerate causing deafness. Kinocilia of germ-line mutants of mouse and zebrafish have normal lengths, which does not recapitulate the published cdc14aa knockdown morphant phenotype of short kinocilia. In mutant male mice, degeneration of seminiferous tubules and spermiation defects result in low sperm count, and abnormal sperm motility and morphology. These findings for the first time define a new monogenic syndrome of deafness and male infertility revealing an absolute requirement in vivo of vertebrate CDC14A phosphatase activity for hearing and male fertility.
NASA Technical Reports Server (NTRS)
Littell, Justin D. (Inventor)
2017-01-01
An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.
Fragment Length of Circulating Tumor DNA
Underhill, Hunter R.; Kitzman, Jacob O.; Hellwig, Sabine; Welker, Noah C.; Daza, Riza; Gligorich, Keith M.; Rostomily, Robert C.; Shendure, Jay
2016-01-01
Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. PMID:27428049
Targeted Approaches to Overcoming Endocrine Resistance in Breast Cancer
2011-08-01
NM_001012271 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog AF053305 CDC20 Cell division cycle 20 homolog BG256659 CDC25B Cell division cycle...by benzimidazoles 1 homolog), BIRC5/ Survivin, CDCA8 (cell division cycle-associated protein 8), AURKB (aurora kinase B), CDC25B (cell division cycle
A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells
Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.
2009-01-01
Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810
Graphene nanocomposites for electrochemical cell electrodes
Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun
2015-11-19
A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
Circadian clock regulation of the cell cycle in the zebrafish intestine.
Peyric, Elodie; Moore, Helen A; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.
Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine
Peyric, Elodie; Moore, Helen A.; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905
Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O
2016-08-02
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.
Albers, J.L.; Wildhaber, M.L.; Noltie, Douglas B.
2001-01-01
The key to successful fish culture is to understand the environmental cues that trigger spawning. In temperate fishes, photoperiod and temperature are important in many species including the family Ictaluridae. The object of this study was to examine whether natural photo-thermal conditions in the laboratory could stimulate the reproductive cycle of Neosho madtoms (Noturus placidus). For three years a small population of Neosho madtoms were maintained under natural conditions and continually sampled using ultrasound to examine interior gonad state and exterior body measurements. The purpose was to examine the secondary sexual characteristics that normally occur during the spawning period. Every year the fish cycled in and out of spawning condition, including production and reabsorbtion of eggs. The best external measurement found to distinguish between sexes was the ratio of head length to total length. Internal measurements found the average number of eggs per female increased as the fish length increased and over time but the average sizes of the eggs were constant. After years in the simulated environment 13 different fish were involved in ten spawns. The use of ultrasound to examine gonad in madtoms is promising, especially the lack of injury associated with the procedure. Overall laboratory conditions that simulated the natural photo-thermal environment, especially daily temperature fluctuations, were successful at stimulating the reproductive cycle of Neosho madtoms including egg cycling and spawning. These results show promise towards culture of madtoms especially for those species that are rare and endangered.
MED1 mediates androgen receptor splice variant induced gene expression in the absence of ligand
Liu, Gang; Sprenger, Cynthia; Wu, Pin-Jou; Sun, Shihua; Uo, Takuma; Haugk, Kathleen; Epilepsia, Kathryn Soriano; Plymate, Stephen
2015-01-01
The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC. PMID:25481872
JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K.; Keyomarsi, Khandan
2016-01-01
ABSTRACT Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen. PMID:27049344
JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan
2016-06-17
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.
High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
Lee, Wong Cheng; Bhagat, Ali Asgar S; Lim, Chwee Teck
2014-01-01
The development of mammalian cell cycle synchronization techniques has greatly advanced our understanding of many cellular regulatory events and mechanisms specific to different phases of the cell cycle. In this chapter, we describe a high-throughput microfluidic-based approach for cell cycle synchronization. By exploiting the relationship between cell size and its phase in the cell cycle, large numbers of synchronized cells can be obtained by size fractionation in a spiral microfluidic channel. Protocols for the synchronization of primary cells such as mesenchymal stem cells, and immortal cell lines such as Chinese hamster ovarian cells (CHO-CD36) and HeLa cells are provided as examples.
Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J. O.; Bakal, Chris
2015-01-01
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. PMID:26333836
Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J O; Bakal, Chris
2015-09-01
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. © 2015 The Authors.