Sample records for cell cycle micronucleus

  1. 900 MHz radiation does not induce micronucleus formation in different cell types.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Schrader, Thorsten; Stopper, Helga

    2012-07-01

    The exposure of the population to non-ionising electromagnetic radiation is still increasing, mainly due to mobile communication. Whether low-intensity electromagnetic fields can cause other effects apart from heating has been a subject of debate. One of the effects, which were proposed to be caused by mobile phone radiation, is the occurrence of mitotic disturbances. The aim of this study was to investigate possible consequences of these mitotic disturbances as manifest genomic damage, i.e. micronucleus induction. Cells were irradiated at a frequency of 900 MHz, which is located in one of the main frequency bands applied for mobile communication. Two cell types were used, HaCaT cells as human cells and A(L) cells (human-hamster hybrid cells), in which mitotic disturbances had been reported to occur. After different post-exposure incubation periods, cells were fixed and micronucleus frequencies were evaluated. Both cell types did not show any genomic damage after exposure. To adapt the protocol for the micronucleus test into the direction of the protocol for mitotic disturbances, the post-exposure incubation period was reduced and exposure time was extended to one cell cycle length. This did not result in any increase of the genomic damage. In conclusion, micronucleus induction was not observed as a consequence of exposure to non-ionising radiation, even though this agent was reported to cause mitotic disturbances under similar experimental conditions.

  2. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    PubMed

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  4. [Influence of Four Kinds of PPCPs on Micronucleus Rate of the Root-Tip Cells of Vicia-faba and Garlic].

    PubMed

    Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang

    2016-04-15

    In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P < 0.05), and the micronucleus index was even greater than 3.5; With the increasing concentrations of the PPCPs, the micronucleus rates first increased and then decreased. (2) When the garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.

  5. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  6. [Study on teratogenic effect of potassium dichromate on Vicia faba root tip cells].

    PubMed

    Qian, Xiao-Wei

    2004-05-01

    We studied the aberrant effects of different concentrations of potassium dichromate on Vicia faba root tip cells. The micronucleus and chromosome aberration assay was conducted to determine the micronucleus rate and chromosome aberration rate of Vicia faba root tip cells induced by potassium dichromate. The result indicated that potassium dichromate could increase the micronucleus rate of Vicia faba root tip cells. Within certain range of concentration the rate of micronucleus was found to be increased with the increase of potassium dichromate concentration,but beyond this range the rate of micronucleus decreased with further increase of potassium dichromate concentration. The potassium dichromate at different concentrations could increase the cell mitosis index. Besides,it also caused various types of chromosome aberration,and the rates of chromosome aberration were always higher than that of the control group. The conclusion of this study was that potassium dichromate has obvious teratogenic effect on Vicia faba root tip cells.

  7. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba *

    PubMed Central

    Qian, Xiao-Wei; Luo, Wei-Hua; Zheng, Ou-Xiang

    2006-01-01

    The mutagenic effects of microwave and chromium trioxide (CrO3) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO3. The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO3, in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO3 concentration. We concluded that microwave and CrO3 had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells. PMID:16502510

  8. Joint effects of microwave and chromium trioxide on root tip cells of Vicia faba.

    PubMed

    Qian, Xiao-wei; Luo, Wei-hua; Zheng, Ou-xiang

    2006-03-01

    The mutagenic effects of microwave and chromium trioxide (CrO(3)) on Vicia faba root tip were studied. Micronucleus assay and chromosomal aberration assay were used to determine the mitotic index, the micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells induced by microwave and CrO(3). The results showed that the micronucleus frequency decreased, and that the mitotic index and chromosomal aberration frequency showed linear dose responses to CrO(3), in treatment of microwave for 5 s. In microwave of 25 s, the mitotic index decreased, the micronucleus frequency and chromosomal aberration frequency increased with increase of CrO(3) concentration. We concluded that microwave and CrO(3) had antagonistic effect on the mitotic index of Vicia faba root tip cells, but had synergetic effect on micronucleus frequency and chromosomal aberration frequency of Vicia faba root tip cells.

  9. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    PubMed

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  10. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors.

    PubMed

    Hernández-Saavedra, Diego; Strakovsky, Rita S; Ostrosky-Wegman, Patricia; Pan, Yuan-Xiang

    2017-11-01

    The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy. © 2017 American Society for Nutrition.

  12. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  13. Cytosine arabinoside, vinblastine, 5-fluorouracil and 2-aminoanthracene testing in the in vitro micronucleus assay with L5178Y mouse lymphoma cells at Sanofi Aventis, with different cytotoxicity measurements, in support of the draft OECD Test Guideline on In Vitro Mammalian Cell Micronucleus Test.

    PubMed

    Cariou, Olivier; Laroche-Prigent, Nathalie; Ledieu, Sandrine; Guizon, Isabelle; Paillard, Françoise; Thybaud, Véronique

    2010-10-29

    Cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair), vinblastine (an aneugen that inhibits tubulin polymerisation), 5-fluorouracil (a nucleoside analogue with a steep response profile), and 2-aminoanthracene (a metabolism-dependent reference genotoxin) were tested in the in vitro micronucleus assay with L5178Y mouse lymphoma cells, without cytokinesis block. The four chemicals were independently evaluated in two Sanofi Aventis laboratories, one of which used an image analyser to score micronuclei, while the other scored micronucleated cells manually. Very similar results were obtained in the two laboratories, highlighting the robustness of the assay. The four test chemicals induced significant increases in the incidence of micronucleated cells at concentrations that produced no more than a 55±5% reduction in survival growth, as measured with the three parameters recommended in the draft OECD Test Guideline on In Vitro Mammalian Cell Micronucleus Test (MNvit) for chemical testing, namely the relative increase in cell counts, relative population doubling, and the relative cell count. These results support the premise that the relative increase in cell counts and relative population doubling, that take into account both cell death and cytostasis, are appropriate measures of survival growth reduction in the in vitro micronucleus test conducted in the absence of cytokinesis block, as recommended in MNvit. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Chemopreventive activity of compounds extracted from Casearia sylvestris (Salicaceae) Sw against DNA damage induced by particulate matter emitted by sugarcane burning near Araraquara, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, A.M.; Santos, A.G.; Csipak, A.R.

    Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, ormore » 0.50 mg/ml. Subsequently, TSP was added at 0.3 mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract—3.9, 7.5, or 15.0 mg/kg body weight (BW)—or with casearin X—0.3, 0.25, or 1.2 mg/kg BW—after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning. -- Highlights: ► We assessed DNA protection of C. sylvestris ethanolic extract. ► We assessed DNA protection of casearin X. ► We used Tradescantia pallida micronucleus test as screening. ► We used comet assay and micronucleus test in mice. ► The compounds protected DNA against sugar cane burning pollutants.« less

  15. Genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba.

    PubMed

    Bu, N; Wang, S H; Yu, C M; Zhang, Y; Ma, C Y; Li, X M; Ma, L J

    2011-11-01

    The genotoxicity of fenpropathrin and fenitrothion on root tip cells of Vicia faba was studied. The symptoms were investigated about the mitotic index, the micronucleus frequency and chromosomal aberration frequency of root tip cells of Vicia faba which were induced by different concentrations of fenpropathrin and fenitrothion (1 × 10(-10)-1 × 10(-2) g L(-1)). Results showed that fenpropathrin and fenitrothion could induce the micronucleus of root tip cells of Vicia faba. It occurred in a dose-dependent manner. Peaks were observed at 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, and micronucleus frequency reached 14.587 ± 1.511‰ and 14.164 ± 1.623‰, respectively. From 1 × 10(-10) g L(-1) to 1 × 10( -6) g L(-1) fenpropathrin and 1 × 10(-4) g L(-1) fenitrothion, the micronucleus frequency increased with the increase of the concentrations, but beyond this range, the micronucleus frequency decreased with the further increase of the concentrations. A similar trend was observed for mitotic index. Moreover, fenpropathrin and fenitrothion could induce various types of chromosome aberration, such as lagging chromosomes, chromosome fragment, chromosome bridge, multipolar, nuclear buds, karyorrhexis, etc.

  16. Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium.

    PubMed

    Ma, L J; Zhang, Y; Bu, N; Wang, S H

    2010-02-01

    Cadmium has been shown to prevent Vicia faba growth by inhibiting cell mitosis. In this study we investigated the role of Alginate-derived Oligosaccharides (ADO) in alleviating Vicia faba root tip cells damaged by 6 and 8 mg L(-1) CdCl2. Micronucleus assay and chromosomal aberration assay were used to determine mitotic index, micronucleus frequency and chromosomal aberration frequency. The results showed that micronucleus frequency of Vicia faba root tip cells was inhibited under all the ADO concentrations. Especially, the inhibition ratio of 0.125% ADO highly reached 66.11 and 67.17% in 6 and 8 mg L(-1) CdCl2, respectively. Furthermore, the mitotic index increased (p < 0.05) and chromosomal aberration frequency decreased (p < 0.05) under all the ADO concentrations. This indicated that ADO had a significant alleviation effect on Vicia faba root tip cells damaged by cadmium.

  17. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the human lymphoblastoid cell line TK6. Cadmium chloride (an inorganic carcinogen), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, capable of detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in the in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Buccal Micronucleus Cytome Assay in Sickle Cell Disease

    PubMed Central

    Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Velidandla, Surekha; Manikya, Sangameshwar

    2016-01-01

    Introduction Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. Aim To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. Materials and Methods The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. Results All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. Conclusion The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease. PMID:27504413

  20. Buccal Micronucleus Cytome Assay in Sickle Cell Disease.

    PubMed

    Naga, Mallika Bokka Sri Satya; Gour, Shreya; Nallagutta, Nalini; Ealla, Kranti Kiran Reddy; Velidandla, Surekha; Manikya, Sangameshwar

    2016-06-01

    Sickle Cell Anaemia (SCA) is a commonly inherited blood disorder preceded by episodes of pain, chronic haemolytic anaemia and severe infections. The underlying phenomenon which causes this disease is the point mutation in the haemoglobin beta gene (Hbβ) found on chromosome 11 p. Increased oxidative stress leads to DNA damage. DNA damage occurring in such conditions can be studied by the buccal micronucleus cytome assay, which is a minimally invasive method for studying chromosomal instability, cell death and regenerative potential of human buccal tissue. To evaluate genomic instability in patients with sickle cell disease by buccal micronucleus cytome assay. The study included 40 sickle cell anemia patients (Group A) and 40 age and sex matched controls (Group B). Buccal swabs were collected and stained with Papanicolaou (PAP). Number of cells with micronucleus, binuclei, nuclear bud, pyknosis and karyolysis were counted in two groups as parameters for the evaluation of genome stability. All the analysis was done using t-test. A p-value of <0.001 was considered statistically significant. There was a statistically significant increase in micronuclei number in SCA patients when compared with controls. Karyolytic (un-nucleated) cell number in Group A was more than to those of the controls. The results might suggest that patients with sickle cell anaemia have genome instability which is represented by the presence of micronuclei in the somatic cells. Presence of apoptotic cells might only indicate the bodily damage to the tissue as a result of the disease.

  1. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    PubMed

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  2. Synergistic Effects of Incubation in Rotating Bioreactors and Cumulative Low Dose 60Co γ-ray Irradiation on Human Immortal Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu

    2012-11-01

    The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.

  3. Estimation of the initial slope of the cell survival curve after irradiation from micronucleus frequency in cytokinesis-blocked cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K.; Masunaga, S.; Akaboshi, M.

    1994-04-01

    We have already reported that the {alpha}/{beta} ratio of the cell survival curve could be estimated from the micronucleus frequency in cytokinesis-blocked cells treated with cytochalasin-B after irradiation. In this paper, we investigate the direct relationship between the {alpha} value and the appearance of micronuclei. Cells of the SCCVII, RIF-1, EMT6, V-79, CHO, HeLa and human esophageal cancer cell lines were used for the study. Low-dose-rate irradiation was used to determine the {alpha} component of the relationship between dose and micronucleus frequency according to the linear-quadratic (LQ) model. A reduction of the dose rate from 3.09 to 0.0142 Gy/min correspondinglymore » decreased the micronucleus frequency; however, the fraction of binucleate cells without micronuclei was not affected in SCCVII and RIF-1 cells. When this fraction was defined as the normal nuclear division fraction, it decreased exponentially as a function of radiation dose. Then dose vs normal nuclear division fraction (NNDF) was fitted as follows: -In NNDF = aD + C, where D is radiation dose in grays and C is constant. The slope of the dose vs normal nuclear division fraction was not affected by dose rate. The correlation was also explored between the slope (a) and the {alpha} value of the cell survival curve determined by the colony formation assay in cells of eight cell lines. These two values showed extremely high agreement: {alpha} = 1.01a + 0.00795 (r = 0.99, P < 0.01). This assay was applied to estimate the {alpha} value of the cell survival curve of human esophageal cancer cell lines established from surgical specimens. 13 refs., 5 figs.« less

  4. 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. The effect of particle size on the genotoxicity of gold nanoparticles.

    PubMed

    Xia, Qiyue; Li, Hongxia; Liu, Ying; Zhang, Shuyang; Feng, Qiyi; Xiao, Kai

    2017-03-01

    Despite the increasing biomedical applications of gold nanoparticles (AuNPs), their toxicological effects need to be thoroughly understood. In the present study, the genotoxic potential of commercially available AuNPs with varying size (5, 20, and 50 nm) were assessed using a battery of in vitro and in vivo genotoxicity assays. In the comet assay, 20 and 50 nm AuNPs did not induce obvious DNA damage in HepG2 cells at the tested concentrations, whereas 5 nm NPs induced a dose-dependent increment in DNA damage after 24-h exposure. Furthermore, 5 nm AuNPs induced cell cycle arrest in G1 phase in response to DNA damage, and promoted the production of reactive oxygen species (ROS). In the chromosomal aberration test, AuNPs exposure did not increase in the frequency of chromosomal aberrations in Chinese hamster lung (CHL) cells. In the standard in vivo micronucleus test, no obvious increase in the frequency of micronucleus formation was found in mice after 4 day exposure of AuNPs. However, when the exposure period was extended to 14 days, 5 nm AuNPs presented significant clastogenic damage, with a dose-dependent increase of micronuclei frequencies. This finding suggests that particle size plays an important role in determining the genotoxicity of AuNPs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 710-719, 2017. © 2016 Wiley Periodicals, Inc.

  6. Comparative toxicity and micronuclei formation in Tribolium castaneum, Callosobruchus maculatus and Sitophilus oryzae exposed to high doses of gamma radiation.

    PubMed

    Ahmadi, Mehrdad; Mozdarani, Hossein; Abd-Alla, Adly M M

    2015-07-01

    The effects of gamma radiation on mortality and micronucleus formation in Tribolium castaneum Herbst, Callosobruchus maculatus (F.) and Sitophilus oryzae (L.) genital cells were evaluated. Two groups of healthy and active adult insects 1-3 and 8-10 days old were irradiated with various doses (50-200 Gy) gamma ray. Seven days post-irradiation; mortality rates and micronucleus formation were assessed in genital cells of the irradiated insects. The results show that with increasing gamma doses, the mortality rate of each species increased and T. castaneum and S. oryzae showed the low and high sensitivity respectively. It was shown that the micronucleus appearance in the tested insects had correlation with amount and intensity of radiation doses. Moreover our results indicate different levels in the genotoxicity of gamma radiation among the insects' genital cells under study. The frequency of micronuclei in genital cells of 1-3 days old insects exposed to 50 and 200 Gy were 12.6 and 38.8 Mn/1000 cells in T. castaneum, 20.8 and 46.8 Mn/1000 cells in C. maculatus and 16.8 and 57.2 Mn/1000 cells in S. oryzae respectively. A high sensitivity of the genital cells to irradiation exposure was seen in S. oryzae correlated with its high mortality rate compared with the other two species. These results might be indicative of inflicting chromosomal damage expressed as micronucleus in high mortality rates observed in the pest population; an indication of genotoxic effects of radiation on the studied species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Tributyltin impairs the reproductive cycle in female rats.

    PubMed

    Lang Podratz, Priscila; Delgado Filho, Vicente Sathler; Lopes, Pedro Francisco Iguatemy; Cavati Sena, Gabriela; Matsumoto, Silvia Tamie; Samoto, Vivian Yochiko; Takiya, Christina Maeda; de Castro Miguel, Emilio; Silva, Ian Victor; Graceli, Jones Bernardes

    2012-01-01

    Triorganotins are environmental contaminants, commonly used in antifouling agents for boats, that bioaccumulate and thus are found in mammals and humans due to ingestion of contaminated seafood diets. The importance of triorganotins as environmental endocrine disruptors and consequent reproductive toxicity in different animal models is well known; however, the adverse effects on reproductive cycle are less well understood. The potential reproductive toxicity of tributyltin (TBT) on regular reproductive cycling of female rats was examined. Wistar female rats (12 wk old, weighing approximately 230 g) were divided into two groups: control (vehicle, ethanol 0.4%) and tributyltin (100 ng/kg/d, 7 d/wk, for 16 d by gavage). Tributyltin significantly decreased the cycle regularity (%), duration of the reproductive cycle, the proestrus and diestrus phases, and number of epithelial cell in proestrus phase. TBT also increased the duration of metestrus and the number of cornified cells in this phase. Ovary weight and serum 17β-estradiol levels decreased markedly, accompanied by a significant increase in progesterone levels. Histological analysis showed apoptotic cells in corpus luteum and granulosa cells layer, with cystic follicles after TBT exposure. Tributyltin also elevated number of atretic follicles and corpoa lutea. The micronucleus (MN) test, using Chinese hamster ovary cells, demonstrated a concentration-dependent mutagenic effect of TBT, and at 2.0 × 10(-2)ng/ml most of the cells were nonviable. The toxic potential of TBT over the reproductive cycle may be attributed to changes found in the ovarian weight, unbalanced levels of sexual female hormones, and number of ovarian follicles and corpora lutea.

  8. The aflatoxin B1 -fumonisin B1 toxicity in BRL-3A hepatocytes is associated to induction of cytochrome P450 activity and arachidonic acid metabolism.

    PubMed

    Mary, Verónica S; Arias, Silvina L; Otaiza, Santiago N; Velez, Pilar A; Rubinstein, Héctor R; Theumer, Martín G

    2017-06-01

    Human oral exposure to aflatoxin B 1 (AFB 1 ) and fumonisin B 1 (FB 1 ) is associated with increased hepatocellular carcinoma. Although evidence suggested interactive AFB 1 -FB 1 hepatotoxicity, the underlying mechanisms remain mostly unidentified. This work was aimed at evaluating the possible AFB 1 -FB 1 interplay to induce genetic and cell cycle toxicities in BRL-3A rat hepatocytes, reactive oxygen species (ROS) involvement, and the AFB 1 metabolizing pathways cytochrome P450 (CYP) and arachidonic acid (ArAc) metabolism as ROS contributors. Flow cytometry of stained BRL-3A hepatocytes was used to study the cell cycle (propidium iodide), ROS intracellular production (DCFH-DA, HE, DAF-2 DA), and phospholipase A activity (staining with bis-BODIPY FL C11-PC). The CYP1A activity was assessed by the 7-ethoxyresorufin-O-deethylase (EROD) assay. Despite a 48-h exposure to FB 1 (30 μM) not being genotoxic, the AFB 1 (20 μM)-induced micronucleus frequency was overcome by the AFB 1 -FB 1 mixture (MIX), presumably showing toxin interaction. The mycotoxins blocked G1/S-phase, but only MIX caused cell death. Overall, the oxidative stress led these alterations as the pretreatment with N-acetyl-l-cysteine reduced such toxic effects. While AFB 1 had a major input to the MIX pro-oxidant activity, with CYP and ArAc metabolism being ROS contributors, these pathways were not involved in the FB 1 -elicited weak oxidative stress. The MIX-induced micronucleus frequency in N-acetyl-l-cysteine pretreated cells was greater than that caused by AFB 1 without antioxidants, suggesting enhanced AFB 1 direct genotoxicity probably owing to the higher CYP activity and ArAc metabolism found in MIX. The metabolic pathways modulation by AFB 1 -FB 1 mixtures could raise its hepatocarcinogenic properties. © 2017 Wiley Periodicals, Inc.

  9. Effect of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes.

    PubMed

    Pongsavee, Malinee

    2015-01-01

    Sodium benzoate is food preservative that inhibits microbial growth. The effects of sodium benzoate preservative on micronucleus induction, chromosome break, and Ala40Thr superoxide dismutase gene mutation in lymphocytes were studied. Sodium benzoate concentrations of 0.5, 1.0, 1.5, and 2.0 mg/mL were treated in lymphocyte cell line for 24 and 48 hrs, respectively. Micronucleus test, standard chromosome culture technique, PCR, and automated sequencing technique were done to detect micronucleus, chromosome break, and gene mutation. The results showed that, at 24- and 48-hour. incubation time, sodium benzoate concentrations of 1.0, 1.5, and 2.0 mg/mL increased micronucleus formation when comparing with the control group (P < 0.05). At 24- and 48-hour. incubation time, sodium benzoate concentrations of 2.0 mg/mL increased chromosome break when comparing with the control group (P < 0.05). Sodium benzoate did not cause Ala40Thr (GCG→ACG) in superoxide dismutase gene. Sodium benzoate had the mutagenic and cytotoxic toxicity in lymphocytes caused by micronucleus formation and chromosome break.

  10. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice.

    PubMed

    McIntyre, Rebecca E; Nicod, Jérôme; Robles-Espinoza, Carla Daniela; Maciejowski, John; Cai, Na; Hill, Jennifer; Verstraten, Ruth; Iyer, Vivek; Rust, Alistair G; Balmus, Gabriel; Mott, Richard; Flint, Jonathan; Adams, David J

    2016-08-09

    In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males. Copyright © 2016 McIntyre et al.

  12. Ferrocenes as potential chemotherapeutic drugs: Synthesis, cytotoxic activity, reactive oxygen species production and micronucleus assay

    PubMed Central

    Pérez, Wanda I.; Soto, Yarelys; Ortíz, Carmen; Matta, Jaime; Meléndez, Enrique

    2014-01-01

    Three new ferrocene complexes were synthesized with 4-(1H-pyrrol-1-yl)phenol group appended to one of the Cp ring. These are: 1,1′-4-(1H-pyrrol-1-yl)phenyl ferrocenedicarboxylate, (“Fc-(CO2-Ph-4-Py)2”), 1,4-(1H-pyrrol-1-yl)phenyl, 1′-carboxyl ferrocenecarboxylate (“Fc-(CO2-Ph-4-Py)CO2H”) and 4-(1H-pyrrol-1-yl)phenyl ferroceneacetylate (“Fc-CH2CO2-Ph-4-Py”). The new species were characterized by standard analytical methods. Cyclic voltammetry experiments showed that Fc-CH2CO2-Ph-4-Py has redox potential very similar to the Fc/Fc+ redox couple whereas Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H have redox potentials of over 400 mV higher than Fc/Fc+ redox couple. The in vitro studies on Fc-(CO2-Ph-4-Py)2 and Fc-(CO2-Ph-4-Py)CO2H revealed that these two compounds have moderate anti-proliferative activity on MCF-7 breast cancer cell line. In contrast Fc-CH2CO2-Ph-4-Py which displayed low anti-proliferative activity. In the HT-29 colon cancer cell line, the new species showed low anti-proliferaive activity. Cytokinesis-block micronucleus assay (CBMN) was performed on these ferrocenes and it was determined they induce micronucleus formation on binucleated cells and moderate genotoxic effects on the MCF-7 breast cancer cell line. There is a correlation between the IC50 values of the ferrocenes and the amount of micronucleus formation activity on binucleated cells and the reactive oxygen species (ROS) production on MCF-7 cell line. PMID:25555734

  13. Assessment of the level of damage to the genetic material of children exposed to pesticides in the province of Córdoba.

    PubMed

    Bernardi, Natalí; Gentile, Natalia; Mañas, Fernando; Méndez, Álvaro; Gorla, Nora; Aiassa, Delia

    2015-04-01

    In the past decades, several authors have investigated the genotoxicity caused by exposure to chemicals, but there are no reports on studies analyzing such effects on children in Argentina. The objective of this study was to establish the micronucleus frequency in exfoliated buccal mucosa cells in children from urban areas with environmental exposure (through inhalation) and to compare it with the micronucleus frequency in children from urban regions far from areas subjected to spraying. Fifty children living in the town of Marcos Juárez (Córdoba) at different distances from pesticide spraying areas and twenty-five children from the city of Río Cuarto (Córdoba), who are considered not exposed to pesticides, were studied; the micronucleus assay in buccal mucosa cells was used. A significant difference was observed between exposed children living less than 500 m from areas subjected to spraying and those who were not exposed. Forty percent of exposed children suffer some type of persistent condition, which may be associated with chronic exposure to pesticides. Results indicate that genotoxicity is present in a group of children compared to the other one, and highlight the importance of the micronucleus assay in buccal mucosa cells for genetic biomonitoring and public health surveillance. This assay is capable of detecting a level of damage that can be reversible.

  14. Effects of chromium picolinate on micronucleus frequency and morphology of lymphocytes in calves.

    PubMed

    Imamoğlu, Nalan; Uyanik, Fatma; Kocaoğlu Güçlü, Berrin; Erdem, Onur; Cem Liman, Bilal; Dönmez Altuntaş, Hamiyet

    2008-11-01

    We report the effects of chromium picolinate (CrPic) on micronucleus frequency, morphology of lymphocytes, and lipid peroxidation in calves. Twenty-four Holstein calves were selected for the study. They were kept in a farm and were fed a commercially available calf diet and alfalfa, ad libitum. The animals were divided into three groups of eight subjects each and were treated as follows: The first group was supplemented with a daily dose of 200 microg Cr as chromium picolinate; a second group received 400 microg Cr per day and a third group that served as control received no supplemental chromium. After 12-week supplementation, blood samples were collected to determine the micronucleus frequency, the apoptotic cell percentage, and the malondialdehyde (MDA) and blood chromium levels. In both supplemented groups, the cells had irregularly shaped and segmented nuclei. Supplementation also increased the percentage of apoptotic cells (p < 0.001) and serum MDA (p < 0.01) and slightly increased the chromium levels. The animals supplemented with 400 microg showed a significant increase of micronucleus frequency (p < 0.01). The results of this study suggest that supplementation with 200 and 400 microg chromium as chromium picolinate may lead to cytotoxicity. The higher level of supplementation may also have genotoxic effects. However, further studies investigating the mechanism of the action of CrPic are required.

  15. Genotoxic effects of occupational exposure to benzene in gasoline station workers

    PubMed Central

    SALEM, Eman; EL-GARAWANI, Islam; ALLAM, Heba; EL-AAL, Bahiga Abd; HEGAZY, Mofrih

    2017-01-01

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability. PMID:29070767

  16. Genotoxic effects of occupational exposure to benzene in gasoline station workers.

    PubMed

    Salem, Eman; El-Garawani, Islam; Allam, Heba; El-Aal, Bahiga Abd; Hegazy, Mofrih

    2018-04-07

    Benzene, a hazardous component of gasoline, is a genotoxic class I human carcinogen. This study evaluated the genotoxic effects of occupational exposure to benzene in gasoline stations. Genotoxicity of exposure to benzene was assessed in peripheral blood leucocytes of 62 gasoline station workers and compared with an equal numbers of matched controls using total genomic DNA fragmentation, micronucleus test and cell viability test. An ambient air samples were collected and analyzed for Monitoring of benzene, toluene, ethyl benzene and xylene (BTEX) in work environment and control areas. DNA fragmentation, micronucleus and dead cells percent were significantly higher in exposed workers than controls. Level of benzene, Toluene, Ethyl benzene and xylene in the work environment were higher than the control areas and the permissible limits. Gasoline station workers occupationally exposed to benzene are susceptible to genotoxic effects indicated by increased DNA fragmentation, higher frequency of micronucleus and decreased leukocytes viability.

  17. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0.12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.

  18. Comparative Study of Genotoxicity in Different Tobacco Related Habits using Micronucleus Assay in Exfoliated Buccal Epithelial Cells

    PubMed Central

    Guruprasad, Yadavalli; Jose, Maji; Saxena, Kartikay; K, Deepa; Prabhu, Vishnudas

    2014-01-01

    Background: Oral cancer is one of the most debilitating diseases afflicting mankind. Consumption of tobacco in various forms constitutes one of the most important etiological factors in initiation of oral cancer. When the focus of today’s research is to determine early genotoxic changes in human cells, micronucleus (MN) assay provides a simple, yet reliable indicator of genotoxic damage. Aims and Objectives: To identify and quantify micronuclei in the exfoliated cells of oral mucosa in individuals with different tobacco related habits and control group, to compare the genotoxicity of different tobacco related habits between each group and also with that of control group. Patients and Methods: In the present study buccal smears of 135 individuals with different tobacco related habits & buccal smears of 45 age and sex matched controls were obtained, stained using Giemsa stain and then observed under 100X magnification in order to identify and quantify micronuclei in the exfoliated cells of oral mucosa. Results: The mean Micronucleus (MN) count in individuals having smoking habit were 3.11 while the count was 0.50, 2.13, and 1.67 in normal control, smoking with beetle quid and smokeless tobacco habit respectively. MN count in smokers group was 2.6 times more compared to normal controls. MN count was more even in other groups when compared to normal control but to a lesser extent. Conclusion: From our study we concluded that tobacco in any form is genotoxic especially smokers are of higher risk and micronucleus assay can be used as a simple yet reliable marker for genotoxic evaluation. PMID:24995238

  19. Assessment of the association between micronuclei and the degree of uterine lesions and viral load in women with human papillomavirus.

    PubMed

    Adam, Mônica Lúcia; Pini, Camila; Túlio, Siumara; Cantalice, Jeanne Cristina Lapenda Lins; Torres, Rodrigo Augusto; Dos Santos Correia, Maria Tereza

    2015-01-01

    Infection by human papillomavirus (HPV) is among the main etiologies of cervical cancer. The expression of oncogenic viral proteins enables the onset of the virus, which can trigger the carcinogenic process. One of the main characteristics of this process is the loss of genome stability, including chromosome stability. The micronucleus test is a cytogenetic method for the detection of genetic alterations that change chromosome behavior during cell division resulting in the formation of micronuclei. This method has been applied for the early detection of DNA damage in individuals with a greater likelihood of developing cancer. The aim of the present study was to assess the association between micronucleus expression and the degree of cytological lesions and viral load in patients with HPV. The micronucleus analysis revealed differences in the number micronuclei found in the groups, which ranged from 0.00067 to 0.00133 in the control group and 0.00267 to 0.02433 among patients with HPV. Statistically significant differences (p<0.05) were found in the number of micronucleated cervical cells between the patients and healthy women. Moreover, significant associations were found between micronucleus expression and both the degree of uterine lesions (r2=0.7237; r=0.8507; p=0.000002) and viral load (r2=0.7012; r=0.8374; p=0.000004). The findings demonstrate the efficacy of micronucleus analysis in monitoring risks to human health. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  20. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  1. Changes in buccal micronucleus cytome parameters associated with smokeless tobacco and pesticide exposure among female tea garden workers of Assam, India.

    PubMed

    Kausar, Afifa; Giri, Sarbani; Roy, Prasenjit; Giri, Anirudha

    2014-03-01

    Assam is the highest tea producing state in India. A large number of workers are engaged in various units of tea industry. There are few reports on the health status of the tea garden workers. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effect associated with workers in tea industries in southern Assam. Smokeless tobacco chewing along with betel nut is very common practice among the workers. Workers also get exposed periodically to mixture of pesticides. Employing buccal micronucleus cytome assay, exfoliated buccal cells were analyzed in 90 female tea garden and compared to 90 age and sex matched non-chewer control as well as 70 chewers who are not tea garden workers. Statistically significant (p<0.001) increase in genotoxic and cell death parameters was observed in tea garden workers compared to both the control groups. The frequency of cell proliferation biomarkers was highest in the chewer controls whereas genotoxic and cell death parameters were highest in tea garden workers. Linear correlation analysis revealed strong positive correlation between the duration of occupation and the frequency of micronucleus (r=0.597; p<0.001) as well as cell death parameters (r=0.588; p<0.001). Amount of chewing also had significant positive correlation with micronucleus frequency (r=0.243 or 5.9%; p<0.05) and cell death parameters (r=0.217; p<0.05). A statistically significant decrease in total RBC count, haemoglobin content as well as acetylcholine esterase in the blood of exposed individuals was observed. The average BMI among the tea garden workers was relatively lower compared to the control group. Pesticide exposure and chewing areca nut along with smokeless tobacco use may be responsible for changes in cytome parameters in exfoliated buccal cells. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Investigation into the cytotoxicity and mutagenicity of the Marajó Archipelago waters using Plagioscion squamosissimus (Perciformes: Sciaenidae) as a bioindicator.

    PubMed

    Rocha, Carlos Alberto Machado da; Pessoa, Carla Mariana Ferreira; Rodrigues, Claudia Antonia Campos; Pinheiro, Raul Henrique da Silva; Costa, Edmar Tavares da; Guimarães, Adriana Costa; Burbano, Rommel Rodríguez

    2016-10-01

    Maintaining water quality within tolerable limits is a basic need of the riverside communities in the Amazon. Using endemic aquatic organisms as biological models is useful for monitoring the environment. In this study, potential cytotoxic and genotoxic damages in Plagioscion squamosissimus (commonly known as silver croaker) from the Marajó Archipelago were evaluated using a flow cytometry assay and a survey of micronuclei (MN) frequency as well as other nuclear abnormalities (NA). P. squamosissimus specimens were collected at four locations in the Marajó Archipelago. Blood samples from these fish were used in the flow cytometry assay and piscine micronucleus test, and the resulting data were analyzed using analysis of variance (ANOVA). We did not observe a difference in the erythrocyte cell cycle distribution among the samples (P=0.9992), which suggests the absence of cytotoxic agent-induced apoptosis. The piscine micronucleus test exhibited differences in the samples from São Sebastião da Boa Vista (SSBV), and those from Anajás produced the highest mutagenicity indices. The MN frequencies were low for all groups, but the groups exhibited significantly different frequencies (P=0.0033). Reniform nuclei, nuclei with extensions, and lobed nuclei were combined and considered NA. The frequency differences for these NA were significant among sampling sites (P <0.0001). This report is the first to use flow cytometry in fish to evaluate cytotoxic agent-induced apoptosis. The micronucleus test results indicate the presence of pollutants that can change the genetic material of the fish studied. We also demonstrate that the Amazonian fish P. squamosissimus is important not only as a comestible species but also as an adequate model for biomonitoring in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Different responses of tumor and normal cells to low-dose radiation

    PubMed Central

    Liu, Ning; Wang, Hao; Shang, Qingjun; Jiang, Peng; Zhang, Yuanmei

    2013-01-01

    Aim of the study We demonstrated stimulation of both erythrocyte immune function and superoxide dismutase activity in tumor-bearing mice in response to whole-body 75 mGy X-rays. In addition, we enhanced the chemotherapeutic effect by exposing tumor-bearing mice to low-dose radiation (LDR). This study aims to investigate the different responses of tumor cells and normal cells to LDR. Material and methods Survival fraction, micronucleus frequency, and cell cycle of Lewis cells and primary human fibroblast AG01522 cells were measured. S180 sarcoma cells were implanted in mice, and tumor sizes were measured in vivo. Results In response to LDR exposure in vitro, a stimulating effect was observed in AG01522 cells but not in Lewis cells. Low-dose radiation did not cause an adaptive response in the Lewis cell cycle. Lack of an LDR-induced radioadaptive response in tumor cells was observed in tumor-bearing mouse models. Furthermore, a higher apoptotic effect and lower expression of the anti-apoptosis gene Bcl-2 were found in tumor cells of tumor-bearing mice exposed to D1 + D2 than those in tumor cells of tumor-bearing mice exposed to D2 alone. Conclusions Different responses of tumor cells and normal cells to LDR were found. Low-dose radiation was found to stimulate the growth of normal cells but not of tumor cells in vitro and in vivo, which is a very important and clinically relevant phenomenon. PMID:24592123

  4. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    PubMed Central

    Christoni, Larissa S. A.; Justo, Graça; Soeiro, Maria N. C.

    2018-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA. PMID:29849914

  5. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    PubMed

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  6. Analysis of negative historical control group data from the in vitro micronucleus assay using TK6 cells.

    PubMed

    Lovell, David P; Fellows, Mick; Marchetti, Francesco; Christiansen, Joan; Elhajouji, Azeddine; Hashimoto, Kiyohiro; Kasamoto, Sawako; Li, Yan; Masayasu, Ozaki; Moore, Martha M; Schuler, Maik; Smith, Robert; Stankowski, Leon F; Tanaka, Jin; Tanir, Jennifer Y; Thybaud, Veronique; Van Goethem, Freddy; Whitwell, James

    2018-01-01

    The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form. Although in some cases statistically significant differences can be seen within laboratories for different test conditions, they were very small. The mean incidence of micronucleated cells/1000 cells ranged from 3.2/1000 to 13.8/1000. These almost four-fold differences in micronucleus levels cannot be explained by differences in scoring method, presence or absence of exogenous metabolic activation (S9), length of treatment, presence or absence of cytochalasin B or different solvents used as vehicles. The range of means from the four laboratories using flow cytometry methods (3.7-fold: 3.5-12.9 micronucleated cells/1000 cells) was similar to that from the nine laboratories using other scoring methods (4.3-fold: 3.2-13.8 micronucleated cells/1000 cells). No laboratory could be identified as an outlier or as showing unacceptably high variability. Quality Control (QC) methods applied to analyse the intra-laboratory variability showed that there was evidence of inter-experimental variability greater than would be expected by chance (i.e. over-dispersion). However, in general, this was low. This study demonstrates the value of QC methods in helping to analyse the reproducibility of results, building up a 'normal' range of values, and as an aid to identify variability within a laboratory in order to implement processes to maintain and improve uniformity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Workers exposed to wood dust have an increased micronucleus frequency in nasal and buccal cells: results from a pilot study.

    PubMed

    Bruschweiler, Evin Danisman; Hopf, Nancy B; Wild, Pascal; Huynh, Cong Khanh; Fenech, Michael; Thomas, Philip; Hor, Maryam; Charriere, Nicole; Savova-Bianchi, Dessislava; Danuser, Brigitta

    2014-05-01

    Wood dust is recognised as a human carcinogen, based on the strong association of wood dust exposure and the elevated risk of malignant tumours of the nasal cavity and paranasal sinuses [sino-nasal cancer (SNC)]. The study aimed to assess genetic damage in workers exposed to wood dust using biomarkers in both buccal and nasal cells that reflect genome instability events, cellular proliferation and cell death frequencies. Nasal and buccal epithelial cells were collected from 31 parquet layers, installers, carpenters and furniture workers (exposed group) and 19 non-exposed workers located in Switzerland. Micronucleus (MN) frequencies were scored in nasal and buccal cells collected among woodworkers. Other nuclear anomalies in buccal cells were measured through the use of the buccal micronucleus cytome assay. MN frequencies in nasal and buccal cells were significantly higher in the exposed group compared to the non-exposed group; odds ratio for nasal cells 3.1 [95% confidence interval (CI) 1.8-5.1] and buccal cells 1.8 (95% CI 1.3-2.4). The exposed group had higher frequencies of cells with nuclear buds, karyorrhectic, pyknotic, karyolytic cells and a decrease in the frequency of basal, binucleated and condensed cells compared to the non-exposed group. Our study confirms that woodworkers have an elevated risk for chromosomal instability in cells of the aerodigestive tract. The MN assay in nasal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk. Future studies should seek to standardise the protocol for MN frequency in nasal cells similar to that for MN in buccal cells.

  8. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe

    PubMed Central

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C.

    2014-01-01

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM–TopoIIIα–RMI1–RMI2 (BTR complex), SLX1–SLX4–MUS81–EME1 (SLX–MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX–MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX–MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1–SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1–SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells. PMID:24831703

  9. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide

    PubMed Central

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-01-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63–116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20–52.54% and −0.95–62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide. PMID:24688298

  10. Effects of β-glucan polysaccharide revealed by the dominant lethal assay and micronucleus assays, and reproductive performance of male mice exposed to cyclophosphamide.

    PubMed

    Oliveira, Rodrigo Juliano; Pesarini, João Renato; Sparça Salles, Maria José; Nakamura Kanno, Tatiane Yumi; Dos Santos Lourenço, Ana Carolina; da Silva Leite, Véssia; da Silva, Ariane Fernanda; Matiazi, Hevenilton José; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2014-03-01

    β-glucan is a well-known polysaccharide for its chemopreventive effect. This study aimed to evaluate the chemopreventive ability of β-glucan in somatic and germ cells through the dominant lethal and micronucleus assays, and its influence on the reproductive performance of male mice exposed to cyclophosphamide. The results indicate that β-glucan is capable of preventing changes in DNA in both germ cells and somatic ones. Changes in germ cells were evaluated by the dominant lethal assay and showed damage reduction percentages of 46.46% and 43.79% for the doses of 100 and 150 mg/kg. For the somatic changes, evaluated by micronucleus assay in peripheral blood cells in the first week of treatment, damage reduction percentages from 80.63-116.32% were found. In the fifth and sixth weeks, the percentage ranged from 10.20-52.54% and -0.95-62.35%, respectively. Besides the chemopreventive efficiency it appears that the β-glucan, when combined with cyclophosphamide, is able to improve the reproductive performance of males verified by the significant reduction in rates of post-implantation losses and reabsorption in the mating of nulliparous females with males treated with cyclophosphamide.

  11. Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes.

    PubMed

    Fernández-Bertólez, Natalia; Costa, Carla; Brandão, Fátima; Kiliç, Gözde; Duarte, José Alberto; Teixeira, Joao Paulo; Pásaro, Eduardo; Valdiglesias, Vanessa; Laffon, Blanca

    2018-04-27

    Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test.

    PubMed

    Carbajal-López, Yolanda; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Calderón-Segura, María Elena; Martínez-Arroyo, Amparo

    2016-02-01

    The aim of this study was to evaluate the genotoxic effect of pesticides in exfoliated buccal cells of workers occupationally exposed in Guerrero, Mexico, using the comet assay and the micronucleus test. The study compared 111 agricultural workers in three rural communities (Arcelia 62, Ajuchitlan 13, and Tlapehuala 36), with 60 non-exposed individuals. All the participants were males. The presence of DNA damage was investigated in the exfoliated buccal cells of study participants with the comet assay and the micronucleus (MN) test; comet tail length was evaluated in 100 nuclei and 3000 epithelial cells of each individual, respectively; other nuclear anomalies such as nuclear buds, karyolysis, karyorrhexis, and binucleate cells were also evaluated. Study results revealed that the tail migration of DNA and the frequency of MN increased significantly in the exposed group, which also showed nuclear anomalies associated with cytotoxic or genotoxic effect. No positive correlation was noted between exposure time and tail length and micronuclei frequencies. No significant effect on genetic damage was observed as a result of age, smoking, and alcohol consumption. The MN and comet assay in exfoliated buccal cells are useful and minimally invasive methods for monitoring genetic damage in individuals exposed to pesticides. This study provided valuable data for establishing the possible risk to human health associated with pesticide exposure.

  13. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays.

    PubMed

    George, Jiya M; Magogotya, Millicent; Vetten, Melissa A; Buys, Antoinette V; Gulumian, Mary

    2017-03-01

    The suitability of 4 in vitro assays, commonly used for mutagenicity and genotoxicity assessment, was investigated in relation to treatment with 14 nm citrate-stabilized gold nanoparticles (AuNPs). Specifically, the Ames test was conducted without metabolic activation, where no mutagenic effects were observed. High resolution transmission electron microscopy and Cytoviva dark-field image analysis showed that AuNPs did not enter the bacterial cells, thus confirming the unreliability of the Ames test for nanoparticle mutagenicity studies. In addition, the Chinese hamster ovary (CHO) cell line was used for Comet, Chromosome aberration and Micronucleus assays. CHO cells were treated with AuNPs for 20 h at 37 °C. Cytotoxicity was not detected by cell impedance studies even though AuNP uptake was confirmed using Cytoviva image analysis. The DNA damage was statistically significant in treated cells when assessed by the Comet assay. However, minimal and nonstatistically significant chromosomal DNA damage was observed using the chromosome aberration and micronucleus assays. In this study, we showed that false positive results obtained with Comet assay may have been due to the possibility of direct contact between the residual, intracellular AuNPs and DNA during the assay procedure. Therefore, the chromosome aberration and micronucleus assays are better suited to assess the genotoxic effects of nanoparticles due to low probability of such direct contact occurring. Genotoxic effect of 14 and 20 nm citrate-stabilized, as well as, 14 nm PCOOH AuNPs were also investigated using chromosome aberration and micronucleus assays. Based on our acceptance criteria for a positive genotoxic response, none of the AuNPs were found to be genotoxic in either of these assays. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Effects of soil pH on the Vicia-micronucleus genotoxicity assay.

    PubMed

    Dhyèvre, Adrien; Foltête, Anne Sophie; Aran, Delphine; Muller, Serge; Cotelle, Sylvie

    2014-11-01

    In the field of contaminated sites and soil management, chemical analyses only bring typological data about pollution. As far as bioavailability and effects on organisms are concerned, we need ecotoxicology tools. In this domain, among many existing tests, we chose to study genotoxicity because it is a short-term endpoint with long-term consequences. The aim of this study is to assess the effects of soil pH on the results of the Vicia faba root tip micronucleus test for the two following reasons: (i) to define the pH range within which the test can be performed without modifying the soil to be tested, within the framework of the ISO standard of the test and (ii) to provides information about the effects of the pH on the genotoxic potential of soils. In this context, we modified the pH of a standard soil with HCl or NaOH and we spiked the matrix with copper (2, 4 and 8 mmol kg(-1) dry soil) or with maleic hydrazide, an antigerminative chemical (5, 10 and 20 μmol kg(-1) dry soil). We concluded that the pH had no effect on the mitotic index or micronucleus frequency in the root cells of the negative controls: extreme pH values did not induce micronucleus formation in root cells. Moreover, according to our results, the Vicia-micronucleus test can be performed with pH values ranging between 3.2 and 9.0, but in the ISO 29200 "Soil quality--assessment of genotoxic effects on higher plants--V. faba micronucleus test" we recommended to use a control soil with a pH value ranging between 5 and 8 for a more accurate assessment of chemical genotoxicity. We also found that acid pH could increase the genotoxic potential of pollutants, especially heavy metals. With hydrazide maleic spiked soil, plants were placed in a situation of double stress, i.e. toxicity caused by extreme pH values and toxicity induced by the pollutant. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Assessment of the genetic risks of a metallic alloy used in medical implants.

    PubMed

    Gomes, Cristiano C; Moreira, Leonardo M; Santos, Vanessa J S V; Ramos, Alfeu S; Lyon, Juliana P; Soares, Cristina P; Santos, Fabio V

    2011-01-01

    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.

  16. Assessment of the genetic risks of a metallic alloy used in medical implants

    PubMed Central

    Gomes, Cristiano C.; Moreira, Leonardo M.; Santos, Vanessa J.S.V.; Ramos, Alfeu S.; Lyon, Juliana P.; Soares, Cristina P.; Santos, Fabio V.

    2011-01-01

    The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials. PMID:21637553

  17. In vitro and in vivo antimutagenic effects of DIG, a herbal preparation of Berberis vulgaris, Taraxacum officinale and Arctium lappa, against mitomycin C.

    PubMed

    Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E

    2015-07-01

    DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.

  18. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, C.; Ginzkey, C.; Friehs, G.

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO{sub 2}) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO{sub 2} in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO{sub 2}, 0.1 ppm NO{sub 2}, 1 ppm NO{sub 2}, 10 ppm NO{sub 2} and synthetic air for half an hour. After exposure, genotoxicity wasmore » evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO{sub 2} in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO{sub 2} in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.« less

  19. Health assessment of gasoline and fuel oxygenate vapors: micronucleus and sister chromatid exchange evaluations.

    PubMed

    Schreiner, Ceinwen A; Hoffman, Gary M; Gudi, Ramadevi; Clark, Charles R

    2014-11-01

    Micronucleus and sister chromatid exchange (SCE) tests were performed for vapor condensate of baseline gasoline (BGVC), or gasoline with oxygenates, methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl alcohol (TBA), or ethanol (G/EtOH). Sprague Dawley rats (the same 5/sex/group for both endpoints) were exposed to 0, 2000, 10,000, or 20,000mg/m(3) of each condensate, 6h/day, 5days/week over 4weeks. Positive controls (5/sex/test) were given cyclophosphamide IP, 24h prior to sacrifice at 5mg/kg (SCE test) and 40mg/kg (micronucleus test). Blood was collected from the abdominal aorta for the SCE test and femurs removed for the micronucleus test. Blood cell cultures were treated with 5μg/ml bromodeoxyuridine (BrdU) for SCE evaluation. No significant increases in micronucleated immature erythrocytes were observed for any test material. Statistically significant increases in SCE were observed in rats given BGVC alone or in female rats given G/MTBE. G/TAME induced increased SCE in both sexes at the highest dose only. Although DNA perturbation was observed for several samples, DNA damage was not expressed as increased micronuclei in bone marrow cells. Inclusion of oxygenates in gasoline did not increase the effects of gasoline alone or produce a cytogenetic hazard. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    PubMed

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.

  1. Lack of genotoxicity of potassium iodate in the alkaline comet assay and in the cytokinesis-block micronucleus test. Comparison to potassium bromate.

    PubMed

    Poul, J M; Huet, S; Godard, T; Sanders, P

    2004-02-01

    Iodine could be added to the diet of human population in the form of iodide or iodate but iodate had not been adequately tested for genotoxicity and carcinogenicity. In the present study, genotoxic effects of potassium iodate were evaluated in vitro using the alkaline comet assay and the cytokinesis-block micronucleus assay on CHO cells and compared to halogenate salt analogues potassium bromate and chlorate and also to their respective reduced forms (potassium iodide, bromide and chloride). The results showed that the comet assay failed to detect the presence of DNA damage after a treatment of cells by potassium iodate for concentrations up to 10 mM. This absence of primary DNA damage was confirmed in the cytokinesis-block micronucleus assay. In the same way, results showed that potassium chlorate as well as potassium iodide, bromide and chloride did not induced DNA damage in the alkaline comet assay for doses up to 10 mM. By contrast, potassium bromate exposure led to an increase in both DNA damage and frequency of micronucleated cells. The repair of bromate-induced DNA damage was incomplete 24 h after the end of treatment. These results seem to indicate that potassium bromate would induce DNA damage by several mechanisms besides oxidative stress.

  2. Seven benzimidazole pesticides combined at sub-threshold levels induce micronuclei in vitro

    PubMed Central

    Ermler, Sibylle; Scholze, Martin; Kortenkamp, Andreas

    2013-01-01

    Benzimidazoles act by disrupting microtubule polymerisation and are capable of inducing the formation of micronuclei. Considering the similarities in their mechanisms of action (inhibition of microtubule assembly by binding to the colchicine-binding site on tubulin monomers), combination effects according to the principles of concentration addition might occur. If so, it is to be expected that several benzimidazoles contribute to micronucleus formation even when each single one is present at or below threshold levels. This would have profound implications for risk assessment, but the idea has never been tested rigorously. To fill this gap, we analysed micronucleus frequencies for seven benzimidazoles, including the fungicide benomyl, its metabolite carbendazim, the anthelmintics albendazole, albendazole oxide, flubendazole, mebendazole and oxibendazole. Thiabendazole was also tested but was inactive. We used the cytochalasin-blocked micronucleus assay with CHO-K1 cells according to OECD guidelines, and employed an automated micronucleus scoring system based on image analysis to establish quantitative concentration–response relationships for the seven active benzimidazoles. Based on this information, we predicted additive combination effects for a mixture of the seven benzimidazoles by using the concepts of concentration addition and independent action. The observed effects of the mixture agreed very well with those predicted by concentration addition. Independent action underestimated the observed combined effects by a large margin. With a mixture that combined all benzimidazoles at their estimated threshold concentrations for micronucleus induction, micronucleus frequencies of ~15.5% were observed, correctly anticipated by concentration addition. On the basis of independent action, this mixture was expected to produce no effects. Our data provide convincing evidence that concentration addition is applicable to combinations of benzimidazoles that form micronuclei by disrupting microtubule polymerisation. They present a rationale for grouping these chemicals together for the purpose of cumulative risk assessment. PMID:23547264

  3. [Micronuclei in mucose cells and colonization of human stomach epithelium with coccoid forms of Helicobacter pylori].

    PubMed

    Kitaeva, L V; Mikhaĭlova, I A; Semov, D; Proshin, S N; Kravtsov, V Iu

    2008-01-01

    International Agency for Research on Cancer recognized as sufficient the evidence of Helicobacter pylori (HP) infection carcinogenicity and placed it into the 1 st group of carcinogens. Micronucleus level in gastric epithelial cells of antral stomach region of patients with chronic non-atrophy gastritis (n = 62) was studied. 40 patients of 62 had HP-associated gastritis. The HP-bacterium exists in a spiral and coccoid form. Both morphological forms were examined using immunocytochemistry. Significantly increased micronucleus number was observed in the cells of HP-infected patients compared with non-infected person (P < 0.05). The frequency of stomach epithelium cells with micronuclei was enhanced considerably in the patients infected with the coccoid HP form. Therefore the patients with HP-associated chronic gastritis caused by the coccoid form with high degree of colonization must be considered as a group of enhanced risk of gastric carcinogenesis.

  4. Mussel micronucleus cytome assay.

    PubMed

    Bolognesi, Claudia; Fenech, Michael

    2012-05-17

    The micronucleus (MN) assay is one of the most widely used genotoxicity biomarkers in aquatic organisms, providing an efficient measure of chromosomal DNA damage occurring as a result of either chromosome breakage or chromosome mis-segregation during mitosis. The MN assay is today applied in laboratory and field studies using hemocytes and gill cells from bivalves, mainly from the genera Mytilus. These represent 'sentinel' organisms because of their ability to survive under polluted conditions and to accumulate both organic and inorganic pollutants. Because the mussel MN assay also includes scoring of different cell types, including necrotic and apoptotic cells and other nuclear anomalies, it is in effect an MN cytome assay. The mussel MN cytome (MUMNcyt) assay protocol we describe here reports the recommended experimental design, sample size, cell preparation, cell fixation and staining methods. The protocol also includes criteria and photomicrographs for identifying different cell types and scoring criteria for micronuclei (MNi) and nuclear buds. The complete procedure requires approximately 10 h for each experimental point/sampling station (ten animals).

  5. Absence of mutagenicity effects of Psidium cattleyanum Sabine (Myrtaceae) extract on peripheral blood and bone marrow cells of mice.

    PubMed

    Costa, T D A; Vieira, S; Andrade, S F; Maistro, E L

    2008-07-29

    Cattley guava (Psidium cattleyanum Sabine) is a native fruit of Brazil that is popular both as a sweet food and for its reputed therapeutic properties. We examined whether it could damage DNA using the alkaline single-cell gel electrophoresis (comet assay) and the micronucleus test in leukocytes and in bone marrow cells of mice. P. cattleyanum leaf extract was tested at concentrations of 1000, 1500 and 2000 mg/kg. N-nitroso-N-ethylurea was used as a positive control. Peripheral blood leukocytes were collected 4 and 24 h after the treatments for the comet assay, and bone marrow cells were collected after 24 and 48 h for the micronucleus test. Unlike N-nitroso-N-ethylurea, P. cattleyanum extract failed to induce a significant increase in cell DNA damage, in micronucleated cell frequency, and in bone marrow toxicity. The lack of mutagenicity and cytotoxicity with high doses of this plant extract means that it can be safely used in traditional medicine.

  6. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    PubMed

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  7. Prevalence of micronuclei in exfoliated uterine cervical cells from patients with risk factors for cervical cancer.

    PubMed

    Reis Campos, Lízia Maria Franco dos; Luz Dias, Francisca da; Antunes, Lusânia Maria Greggi; Murta, Eddie Fernando Candido

    2008-11-01

    Pap smears are the most common and inexpensive screening method for cervical cancer. We analyzed micronucleus prevalence in exfoliated cervical mucosa cells, to investigate associations between increased numbers of micronuclei and risk factors for cervical cancer. Analytical cross-sectional study, at Instituto de Pesquisa em Oncologia (IPON). Exfoliated cervical cells were obtained from 101 patients between September 2004 and November 2005. Patients' ages, habits (passive or active smoking, alcoholism and numbers of sexual partners), age at first sexual intercourse, contraceptive methods used, histories of sexually transmitted diseases, use of hormone replacement therapy, numbers of pregnancies and abortions, inflammatory cytology and cervical intraepithelial neoplasia (CIN) were obtained. Cells were collected using Ayre spatulas, transferred to vials containing 0.9% saline solution for micronucleus tests and analyzed at 1000x magnification. The number of micronuclei in 1,000 epithelial cells per patient sample was counted. Comparisons between groups with active (7.9 +/- 7.8) and passive (7.2 +/- 10.6) smoking versus no smoking (3.7 +/- 5.1); with/without alcoholism (7.8 +/- 1.4 and 6.9 +/- 10.1); with/without inflammatory cytology (10.7 +/- 10.5 and 1.3 +/- 1.7); and with CIN I, II and III and no CIN (respectively 4.3 +/- 4.3, 10.6 +/- 5.3, 22.7 +/- 11.9 and 1.3 +/- 1.4) found elevated micronucleus prevalence (P < 0.05). We concluded that the prevalence of micronuclei in exfoliated uterine cervical cells was greater in patients with one or more risk factors for uterine cervical cancer than in patients without risk factors.

  8. Extract of Toxicodendron quercifolium caused genotoxicity and antigenotoxicity in bone marrow cells of CD1 mice.

    PubMed

    Mersch-Sundermann, Volker; Kassie, Fekadu; Böhmer, Sonja; Lu, Wen-Qing; Wohlfahrth, Robert; Sobel, Rosa; Brunn, Hubertus E; ElSohly, Mahmoud A; Ross, Samir A; Stahl, Thorsten

    2004-10-01

    As has been shown in numerous studies, naturally occurring compounds can have protective effects towards mutagens and carcinogens. In the present study, the genotoxic/antigenotoxic effect of Toxicodendron quercifolium (poison ivy) extract, which has been identified as antigenotoxic in human HepG2 cells in former studies, was examined in the in vivo micronucleus assay using polychromatic erythrocytes (PCE) of bone marrow of CD1-mice. For this, D0 (1:10), D0 (1:25), D0 (1:50), D1 (1:50), D2 (1:50), and D4 (1:50) dilutions of ethanolic plant extract prepared on the basis of the "Hömoopathisches Arzneimittelbuch (HAB 2000)" were administered orally to CD1 mice over a period of two days. A significant increase (p < 0.05) in micronucleus frequencies was found after administration of D0 (1:10), the highest tolerated dose. Additionally, antigenotoxic effects of T. quercifolium towards benzo(a)pyrene-induced micronucleus formation were studied. For that, four dilutions of the plant extract [D0, D2, D4, D6, each 1:50] were administered orally to CD1 mice for five days prior to the administration of benzo(a)pyrene (250 mg/kg b.w.) for another two days. It was found that the administration of the dilutions D0 (1:50) and D2 (1:50) of T. quercifolium extract significantly inhibited benzo(a)pyrene-induced micronucleus formation (p < 0.0001). The results of this study indicated that T. quercifolium extract has the character of a so-called "Janus"-genotoxin: High doses led to a weak but significant increase of micronucleus frequencies whereas low doses showed chemopreventive effects towards benzo(a)pyrene-induced DNA damage. The constituents of T. quercifolium responsible for the genotoxic and antigenotoxic effects may be flavonoids, which are known to have prooxidative and scavenging effects and identified by HPLC-MS/MS. Copyright 2004 Elsevier Ltd.

  9. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  10. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  11. The effect of gamma radiation on the Common carp (Cyprinus carpio): In vivo genotoxicity assessment with the micronucleus and comet assays.

    PubMed

    M K, Praveen Kumar; Soorambail K, Shyama; Bhagatsingh Harisingh, Sonaye; D'costa, Avelyno; Ramesh Chandra, Chaubey

    2015-10-01

    Radioactive wastes may be leached into freshwater, either accidentally or in industrial effluents. We have studied gamma radiation-induced DNA damage in the freshwater fish Cyprinus carpio. Fish were irradiated with 2-10Gy gamma radiation and genotoxic effects in blood cells were studied with the micronucleus (MN) and comet assays. Micronuclei and a dose-dependent increase in comet-tail DNA were seen in dose- and time-dependent studies. The highest % tail DNA was observed at 24h, declining until 72h, which may indicate the repair of radiation-induced DNA single-strand breaks after gamma radiation. However, double-stranded DNA damage may not have been repaired, as indicated by increased micronuclei at later periods. A positive correlation was observed between the comet and micronucleus assay results. This study confirms the mutagenic/genotoxic potential of gamma radiation in the Common carp, as well as the possible combined use of the micronucleus and comet assays for in vivo laboratory studies with fresh-water fish for screening the genotoxic potential of radioactive pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Association between micronucleus frequency and cervical intraepithelial neoplasia grade in Thinprep cytological test and its significance.

    PubMed

    Shi, Yong-Hua; Wang, Bo-Wei; Tuokan, Talaf; Li, Qiao-Zhi; Zhang, Ya-Jing

    2015-01-01

    A micronucleus is an additional small nucleus formed due to chromosomes or chromosomal fragments fail to be incorporated into the nucleus during cell division. In this study, we assessed the utility of micronucleus counting as a screening tool in cervical precancerous lesions in Thinprep cytological test smears under oil immersion. High risk HPV was also detected by hybrid capture-2 in Thinprep cytological test smears. Our results showed that micronucleus counting was significantly higher in high-grade squamous intraepithelial lesion (HSIL) and invasive carcinoma cases compared to low-grade squamous intraepithelial lesion (LSIL) and non-neoplastic cases. Receiver operating characteristic (ROC) curve analysis revealed that micronucleus counting possessed a high degree of sensitivity and specificity for identifying HSIL and invasive carcinoma. Cut-off of 7.5 for MN counting gave a sensitivity of 89.6% and a specificity of 66.7% (P = 0.024 and AUC = 0.892) for detecting HSIL and invasive carcinoma lesions. Multiple linear regression analysis showed that only HSIL and invasive cancer lesions not age, duration of marital life and number of pregnancy are significantly associated with MN counting. The positive rate of high risk HPV was distinctly higher in LSIL, HSIL and invasive cancer than that in non-neoplstic categories. In conclusions, MN evaluation may be viewed as an effective biomarker for cervical cancer screening. The combination of MN count with HPV DNA detection and TCT may serve as an effective means to screen precancerous cervical lesions in most developing nations.

  13. Nandrolone decanoate induces genetic damage in multiple organs of rats.

    PubMed

    Pozzi, Renan; Fernandes, Kelly Rosseti; de Moura, Carolina Foot Gomes; Ferrari, Raquel Agnelli Mesquita; Fernandes, Kristianne Porta Santos; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2013-04-01

    To evaluate the impact potential of nandrolone decanoate on DNA damage in multiple organs of Wistar rats by means of single-cell gel (comet) assay and micronucleus test. A total of 15 animals were distributed into three groups of five animals each as follows: control group = animal not exposed to nandrolone decanoate; experimental group = animals exposed to nandrolone decanoate for 24 h at 5 mg/kg subcutaneously; and experimental group = animals exposed to nandrolone decanoate for 24 h at 15 mg/kg subcutaneously. Significant statistical differences (p < 0.05) were noted in peripheral blood, liver, and heart cells exposed to nandrolone decanoate at the two doses evaluated. A clear dose-response relationship was observed between groups. Kidney cells showed genetic damage at only the highest dose (15 mg/kg) used. However, micronucleus data did not show remarkable differences among groups. In conclusion, the present study indicates that nandrolone decanoate induces genetic damage in rat blood, liver, heart, and kidney cells as shown by single-cell gel (comet) assay results.

  14. [Individual variability of immunological markers, radiosensitivity and oxidative status in blood lymphocytes of Moscow residents].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O M; Nikonova, M F; Riabchenko, N I; Serebrianyĭ, A M; Iarilin, A A

    2013-01-01

    Expression of activation (CD69) and proliferation (Ki67) markers, their connection with each other, with the oxidative status (reactive oxygen species--ROS) and with radiosensitivity (determined by micronucleus test) have been studied on stimulated blood lymphocytes from Moscow inhabitants. It was shown that the content of T-lymphocytes with the expressed CD69 and the content of T-lymphocytes with the expressed Ki67 markers correlate (r = 0.571; p = 0.0004). We can suppose that expression of the CD69 marker (24 h after PHA stimulation) is needed for the cell cycle progression, but it is not enough for the high expression of Ki67 markers 48 h after stimulation (DNA synthesis phase). It was discovered that T-lymphocytes with the CD69 marker or T-lymphocytes with the Ki67 marker are connected by the negative correlation with the frequency of irradiated cell with micronucleus (MN) r = -0.487; p = 0.010; r = -0.440; p = 0.008, respectively. So we can suppose that lymphocyte radiosensitivity decreased with the increase of expression activation and proliferation markers. It was shown that radiosensitivity determined by MN test is not connected with the oxidative status determined by the reactive oxygen species content including superoxide anion radicals. It is possible to explain by the fact that the ROS concentration has been determined in non-stimulated lymphocytes, but frequencies of cells with MN - in the stimulated cells 48 h after stimulation. Using separate analysis of individual differences by the studied parameters that were determined in the same people, it was shown that individual differences are high enough in the same cases. For example, the radiosensitivity when cells were irradiated 48 h after stimulation, ROS concentration, cell content with activation and proliferation markers. In conclusion, we can say that we failed to find important correlation between the parameters studied. However, the presence of individual differences in the marker expression, the frequency of MN cells, the oxidative status in the usual inhabitants, typical donors in Moscow, is very important.

  15. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  16. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    PubMed

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  17. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    PubMed

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature of these carbon nanomaterials with a possible contribution by catalyst metals present in the materials-Co and Mo in CNTs (<5wt.%) and Fe (<3wt.%) in GNFs.

  18. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma.

    PubMed

    Bekeschus, Sander; Schmidt, Anke; Kramer, Axel; Metelmann, Hans-Robert; Adler, Frank; von Woedtke, Thomas; Niessner, Felix; Weltmann, Klaus-Dieter; Wende, Kristian

    2018-05-01

    Promising cold physical plasma sources have been developed in the field of plasma medicine. An important prerequisite to their clinical use is lack of genotoxic effects in cells. During optimization of one or even different plasma sources for a specific application, large numbers of samples need to be analyzed. There are soft and easy-to-assess markers for genotoxic stress such as phosphorylation of histone H2AX (γH2AX) but only few tests are accredited by the OECD with regard to mutagenicity detection. The micronucleus (MN) assay is among them but often requires manual counting of many thousands of cells per sample under the microscope. A high-throughput MN assay is presented using image flow cytometry and image analysis software. A human lymphocyte cell line was treated with plasma generated with ten different feed gas conditions corresponding to distinct reactive species patterns that were investigated for their genotoxic potential. Several millions of cells were automatically analyzed by a MN quantification strategy outlined in detail in this work. Our data demonstrates the absence of newly formed MN in any feed gas condition using the atmospheric pressure plasma jet kINPen. As positive control, ionizing radiation gave a significant 5-fold increase in micronucleus frequency. Thus, this assay is suitable to assess the genotoxic potential in large sample sets of cells exposed chemical or physical agents including plasmas in an efficient, reliable, and semiautomated manner. Environ. Mol. Mutagen. 59:268-277, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. INDICATORS OF GENETIC DAMAGE IN MODEL STREAM FISH USING CONTROLLED LABORATORY EXPOSURES

    EPA Science Inventory

    The micronucleus (MN) and single cell gel electrophoresis (SCG) assays are being applied to peripheral blood cells from several fish species using model genotoxicants and envirornmentally relevant pollutants. In initial studies, bluegill sunfish (Lepomis macrochirus, 4 to 5 per ...

  20. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.

  1. Primary fibroblasts from BRCA1 heterozygotes display an abnormal G1/S cell cycle checkpoint following UVA irradiation but show normal levels of micronuclei following oxidative stress or mitomycin C treatment.

    PubMed

    Shorrocks, Julie; Tobi, Simon E; Latham, Harry; Peacock, John H; Eeles, Ros; Eccles, Diana; McMillan, Trevor J

    2004-02-01

    There is evidence to suggest that the breast cancer predisposing gene, BRCA1, is involved in cell cycle control and the response to damage but mouse brca1+/- heterozygotes have no distinctive phenotype. Here the response to the three forms of cellular stress was examined in primary human fibroblasts from individuals with a +/+ or +/- genotype for BRCA1. Fibroblasts from individuals carrying mutations in the BRCA1 gene were compared with those from those wild-type for BRCA1 in their response to long wavelength uv (UVA), hydrogen peroxide, and mitomycin C (MMC). Cell cycle progression and micronucleus formation (MN) were used as end points. After UVA treatment there was no difference between +/- and +/+ cells in the initial fall in DNA synthetic activity (G(1) arrest) but the reentry into S-phase was restored at a faster rate in the BRCA1+/- cells after UVA exposure. Thus, for three normal (+/+) cell lines irradiated in monolayer, S-phase values averaged 15 +/- 3.7% 14 h post-UVA (1 x 10(5) J/m(2)), as compared with 35.7 +/- 1.9 (range) for two BRCA1(+/-) strains. Because a defective G(1)/S checkpoint in BRCA1 heterozygotes could lead to a greater proportion of S-phase cells with unrepaired DNA damage (strand breaks) and a resultant increase in chromosomal instability, the frequency of micronuclei induced by UVA was examined. Three normal (+/+) and three mutant (+/-) strains (two of which were used in the cell cycle experiments) produced mean micronuclei frequencies of 0.077 +/- 0.016 and 0.094 +/- 0.04/binucleate cell respectively (not statistically significant), 48 h after UVA exposure. No differences were found between BRCA1+/+ and +/- cells in MN formation after treatment with MMC or hydrogen peroxide. Our data suggest a defective G(1)/S checkpoint in cells from BRCA1 heterozygotes in response to UVA although this is not reflected in genomic instability as measured by micronuclei induction after oxidative stress or MMC treatment.

  2. Association between micronucleus frequency and cervical intraepithelial neoplasia grade in Thinprep cytological test and its significance

    PubMed Central

    Shi, Yong-Hua; Wang, Bo-Wei; Tuokan, Talaf; Li, Qiao-Zhi; Zhang, Ya-Jing

    2015-01-01

    A micronucleus is an additional small nucleus formed due to chromosomes or chromosomal fragments fail to be incorporated into the nucleus during cell division. In this study, we assessed the utility of micronucleus counting as a screening tool in cervical precancerous lesions in Thinprep cytological test smears under oil immersion. High risk HPV was also detected by hybrid capture-2 in Thinprep cytological test smears. Our results showed that micronucleus counting was significantly higher in high-grade squamous intraepithelial lesion (HSIL) and invasive carcinoma cases compared to low-grade squamous intraepithelial lesion (LSIL) and non-neoplastic cases. Receiver operating characteristic (ROC) curve analysis revealed that micronucleus counting possessed a high degree of sensitivity and specificity for identifying HSIL and invasive carcinoma. Cut-off of 7.5 for MN counting gave a sensitivity of 89.6% and a specificity of 66.7% (P = 0.024 and AUC = 0.892) for detecting HSIL and invasive carcinoma lesions. Multiple linear regression analysis showed that only HSIL and invasive cancer lesions not age, duration of marital life and number of pregnancy are significantly associated with MN counting. The positive rate of high risk HPV was distinctly higher in LSIL, HSIL and invasive cancer than that in non-neoplstic categories. In conclusions, MN evaluation may be viewed as an effective biomarker for cervical cancer screening. The combination of MN count with HPV DNA detection and TCT may serve as an effective means to screen precancerous cervical lesions in most developing nations. PMID:26339413

  3. Micronuclei induced by reverse transcriptase inhibitors in mononucleated and binucleated cells as assessed by the cytokinesis-block micronucleus assay

    PubMed Central

    2010-01-01

    This study evaluated the clastogenic and/or aneugenic potential of three nucleoside reverse transcriptase inhibitors (zidovudine - AZT, lamivudine - 3TC and stavudine - d4T) using the cytokinesis-block micronucleus (CBMN) assay in human lymphocyte cultures. All three inhibitors produced a positive response when tested in binucleated cells. The genotoxicity of AZT and 3TC was restricted to binucleated cells since there was no significant increase in the frequency of micronuclei in mononucleated cells. This finding indicated that AZT and 3TC caused chromosomal breakage and that their genotoxicity was related to a clastogenic action. In addition to the positive response observed with d4T in binucleated cells, this drug also increased the frequency of micronuclei in mononucleated cells, indicating clastogenic and aneugenic actions. Since the structural differences between AZT and 3TC and AZT and d4T involve the 3' position in the 2'-deoxyribonucleoside and in an unsaturated 2',3',dideoxyribose, respectively, we suggest that an unsaturated 2', 3', dideoxyribose is responsible for the clastogenic and aneugenic actions of d4T. PMID:21637587

  4. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation.

    PubMed

    Banerjee, Sumita; Singh, Narendra Nath; Sreedhar, Gadiputi; Mukherjee, Saikat

    2016-03-01

    Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity. The genotoxicity can be avoided to some extent by the regular use of headphones.

  5. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  6. The EpiDerm™ 3D human reconstructed skin micronucleus (RSMN) assay: Historical control data and proof of principle studies for mechanistic assay adaptations.

    PubMed

    Roy, Shambhu; Kulkarni, Rohan; Hewitt, Nicola J; Aardema, Marilyn J

    2016-07-01

    The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising novel animal alternative for evaluating genotoxicity of topically applied chemicals. It is particularly useful for assessing cosmetic ingredients that can no longer be tested using in vivo assays. To advance the use of this test especially for regulatory decision-making, we have established the RSMN assay in our laboratory according to Good Laboratory Practice and following the principles of the OECD test guideline 487 in vitro mammalian cell micronucleus test. Proficiency with the assay was established by correctly identifying direct-acting genotoxins and genotoxins requiring metabolism, as well as non-genotoxic/non-carcinogenic chemicals. We also report the analysis of our historical control data that demonstrate vehicle control and positive control values for %micronuclei in binucleated cells are in the ranges reported previously. Technical issues including evaluating various solvents with both 48h and 72h treatment regimens were investigated. For the first time, mechanistic studies using CREST analysis revealed that the RSMN assay is suitable for distinguishing aneugens and clastogens. Moreover, the assay is also suitable for measuring cytokines as markers for proliferative and toxic effects of chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bio-monitoring for the genotoxic assessment in road construction workers as determined by the buccal micronucleus cytome assay.

    PubMed

    Çelik, Ayla; Yildirim, Seda; Ekinci, Seda Yaprak; Taşdelen, Bahar

    2013-06-01

    Buccal micronucleus cytome (BMCyt) assay monitors genetic damage, cell proliferation and cell death in humans exposed to occupational and environmental agents. BMCyt is used as an indicator of genotoxic exposure, since it is associated with chromosomal instability. There is little research on the occupational exposure among road construction workers for genotoxicity testing. In the present study, we evaluated MN frequencies and other nuclear changes, karyorrhexis (KR), karyolysis (KL), broken egg (BE), binucleate (BN), condensed chromatin cell (CCC), and picnotic cell (PC) in buccal mucosa cells of 40 road construction workers (twenty smokers and twenty non-smokers) and 40 control groups consisting of healthy persons (twenty smokers and twenty non-smokers). Microscopic observation was performed of 2000 cells per individual in both road construction workers and control group. In control and worker groups, for each person repair index (RI) was calculated via formula KR+L/BE+MN. The results showed a statistically significant increase in the frequency of MN in buccal epithelial cells of exposed group compared with control group (p<0.001). There is no significant difference between smokers and non-smokers for incidence of MN or nuclear changes and value of RI in exposed group. In road construction workers, RI is lower than the control group. There is a significant difference between workers and control group (p<0.001) for RI. Our data reveal that asphalt fumes during road paving operations are absorbed by workers and that asphalt fume exposure is able to significantly induce cytogenetic damage in buccal mucosa cells of workers after controlling some possible confounding factors, such as age, sex and smoking habits. In addition to determination of nuclear changes and the micronucleus, the determination of RI value presents a new approach to genotoxic bio-monitoring assessment studies of occupationally exposed population. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wei, E-mail: Wei.Ding@fda.hhs.gov; Petibone, Dayton M.; Latendresse, John R.

    2012-06-01

    Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 andmore » 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of DNA damage repair-related genes is reduced in furan-treated rat livers. ► Furan induces rat liver cancer mainly through a secondary genotoxic mechanism.« less

  9. The utility of the in vitro micronucleus test for evaluating the genotoxicity of natural and manmade nano-scale fibres.

    PubMed

    Fowler, Paul; Homan, Andrew; Atkins, Derek; Whitwell, James; Lloyd, Melvyn; Bradford, Roberta

    2016-10-01

    A range of fibrous materials, including several types of asbestos and carbon fibres with nano scale diameters that had reported positive genotoxicity data (predominantly clastogenicity), were tested in the in vitro micronucleus test (OECD 487) in GLP-compliant studies in Chinese Hamster Ovary cells. Out of eight materials tested, only one (crocidolite, an asbestos fibre) gave a positive response either in the presence or absence of metabolic activation (S9) and at short (3h) or extended (24h) exposure times (p≤0.001). Our data suggest that the commonly used tests for clastogenicity in mammalian cells require extensive modification before fibrous materials are detected as positive, raising questions about the validity of these tests for detecting clastogenic and aneugenic fibrous materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    PubMed

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inter-laboratory consistency and variability in the buccal micronucleus cytome assay depends on biomarker scored and laboratory experience: results from the HUMNxl international inter-laboratory scoring exercise.

    PubMed

    Bolognesi, Claudia; Knasmueller, Siegfried; Nersesyan, Armen; Roggieri, Paola; Ceppi, Marcello; Bruzzone, Marco; Blaszczyk, Ewa; Mielzynska-Svach, Danuta; Milic, Mirta; Bonassi, Stefano; Benedetti, Danieli; Da Silva, Juliana; Toledo, Raphael; Salvadori, Daisy Maria Fávero; Groot de Restrepo, Helena; Filipic, Metka; Hercog, Klara; Aktas, Ayça; Burgaz, Sema; Kundi, Michael; Grummt, Tamara; Thomas, Philip; Hor, Maryam; Escudero-Fung, Maria; Holland, Nina; Fenech, Michael

    2017-03-01

    The buccal micronucleus cytome (BMNcyt) assay in uncultured exfoliated epithelial cells from oral mucosa is widely applied in biomonitoring human exposures to genotoxic agents and is also proposed as a suitable test for prescreening and follow-up of precancerous oral lesions. The main limitation of the assay is the large variability observed in the baseline values of micronuclei (MNi) and other nuclear anomalies mainly related to different scoring criteria. The aim of this international collaborative study, involving laboratories with different level of experience, was to evaluate the inter- and intra-laboratory variations in the BMNcyt parameters, using recently implemented guidelines, in scoring cells from the same pooled samples obtained from healthy subjects (control group) and from cancer patients undergoing radiotherapy (treated group). The results indicate that all laboratories correctly discriminated samples from the two groups by a significant increase of micronucleus (MN) and nuclear bud (NBUD) frequencies and differentiated binucleated (BN) cells, associated with the exposure to ionizing radiation. The experience of the laboratories was shown to play an important role in the identification of the different cell types and nuclear anomalies. MN frequency in differentiated mononucleated (MONO) and BN cells showed the greatest consistency among the laboratories and low variability was also detected in the frequencies of MONO and BN cells. A larger variability was observed in classifying the different cell types, indicating the subjectivity in the interpretation of some of the scoring criteria while reproducibility of the results between scoring sessions was very good. An inter-laboratory calibration exercise is strongly recommended before starting studies with BMNcyt assay involving multiple research centers. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mutagenicity of the Musa paradisiaca (Musaceae) fruit peel extract in mouse peripheral blood cells in vivo.

    PubMed

    Andrade, C U B; Perazzo, F F; Maistro, E L

    2008-01-01

    Plants are a source of many biologically active products and nowadays they are of great interest to the pharmaceutical industry. In the present study, the mutagenic potential of the Musa paradisiaca fruit peel extract was assessed by the single-cell gel electrophoresis (SCGE) and micronucleus assays. Animals were treated orally with three different concentrations of the extract (1000, 1500, and 2000 mg/kg body weight). Peripheral blood cells of Swiss mice were collected 24 h after treatment for the SCGE assay and 48 and 72 h for the micronucleus test. The results showed that the two higher doses of the extract of M. paradisiaca induced statistically significant increases in the average numbers of DNA damage in peripheral blood leukocytes for the two higher doses and a significant increase in the mean of micronucleated polychromatic erythrocytes in the three doses tested. The polychromatic/normochromatic erythrocyte ratio scored in the treated groups was not statistically different from the negative control. The data obtained indicate that fruit peel extract from M. paradisiaca showed mutagenic effect in the peripheral blood cells of Swiss albino mice.

  13. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear buds for measuring chromosome instability in telomere-dysfunction cell environments.

  14. In Vivo Genotoxic Evaluation of D-003, a Mixture of Very Long Chain Aliphatic Acids.

    PubMed

    Gámez, Rafael; González, Jorge E.; Rodeiro, Idania; Fernández, Ivonne; Alemán, Celia; Rodríguez, María D.; Acosta, Pilar C.; García, Haydee

    2001-01-01

    D-003 is a mixture of very long chain aliphatic acids purified from sugar cane wax with cholesterol-lowering effects. The present study was undertaken to investigate the in vivo cytotoxic and genotoxic potential of D-003 using three established assays: bone marrow micronucleus, sperm morphology, and single cell gel electrophoresis (Comet) assay. In a first experimental series, CEN/NMRI mice (6-8 animals per sex per group) were administered D-003 by gastric gavage at 5, 50, or 500 mg/kg for 90 days, then sacrificed 24 hours after the last administration. The effects on bone marrow micronucleus were evaluated only in female mice. D-003 (5-500 mg/kg) did not increase the frequency of micronucleated polychromatic erythrocytes, nor the ratio of polychromatic to normochromatic erythrocytes, compared with the controls. The assessment of the effects on sperm morphology showed that D-003 did not change the sperm count or the frequency of all types of abnormal head shapes, compared with the controls. In a second series, the micronucleus assay was performed in mice of both sexes given 2,000 mg/kg for 6 days. Likewise, in this series, neither cytotoxic nor genotoxic effects were found. Finally, five male Sprague-Dawley rats were treated with D-003 (1,250 mg/kg) by oral gavage for 90 days, and Comet assay on liver cells was performed. No single-strand breaks or alkali-labile site induction on DNA was observed. These results indicate that D-003 does not show evidence of cytotoxic or genotoxic activity on either somatic or germ cells in rodents.

  15. First cytotoxic, genotoxic, and antigenotoxic assessment of Euterpe oleracea fruit oil (açaí) in cultured human cells.

    PubMed

    Marques, E S; Tsuboy, M S F; Carvalho, J C T; Rosa, P C P; Perazzo, F F; Gaivão, I O M; Maistro, E L

    2017-08-17

    Euterpe oleracea Mart., popularly known as "açaí", is a tropical fruit from the Amazon region where it has considerable economic importance. Açaí has been used as food and for several medicinal purposes. Despite the widespread use of this fruit, there is a lack of data regarding the safety of using this fruit oil exclusively. Therefore, we evaluated the in vitro cytotoxic, genotoxic, and antigenotoxic effects of E. oleracea fruit oil (EOO) in cultured human lymphocytes (non-metabolizing cells) and HepG2 cell line (human hepatoma) (metabolizing cells) by using MTT, comet, and micronucleus assays. A wide range of EOO concentrations was tested with a preliminary MTT assay, which allowed selecting five concentrations for comet and micronucleus assays: 2.5, 10, 100, 500, and 1000 µg/mL. The results showed that none of the EOO tested concentrations presented cytotoxic effects. The genotoxic assessment revealed an absence of significant DNA and chromosome damage in human lymphocytes and HepG2 cells but did not show chemoprotection against the DNA damage induced by methyl methanesulfonate and benzo[a]pyrene, used as DNA-damaging agents.

  16. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation

    PubMed Central

    Singh, Narendra Nath; Sreedhar, Gadiputi; Mukherjee, Saikat

    2016-01-01

    Introduction Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. Aim To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. Materials and Methods The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. Results The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. Conclusion Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity. The genotoxicity can be avoided to some extent by the regular use of headphones. PMID:27135009

  17. Aerial pesticide application causes DNA damage in pilots from Sinaloa, Mexico.

    PubMed

    Martínez-Valenzuela, C; Waliszewski, S M; Amador-Muñoz, O; Meza, E; Calderón-Segura, M E; Zenteno, E; Huichapan-Martínez, J; Caba, M; Félix-Gastélum, R; Longoria-Espinoza, R

    2017-01-01

    The use of pesticides in agricultural production originates residues in the environment where they are applied. Pesticide aerial application is a frequent source of exposure to pesticides by persons dedicated to agricultural practices and those living in neighboring communities of sprayed fields. The aim of the study was to assess the genotoxic effects of pesticides in workers occupationally exposed to these chemicals during their aerial application to agricultural fields of Sinaloa, Mexico. The study involved 30 pilots of airplanes used to apply pesticides via aerial application and 30 unexposed controls. Damage was evaluated through the micronucleus assay and by other nuclear abnormalities in epithelial cells of oral mucosa. The highest frequency ratios (FR) equal to 269.5 corresponded to binucleated cells followed by 54.2, corresponding to cells with pyknotic nuclei, 45.2 of cells with chromatin condensation, 3.7 of cells with broken-egg, 3.6 of cells with micronucleus, and 2.0 of karyolytic cells. Age, worked time, smoking, and alcohol consumption did not have significant influence on nuclear abnormalities in the pilots studied. Pesticide exposure was the main factor for nuclear abnormality results and DNA damage. Marked genotoxic damage was developed even in younger pilots with 2 years of short working period, caused by their daily occupational exposure to pesticides.

  18. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays

    PubMed Central

    2017-01-01

    The chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one), or 2HMC, displays antileishmanial, antimalarial, and antioxidant activities. The aim of this study was to investigate the cytotoxic, genotoxic, mutagenic, and protective effects of 2HMC using the Ames mutagenicity test, the mouse bone marrow micronucleus test, and the comet assay in mice. In the assessment using the Ames test, 2HMC did not increase the number of His+ revertants in Salmonella typhimurium strains, demonstrating lack of mutagenicity. 2HMC showed no significant increase in micronucleated polychromatic erythrocyte frequency (MNPCE) in the micronucleus test, or in DNA strand breaks using the comet assay, evidencing absence of genotoxicity. Regarding cytotoxicity, 2HMC exhibited moderate cytotoxicity in mouse bone marrow cells by micronucleus test. 2HMC showed antimutagenic action in co-administration with the positive controls, sodium azide (SA) and 4-nitroquinoline-1-oxide (4NQO), in the Ames test. Co-administered and mainly pre-administered with cyclophosphamide (CPA), 2HMC caused a decrease in the frequency of MNPCE using the micronucleus test and in DNA strand breaks using the comet assay. Thus, 2HMC exhibited antimutagenic and antigenotoxic effects, displaying a DNA-protective effect against CPA, SA, and 4NQO carcinogens. In conclusion, 2HMC presented antimutagenic, antigenotoxic and moderate cytotoxic effects; therefore it is a promising molecule for cancer prevention. PMID:28207781

  19. Absence of genotoxic effects of the chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one) and its potential chemoprevention against DNA damage using in vitro and in vivo assays.

    PubMed

    Lima, Débora Cristina da Silva; Vale, Camila Regina do; Véras, Jefferson Hollanda; Bernardes, Aline; Pérez, Caridad Noda; Chen-Chen, Lee

    2017-01-01

    The chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methylphenyl)-prop-2-en-1-one), or 2HMC, displays antileishmanial, antimalarial, and antioxidant activities. The aim of this study was to investigate the cytotoxic, genotoxic, mutagenic, and protective effects of 2HMC using the Ames mutagenicity test, the mouse bone marrow micronucleus test, and the comet assay in mice. In the assessment using the Ames test, 2HMC did not increase the number of His+ revertants in Salmonella typhimurium strains, demonstrating lack of mutagenicity. 2HMC showed no significant increase in micronucleated polychromatic erythrocyte frequency (MNPCE) in the micronucleus test, or in DNA strand breaks using the comet assay, evidencing absence of genotoxicity. Regarding cytotoxicity, 2HMC exhibited moderate cytotoxicity in mouse bone marrow cells by micronucleus test. 2HMC showed antimutagenic action in co-administration with the positive controls, sodium azide (SA) and 4-nitroquinoline-1-oxide (4NQO), in the Ames test. Co-administered and mainly pre-administered with cyclophosphamide (CPA), 2HMC caused a decrease in the frequency of MNPCE using the micronucleus test and in DNA strand breaks using the comet assay. Thus, 2HMC exhibited antimutagenic and antigenotoxic effects, displaying a DNA-protective effect against CPA, SA, and 4NQO carcinogens. In conclusion, 2HMC presented antimutagenic, antigenotoxic and moderate cytotoxic effects; therefore it is a promising molecule for cancer prevention.

  20. Biological effects of tritium on fish cells in the concentration range of international drinking water standards.

    PubMed

    Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant

    2016-10-01

    To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.

  1. Depletion of UBC9 Causes Nuclear Defects during the Vegetative and Sexual Life Cycles in Tetrahymena thermophila.

    PubMed

    Yang, Qianyi; Nasir, Amjad M; Coyne, Robert S; Forney, James D

    2015-12-01

    Ubc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function. We identified the UBC9 gene and demonstrated that its complete deletion from both MIC and MAC genomes is lethal. Rescue of the lethal phenotype with a GFP-UBC9 fusion gene driven by a metallothionein promoter generated a cell line with CdCl2-dependent expression of green fluorescent protein (GFP)-Ubc9p. Depletion of Ubc9p in vegetative cells resulted in the loss of MICs, but MACs continued to divide. In contrast, expression of catalytically inactive Ubc9p resulted in the accumulation of multiple MICs. Critical roles for Ubc9p were also identified during the sexual life cycle of Tetrahymena. Cell lines that were depleted for Ubc9p did not form mating pairs and therefore could not complete any of the subsequent stages of conjugation, including meiosis and macronuclear development. Mating between cells expressing catalytically inactive Ubc9p resulted in arrest during macronuclear development, consistent with our observation that Ubc9p accumulates in the developing macronucleus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Evaluation of cytotoxicity, genotoxicity, and apoptosis of wastewater before and after disinfection with performic acid.

    PubMed

    Ragazzo, Patrizia; Feretti, Donatella; Monarca, Silvano; Dominici, Luca; Ceretti, Elisabetta; Viola, Gaia; Piccolo, Valentina; Chiucchini, Nicoletta; Villarini, Milena

    2017-06-01

    Disinfection with performic acid (PFA) represents an emerging technology in wastewater treatment. Many recent studies indicate its effectiveness and suitability as a disinfectant for different applications; several have demonstrated its reliability as an alternative to chlorine for disinfecting secondary effluents from urban wastewater treatment plants (WWTPs). Some disinfection technologies, in relation to their oxidative power, lead to the formation of disinfection by-products (DBPs), some of which are of concern for their toxic and carcinogenic potential. The aim of this study was to investigate potential genotoxic, cytotoxic, and mutagenic effects of this disinfection agent on treated secondary effluent coming from a municipal WWTP. A strategy with multiple short-term tests and different target cells (bacterial, plant, and mammalian) was adopted to explore a relatively wide range of potential genotoxic events. The Ames test (point mutation in Salmonella), the micronucleus (chromosomal damage) and Comet tests (primary DNA damage) on human hepatic cells (HepG2) were conducted to detect mutagenicity and chromosomal DNA alterations. DNA fragmentation and mitochondrial potential assays were conducted to evaluate apoptosis in the same kinds of cells. Mutagenic and clastogenic effect potentials were evaluated by examining micronucleus formation in Allium cepa root cells. In all the in vitro tests, carried out on both disinfected and non-disinfected effluents, negative results were always obtained for mutagenic and genotoxic effects. In the Allium cepa tests, however, some non-concentrated wastewater samples after PFA treatment induced a slight increase in micronucleus frequencies in root cells, but not in a dose-related manner. In conclusion, PFA applied for disinfection to a secondary effluent from a municipal wastewater treatment plant did not contribute to the release of genotoxic or mutagenic compounds. Further studies are required to establish to which extent these findings can be generalized to support PFA for other disinfection applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Micronucleus frequency in women with genital Chlamydia Trachomatis infection before and after therapy.

    PubMed

    Dimitrijević, A; Milosević-Djordjević, O; Grujicić, D; Arsenijević, S

    2006-09-19

    The main aim of the present study was to investigate the influence of infection with the intracellular bacterium Chlamydia trachomatis, and subsequent treatments with oral doxycycline or azithromycin on the frequency of micronuclei (MN) in peripheral blood lymphocytes of adult female patients receiving standard doses of these drugs. The frequency of micronuclei was measured in the lymphocytes of 38 newly diagnosed adult women with genital C. trachomatis infection. Samples were taken before and after the therapy, and from 50 healthy control females. The therapy was taken orally during 10 days at 2 x 100 mg per day, and then for another 10 days at 1 x 100 mg per day for doxycycline, and as a single dose of 1g for azithromycin. Isolated lymphocytes from all subjects were cultured by use of the whole-blood method and blocked in metaphase with cytochalasin B (Cyt B). One thousand binucleate cells per subject were scored according to published criteria. The frequency of micronuclei was not significantly higher in samples of infected females before therapy, compared with the baseline frequency in healthy control females (p > 0.05). In patients who received doxycycline, the micronucleus frequency after the end of therapy was significantly higher than before treatment (p < 0.001). The mean frequency of micronuclei in females after the end of the therapy with azithromycin did not show an increase (p > 0.05). The application of linear regression analysis showed that the difference in micronucleus frequency before and after therapy (effect of the antibiotics) was affected by the therapy type. Age and smoking did not affect micronucleus frequency in analyzed samples of patients (p = 0.078, 0.579). We conclude that C. trachomatis infection does not induce micronuclei in peripheral blood lymphocytes of infected adult female patients. Therapy with doxycycline significantly increases the micronucleus frequency in lymphocytes of treated patients, but treatment with azithromycin does not induce micronuclei.

  4. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    PubMed Central

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-01

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  5. Nuclear anomalies in the buccal cells of calcite factory workers

    PubMed Central

    2010-01-01

    The micronucleus (MN) assay on exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. To determine the genotoxic effects of calcite dust that forms during processing, MN assay was carried out in exfoliated buccal cells of 50 (25 smokers and 25 non-smokers) calcite factory workers and 50 (25 smokers and 25 non-smokers) age- and sex-matched control subjects. Frequencies of nuclear abnormalities (NA) other than micronuclei, such as binucleates, karyorrhexis, karyolysis and ‘broken eggs', were also evaluated. Micronuclei and the other aforementioned anomalies were analysed by two way analysis of covariance. The linear correlations between the types of micronucleus and nuclear abnormalities were determined by Spearman's Rho. There was a positive correlation between micronuclei and other types of nuclear abnormalities in accordance with the Spearman's Rho test. Results showed statistically significant difference between calcite fabric workers and control groups. MN and NA frequencies in calcite fabric workers were significantly higher than those in control groups (p < 0.05). The results of this study indicate that calcite fabric workers are under risk of significant cytogenetic damage. PMID:21637497

  6. Inhibitory effects of Enteromorpha linza polysaccharide on micronucleus of Allium sativum root cells.

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Liu, Chongbin; Zhang, Quanbin

    2016-06-01

    In this study, the antimutagenic function of the polysaccharide from Enteromorpha linza with the micronucleus test of Allium sativum root cells induced by sulfur dioxide and ultraviolet was studied. The concentration-effect relation of the two inducers was firstly evaluated. The results showed that an increase of genotoxicity damage was demonstrated and micronuclei frequency induced by sulfur dioxide and ultraviolet displayed dose dependent increases. All the doses of polysaccharide did affect the micronuclei frequency formation compared with the negative control. And also, the significant increase in inhibition rate of micronuclei frequency was observed with the increase of the dose of polysaccharide. It was showed maximum inhibition of micronuclei frequency cells (71.74% and 66.70%) at a concentration of 200g/mL in three experiments. The low molecular weight polysaccharide showed higher inhibition rate than raw polysaccharide at the higher concentration (50g/mL) in the absence of sulfur dioxide and ultraviolet. It was confirmed to be a good mutant inhibitor. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Genotoxicity assessment of multispecies probiotics using reverse mutation, mammalian chromosomal aberration, and rodent micronucleus tests.

    PubMed

    Chiu, Yi-Jen; Nam, Mun-Kit; Tsai, Yueh-Ting; Huang, Chun-Chi; Tsai, Cheng-Chih

    2013-01-01

    Genotoxicity assessment is carried out on freeze dried powder of cultured probiotics containing Lactobacillus rhamnosus LCR177, Bifidobacterium adolescentis BA286, and Pediococcus acidilactici PA318. Ames tests, in vitro mammalian chromosome aberration assay, and micronucleus tests in mouse peripheral blood are performed. For 5 strains of Salmonella Typhimurium, the Ames tests show no increased reverse mutation upon exposure to the test substance. In CHO cells, the frequency of chromosome aberration does not increase in responding to the treatment of probiotics. Likewise, the frequency of micronucleated reticulocytes in probiotics-fed mice is indistinguishable from that in the negative control group. Taken together, the toxicity assessment studies suggest that the multispecies probiotic mixture does not have mutagenic effects on various organisms.

  8. Micronuclear DNA of Oxytricha nova contains sequences with autonomously replicating activity in Saccharomyces cerevisiae.

    PubMed Central

    Colombo, M M; Swanton, M T; Donini, P; Prescott, D M

    1984-01-01

    Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes. Images PMID:6092934

  9. Assessment of cytogenetic and cytotoxic effects of chlorhexidine digluconate on cultured human lymphocytes.

    PubMed

    Arabaci, Taner; Türkez, Hasan; Çanakçi, Cenk Fatih; Özgöz, Mehmet

    2013-09-01

    The aim of this study was to assess the genetic and cellular toxicity of Chlorhexidine digluconate (CHX) on peripheral human lymphocytes in vitro. Micronucleus assay was used to investigate the genotoxicity, while the cell viability and proliferation were evaluated by Trypan blue exclusion test and Nuclear Division Index in control and CHX-treated (0.05, 0.1, 0.2, 0.4, 0.5 mg/ml) human blood cultures. A dose-dependent toxic effect was found depending on CHX incubation on the genetic and cell viability of the lymphocytes. Micronucleus frequency was found to be statistically higher at 0.5 mg/ml concentration compared to lower doses and the control group (p < 0.05). A significant reduction was shown in the cell viability and cell proliferation of the exposed lymphocytes at the concentrations of 0.4 and 0.5 mg/ml (p < 0.05), while no significant toxicity was found at lower concentrations compared to control (p > 0.05). This study showed dose-dependent genotoxic and cytotoxic effects of CHX on human lymphocytes in vitro. It should be considered during periodontal irrigation or novel CHX products at lower concentrations should be manufactured for clinical usage.

  10. Influence of Serum Levels of Vitamins A, D, and E as well as Vitamin D Receptor Polymorphisms on Micronucleus Frequencies and Other Biomarkers of Genotoxicity in Workers Exposed to Formaldehyde.

    PubMed

    Ladeira, Carina; Pádua, Mário; Veiga, Luísa; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel

    2015-01-01

    Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. The study suggests that vitamin levels may modulate direct signs of genotoxicity. © 2016 S. Karger AG, Basel.

  11. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers.

    PubMed

    El Safty, Amal Mohamed Kamal; Samir, Aisha Mohamed; Mekkawy, Mona Kamal; Fouad, Marwa Mohamed

    Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P < 0.001). Electroplaters showed higher frequencies of micronuclei in buccal cells when compared to nonexposed (ranged from 20.00 to 130.00 N/1,000 versus 2.00 to 28.00 N/1,000; P < 0.001). Linear regression models were done to detect independent predictors of 8-OHdG and micronucleus test by comparing exposed and nonexposed groups. The model found that exposure to chromium and nickel increases serum 8-OHdG by 4.754 (95% confidence interval [CI]: 3.54-5.96). The model found that exposure to chromium and nickel increases micronucleus by 35.927 (95% CI: 28.517-43.337). Serum 8-OHdG and micronucleus test in buccal cells were increased with combined exposure to chromium and nickel. The current research concluded that workers exposed to nickel and chromium in electroplating industry are at risk of significant cytogenetic damage.

  12. Genotoxicity in oral epithelial cells in children caused by nickel in metal crowns.

    PubMed

    Morán-Martínez, J; Monreal-de Luna, K D; Betancourt-Martínez, N D; Carranza-Rosales, P; Contreras-Martínez, J G; López-Meza, M C; Rodríguez-Villarreal, O

    2013-08-29

    The micronucleus (MN) assay evaluates the effects of low doses of genotoxic carcinogens and can detect structural lesions that survive mitotic cycles. The objective of this study was to determine both the genotoxicity of nickel (Ni) in buccal epithelial cells and the urinary excretion of Ni in children with metal crowns. This was a prospective longitudinal study based on 37 patients selected at the Facultad de Odontología de la Universidad Autónoma de Coahuila. MN assays were performed using buccal cells from the 37 patients, and Ni levels were determined from urine samples using inductively coupled plasma mass spectrometry at 1 (basal value), 15, and 45 days following the placement of crowns in each patient. Ni urinary excretion levels increased from 2.12 ± 1.23 to 3.86 ± 2.96 mg Ni/g creatinine (P < 0.05) and the frequency of exposed micronuclei increased from 4.67 ± 0.15 to 6.78 ± 0.167/1000 cells (P < 0.05) between 1 and 45 days post-crown placement. These results suggest that odontological exposure to metal crowns results in genotoxic damage at the cellular level of the oral mucosa and an increase in the urinary excretion of Ni within 45 days of exposure.

  13. Genotoxicity testing of sodium formononetin-3'-sulphonate (Sul-F) by assessing bacterial reverse mutation, chromosomal aberrations and micronucleus tests.

    PubMed

    Li, Chunmei; Gao, Yonglin; Wang, Yunzhi; Li, Guisheng; Fan, Xiaochen; Li, Yanshen; Guo, Chenghua; Tao, Jun

    2017-06-01

    As part of a safety evaluation, we evaluated the potential genotoxicity of sodium formononetin-3'-sulphonate (Sul-F) using bacterial reverse mutation assay, chromosomal aberrations detection, and mouse micronucleus test. In bacterial reverse mutation assay using five strains of Salmonella typhimurium (TA97, TA98, TA100, TA102 and TA1535), Sul-F (250, 500, 1000, 2000, 4000 μg/plate) did not increase the number of revertant colonies in any tester strain with or without S9 mix. In a chromosomal assay using Chinese hamster lung fibroblast (CHL) cells, there were no increases in either kind of aberration at any dose of Sul-F (400, 800, and 1600 μg/mL) treatment groups with or without S9 metabolic activation. In an in vivo bone marrow micronucleus test in ICR mice, Sul-F at up to 2000 mg/kg (intravenous injection) showed no significant increases in the incidence of micronucleated polychromatic erythrocytes, and the proportion of immature erythrocytes to total erythrocytes. The results demonstrated that Sul-F does not show mutagenic or genotoxic potential under these test conditions. Copyright © 2017. Published by Elsevier Inc.

  14. Sulforaphane mitigates genotoxicity induced by radiation and anticancer drugs in human lymphocytes.

    PubMed

    Katoch, Omika; Kumar, Arun; Adhikari, Jawahar S; Dwarakanath, Bilikere S; Agrawala, Paban K

    2013-12-12

    Sulforaphane, present in cruciferous vegetables such as broccoli, is a dietary anticancer agent. Sulforaphane, added 2 or 20 h following phytohemaglutinin stimulation to cultured peripheral blood lymphocytes of individuals accidentally exposed to mixed γ and β-radiation, reduced the micronucleus frequency by up to 70%. Studies with whole blood cultures obtained from healthy volunteers confirmed the ability of sulforaphane to ameliorate γ-radiation-induced genotoxicity and to reduce micronucleus induction by other DNA-damaging anticancer agents, such as bleomycin and doxorubicin. This reduction in genotoxicity in lymphocytes treated at the G(0) or G(1) stage suggests a role for sulforaphane in modulating DNA repair. Sulforaphane also countered the radiation-induced increase in lymphocyte HDAC activity, to control levels, when cells were treated 2 h after exposure, and enhanced histone H4 acetylation status. Sulforaphane post-irradiation treatment enhanced the CD 34(+)Lin(-) cell population in culture. Sulforaphane has therapeutic potential for management of the late effects of radiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In vitro testing for genotoxicity of indigo naturalis assessed by micronucleus test.

    PubMed

    Dominici, Luca; Cerbone, Barbara; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo

    2010-07-01

    In the field of cosmetic dyes, used for coloring the hair and skin, there is a clear tendency to replace the widely used synthetic dyes by natural colorants, such as henna and mixtures of henna with indigo. The aim of this study was to estimate the genotoxicity of water and DMSO solutions of indigo naturalis (prepared from Indigofera tinctoria leaves) using the cytokinesis-blocked micronucleus (CBMN) assay in the human metabolically active HepG2 cell line. The cytotoxic effects of indigo solutions were first assessed by propidium iodide and fluorescein-diacetate simultaneous staining. For both solutions, cytotoxicity was always under 10%. Data obtained in the CBMN assay (for all concentrations tested) indicated that the frequency of MN (micronuclei) in exposed cells was no higher than the control. Both the water and DMSO solutions showed the same behavior. These results indicate that indigo naturalis exhibits neither cytotoxicity, nor genotoxicity for all concentrations tested, which may justify excluding indigofera and its components from the list of carcinogenic agents.

  16. [Values of the micronucleus test on animal epithelial cells exposed to titanium dioxide].

    PubMed

    Iurchenko, V V; Krivtsova, E K; Iuretseva, N A; Tul'skaia, E A; Mamonov, R A; Zholdakova, Z I; Sinitsyna, O O; Mal'tseva, M M; Pankratova, G P; Sycheva, L P

    2011-01-01

    The genetic safety of titanium dioxide (TD)-containing foods and cosmetic products has been little investigated. The study evaluated the mutagenic activity of TD in the micronucleus test with animal visceral mucosal epithelial cells. Two simethicone-coated anatase samples (mean size 160 and 33.2 nm) were inserted into the mouse stomach in doses of 40-200-1000 mg/kg seven times and applied as an ingredient of 10 and 25% cream (doses 250 and 625 mg/kg, respectively) to the hair-sheared rat skin once for 4 hours. Analysis of cytogenetic disorders (micronuclei, protrusions, and the atypical form of the nucleus) revealed no mutagenic properties of TD on the mucosal epithelium of the mouse and rat intestine, mouse prostomach, and rat uterine bladder. Enhanced mitotic activity was observed in all the study tissues after exposure of both samples to TD given in some or in all (in the rat urinary bladder mucosal epithelium) doses.

  17. The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells.

    PubMed

    Castelo Branco, Patrícia Valéria; Soares, Rossy-Eric Pereira; de Jesus, Luís Cláudio Lima; Moreira, Vanessa Ribeiro; Alves, Hugo José; de Castro Belfort, Marta Regina; Silva, Vera Lucia Maciel; Ferreira Pereira, Silma Regina

    2016-08-01

    Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cytotoxicities and genotoxicities of cements based on calcium silicate and of dental formocresol.

    PubMed

    Ko, Hyunjung; Jeong, Youngdan; Kim, Miri

    2017-03-01

    Increasing interest is being paid to the toxicities of dental materials. The purpose of this study was to determine the cytotoxicities and genotoxicities of endodontic compounds to Chinese hamster ovary (CHO-K1) reproductive cells. Cultured CHO-K1 cells were treated with dental formocresol, two types of calcium hydroxide paste, and two types of mineral trioxide aggregate cement for 24h. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed on each culture, and the micronucleus frequency was determined by performing a micronucleus assay. Alkaline comet assay and γ-H2AX immunofluorescence assay were used to detect DNA damage. Out of the five materials tested, only dental formocresol significantly increased DNA damage. The mineral trioxide aggregate cements based on calcium silicate were not found to be potentially genotoxic. The data suggest that dental formocresol should not be recommended for use in vital pulp therapy on young teeth. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genotoxicity of AMPA, the environmental metabolite of glyphosate, assessed by the Comet assay and cytogenetic tests.

    PubMed

    Mañas, F; Peralta, L; Raviolo, J; García Ovando, H; Weyers, A; Ugnia, L; Gonzalez Cid, M; Larripa, I; Gorla, N

    2009-03-01

    Formulations containing glyphosate are the most widely used herbicides in the world. AMPA is the major environmental breakdown product of glyphosate. The purpose of this study is to evaluate the in vitro genotoxicity of AMPA using the Comet assay in Hep-2 cells after 4h of incubation and the chromosome aberration (CA) test in human lymphocytes after 48h of exposition. Potential in vivo genotoxicity was evaluated through the micronucleus test in mice. In the Comet assay, the level of DNA damage in exposed cells at 2.5-7.5mM showed a significant increase compared with the control group. In human lymphocytes we found statistically significant clastogenic effect AMPA at 1.8mM compared with the control group. In vivo, the micronucleus test rendered significant statistical increases at 200-400mg/kg. AMPA was genotoxic in the three performed tests. Very scarce data are available about AMPA potential genotoxicity.

  20. Histopathological and genotoxic effects of chlorpyrifos in rats.

    PubMed

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo.

  1. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies.

    PubMed

    Moche, H; Paget, V; Chevalier, D; Lorge, E; Claude, N; Girard, H A; Arnault, J C; Chevillard, S; Nesslany, F

    2017-08-01

    Nanodiamonds (NDs) are promising nanomaterials for biomedical applications. However, a few studies highlighted an in vitro genotoxic activity for detonation NDs, which was not evidenced in one of our previous work quantifying γ-H2Ax after 20 and 100 nm high-pressure high-temperature ND exposures of several cell lines. To confirm these results, in the present work, we investigated the genotoxicity of the same 20 and 100 nm NDs and added intermediate-sized NDs of 50 nm. Conventional in vitro genotoxicity tests were used, i.e., the in vitro micronucleus and comet assays that are recommended by the French National Agency for Medicines and Health Products Safety for the toxicological evaluation of nanomedicines. In vitro micronucleus and in vitro comet assays (standard and hOGG1-modified) were therefore performed in two human cell lines, the bronchial epithelial 16HBE14o- cells and the colon carcinoma T84 cells. Our results did not show any genotoxic activity, whatever the test, the cell line or the size of carboxylated NDs. Even though these in vitro results should be confirmed in vivo, they reinforce the potential interest of carboxylated NDs for biomedical applications or even as a negative reference nanoparticle in nanotoxicology. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Occupational risk assessment of paint industry workers

    PubMed Central

    de Oliveira, Hugo M.; Dagostim, Gracilene P.; da Silva, Arielle Mota; Tavares, Priscila; da Rosa, Luiz A. Z. C.; de Andrade, Vanessa M.

    2011-01-01

    Background: Thousands of chemical compounds are used in paint products, like pigments, extenders, binders, additives, and solvents (toluene, xylene, ketones, alcohols, esters, and glycol ethers). Paint manufacture workers are potentially exposed to the chemicals present in paint products although the patterns and levels of exposure to individual agents may differ from those of painters. The aim of the present study was to evaluate genome damage induced in peripheral blood lymphocytes and oral mucosa cells of paint industry workers. Materials and Methods: Genotoxicity was evaluated using the alkaline Comet assay in blood lymphocytes and oral mucosa cells, and the Micronucleus test in oral mucosa cells. For the micronucleus test in exfoliated buccal cells, no significant difference was detected between the control and paint industry workers. Results: The Comet assay in epithelia buccal cells showed that the damage index (DI) and damage frequency (DF) observed in the exposed group were significantly higher relative to the control group (P≤0.05). In the same way, the Comet assay data in peripheral blood leukocytes showed that both analysis parameters (DI and DF) were significantly greater than that for the control group (P≤0.05). Conclusions: Chronic occupational exposure to paints may lead to a slightly increased risk of genetic damage among paint industry workers. PMID:22223950

  3. ASSESSMENT OF GENETIC DAMAGE INDICATORS IN FISH IN LABORATORY, MESOCOSM AND WATERSHED STUDIES

    EPA Science Inventory

    The micronucleus (MN) and single cell gel electrophoresis (SCG) ("Comet") techniques for measuring DNA damage are being evaluated for their potential use as indicators of exposure of fish populations. Laboratory studies employed acute exposures of bluegill sunfish to five model g...

  4. EVALUATION OF GENETIC DAMAGE IN FISH EXPOSED TO PESTICIDES IN FIELD AQUATIC MICROCOSMS

    EPA Science Inventory

    Single cell gel electrophoresis (SCG) and micronucleus (MN) assays were used to measure DNA strand breaks and chromosomal damage in fish blood erythrocytes as biological indicators of exposure to alachlor and atrazine in a surrogate aquatic ecosystem. Caged common carp (Cyprinus...

  5. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate.

    PubMed

    Cavas, Tolga; Garanko, Natasha N; Arkhipchuk, Victor V

    2005-04-01

    Common carp (Cyprinus carpio), Prussian carp (Carassius gibelio) and Peppered cory (Corydoras paleatus) were evaluated as target species to perform genotoxicity tests for heavy metals. Fishes were exposed to different doses of cadmium (0.005-0.1 mg/L) and copper (0.01-0.25 mg/L) for 21 days. Hexavalent chromium at a single dose of 5 mg/L was used as a positive control. Frequencies of micronuclei and binuclei were evaluated comparatively in peripheral blood erythrocytes, gill epithelial cells and liver cells. As a result it was observed that, fish species and their tissues showed differential sensitivity to the heavy metal treatment. In general, frequencies of micronucleated and binucleated cells significantly increased following the exposure for 21 days to copper, cadmium and chromium. On the other hand, gill and liver cells showed higher frequencies of micronuclei and binuclei than erythrocytes. Our results indicated the formation of micronuclei and binuclei in fish cells caused by their exposure to cadmium, copper and chromium, thus verifying results obtained earlier on mammals, which indicated that these heavy metals have cytotoxic and genotoxic effects. The suitability of the micronucleus assay in native fish species for the screening of aquatic genotoxicants is highlighted and the importance of target tissue selection in the piscine micronucleus test is emphasized.

  6. GENETIC DAMAGE INDICATORS IN FISH EXPOSED TO VARYING STREAM CONDITIONS IN AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    Micronucleus (MN) and single cell gel electrophoresis (SCG) measures of genetic damage in fish erythrocytes were included in an evaluation of a wide range of biological and physical stream condition parameters being developed for use in watershed and regional scale assessments. B...

  7. High doses of alcohol during pregnancy cause DNA damages in osteoblasts of newborns rats.

    PubMed

    Carvalho, Isabel Chaves Silva; Dutra, Tamires Pereira; Andrade, Dennia Perez De; Balducci, Ivan; Pacheco-Soares, Cristina; Rocha, Rosilene Fernandes da

    2016-02-01

    Alcohol exerts teratogenic effects and its consumption during pregnancy can cause deficit of bone development. The aim of the current study was to evaluate the genotoxic effects of prenatal exposure to ethanol on newborn rat osteoblasts. Wistar rats were initially divided into two groups: Ethanol group which received Ethanol 20% V/V in liquid diet and solid diet ad libitum, and Control group, which received solid diet and water ad libitum. Each group received a specific diet for 8 weeks before breeding and throughout three weeks of gestation and the treatment was finished on the day the pups were killed. On the fifth day of life, the pups from each group were killed for removal of the calvaria and isolation of osteogenic cells by sequential enzymatic digestion. The cells were cultured for a maximum period of 14 days. The detection of genotoxic effects of alcohol was investigated by the comet and the micronucleus assay. Micronucleus and comet assay showed significant increases in DNA damage at 7 days in Ethanol group (p = 0.0302, p = 0.0446, respectively). However, at 14 days both assay showed no significant difference between the groups (p = 0.6194, p = 0.8326, respectively). Our results showed that prenatal exposure to ethanol induced DNA damage in osteoblasts, as shown by micronucleus formation and higher percentage of DNA in the comet tail. It can be concluded that prenatal exposure to ethanol damages osteoblast DNA in newborns exposed to high doses of ethanol during pregnancy, suggesting that prenatal ethanol consumption has a direct effect on fetal osteoblasts. © 2015 Wiley Periodicals, Inc.

  8. Evaluation of genetic toxicity of 6-diazo-5-oxo-l-norleucine (DON).

    PubMed

    Kulkarni, Rohan M; Dakoulas, Emily W; Miller, Ken E; Terse, Pramod S

    2017-09-01

    DON (6-diazo-5-oxo-l-norleucine), a glutamine antagonist, was demonstrated to exhibit analgesic, antibacterial, antiviral and anticancer properties. The study was performed to characterize its in vitro and in vivo genetic toxicity potential. DON was tested in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains (TA98, TA100, TA1535 and TA1537) and Escherichia coli tester strain (WP2 uvrA) with and without S9 and also with reductive S9. In addition, DON was tested for the chromosome aberrations in Chinese hamster ovary (CHO) cells with or without S9 to evaluate the clastogenic potential. Furthermore, DON was also evaluated for its in vivo clastogenic activity by detecting micronuclei in polychromatic erythrocyte (PCE) cells in bone marrow collected from the male mice dosed intravenously with 500, 100, 10, 1 and 0.1 mg/kg at 24 and 48-h post-dose. The Ames mutagenicity assay showed no positive mutagenic responses. However, the in vitro chromosome aberration assay demonstrated dose dependent statistically positive increase in structural aberrations at 4 and 20-h exposure without S9 and also at 4-h exposure with S9. The in vivo micronucleus assay also revealed a statistically positive response for micronucleus formation at 500, 100 and 10 mg/kg at 24 and 48-h post-dose. Thus, DON appears to be negative in the Ames test but positive in the in vitro chromosome aberration assay and in the in vivo micronucleus assay. In conclusion, the results indicate DON is a genotoxic compound with a plausible epigenetic mechanism.

  9. An in vivo cytogenetic analysis of human oral squamous cell carcinoma

    PubMed Central

    Mohanta, Abhimanyu; Mohanty, Prafulla K.; Parida, Gadadhar

    2015-01-01

    Background: Oral cancer ranks in the top three of all cancers in India, which accounts for over 30% of all cancers reported in the country. The micronucleus test (MNT) is one of the most widely applied short term tests used in genetic toxicology to evaluate the mutagenicity and carcinogenicity. Aims: The present study aims at an in vivo cytogenetic analysis of human oral squamous cell carcinoma and to assess the applicability of MNT in diagnosing early detection of oral carcinoma. Materials and Methods: Exfoliated scrape smears were collected from the clinically diagnosed 136 patients suffering from oral precancerous and cancerous lesions. The wet fixed smears were stained by adopting Papanicolaou's staining protocol and counter-stained with Giemsa's solution. Results: The frequency of micronucleated cells has been observed to be in increasing order with the increase of the age-groups and from control to precancerous to cancerous cases significantly in both sexes. Conclusion: Micronucleus formation in the oral mucosa could be a biomarker of genetic damage and also a potential onco-indicator in the long run of oral carcinogenesis. Therefore, MNT can be applied for the early detection of oral carcinoma in the human being. PMID:26942142

  10. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

    PubMed Central

    Oliveira, R.J.; Mantovani, M.S.; da Silva, A.F.; Pesarini, J.R.; Mauro, M.O.; Ribeiro, L.R.

    2014-01-01

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero. PMID:24714812

  11. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo.

    PubMed

    Oliveira, R J; Mantovani, M S; Silva, A F da; Pesarini, J R; Mauro, M O; Ribeiro, L R

    2014-04-01

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.

  12. Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays.

    PubMed

    Wu, Lihua; Yi, Huilan; Yi, Min

    2010-04-15

    Arsenic is ubiquitous in the environment and is a potential human carcinogen. Its carcinogenicity has been demonstrated in several models. In this study, broad bean (Vicia faba L.) and common onion (Allium cepa L.), two plant species which are commonly used for detecting the genotoxic effects of environmental pollutants, were used to measure possible genotoxic effect of arsenite (0.3-30 mg/l). Present results showed that arsenite (As(III)) induced micronuclei (MN) formation in both Allium and Vicia root tips. MN frequency significantly increased in Vicia root cells exposed to 0.3-10 mg/l arsenite and in Allium root cells exposed to 1-30 mg/l arsenite, which indicated that Vicia root tip cells are more sensitive to arsenite than Allium. Mitotic index (MI) decreased in a concentration-dependent manner and showed significant differences in Vicia/Allium roots among treatments and the control, after exposure to 1-30 mg/l arsenite for at least 4 h. In the present study, MN frequency was positively associated with lipid peroxidation, which indicated that arsenite exposure can induce oxidative stress, cytotoxicity and genotoxicity in plant cells. The results also suggested that Vicia/Allium root micronucleus (MN) assays are simple, efficient and reproducible methods for the genotoxicity monitoring of arsenic water contamination. 2009 Elsevier B.V. All rights reserved.

  13. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Chromosome damage and cytotoxicity in oral mucosa cells after 2 months of exposure to anabolic steroids (decadurabolin and winstrol) in weight lifting.

    PubMed

    Martins, Renato A; Gomes, Guilherme A S; Aguiar, Odair; Medalha, Carla C; Ribeiro, Daniel A

    2010-12-01

    The aim of the present study was to evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells from anabolic steroid users after 2 months of exposure. Two experimental groups consisting of 15 adult males who practise weight lifting and are anabolic steroid users or 15 adult males who practise weight lifting, but are non-anabolic steroid users, were recruited. In addition, 20 sedentary males, who do not practise any physical activity regularly, were matched by age with experimental groups. No significant statistical differences (p>0.05) were noticed in individuals who practise physical activity only. On the other hand, an increase of micronucleated cells (MNCs) in anabolic steroid (decadurabulin and Winstrol) users was observed. Regarding cytotoxic parameters, the same observation has occurred, that is, significant statistical differences (p<0.05) were noticed in the group exposed to anabolic steroids when compared with other controls, as depicted by high frequencies of pyknosis, karyolysis and karyorrhexis. Taken together, our results suggest that genomic instability and cytotoxicity are induced by anabolic steroid administration in oral mucosa cells as assessed by the micronucleus test. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Cytotoxic effect of Kalanchoe flammea and induction of intrinsic mitochondrial apoptotic signaling in prostate cancer cells.

    PubMed

    Arias-González, Iván; García-Carrancá, Alejandro M; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia

    2018-05-03

    Kalanchoe flammea Stapf (Crassulaceae) is a medicinal plant grown in the South of Mexico (State of Tabasco), which is commonly used in traditional medicine for the treatment of fever, wounds, inflammation, and cancer. To establish the potential of K. flammea for the treatment of prostate cancer, evaluating its cytotoxic activity, its probable mechanism of action, and carrying out some toxicological safety studies. The cytotoxic activity of the ethyl acetate extract of K. flammea (Kf-EtOAc) was evaluated in several cell lines of prostate cancer by MTT viability assay. The cellular death mechanism was studied by evaluating the translocation of phosphatidylserine (Annexin V); overproduction of reactive oxygen species [2'-7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) assay]; release of Cytochrome C; activation of caspase-3 and -9, and regulation of Bcl-2, XIAP, and PKCε proteins by Western Blot analysis. For the evaluation of the safety of Kf-EtOAc, the Ames test, Micronucleus assay, and acute toxicity study were determined. Kf-EtOAc exhibited selective cytotoxic activity against prostate cell lines as follows: PC-3, LNCaP, and PrEC (IC 50 = 1.36 ± 0.05; 2.06 ± 0.02, and 127.05 ± 0.07 μg/mL, respectively). The F82-P2 fraction (rich in coumaric acid and palmitic acid) obtained by bioassay-guided fractionation of Kf-EtOAc also demonstrated selective cytotoxic activity against PC-3 cells (IC 50 = 1.05 ± 0.06 μg/mL). Kf-EtOAc induces apoptosis by the intrinsic pathway; this mechanism of cell death was confirmed after observing that the extract produces phosphatidylserine translocation, overproduction of reactive oxygen species, release of Cytochrome C at mitochondrial level, and activation of caspase-3 and -9. It was also observed that Kf-EtOAc produces significant downregulation of apoptosis-related proteins Bcl-2, XIAP, and PKCε and induces DNA fragmentation and cell cycle arrest. In addition, Kf-EtOAc is non-genotoxic in vitro by Ames test and non-genotoxic in vivo by Micronucleus assay, and no signs of toxicity or death were reported after the administration of a single acute exposure of 2000 mg/kg. K. flammea is a potential candidate for the development of new drugs for the treatment of prostate cancer. However, to propose their use in clinical trials, additional studies are required to understand their pharmacokinetic behavior, as well as the development of a suitable pharmaceutical form. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Origanum majorana Essential Oil Lacks Mutagenic Activity in the Salmonella/Microsome and Micronucleus Assays

    PubMed Central

    Klein-Júnior, Luiz Carlos; Guecheva, Temenouga N.; dos Santos, Luciana D.; Zanette, Régis A.; de Mello, Fernanda B.; de Mello, João Roberto Braga

    2016-01-01

    The present study aimed to investigate the in vitro mutagenic activity of Origanum majorana essential oil. The most abundant compounds identified by GC-MS were γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), and sabinene (10.8%). Mutagenicity was evaluated by the Salmonella/microsome test using the preincubation procedure on TA98, TA97a, TA100, TA102, and TA1535 Salmonella typhimurium strains, in the absence or in the presence of metabolic activation. Cytotoxicity was detected at concentrations higher than 0.04 μL/plate in the absence of S9 mix and higher than 0.08 μL/plate in the presence of S9 mix and no gene mutation increase was observed. For the in vitro mammalian cell micronucleus test, V79 Chinese hamster lung fibroblasts were used. Cytotoxicity was only observed at concentrations higher than or equal to 0.05 μg/mL. Moreover, when tested in noncytotoxic concentrations, O. majorana essential oil was not able to induce chromosome mutation. The results from this study therefore suggest that O. majorana essential oil is not mutagenic at the concentrations tested in the Salmonella/microsome and micronucleus assays. PMID:27891531

  17. Vinclozolin, a widely used fungizide, enhanced BaP-induced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression.

    PubMed

    Wu, Xin-Jiang; Lu, Wen-qing; Roos, Peter H; Mersch-Sundermann, Volker

    2005-10-15

    Vinclozolin, a widely used fungicide, can be identified as a residue in numerous vegetable and fruit samples. To get insight in its genetic toxicity, we investigated the genotoxic effect of vinclozolin in the human derived hepatoma cell line HepG2 using the micronucleus (MN) assay. Additionally, to evaluate the co- or anti-mutagenic potency of vinclozolin, we treated HepG2 cells with different concentrations of vinclozolin for 24 h. Subsequently, the cells were exposed to benzo[a]pyrene (BaP) for 1h. Exposure of HepG2 cells to 50-400 microM vinclozolin alone did not cause any induction of micronuclei. However, a pronounced co-mutagenic effect was observed. MN frequencies caused by BaP increased by 30.6%, 52.8% and 65.3% after pretreatment of the cell cultures with 50, 100 and 200 microM vinclozolin, respectively. The highest concentration (400 microM) of vinclozolin tested caused cytotoxicity. Therefore, micronuclei were not considered for that concentration. To clarify the mechanism of cogenotoxicity, we assayed cytochrome P450 1A1 (CYP1A1), which plays a pivotal role in activation of BaP. Cells exposed to vinclozolin led to significant increase of CYP1A1 expression in Western blot. The result suggested that induction of CYP1A1 by vinclozolin account for its enhancing effect on genotoxicity caused by BaP.

  18. Dragon's blood Croton palanostigma induces genotoxic effects in mice.

    PubMed

    Maistro, Edson Luis; Ganthous, Giulia; Machado, Marina da Silva; Zermiani, Tailyn; Andrade, Sérgio Faloni de; Rosa, Paulo Cesar Pires; Perazzo, Fabio Ferreira

    2013-05-20

    Dragon's blood is a dark-red sap produced by species from the genus Croton (Euphorbiaceae), which has been used as a famous traditional medicine since ancient times in many countries, with scarce data about its safe use in humans. In this research, we studied genotoxicity and clastogenicity of Croton palanostigma sap using the comet assay and micronucleus test in cells of mice submitted to acute treatment. HPLC analysis was performed to identify the main components of the sap. The sap was administered by oral gavage at doses of 300 mg/kg, 1,000 mg/kg and 2,000 mg/kg. For the analysis, the comet assay was performed on the leukocytes and liver cells collected 24h after treatment, and the micronucleus test (MN) on bone marrow cells. Cytotoxicity was assessed by scoring 200 consecutive polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE/NCE ratio). The alkaloid taspine was the main compound indentified in the crude sap of Croton palanostigma. The results of the genotoxicity assessment show that all sap doses tested produced genotoxic effects in leukocytes and liver cells and also produced clastogenic/aneugenic effects in bone marrow cells of mice at the two higher doses tested. The PCE/NCE ratio indicated no cytotoxicity. The data obtained suggest caution in the use of Croton palanostigma sap by humans considering its risk of carcinogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Summary of major conclusions from the 6th International Workshop on Genotoxicity Testing (IWGT), Foz do Iguacu, Brazil

    EPA Science Inventory

    The paper describes major conclusions of working groups convened in the following areas: comet assay; micronucleus test in the liver and organs other than bone marrow; pig-A assay; quantitative approaches to genotoxicity risk assessment; and approaches for identifying germ cell m...

  20. The application of the micronucleus test in Chinese hamster V79 cells to detect drug-induced photogenotoxicity.

    PubMed

    Kersten, B; Zhang, J; Brendler-Schwaab, S Y; Kasper, P; Müller, L

    1999-09-15

    Recent reports on the photochemical carcinogenicity and photochemical genotoxicity of fluoroquinolone antibacterials led to an increasing awareness for the need of a standard approach to test for photochemical genotoxicity. In this study the micronucleus test using V79 cells was adapted to photogenotoxicity testing. Results of using different UVA/UVB relationships enabled us to identify a suitable irradiation regimen for the activation of different kinds of photosensitizers. Using this regimen, 8-methoxypsoralen and the fluoroquinolones lomefloxacin, grepafloxacin and Bay Y 3118 were identified to cause micronuclei and toxicity upon photochemical activation. Among the phenothiazines tested, chlorpromazine and 2-chlorophenothiazine, were positive for both endpoints, whereas triflupromazine was only slightly photoclastogenic in the presence of strong phototoxicity. Among the other potential human photosensitizers tested (oxytetracycline, doxycycline, metronidazole, emodin, hypericin, griseofulvin), only hypericin was slightly photogenotoxic. Photochemical toxicity in the absence of photochemical genotoxicity was noted for doxycycline and emodin. With the assay system described, it is possible to determine photochemical toxicity and photochemical genotoxicity concomitantly with sufficient reliability.

  1. Diesel exhaust particulate material expression of in vitro genotoxic activities when dispersed into a phospholipid component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Shi, X. C.; Keane, M. J.; Ong, T. M.; Harrison, J. C.; Slaven, J. E.; Bugarski, A. D.; Gautam, M.; Wallace, W. E.

    2009-02-01

    Bacterial mutagenicity and mammalian cell chromosomal and DNA damage in vitro assays were performed on a diesel exhaust particulate material (DPM) standard in two preparations: as an organic solvent extract, and as an aqueous dispersion in a simulated pulmonary surfactant. U.S. National Institute for Standards and Technology DPM SRM 2975 expressed mutagenic activity in the Salmonella reversion assay, and for in vitro genotoxicity to mammalian cells as micronucleus induction and as DNA damage in both preparations: as an acetone extract of the DPM mixed into dimethylsulfoxide, and as a mixture of whole DPM in a dispersion of dipalmitoyl phosphatidyl choline. Dispersion in surfactant was used to model the conditioning of DPM depositing on the deep respiratory airways of the lung. DPM solid residue after acetone extraction was inactive when assayed as a surfactant dispersion in the micronucleus induction assay, as was surfactant dispersion of a respirable particulate carbon black. In general, a given mass of the DPM in surfactant dispersion expressed greater activity than the solvent extract of an equal mass of DPM.

  2. Microcystin-LR, a protein phosphatase inhibitor, induces alterations in mitotic chromatin and microtubule organization leading to the formation of micronuclei in Vicia faba

    PubMed Central

    Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdődi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba

    2012-01-01

    Background and Aims Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Methods Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Key Results Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL−1 MCY-LR, accelerated cell cycle at 10 µg mL−1 MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. Conclusions MCY-LR delayed metaphase–anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation. PMID:22819947

  3. Microcystin-LR, a protein phosphatase inhibitor, induces alterations in mitotic chromatin and microtubule organization leading to the formation of micronuclei in Vicia faba.

    PubMed

    Beyer, Dániel; Tándor, Ildikó; Kónya, Zoltán; Bátori, Róbert; Roszik, Janos; Vereb, György; Erdodi, Ferenc; Vasas, Gábor; M-Hamvas, Márta; Jambrovics, Károly; Máthé, Csaba

    2012-09-01

    Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.

  4. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Di Virgilio, A L; Reigosa, M; Arnal, P M; Fernández Lorenzo de Mele, M

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO(2)) and aluminium oxide (Al(2)O(3)) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 microg/mL TiO(2) and 0.5-10 microg/mL Al(2)O(3). SCE frequencies were higher for cells treated with 1-5 microg/mL TiO(2). The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO(2). No SCE induction was achieved after treatment with 1-25 microg/mL Al(2)O(3). In conclusion, findings showed cytotoxic and genotoxic effects of TiO(2) and Al(2)O(3) NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress

    PubMed Central

    Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash

    2010-01-01

    Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190

  6. Evaluation of the genotoxic potential of Mangifera indica L. extract (Vimang), a new natural product with antioxidant activity.

    PubMed

    Rodeiro, I; Cancino, L; González, J E; Morffi, J; Garrido, G; González, R M; Nuñez, A; Delgado, R

    2006-10-01

    Mangifera indica L. extract (Vimang) consists of a defined mixture of components (polyphenols, terpenoids, steroids, fatty acids and microelements). It contains a variety of polyphenols, phenolic esters, flavan-3-ols and a xanthone (mangiferin), as main component. This extract has antioxidant action, antitumor and immunemodulatory effects proved in experimental models in both in vitro and in vivo assays. The present study was performed to investigate the genotoxicity potential activity of Vimang assessed through different tests: Ames, Comet and micronucleus assays. Positive and negative controls were included in each experimental series. Histidine requiring mutants of Salmonella typhimurium TA1535, TA1537, TA1538, TA98, TA100 and TA102 strains for point-mutation tests and in vitro micronucleus assay in primary human lymphocytes with and without metabolic activation were performed. In addition, genotoxic effects were evaluated on blood peripheral lymphocytes of NMRI mice of both sexes, which were treated during 2 days with intraperitoneal doses of M. indica L. extract (50-150 mg/kg). The observed results permitted to affirm that Vimang (200-5,000 microg/plate) did not increase the frequency of reverse mutations in the Ames test in presence or not of metabolic activation. Results of Comet assay showed that the extract did not induce single strand breaks or alkali-labile sites on blood peripheral lymphocytes of treated animals compared with controls. On the other hand, the results of the micronucleus studies (in vitro and in vivo) showed Vimang induces cytotoxic activity, determined as cell viability or PCE/NCE ratio, but neither increased the frequency of micronucleated binucleate cells in culture of human lymphocytes nor in mice bone marrow cells under our experimental conditions. The positive control chemicals included in each experiment induced the expected changes. The present results indicate that M. indica L. extract showed evidences of light cytotoxic activity but did not induce a mutagenic or genotoxic effects in the battery of assays used.

  7. Rodent Bone Marrow Micronucleus Assay. Test Substance: Solvent Yellow 33 2-(2-Quinolyl)-1,3-indandione

    DTIC Science & Technology

    2011-01-18

    Observations, and Micronucleus Scoring Data Table 10: Summary of Micronucleus Assay Results Appendix I: Software Systems Attachment A: Material Safety ...compliance with U.S. Food and Drug Administration regulations set forth in 21 CFR, Part 58, and with the Organization for Economic Co-Operation and...Solubility: Insoluble in water pH: 7 Storage Conditions: Room Temperature Safety Precautions: Standard Toxikon Laboratory Safety Precautions, Bovine

  8. Micronucleus Assay in Exfoliated Buccal Epithelial Cells Using Liquid Based Cytology Preparations in Building Construction Workers.

    PubMed

    Arul, P; Smitha, Shetty; Masilamani, Suresh; Akshatha, C

    2018-01-01

    Cytogenetic damage in exfoliated buccal epithelial cells due to environmental and occupational exposure is often monitored by micronucleus (MN) assay using liquid based cytology (LBC) preparations. This study was performed to evaluate MN in exfoliated buccal epithelial cells of building construction workers using LBC preparations. LBC preparations of exfoliated buccal epithelial cells from 100 subjects [50 building construction workers (cases) and 50 administrative staffs (controls)] was evaluated by May-Grunwald Giemsa, Hematoxylin and Eosin and Papanicolaou stains. Student's t test was used for statistical analysis and a P value of <0.05 was considered as statistically significant. The mean frequencies of MN for cases were significantly higher than controls regardless of staining methods used. There were statistically significant differences between smokers and non-smokers of the controls as well as duration of working exposure (<5 and >5 years) and smokers and non-smokers of cases (P=0.001). However, there were meaningful differences regarding mean frequencies of MN between smokers, non-smokers, those with alcohol consumption or not in cases and controls using various stains (P=0.001). There was an increased risk of cytogenetic damage in building construction workers. However, evaluation of MN of exfoliated buccal epithelial cells in building construction workers serve as a minimally invasive biomarker for cytogenetic damage. LBC preparations can be applied for MN assay as it improves the quality of smears and cell morphology, decreases the confounding factors and reduces false positive results.

  9. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  10. Lack of micronucleus induction activity of ethyl tertiary-butyl ether in the bone marrow of F344 rats by sub-chronic drinking-water treatment, inhalation exposure, or acute intraperitoneal injection.

    PubMed

    Noguchi, Tadashi; Kamigaito, Tomoyuki; Katagiri, Taku; Kondou, Hitomi; Yamazaki, Kazunori; Aiso, Shigetoshi; Nishizawa, Tomoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-01-01

    Ethyl tertiary-butyl ether (ETBE) is an oxygenated gasoline additive synthesized from ethanol and isobutene that is used to reduce CO2 emissions. To support the Kyoto Protocol, the production of ETBE has undergone a marked increase. Previous reports have indicated that exposure to ETBE or methyl tertiary-butyl ether resulted in liver and kidney tumors in rats and/or mice. These reports raise concern about the effects of human exposure being brought about by the increased use of ETBE. The present study was conducted to evaluate the genotoxicity of ETBE using micronucleus induction of polychromatic erythrocytes in the bone marrow of male and female rats treated with ETBE in the drinking-water at concentrations of 0, 1,600, 4,000 or 10,000 ppm or exposed to ETBE vapor at 0, 500, 1,500 or 5,000 ppm for 13 weeks. There were no significant increases in micronucleus induction in either the drinking water-administered or inhalation-administered groups at any concentration of ETBE; although, in both groups red blood cells and hemoglobin concentration were slightly reduced in the peripheral blood in rats administered the highest concentration of ETBE. In addition, two consecutive daily intraperitoneal injections of ETBE at doses of 0, 250, 500 or 1,000 mg/kg did not increase the frequency of micronucleated bone marrow cells in either sex; all rats receiving intraperitoneal injections of ETBE at a dose of 2,000 mg/kg died after treatment day 1. These data suggest that ETBE is not genotoxic in vivo.

  11. The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants.

    PubMed

    Ma, T H; Xu, Z; Xu, C; McConnell, H; Rabago, E V; Arreola, G A; Zhang, H

    1995-04-01

    The meristematic mitotic cells of plant roots are appropriate and efficient cytogenetic materials for the detection of clastogenicity of environmental pollutants, especially for in situ monitoring of water contaminants. Among several cytological endpoints in these fast dividing cells, such as chromosome/chromatid aberrations, sister-chromatid exchanges and micronuclei, the most effective and simplest indicator of cytological damage is micronucleus formation. Although the Allium cepa and Vicia faba root meristem micronucleus assays (Allium/Vicia root MCN) have been used in clastogenicity studies about 12 times by various authors in the last 25 years, there is no report on the comparison of the efficiency of these two plant systems and in different cell populations (meristem and F1) of the root tip as well as under adequate recovery duration. In order to maximize the efficiency of these bioassays, the current study was designed to compare the Allium and the Vicia root MCN assays on the basis of chromosome length, peak sensitivity of the mitotic cells, and the regions of the root tip where the MCN are formed. The total length of the 2n complement of Allium chromosomes is 14.4 microns and the total length of the 2n complement of Vicia is 9.32 microns. The peak sensitivity determined by serial fixation at 12-h intervals after 100 R of X-irradiation is 44 h. The slope of the X-ray dose-response curve of Allium roots derived from the meristematic regions was lower than that derived from cells in the F1 region. Higher efficiency was also demonstrated when the MCN frequencies were scored from the F1 cells in both Allium and Vicia treated with formaldehyde (FA), mitomycin C (MMC), and maleic hydrazide (MH). The results indicated that scoring of MCN frequencies from the F1 cell region of the root tip was more efficient than scoring from the meristematic region. The X-ray linear regression dose-response curves were established in both Allium and Vicia cell systems and the coefficients of correlations, slope values were used to verify the reliability and efficiency of these two plant cell systems. Based on the dose-response slope value of 0.894 for Allium and 0.643 for Vicia, the Allium root MCN was a more efficient test system. The greater sensitivity of the Allium roots is probably due to the greater total length of the diploid complement and the higher number of metacentric chromosomes.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations.

    PubMed

    Landsiedel, Robert; Ma-Hock, Lan; Van Ravenzwaay, Ben; Schulz, Markus; Wiench, Karin; Champ, Samantha; Schulte, Stefan; Wohlleben, Wendel; Oesch, Franz

    2010-12-01

    Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.

  13. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    PubMed

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  14. In vitro Cytotoxicity and Genotoxicity Analysis of Ten Tannery Chemicals Using SOS/umu Tests and High-content In vitro Micronucleus Tests.

    PubMed

    Huang, Zehao; Li, Na; Rao, Kaifeng; Liu, Cuiting; Wang, Zijian; Ma, Mei

    2018-01-01

    More than 2,000 chemicals have been used in the tannery industry. Although some tannery chemicals have been reported to have harmful effects on both human health and the environment, only a few have been subjected to genotoxicity and cytotoxicity evaluations. This study focused on cytotoxicity and genotoxicity of ten tannery chemicals widely used in China. DNA-damaging effects were measured using the SOS/umu test with Salmonella typhimurium TA1535/pSK1002. Chromosome-damaging and cytotoxic effects were determined with the high-content in vitro Micronucleus test (MN test) using the human-derived cell lines MGC-803 and A549. The cytotoxicity of the ten tannery chemicals differed somewhat between the two cell assays, with A549 cells being more sensitive than MGC-803 cells. None of the chemicals induced DNA damage before metabolism, but one was found to have DNA-damaging effects on metabolism. Four of the chemicals, DY64, SB1, DB71 and RR120, were found to have chromosome-damaging effects. A Quantitative Structure-Activity Relationship (QSAR) analysis indicated that one structural feature favouring chemical genotoxicity, Hacceptor-path3-Hacceptor, may contribute to the chromosome-damaging effects of the four MN-test-positive chemicals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    PubMed

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Practical aspects of mutagenicity testing strategy: an industrial perspective.

    PubMed

    Gollapudi, B B; Krishna, G

    2000-11-20

    Genetic toxicology studies play a central role in the development and marketing of new chemicals for pharmaceutical, agricultural, industrial, and consumer use. During the discovery phase of product development, rapid screening tests that require minimal amounts of test materials are used to assist in the design and prioritization of new molecules. At this stage, a modified Salmonella reverse mutation assay and an in vitro micronucleus test with mammalian cell culture are frequently used for screening. Regulatory genetic toxicology studies are conducted with a short list of compounds using protocols that conform to various international guidelines. A set of four assays usually constitutes the minimum test battery that satisfies global requirements. This set includes a bacterial reverse mutation assay, an in vitro cytogenetic test with mammalian cell culture, an in vitro gene mutation assay in mammalian cell cultures, and an in vivo rodent bone marrow micronucleus test. Supplementary studies are conducted in certain instances either as a follow-up to the findings from this initial testing battery and/or to satisfy a regulatory requirement. Currently available genetic toxicology assays have helped the scientific and industrial community over the past several decades in evaluating the mutagenic potential of chemical agents. The emerging field of toxicogenomics has the potential to redefine our ability to study the response of cells to genetic damage and hence our ability to study threshold phenomenon.

  17. Application of liquid-based cytology preparation in micronucleus assay of exfoliated buccal epithelial cells in road construction workers.

    PubMed

    Arul, P

    2017-01-01

    Asphalts are bitumens that consist of complex of hydrocarbon mixtures and it is used mainly in road construction and maintenance. This study was undertaken to evaluate the micronucleus (MN) assay of exfoliated buccal epithelial cells in road construction workers using liquid-based cytology (LBC) preparation. Three different stains (May-Grunwald Giemsa, hematoxylin and eosin, and Papanicolaou) were used to evaluate the frequency of MN in exfoliated buccal epithelial of 100 participants (fifty road construction workers and fifty administrative staff) using LBC preparation. Statistical analysis was performed with Student's t-test, and P< 0.05 was considered statistically significant. The mean frequency of MN for cases was significantly higher than that of controls (P = 0.001) regardless of staining method used and also cases with exposure period of more than 5 years had statistically significant difference (P < 0.05) than cases with Conclusion: The present study concluded that workers exposed to asphalts during road construction exhibit a higher frequency of MN in exfoliated buccal epithelial cells and they are under the significant risk of cytogenetic damage. LBC preparation has potential application for the evaluation of frequency of MN. This technique may be advocated in those who are occupationally exposed to potentially carcinogenic agents in view of improvement in the smear quality and visualization of cell morphology.

  18. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.

    PubMed

    Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-06-08

    Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  19. Black pepper constituent piperine: genotoxicity studies in vitro and in vivo.

    PubMed

    Thiel, Anette; Buskens, Carin; Woehrle, Tina; Etheve, Stéphane; Schoenmakers, Ankie; Fehr, Markus; Beilstein, Paul

    2014-04-01

    Piperine is responsible for the hot taste of black pepper. Publications on genotoxicity of piperine are reported: negative Ames Tests and one in vitro micronucleus test (MNT). In vivo tests were mainly negative. In the majority of the data the administered dose levels did not follow the dose selection requirements of regulatory guidelines of having dose levels up to the maximum tolerated dose (MTD). The only oral high dose studies were a positive in vivo MNT in mice in contrast to a negative in vivo chromosome aberration test in rats. Thus, conflicting results in genotoxicity testing are published. To investigate this further, we administered piperine to mice up to the MTD and determined micronuclei-frequency. Piperine reduces core body temperature and interferes with blood cells both being known to result in irrelevant positive in vivo MNTs. Therefore we added mechanistic endpoints: core body temperature, haematology, erythropoietin level, and organ weights. Additionally an in vitro MNT in Chinese hamster ovary cells was performed. Piperine was negative in the in vitro MNT. It caused significant reduction of core body temperature, decrease of white blood cells and spleen weights but no increase in the micronucleus-frequency. Thus, in our studies piperine was not genotoxic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro.

    PubMed

    Garaj-Vrhovac, Verica; Gajski, Goran

    2009-03-01

    Several studies have reported radioprotective, antimutagenic, anti-inflammatory, antinociceptive, and anticancer effects of bee venom both in the cell and the whole organism. The aim of this study was to assess the effects of a single high dose of 100 microg mL(-1) of whole bee venom in human lymphocytes in vitro over a variety of time spans (from 10 min to 24 h). After the treatment, we used the comet assay and micronucleus test to see the effect of bee venom on the cell. The comet assay confirmed that the venom damaged the DNA molecule. Tail length, tail intensity, tail moment showed a significant increase (P < 0.05). The percentage of long-tailed nuclei (LTN) with the tail length exceeding the 95th percentile also increased in a time-dependent manner. The micronucleus parameters (number of micronuclei, nucleoplasmic bridges, and nuclear buds) also showed a significant time-dependent increase (P < 0.05). This research indicates that high concentrations of bee venom can lead to cellular instability. Further research is needed to understand the mechanism of action of bee venom and its components in human cells and to see if this natural product may find application in medicine.

  1. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liviac, Danae; Creus, Amadeu; Marcos, Ricard

    Halonitromethanes (HNMs) constitute an emerging class of disinfection by-products (DBPs) produced when chlorine and/or ozone are used for water treatment. The HNMs are structurally similar to halomethanes, but have a nitro-group in place of hydrogen bonded to the central carbon atom. Since little information exists on the genotoxic potential of HNMs, a study has been carried out with two HNM compounds, namely trichloronitromethane (TCNM) and bromonitromethane (BNM) by using human cells. Primary damage induction has been measured with the Comet assay, which is used to determine both the repair kinetics of the induced damage and the proportion of induced oxidativemore » damage. In addition, the fixed DNA damage has been evaluated by using the micronucleus (MN) assay. The results obtained indicate that both compounds are genotoxic, inducing high levels of DNA breaks in the Comet assay, and that this DNA damage repairs well over time. In addition, oxidized bases constitute a high proportion of DNA-induced damage (50-75%). Contrarily, no positive effects were observed in the frequency of micronucleus, which measures both clastogenic and aneugenic effects, neither using TK6 cells nor peripheral blood lymphocytes. This lack of fixed genetic damage would minimize the potential mutagenic risk associated with HNMs exposure.« less

  2. A Comparative Study of the Aneugenic and Polyploidy-inducing Effects of Fisetin and Two Model Aurora Kinase Inhibitors

    PubMed Central

    Gollapudi, P.; Hasegawa, L.S.; Eastmond, D.A.

    2014-01-01

    Fisetin, a plant flavonol commonly found in fruits, nuts and vegetables, is frequently added to nutritional supplements due to its reported cardioprotective, anti-carcinogenic and antioxidant properties. Earlier reports from our laboratory and others have indicated that fisetin has both aneugenic and clastogenic properties in cultured cells. More recently, fisetin has also been reported to target Aurora B kinase, a Ser/Thr kinase involved in ensuring proper microtubule attachment at the spindle assembly checkpoint, and an enzyme that is overexpressed in several types of cancer. Here we have further characterized the chromosome damage caused by fisetin and compared it with that induced by two known Aurora kinase inhibitors, VX-680 and ZM-447439, in cultured TK6 cells using the micronucleus assay with CREST staining as well as a flow cytometry-based assay that measures multiple types of numerical chromosomal aberrations. The three compounds were highly effective in inducing aneuploidy and polyploidy as evidenced by increases in kinetochore-positive micronuclei, hyperdiploidy, and polyploidy. With fisetin, however, the latter two effects were most significantly observed only after cells were allowed to overcome a cell cycle delay, and occurred at higher concentrations than those induced by the other Aurora kinase inhibitors. Modest increases in kinetochore-negative micronuclei were also seen with the model Aurora kinase inhibitors. These results indicate that fisetin induces multiple types of chromosome abnormalities in human cells, and indicate a need for a thorough investigation of fisetin-augmented dietary supplements. PMID:24680981

  3. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage.

    PubMed

    Raghuraman, M; Verma, Prachi; Kunwar, Amit; Phadnis, Prasad P; Jain, V K; Priyadarsini, K Indira

    2017-06-01

    Diselenonicotinamide (DSNA), a synthetic organoselenium compound, was evaluated for its radioprotective effect in cellular models. A clonogenic assay in Chinese Hamster Ovary (CHO) cells and an apoptosis assay in murine splenic lymphocytes indicated that pre-treatment with DSNA at a concentration of 25 μM significantly protected them from radiation-induced cell death. Upon irradiation (1-12 Gy), dose-response studies were carried out under similar treatment conditions, and its dose modification factor (DMF) was estimated to be 1.26. Furthermore, DSNA showed its radioprotective effect, even when administered after exposure to radiation. Mechanistic investigation revealed that DSNA increased the intracellular levels of GPx and GSH in irradiated cells. In line with this observation, the addition of a pharmacological inhibitor of GPx cycle, abrogated the activity of DSNA. The radioprotective effect of DSNA was also complemented by its ability to prevent radiation-induced DNA damage as monitored by micronucleus and γ-H2AX assays. Furthermore, treatment with DSNA did not show much change in the expressions of Nrf2 dependent genes (γ-GCL and HO-1), but the presence of a pharmacological inhibitor of Nrf2 abrogated the radioprotective activity of DSNA against cell death and DNA damage. Additionally, ATRA treatment also inhibited the DSNA-mediated up-regulation of a repair gene RAD51, suggesting possible involvement of basal Nrf2 in the anti-genotoxic effect of DSNA. In conclusion, the present study demonstrates radioprotection by a synthetic organoselenium compound containing nutritionally important moieties like selenium and nicotinamide.

  4. Use of sensitive methods for detection of DNA damage on human lymphocytes exposed to p,p'-DDT: Comet assay and new criteria for scoring micronucleus test.

    PubMed

    Gajski, Goran; Ravlic, Sanda; Capuder, Zeljka; Garaj-Vrhovac, Vera

    2007-08-01

    Wide distribution, stability and long persistence in the environment of dichlorodiphenyltrichloroethane (DDT), probably the best-known and most useful insecticide in the world, imposes the need for further examination of the effect of this chemical on human health and especially on the human genome. In this study, peripheral blood human lymphocytes from a healthy donor were exposed to 0.025 mg/L concentration of p,p'-DDT at different time periods (1, 2, 24 and 48 h). For the assessment of genotoxic effect, the new criteria for scoring micronucleus test and alkaline comet assay were used. Both methods showed that p,p'-DDT induces DNA damage in low concentration used in this research. Results of micronucleus test showed a statistically significant (p < 0.05) genotoxic effect of p,p'-DDT on human lymphocytes compared with corresponding control and a different exposure time. A comet assay also showed increased DNA damage caused in p,p'-DDT-exposed human lymphocytes than in corresponding control cells for the tail length. Results obtained by measuring the level of DNA migration and incidence of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) indicate the sensitivity of these tests and their application in detection of primary genome damage after long-term exposure to establish the effect of p,p'-DDT on human genome.

  5. Effect of drinking water disinfection by-products in human peripheral blood lymphocytes and sperm.

    PubMed

    Ali, Aftab; Kurzawa-Zegota, Malgorzata; Najafzadeh, Mojgan; Gopalan, Rajendran C; Plewa, Michael J; Anderson, Diana

    2014-12-01

    Drinking water disinfection by-products (DBPs) are generated by the chemical disinfection of water and may pose hazards to public health. Two major classes of DBPs are found in finished drinking water: haloacetic acids (HAAs) and trihalomethanes (THMs). HAAs are formed following disinfection with chlorine, which reacts with iodide and bromide in the water. Previously the HAAs were shown to be cytotoxic, genotoxic, mutagenic, teratogenic and carcinogenic. To determine the effect of HAAs in human somatic and germ cells and whether oxidative stress is involved in genotoxic action. In the present study both somatic and germ cells have been examined as peripheral blood lymphocytes and sperm. The effects of three HAA compounds: iodoacetic acid (IAA), bromoacetic acid (BAA) and chloroacetic acid (CAA) were investigated. After determining appropriate concentration responses, oxygen radical involvement with the antioxidants, butylated hydroxanisole (BHA) and the enzyme catalase, were investigated in the single cell gel electrophoresis (Comet) assay under alkaline conditions, >pH 13 and the micronucleus assay. In the Comet assay, BHA and catalase were able to reduce DNA damage in each cell type compared to HAA alone. In the micronucleus assay, micronuclei (MNi) were found in peripheral lymphocytes exposed to all three HAAs and catalase and BHA were in general, able to reduce MNi induction, suggesting oxygen radicals play a role in both assays. These observations are of concern to public health since both human somatic and germ cells show similar genotoxic responses. Copyright © 2014. Published by Elsevier B.V.

  6. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.

    PubMed

    Autsavapromporn, Narongchai; Plante, Ianik; Liu, Cuihua; Konishi, Teruaki; Usami, Noriko; Funayama, Tomoo; Azzam, Edouard I; Murakami, Takeshi; Suzuki, Masao

    2015-01-01

    Radiation-induced bystander effects have important implications in radiotherapy. Their persistence in normal cells may contribute to risk of health hazards, including cancer. This study investigates the role of radiation quality and gap junction intercellular communication (GJIC) in the propagation of harmful effects in progeny of bystander cells. Confluent human skin fibroblasts were exposed to microbeam radiations with different linear energy transfer (LET) at mean absorbed doses of 0.4 Gy by which 0.036-0.4% of the cells were directly targeted by radiation. Following 20 population doublings, the cells were harvested and assayed for micronucleus formation, gene mutation and protein oxidation. Our results showed that expression of stressful effects in the progeny of bystander cells is dependent on LET. The progeny of bystander cells exposed to X-rays (LET ∼6 keV/μm) or protons (LET ∼11 keV/μm) showed persistent oxidative stress, which correlated with increased micronucleus formation and mutation at the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) locus. Such effects were not observed after irradiation by carbon ions (LET ∼103 keV/μm). Interestingly, progeny of bystander cells from cultures exposed to protons or carbon ions under conditions where GJIC was inhibited harbored reduced oxidative and genetic damage. This mitigating effect was not detected when the cultures were exposed to X-rays. These findings suggest that cellular exposure to proton and heavy charged particle with LET properties similar to those used here can reduce the risk of lesions associated with cancer. The ability of cells to communicate via gap junctions at the time of irradiation appears to impact residual damage in progeny of bystander cells.

  7. Zoledronic acid induces micronuclei formation, mitochondrial-mediated apoptosis and cytostasis in kidney cells.

    PubMed

    Singireesu, Soma Shiva Nageswara Rao; Mondal, Sujan Kumar; Yerramsetty, Suresh; Misra, Sunil

    2018-06-15

    Zoledronic acid (ZA), a FDA approved drug has used widely in the treatment of bone metastasis complications, has been linked to renal toxicity with unclear mechanism. The present study is aimed at investigating the genotoxic and cytotoxic effects of ZA in renal epithelial cells. The genotoxic effect of ZA in Vero and MDCK cells determined by cytokinesis block micronucleus (CBMN) assay. The cytotoxic effect assessed by analysing cell cycle profile, cell death and mitochondrial membrane potential by flow cytometry using propidium iodide, AnnexinV-FITC/PI and JC1 dye staining, respectively, BAX and Bcl-2 expression by Western blotting and caspase activity by spectrofluorimetry. The cytotoxic effect of ZA based on MTT assay revealed variable sensitivities of Vero and MDCK cells, with IC 50 values of 7.41 and 109.58 μM, respectively. The CBMN assay has shown prominent dose-dependent (IC 10-50 ) induction of micronuclei formation in both cells, indicating ZA's clastogenic and aneugenic potential. Further, the ZA treatment led the cells to apoptosis, evident from dose-dependent increase in the percentage of cells in subG1 phase and display of membranous phosphatidylserine translocation. Studies also confirmed apoptosis through mitochondria, evident from the prominent increase in BAX/Bcl-2 ratio, mitochondrial membrane depolarization and caspase-3/7 activity. In addition, ZA reduces cytokinetic activity of renal cells, evident from dose-wise lowered replicative indices. The study depict ZA's potential genotoxic effect along with cytotoxic effect in renal epithelial cells, could be key factors for the development of renal complications associated with it, which prompts renal safety measures in lieu with ZA usage. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. In vitro induction of micronuclei by monofunctional methanesulphonic acid esters: possible role of alkylation mechanisms.

    PubMed

    Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph

    2006-12-01

    Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.

  9. In-vivo genotoxicity of the alkaloid drug pilocarpine nitrate in bone marrow cells and male germ cells of mice.

    PubMed

    Hegde, M J; Sujatha, T V

    1995-10-01

    Pilocarpine nitrate, an alkaloid drug of plant origin induces spindle disfunction in bone marrow cells of mice. Further studies were carried out to investigate its mutagenic effects in somatic and germ cells of mice by assessing chromosome aberrations at mitotic metaphase and as micronuclei in bone marrow cells and sperm-shape abnormality in cauda epididymides. The dose and time yield effects of the drug were investigated. The statistically significant results that were obtained for both chromosomal aberrations and micronucleus test but not for the sperm-shape abnormality test, indicated the genotoxicity of this compound in somatic cells but not in germ cells.

  10. Genotoxicity evaluation of Mequindox in different short-term tests.

    PubMed

    Ihsan, Awais; Wang, Xu; Tu, Hong-Gong; Zhang, Wei; Dai, Meng-Hong; Peng, De-Peng; Wang, Yu-Lian; Huang, Ling-Li; Chen, Dong-Mei; Mannan, Shazia; Tao, Yan-Fei; Liu, Zhen-Li; Yuan, Zong-Hui

    2013-01-01

    Quinoxaline-1,4-dioxides (QdNOs) are the potent heterocyclic N-oxides with interesting biological properties such as antibacterial, anticandida, antitubercular, anticancer and antiprotozoal activities. Here, we tested and compared the mequindox (MEQ) for mutagenic abilities in a battery of different short term tests according to OECD guidelines. When compared with the controls, a strong mutagenicity of MEQ and carbadox (CBX) was observed with an approximate concentration-effect relationship in Salmonella reverse mutation test, chromosome aberration test, unscheduled DNA synthesis assay and HGPRT gene mutation test, in the absence and presence of S(9)-mix. In in vivo micronucleus test, CBX produced significant increase in the proportion of micronucleus formation than MEQ in mice bone marrow cells. From these results, we can conclude that MEQ had a strong genotoxic potential to mammalian cells in vitro as well as in vivo and its mutagenicity is slightly higher than CBX. Our results, for the 1st time, discuss the genotoxic potential of MEQ. These results not only confirm the earlier findings about CBX but also extend the knowledge and awareness about the genotoxic risk of QdNO derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    PubMed

    Jara-Ettinger, Ana Cecilia; López-Tavera, Juan Carlos; Zavala-Cerna, María Guadalupe; Torres-Bugarín, Olivia

    2015-01-01

    An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  12. Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells

    PubMed Central

    Hashimoto, Kiyohiro; Sharma, Vyom; Sasanuma, Hiroyuki; Tian, Xu; Takata, Minoru; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2016-01-01

    Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS. PMID:27486975

  13. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2015-10-01

    Radiation can produce biological damage, mainly oxidative stress, via production of free radicals, including reactive oxygen species (ROS). Nanoparticles are of interest as radioprotective agents, particularly due to their high solubility and bioavailability. Silymarin is a hepatoprotective agent but has poor oral bioavailability. Silymarin was formulated as a nanoemulsion with the aim of improving its bioavailability and therapeutic efficacy. In the present study, we evaluated self-nanoemulsifying drug delivery systems (SNEDDS) formulated with surfactants and co-surfactants. Nano-silymarin was characterized by estimating % transmittance, globule size, and polydispersity index, and by transmission electron microscopy (TEM). The nano-silymarin obtained was in the range of 3-8nm diameter. With regard to DNA damage, measured by a plasmid relaxation assay, maximum protection was obtained at 10μg/mL. Cytotoxicity of nano-silymarin to human embryonic kidney (HEK) cells was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Protective efficacy against γ-radiation was assessed by reduction in micronucleus frequency and ROS generation, using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay. Radiation-induced apoptosis was estimated by microscopic analysis and cell-cycle estimation. Nano-silymarin was radioprotective, supporting the possibility of developing new approaches to radiation protection via nanotechnology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    PubMed

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  15. Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae).

    PubMed

    Fanali, Lara Zácari; Franco-Belussi, Lilian; Bonini-Domingos, Cláudia Regina; de Oliveira, Classius

    2018-06-01

    Benzo[a]pyrene (BaP) is a bio-accumulative toxic compound found in the atmosphere, water, and soil that may affect the life cycle of amphibians. In this study, a few contamination biomarkers, such as hepatic melanomacrophages (MMs), mast cells, erythrocyte micronuclei (MN) and white blood cells were used to determine how BaP acts in these cells in the anurans Physalaemus cuvieri and Leptodactylus fuscus. Animals of both species were divided into three treatment groups: 1 day, 7 days and 13 days, subcutaneously injected 2 mg/kg BaP diluted in mineral oil and control group with only mineral oil. After 7 days, BaP caused the frequency of MN to increase in both species while reducing melanin area. The micronucleus frequency increased due to the genotoxicity of BaP, while the decreasing melanin area may be related to the inhibition of tyrosinase activity, an enzyme responsible for regulating melanogenesis, decreasing the synthesis of melanin. The mast cell density increased in all groups and in both species as a response to the inflammatory action of BaP. These cells respond to nonspecific inflammatory effects leading, therefore, to this response in all treatments. The percentage of leukocytes remained unchanged probably due to great intraspecific variability. Additionally, the leukocyte profiles of both species were characterized and the differences were attributed to extrinsic factors. In short, BaP can affect the integrity of several organs and tissues, and cell functions leading to the conclusion that this compound is hepatotoxic, genotoxic and immunotoxic for anurans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells.

    PubMed

    Meghani, Nikita; Patel, Pal; Kansara, Krupa; Ranjan, Shivendu; Dasgupta, Nandita; Ramalingam, Chidambaram; Kumar, Ashutosh

    2018-06-01

    Cinnamon oil is used for medicinal purpose since ancient time because of its antioxidant activity. Oil-in-water nanoemulsion (NE) of cinnamon oil was formulated using cinnamon oil, nonionic surfactant Tween 80 and water by ultrasonication technique. Phase diagram was constructed to investigate the influence of oil, water and surfactant concentration. Vitamin D encapsulated cinnamon oil NE was fabricated by wash out method followed by ultrasonication in similar fashion. The hydrodynamic size of cinnamon oil NE and vitamin D encapsulated cinnamon oil NE was observed as 40.52 and 48.96 nm in complete DMEM F12 media respectively. We focused on the cytotoxic and genotoxic responses of NEs in A549 cells in concentration dependent manner. We observed that both NEs induce DNA damage along with corresponding increase in micronucleus frequency that is evident from the comet and CBMN assay. Both the NEs arrested the cell cycle progression in G0/G1 phase, showed increased expression of Bax, capase-3 and caspase-9 and decrease expression of BcL2 proteins along with significant (p < 0.05) increase in apoptotic cell population and loss of mitochondrial membrane potential. NEs were also evaluated for bactericidal efficacy against E. coli. Thus, both NEs have cytotoxic, genotoxic and antibacterial potential and hence can also be used in food industry with cinnamon oil as carrier for lipophilic nutraceutical like vitamin D. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mangiferin activates the Nrf2-ARE pathway and reduces etoposide-induced DNA damage in human umbilical cord mononuclear blood cells.

    PubMed

    Zhang, Benping; Zhao, Jie; Li, Shanshan; Zeng, Linglan; Chen, Yan; Fang, Jun

    2015-04-01

    Mangiferin (2-C-β-d-gluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) is a well-known natural antioxidant distributed in various plants of the Anacardiaceae and Gentianaceae families. Mangiferin can inhibit carcinogen-induced lung or colon tumor formation in experimental animals. However, the molecular mechanisms of its chemopreventive activity remain unexplored. This study aimed to investigate the effects of mangiferin on chemical carcinogen-induced DNA damage and Nrf2-ARE signaling in hematopoietic cells. Mononuclear cells (MNCs) were isolated from human umbilical cord blood (hUCB). DNA damage was evaluated by comet and micronucleus assays. The expression of Nrf2 and NQO1 was examined by immunofluorescence and western blotting. An electrophoretic mobility shift assay (EMSA) was used to detect the binding activity of Nrf2 with NQO1-ARE sequences. We found that mangiferin treatment significantly reduced DNA damage in etoposide-treated MNCs, which was verified by decreased olive tail moment (OTM) and micronucleus (MN) frequency. Mangiferin treatment significantly promoted Nrf2 translocation into the nucleus and increased nuclear Nrf2 expression. Moreover, NQO1, an Nrf2 signaling target, was significantly upregulated by mangiferin treatment, and the binding activity of Nrf2 with NQO1-ARE sequences was elevated after mangiferin treatment. Mangiferin activated Nrf2 signaling, upregulated NQO1 expression, and significantly reduced etoposide-induced DNA damage. Thus, mangiferin is a potential cytoprotective agent for hematopoietic cells.

  18. Frequency of micronucleus in oral epithelial cells after exposure to mate-tea in healthy humans

    PubMed Central

    Campagnoli, Eduardo B.; Milan, José R.; Reinheimer, Angélica; Masson, Maicon; Capella, Diogo L.

    2014-01-01

    Objectives: The aim of this study was to evaluate the possibility of technique simplification for cytology slides in order to evaluate the frequency of micronuclei (FMic) and conduct a experiment looking to know the FMic of oral epithelial cells of healthy volunteers exposed to mate tea (Ilex paraguarariensis). Material and Methods: This is a laboratorial and nonrandomized trial (quasi-experiment), where the nonusers subjects were exposed to mate-tea, consumed in the traditional way, two drinks, two times a day for a single week. Two cytology of exfoliated epithelial cells were obtained before and after the mate tea exposition. Results: The sample was composed by 10 volunteers. The age ranged from 18 to 33 years (Mean 23; SD5.5). The use of mate tea did not showed significant variation in the FMic (Wilcoxon Signed Ranks Test p= .24). Conclusions: The proposed technique simplification showed to be reliable, without losses when compared to the conventional technique and with the advantage of eliminate toxic substances, becoming simple and practical tool for research in dentistry. The acute exposure to mate tea did not induce an increase of FMic in exfoliated buccal cells of healthy nondrinkers and nonsmokers subjects and may not have genotoxic effect. More human studies are needed before a conclusion can be made on the oral carcinogenic risk of mate tea to humans. Key words:Micronucleus, Oral Cancer, Cytology, Mate tea, Ilex paraguariensis. PMID:24608213

  19. Genotoxicity of citrate-coated silver nanoparticles to human keratinocytes assessed by the comet assay and cytokinesis blocked micronucleus assay.

    PubMed

    Bastos, V; Duarte, I F; Santos, C; Oliveira, H

    2017-02-01

    Silver nanoparticles (AgNPs) are widely used in industrial, cosmetic, and biomedical products, and humans are frequently exposed to these products through the skin. It is widely recognized that the characteristics of AgNPs (e.g., size, coating) may influence their cytotoxic effects, but their correlation with DNA damage and mitotic disorders remains poorly explored. In this study, human keratinocytes (HaCaT cell line) were exposed to well-characterized 30 nm AgNPs coated with citrate, and their effects on viability, DNA fragmentation (assessed by the comet assay), and micronuclei (MNi) induction (assessed by the cytokinesis-block micronucleus cytome assays, CBMN) were investigated. The results showed that 10 and 40 μg/mL AgNPs decreased cell proliferation and viability, and induced a significant genetic damage. This was observed by an increase of DNA amount in comet tail, which linearly correlated with dose and time of exposure. Also, cytostaticity (increase of mononucleated cells) and MNi rates increased in treated cells. In contrast, no significant changes were observed in nucleoplasmatic bridges (NPBs) or nuclear buds (NBUDs), although NBUDs tended to increase in all conditions and periods. The cytostatic effects on HaCaT cells were also shown by the decrease of their nuclear division index. Thus, both comet and CBMN assays supported the observation that citrate-AgNPs induced genotoxic effects on HaCaT cells. Considering that AgNPs are present in a vast number of consumer products and also in multiple nanomedicine skin applications and formulations, more research is needed to determine the properties that confer less toxicity of AgNPs to different cell lines.

  20. Recommendations, evaluation and validation of a semi-automated, fluorescent-based scoring protocol for micronucleus testing in human cells.

    PubMed

    Seager, Anna L; Shah, Ume-Kulsoom; Brüsehafer, Katja; Wills, John; Manshian, Bella; Chapman, Katherine E; Thomas, Adam D; Scott, Andrew D; Doherty, Ann T; Doak, Shareen H; Johnson, George E; Jenkins, Gareth J S

    2014-05-01

    Micronucleus (MN) induction is an established cytogenetic end point for evaluating structural and numerical chromosomal alterations in genotoxicity testing. A semi-automated scoring protocol for the assessment of MN preparations from human cell lines and a 3D skin cell model has been developed and validated. Following exposure to a range of test agents, slides were stained with 4'-6-diamidino-2-phenylindole (DAPI) and scanned by use of the MicroNuc module of metafer 4, after the development of a modified classifier for selecting MN in binucleate cells. A common difficulty observed with automated systems is an artefactual output of high false positives, in the case of the metafer system this is mainly due to the loss of cytoplasmic boundaries during slide preparation. Slide quality is paramount to obtain accurate results. We show here that to avoid elevated artefactual-positive MN outputs, diffuse cell density and low-intensity nuclear staining are critical. Comparisons between visual (Giemsa stained) and automated (DAPI stained) MN frequencies and dose-response curves were highly correlated (R (2) = 0.70 for hydrogen peroxide, R (2) = 0.98 for menadione, R (2) = 0.99 for mitomycin C, R (2) = 0.89 for potassium bromate and R (2) = 0.68 for quantum dots), indicating the system is adequate to produce biologically relevant and reliable results. Metafer offers many advantages over conventional scoring including increased output and statistical power, and reduced scoring subjectivity, labour and costs. Further, the metafer system is easily adaptable for use with a range of different cells, both suspension and adherent human cell lines. Awareness of the points raised here reduces the automatic positive errors flagged and drastically reduces slide scoring time, making metafer an ideal candidate for genotoxic biomonitoring and population studies and regulatory genotoxic testing.

  1. Effects of indirubin and isatin on cell viability, mutagenicity, genotoxicity and BAX/ERCC1 gene expression.

    PubMed

    Fogaça, Manoela Viar; Cândido-Bacani, Priscila de Matos; Benicio, Lucas Milanez; Zapata, Lara Martinelli; Cardoso, Priscilla de Freitas; de Oliveira, Marcelo Tempesta; Calvo, Tamara Regina; Varanda, Eliana Aparecida; Vilegas, Wagner; de Syllos Cólus, Ilce Mara

    2017-12-01

    Indigofera suffruticosa Miller (Fabaceae) and I. truxillensis Kunth produce compounds, such as isatin (ISA) and indirubin (IRN), which possess antitumour properties. Their effects in mammalian cells are still not very well understood. We evaluated the activities of ISA and/or IRN on cell viability and apoptosis in vitro, their genotoxic potentials in vitro and in vivo, and the IRN- and ISA-induced expression of ERCC1 or BAX genes. HeLa and/or CHO-K1 cell lines were tested (3 or 24 h) in the MTT, Trypan blue exclusion, acridine orange/ethidium bromide, cytokinesis-blocked micronucleus (CBMN) and comet (36, 24 and 72 h) tests after treatment with IRN (0.1 to 200 μM) or ISA (0.5 to 50 μM). Gene expression was measured by RT-qPCR in HeLa cells. Swiss albino mice received IRN (3, 4 or 24 h) by gavage (50, 100 and 150 mg/kg determined from the LD 50 - 1 g/kg b.w.) and submitted to comet assay in vivo. IRN reduced the viability of CHO-K1 (24 h; 5 to 200 μM) and HeLa cells (10 to 200 μM), and was antiproliferative in the CBMN test (CHO-K1: 0.5 to 10 μM; HeLa: 5 and 10 μM). The drug did not induce apoptosis, micronucleus neither altered gene expression. IRN and ISA were genotoxic for HeLa cells (3 and 24 h) at all doses tested. IRN (100 and 150 mg/kg) also induced genotoxicity in vivo (4 h). IRN and ISA have properties that make them candidates as chemotherapeutics for further pharmacological investigations.

  2. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, Kent, E-mail: Kent.fitzgerald@elan.com; Bergeron, Marcelle, E-mail: Marcelle.bergeron@elan.com; Willits, Christopher, E-mail: Chris.willits@elan.com

    2013-05-15

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the numbermore » of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646 decreased phosphorylation of alpha-synuclein at non-genotoxic doses.« less

  3. Unstable-type chromosome aberrations in lymphocytes from individuals living near Semipalatinsk nuclear test site.

    PubMed

    Tanaka, Kimio; Iida, Shozo; Takeichi, Nobuo; Chaizhunusova, Nailya J; Gusev, Boris I; Apsalikov, Kazbek N; Inaba, Toshiya; Hoshi, Masaharu

    2006-02-01

    The Semipalatinsk nuclear test site area is considered to have been highly contaminated with radioactive fallout during 40 years of continuous nuclear testing. Individuals living near the nuclear test site are considered to have been exposed to both internal and external radiation. In order to assess the effects of prolonged radiation, a chromosome analysis was performed in lymphocytes from 123 people living in three villages, Dolon, Sarjar and Kaynar, and 46 control people in Kokpekty. A micronucleus assay was also conducted in 233 people in six different contaminated villages and one control village. Frequencies of dicentric and ring chromosomes were higher in residents of the contaminated area (1.55-2.56 per 1,000 cells) than those of the non-contaminated area (0.78 per 1,000 cells). Frequencies of dicentric chromosomes with fragments were also higher in the exposed group (0.44-0.96 per 1,000 cells). Among residents of the four villages, the incidence of multiple complex chromosome aberrations (MCA) was 0.03-0.34%. Incidences of micronucleus were also higher in the exposed group (9.36-12.3 per 1,000 lymphocytes) than the non-exposed group (7.25 per 1,000 lymphocytes). The higher incidence of unstable-type aberrations such as dicentric, ring chromosomes and micronuclei found in residents of contaminated areas seems to be mainly caused by internal exposure and other factors.

  4. Evaluation of the mutagenic effect of the iodinated contrast medium Urografina® 292 using the micronucleus test in mouse bone marrow cells.

    PubMed

    Belle, Mônica B B; Leffa, Daniela D; Mazzorana, Daliane; De Andrade, Vanessa M

    2013-01-01

    Contrast media (CM) are frequently used in diagnostic radiology and in radiotherapy as a diagnostic tool and in treatment planning. Previous studies have demonstrated that these compounds induce chromosomal aberrations. This study evaluates the mutagenic effects induced by the contrast medium Urografina® 292 (meglumine amidotrizoate and sodium-ionic dimmer) in bone marrow cells (BMC) of mice in vivo. Micronuclei assay was performed in BMC of CF-1 mice injected with CM 1.5 and 3.0 mL/kg intravenous doses and 1.0, 2.0, 3.0 mL/kg intraperitoneal doses. The animals were beheaded 24 h after treatment by cervical dislocation, and femur BMC from each animal were used in the micronucleus test. The group treated with the highest intravenous injection of Urografina® 292 (3.0 mL/kg) presented an increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in relation at the control group (P<0.05). The results obtained after intraperitoneal administration of CM showed that all doses (1.0 mL/kg, 2.0 mL/kg and 3.0 mL/kg) increased the frequency of MNPCEs, being significantly different from the negative control (P< 0.01). The present results suggest that iodinated contrast media Urografina® 292 may cause a significant increase of cytogenetic damage in bone marrow cells of mice.

  5. Genetic damage in exfoliated cells from oral mucosa of individuals exposed to X-rays during panoramic dental radiographies.

    PubMed

    Cerqueira, E M M; Gomes-Filho, I S; Trindade, S; Lopes, M A; Passos, J S; Machado-Santelli, G M

    2004-08-08

    The genotoxic effects of X-ray emitted during dental panoramic radiography were evaluated in exfoliated cells from oral epithelium through a differentiated protocol of the micronucleus test. Thirty-one healthy individuals agreed to participate in this study and were submitted to this procedure for diagnosis purpose after being requested by the dentist. All of them answered a questionnaire before the examination. Cells were obtained from both sides of the cheek by gentle scrapping with a cervical brush, immediately before the exposure and after 10 days. Cytological preparations were stained according to Feulgen-Rossenbeck reaction and analyzed under light and laser scanning confocal microscopies. Micronuclei, nuclear projections (buds and broken eggs) and degenerative nuclear alterations (condensed chromatin, karyolysis and karyorrhexis) were scored. The frequencies of micronuclei, karyolysis and pycnosis were similar before and after exposure (P > 0.90), whereas the condensation of the chromatin and the karyorrhexis increased significantly after exposure (P < 0.0001). In contrast, both bud and broken egg frequencies were significantly higher before the examination (P < 0.005), suggesting that these structures are associated to the normal epithelium differentiation. The results suggest that the X-ray exposure during panoramic dental radiography induces a cytotoxic effect by increasing apoptosis. We also believe that the score of other nuclear alterations in addition to the micronucleus improves the sensitivity of genotoxic effects detection.

  6. Micronuclei as biomarkers for evaluating the risk of malignant transformation in the uterine cervix.

    PubMed

    Aires, G M A; Meireles, J R C; Oliveira, P C; Oliveira, J L; Araújo, E L; Pires, B C; Cruz, E S A; Jesus, N F; Pereira, C A B; Cerqueira, E M M

    2011-01-01

    We evaluated micronucleus and apoptosis occurrence among women with normal smears and women with different kinds of cervical abnormalities, i.e., inflammatory processes and low- and high-grade squamous intraepithelial lesions (N = 12, N = 10 and N = 27, respectively). The sample included 59 women who were seen at a public medical service for cervical cancer prevention in Feira de Santana, Bahia, Brazil. The diagnosis was established by means of cytological, colposcopic, and histopathological examination. Cytogenetic analysis was performed on 2000 cells from each woman and included assessment of micronuclei and nuclear degenerative abnormalities indicative of apoptosis (karyorrhexis, pyknosis and condensed chromatin). Micronucleus frequency was significantly higher in the women with high-grade squamous intraepithelial lesions than in the women without cervical abnormalities or inflammatory processes (P< 0.001) or in the women with low-grade squamous intraepithelial lesions (P < 0.005). The frequency of apoptosis was similar in women without cervical abnormalities and women showing high-grade squamous intraepithelial lesions (P > 0.50), and significantly lower in women without cervical abnormalities and in women showing high-grade squamous intraepithelial lesions than in women showing inflammatory processes or low-grade squamous intraepithelial lesions (P < 0.0001). These results indicate that, in addition to Papanicolaou cervical cytological analysis, it would be useful to use micronucleus analysis to screen women who are at risk of developing cervical cancer. The assessment of nuclear degenerative abnormalities indicative of apoptosis increased the sensitivity of this test.

  7. Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission

    PubMed Central

    Xiao, Chengfeng; Chen, Sheng; Li, Jizhao; Hai, Tao; Lu, Qiaofa; Sun, Enling; Wang, Ruibo; Tanguay, Robert M.; Wu, Tangchun

    2002-01-01

    Heat shock proteins (Hsps) have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli. Whether they protect against deoxyribonucleic acid (DNA) damage in individuals exposed to environmental stresses and chemical carcinogens is unknown. In the study, we investigated the association between Hsp70 levels (the most abundant mammalian Hsp) and genotoxic damage in lymphocytes of workers exposed to coke-oven emission using Western dot blot and 2 DNA damage assays, the comet assay and the micronucleus test. The data show that there is a significant increase in Hsp70 levels, DNA damage score, and micronucleus rates in lymphocytes of workers exposed to coke-oven emission as compared with the control subjects. Furthermore, there was a significant negative correlation of Hsp70 levels with DNA damage scores in the comet assay (r = −0.663, P < 0.01) and with micronucleus rates (r = −0.461, P < 0.01) in the exposed group. In the control group, there was also a light negative correlation between Hsp70 with DNA damage and micronuclei rate (r = −0.236 and r = 0.242, respectively), but it did not reach a statistically significant level (P > 0.05). Our results show that individuals who had high Hsp70 levels generally showed lower genotoxic damage than others. These results suggest a role of Hsp70 in the protection of DNA from genotoxic damage induced by coke-oven emission. PMID:12653484

  8. Intralaboratory and interlaboratory evaluation of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay.

    PubMed

    Hu, Ting; Kaluzhny, Yulia; Mun, Greg C; Barnett, Brenda; Karetsky, Viktor; Wilt, Nathan; Klausner, Mitchell; Curren, Rodger D; Aardema, Marilyn J

    2009-03-17

    A novel in vitro human reconstructed skin micronucleus (RSMN) assay has been developed using the EpiDerm 3D human skin model [R. D. Curren, G. C. Mun, D. P. Gibson, and M. J. Aardema, Development of a method for assessing micronucleus induction in a 3D human skin model EpiDerm, Mutat. Res. 607 (2006) 192-204]. The RSMN assay has potential use in genotoxicity assessments as a replacement for in vivo genotoxicity assays that will be banned starting in 2009 according to the EU 7th Amendment to the Cosmetics Directive. Utilizing EpiDerm tissues reconstructed with cells from four different donors, intralaboratory and interlaboratory reproducibility of the RSMN assay were examined. Seven chemicals were evaluated in three laboratories using a standard protocol. Each chemical was evaluated in at least two laboratories and in EpiDerm tissues from at least two different donors. Three model genotoxins, mitomycin C (MMC), vinblastine sulfate (VB) and methyl methanesulfonate (MMS) induced significant, dose-related increases in cytotoxicity and MN induction in EpiDerm tissues. Conversely, four dermal non-carcinogens, 4-nitrophenol (4-NP), trichloroethylene (TCE), 2-ethyl-1,3-hexanediol (EHD), and 1,2-epoxydodecane (EDD) were negative in the RSMN assay. Results between tissues reconstructed from different donors were comparable. These results indicate the RSMN assay using the EpiDerm 3D human skin model is a promising new in vitro genotoxicity assay that allows evaluation of chromosome damage following "in vivo-like" dermal exposures.

  9. Prediction of BRCA1 and BRCA2 mutation status using post-irradiation assays of lymphoblastoid cell lines is compromised by inter-cell-line phenotypic variability.

    PubMed

    Lovelock, Paul K; Wong, Ee Ming; Sprung, Carl N; Marsh, Anna; Hobson, Karen; French, Juliet D; Southey, Melissa; Sculley, Tom; Pandeya, Nirmala; Brown, Melissa A; Chenevix-Trench, Georgia; Spurdle, Amanda B; McKay, Michael J

    2007-09-01

    Assays to determine the pathogenicity of unclassified sequence variants in disease-associated genes include the analysis of lymphoblastoid cell lines (LCLs). We assessed the ability of several assays of LCLs to distinguish carriers of germline BRCA1 and BRCA2 gene mutations from mutation-negative controls to determine their utility for use in a diagnostic setting. Post-ionising radiation cell viability and micronucleus formation, and telomere length were assayed in LCLs carrying BRCA1 or BRCA2 mutations, and in unaffected mutation-negative controls. Post-irradiation cell viability and micronucleus induction assays of LCLs from individuals carrying pathogenic BRCA1 mutations, unclassified BRCA1 sequence variants or wildtype BRCA1 sequence showed significant phenotypic heterogeneity within each group. Responses were not consistent with predicted functional consequences of known pathogenic or normal sequences. Telomere length was also highly heterogeneous within groups of LCLs carrying pathogenic BRCA1 or BRCA2 mutations, and normal BRCA1 sequences, and was not predictive of mutation status. Given the significant degree of phenotypic heterogeneity of LCLs after gamma-irradiation, and the lack of association with BRCA1 or BRCA2 mutation status, we conclude that the assays evaluated in this study should not be used as a means of differentiating pathogenic and non-pathogenic sequence variants for clinical application. We suggest that a range of normal controls must be included in any functional assays of LCLs to ensure that any observed differences between samples reflect the genotype under investigation rather than generic inter-individual variation.

  10. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  11. Tradescantia-micronucleus (Trad-MCN) bioassay on clastogenicity of wastewater and in situ monitoring.

    PubMed

    Ruiz, E F; Rabago, V M; Lecona, S U; Perez, A B; Ma, T H

    1992-11-01

    The Tradescantia-micronucleus (Trad-MCN) bioassay was used to determine the clastogenicity of wastewater samples collected from the Arena canal which contains effluent from the industrial district Benito Juarez of the city of Queretaro, Mexico. Fifteen wastewater samples which were collected, in most cases, at bi-weekly intervals beginning in September 1986 through February 1988, after a 3-fold dilution were used to treat Tradescantia plant cuttings. The clastogenicity expressed in terms of micronucleus frequencies of treated groups (30 h of treatment without recovery time) was significantly (0.01) higher than that of the tapwater control groups. The Trad-MCN bioassay was also used for in situ monitoring of air pollutants for the clastogenicity at 3 sites near the industrial and residential areas (Flores Magon, Conalep and Bellas Artes) of the city of Queretaro. Fourteen monitoring trips were made to each of the 3 sites at monthly intervals beginning in May 1988 through June 1990. Seasonal variation of micronucleus frequencies was exhibited with the peak clastogenicities shown in May and June 1988, June 1989 and April 1990 at the three sites. Micronucleus frequencies of all the exposed groups at the Conalep site, a predominantly industrial area, were markedly higher than that of the laboratory control groups throughout the 2-year period.

  12. ACTIVITY OF 1, 1, 1- AND 1, 1, 3-TRICHLOROACETONES IN A CHROMOSOMAL ABERRATION ASSAY IN CHO CELLS AND THE MICRONUCLEUS AND SPERMHEAD ABNORMALITY ASSAYS IN MICE

    EPA Science Inventory

    1,1,1- and 1,1,3-trichloroacetones (TCA) result from the disinfection of municipal water supplies with chlorine, and are direct-acting mutagens in the Ames/Salmonella assay. The objective of this study was to further investigate the genotoxicity of these compounds in mammalian ce...

  13. Notes on two marine ciliates from the Yellow Sea, China: Placus salinus and Strombidium apolatum (Protozoa, Ciliophora)

    NASA Astrophysics Data System (ADS)

    Xu, Dapeng; Song, Weibo; Hu, Xiaozhong

    2005-04-01

    The living morphology and infraciliature of two rare marine ciliates, Placus salinus Dietz, 1964 and Strombidium apolatum Wilbert and Song, 2005, collected from the coastal waters near Qingdao, China, were investigated by in vivo observation and protargol impregnation technique. The improved diagnosis for Placus salinus is as follows: medium-sized marine Placus, in vivo (50-60)µm×(30-40)µm; cell elliptical to barrel-shaped; 28-31 somatic kineties; single macronucleus usually ellipsoid and one micronucleus located in the indention of the macronucleus; one contractile vacuole posteriorly positioned. Strombidium apolatum is characterized by: marine strombidium (40-60)µm×(30-45)µmm in vivo, cordiform in shape with somewhat pointed posterior end and conspicuous apical protrusion; extrusomes prominent, about 15µm in length and evenly arranged along the circle kinety; about 16 collar and 5-6 buccal membranelles; one elongate macronucleus and one micronucleus; circle and ventral kineties consisting of about 53 and 45 dikinetids respectively.

  14. SPERMATID MICRONUCLEUS ANALYSES OF TRICHLOROETHYLENE AND CHLORAL HYDRATE EFFECTS IN MICE

    EPA Science Inventory

    Mice were exposed by inhalation to trichloroethylene (TCE), or by i.p. injection to the TCE metabolite, chloral hydrate (CH). arly spermatids were analyzed for micronucleus (MN) frequency and kinetochore status (presence or absence) using fluorochrome-labeled anti-kinetochore ant...

  15. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    NASA Astrophysics Data System (ADS)

    Albrecht, C.; Knaapen, A. M.; Cakmak Demircigil, G.; Coskun, Erdem; van Schooten, F. J.; Borm, P. J. A.; Schins, R. P. F.

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.

  16. Genetic instability persists in non-neoplastic urothelial cells from patients with a history of urothelial cell carcinoma.

    PubMed

    de Castro Marcondes, João Paulo; de Oliveira, Maria Luiza Cotrim Sartor; Gontijo, Alisson M; de Camargo, João Lauro Viana; Salvadori, Daisy Maria Fávero

    2014-01-01

    Bladder cancer is one of the most common genitourinary neoplasms in industrialized countries. Multifocality and high recurrence rates are prominent clinical features of this disease and contribute to its high morbidity. Therefore, more sensitive and less invasive techniques could help identify individuals with asymptomatic disease. In this context, we used the micronucleus assay to evaluate whether cytogenetic alterations could be used as biomarkers for monitoring patients with a history of urothelial cell carcinoma (UCC). We determined the frequency of micronucleated urothelial cells (MNC) in exfoliated bladder cells from 105 patients with (n = 52) or without (n = 53) a history of UCC, all of whom tested negative for neoplasia by cytopathological and histopathological analyses. MNC frequencies were increased in patients with a history of UCC (non-smoker and smoker/ex-smoker patients vs non-smoker and smoker/ex-smoker controls; p<0.001), in non-smoker UCC patients (vs non-smoker controls; p<0.01), and in smoker/ex-smoker controls (vs non-smoker controls; p<0.001). Patients with a history of recurrent disease also demonstrated a higher MNC frequency compared to patients with non-recurrent neoplasia. However, logistic regression using smoking habits, age and gender as confounding factors did not confirm MNC frequency as a marker for UCC recurrence. Fluorescent in situ hybridization analysis (using a pan-centromeric probe) showed that micronuclei (MN) arose mainly from clastogenic events regardless of UCC and/or smoking histories. In conclusion, our results confirm previous indications that subjects with a history of UCC harbor genetically unstable cells in the bladder urothelium. Furthermore, these results support using the micronucleus assay as an important tool for monitoring patients with a history of UCC and tumor recurrence.

  17. [The route of a bacterium Holospora in the cell of Paramecium (Ciliophora, Protista) from phagosome to the nucleus].

    PubMed

    Sabaneeva, E V; Fokin, S I; Kornilova, E S

    2002-01-01

    Problems encountered at the initial stages of stable symbiotic system formation are discussed in the review. The most studied models for interaction between pathogenic bacteria and metazoan cells are compared with a similar system including Paramecium (a ciliatte)--Holospora (a bacterium). Literary and our own data on the infection of P. caudatum with specific endocytobionts inhabiting the nuclear apparatus (H. obtusa in the macronucleus), and H. undulata (in the micronucleus) are analysed with respect to the modern understanding of the intracellular vesicle trafficking.

  18. Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondovcik, Stephanie L.; Tamblyn, Laura; McPherson, John Peter

    2013-07-01

    Methylmercury (MeHg) is a persistent environmental contaminant with potent neurotoxic action for which the underlying molecular mechanisms remain to be conclusively delineated. Our objectives herein were twofold: first, to corroborate our previous findings of an increased sensitivity of spontaneously-immortalized oxoguanine glycosylase 1-null (Ogg1{sup −/−}) murine embryonic fibroblasts (MEFs) to MeHg through generation of Simian virus 40 (SV40) large T antigen-immortalized wild-type and Ogg1{sup −/−} MEFs; and second, to determine whether MeHg toxicity is proliferation-dependent. As with the spontaneously-immortalized cells used previously, the SV40 large T antigen-immortalized cells exhibited similar tendencies to undergo MeHg-initiated cell cycle arrest, with increased sensitivity inmore » the Ogg1{sup −/−} MEFs as measured by clonogenic survival and DNA damage. Compared to exponentially growing cells, those seeded at a higher density exhibited compromised proliferation, which proved protective against MeHg-mediated cell cycle arrest and induction of DNA double strand breaks (DSBs), measured by phosphorylation of the core histone H2A variant (H2AX) on serine 139 (γH2AX), and by its functional confirmation by micronucleus assessment. This enhanced sensitivity of Ogg1{sup −/−} MEFs to MeHg toxicity using discrete SV40 immortalization corroborates our previous studies, and suggests a novel role for OGG1 in minimizing MeHg-initiated DNA lesions that trigger replication-associated DSBs. Furthermore, proliferative capacity may determine MeHg toxicity in vivo and in utero. Accordingly, variations in cellular proliferative capacity and interindividual variability in repair activity may modulate the risk of toxicological consequences following MeHg exposure. - Highlights: • SV40 large T antigen-immortalized Ogg1{sup −/−} cells are more sensitive to MeHg. • Sensitivity to MeHg is dependent on cellular proliferation capacity. • OGG1 maintains genomic integrity following MeHg-initiated DNA damage. • OGG1 may limit MeHg-initiated DNA lesions that trigger replication-associated DSBs. • Variations in proliferation and repair activity may modulate toxicological risk.« less

  19. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet

    EPA Pesticide Factsheets

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  20. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date.

    PubMed

    Pfuhler, S; Fautz, R; Ouedraogo, G; Latil, A; Kenny, J; Moore, C; Diembeck, W; Hewitt, N J; Reisinger, K; Barroso, J

    2014-02-01

    The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests: The completed "False Positives" project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures. The on-going "3D skin model" project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages. The completed "Metabolism" project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure. The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake

    PubMed Central

    2009-01-01

    Lake Paranoá is a tropical reservoir for the City of Brasilia, which became eutrophic due to inadequate sewage treatment associated with intensive population growth. At present, two wastewater treatment plants are capable of processing up to 95% of the domestic sewage, thereby successfully reducing eutrophization. We evaluated both genotoxic and cytotoxic parameters in several fish species (Geophagus brasiliensis, Cichla temensis, Hoplias malabaricus, Astyanax bimaculatus lacustres, Oreochromis niloticus, Cyprinus carpio and Steindachnerina insculpita) by using the micronucleus (MN) test, the comet assay and nuclear abnormality assessment in peripheral erythrocytes. The highest frequencies of MN were found in Cichla temensis and Hoplias malabaricus, which were statistically significant when compared to the other species. However, Steindachnerina insculpita (a detritivorous and lake-floor feeder species) showed the highest index of DNA damage in the comet assay, followed by C. temensis (piscivorous). Nuclear abnormalities, such as binucleated, blebbed, lobed and notched cells, were used as evidence of cytotoxicity. Oreochromis niloticus followed by Hoplias malaricus, ominivorous/detritivotous and piscivorous species, respectively, presented the highest frequency of nuclear abnormalities, especially notched cells, while the herbivorous Astyanax bimaculatus lacustres showed the lowest frequency compared to the other species studied. Thus, for biomonitoring aquatic genotoxins under field conditions, the food web should also be considered. PMID:21637659

  2. What Can a Micronucleus Teach? Learning about Environmental Mutagenesis

    ERIC Educational Resources Information Center

    Linde, Ana R.; Garcia-Vazquez, Eva

    2009-01-01

    The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…

  3. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    PubMed

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  4. Genotoxicity of 2-bromo-3′-chloropropiophenone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fanxue; Yan, Jian; Li, Yan

    2013-07-15

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxicmore » impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of mutations, micronuclei and hypodiploids. • It induced ROS and addition of NAC blocked the genotoxicity of BCP. • Its genotoxic action is possibly mediated via generation of reactive metabolites.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.

    The exfoliated-cell micronucleus assay is a relatively new cytogenetic technique which can provide a measure of the genetic effect of exposure to carcinogens and mutagens in target tissues where tumors arise among exposed populations. It is responsive to the effects of ionizing radiation and tobacco smoke in some in vivo human cell systems, but has not been extensively field tested as an indicator of lung cancer-related effects, despite the public health importance of exposure to occupational and environmental lung carcinogens. In this study the exfoliated-cell micronucleus assay was used to assess effects of exposure to radon progeny and cigarette smokemore » in a population of uranium industry workers (including employees in underground and open-pit mines, mills, laboratories, and administrative offices); underground uranium miners experience markedly elevated lung cancer risk because of exposure to ionizing radiation from radon progeny. Ninety-nine workers were selected at random from among workers in Colorado Plateau uranium-related facilities who participated in a workplace sputum cytology screening program from 1964-1988. The prevalence of cells with micronuclei was determined by a manual assay of one sputum specimen for each worker under a light microscope. Occupational and smoking data obtained by interview during screening were used to classify exposure and smoking status at the time the sputum specimen was taken and to obtain information on potential confounders and effect modifiers; underground miners were classified as exposed to radon progeny, and others were considered unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of micronucleated cells. Crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CI 0.6-1.3), respectively, for radon exposure and smoking.« less

  6. Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells.

    PubMed

    Ustündağ, Aylin; Behm, Claudia; Föllmann, Wolfram; Duydu, Yalçin; Degen, Gisela H

    2014-06-01

    The toxic heavy metals cadmium (Cd) and lead (Pb) are important environmental pollutants which can cause serious damage to human health. As the metal ions (Cd(2+) and Pb(2+)) accumulate in the organism, there is special concern regarding chronic toxicity and damage to the genetic material. Metal-induced genotoxicity has been attributed to indirect mechanisms, such as induction of oxidative stress and interference with DNA repair. Boron is a naturally occurring element and considered to be an essential micronutrient, although the cellular activities of boron compounds remain largely unexplored. The present study has been conducted to evaluate potential protective effects of boric acid (BA) against genotoxicity induced by cadmium chloride (CdCl2) and lead chloride (PbCl2) in V79 cell cultures. Cytotoxicity assays (neutral red uptake and cell titer blue assay) served to determine suitable concentrations for subsequent genotoxicity assays. Chromosomal damage and DNA strand breaks were assessed by micronucleus tests and comet assays. Both PbCl2 and CdCl2 (at 3, 5 and 10 µM) were shown to induce concentration-dependent increases in micronucleus frequencies and DNA strand breaks in V79 cells. BA itself was not cytotoxic (up to 300 µM) and showed no genotoxic effects. Pretreatment of cells with low levels of BA (2.5 and 10 µM) was found to strongly reduce the genotoxic effects of the tested metals. Based on the findings of this in vitro study, it can be suggested that boron provides an efficient protection against the induction of DNA strand breaks and micronuclei by lead and cadmium. Further studies on the underlying mechanisms for the protective effect of boron are needed.

  7. Evaluation of genotoxic effects of lead in pottery-glaze workers using micronucleus assay, alkaline comet assay and DNA diffusion assay.

    PubMed

    Kašuba, V; Rozgaj, R; Milić, M; Zelježić, D; Kopjar, N; Pizent, A; Kljaković-Gašpić, Z; Jazbec, A

    2012-10-01

    We investigated genotoxic effects of occupational exposure to lead acetate in pottery-glaze ceramic workers. The study was carried out in 30 exposed workers and 30 matched controls, to whom several biochemical parameters-the blood lead (B-Pb; range: exposed, 41.68-404.77; controls, 12-52) and cadmium (B-Cd) level, the activity of delta-aminolevulinic acid dehydratase (ALAD), erythrocyte protoporphyrin (EP), the level of vitamin B(12) and folate in serum-were measured. The genotoxic effects were evaluated by the alkaline comet assay, the DNA diffusion assay and micronucleus test in peripheral blood lymphocytes. Subjects exposed to lead had significantly higher B-Pb level and, consequently, increased values of tail intensity (TI), frequency of apoptotic and necrotic cells, and frequency of micronuclei (MN). In contrast, their activity of ALAD, the level of vitamin B(12) and folate in serum were significantly lower compared to controls. Poisson regression analysis showed a significant correlation of profession, duration of exposure, smoking, level of cadmium in blood, ALAD and EP with primary DNA damage. A majority of primary damage repairs in a short period after exposure to a genotoxic agent. In addition, the influence of gender and level of vitamin B(12) and folate in serum MN frequency in exposed group was observed. In this study, DNA diffusion and micronucleus test showed higher influence of tested parameters to DNA damage. The results indicate a need for concomitant use of at least two different biomarkers of exposure when estimating a genetic risk of lead exposure.

  8. Experiences with the in vivo and in vitro comet assay in regulatory testing.

    PubMed

    Frötschl, Roland

    2015-01-01

    The in vivo comet assay has recently been implemented into regulatory genotoxicity testing of pharmaceuticals with inclusion into the ICH S2R1 guidance. Regulatory genotoxicity testing aims to detect DNA alterations in form of gene mutations, larger scale chromosomal damage and recombination and aneuploidy. The ICH S2R1 guideline offers two options of standard batteries of tests for the detection of these endpoints. Both options start with an AMES assay and option 1 includes an in vitro mammalian cell assay and an in vivo micronucleus assay in rodent, whereas option 2 includes an in vivo micronucleus assay in bone marrow in rodent and a second in vivo assay in a second tissue with a second endpoint. The test recommended as second in vivo test is the comet assay in rat liver. The in vivo comet assay is considered as mature enough to ensure reliable detection of relevant in vivo genotoxicants in combination with the micronucleus test in bone marrow and the AMES assay. Although lots of research papers have been published using the in vitro comet assay, the in vitro version has not been implemented into official regulatory testing guidelines. A survey of the years 1999-2014 revealed 27 in vivo comet assays submitted to BfArM with market authorisation procedures, European and national advice procedures and clinical trial applications. In three procedures, in vitro comet assays had been submitted within the genetic toxicology packages. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Application of dosimetry systems and cytogenetic status of the child population exposed to diagnostic X-rays by use of the cytokinesis-block micronucleus cytome assay.

    PubMed

    Gajski, Goran; Milković, Durđica; Ranogajec-Komor, Mária; Miljanić, Saveta; Garaj-Vrhovac, Vera

    2011-10-01

    Low-dose ionizing radiation used for medical purposes is one of the definite risk factors for cancer development, and children exposed to ionizing radiation are at a relatively greater cancer risk as they have more rapidly dividing cells than adults and have longer life expectancy. Since cytokinesis-block micronucleus cytome (CBMN Cyt) assay has become one of the standard endpoints for radiation biological dosimetry, we used that assay in the present work for the assessment of different types of chromosomal damage in children exposed to diagnostic X-ray procedures. Twenty children all with pulmonary diseases between the ages of 4 and 14 years (11.30 ± 2.74) were evaluated. Absorbed dose measurements were conducted for posterior-anterior projection on the forehead, thyroid gland, gonads, chest and back. Doses were measured using thermoluminescence and radiophotoluminescent dosimetry systems. It was shown that, after diagnostic X-rays, the mean total number of CBMN Cyt assay parameters (micronucleus, nucleoplasmic bridges and nuclear buds) was significantly higher than prior to diagnostic procedure and that interindividual differences existed for each monitored child. For the nuclear division index counted prior and after examination, no significant differences were noted among mean group values. These data suggest that even low-dose diagnostic X-ray exposure may induce damaging effect in the somatic DNA of exposed children, indicating that immense care should be given in both minimizing and optimizing radiation exposure to diminish the radiation burden, especially in the youngest population. Copyright © 2010 John Wiley & Sons, Ltd.

  10. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro.

    PubMed

    Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S

    2009-04-01

    This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential.

  11. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  12. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  13. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    PubMed Central

    Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication. PMID:28886142

  14. REDUCTION OF GENOTOXICITY OF A CREOSOTE-CONTAMINATED SOIL AFTER FUNGAL TREATMENT DETERMINED BY THE TRADESCANTIA-MICRONUCLEUS TEST

    EPA Science Inventory

    The fungal degradation of polyaromatic hydrocarbons (PAH) in a contaminated soil from a hazarous waste site was evaluated in a pilot-scale study. As some PAH are known to be mutagens, the Tradescantia-micronucleus test (TRAD-MCN) was selected to evaluate the genotoxicity of the s...

  15. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays.

    PubMed

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-François

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.

  16. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study

    PubMed Central

    Jara-Ettinger, Ana Cecilia; López-Tavera, Juan Carlos; Zavala-Cerna, María Guadalupe; Torres-Bugarín, Olivia

    2015-01-01

    Background An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders. Material and Methods We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls). Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age. Results Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis) did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor. Conclusions Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject. PMID:26244938

  17. Dose responses for adaption to low doses of (60)Co gamma rays and (3)H beta particles in normal human fibroblasts.

    PubMed

    Broome, E J; Brown, D L; Mitchel, R E J

    2002-08-01

    The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point.

  18. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers.

    PubMed

    Shaikh, Amrin; Barot, Darshana; Chandel, Divya

    2018-04-01

    Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation of gasoline fumes. The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  19. Evaluation of a multi-endpoint assay in rats, combining the bone-marrow micronucleus test, the Comet assay and the flow-cytometric peripheral blood micronucleus test.

    PubMed

    Bowen, Damian E; Whitwell, James H; Lillford, Lucinda; Henderson, Debbie; Kidd, Darren; Mc Garry, Sarah; Pearce, Gareth; Beevers, Carol; Kirkland, David J

    2011-05-18

    With the publication of revised draft ICH guidelines (Draft ICH S2), there is scope and potential to establish a combined multi-end point in vivo assay to alleviate the need for multiple in vivo assays, thereby reducing time, cost and use of animals. Presented here are the results of an evaluation trial in which the bone-marrow and peripheral blood (via MicroFlow(®) flow cytometry) micronucleus tests (looking at potential chromosome breakage and whole chromosome loss) in developing erythrocytes or young reticulocytes were combined with the Comet assay (measuring DNA strand-breakage), in stomach, liver and blood lymphocytes. This allowed a variety of potential target tissues (site of contact, site of metabolism and peripheral distribution) to be assessed for DNA damage. This combination approach was performed with minimal changes to the standard and regulatory recommended sampling times for the stand-alone assays. A series of eight in vivo genotoxins (2-acetylaminofluorene, benzo[a]pyrene, carbendazim, cyclophosphamide, dimethylnitrosamine, ethyl methanesulfonate, ethyl nitrosourea and mitomycin C), which are known to act via different modes of action (direct- and indirect-acting clastogens, alkylating agents, gene mutagens, cross-linking and aneugenic compounds) were tested. Male rats were dosed at 0, 24 and 45 h, and bone marrow and peripheral blood (micronucleus endpoint), liver, whole blood and stomach (Comet endpoint) were sampled at three hours after the last dose. Comet and micronucleus responses were as expected based on available data for conventional (acute) stand-alone assays. All compounds were detected as genotoxic in at least one of the endpoints. The importance of evaluating both endpoints was highlighted by the uniquely positive responses for certain chemicals (benzo[a]pyrene and 2-acetylaminofluorene) with the Comet endpoint and certain other chemicals (carbendazim and mitomycin C) with the micronucleus endpoint. The data generated from these investigations demonstrate the suitability of the multi-endpoint design. 2011 Elsevier B.V. All rights reserved.

  20. No Evidence for a Low Linear Energy Transfer Adaptive Response in Irradiated RKO Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.

    2011-01-06

    It has become increasingly evident from reports in the literature that there are many confounding factors that are capable of modulating radiation induced non-targeted responses such as the bystander effect and the adaptive response. In this paper we examine recent data that suggest that the observation of non-targeted responses may not be universally observable for differing radiation qualities. We have conducted a study of the adaptive response following low LET exposures for human colon carcinoma cells and failed to observe adaption for the endpoints of clonogenic survival or micronucleus formation.

  1. [Changes in cellular radiosensitivity after low dose irradiation].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Akleev, A V

    2012-01-01

    When the adaptive response (AR) was studied on human blood lymphocytes, a new dependence was discovered. This dependence defines the direction of the radiosensitivity change after a low dose of irradiation. Using micronucleus (MN) test with cytochalasin B the dependence between the cell reaction after low level irradiation and radiosensititvity (the effect after irradiation at the dose of 1 Gy) was observed. The negative correlation between the frequency of AR manifestation, sensibilization, intermediate links and radiosensitivity was discovered. This regularity is observed in the population of Moscow, Obninsk, Chelyabinsk region (irradiated and control) inhabitants, Chernobyl accident liquidators, Moscow children, in individuals with Hodgkin's lymphoma before and during treatment. The negative correlation is also noted by AR determination with two irradiation schemes: in one or two different cell cycle phases (G1-G1 or G1-G2). Similar links are observed using the chromosome methaphase analysis (the frequency of cells with chromosome aberrations). So, the results of the experiments conducted allow us to suppose that the connection between the cell radiosensitivity and a different type of reaction after low dose irradiation--from AR to the increase in radiosensitivity (sensibilization) is a general regularity. AR is induced by low level irradiation and high cell radiosensitivity, while sensibilization is induced by low radiosensitivity. Since AR and sensibilization can be induced not only by irradiation, but many different chemicals and physical agents, the described correlation can be observed in the case of different exposures. Cellular AR and sensibilization are integral indexes depending on many genetic and epigenetic factors, as well as on the initiation of a large number of events. However, the discovered mechanisms of interrelations are still difficult to explain.

  2. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would otherwise die or be rendered reproductively inactive in 2-D culture.

  3. In vitro protective effects of botryosphaeran, a (1→3;1→6)-β-d-glucan, against mutagens in normal and tumor rodent cells.

    PubMed

    Kerche-Silva, Leandra E; Cólus, Ilce M S; Malini, Maressa; Mori, Mateus Prates; Dekker, Robert F H; Barbosa-Dekker, Aneli M

    2017-02-01

    Botryosphaeran (BOT) is an exocellular β-d-glucan (carbohydrate biopolymer) of the (1→3;1→6)-linked type produced by Botryosphaeria rhodina MAMB-05. The cytotoxic, mutagenic, genotoxic, and protective effects of this substance were evaluated in Chinese hamster lung fibroblasts (V79) and rat hepatocarcinoma cells (HTC) by the micronucleus test (MN) and the comet assay. BOT was not genotoxic in either cell line; it decreased the clastogenic effects of doxorubicin, H 2 O 2 , and benzo[a]pyrene. These results indicate that BOT may have potential as a therapeutic agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay.

    PubMed

    Llana-Ruiz-Cabello, María; Maisanaba, Sara; Puerto, María; Prieto, Ana I; Pichardo, Silvia; Moyano, Rosario; González-Pérez, José A; Cameán, Ana M

    2016-12-01

    Genotoxic data of substances which could be incorporated into food packaging are required by the European Food Safety Authority. Due to its antioxidant and antibacterial properties carvacrol is one of these compounds. This work aims to study for the first time the in vivo genotoxic effects produced in rats orally exposed to 81, 256 or 810 mg cavacrol/kg body weight (bw) at 0, 24 and 45 h. A combination of the micronucleus assay (OECD 474) in bone marrow and the standard (OECD 489) and enzyme-modified comet assay was used to determine the genotoxicity on cells isolated from stomach and liver of exposed animals. In addition, a histopathological study was performed on the assayed tissues, and also in the lungs due to the volatility of carvacrol. Direct analytical pyrolysis was used to search for carvacrol in viscera and to ensure that the compound reaches stomach and liver cells. Results from MN-comet assay revealed that carvacrol (81-810 mg/kg bw) did not induce in vivo genotoxicity or oxidative DNA damage in any of the tissues investigated. Moreover, no histopathological changes were observed. Altogether, these results suggest lack of genotoxicity of carvacrol and therefore its good profile for its potential application as food preservative. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Differences in genotoxic activity of alpha-Ni3S2 on human lymphocytes from nickel-hypersensitized and nickel-unsensitized donors.

    PubMed

    Arrouijal, F Z; Marzin, D; Hildebrand, H F; Pestel, J; Haguenoer, J M

    1992-05-01

    The genotoxic activity of alpha-Ni3S2 was assessed on human lymphocytes from nickel-hypersensitized (SSL) and nickel-unsensitized (USL) subjects. Three genotoxicity tests were performed: the sister chromatid exchange (SCE) test, the metaphase analysis test and the micronucleus test. (i) The SCE test (3-100 micrograms/ml) showed a weak but statistically significant increase in the number of SCE in both lymphocyte types with respect to controls, USL presenting a slightly higher SCE incidence but only at one concentration. (ii) The metaphase analysis test demonstrated a high dose-dependent clastogenic activity of alpha-Ni3S2 in both lymphocyte types. The frequency of chromosomal anomalies was significantly higher in USL than in SSL for all concentrations applied. (iii) The micronucleus test confirmed the dose-dependent clastogenic activity of alpha-Ni3S2 and the differences already observed between USL and SSL, i.e. the number of cells with micronuclei was statistically higher in USL. Finally, the incorporation study with alpha-63Ni3S2 showed a higher uptake of its solubilized fraction by USL. This allows an explanation of the different genotoxic action of nickel on the two cell types. In this study we demonstrated that hypersensitivity has an influence on the incorporation of alpha-Ni3S2 and subsequently on the different induction of chromosomal aberrations in human lymphocytes.

  6. Assessment  of  Genotoxicity  Among  Rubber  Industry Workers  Occupationally  Exposed  to  Toxic  Agents  Using Micronucleus  Assay.

    PubMed

    Gemitha, Gem; Sudha, Sellappa

    2013-01-01

    Occupational and environmental exposures mostly represent complexmixture of genotoxic agents, however there is a wide variation in the specificity of biomarkers. Exploration of correlations among biomarkers contributes to the further progress of molecular cancer epidemiology and to the selection of the optimal biomarkers for the investigation of human exposure to carcinogens. The aim of this study was to assess the potential cytogenetic damage associated with occupational exposure to toxic agents among rubber industry workers by using Micronucleus (MN) assay. In the present study 35 occupationally exposed rubber industry workers and 30 controls were investigated for genetic damage. Both the exposed and control individuals were selected from rural areas of South India. Exfoliated Buccal cells were collected from the study population and examined for the presence of MN. Rubber industry workers showed a significant increase in micronucleated cells when compared to controls with respect to their smoking and drinking habits (P< 0.05). The present study suggested that occupational exposure to toxic chemicals in rubber industry can cause genetic damage. MN formation reflects genetic changes and/or events associated with carcinogenesis. Therefore the results of this study indicate that rubber industry workers may be at the risk of cancer. Therefore, it is important to take appropriate measures to protect the workers from occupational hazards.

  7. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment.

    PubMed

    Garaj-Vrhovac, Vera; Gajski, Goran; Pažanin, Senijo; Sarolić, Antonio; Domijan, Ana-Marija; Flajs, Dubravka; Peraica, Maja

    2011-01-01

    Due to increased usage of microwave radiation, there are concerns of its adverse effect in today's society. Keeping this in view, study was aimed at workers occupationally exposed to pulsed microwave radiation, originating from marine radars. Electromagnetic field strength was measured at assigned marine radar frequencies (3 GHz, 5.5 GHz and 9.4 GHz) and corresponding specific absorption rate values were determined. Parameters of the comet assay and micronucleus test were studied both in the exposed workers and in corresponding unexposed subjects. Differences between mean tail intensity (0.67 vs. 1.22) and moment (0.08 vs. 0.16) as comet assay parameters and micronucleus test parameters (micronuclei, nucleoplasmic bridges and nuclear buds) were statistically significant between the two examined groups, suggesting that cytogenetic alterations occurred after microwave exposure. Concentrations of glutathione and malondialdehyde were measured spectrophotometrically and using high performance liquid chromatography. The glutathione concentration in exposed group was significantly lower than in controls (1.24 vs. 0.53) whereas the concentration of malondialdehyde was significantly higher (1.74 vs. 3.17), indicating oxidative stress. Results suggests that pulsed microwaves from working environment can be the cause of genetic and cell alterations and that oxidative stress can be one of the possible mechanisms of DNA and cell damage. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity

    PubMed Central

    Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.

    2015-01-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  9. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay.more » Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel radiosensitizer for human breast cancer. • Enterolactone pretreatment enhances radiation induced apoptosis. • Enterolactone pretreatment impairs repair of radiation-induced DNA damages. • Chromosomal aberrations increases in cells receiving enterolactone and X-ray. • Micronuclei formation is elevated after combined treatment with enterolactone.« less

  10. The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells

    PubMed Central

    Helm, Alexander; Lee, Ryonfa; Durante, Marco; Ritter, Sylvia

    2016-01-01

    Damage to the endothelium of blood vessels, which may occur during radiotherapy, is discussed as a potential precursor to the development of cardiovascular disease. We thus chose human umbilical vein endothelial cells as a model system to examine the effect of low- and high-linear energy transfer (LET) radiation. Cells were exposed to 250 kV X-rays or carbon ions (C-ions) with the energies of either 9.8 MeV/u (LET = 170 keV/μm) or 91 MeV/u (LET = 28 keV/μm). Subculture of cells was performed regularly up to 46 days (~22 population doublings) post-irradiation. Immediately after exposure, cells were seeded for the colony forming assay. Additionally, at regular intervals, mitochondrial membrane potential (MMP) (JC-1 staining) and cellular senescence (senescence-associated β-galactosidase staining) were assessed. Cytogenetic damage was investigated by the micronucleus assay and the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. Analysis of radiation-induced damage shortly after exposure showed that C-ions are more effective than X-rays with respect to cell inactivation or the induction of cytogenetic damage (micronucleus assay) as observed in other cell systems. For 9.8 and 91 MeV/u C-ions, relative biological effectiveness values of 2.4 and 1.5 were obtained for cell inactivation. At the subsequent time points, the number of micronucleated cells decreased to the control level. Analysis of chromosomal damage by mFISH technique revealed aberrations frequently involving chromosome 13 irrespective of dose or radiation quality. Disruption of the MMP was seen only a few days after exposure to X-rays or C-ions. Cellular senescence was not altered by radiation at any time point investigated. Altogether, our data indicate that shortly after exposure C-ions were more effective in damaging endothelial cells than X-rays. However, late damage to endothelial cells was not found for the applied conditions and endpoints. PMID:26835420

  11. Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice.

    PubMed

    Wickliffe, Jeffrey K; Dertinger, Stephen D; Torous, Dorothea K; Avlasevich, Svetlana L; Simon-Friedt, Bridget R; Wilson, Mark J

    2016-12-01

    Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p < 0.02) in erythrocytes as compared to non-obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Structural and numerical chromosome aberration inducers in liver micronucleus test in rats with partial hepatectomy.

    PubMed

    Itoh, Satoru; Hattori, Chiharu; Nagata, Mayumi; Sanbuissho, Atsushi

    2012-08-30

    The liver micronucleus test is an important method to detect pro-mutagens such as active metabolites not reaching bone marrow due to their short lifespan. We have already reported that dosing of the test compound after partial hepatectomy (PH) is essential to detect genotoxicity of numerical chromosome aberration inducers in mice [Mutat. Res. 632 (2007) 89-98]. In naive animals, the proportion of binucleated cells in rats is less than half of that in mice, which suggests a species difference in the response to chromosome aberration inducers. In the present study, we investigated the responses to structural and numerical chromosome aberration inducers in the rat liver micronucleus test. Two structural chromosome aberretion inducers (diethylnitrosamine and 1,2-dimethylhydrazine) and two numerical chromosome aberration inducers (colchicine and carbendazim) were used in the present study. PH was performed a day before or after the dosing of the test compound in 8-week old male F344 rats and hepatocytes were isolated 4 days after the PH. As a result, diethylnitrosamine and 1,2-dimethylhydrazine, structural chromosome aberration inducers, exhibited significant increase in the incidence of micronucleated hepatocyte (MNH) when given either before and after PH. Colchicine and carbendazim, numerical chromosome aberration inducers, did not result in any toxicologically significant increase in MNH frequency when given before PH, while they exhibited MNH induction when given after PH. It is confirmed that dosing after PH is essential in order to detect genotoxicity of numerical chromosome aberration inducers in rats as well as in mice. Regarding the species difference, a different temporal response to colchicine was identified. Colchicine increased the incidence of MNH 4 days after PH in rats, although such induction in mice was observed 8-10 days after PH. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Limited ability of DNA polymerase kappa to suppress benzo[a]pyrene-induced genotoxicity in vivo.

    PubMed

    Masumura, Kenichi; Toyoda-Hokaiwado, Naomi; Niimi, Naoko; Grúz, Petr; Wada, Naoko A; Takeiri, Akira; Jishage, Kou-Ichi; Mishima, Masayuki; Nohmi, Takehiko

    2017-12-01

    DNA polymerase kappa (Polk) is a specialized DNA polymerase involved in translesion DNA synthesis. To understand the protective roles against genotoxins in vivo, we established inactivated Polk knock-in gpt delta (inactivated Polk KI) mice that possessed reporter genes for mutations and expressed inactive Polk. In this study, we examined genotoxicity of benzo[a]pyrene (BP) to determine whether Polk actually suppressed BP-induced genotoxicity as predicted by biochemistry and in vitro cell culture studies. Seven-week-old inactivated Polk KI and wild-type (WT) mice were treated with BP at doses of 5, 15, or 50 mg/(kg·day) for three consecutive days by intragastric gavage, and mutations in the colon and micronucleus formation in the peripheral blood were examined. Surprisingly, no differences were observed in the frequencies of mutations and micronucleus formation at 5 or 50 mg/kg doses. Inactivated Polk KI mice exhibited approximately two times higher gpt mutant frequency than did WT mice only at the 15 mg/kg dose. The frequency of micronucleus formation was slightly higher in inactivated Polk KI than in WT mice at the same dose, but it was statistically insignificant. The results suggest that Polk has a limited ability to suppress BP-induced genotoxicity in the colon and bone marrow and also that the roles of specialized DNA polymerases in mutagenesis and carcinogenesis should be examined not only by in vitro assays but also by in vivo mouse studies. We also report the spontaneous mutagenesis in inactivated Polk KI mice at young and old ages. Environ. Mol. Mutagen. 58:644-653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible.

    PubMed

    Speit, Günter; Gminski, Richard; Tauber, Rudolf

    2013-08-15

    Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Comparative evaluation of genotoxicity by micronucleus assay in the buccal mucosa over comet assay in peripheral blood in oral precancer and cancer patients.

    PubMed

    Katarkar, Atul; Mukherjee, Sanjit; Khan, Masood H; Ray, Jay G; Chaudhuri, Keya

    2014-09-01

    Early detection and quantification of DNA damage in oral premalignancy or malignancy may help in management of the disease and improve survival rates. The comet assay has been successfully utilised to detect DNA damage in oral premalignant or malignancy. However, due to the invasive nature of collecting blood, it may be painful for many unwilling patients. This study compares the micronucleus (MN) assay in oral buccal mucosa cells with the comet assay in peripheral blood cells in a subset of oral habit-induced precancer and cancer patients. For this, MN assay of exfoliated epithelial cells was compared with comet assay of peripheral blood leucocytes among 260 participants, including those with oral lichen planus (OLP; n = 52), leukoplakia (LPK; n = 51), oral submucous fibrosis (OSF; n = 51), oral squamous cell carcinoma (OSCC; n = 54) and normal volunteers (n = 52). Among the precancer groups, LPK patients showed significantly higher levels of DNA damage as reflected by both comet tail length (P < 0.0001) and micronuclei (MNi) frequency (P = 0.0009). The DNA damage pattern in precancer and cancer patients was OLP < OSF < LPK < OSCC, and with respective oral habits, it was multiple habits > cigarette + khaini > cigarette smokers > areca + khaini > areca. There was no significant difference in the comet length and MNi frequency between males and females who had oral chewing habits. An overall significant correlation was observed between MNi frequency and comet tail length with r = 0.844 and P < 0.0001. Thus, the extent of DNA damage evaluation by the comet assay in peripheral blood cells is perfectly reflected by the MN assay on oral exfoliated epithelial cells, and MNi frequency can be used with the same effectiveness and greater efficiency in early detection of oral premalignant conditions. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Application of the TGx‐28.65 transcriptomic biomarker to classify genotoxic and non‐genotoxic chemicals in human TK6 cells in the presence of rat liver S9

    PubMed Central

    Buick, Julie K.; Williams, Andrew; Swartz, Carol D.; Recio, Leslie; Li, Heng‐Hong; Fornace, Albert J.; Thomson, Errol M.; Aubrecht, Jiri

    2016-01-01

    In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx‐28.65) for classifying agents as genotoxic (DNA damaging) and non‐genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co‐exposed to 1% 5,6 benzoflavone/phenobarbital‐induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor‐, benzoflavone/phenobarbital‐, or ethanol‐induced rat liver S9 to expand TGx‐28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co‐exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor‐ and 5% ethanol‐induced S9 alone did not induce the TGx‐28.65 biomarker genes. Seven genotoxic and two non‐genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post‐exposure. Genotoxic/non‐genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co‐treated with dexamethasone and 10% Aroclor‐induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx‐28.65 is a sensitive biomarker of genotoxicity. A meta‐analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx‐28.65 biomarker. Environ. Mol. Mutagen. 57:243–260, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society PMID:26946220

  17. Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene.

    PubMed

    Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos

    2012-06-01

    Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the development of a life cycle test with freshwater snails even for undertaking multigeneration studies focused on transgenerational effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface.

    PubMed

    Camargo, Samira Esteves Afonso; Jóias, Renata Pilli; Santana-Melo, Gabriela Fátima; Ferreira, Lara Tolentino; El Achkar, Vivian Narana Ribeiro; Rode, Sigmar de Mello

    2014-12-01

    To evaluate the cytotoxicity and genotoxicity of whitening and common toothpastes, and the surface roughness of tooth enamel submitted to brushing with both toothpastes. Samples of whitening toothpastes [Colgate Whitening (CW) and Oral-B Whitening (OBW)] and regular (non-whitening) toothpastes (Colgate and Oral-B) were extracted in culture medium. Gingival human fibroblasts (FMM-1) were placed in contact with different dilutions of culture media that had been previously exposed to such materials, and the cytotoxicity was evaluated using the MTT assay. The genotoxicity was assessed by the micronucleus formation assay in Chinese hamster fibroblasts (V79). The cell survival rate and micronuclei number were assessed before and after exposure to the toothpaste extracts. For the surface roughness evaluation, 20 bovine tooth specimens, divided into four groups according to toothpastes, were submitted to 10,000 brushing cycles. The results were analyzed using the Mann-Whitney U and two-way ANOVA tests (P < 0.05). MTT assay showed that Colgate was significantly less cytotoxic than CW, Oral-B and OBW at all dilutions (P < 0.01). CW was the most cytotoxic toothpaste (P < 0.01). The whitening toothpastes showed the highest numbers of micronuclei compared to the untreated control (UC) (P < 0.01). Colgate and Oral-B toothpastes were not genotoxic compared to UC (P = 0.326). The OBW toothpaste was statistically significantly abrasive to the enamel surface (P < 0.01). The whitening toothpastes and Oral-B were cytotoxic to the cells. The whitening toothpastes were more genotoxic to cells in vitro than the common toothpastes, and genotoxicity was more pronounced in the OBW toothpaste.

  19. Genotoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes.

    PubMed

    Obiakor, M O; Okonkwo, J C; Ezeonyejiaku, C D

    2014-12-01

    Genotoxicity of Anambra River was studied by micronucleus (MN) assay of preponderant fish species in the river. The micronucleus indices obtained were used as biomarker to estimate and predict pollution profile and possible danger of feeding on the aquatic species. Micronuclei profile of the fish was measured from gill and kidney erythrocytes using microscopic technique. Season, species and location effects on micronuclei, together with their interactions were also determined. Two major seasons (rainy and dry) and preponderant fish species in the river (Synodontis clarias, Linnaeus, 1758 and Tilapia nilotica, Linnaeus, 1757) were studied at five distinct locations that displayed differential environmental stresses. The study showed that the micronucleus index of fish is an excellent biomarker for measuring pollution level and genotoxicity of freshwater habitat. Season, species of fish and location affect micronuclei profile of the fish species sampled in the river. Disease outbreak among rural dwellers depending on the river for domestic and other uses is imminent and they lack knowledge on its health implication. Moreover, the study maintained that the micronuclei in fish could be measured from either the gill or kidney; however, gill is more efficient as it enables collection of several samples from the same individuals without sacrificing it, and Synodontis clarias fish species appeared to be more vulnerable to the genotoxic damage than Tilapia nilotica. Consequently, the study recommended regular monitoring (micronucleus tests) of edible aquatic life such as Synodontis clarias in order to eliminate the danger of people feeding on toxic metals, some of which are carcinogenic. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    PubMed

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  1. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

  2. Functional Study of Genes Essential for Autogamy and Nuclear Reorganization in Paramecium▿§

    PubMed Central

    Nowak, Jacek K.; Gromadka, Robert; Juszczuk, Marek; Jerka-Dziadosz, Maria; Maliszewska, Kamila; Mucchielli, Marie-Hélène; Gout, Jean-François; Arnaiz, Olivier; Agier, Nicolas; Tang, Thomas; Aggerbeck, Lawrence P.; Cohen, Jean; Delacroix, Hervé; Sperling, Linda; Herbert, Christopher J.; Zagulski, Marek; Bétermier, Mireille

    2011-01-01

    Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis. PMID:21257794

  3. Effect of Processing, Post-Harvest Irradiation, and Production System on the Cytotoxicity and Mutagenicity of Vitis labrusca L. Juices in HTC Cells

    PubMed Central

    Düsman, Elisângela; de Almeida, Igor Vivian; Lucchetta, Luciano; Vicentini, Veronica Elisa Pimenta

    2014-01-01

    The juices of grapes (Vitis labrusca L.) are similar to the fruit itself because the main constituents of the fruit are present in the juice. However, their quality characteristics may be modified by the harsh technological processes used for the production of integral food, such as production systems of raw materials and post-harvest treatment of grapes with ultraviolet (UV) irradiation. Therefore, the present study analyzed juices produced naturally (by liquefying the fruit) or by the technological process of extraction by steam distillation (90°C) of grapes from organic and conventional production systems that were untreated or treated with UV type C (65.6 J/m2 for 10 minutes). Using cultures of Rattus norvegicus hepatoma cells (HTC) in vitro, cytotoxic effects were assayed by the MTT test and by calculating the cytokinesis blocked proliferation index (CBPI), and mutagenic effects were measured by the cytokinesis block micronucleus assay. The results of the MTT assay and the CBPIs indicated that none of the juices were cytotoxic, including those that induced cell proliferation. The results of the micronucleus assay showed that none of the juices were mutagenic. However, the average number of micronuclei was lower in the juices produced from organic grapes, and cell proliferation, soluble acids and phenolic compounds were significantly higher. Compared with the natural juices, the integral juices of conventional grapes showed a higher average number of micronuclei as well as lower stimulation of cell proliferation and lower levels of bioactive compounds. The results demonstrate a beneficial effect of UV-C irradiation of post-harvest grapes in stimulating the synthesis of nutraceutical compounds without generating cytotoxic or mutagenic substances. Taken together, our findings support the consumption of grape juice and the application of food production techniques that enhance its nutritional value and promote its production, marketing and consumption. PMID:25244067

  4. Effect of processing, post-harvest irradiation, and production system on the cytotoxicity and mutagenicity of Vitis labrusca L. juices in HTC cells.

    PubMed

    Düsman, Elisângela; de Almeida, Igor Vivian; Lucchetta, Luciano; Vicentini, Veronica Elisa Pimenta

    2014-01-01

    The juices of grapes (Vitis labrusca L.) are similar to the fruit itself because the main constituents of the fruit are present in the juice. However, their quality characteristics may be modified by the harsh technological processes used for the production of integral food, such as production systems of raw materials and post-harvest treatment of grapes with ultraviolet (UV) irradiation. Therefore, the present study analyzed juices produced naturally (by liquefying the fruit) or by the technological process of extraction by steam distillation (90°C) of grapes from organic and conventional production systems that were untreated or treated with UV type C (65.6 J/m² for 10 minutes). Using cultures of Rattus norvegicus hepatoma cells (HTC) in vitro, cytotoxic effects were assayed by the MTT test and by calculating the cytokinesis blocked proliferation index (CBPI), and mutagenic effects were measured by the cytokinesis block micronucleus assay. The results of the MTT assay and the CBPIs indicated that none of the juices were cytotoxic, including those that induced cell proliferation. The results of the micronucleus assay showed that none of the juices were mutagenic. However, the average number of micronuclei was lower in the juices produced from organic grapes, and cell proliferation, soluble acids and phenolic compounds were significantly higher. Compared with the natural juices, the integral juices of conventional grapes showed a higher average number of micronuclei as well as lower stimulation of cell proliferation and lower levels of bioactive compounds. The results demonstrate a beneficial effect of UV-C irradiation of post-harvest grapes in stimulating the synthesis of nutraceutical compounds without generating cytotoxic or mutagenic substances. Taken together, our findings support the consumption of grape juice and the application of food production techniques that enhance its nutritional value and promote its production, marketing and consumption.

  5. Micronucleus assay in aquatic animals.

    PubMed

    Bolognesi, Claudia; Hayashi, Makoto

    2011-01-01

    Aquatic pollutants produce multiple consequences at organism, population, community and ecosystem level, affecting organ function, reproductive status, population size, species survival and thus biodiversity. Among these, carcinogenic and mutagenic compounds are the most dangerous as their effects may exert a damage beyond that of individual and may be active through several generations. The application of genotoxicity biomarkers in sentinel organisms allows for the assessment of mutagenic hazards and/or for the identification of the sources and fate of the contaminants. Micronucleus (MN) test as an index of accumulated genetic damage during the lifespan of the cells is one of the most suitable techniques to identify integrated response to the complex mixture of contaminants. MN assay is today widely applied in a large number of wild and transplanted aquatic species. The large majority of studies or programmes on the genotoxic effect of the polluted water environment have been carried out with the use of bivalves and fish. Haemocytes and gill cells are the target tissues most frequently considered for the MN determination in bivalves. The MN test was widely validated and was successfully applied in a large number of field studies using bivalves from the genera Mytilus. MN in fish can be visualised in different cell types: erythrocytes and gill, kidney, hepatic and fin cells. The use of peripheral erythrocytes is more widely used because it avoids the complex cell preparation and the killing of the animals. The MN test in fish erythrocytes was validated in laboratory with different species after exposure to a large number of genotoxic agents. The erythrocyte MN test in fish was also widely and frequently applied for genotoxicity assessment of freshwater and marine environment in situ using native or caged animals following different periods of exposure. Large interspecies differences in sensitivity for MN induction were observed. Further validation studies are needed in order to better characterise the different types of nuclear alterations and to clarify the role of biotic and abiotic factors in interspecies and inter-individual variability.

  6. Experimental research on the in vitro antitumor effects of Crataegus sanguinea.

    PubMed

    Sun, Jianling; Gao, Guolan; Gao, YuLian; Xiong, LiJuan; Li, Xiaoying; Guo, Jihong; Zhang, Yueming

    2013-09-01

    Crataegus sanguinea is a wild plant, which has been widely grown in the north and south of the Tianshan mountains in Xinjiang. In order to explore their anti-cancer properties, edible wild plants from Xinjiang have been tested for their antitumor properties. We used Ames tests, mouse bone marrow polychromatic erythrocytes micronucleus tests, and tumor cells cultured in vitro to study the anti-mutagenic and anti-tumor effects of C. sanguinea extract. We have shown that C. sanguinea has anti-mutagenic effect, but no mutagenicity. Cell culture in vitro experiments show that there is no inhibition of growth or increase in cell death on normal mouse fibroblasts, but a stronger inhibition of cell growth and an increase in cell death of Hep-2 and MGC-803 tumor cells. The results of this study illustrate that C. sanguinea extract has both anti-mutagenic and anti-tumor effects.

  7. Genotoxic effect of Physalis angulata L. (Solanaceae) extract on human lymphocytes treated in vitro.

    PubMed

    Alves dos Santos, Raquel; Cabral, Teresinha Rosa; Cabral, Isabel Rosa; Antunes, Lusânia Maria; Pontes Andrade, Cristiane; Cerqueira dos Santos Cardoso, Plínio; de Oliveira Bahia, Marcelo; Pessoa, Claudia; Martins do Nascimento, José Luis; Rodríguez Burbano, Rommel; Takahashi, Catarina Satie

    2008-08-01

    Physalis angulata L (Solanaceae) is a medicinal plant from North of Brazil, whose different extracts and infusions are commonly used in the popular medicine for the treatment of malaria, asthma, hepatitis, dermatitis and rheumatism. However, the genotoxic effects of P. angulata on human cells is not well known. The main purpose of the present study was to evaluate the in vitro genotoxic effects of aqueous extract of P. angulata using the comet assay and the micronucleus assay in human lymphocytes provided from 6 healthy donors. Treatments with P. angulata extracts were performed in vitro in order to access the extent of DNA damage. The comet assay has shown that treatments with P. angulata at 0.5, 1.0, 2.0, 3.0 and 6.0 microg/mL in culture medium were genotoxic. Lymphocytes treated with P. angulata at the concentrations of 3.0 and 6.0 microg/mL in culture medium showed a statistically significant increase in the frequency of micronucleus (p<0.05), however, the cytokinesis blocked proliferation index (CBPI) was not decreased after P. angulata treatment. In conclusion, the present work demonstrated the genotoxic effects of P. angulata extract on human lymphocytes in vitro.

  8. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro.

    PubMed

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment.Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm(2) to 2 mW/cm(2), representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction.

  9. Terahertz Electromagnetic Fields (0.106 THz) Do Not Induce Manifest Genomic Damage In Vitro

    PubMed Central

    Hintzsche, Henning; Jastrow, Christian; Kleine-Ostmann, Thomas; Kärst, Uwe; Schrader, Thorsten; Stopper, Helga

    2012-01-01

    Terahertz electromagnetic fields are non-ionizing electromagnetic fields in the frequency range from 0.1 to 10 THz. Potential applications of these electromagnetic fields include the whole body scanners, which currently apply millimeter waves just below the terahertz range, but future scanners will use higher frequencies in the terahertz range. These and other applications will bring along human exposure to these fields. Up to now, only a limited number of investigations on biological effects of terahertz electromagnetic fields have been performed. Therefore, research is strongly needed to enable reliable risk assessment. Cells were exposed for 2 h, 8 h, and 24 h with different power intensities ranging from 0.04 mW/cm2 to 2 mW/cm2, representing levels below, at, and above current safety limits. Genomic damage on the chromosomal level was measured as micronucleus formation. DNA strand breaks and alkali-labile sites were quantified with the comet assay. No DNA strand breaks or alkali-labile sites were observed as a consequence of exposure to terahertz electromagnetic fields in the comet assay. The fields did not cause chromosomal damage in the form of micronucleus induction. PMID:23029508

  10. Effect of mobile phone station on micronucleus frequency and chromosomal aberrations in human blood cells.

    PubMed

    Yildirim, M S; Yildirim, A; Zamani, A G; Okudan, N

    2010-01-01

    The use of mobile telephones has rapidly increased worldwide as well as the number of mobile phone base stations that lead to rise low level radiofrequency emissions which may in turn have possible harm for human health. The national radiation protection board has published the known effects of radio waves exposure on humans living close to mobile phone base stations. However, several studies have claimed that the base station has detrimental effects on different tissues. In this study, we aimed to evaluate the effects of mobile phone base stations on the micronucleus (MN) frequency and chromosomal aberrations on blood in people who were living around mobile phone base stations and healthy controls. Frequency of MN and chromosomal aberrations in study and control groups was 8.96 +/- 3.51 and 6.97 +/- 1.52 (p: 0.16); 0.36 +/- 0.31 and 0.75 +/- 0.61 (p: 0.07), respectively. Our results show that there was not a significant difference of MN frequency and chromosomal aberrations between the two study groups. The results claim that cellular phones and their base stations do not produce important carcinogenic changes.

  11. Anticlastogenic activity exhibited by botryosphaeran, a new exopolysaccharide produced by Botryosphaeria rhodina MAMB-05.

    PubMed

    Miranda, Carolina C B O; Dekker, Robert F H; Serpeloni, Juliana M; Fonseca, Eveline A I; Cólus, Ilce M S; Barbosa, Aneli M

    2008-03-01

    Biopolymers such as exopolysaccharides (EPS) are produced by microbial species and possess unusual properties known to modify biological responses, among them are antimutagenicity and immunomodulation. Botryosphaeran, a newly described fungal (1-->3; 1-->6)-beta-d-glucan produced by Botryosphaeria rhodina MAMB-05, was administered by gavage to mice at three doses (7.5, 15 and 30mg/kgb.w.per day) over 15 days, and found to be non-genotoxic by the micronucleus test in peripheral blood and bone marrow. Botryosphaeran administered at doses of 15 and 30mg EPS/kgb.w. decreased significantly (p<0.001) the clastogenic effect of cyclophosphamide-induced micronucleus formation resulting in a reduction of the frequency of micronucleated cells of 78 and 82% in polychromatic erythrocytes of bone marrow, and reticulocytes in peripheral blood, respectively. The protective effect was dose-dependent, and strong anticlastogenic activity was exerted at low EPS doses. Variance analysis (ANOVA) showed no significant differences (p<0.05) among the median body weights of the groups of mice treated with botryosphaeran during experiments evaluating genotoxic and protective activities of botryosphaeran. This is the first report on the biological activity attributed to botryosphaeran.

  12. Genotoxicity evaluation of So-ochim-tang-gamibang (SOCG), a herbal medicine.

    PubMed

    Lee, Mi Young; Park, Yang-Chun; Jin, Mirim; Kim, Eunseok; Choi, Jeong June; Jung, In Chul

    2018-02-02

    So-ochim-tang-gamibang (SOCG) is a traditional Korean medicine frequently used for depression in the clinical field. In this study, we evaluated the potential genotoxicity of SOCG using three standard batteries of tests as part of a safety evaluation. SOCG was evaluated for potential genotoxic effects using the standard three tests recommended by the Ministry of Food and Drug Safety (MFDS) of Korea. These tests were the bacterial reverse mutation test (Ames test), in vitro mammalian chromosomal aberration test using Chinese hamster lung cells, and in vivo micronucleus test using ICR mice. The Ames test with Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537 and the Escherichia coli strain WP2uvrA(pKM101) showed that SOCG did not induce gene mutations at any dose level in all of the strains. SOCG did not induce any chromosomal aberrations in the in vitro chromosomal aberration test (for both the 6 and 24 h test) and the in vivo micronucleus test. Based on the results of these tests, it was concluded that SOCG does not exhibit any genotoxic risk under the experimental conditions of this study.

  13. Can periodontal infection induce genotoxic effects?

    PubMed

    Brandão, Paulo de Tarso Jambeiro; Gomes-Filho, Isaac Suzart; Cruz, Simone Seixas; Passos-Soares, Johelle de Santana; Trindade, Soraya Castro; Souza, Leonardo da Cunha Menezes; Meireles, José Roberto Cardoso; Cerqueira, Eneida de Moraes Marcílio

    2015-04-01

    This study aimed to evaluate the occurrence of chromosomal abnormalities, through micronuclei, and apoptosis by the sum of karyorrhexis, pyknosis and condensed chromatin in individuals with chronic periodontitis, gingivitis associated with biofilm and no periodontal disease. This study included 72 individuals divided into three groups: gingivitis (n = 21), periodontitis (n = 24) and control (n = 27). Information on sociodemographic characteristics, health and lifestyle was obtained. Full mouth clinical examination was performed to define the periodontal condition. Exfoliated cells from gingival mucosa were collected for computation of micronuclei and nuclear changes indicative of apoptosis. The differences in the occurrence of endpoints (micronucleus, karyorrhexis, pyknosis and condensed chromatin) were evaluated using the conditional test to compare proportions in a rare events situation. There was no statistically significant difference in the occurrence of micronucleus (p > 0.1) between gingivitis, periodontitis and control groups. The occurrence of apoptosis was significantly higher among individuals with periodontitis compared to individuals with gingivitis (p < 0.05) and controls (p < 0.025). The findings showed that the inflammatory process generated by gingivitis and periodontitis is not related to a higher occurrence of chromosomal damage. However, the higher occurrence of apoptosis in individuals with periodontitis points to genotoxic effects induced by periodontal infection.

  14. In vivo antigenotoxic activity of watercress juice (Nasturtium officinale) against induced DNA damage.

    PubMed

    Casanova, Natalia A; Ariagno, Julia I; López Nigro, Marcela M; Mendeluk, Gabriela R; de los A Gette, María; Petenatti, Elisa; Palaoro, Luis A; Carballo, Marta A

    2013-09-01

    The present study was carried out to investigate the genotoxicity as well as possible protective activity against damage induced by cyclophosphamide (CP) of the aqueous juice of watercress (Nasturtium officinale, W.T. Aiton) in vivo. Male and female Swiss mice 7-8 weeks old (N = 48) were treated by gavage with 1 g kg(-1) body weight and 0.5 g kg(-1) body weight of watercress juice during 15 consecutive days. Genotoxicity and its possible protective effect were tested by the comet assay in peripheral blood cells and the micronucleus test in bone marrow. In addition, biopsies of the bladder, epididymis and testicles of mice were performed to extend the experimental design. Watercress juice per se did not induce genetic damage according to the comet assay and micronucleus study, exhibiting a protective activity against CP (P < 0.05 and P < 0.001, respectively). The comparative analysis of bladder histological changes obtained in the watercress plus CP group against those treated with CP alone suggests a probable protective effect. Further studies are needed in order to establish the protective role of watercress juice against DNA damage. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Cytotoxic and mutagenic effects of iodine-131 and radioprotection of acerola (Malpighia glabra L.) and beta-carotene in vitro.

    PubMed

    Almeida, I V; Düsman, E; Heck, M C; Pamphile, J A; Lopes, N B; Tonin, L T D; Vicentini, V E P

    2013-12-10

    The radioisotope iodine-131 [(131)I] can damage DNA. One way to prevent this is to increase the amount of antioxidants via dietary consumption. The goal of this study was to evaluate the radioprotective effect of fresh acerola pulp and synthetic beta-carotene in Rattus norvegicus hepatoma cells (HTC) in response to [(131)I] exposure in vitro. Cellular DNA damage was subsequently assessed using a cytokinesis block micronucleus assay. The mutagenic and cytotoxic activities of doses of [(131)I] (0.1, 0.5, 1, 5, and 10 µCi), acerola (0.025, 0.125, and 0.25 g acerola pulp/mL), and beta-carotene (0.2, 1, and 2 µM) were evaluated. Radioprotective tests were performed by simultaneous treatment with acerola (0.25 g/mL) plus [(131)I] (10 µCi) and beta-carotene (0.2 µM) plus [(131)I] (10 µCi). Acerola, beta-carotene, and low concentrations of [(131)I] did not induce micronucleus formation in HTC cells; in contrast, high concentrations of [(131)I] (10 µCi) were mutagenic and induced DNA damage. Moreover, neither acerola nor beta-carotene treatment was cytotoxic. However, acerola reduced the percentage of [(131)I]-induced damage, although beta-carotene did not show a similar effect. Thus, our results suggest that acerola diet supplementation may benefit patients who are exposed to [(131)I] during thyroid diagnostics and therapy.

  16. Genetic polymorphisms of genes involved in DNA repair and metabolism influence micronucleus frequencies in human peripheral blood lymphocytes.

    PubMed

    Dhillon, Varinderpal S; Thomas, Philip; Iarmarcovai, G; Kirsch-Volders, Micheline; Bonassi, Stefano; Fenech, Michael

    2011-01-01

    The cytokinesis-block micronucleus cytome (CBMNCyt) assay is a widely used technique for measuring DNA damage in human populations. The formation of micronuclei (MN) in dividing cells can result from chromosome breakage due to unrepaired or mis-repaired DNA lesions or chromosome malsegregation due to mitotic malfunction. The sensitivity of the MN assay to polymorphisms in various genes involved in DNA repair, activation/deactivation of carcinogens/chemicals/drugs/alcohol, folate metabolism pathway and micronutrient transport has been extensively reported in the literature. MN frequency is also an important index for determining DNA repair efficiency phenotype (including mis-repair), response to environmental exposure and identifying various dietary factors required for optimal genome stability. The aim of the present study is to review the reported in vivo associations between genotype and MN frequency in humans taking into considerations the presence of interactions with nutrients levels and/or exposure to genotoxins. One hundred and eleven publications linking MN frequency in peripheral blood lymphocytes to gene polymorphism were retrieved from PubMed. After applying exclusion criteria, only 37 studies were evaluated in the present review. Polymorphisms in XRCC1 (Arg280His), ERCC2 (Lys751Gln), CYP2E1 (c1/c2) and MTR (A2756G) were consistently associated with the MN formation. These results contribute substantial evidence to the hypothesis that genotype may influence MN frequency in human cells.

  17. Biomarkers of early genotoxicity and oxidative stress for occupational risk assessment of exposure to styrene in the fibreglass reinforced plastic industry.

    PubMed

    Cavallo, Delia; Tranfo, Giovanna; Ursini, Cinzia Lucia; Fresegna, Anna Maria; Ciervo, Aureliano; Maiello, Raffaele; Paci, Enrico; Pigini, Daniela; Gherardi, Monica; Gatto, Maria Pia; Buresti, Giuliana; Iavicoli, Sergio

    2018-06-10

    This study aimed to identify sensitive and not-invasive biomarkers of early genotoxic/oxidative effect for exposure to styrene in the fibreglass reinforced plastic manufacture. We studied 11 workers of a plastic manufacture using open molding process (A), 16 workers of a manufacture using closed process (B) and 12 controls. We evaluated geno/cytotoxic effects on buccal cells by Buccal Micronucleus Cytome (BMCyt) assay and genotoxic/oxidative effects on lymphocytes by Fpg-comet test. On A workers we also evaluated urinary 8oxoGua, 8oxodGuo and 8oxoGuo to investigate oxidative stress. Personal inhalation exposure to styrene was monitored by passive air sampling and GC/MS. Biological monitoring included urinary metabolites mandelic acid (MA) and phenylglyoxylic acid (PGA). The findings show higher styrene exposure, urinary MA + PGA levels and micronucleus frequency in manufacture A. Higher buccal karyolytic cell frequency vs controls were found in both exposed populations. We found in exposed workers, no induction of direct DNA damage but oxidative DNA damage. Fpg-comet assay and urinary oxidized guanine seem to be sensitive biomarkers of oxidative stress and BMCyt assay a good-not invasive biomarker of cyto-genotoxicity at target organ. The study, although limited by the small number of studied subjects, shows the usefulness of used biomarkers in risk assessment of styrene-exposed workers. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Genotoxicity assessment of an energetic propellant compound, 3-nitro-1,2,4-triazol-5-one (NTO).

    PubMed

    Reddy, Gunda; Song, Jian; Kirby, Paul; Lent, Emily M; Crouse, Lee C B; Johnson, Mark S

    2011-02-03

    3-Nitro-1,2,4-triazol-5-one (NTO) is an energetic explosive proposed for use in weapon systems, to reduce the sensitivity of warheads. In order to develop toxicity data for safety assessment, we investigated the genotoxicity of NTO, using a battery of genotoxicity tests, which included the Ames test, Chinese Hamster Ovary (CHO) cell chromosome aberration test, L5178Y TK(+/-) mouse lymphoma mutagenesis test and rat micronucleus test. NTO was not mutagenic in the Ames test or in Escherichia coli (WP2uvrA). NTO did not induce chromosomal aberrations in CHO cells, with or without metabolic activation. In the L5178Y TK(+/-) mouse lymphoma mutagenesis test, all of the NTO-treated cultures had mutant frequencies that were similar to the average frequencies of solvent control-treated cultures, indicating a negative result. Confirmatory tests for the three in vitro tests also produced negative results. The potential in vivo clastogenicity and aneugenicity of NTO was evaluated using the rat peripheral blood micronucleus test. NTO was administered by oral gavage to male and female Sprague-Dawley rats for 14 days at doses up to 2g/kg/day. Flow cytometric analysis of peripheral blood demonstrated no significant induction of micronucleated reticulocytes relative to the vehicle control (PEG-200). These studies reveal that NTO was not genotoxic in either in vitro or in vivo tests and suggest a low risk of genetic hazards associated with exposure. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods.

    PubMed

    Elespuru, Rosalie; Pfuhler, Stefan; Aardema, Marilyn; Chen, Tao; Doak, Shareen H; Doherty, Ann; Farabaugh, Christopher S; Kenny, Julia; Manjanatha, Mugimane; Mahadevan, Brinda; Moore, Martha M; Ouédraogo, Gladys; Stankowski, Leon F; Tanir, Jennifer Y

    2018-04-26

    Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.

  20. Optimization of upcyte® human hepatocytes for the in vitro micronucleus assay.

    PubMed

    Nörenberg, Astrid; Heinz, Stefan; Scheller, Katharina; Hewitt, Nicola J; Braspenning, Joris; Ott, Michael

    2013-12-12

    "Upcyte(®) human hepatocytes" have the unique property of combining proliferation with the expression of drug metabolising activities. In our current study, we evaluated whether these cells would be suitable for early in vitro micronucleus (MN) tests. A treatment period of 96 h without a recovery period was most reliable for detecting MN formation in upcyte(®) hepatocytes from Donor 740. The basal MN rate in upcyte(®) hepatocytes varied considerably between donors (7-28%); therefore, modifications to the assay medium were tested to determine whether they could decrease inherent MN formation. Optimal medium supplements were 10 ng/ml oncostatin M for the pre-culture and recovery periods and 25 ng/ml epidermal growth factor and 10 ng/ml oncostatin M for the treatment period. Using the optimised conditions and outcome criteria, the upcyte(®) hepatocyte MN assay could correctly identify directly acting (e.g. mitomycin C, etoposide) and metabolically activated genotoxins (e.g. benzo[a]pyrene, cyclophosphamide). "True negative" and "false positive" compounds were also correctly identified as negative. The basal %MN in upcyte(®) hepatocytes from Donor 740 treated with DMSO, cyclophosphamide or MMC, was essentially unaffected by the growth stage ranging from population doublings of 14-61, suggesting that billions of cells could be produced from a single donor for standardised drug toxicity testing. In conclusion, we have established and optimised an in vitro MN test by using upcyte(®) hepatocytes to correctly identify known direct and metabolically activated genotoxicants as well as "false positives" and true negative compounds. The almost unlimited supply of cells from a single donor and optimised test conditions increase reproducibility in early and more predictive in vitro MN tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Protective effect of thymoquinone against diazinon-induced hematotoxicity, genotoxicity and immunotoxicity in rats.

    PubMed

    Danaei, Gholam Hassan; Karami, Mohammad

    2017-10-01

    Several studies have shown that oxidative stress and cell damage can occur in the very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin) against DZN immunotoxicity, hematotoxicity and genotoxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups, (eight per group) as follows: control (receiving corn oil as the DZN solvent), DZN (20mg/kg), Thy (10mg/kg), Thy (2.5mg/kg)+DZN, Thy (5mg/kg)+DZN and Thy (10mg/kg)+DZN. After four weeks of treatment, the hematological parameters of red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), hematocrit (Hct) and platelets (PLTs) were evaluated. The evaluation of genotoxicity was carried out using the micronucleus assay. For measurement of cytokine production, interferon gamma (IFN-γ), interleukin 10 (IL10) and interleukin 4 (IL4) were chosen as immunotoxicity indicators of DZN toxicity. DZN was found to decrease RBCs, WBCs, Hb, Hct, PLTs, butyrl- and acetyl-cholinesterase activity and I FN-γ and increased the micronucleus indices of IL10 and IL4 as compared with the control group. Treatment with Thy reduced DZN hematotoxicity and immunotoxicity, but, significantly, did not prevent genotoxicity. This study showed that Thy (without the significant effect on genotoxicity) decreased the hematological toxicity, immunotoxicity and butyrl and acetyl cholinesterase activity induced by DZN. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents. Copyright © 2017. Published by Elsevier B.V.

  2. Micronucleus formation and DNA damage in buccal epithelial cells of Indian street boys addicted to gasp 'Golden glue'.

    PubMed

    Mondal, Nandan Kumar; Ghosh, Sreenita; Ray, Manas Ranjan

    2011-04-03

    Genotoxicity of glue sniffing/huffing and tobacco use has been examined in 302 street boys (median age 13 years) and 50 age-matched control school boys who were neither tobacco nor glue users. All the street boys were tobacco users. In addition, 155 were addicted to gasp an industrial adhesive popularly known as 'Golden glue'. Micronucleus (MN) frequency was determined as a measure of chromosomal breakage in exfoliated buccal epithelial cells (BECs) and DNA double strand breaks were quantitatively assessed by counting γ-H2AX foci using immunofluorescence microscopy. Micronucleated cell frequencies (MCFs) in BEC of glue non-addicted (only tobacco) and addicted (tobacco plus glue) street boys were 1.87 ± 1.06‰ and 4.04 ± 2.55‰ respectively, which were significantly higher than that of control (0.32 ± 0.11‰, p<0.0001). Similarly, the numbers γ-H2AX foci in nuclei of BEC were 2.3- and 5.2-times more than control in glue non-addicted and addicted street boys respectively (p<0.0001). Spearman's rank correlation revealed a strong positive association between years of glue addiction with MCFs and γ-H2AX foci numbers, and the association between glue addiction and chromosomal and DNA damage remained positive and significant after controlling income, spending on addiction and loss of appetite as potential confounders in multivariate logistic regression analysis. Thus, addiction to tobacco among the street children in India is associated with chromosomal and DNA damage in BECs and the severity of these changes is significantly increased by the habit of sniffing/huffing of industrial glue. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

    PubMed Central

    2014-01-01

    Background Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Methods Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Results Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Conclusions Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings. PMID:24386979

  4. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke.

    PubMed

    North, Matthew; Shuga, Joe; Fromowitz, Michele; Loguinov, Alexandre; Shannon, Kevin; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2014-01-05

    Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.

  5. Application of the SOS/umu test and high-content in vitro micronucleus test to determine genotoxicity and cytotoxicity of nine benzothiazoles.

    PubMed

    Ye, Yan; Weiwei, Jiang; Na, Li; Mei, Ma; Kaifeng, Rao; Zijian, Wang

    2014-12-01

    Benzothiazole and benzothiazole derivatives (BTs) have been detected in various environmental matrices as well as in human beings, but little is currently available regarding their toxicities. In our study, genotoxicities of nine BTs (benzothiazole [BT], 2-chlorobenzothiazole [CBT], 2-bromobenzothiazole [BrBT], 2-fluorobenzothiazole [FBT], 2-methylbenzothiazole [MeBT], 2-mercaptobenzothiazole [MBT], 2-aminobenzothiazole [ABT], 2-hydroxy-benzothiazole [OHBT] and 2-methythiobenzothiazole [MTBT]) are comprehensively evaluated by the SOS/umu test using the bacterial Salmonella typhimurium TA1535/pSK1002 for DNA-damaging effect and the high content in vitro micronucleus test using two human carcinoma cells (MGC-803 and A549) for chromosome-damaging effect. The cytotoxicity of BTs on both bacteria and two human cells was also evaluated. Except for the cytotoxic effect of MBT on MGC-803 and A549, the other tested BTs showed more than 50% cytotoxicity at their highest concentrations in a dose-dependent manner, and their LC50s ranged from 19 (MBT in bacteria) to 270 mg l(-1) (CBT in A549). Activation and inactivation were observed for specific BTs after metabolism. On the other hand, no evidence of genotoxicity was obtained for BT, FBT and MBT, and DNA damage was induced by ABT, OHBT, BrBT and MTBT in MGC-803, by MeBT in A549 and by CBT in both cells. Through quantitative structure-activity relationship analysis, two structure alerts for chemical genotoxicity, including heterocyclic amine and hacceptor-path3-hacceptor are present in ABT and OHBT respectively; however, the underlying mechanisms still need further evaluation. Copyright © 2014 John Wiley & Sons, Ltd.

  6. A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.

    PubMed

    Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S

    2018-01-01

    The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions.

    PubMed

    Proquin, Héloïse; Rodríguez-Ibarra, Carolina; Moonen, Carolyn G J; Urrutia Ortega, Ismael M; Briedé, Jacob J; de Kok, Theo M; van Loveren, Henk; Chirino, Yolanda I

    2017-01-01

    Since 1969, the European Union approves food-grade titanium dioxide (TiO 2 ), also known as E171 colouring food additive. E171 is a mixture of micro-sized particles (MPs) and nano-sized particles (NPs). Previous studies have indicated adverse effects of oral exposure to E171, i.e. facilitation of colon tumour growth. This could potentially be partially mediated by the capacity to induce reactive oxygen species (ROS). The aim of the present study is to determine whether E171 exposure induces ROS formation and DNA damage in an in vitro model using human Caco-2 and HCT116 cells and to investigate the contribution of the separate MPs and NPs TiO 2 fractions to these effects. After suspension of the particles in Hanks' balanced salt solution buffer and cell culture medium with either bovine serum albumin (BSA) or foetal bovine serum, characterization of the particles was performed by dynamic light scattering, ROS formation was determined by electron spin/paramagnetic resonance spectroscopy and DNA damage was determined by the comet and micronucleus assays. The results showed that E171, MPs and NPs are stable in cell culture medium with 0.05% BSA. The capacity for ROS generation in a cell-free environment was highest for E171, followed by NPs and MPs. Only MPs were capable to induce ROS formation in exposed Caco-2 cells. E171, MPs and NPs all induced single-strand DNA breaks. Chromosome damage was shown to be induced by E171, as tested with the micronucleus assay in HCT116 cells. In conclusion, E171 has the capability to induce ROS formation in a cell-free environment and E171, MPs and NPs have genotoxic potential. The capacity of E171 to induce ROS formation and DNA damage raises concerns about potential adverse effects associated with E171 (TiO 2 ) in food. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability.

  9. Micronucleus assay with urine derived cells (UDC): a review of its application in human studies investigating genotoxin exposure and bladder cancer risk.

    PubMed

    Nersesyan, Armen; Kundi, Michael; Fenech, Michael; Bolognesi, Claudia; Misik, Miroslav; Wultsch, Georg; Hartmann, Michaele; Knasmueller, Siegfried

    2014-01-01

    The first micronucleus (MN) study with urine derived cells (UDC) appeared 30 years ago. So far, 56 investigations have been published with this method and it was shown that it can be used for the detection of chromosomal damage caused by environmental and lifestyle factors as well as by occupational exposures and certain diseases This approach may be also useful as a diagnostic tool for the detection and prognosis of bladder cancer. The test system has been improved in the last years, i.e., it was shown that, apart from MN also other nuclear anomalies can be evaluated in UDC which are found in other types of epithelial cells as well (e.g., in oral and nasal cells) and are indicative for acute toxicity (pyknosis, karyorrhexis, karyolysis, condensed chromatin) and genomic instability (nuclear buds, binucleates). Furthermore, an improved protocol with Carnoy I fixation and Papanicolaou stain was developed which enables the discrimination between cells which originate from the cervix and those from the urothelium. The evaluation of the currently available results indicates that exposures and health conditions which are associated with increased cancer rates in the bladder (and possibly also in other organs) lead to positive results in MN-UDC assays and a limited number of studies indicate that this method may be equally sensitive as other more frequently used human biomonitoring assays. The major shortcoming of the UDC-MN method is the lack of standardization; the evaluation of the current data shows that a variety of staining and fixation methods are used and that the numbers of evaluated cells vary over a broad range. These inconsistencies may account for the large inter-laboratory variations of the background frequencies. In order to improve the reliability of the method, further standardization and validation is required. Therefore an international program should be initiated in which a similar strategy could be used as in previous validation/standardization projects concerning MN-cytome assays with lymphocytes and buccal cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos

    PubMed Central

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-01

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis. PMID:26729872

  11. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos.

    PubMed

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-19

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis.

  12. Necrosis is increased in lymphoblastoid cell lines from children with autism compared with their non-autistic siblings under conditions of oxidative and nitrosative stress.

    PubMed

    Main, Penelope A E; Thomas, Philip; Esterman, Adrian; Fenech, Michael F

    2013-07-01

    Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case-sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage.

  13. Necrosis is increased in lymphoblastoid cell lines from children with autism compared with their non-autistic siblings under conditions of oxidative and nitrosative stress

    PubMed Central

    Fenech, Michael F.

    2013-01-01

    Autism spectrum disorders are a heterogeneous group of neurodevelopmental conditions characterised by impairments in reciprocal social interaction, communication and stereotyped behaviours. As increased DNA damage events have been observed in a range of other neurological disorders, it was hypothesised that they would be elevated in lymphoblastoid cell lines (LCLs) obtained from children with autism compared with their non-autistic siblings. Six case–sibling pairs of LCLs from children with autistic disorder and their non-autistic siblings were obtained from the Autism Genetic Resource Exchange (AGRE) and cultured in standard RPMI-1640 tissue culture medium. Cells were exposed to medium containing either 0, 25, 50, 100 and 200 µM hydrogen peroxide (an oxidative stressor) or 0, 5, 10, 20 and 40 µM s-nitroprusside (a nitric oxide producer) for 1h. Following exposure, the cells were microscopically scored for DNA damage, cytostasis and cytotoxicity biomarkers as measured using the cytokinesis-block micronucleus cytome assay. Necrosis was significantly increased in cases relative to controls when exposed to oxidative and nitrosative stress (P = 0.001 and 0.01, respectively). Nuclear division index was significantly lower in LCLs from children with autistic disorder than their non-autistic siblings when exposed to hydrogen peroxide (P = 0.016), but there was no difference in apoptosis, micronucleus frequency, nucleoplasmic bridges or nuclear buds. Exposure to s-nitroprusside significantly increased the number of micronuclei in non-autistic siblings compared with cases (P = 0.003); however, other DNA damage biomarkers, apoptosis and nuclear division did not differ significantly between groups. The findings of this study show (i) that LCLs from children with autism are more sensitive to necrosis under conditions of oxidative and nitrosative stress than their non-autistic siblings and (ii) refutes the hypothesis that children with autistic disorder are abnormally susceptible to DNA damage. PMID:23766106

  14. Micronucleus assay as a biomarker of genotoxicity in the occupational exposure to agrochemicals in rural workers.

    PubMed

    Gentile, N; Mañas, F; Bosch, B; Peralta, L; Gorla, N; Aiassa, D

    2012-06-01

    This paper aims to evaluate the genotoxic effect of agrochemicals in rural workers occupationally exposed by the micronucleus assay in peripheral blood lymphocytes and to promote the development of health and environmental preventive and protective practices. A total of 30 blood samples from 20 individuals occupationally exposed to different agrochemicals and 10 unexposed persons, who formed the reference group, were analyzed. We found statistically significant differences (p < 0.0005, Student's t Test) in the frequency of micronuclei between the two groups (7.20 ± 1.55 and 15.15 ± 5.10 CBMN for reference and exposed groups respectively). The analysis of age showed a positive correlation (Pearson Correlation Test) with the frequency of micronuclei in exposed population (p < 0.05; r(2) = 0.47), in contrast with smoking habits and years of exposure. Micronucleus assay allows an early detection of populations at higher risk of having genetic damage, allowing us to implement strategies of intervention for the purpose of contributing to reduce that risk.

  15. Anti-genotoxic effect of naringin against bleomycin-induced genomic damage in human lymphocytes in vitro.

    PubMed

    Yilmaz, Dilek; Teksoy, Ozgun; Bilaloglu, Rahmi; Çinkilic, Nilufer

    2016-01-01

    Naringin is a flavonoid found in grapefruit and other citrus fruits that shows antioxidant activity. The aim of the present study was to determine the anti-genotoxic and protective effects of naringin on the chemotherapeutic/radiomimetic agent bleomycin (BLM) in human blood lymphocyte cultures in vitro using micronucleus test and chromosomal aberrations (CA) assay. We tested the three doses of naringin (1, 2, 3 µg/mL) and a single dose of BLM (20 µg/mL). BLM significantly increased the total CAs and micronucleus frequency at a concentration of 20 µg/mL. Naringin did not show any toxicity in doses of 1, 2, and 3 µg/mL. Combined treatments of BLM and naringin (2 and 3 µg/mL) significantly reduced micronucleus formation. Naringin dose-dependently decreased the total chromosome aberrations frequency induced by BLM. These results indicate that naringin could prevent BLM (20 µg/mL)-induced genotoxicity.

  16. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, T.P.; Heuser, V.D.; Tavares, P.

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 andmore » 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.« less

  17. Genetic damage of organic matter in the Brazilian Amazon: a comparative study between intense and moderate biomass burning.

    PubMed

    de Oliveira Alves, Nilmara; de Souza Hacon, Sandra; de Oliveira Galvão, Marcos Felipe; Simões Peixotoc, Milena; Artaxo, Paulo; de Castro Vasconcellos, Pérola; de Medeiros, Silvia Regina Batistuzzo

    2014-04-01

    The biomass burning that occurs in the Amazon region has an adverse effect on environmental and human health. However, in this region, there are limited studies linking atmospheric pollution and genetic damage. We conducted a comparative study during intense and moderate biomass burning periods focusing on the genetic damage and physicochemical analyses of the particulate matter (PM). PM and black carbon (BC) were determined; organic compounds were identified and quantified using gas chromatography with flame ionization detection, the cyto-genotoxicity test was performed using two bioassays: cytokinesis-block micronucleus (CBMN) in A549 cells and Tradescantia pallida micronucleus (Trad-MCN) assay. The PM10 concentrations were lower than the World Health Organization air quality standard for 24h. The n-alkanes analyses indicate anthropogenic and biogenic influences during intense and moderate biomass burning periods, respectively. Retene was identified as the most abundant polycyclic aromatic hydrocarbon during both sampling periods. Carcinogenic and mutagenic compounds were identified. The genotoxic analysis through CBMN and Trad-MCN tests showed that the frequency MCN from the intense burning period is significantly higher compared to moderate burning period. This is the first study using human alveolar cells to show the genotoxic effects of organic PM from biomass burning samples collected in Amazon region. The genotoxicity of PM can be associated with the presence of several mutagenic and carcinogenic compounds, mainly benzo[a]pyrene. These findings have potential implications for the development of pollution abatement strategies and can minimize negative impact on health. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The cytokinesis-blocked micronucleus assay: dose-response calibration curve, background frequency in the population and dose estimation.

    PubMed

    Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M

    2016-03-01

    An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.

  19. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    PubMed

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p < 0.01). Allium sativum extract normalized significantly (p < 0.01) the mentioned parameters in deltamethrin-treated rats. For genotoxic evaluation, deltamethrin treatment showed a significant increase in frequencies of micronucleus in bone-marrow cells. Micronucleus formation is an indicator of chromosomal damage which has been increasingly used to detect the genotoxic potential of environmental pests. The present study showed that Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide.

  20. No clastogenic activity of a senna extract in the mouse micronucleus assay.

    PubMed

    Mengs, U; Grimminger, W; Krumbiegel, G; Schuler, D; Silber, W; Völkner, W

    1999-08-18

    In previous studies, an analytically well-defined senna extract, commonly used as a laxative, gave positive responses in vitro in the Ames test and in the CHO assay. Therefore, the objective of this study was to investigate the genotoxic activity of the same senna extract in an in vivo genotoxicity assay by means of the generally acknowledged MNT. After administration of an oral dose of 2000 mg senna extract/kg to NMRI mice of both genders, which is equivalent to 119 mg potential rhein/kg, 5.74 mg potential aloeemodin/kg and 0. 28 mg potential emodin/kg, there were no elevated levels of micronuclei in bone marrow cells. Kinetic studies were performed in parallel to demonstrate target organ availability. Highest concentrations in the plasma were reached after 1 h with 3.4 microg rhein/ml and 0.065 microg aloeemodin/ml. In all cases, emodin was below the limit of quantification. From the results, the in vitro clastogenic activity of the senna extract could not be confirmed in the mouse micronucleus assay. Together with further negative in vivo genotoxicity studies with anthranoids, the conclusion can be drawn that there is no indication so far demonstrating a genotoxic risk for patients taking senna laxatives.

  1. DNA damage in children and adolescents with cardiovascular disease risk factors.

    PubMed

    Kliemann, Mariele; Prá, Daniel; Müller, Luiza L; Hermes, Liziane; Horta, Jorge A; Reckziegel, Miriam B; Burgos, Miria S; Maluf, Sharbel W; Franke, Silvia I R; Silva, Juliana da

    2012-09-01

    The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (P<0.05). High risk subjects also showed a significant increase in DNA damage, which was higher than that provided by low and moderate risk subjects according to SCGE, but not according to the CBMN assay. Vitamin C intake was inversely correlated with DNA damage by SCGE, and micronucleus (MN) was inversely correlated with folate intake. The present results indicate an increase in DNA damage that may be a consequence of oxidative stress in young individuals with risk factors for CVD, indicating that the DNA damage level can aid in evaluating the risk of CVD.

  2. Application of micronucleus test and comet assay to evaluate BTEX biodegradation.

    PubMed

    Mazzeo, Dânia Elisa Christofoletti; Matsumoto, Silvia Tamie; Levy, Carlos Emílio; de Angelis, Dejanira de Franceschi; Marin-Morales, Maria Aparecida

    2013-01-01

    The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Micronucleus, Nucleoplasmic Bridge, and Nuclear Budding in Peripheral Blood Cells of Workers Exposed to Low Level Benzene.

    PubMed

    Jamebozorgi, I; Mahjoubi, F; Pouryaghoub, G; Mehrdad, R; Majidzadeh, T; Saltanatpour, Z; Nasiri, F

    2016-10-01

    Benzene is one of the important occupational pollutants. There are some reports about the leukemogenic effects related to low-level exposure to benzene. To study the frequency of micronucleus (MN), nucleoplasmic bridge (NB), and nuclear budding (NBUD) in the peripheral blood lymphocytes of petrochemical workers with low level exposure to benzene. We enrolled 50 workers exposed to low-level benzene and 31 unexposed workers of a petrochemical industry. After exclusion of 3 samples, peripheral blood lymphocytes of the remaining 47 exposed and 31 unexposed workers were analyzed for the frequency of MN, NB, and NBUD by cytochalasin-blocked MN technique. MN was present in 28 (60%) exposed and 18 (58%) unexposed workers. NB was observed in 6 (13%), and 2 (7%) exposed and unexposed workers, respectively; the frequency for NBUD was 20 (43%), and 13 (42%), respectively. No significant difference was found in the observed frequencies of MN, NB, and NBUD in the peripheral blood lymphocytes between the exposed and unexposed group workers. Occupational exposure to low-level benzene does not increase the frequency of MN, NB, and NBUD in the peripheral blood lymphocytes, biomarkers for DNA damage.

  4. Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity.

    PubMed

    Zhang, Qinli; Wang, Haiyang; Ge, Cuicui; Duncan, Jeremy; He, Kaihong; Adeosun, Samuel O; Xi, Huaxin; Peng, Huiting; Niu, Qiao

    2017-09-01

    Although nanomaterials have the potential to improve human life, their sideline effects on human health seem to be inevitable and still are unknown. Some studies have investigated the genotoxicity of alumina nanoparticles (AlNPs); however, this effect is still unclear due to insufficient evaluation and conflicting results. Using a battery of standard genotoxic assays, the present study offers evidence of the genotoxicity associated with aluminum oxide (alumina) at NP sizes of 50 and 13 nm, when compared with bulk alumina (10 μm). The genotoxicity induced by alumina at bulk and NP sizes was evaluated with Ames test, comet test, micronucleus assay and sperm deformity test. The mechanism related to the induction of reactive oxygen species was explored as well. Our results showed that AlNPs (13 and 50 nm) were able to enter cells and induced DNA damage, micronucleus in bone marrow, sperm deformation and reactive oxygen species induction in a time-, dose- and size-dependent manner. Therefore, we conclude that AlNPs (13 and 50 nm), rather than bulk alumina, induce markers of genotoxicity in mice, with oxidative stress as a potential mechanism driving these genotoxic effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Cytogenetic toxicity and gonadal effects of 17 α-methyltestosterone in Astyanax bimaculatus (Characidae) and Oreochromis niloticus (Cichlidae).

    PubMed

    Rivero-Wendt, C L G; Miranda-Vilela, A L; Ferreira, M F N; Borges, A M; Grisolia, C K

    2013-09-23

    The synthetic hormone, 17-α-methyltestosterone (MT), is used in fish hatcheries to induce male monosex. Androgenic effects on various fish species have been reported; however, few studies have assessed possible genotoxic effects, although there are concerns about such effects in target and non-target species. We evaluated genotoxic and gonadal effects of MT in adult tilapia (Oreochromis niloticus) and Astyanax bimaculatus (a common native non-target fish in Brazil). Fish were fed for 28 days with ration containing MT (60 mg/L), a normal dose used in fish farming. Evaluation of MT genotoxicity was carried out through micronucleus test, nuclear abnormality, and comet assay analyses on peripheral erythrocyte cells collected by cardiac puncture. There were no significant differences in micronucleus frequencies and DNA damage in both species; however, MT caused cytogenetic toxicity in the non-target species, A. bimaculatus, with significantly increased erythrocyte nuclear abnormalities. Histopathological analyses of the female gonads of O. niloticus revealed that MT significantly inhibited the development of mature oocytes, while in A. bimaculatus it provoked significant inhibition of spermatozoa production. We concluded that discharge of fish-hatcheries water onto the surface of aquatic ecosystems should be avoided due to risks to reproduction of native species.

  6. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responsesmore » and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights: • We compared concentration of POPs, ROS and micronucleus rate in POPs exposed area. • Significant accumulation of POPs homologous in the e-waste exposed residents. • DNA damage and DNA damage repair pathways have been differentially activated. • Females and males in the exposed group have different responses to the DNA damage. • Exposed males may be more prone to undergo malignant transformation.« less

  7. Induction of micronuclei and apoptosis in natural killer cells compared to T lymphocytes after gamma-irradiation.

    PubMed

    Louagie, H; Philippé, J; Vral, A; Cornelissen, M; Thierens, H; De Ridder, L

    1998-02-01

    To investigate the chromosomal damage caused by gamma-irradiation in T lymphocytes and natural killer (NK) cells and compare this with apoptosis induction in both lymphocyte subsets. Apoptosis induction by gamma-irradiation in T lymphocytes and NK cells was quantified using the annexin V flow cytometric assay. The cytokinesis-block micronucleus (MN) assay was used to evaluate the induced cytogenetic damage. For the MN assays on NK cells, gamma-irradiated peripheral blood mononuclear cells were cultured and stimulated with interleukin 15 (IL-15). Afterwards the NK cells (characterized by the CD3-/CD56+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binuclear cells was scored. Doses of 1 and 2 Gy gamma-irradiation were applied. Higher numbers of MN in NK cells were found compared with the MN yield in T lymphocytes. In contrast, NK cells were less than T lymphocytes prone to apoptosis after gamma-irradiation. The results support the view that cytogenetic damage and apoptosis after gamma-irradiation are not necessarily correlated.

  8. Evaluation of mutagenic and antimutagenic activities of neem (Azadirachta indica) seed oil in the in vitro Ames Salmonella/microsome assay and in vivo mouse bone marrow micronucleus test.

    PubMed

    Vinod, V; Tiwari, P K; Meshram, G P

    2011-04-12

    The possible mutagenic and antimutagenic activity of neem oil (NO) and its DMSO extract (NDE) were, examined in the Ames Salmonella/microsome mutagenicity test and the mouse bone marrow micronucleus assay. Eight different strains of Salmonella typhimurium were, used to study the genotoxicity of neem oil both in the presence and absence of Aroclor-1254 induced rat liver homogenate (S9). Two-dose treatment protocol was, employed to study the cytogenetic activity in micronucleus assay. Similarly, the antimutagenic activity of neem oil and NDE was studied against mitomycin (MMC) and 7,12-dimethylbenz[a]anthracene (DMBA) in the above two test systems. Neem oil was non-mutagenic in all the eight tester strains of Salmonella typhimurium both in the presence and absence of S9 mix. In the present study, there was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in neem oil treated groups over the negative control (DMSO) group of animals, indicating the non-clastogenic activity of neem oil in the micronucleus test. Neem oil showed good antimutagenic activity against DMBA induced mutagenicity compared to its DMSO extract. However, neem oil showed comparatively less antimutagenicity against MMC in the Ames assay. In vivo anticlastogenic assays shows that neem oil exhibited better activity against DMBA induced clastogenicity. These results indicate non-mutagenic activity of neem oil and significant antimutagenic activity of neem oil suggesting its pharmacological importance for the prevention of cancer. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Dose estimation by chromosome aberration analysis and micronucleus assays in victims accidentally exposed to 60Co radiation

    PubMed Central

    Liu, Q; Cao, J; Wang, Z Q; Bai, Y S; Lü, Y M; Huang, Q L; Zhao, W Z; Li, J; Jiang, L P; Tang, W S; Fu, B H; Fan, F Y

    2009-01-01

    The objective of this study was to assess the radiation exposure levels in victims of a 60Co radiation accident using chromosome aberration analysis and the micronucleus assay. Peripheral blood samples were collected from three victims exposed to 60Co 10 days after the accident and were used for the chromosome aberration and micronucleus assays. After in vitro culture of the lymphocytes, the frequencies of dicentric chromosomes and rings (dic+r) and the numbers of cytokinesis blocking micronuclei (CBMN) in the first mitotic division were determined and used to estimate radiation dosimetry. The Poisson distribution of the frequency of dic+r in lymphocytes was used to assess the uniformity of the exposure to 60Co radiation. Based on the frequency of dic+r in lymphocytes, estimates of radiation exposure of the three victims were 5.61 Gy (A), 2.48 Gy (B) and 2.68 Gy (C). The values were estimated based on the frequencies of CBMN, which were 5.45 Gy (A), 2.78 Gy (B) and 2.84 Gy (C). The estimated radiation dosimetry demonstrated a critical role in estimating the radiation dose and facilitating an accurate clinical diagnosis. Furthermore, the frequencies of dir+r in victims A and B deviated significantly from a normal Poisson distribution. Chromosome aberration analysis offers a reliable means for estimating biological exposure to radiation. In the present study, the micronucleus assay demonstrated a high correlation with the chromosome aberration analysis in determining the radiation dosimetry 10 days after radiation exposure. PMID:19366736

  10. Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2011-09-01

    The aim of this study was to evaluate cytogenotoxic effects of bee venom to human lymphocytes and take a look into the mechanisms behind them. Bee venom was tested in concentrations ranging from 0.1μg/ml to 20μg/ml over different lengths of time. Cell viability, type of the cell death, and morphological alterations were evaluated using phase-contrast and fluorescent microscopy in addition to DNA diffusion assay, whereas cytogenotoxic effects were assessed with the micronucleus test. DNA damage and its relation to oxidative stress were evaluated combining the standard alkaline and the Fpg-modified comet assay. Our results showed lower cell viability, morphological cell alterations, cytogenotoxicity, and dominantly necrotic type of cell death in human lymphocytes after treatment with bee venom. All the effects were time- and dose-dependent. These results provide an insight into the effects of bee venom on the cell structure that could be relevant for therapeutic purposes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Protective effects of acerola juice on genotoxicity induced by iron in vivo

    PubMed Central

    Horta, Roberta Nunes; Kahl, Vivian Francilia Silva; Sarmento, Merielen da Silva; Nunes, Marisa Fernanda Silva; Porto, Carem Rejane Maglione; de Andrade, Vanessa Moraes; Ferraz, Alexandre de Barros Falcão; Silva, Juliana Da

    2016-01-01

    Abstract Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron. PMID:27007905

  12. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L.

    PubMed

    Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar

    2012-05-01

    The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.

  13. Toxicity and genotoxicity of wastewater from gasoline stations

    PubMed Central

    2009-01-01

    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds. PMID:21637464

  14. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays

    PubMed Central

    Oyeyemi, Ifeoluwa Temitayo; Yekeen, Olaide Maruf; Odusina, Paul Olayinka; Ologun, Taiwo Mary; Ogbaide, Orezimena Michelle; Olaleye, Olayinka Israel

    2015-01-01

    Spondias mombin (Linn), Nymphaea lotus (Linn) and Luffa cylindrica (Linn) (syn Luffa aegyptiaca Mill) are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group) treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS), which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS. PMID:27486380

  15. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays.

    PubMed

    Oyeyemi, Ifeoluwa Temitayo; Yekeen, Olaide Maruf; Odusina, Paul Olayinka; Ologun, Taiwo Mary; Ogbaide, Orezimena Michelle; Olaleye, Olayinka Israel; Bakare, Adekunle A

    2015-12-01

    Spondias mombin (Linn), Nymphaea lotus (Linn) and Luffa cylindrica (Linn) (syn Luffa aegyptiaca Mill) are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group) treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS), which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS.

  16. Cytokinesis-block micronucleus assay in primary human liver fibroblasts exposed to griseofulvin and mitomycin C.

    PubMed

    Nesti, C; Trippi, F; Scarpato, R; Migliore, L; Turchi, G

    2000-03-01

    Primary liver fibroblasts were applied in a cytokinesis-block micronucleus assay in combination with fluorescence in situ hybridization (FISH) using two protocols. In protocol A (Prot. A), cytochalasin B (Cyt B) was added at the end of the treatment time directly to the medium containing the standard compounds, whereas in protocol B (Prot. B) the chemical-containing medium was removed and fresh medium with Cyt B was added. The study was performed using the aneugen griseofulvin (GF) and the clastogen mitomycin C (MMC) as standard compounds. With both protocols GF induced a significant increase in MN frequency over controls in a dose-related manner at the lower concentrations tested (7.5 and 15 microg/ml). At the highest dose (30 microg/ml) the aneugen effect was substantially reduced. MN induction obtained with Prot. A was significantly higher ( approximately 3-fold) than with Prot. B at the most effective concentration. The aneugen effect induced by GF did not change when different cell densities were used, but again with Prot. A we obtained the highest effect. MN induced by MMC showed a dose- and time-dependent increase in both protocols. In contrast to GF, the greater clastogenic response induced by MMC in human liver fibroblasts was obtained with Prot. B, approximately 3-fold higher than Prot. A at the most effective concentration and approximately 2-fold with 24 h treatment at 0.17 microg/ml MMC. With GF, the FISH data in human liver fibroblasts (80% C+MN) were fairly consistent with those obtained in the rodent cell lines. In human whole blood cultures, the same dose used in our experiment produced a relatively higher percentage of C+MN. FISH analysis showed that MMC induced mainly MN containing acentric fragments rather than whole chromosomes. In conclusion we have demostrated that chemically induced genetic effects are strongly dependent on the cell culture employed, treatment schedule and intra- and post-treatment experimental conditions.

  17. Genotoxicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-3,3'-dichloro-5,4'-dinitro-biphenyl (ADDB) in goldfish (Carassius auratus) using the micronucleus test and the comet assay.

    PubMed

    Masuda, Shuichi; Deguchi, Yuya; Masuda, Yumi; Watanabe, Tetsushi; Nukaya, Haruo; Terao, Yoshiyasu; Takamura, Takeji; Wakabayashi, Keiji; Kinae, Naohide

    2004-05-09

    2-[2-(Acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and 4-amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) are two compounds, which show strong mutagenicity toward bacteria, that have been identified as major mutagens in river water in Japan. In the present study, we examined the genotoxicity of PBTA-6 and ADDB in goldfish (Carassius auratus) by the micronucleus test and single-cell gel electrophoresis (comet assay). The frequencies of micronuclei in gill cells gradually increased until 96h after i.p. injection of PBTA-6 and ADDB at doses of 50mg/kg body weight, and then decreased 144h after injection. PBTA-6 induced micronuclei in gill cells dose-dependently at a dose range of 1-100mg/kg body weight, giving significantly high frequencies at doses of 50 and 100mg/kg body weight. On the other hand, no significant increase was observed in the peripheral erythrocytes of goldfish exposed to PBTA-6 or ADDB. In the comet assay, values of DNA tail moment and tail length in peripheral erythrocytes increased significantly until 6h after the i.p. injection of PBTA-6 (50mg/kg body weight), only to decrease by 9h after injection. Both the DNA tail moment and tail length were dose-dependently increased by injections of PBTA-6 at doses ranging from 1 to 50mg/kg. Significantly high values for tail moment and tail length were found in peripheral erythrocytes 3h after an i.p. injection of ADDB and persisted for up to 6h. These results show that both PBTA-6 and ADDB have genotoxic effects in goldfish.

  18. Clastogenecity evaluation of water of Lake Sevan (Armenia) using Tradescantia micronucleus assay.

    PubMed

    Aghajanyan, E A; Avalyan, R E; Simonyan, A E; Atoyants, A L; Gabrielyan, B K; Aroutiounian, R M; Khosrovyan, A

    2018-05-24

    The clastogenic effects of water samples in seven locations of Lake Sevan (Armenia) with the application of Trad-MCN (micronuclei) bioassay using Tradescantia (clone 02) were investigated. A significant increase in the frequency of micronuclei in tetrads of pollen microspores and tetrads with micronuclei exposed to the test samples compared to the control has been revealed. A multivariate analysis indicated linkage between the frequencies of occurrence of micronuclei in the cells and Ni and Co ions. The results were compared with the endpoints of another Tradescantia-based test system (stamen hair mutation test) performed on the same water samples and generation of the plant: occurrences of micronuclei in sporogenic cells coincided with that of non-surviving stamen hair. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Genotoxic effects and serum abnormalities in residents of regions proximal to e-waste disposal facilities in Jinghai, China.

    PubMed

    Li, KeQiu; Liu, ShaSha; Yang, QiaoYun; Zhao, YuXia; Zuo, JunFang; Li, Ran; Jing, YaQing; He, XiaoBo; Qiu, XingHua; Li, Guang; Zhu, Tong

    2014-07-01

    Electronic waste (e-waste) disposal is a growing problem in China, and its effects on human health are a concern. To determine the concentrations of pollutants in peripheral blood and genetic aberrations near an e-waste disposal area in Jinghai, China, blood samples were collected from 30 (age: 41±11.01 years) and 28 (age: 33±2.14 years) individuals residing within 5 and 40km of e-waste disposal facilities in Jinghai (China), respectively, during the week of October 21-28, 2011. Levels of inorganic pollutants (calcium, copper, iron, lead, magnesium, selenium, and zinc) and malondialdehyde (MDA), identities of persistent organic pollutants (POPs), micronucleus rates, and lymphocyte subsets were analyzed in individuals. Total RNA expression profiles were analyzed by group and gender. The population group living in proximity to the e-waste site displayed significantly higher mean levels of copper, zinc, lead, MDAs, POPs (B4-6DE, B7-9DE, total polychlorinated biphenyls, and BB-153). In addition, micronucleus rates of close-proximity group were higher compared with the remote group (18.27% vs. 7.32%). RNA expression of genes involved in metal ion binding and transport, oxidation/reduction, immune defense, and tumorigenesis varied between groups, with men most detrimentally affected (p<0.05). CD4(+)/CD8(+)T cell ratios, CD4(+)CD25(nt/hi)CD127(lo)regulatory T cell percentages, and CD95 expression were greater in the e-waste group (p<0.05). Residing in close proximity to e-waste disposal facilities (≤5km) may be associated with the accumulation of potentially harmful inorganic/organic compounds and gender-preferential genetic aberrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Correlation of In Vivo Versus In Vitro Benchmark Doses (BMDs) Derived From Micronucleus Test Data: A Proof of Concept Study.

    PubMed

    Soeteman-Hernández, Lya G; Fellows, Mick D; Johnson, George E; Slob, Wout

    2015-12-01

    In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement). © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  1. Automation of the in vitro micronucleus and chromosome aberration assay for the assessment of the genotoxicity of the particulate and gas-vapor phase of cigarette smoke.

    PubMed

    Roemer, Ewald; Zenzen, Volker; Conroy, Lynda L; Luedemann, Kathrin; Dempsey, Ruth; Schunck, Christian; Sticken, Edgar Trelles

    2015-01-01

    Total particulate matter (TPM) and the gas-vapor phase (GVP) of mainstream smoke from the Reference Cigarette 3R4F were assayed in the cytokinesis-block in vitro micronucleus (MN) assay and the in vitro chromosome aberration (CA) assay, both using V79-4 Chinese hamster lung fibroblasts exposed for up to 24 h. The Metafer image analysis platform was adapted resulting in a fully automated evaluation system of the MN assay for the detection, identification and reporting of cells with micronuclei together with the determination of the cytokinesis-block proliferation index (CBPI) to quantify the treatment-related cytotoxicity. In the CA assay, the same platform was used to identify, map and retrieve metaphases for a subsequent CA evaluation by a trained evaluator. In both the assays, TPM and GVP provoked a significant genotoxic effect: up to 6-fold more micronucleated target cells than in the negative control and up to 10-fold increases in aberrant metaphases. Data variability was lower in the automated version of the MN assay than in the non-automated. It can be estimated that two test substances that differ in their genotoxicity by approximately 30% can statistically be distinguished in the automated MN and CA assays. Time savings, based on man hours, due to the automation were approximately 70% in the MN and 25% in the CA assays. The turn-around time of the evaluation phase could be shortened by 35 and 50%, respectively. Although only cigarette smoke-derived test material has been applied, the technical improvements should be of value for other test substances.

  2. In situ monitoring of urban air in Córdoba, Argentina using the Tradescantia-micronucleus (Trad-MCN) bioassay

    NASA Astrophysics Data System (ADS)

    Carreras, H. A.; Pignata, M. L.; Saldiva, P. H. N.

    During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites ( p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.

  3. Genotoxicity profile of fexinidazole--a drug candidate in clinical development for human African trypanomiasis (sleeping sickness).

    PubMed

    Tweats, David; Bourdin Trunz, Bernadette; Torreele, Els

    2012-09-01

    The parasitic disease human African trypanomiasis (HAT), also known as sleeping sickness, is a highly neglected fatal condition endemic in sub-Saharan Africa, which is poorly treated with medicines that are toxic, no longer effective or very difficult to administer. New, safe, effective and easy-to-use treatments are urgently needed. Many nitroimidazoles possess antibacterial and antiprotozoal activity and examples such as tinidazole are used to treat trichomoniasis and guardiasis, but concerns about toxicity including genotoxicity limit their usefulness. Fexinidazole, a 2-substituted 5-nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after extensive compound mining of public and pharmaceutical company databases, has the potential to become a short-course, safe and effective oral treatment, curing both acute and chronic HAT. This paper describes the genotoxicity profile of fexinidazole and its two active metabolites, the sulfoxide and sulfone derivatives. All the three compounds are mutagenic in the Salmonella/Ames test; however, mutagenicity is either attenuated or lost in Ames Salmonella strains that lack one or more nitroreductase(s). It is known that these enzymes can nitroreduce compounds with low redox potentials, whereas their mammalian cell counterparts cannot, under normal conditions. Fexinidazole and its metabolites have low redox potentials and all mammalian cell assays to detect genetic toxicity, conducted for this study either in vitro (micronucleus test in human lymphocytes) or in vivo (ex vivo unscheduled DNA synthesis in rats; bone marrow micronucleus test in mice), were negative. Thus, fexinidazole does not pose a genotoxic hazard to patients and represents a promising drug candidate for HAT. Fexinidazole is expected to enter Phase II clinical trials in 2012.

  4. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).

    PubMed

    Wills, John W; Hondow, Nicole; Thomas, Adam D; Chapman, Katherine E; Fish, David; Maffeis, Thierry G; Penny, Mark W; Brown, Richard A; Jenkins, Gareth J S; Brown, Andy P; White, Paul A; Doak, Shareen H

    2016-09-09

    The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D monocultured cells meanwhile showed extensive internalisation of both silica particles causing (geno)toxicity. The results establish the importance of tissue microarchitecture in defining nanomaterial exposure, and suggest 3D in vitro models could play a role in bridging the gap between in vitro and in vivo outcomes in nanotoxicology. Robust exposure characterisation and uptake assessment methods (as demonstrated) are essential to interpret nano(geno)toxicity studies successfully.

  5. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential.

    PubMed

    Hobbs, Cheryl A; Koyanagi, Mihoko; Swartz, Carol; Davis, Jeffrey; Kasamoto, Sawako; Maronpot, Robert; Recio, Leslie; Hayashi, Shim-Mo

    2018-03-01

    Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. The Tradescantia micronucleus assay is a highly sensitive tool for the detection of low levels of radioactivity in environmental samples.

    PubMed

    Mišík, Miroslav; Krupitza, Georg; Mišíková, Katarina; Mičieta, Karol; Nersesyan, Armen; Kundi, Michael; Knasmueller, Siegfried

    2016-12-01

    Environmental contamination with radioactive materials of geogenic and anthropogenic origin is a global problem. A variety of mutagenicity test procedures has been developed which enable the detection of DNA damage caused by ionizing radiation which plays a key role in the adverse effects caused by radioisotopes. In the present study, we investigated the usefulness of the Tradescantia micronucleus test (the most widely used plant based genotoxicity bioassay) for the detection of genetic damage caused by environmental samples and a human artifact (ceramic plate) which contained radioactive elements. We compared the results obtained with different exposure protocols and found that direct exposure of the inflorescences is more sensitive and that the number of micronuclei can be further increased under "wet" conditions. The lowest dose rate which caused a significant effect was 1.2 μGy/h (10 h). Comparisons with the results obtained with other systems (i.e. with mitotic cells of higher plants, molluscs, insects, fish and human lymphocytes) show that the Tradescantia MN assay is one to three orders of magnitude more sensitive as other models, which are currently available. Taken together, our findings indicate that this method is due to its high sensitivity a unique tool, which can be used for environmental biomonitoring in radiation polluted areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of Genotoxic Pressure along the Sava River

    PubMed Central

    Kračun-Kolarević, Margareta; Kostić, Jovana; Simonović, Predrag; Simić, Vladica; Milošković, Aleksandra; Reischer, Georg; Farnleitner, Andreas; Gačić, Zoran; Milačič, Radmila; Zuliani, Tea; Vidmar, Janja; Pergal, Marija; Piria, Marina; Paunović, Momir; Vuković-Gačić, Branka

    2016-01-01

    In this study we have performed a comprehensive genotoxicological survey along the 900 rkm of the Sava River. In total, 12 sites were chosen in compliance with the goals of GLOBAQUA project dealing with the effects of multiple stressors on biodiversity and functioning of aquatic ecosystems. The genotoxic potential was assessed using a complex battery of bioassays performed in prokaryotes and aquatic eukaryotes (freshwater fish). Battery comprised evaluation of mutagenicity by SOS/umuC test in Salmonella typhimurium TA1535/pSK1002. The level of DNA damage as a biomarker of exposure (comet assay) and biomarker of effect (micronucleus assay) and the level of oxidative stress as well (Fpg—modified comet assay) was studied in blood cells of bleak and spirlin (Alburnus alburnus/Alburnoides bipunctatus respectively). Result indicated differential sensitivity of applied bioassays in detection of genotoxic pressure. The standard and Fpg—modified comet assay showed higher potential in differentiation of the sites based on genotoxic potential in comparison with micronucleus assay and SOS/umuC test. Our data represent snapshot of the current status of the river which indicates the presence of genotoxic potential along the river which can be traced to the deterioration of quality of the Sava River by communal and industrial wastewaters. The major highlight of the study is that we have provided complex set of data obtained from a single source (homogeneity of analyses for all samples). PMID:27631093

  8. Cytological changes in the oral mucosa after use of a mouth rinse with alcohol: A prospective double blind control study

    PubMed Central

    Vera-Sempere, Francisco; Marzal, Cristina; Pellín-Carcelén, Ana; Martí-Bonmatí, Ezequiel; Bagan, Leticia

    2012-01-01

    Aim: The aim of this preliminary study was to detect cytological changes in the oral mucosa after using a mouth wash with alcohol. Material and Methods: A prospective double-blind, controlled study was performed, for 6 months. Group 1 consisted of 30 subjects who used a mouth rinse with 26.9% of alcohol [Listerine®] and Group 2 consisted of 30 subjects who used a mouth rinse with the same ingredients but with no alcohol. We obtained three cytological samples from the oral mucosa. The presence of cytological atypia, binucleation and karyorrhesis, and type of cells were studied. We also used a fluorescent in situ hybridization technique (FISH) in 15 samples in each group, for the micronucleus. Results: We found no clinical mucosal alteration after using the mouth wash at the end of the study in either group. We observed no cytological differences between the groups at the end of the study (p>0.05). Regarding the study of the micronucleus by FISH, we observed no significant difference between the groups (p>0.05). Conclusions: Our results showed no cytological alteration in patients using a mouth rinse with alcohol, but these findings should be considered preliminary results, to be confirmed in a greater sample of patients. Key words:Mouth wash, oral mucosa, cytological change, alcohol. PMID:23085712

  9. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    PubMed

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, Verena J., E-mail: verena.koller@meduniwien.ac.at; Auwärter, Volker, E-mail: volker.auwaerter@uniklinik-freiburg.de; Grummt, Tamara, E-mail: tamara.grummt@uba.de

    Cannabicyclohexanol (CP-47,497-C8) is a representative of a group of cannabimimetic cyclohexylphenols which is added to herbal mixtures as a cannabis substitute since 2008. Although in the beginning CP-47,497-C8 was the main ingredient of “Spice” and similar products, it was partly replaced by aminoalkylindole-type cannabinoid receptor agonists like JWH-018, JWH-073 or JWH-250, but never completely disappeared from the market. Since information on its toxicological properties is scarce, we investigated the effects of the drug in human derived cell lines. The cytotoxic effects were studied in a panel of assays (SRB, XTT, LDHe and NR tests) in a buccal derived (TR146) andmore » a liver derived (HepG2) cell line. The strongest effects were seen in the two former assays at levels ≥ 7.5 μM indicating that the compound interferes with protein synthesis and causes membrane damage. In additional comet assays, DNA damage was detected at levels ≥ 10 μM. Experiments with lesion specific enzymes showed that these effects are not due to oxidative damage of DNA bases. The negative findings obtained in Salmonella/microsome assays and the positive results of micronucleus tests with the cell lines indicate that the compound does not cause gene mutations but acts on the chromosomal level. In contrast to other synthetic cannabinoids, no indication for estrogenic/antiestrogenic properties was seen in a luciferase assay with bone marrow derived U2-OS cells. In conclusion, our findings show that the drug has only weak cytotoxic properties. However, the induction of chromosomal damage indicates that it may cause adverse effects in users due to its impact on the stability of the genetic material. - Highlights: • We tested the toxic properties of a synthetic cannabinoid. • Acute cytotoxic effects were detected with doses ≥ 7 μM. • No hormonal effects were found. • DNA damage was detected at levels ≥ 10 μM in comet assay and micronucleus tests. • Effects in directly exposed tissues may occur in humans.« less

  11. Genotoxicity assessment of ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN).

    PubMed

    Reddy, Gunda; Song, Jian; Kirby, Paul; Johnson, Mark S

    2011-12-24

    Ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN) are relatively insensitive explosive compounds that are being explored as safe alternatives to other more sensitive compounds. When used in combination with other high explosives they are an improvement and may provide additional safety during storage and use. The genetic toxicity of these compounds was evaluated to predict the potential adverse human health effects from exposure by using a standard genetic toxicity test battery which included: a gene mutation test in bacteria (Ames), an in vitro Chinese Hamster Ovary (CHO) cell chromosome aberration test and an in vivo mouse micronucleus test. The results of the Ames test showed that EDDN increased the mean number of revertants per plate with strain TA100, without activation, at 5000μg/plate compared to the solvent control, which indicated a positive result. No positive results were observed with the other tester strains with or without activation in Salmonella typhimurium strains TA98, TA1535, TA1537, and Escherichia coli strain WP2 uvrA. DETN was negative for all Salmonella tester strains and E. coli up to 5000μg/plate both with and without metabolic activation. The CHO cell chromosome aberration assay was performed using EDDN and DETN at concentrations up to 5000μg/mL. The results indicate that these compounds did not induce structural chromosomal aberrations at all tested concentrations in CHO cells, with or without metabolic activation. EDDN and DETN, when tested in vivo in the CD-1 mouse at doses up to 2000mg/kg, did not induce any significant increase in the number of micronuclei in bone marrow erythrocytes. These studies demonstrate that EDDN is mutagenic in one strain of Salmonella (TA100) but was negative in other strains, for in vitro induction of chromosomal aberrations in CHO cells, and for micronuclei in the in vivo mouse micronucleus assay. DETN was not genotoxic in all in vitro and in vivo tests. These results show the in vitro and in vivo genotoxicity potential of these chemicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass).

    PubMed

    Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro

    2013-01-01

    The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.

  13. Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass)

    PubMed Central

    Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro

    2013-01-01

    The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test. PMID:24298206

  14. Genotoxicity potential of a new natural formicide.

    PubMed

    Cotelle, Sylvie; Testolin, Renan C; Foltête, Anne-Sophie; Bossardi-Rissardi, Georgiana; Silveira, Rosilene A; Radetski, Claudemir M

    2012-03-01

    Assessment of environmental impacts from pesticide utilization should include genotoxicity studies, where the possible effects of mutagenic/genotoxic substances on individuals are assessed. In this study, the genotoxicity profile of the new formicide Macex® was evaluated with two genotoxicity tests, namely, the micronucleus test with mouse bone marrow and Vicia faba, and a mutagenicity test using the Ames Salmonella assay. The bacterial reverse mutation test (Salmonella typhimurium strains TA97, TA98, TA100, TA102, and TA1535), the Vicia root tip and mouse micronucleus tests were conducted according to published protocols. In the range of the formicide Macex® concentrations tested from 0.06 to 1.0 g L⁻¹ (or mgkg⁻¹ in the mouse test), no genotoxicity was observed in the prokaryotic or eukaryotic test organisms. However, at Macex® concentrations of 0.5 g L⁻¹ and above a significant decrease in the mitotic index (P ≤ 0.05) in the V. faba was observed. Micronucleus formation was likewise increased in the test organism at concentrations starting at 2.0 g L⁻¹. These data allow us to classify this natural formicide preparation as a product with no geno-environmental-impact when applied at recommended concentrations.

  15. Kinetochore identification in micronuclei in mouse bone-marrow erythrocytes: an assay for the detection of aneuploidy-inducing agents.

    PubMed

    Gudi, R; Sandhu, S S; Athwal, R S

    1990-10-01

    An in vivo micronucleus assay using mouse bone marrow for identifying the ability of chemicals to induce aneuploidy and/or chromosome breaks is described. Micronucleus formation in bone-marrow erythrocytes of mice is commonly used as an index for evaluating the clastogenicity of environmental agents. However, micronuclei may also originate from intact lagging chromosomes resulting from the effect of aneuploidy-inducing agents. We have used immunofluorescent staining using anti-kinetochore antibodies to classify micronuclei for the presence or absence of kinetochores. Micronuclei positive for kinetochores are assumed to contain intact chromosomes and result from induced aneuploidy; while those negative for kinetochores contain acentric chromosomal fragments and originate from clastogenic events. The assay was evaluated using X-irradiation (a known clastogen) and vincristine sulfate (an aneuploidy-inducing agent). A dose-related response for the induction of micronuclei was observed for both agents. Micronuclei induced by X-irradiation were negative for kinetochores while the majority of the micronuclei resulting from vincristine treatment contained kinetochores. Thus, the micronucleus assay in combination with immunofluorescent staining for kinetochores may provide a useful method to simultaneously assess the ability of chemicals to induce aneuploidy and/or chromosome breaks.

  16. Evaluation of Micronuclei, Nuclear Anomalies and the Nuclear/Cytoplasmic Ratio of Exfoliated Cervical Epithelial Cells in Genital Candidiasis.

    PubMed

    Safi Oz, Zehra; Dogan Gun, Banu; Ozdamar, Sukru Oguz

    2015-01-01

    Candida is the most common cause of fungal infections. The aim of this study was to fill the gaps in the current knowledge on the frequencies of micronuclei and nuclear anomalies, and the nucleus/cytoplasmic ratio in genital candidiasis. A total of 88 Papanicolaou- stained cervical smears, which comprised Candida spp. (n = 44) and control cases with no infectious agent (n = 44), were studied. In each smear, cells with micronuclei and nuclear anomalies were counted in 1,000 epithelial cells and also nuclear and cellular areas were evaluated using image analysis software at a magnification of ×400. The frequencies of micronucleated and binucleated cells and cells with perinuclear halos, and the nucleus/cytoplasmic ratio of epithelial cells were higher in the Candida-infected group compared with the control group (p < 0.05). Genital candidiasis is able to induce changes in the size and shape of epithelial cells. The nuclear/cytoplasmic ratio and the frequency of micronuclei may reflect the DNA damage in the cervical epithelium. Micronucleus scoring could be used to screen the genomic damage profile of epithelial cells in candidiasis. © 2015 S. Karger AG, Basel.

  17. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma.

    PubMed

    Wang, Xiao-Chun; Zhang, Tie-Jun; Guo, Zi-Jian; Xiao, Chang-Yan; Ding, Xiao-Wen; Fang, Fang; Sheng, Wen-Tao; Shu, Xu; Li, Jue

    2017-02-06

    To investigate the effects of S-phase kinase protein 2 (SKP2) expression on the radiation induced bystander effect (RIBE) in esophageal cancer (EC) cells. Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN), and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. We found a significant negative correlation between SKP2 expression and MN frequency ( p < 0.05) induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.

  18. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  19. Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2016-08-05

    To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm² for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.

  20. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  1. Integrated exposure assessment of sewage workers to genotoxicants: an urinary biomarker approach and oxidative stress evaluation

    PubMed Central

    2011-01-01

    Background Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine. Methods During three consecutive working days, polycyclic aromatic hydrocarbons and volatile organic compounds were sampled in workplace air of 34 sewage and 30 office workers, as indicators of airborne exposure. The last day, subjects collected their 24 hours urine. Genotoxicity of urinary extracts was assessed by comet and micronucleus assays on a HepG2 cell line. Using competitive enzymatic immunoassay we evaluated the 24 hours urinary 8-oxo-2'-deoxyguanosine excretion. Benzo(a)pyrene toxicity equivalent factors and inhalation unit risk for Benzo(a)pyrene and benzene were used to give an estimate of cancer risk levels. Results Workplace air concentrations of polycyclic aromatic hydrocarbons (e.g. 23.7 [range 2.4-104.6] ng.m-3 for fluoranthene) and volatile organic compounds (e.g. 19.1 ± 2.9 [standard error] μ.m-3 for benzene) were elevated in sewage compared to office workplaces (P < 0.01) and corresponded to an increased lifetime cancer risk. The urinary extracts of sewage workers showed higher genotoxicity (P < 0.001) than office workers. Conclusions The integrated and non-specific urinary biomarkers of exposure showed that sewage workers experience exposure to mixtures of genotoxicants in the workplace. PMID:21435260

  2. Integrated exposure assessment of sewage workers to genotoxicants: an urinary biomarker approach and oxidative stress evaluation.

    PubMed

    Al Zabadi, Hamzeh; Ferrari, Luc; Sari-Minodier, Irène; Kerautret, Marie-Aude; Tiberguent, Aziz; Paris, Christophe; Zmirou-Navier, Denis

    2011-03-24

    Sewage workers are exposed to multiple chemicals among which many are suspected genotoxicants. Therefore, they might incur DNA damage and oxidative stress. We aimed to explore integrated urinary biomarkers, assessing the overall urine genotoxicity by in vitro comet and micronucleus assays and measuring urinary 8-oxo-2'-deoxyguanosine. During three consecutive working days, polycyclic aromatic hydrocarbons and volatile organic compounds were sampled in workplace air of 34 sewage and 30 office workers, as indicators of airborne exposure. The last day, subjects collected their 24 hours urine. Genotoxicity of urinary extracts was assessed by comet and micronucleus assays on a HepG2 cell line. Using competitive enzymatic immunoassay we evaluated the 24 hours urinary 8-oxo-2'-deoxyguanosine excretion. Benzo(a)pyrene toxicity equivalent factors and inhalation unit risk for Benzo(a)pyrene and benzene were used to give an estimate of cancer risk levels. Workplace air concentrations of polycyclic aromatic hydrocarbons (e.g. 23.7 [range 2.4-104.6] ng.m-3 for fluoranthene) and volatile organic compounds (e.g. 19.1 ± 2.9 [standard error] μ.m-3 for benzene) were elevated in sewage compared to office workplaces (P < 0.01) and corresponded to an increased lifetime cancer risk. The urinary extracts of sewage workers showed higher genotoxicity (P < 0.001) than office workers. The integrated and non-specific urinary biomarkers of exposure showed that sewage workers experience exposure to mixtures of genotoxicants in the workplace.

  3. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?

    PubMed

    Karlsson, Hanna L; Di Bucchianico, Sebastiano; Collins, Andrew R; Dusinska, Maria

    2015-03-01

    The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods. © 2014 Wiley Periodicals, Inc.

  4. Oxidative Stress and Genotoxicity of Long-Term Occupational Exposure to Low Levels of BTEX in Gas Station Workers

    PubMed Central

    Xiong, Feng; Li, Qin; Zhou, Bo; Huang, Jiongli; Liang, Guiqiang; Zhang, Li’e; Ma, Shuyan; Qing, Li; Liang, Linhan; Su, Jing; Peng, Xiaowu; Li, Qin; Zou, Yunfeng

    2016-01-01

    Atmospheric benzene, toluene, ethylbenzene, and xylenes (BTEX) can lead to multiple health injuries. However, what remains uncertain is the effect of long-term exposure to low levels of BTEX. Thus, we determined the BTEX levels in the air from the refueling and office areas in gas stations. Then we collected workers’ (200 refueling vs. 52 office workers) peripheral blood samples to analyze the serum total-superoxide dismutase (T-SOD), glutathione (GSH), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) levels. DNA damage was analyzed by the comet assay and micronucleus test in buccal epithelial cells. We found that the levels of BTEX in refueling areas were significantly higher than those in office areas (p < 0.001). The serum T-SOD and GSH of refueling workers were significantly lower than those in office workers (p < 0.001). By contrast, the serum MDA and 8-OHdG of refueling workers were significantly higher than those of office workers (p < 0.001, MDA; p = 0.025, 8-OHdG). Furthermore, tail and Olive tail moments in refueling workers were longer (p = 0.004, tail moment; p = 0.001, Olive tail moment), and the micronucleus rate was higher (p < 0.001) than those in office workers. Taken together, long-term exposure to low levels of BTEX may reduce the antioxidant ability and increase the risk of DNA damage in refueling workers of gas stations. PMID:27929445

  5. Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload.

    PubMed

    Franke, Silvia I R; Molz, Patrícia; Mai, Camila; Ellwanger, Joel H; Zenkner, Fernanda F; Horta, Jorge A; Prá, Daniel

    2018-04-16

    We evaluated the influence of hesperidin and vitamin C (VitC) on glycemic parameters, lipid profile, and DNA damage in male Wistar rats treated with sucrose overload. Rats were divided into six experimental groups: I-water control; II-sucrose control; III-hesperidin control; IV-VitC control; V-co-treatment of sucrose plus hesperidin; VI-co-treatment of sucrose plus VitC. We measured the levels of triglycerides, total cholesterol, HDL-c, LDL-c, fasting glucose, and glycated hemoglobin (A1C). DNA damage was evaluated in blood and brain cells using the comet assay and the micronucleus test was used to evaluate chromosomal damages in the rat bone marrow. Co-treatment with VitC, but not with hesperidin, normalized the serum glucose. No effect of co-treatments was observed on A1C. The co-treatment with VitC or hesperidin did not influence the lipid profile (p>0.05). Rats co-treated with hesperidin had a significantly lower DNA damage level in blood (p<0.05) and brain (p<0.05). Rats treated with VitC only, but not those co-treated with VitC plus sucrose, had significantly higher DNA damage in brain (p<0.05). No significant differences were observed in the results of micronucleus test (p>0.05). Hesperidin and VitC showed different effects on sucrose and DNA damage levels. While VitC lowered the serum glucose, hesperidin reduced the DNA damage.

  6. Acute toxicity and genotoxicity study of fermented traditional herb formula Guibi-tang.

    PubMed

    Park, Hwayong; Hwang, Youn-Hwan; Yang, Hye Jin; Kim, Hyun-Kyu; Song, Kyung Seuk; Ma, Jin Yeul

    2014-10-28

    Guibi-tang (Guipi-tang in Chinese and Kihi-to in Japanese) is a multi-herb traditional medicine commonly prescribed to treat psychoneurosis in East Asia. Although this medicine has been widely used, there is little available information on the safety and toxicity of Guibi-tang, especially on the fermented one. Guibi-tang, composed of 12 herbs, was fermented with bacteria and lyophilized. Single dose acute toxicity in rats was observed for 14 days after administration. Genetic toxicity of fermented Guibi-tang was evaluated on bacterial reverse mutation in Salmonella and Escherichia spp., chromosome aberrations in Chinese hamster ovary cells, and micronucleus formation in mice. Ingredients in FGBT were identified and quantified by high performance liquid chromatography-mass spectrometry. In acute oral toxicity study, behavior, clinical signs and body weight changes were normal observing in all experimental animals. No revertant colonies were found in any bacterial cultures examined. Morphological or numerical anomalies and significant increased number of aberrant metaphases were not observed. Micronucleus assay showed no significant increases in the frequency of inducing micronuclei in any dose examined. Decursinol, decursin, glycyrrhizin, and 6-gingerol in fermented Guibi-tang were identified and quantitated. As a whole, no acute and genotoxic effects were found in all the assays and parameters analyzed. Fermented Guibi-tang was recognized as safe and non-toxic, and therefore can be used for applications of traditional medicine in modern complementary and alternative therapeutics and health care. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: standard and Fpg-modified comet assay.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja

    2008-08-15

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.

  8. Organic extracts of coke oven emissions can induce genetic damage in metabolically competent HepG2 cells.

    PubMed

    Xin, Lili; Wang, Jianshu; Guo, Sifan; Wu, Yanhu; Li, Xiaohai; Deng, Huaxin; Kuang, Dan; Xiao, Wei; Wu, Tangchun; Guo, Huan

    2014-05-01

    Coke oven emissions (COEs) containing various carcinogenic polycyclic aromatic hydrocarbons (PAHs) represent the coal-burning pollution in the air. Organic pollutants in the aerosol and particulate matter of COEs were collected from the bottom, side, and top of a coke oven. The Comet assay and cytokinesis-block micronucleus cytome assay were conducted to analyze the genetic damage of extractable organic matter (EOM) of COEs on HepG2 cells. All the three EOMs could induce significant dose-dependent increases in Olive tail moment, tail DNA, and tail length, micronuclei, nucleoplasmic bridges, and nuclear buds frequencies, which were mostly positively correlated with the total PAHs concentration in each EOM. In conclusion, EOMs of COEs in the three typical working places of coke oven can induce DNA strand breaks and genomic instability in the metabolically competent HepG2 cells. The PAHs in EOMs may be important causative agents for the genotoxic effects of COEs. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Micronuclei frequencies and nuclear abnormalities in oral exfoliated cells of nuclear power plant workers.

    PubMed

    Sagari, Shitalkumar G; Babannavar, Roopa; Lohra, Abhishek; Kodgi, Ashwin; Bapure, Sunil; Rao, Yogesh; J, Arun; Malghan, Manjunath

    2014-12-01

    Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to evaluate the frequencies of Micronuclei (MN) and other Nuclear abnormalities (NA) from exfoliated oral mucosal cells in Nuclear Power Station (NPS) workers. Micronucleus frequencies in oral exfoliated cells were done from individuals not known to be exposed to either environmental or occupational carcinogens (Group I). Similarly samples were obtained from full-time Nuclear Power Station (NPS) workers with absence of Leukemia and any malignancy (Group II) and workers diagnosed as leukemic patients and undergoing treatment (Group III). There was statistically significant difference between Group I, Group II & Group III. MN and NA frequencies in Leukemic Patients were significantly higher than those in exposed workers &control groups (p < 0.05). MN and other NA reflect genetic changes, events associated with malignancies. Therefore, there is a need to educate those who work in NPS about the potential hazard of occupational exposure and the importance of using protective measures.

  10. Nandrolone androgenic hormone presents genotoxic effects in different cells of mice.

    PubMed

    do Carmo, Carolina Almeida; Gonçalves, Álvaro Luiz Martini; Salvadori, Daisy Maria Fávero; Maistro, Edson Luis

    2012-10-01

    Nandrolone is an androgenic-anabolic steroid (AAS) with diverse medical applications but taken indiscriminately by some to rapidly increase muscle mass. The aim of this study was to evaluate the genotoxic and clastogenic potential of nandrolone (deca-durabolin®) in vivo in different cells of mice, using the comet assay and micronucleus test, respectively. The animals received subcutaneous injection of the three doses of the steroid (1.0, 2.5 and 5.0 mg kg⁻¹ body weight). Cytotoxicity was assessed by scoring 200 consecutive total polychromatic (PCE) and normochromatic (NCE) erythrocytes (PCE-NCE ratio). The results showed a significant dose-related increase in the frequency of DNA damage in leukocytes, liver, bone marrow, brain and testicle cells at the three tested doses and a significant increase of the micronucleated polychromatic erythrocytes at all tested doses. Under our experimental conditions, the nandrolone steroid hormone showed genotoxic and clastogenic effects when administered subcutaneously to mice. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis

    PubMed Central

    Martin, Carol-Anne; Murray, Jennie E.; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J.; Halachev, Mihail; Fetit, Ahmed E.; Keith, Charlotte; Bicknell, Louise S.; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A.; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B.; Duker, Angela; Wise, Carol A.; Quigley, Alan J.; Phadke, Shubha R.; Wood, Andrew J.; Vagnarelli, Paola; Jackson, Andrew P.

    2016-01-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. PMID:27737959

  12. Radiation risk assessment in professionals working in dental radiology area using buccal micronucleus cytome assay.

    PubMed

    Sadatullah, Syed; Dawasaz, Ali Azhar; Luqman, Master; Assiry, Ali A; Almeshari, Ahmed A; Togoo, Rafi Ahmad

    2013-11-01

    The aim of this study was to assess the incidence of micronuclei (MN) in buccal mucosal cells of professionals working in radiology area to determine the risk of stochastic effects of radiation. All the professionals and students working in King Khalid University - College of Dentistry radiology area were included in the Risk Group (RG = 27). The Control Group (CG = 27) comprised of healthy individual matching the gender and age of the RG. Buccal mucosal scraping from all the 54 subjects of RG and CG were stained with Papanicolaou stain and observed under oil immersion lens (×100) for the presence of micronuclei (MN) in the exfoliated epithelial cells. There was no significant difference between the incidence of MN in RG and CG (p = >0.05) using t-test. Routine radiation protection protocol does minimize the risk of radiation induced cytotoxicity, however, screening of professionals should be carried out at regular intervals.

  13. Toxicity evaluation of the photoprotective compound LQFM048: Eye irritation, skin toxicity and genotoxic endpoints.

    PubMed

    de Ávila, Renato Ivan; de Sousa Vieira, Marcelo; Gaeti, Marilisa Pedroso Nogueira; Moreira, Larissa Cleres; de Brito Rodrigues, Laís; de Oliveira, Gisele Augusto Rodrigues; Batista, Aline Carvalho; Vinhal, Daniela Cristina; Menegatti, Ricardo; Valadares, Marize Campos

    2017-02-01

    A new molecule, LQFM048, originally designed through molecular hybridization using green chemistry approach, is in development as a photoprotective agent. Eye irritation, skin toxicity and genotoxicity evaluations are mandatory for predicting health risks. In this context, the purpose of this study was to investigate the eye irritation potential of LQFM048 by combining Short Time Exposure (STE), Bovine Corneal Opacity and Permeability (BCOP) associated with corneal histomorphometry and Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Additionally, skin toxicity was evaluated by interleukin-18 production in the HaCaT keratinocyte, Local Lymph Node Assay (LLNA:BrdU-ELISA) method, 3T3 Neutral red uptake (NRU) assay and in vivo phototoxicity test. Genotoxic potential of LQFM048 was also analyzed by cytokinesis-block micronucleus assay (MNvit test-cytoB) in HepG2 cells. Our results showed that LQFM048 did not induce eye irritation and it was classified as UN GHS No Category for both STE and BCOP assays and non-irritating for HET-CAM test. LQFM048 showed non-potential skin sensitization with stimulation index (SI=0.7) in the LLNA:BrdU-ELISA method. Corroborating in vivo tests, it did not promote significant cytotoxicity in HaCaT cells and it showed similar levels of IL-18 when compared to control. Furthermore, LQFM048 induced non-phototoxic potential with photo-irritation factor (PIF) and mean photo effect (MPE) of 1 and -0.138, respectively, for 3T3 cells. Similarly, it was not phototoxic for in vivo testing with or without exposure to UVA, showing SI values of 1 and 1.2, respectively. The micronucleus test showed that LQFM048 was not genotoxic, under the conditions tested.In conclusion, LQFM048, a heterocyclic compound obtained through an environmentally acceptable simple synthetic route, seems to be safe for human use, especially for the development of a new sunscreen product, since it is neither an eye irritant, nor a contact allergen, nor mutagenic and nor phototoxic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Laser scanning cytometry for automation of the micronucleus assay

    PubMed Central

    Darzynkiewicz, Zbigniew; Smolewski, Piotr; Holden, Elena; Luther, Ed; Henriksen, Mel; François, Maxime; Leifert, Wayne; Fenech, Michael

    2011-01-01

    Laser scanning cytometry (LSC) provides a novel approach for automated scoring of micronuclei (MN) in different types of mammalian cells, serving as a biomarker of genotoxicity and mutagenicity. In this review, we discuss the advances to date in measuring MN in cell lines, buccal cells and erythrocytes, describe the advantages and outline potential challenges of this distinctive approach of analysis of nuclear anomalies. The use of multiple laser wavelengths in LSC and the high dynamic range of fluorescence and absorption detection allow simultaneous measurement of multiple cellular and nuclear features such as cytoplasmic area, nuclear area, DNA content and density of nuclei and MN, protein content and density of cytoplasm as well as other features using molecular probes. This high-content analysis approach allows the cells of interest to be identified (e.g. binucleated cells in cytokinesis-blocked cultures) and MN scored specifically in them. MN assays in cell lines (e.g. the CHO cell MN assay) using LSC are increasingly used in routine toxicology screening. More high-content MN assays and the expansion of MN analysis by LSC to other models (i.e. exfoliated cells, dermal cell models, etc.) hold great promise for robust and exciting developments in MN assay automation as a high-content high-throughput analysis procedure. PMID:21164197

  15. Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

    PubMed Central

    Dubois, Emeline; Bischerour, Julien; Marmignon, Antoine; Mathy, Nathalie; Régnier, Vinciane; Bétermier, Mireille

    2012-01-01

    Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes. PMID:22888464

  16. The micronucleus test-most widely used in vivo genotoxicity test.

    PubMed

    Hayashi, Makoto

    2016-01-01

    Genotoxicity is commonly evaluated during the chemical safety assessment together with other toxicological endpoints. The micronucleus test is always included in many genotoxic test guidelines for long time in many classes of chemicals, e.g., pharmaceutical chemicals, agricultural chemicals, food additives. Although the trend of the safety assessment of chemicals faces to animal welfare and in vitro systems are more welcome than the in vivo systems, the in vivo test systems are paid more attention in the field of genotoxicity because of its weight of evidence. In this review, I will summarize the following points: 1) historical consideration of the test development, 2) characteristics of the test including advantages and limitations, 3) new approaches considering to the animal welfare.

  17. Distinct functional roles of β-tubulin isotypes in microtubule arrays of Tetrahymena thermophila, a model single-celled organism.

    PubMed

    Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H William; Miceli, Cristina

    2012-01-01

    The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.

  18. An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one].

    PubMed

    Nohynek, Gerhard J; Kirkland, David; Marzin, Daniel; Toutain, Herve; Leclerc-Ribaud, Christele; Jinnai, Hiroyuki

    2004-01-01

    Kojic acid (KA), a natural substance produced by fungi or bacteria, such as Aspergillus, Penicillium or Acetobacter spp, is contained in traditional Japanese fermented foods and is used as a dermatological skin-lightening agent. High concentrations of KA (>or=1000 microg/plate) were mutagenic in S. typhimurium strains TA 98, TA 100, TA 1535, TA102 and E. coli WP2uvrA, but not in TA 1537. An Ames test following the "treat and plate" protocol was negative. A chromosome aberration test in V79 cells following a robust protocol showed only a marginal increase in chromosome aberrations at cytotoxic concentrations after prolonged (>or=18 h) exposure. No genotoxic activity was observed for hprt mutations either in mouse lymphoma or V79 cells, or in in vitro micronucleus tests in human keratinocytes or hepatocytes. All in vivo genotoxicity studies on KA doses were negative, including mouse bone marrow micronucleus tests after single or multiple doses, an in vivo/in vitro unscheduled DNA synthesis (UDS) test, or a study in the liver of the transgenic Muta(TM) Mouse. On the basis of pharmacokinetic studies in rats and in vitro absorption studies in human skin, the systemic exposure of KA in man following its topical application is estimated to be in the range of 0.03-0.06 mg/kg/day. Comparing these values with the NOAEL in oral subchronic animal studies (250 mg/kg/day), the calculated margin of safety would be 4200- to 8900-fold. Comparing human exposure with the doses that were negative for micronuclei, UDS and gene mutations in vivo, the margins of safety are 16000 to 26000-fold. In conclusion, the topical use of KA as a skin lightening agent results in minimal exposure that poses no or negligible risk of genotoxicity or toxicity to the consumer.

  19. Incidence of chromosomal aberrations and micronuclei in cave tour guides.

    PubMed

    Bilban, M; Bilban-Jakopin, C; Vrhovec, S

    2001-01-01

    An analysis of structural chromosomal aberrations (SCA) and micronucleus tests (MN) were performed in 38 subjects, cave tour guides and in appropriate control group. The dominant type of chromosomal aberrations in tourist guides were chromosomal breaks (0.013 per cell) and acentric fragments (0.011 per cell). In the control group, these aberrations were present up to 0.008 on cells. Considering the analysed cells of the guides in total (33,556), the incidence of dicentric and rings range is below 0.0008 on cells, even though three dicentric and ring chromosoms were found already in the first 1000 in vitro metaphases of some guides. Only 0.0003 dicentrics and neither other translocations were found in control group (ambiental exposure). The incidence of micronuclei in cytokinesis blocked lymphocytes ranged from 12-32 per 500 CB cells in the cave tour guides and from 4-11 per 500 CB cells in control group. Measurements of radon and its daughters were performed at different locations in the cave. Annual doses from 40-60 mSv were estimated per 2000 work hours for cave guides. The changes found in the genome of somatic cells may be related to the exposure doses of radon and its daughters, although smoking should not be ignored.

  20. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2).

    PubMed

    Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L

    2017-09-27

    Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.

  1. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis.

    PubMed

    Li, Diqiu; Huang, Qingchun; Lu, Miaoqing; Zhang, Lei; Yang, Zhichuan; Zong, Mimi; Tao, Liming

    2015-09-01

    The organophosphate insecticide chlorpyrifos (CPF) is known to induce neurological effects, malformation and micronucleus formation, persistent developmental disorders, and maternal toxicity in rats and mice. The binding of chlorpyrifos with DNA to produce DNA adducts leads to an increasing social concern about the genotoxic risk of CPF in human, but CPF-induced cytotoxicity through DNA damage and cell apoptosis is not well understood. Here, we quantified the cytotoxicity and potential genotoxicity of CPF using the alkaline comet assay, γH2AX foci formation, and the DNA laddering assay in order to detect DNA damage and apoptosis in human HeLa and HEK293 cells in vitro. Drosophila S2 cells were used as a positive control. The alkaline comet assay showed that sublethal concentrations of CPF induced significant concentration-dependent increases in single-strand DNA breaks in the treated cells compared with the control. The percentage of γH2AX-positive HeLa cells revealed that CPF also causes DNA double-strand breaks in a time-dependent manner. Moreover, DNA fragmentation analysis demonstrated that exposure to CPF induced a significant concentration- and time-dependent increase in cell apoptosis. We conclude that CPF is a strongly genotoxic agent that induces DNA damage and cell apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. ICP-OES and Micronucleus Test to Evaluate Heavy Metal Contamination in Commercially Available Brazilian Herbal Teas.

    PubMed

    Schunk, Priscila Francisca Tschaen; Kalil, Ieda Carneiro; Pimentel-Schmitt, Elisangela Flavia; Lenz, Dominik; de Andrade, Tadeu Uggere; Ribeiro, Juliano Souza; Endringer, Denise Coutinho

    2016-07-01

    Increased tea consumption in combination with intensive pesticide use is generating heavy metal contaminations amongst Brazilian tea consumers, causing health concerns. Inductively coupled plasma optical emission spectrometry (ICP-OES) was applied to quantify minerals and heavy metals such as aluminum, barium, cadmium, lead, cobalt, copper, chromium, tin, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc in Brazilian chamomile, lemongrass, fennel and yerba mate teas. Teas, purchased in local supermarkets, were prepared using infusion and acid digestion. Higher concentrations of Al were present in all samples. In the digested samples, the Al mean concentration was 2.41 μg g(-1) (sd = 0.72) for fennel and 33.42 μg g(-1) (sd = 17.18) for chamomile, whilst the sample C for chamomile tea presented the highest concentration with 51.62 μg g(-1) (sd = 9.17). The safety relation in decreasing order is fennel, lemongrass, chamomile and yerba mate. Chemometric analyses demonstrated a strong correlation between the elements Cd and Pb in the samples. Yerba mate had the highest amount of metal (100 mg kg(-1)), being the subject of a micronucleus test assay for cytotoxicity. The metals found in Yerba mate did not present cytotoxicity/mutagenicity using the micronucleus test. The inorganic contaminants in teas should have their impact carefully monitored.

  3. Genotoxic potential generated by biomass burning in the Brazilian Legal Amazon by Tradescantia micronucleus bioassay: a toxicity assessment study

    PubMed Central

    2011-01-01

    Background The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangará da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangará da Serra region, using Tradescantia pallida as in situ bioindicator. Methods The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity. PMID:21575274

  4. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter.

    PubMed

    Scott, K; Saul, J; Crooks, I; Camacho, O M; Dillon, D; Meredith, C

    2013-06-01

    In vitro genotoxicity assays are often used to compare tobacco smoke particulate matter (PM) from different cigarettes. The quantitative aspect of the comparisons requires appropriate statistical methods and replication levels, to support the interpretation in terms of power and significance. This paper recommends a uniform statistical analysis for the Ames test, mouse lymphoma mammalian cell mutation assay (MLA) and the in vitro micronucleus test (IVMNT); involving a hierarchical decision process with respect to slope, fixed effect and single dose comparisons. With these methods, replication levels of 5 (Ames test TA98), 4 (Ames test TA100), 10 (Ames test TA1537), 6 (MLA) and 4 (IVMNT) resolved a 30% difference in PM genotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties.

    PubMed

    Louro, Henriqueta; Pinhão, Mariana; Santos, Joana; Tavares, Ana; Vital, Nádia; Silva, Maria João

    2016-11-16

    To contribute with scientific evidence to the grouping strategy for the safety assessment of multi-walled carbon nanotubes (MWCNTs), this work describes the investigation of the cytotoxic and genotoxic effects of four benchmark MWCNTs in relation to their physicochemical characteristics, using two types of human respiratory cells. The cytotoxic effects were analysed using the clonogenic assay and replication index determination. A 48h-exposure of cells revealed that NM-401 was the only cytotoxic MWCNT in both cell lines, but after 8-days exposure, the clonogenic assay in A549 cells showed cytotoxic effects for all the tested MWCNTs. Correlation analysis suggested an association between the MWCNTs size in cell culture medium and cytotoxicity. No induction of DNA damage was observed after any MWCNTs in any cell line by the comet assay, while the micronucleus assay revealed that both NM-401 and NM-402 were genotoxic in A549 cells. NM-401 and NM-402 are the two longest MWCNTs analyzed in this work, suggesting that length may be determinant for genotoxicity. No induction of micronuclei was observed in BBEAS-2Beas-2B cell line and the different effect in both cell lines is explained in view of the size-distribution of MWCNTs in the cell culture medium, rather than cell's specificities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells

    PubMed Central

    Hashimoto, Kiyohiro; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun

    2015-01-01

    Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity. PMID:26085549

  7. Quantitative evaluation of micronuclei in oral squamous cell carcinoma and oral submucous fibrosis patients: a comparative study.

    PubMed

    Shah, Shreyas N; Manjunatha, Bhari S; Shah, Vandana S; Dagrus, Kapil; Soni, Nishit; Shah, Sanjiv

    2015-01-01

    The forte of research today aims at determining genotoxic changes in human cells as rapidly as possible. Micronuclei estimation in exfoliated cells is an easy, noninvasive and a reliable method to monitor genotoxic changes due to various reasons in oral mucosal cells. To identify, quantify and compare micronuclei in exfoliated buccal mucosal cells of healthy, oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC) participants. In the present study, buccal smears from the 60 participants (30 each of OSMF and OSCC) and 30 age and sex matched controls were obtained and stained using Papanicolaou (PAP) staining method and observed under 100X magnification to identify and quantify micronuclei in the exfoliated cells of oral mucosa. There was a significant increase in micronuclei count from control to OSMF to OSCC. Also, a significant increase in the micronuclei frequency is observed with the different clinical stages and histological grades of OSMF and different histological grades of OSCC. Micronucleus assay can be used as an easy and consistent marker for genotoxic evaluation in higher risk groups and can be used for better treatment evaluation and prognosis in cases of OSMF and OSCC. Some relevant patents are also outlined in this article.

  8. Persistent in vivo cytogenetic effects of radioiodine therapy: a 21-year follow-up study using multicolor FISH.

    PubMed

    Livingston, Gordon K; Escalona, Maria; Foster, Alvis; Balajee, Adayabalam S

    2018-01-01

    Our previous studies demonstrated the cytogenetic effects in the peripheral blood lymphocytes of a 34-year-old male patient who received ablative radioactive 131iodine therapy (RIT) on two different occasions in 1992 and 1994. Assessment of RIT-induced chromosomal damage by the cytokinesis-blocked micronucleus assay (CBMN) showed the persistence of elevated micronucleus frequency in this patient for more than two decades since the first RIT. Subsequent cytogenetic analysis performed in 2012 revealed both stable and unstable aberrations, whose frequencies were higher than the baseline reported in the literature. Here, we report the findings of our recent cytogenetic analysis peformed in 2015 on this patient using the multicolor fluorescence in situ hybridization (mFISH) technique. Our results showed that both reciprocal and non-reciprocal translocations persisted at higher frequencies in the patient than those reported in 2012. Persistence of structural aberrations for more than two decades indicate that these aberrations might have originated from long-lived T-lymphocytes or hematopoietic stem cells. Our study suggests that the long-term persistence of chromosome translocations in circulating lymphocytes can be useful for monitoring the extent of RIT-induced chromosomal instability several years after exposure and for estimating the cumulative absorbed dose after multiple RITs for retrospective biodosimetry purposes. This is perhaps the first and longest follow-up study documenting the persistence of cytogenetic damage for 21 years after internal radiation exposure. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area.

    PubMed

    Jun-hui, Zhang; Hang, Min

    2009-06-15

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg(-1)), and weakly contaminated with Cu (256.36 mg kg(-1)) and Zn (209.85 mg kg(-1)). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  10. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species.

    PubMed

    Passaglia Schuch, André; Dos Santos, Mauricio Beux; Mendes Lipinski, Victor; Vaz Peres, Lucas; Dos Santos, Caroline Peripolli; Zanini Cechin, Sonia; Jorge Schuch, Nelson; Kirsh Pinheiro, Damaris; da Silva Loreto, Elgion Lúcio

    2015-08-01

    The increased incidence of solar ultraviolet radiation (UV) due to ozone depletion has been affecting both terrestrial and aquatic ecosystems and it may help to explain the enigmatic decline of amphibian populations in specific localities. In this work, influential events concerning the Antarctic ozone hole were identified in a dataset containing 35 years of ozone measurements over southern Brazil. The effects of environmental doses of UVB and UVA radiation were addressed on the morphology and development of Hypsiboas pulchellus tadpole (Anura: Hylidae), as well as on the induction of malformation after the conclusion of metamorphosis. These analyzes were complemented by the detection of micronucleus formation in blood cells. 72 ozone depletion events were identified from 1979 to 2013. Surprisingly, their yearly frequency increased three-fold during the last 17 years. The results clearly show that H. pulchellus tadpole are much more sensitive to UVB than UVA light, which reduces their survival and developmental rates. Additionally, the rates of micronucleus formation by UVB were considerably higher compared to UVA even after the activation of photolyases enzymes by a further photoreactivation treatment. Consequently, a higher occurrence of malformation was observed in UVB-irradiated individuals. These results demonstrate the severe genotoxic impact of UVB radiation on this treefrog species and its importance for further studies aimed to assess the impact of the increased levels of solar UVB radiation on declining species of the Hylidae family. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Intrahippocampal Infusion of Crotamine Isolated from Crotalus durissus terrificus Alters Plasma and Brain Biochemical Parameters †

    PubMed Central

    Gonçalves, Rithiele; Vargas, Liane S.; Lara, Marcus V. S.; Güllich, Angélica; Mandredini, Vanusa; Ponce-Soto, Luis; Marangoni, Sergio; Dal Belo, Cháriston A.; Mello-Carpes, Pâmela B.

    2014-01-01

    Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required. PMID:25380458

  12. Chromosomal DNA damage measured using the cytokinesis-block micronucleus cytome assay is significantly associated with cognitive impairment in South Australians.

    PubMed

    Lee, Sau Lai; Thomas, Philip; Hecker, Jane; Faunt, Jeffrey; Fenech, Michael

    2015-01-01

    Loss of genome integrity may be associated with increased risk for neurodegenerative disease. The aim of this study was to investigate whether mild cognitive impairment (MCI) or Alzheimer's disease (AD) individuals have increased DNA damage relative to age- and gender- matched controls using the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. DNA damage was measured as micronuclei (MN), nucleoplasmic bridges (NPB), and nuclear buds (NBUD) in binucleated cells. The assay was performed on blood samples from 80 participants consisting of (i) MCI cases (N = 20) and age- and gender- matched controls (N = 20), and (ii) AD cases (N = 20) and age- and gender- matched controls (N = 20). There was a significant increase in MCI NBUD frequency (P = 0.006) relative to controls, which was also observed in male (P = 0.03) and female (P = 0.04) subgroups. For AD cases, there were no significant differences in assay biomarkers relative to controls. There was a significant negative correlation between Mini Mental State Examination (MMSE) and (i) MN in all controls, (R = -0.3, P = 0.04), and AD cases (R = -0.4, P = 0.03), (ii) NPB in all controls, (R = -0.4, P = 0.006) and AD cases (R = -0.5, P = 0.01), and (iii) NBUD in MCI cases (R = -0.5, P = 0.007) and AD cases (R = -0.7, P = 0.0002). The results suggest that an increase in lymphocyte CBMN-Cyt DNA damage biomarkers may be associated with cognitive decline. © 2014 Wiley Periodicals, Inc.

  13. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja

    2008-08-15

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay andmore » Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.« less

  14. Efficacy of HUMN criteria for scoring the micronucleus assay in human lymphocytes exposed to a low concentration of p,p'-DDT.

    PubMed

    Garaj-Vrhovac, V; Gajski, G; Ravlić, S

    2008-06-01

    The cytokinesis-block micronucleus (CBMN) assay is one of the standard cytogenetic tools employed to assess chromosomal damage subsequent to exposure to genotoxic/cytotoxic agents, and is widely applicable to plant, animal and human cells. In the present study, the CBMN assay was used to assess the baseline damage in binuclear human peripheral blood lymphocytes exposed to 25 microg/L p,p'-DDT for 1, 2, 24, and 48 h by measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. These new scoring criteria facilitated the detection of different types of clastogenic and aneugenic effects induced by this type of pollutant. With these criteria, CBMN can also be used to measure nucleoplasmic bridges which are considered to be consequences of chromosome rearrangements and nuclear buds which are biomarkers of altered gene amplification and gene dosage. The total number of micronuclei observed in binuclear human peripheral blood lymphocytes of the exposed samples (ranging from 32 to 47) was significantly greater (P < 0.05) than that detected in the unexposed (0 time) control sample, where the total number of micronuclei was 7. The number of nucleoplasmic bridges and nuclear buds obtained after 24 and 48 h was also significantly (P < 0.05) greater in the samples treated with p,p'-DDT than in the unexposed control samples. Thus, our results confirmed the usefulness of the new criteria applicable for the CBMN assay employed in measuring the DNA damage and its role of a sensitive cytogenetic biomarker.

  15. Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.

    PubMed

    Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E

    2015-06-01

    Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect. Copyright © 2015. Published by Elsevier Ltd.

  16. [Toxicological assessment on safety of water and 70% ethanolic extracts of nearly ripe fruit of Evodia rutaecarpa].

    PubMed

    Yang, Xiu-Wei

    2008-06-01

    To study the acute toxicity and mutagenic risk of the water extracts (ERWE) and 70% ethanol extracts (EREE) from the nearly ripe fruit of Evodia rutaecarpa, and provide experimental basis for safety evaluation of ones. The ERWE and EREE were prepared from the nearly ripe fruit of E. rutaecarpa by reflux extraction with H2O and 70% ethanol aqueous solution for three times, respectively. According to the terms from "technical standards for test & toxicological assessment of health food" issued by Healthy Ministry of PRC, acute toxicity, and Ames, mouse marrow cell micronucleus and mouse sperm aberration test were performed. Acute toxicity test of ERWE and EREE in mice was studied by the method of Horn to give the median lethal dose (LD50). Forty healthy Kunming strain male and female mice were used and their body weights ranged from 17-22 g. All of them were distributed randomly to 4 different dose groups which each had 10 mice. The ERWE or EREE was administered at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1), respectively, via intragastrical route. The number of animals poisoned and died in each group were noted daily for 7 consecutive days. The Ames test was carried out using the Salmonella typhimurium strain TA97, TA98, TA100 and TA102. In the sperm abnormalities test, 25 healthy adult male Kunming strain mice with a body weights ranged from 25-35 g were distributed randomly to 5 different groups (1 positive control, 1 negative control and 3 treated groups) which each had 5 mice. A single dose of 60 g x kg(-1) of cyclophosphamide was intragastrically administered to mice in a positive control group, and the mice in the negative control group were administered with the same volume of distilled water. In the treated groups, the ERWE or EREE was intragastrically administered at the doses of 1.25, 250 and 5.00 g x kg(-1), respectively, via the same route with the positive control group. The administration was carried out once daily for 5 consecutive days. The sperm suspension was prepared from caudal epididymis of male mice at 35th day after treatment with different doses of the extract. The suspension was stained with Eosin-Y and air-dried smears were prepared. One thousand sperms per animal were analysed for abnormal shapes and the rates of sperm aberration was calculated. In the mouse bone marrow micronucleus assay, 50 healthy adult male and female Kunming mice, weighing 25 to 30 g, were randomly assigned to five groups (1 positive control, 1 negative control and 3 treated groups) which each had 10 mice, five males and five females. The mice were intragastrically administered twice at intervals of 24 h with the ERWE or EREE at doses of 1.25, 2.50 and 5.00 g x kg(-1) in the positive control group. A single dose of 60 g x kg(-1) of cyclophosphamide in a positive control group and the same volume of distilled water in a negative control groups were intragastrically administered, respectively. Mouse bone marrow was obtained from 10 animals for each group at 6 h after the last dose administration. Smears were stained with Giemsa and analysed for the presence of mouse bone marrow micronucleus from 1 000 cells. The oral acute toxicity study in mice revealed that the LD50 of the both ERWE and EREE was more than 10.0 g x kg(-1). The mice with both the poisoned sign or died had not been observed after intragastrical administration of ERWE or EREE at the doses of 1.00, 2.15, 4.64 and 10.00 g x kg(-1). The results of genotoxicity tests were all negative, including Ames, mouse marrow cell micronucleus and mouse sperm aberration test. In the all assay in vivo, the mice showed a normally progressive increase in body weight from the start to the end of the experiment. The oral LD50 of the ERWE and EREE in mice was more than 10.0 g x kg(-1) belonging to non-toxicity on the acute toxicity rating criteria. The both ERWE and EREE showed no genotoxicity in the experimental condition.

  17. "Aspartame: A review of genotoxicity data".

    PubMed

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin

    PubMed Central

    A. Bakheet, Saleh; M. Attia, Sabry

    2011-01-01

    We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients. PMID:21941606

  19. Micronuclei Frequencies and Nuclear Abnormalities in Oral Exfoliated Cells of Nuclear Power Plant Workers

    PubMed Central

    Babannavar, Roopa; Lohra, Abhishek; Kodgi, Ashwin; Bapure, Sunil; Rao, Yogesh; J., Arun; Malghan, Manjunath

    2014-01-01

    Aim: Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to evaluate the frequencies of Micronuclei (MN) and other Nuclear abnormalities (NA) from exfoliated oral mucosal cells in Nuclear Power Station (NPS) workers. Materials and Methods: Micronucleus frequencies in oral exfoliated cells were done from individuals not known to be exposed to either environmental or occupational carcinogens (Group I). Similarly samples were obtained from full-time Nuclear Power Station (NPS) workers with absence of Leukemia and any malignancy (Group II) and workers diagnosed as leukemic patients and undergoing treatment (Group III). Results: There was statistically significant difference between Group I, Group II & Group III. MN and NA frequencies in Leukemic Patients were significantly higher than those in exposed workers &control groups (p < 0.05). Conclusion: MN and other NA reflect genetic changes, events associated with malignancies. Therefore, there is a need to educate those who work in NPS about the potential hazard of occupational exposure and the importance of using protective measures. PMID:25654022

  20. Evaluation of genotoxic and anti-mutagenic properties of cleistanthin A and cleistanthoside A tetraacetate.

    PubMed

    Himakoun, Lakana; Tuchinda, Patoomratana; Puchadapirom, Pranom; Tammasakchai, Ratigon; Leardkamolkarn, Vijittra

    2011-01-01

    Cleistanthin A (CleinA) and cleistanthoside A (CleisA) isolated from plant Phyllanthus taxodiifolius Beille have previously shown potent anticancer effects. To promote their medicinal benefits, CleisA was modified to cleistanthoside A tetraacetate (CleisTA) and evaluated for genotoxic and anti-mutagenic properties in comparison with CleinA. Both compounds showed no significant mutagenic activity to S. typhimulium bacteria and no cytotoxic effect to normal mammalian cells. The non genotoxic effect of CleinA was further confirmed by un-alteration of cytokinesis-block proliferation index (CBPI) and micronucleus (MN) frequency assays in Chinese hamster lung fibroblast (V79) cells, and of CleisTA was confirmed by un-changes of human peripheral blood lymphocytes (HPBL) chromosomal structure assay. Moreover, the metabolic form of CleinA efficiently demonstrated cytostasis effect to V79 cell and prevented mutagen induced Salmonella TA98 and TA100 reversion, whereas both metabolic and non-metabolic forms of CleisTA reduced HPBL mitotic index (%M.I) in a concentration-dependent relationship. The results support CleinA and CleisTA as the new lead compounds for anti-cancer drug development.

  1. Is mobile phone radiation genotoxic? An analysis of micronucleus frequency in exfoliated buccal cells.

    PubMed

    de Oliveira, F M; Carmona, A M; Ladeira, C

    2017-10-01

    Electromagnetic fields (EMF) are classified as "possibly carcinogenic" by the International Agency for Research on Cancer (IARC). Some publications have reported associations between EMF exposure and DNA damage, but many other studies contradict such findings. Cytomorphological changes, such as micronuclei (MN), indicative of genomic damage, are biomarkers of genotoxicity. To test whether mobile phone-associated EMF exposure affects the MN frequency in exfoliated buccal cells, we obtained cells smears from the left and right inner cheeks of healthy mobile phone users, aged 18-30 (n=86), who also completed a characterization survey. MN frequencies were tested for potential confounding factors and for duration of phone use and preferential side of mobile phone use. No relationship was observed between MN frequency and duration of mobile phone use in daily calls. Cells ipsilateral to mobile phone use did not present a statistically significantly higher MN frequency, compared to cells contralateral to exposure. A highly statistically significant (p<0.0001) increase in MN frequency was found in subjects reporting regular exposure to genotoxic agents. Therefore, our results suggest that mobile phone-associated EMF do not to induce MN formation in buccal cells at the observed exposure levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evaluation of the genotoxicity of Euterpe oleraceae Mart. (Arecaceae) fruit oil (açaí), in mammalian cells in vivo.

    PubMed

    Marques, E S; Froder, J G; Carvalho, J C T; Rosa, P C P; Perazzo, F F; Maistro, E L

    2016-07-01

    E. oleracea is a tropical plant from the Amazon region, with its fruit used for food, and traditionally, as an antioxidant, anti-inflammatory, hypocholesterolemic, for atherosclerotic disease, and has anticancer properties. The oil of the fruit has antidiarrheic, anti-inflammatory and antinociceptive activities, but without genotoxicity evaluation. Therefore, the aim of this study was to evaluate the genotoxic potential of E. oleracea fruit oil (EOO), in rat cells. Male Wistar rats were treated with EOO by gavage at doses of 30, 100 and 300 mg/kg, for 14 days, within a 24 h interval. The DNA damage in the leukocytes, liver, bone marrow and testicular cells, was assessed by the comet assay, and the clastogenic/aneugenic effects in the bone marrow cells, by the micronucleus test. Our phytochemicals characterization of the EOO showed the presence of vanillic, palmitic, γ-linolenic, linoleic, oleic, cinnamic, caffeic, protocatechuic, ferulic, syringic acids, and flavonoids quercetin and kaempferol rutinoside as the main constituents. Both cytogenetic tests performed showed that EOO presented no significant genotoxic effects in the analyzed cells, at the three tested doses. These results indicate that, under our experimental conditions, E. oleracea fruit oil did not reveal genetic toxicity in rat cells. Copyright © 2016. Published by Elsevier Ltd.

  3. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    PubMed

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  4. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  5. A novel genotoxic aspect of thiabendazole as a photomutagen in bacteria and cultured human cells.

    PubMed

    Watanabe-Akanuma, Mie; Ohta, Toshihiro; Sasaki, Yu F

    2005-09-15

    Thiabendazole (TBZ) is a post-harvest fungicide commonly used on imported citrus fruits. We recently found that TBZ showed photomutagenicity with UVA-irradiation in the Ames test using plate incorporation method. In the present study, potential of DNA-damaging activity, mutagenicity, and clastogenicity were investigated by short pulse treatment for 10 min with TBZ (50-400 microg/ml) and UVA-irradiation (320-400 nm, 250 microW/cm2) in bacterial and human cells. UVA-irradiated TBZ caused DNA damage in Escherichia coli and human lymphoblastoid WTK1 cells assayed, respectively, by the umu-test and the single cell gel electrophoresis (comet) assay. In a modified Ames test using Salmonella typhimurium and E. coli, strong induction of -1 frameshift mutations as well as base-substitution mutations were detected. TBZ at 50-100 microg/ml with UVA-irradiation significantly induced micronuclei in WTK1 cells in the in vitro cytochalasin-B micronucleus assay. Pulse treatment for 10 min with TBZ alone did not show any genotoxicity. Although TBZ is a spindle poison that induces aneuploidy, we hypothesize that the photogenotoxicity of TBZ in the present study was produced by a different mechanism, probably by DNA adduct formation. We concluded that UVA-activated TBZ is genotoxic in bacterial and human cells in vitro.

  6. Marine molluscs and fish as biomarkers of pollution stress in littoral regions of the Red Sea, Mediterranean Sea and North Sea

    NASA Astrophysics Data System (ADS)

    Bresler, Vladimir; Bissinger, Vera; Abelson, Avigdor; Dizer, Halim; Sturm, Armin; Kratke, Renate; Fishelson, Lev; Hansen, Peter-Diedrich

    1999-12-01

    The intensive development of industry and urban structures along the seashores of the world, as well as the immense increase in marine transportation and other activities, has resulted in the deposition of thousands of new chemicals and organic compounds, endangering the existence of organisms and ecosystems. The conventional single biomarker methods used in ecological assessment studies cannot provide an adequate base for environmental health assessment, management and sustainability planning. The present study uses a set of novel biochemical, physiological, cytogenetic and morphological methods to characterize the state of health of selected molluscs and fish along the shores of the German North Sea, as well as the Israeli Mediterranean and Red Sea. The methods include measurement of activity of multixenobiotic resistance-mediated transporter (MXRtr) and the system of active transport of organic anions (SATOA) as indicators of antixenobiotic defence; glutathione S-transferase (GST) activity as an indicator of biotransformation of xenobiotics; DNA unwinding as a marker of genotoxicity; micronucleus test for clastogenicity; levels of phagocytosis for immunotoxicity; cholinesterase (ChE) activity and level of catecholamines as indicators of neurotoxicity; permeability of external epithelia to anionic hydrophilic probe, intralysosomal accumulation of cationic amphiphilic probe and activity of non-specific esterases as indicators of cell/tissue viability. Complete histopathological examination was used for diagnostics of environmental pathology. The obtained data show that the activity of the defensive pumps, MXRtr and SATOA in the studied organisms was significantly higher in the surface epithelia of molluscs from a polluted site than that of the same species from control, unpolluted stations, providing clear evidence of response to stress. Enhanced frequency of DNA lesions (alkaline and acidic DNA unwinding) and micronucleus-containing cells was significantly higher in samples from polluted sites in comparison to those from the clean sites that exhibited genotoxic and clastogenic activity of the pollutants. In all the studied molluscs a negative correlation was found between the MXRtr levels of activity and the frequency of micronucleus-containing hemocytes. The expression of this was in accordance with the level of pollution. The complete histopathological examination demonstrates significantly higher frequencies of pathological alterations in organs of animals from polluted sites. A strong negative correlation was found between the frequency of these alterations and MXRtr activity in the same specimens. In addition to these parameters, a decrease in the viability was noted in molluscs from the polluted sites, but ChE activities remained similar at most sites. The methods applied in our study unmasked numerous early cryptic responses and negative alterations of health in populations of marine biota sampled from the polluted sites. This demonstrates that genotoxic, clastogenic and pathogenic xenobiotics are present and act in the studied sites and this knowledge can provide a reliable base for consideration for sustainable development.

  7. Uranium (238U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi.

    PubMed

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2017-05-01

    The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of 238 U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC 50 doses of waterborne 238 U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods-0h, 24h, 48h, 72h, 96h, 7, days 14days and 21 days-using ICP-MS to determine the toxic effects of uranium and the accumulation of 238 U concentrations. The bioaccumulation of 238 U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills>liver>brain>tissue, with the highest accumulation in the gills. It was observed that exposure to 238 U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term 238 U exposure studies in fish showed increasing micronucleus frequencies in erythrocytes with greater exposure time. The higher the concentration of 238 U is, the greater is the effect observed, suggesting a close relationship between accumulation and toxicity. A possible ROS-mediated 238 U toxicity mechanism and antioxidant responses have been proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cytogenetic Biomonitoring in Buccal Mucosal Cells from Municipal Solid Waste Collectors.

    PubMed

    Andrade, Mariana Carvalho; Dos Santos, Jean Nunes; Cury, Patricia Ramos; Flygare, Ana Carolina Correa; Claudio, Samuel Rangel; Oshima, Celina Tizuko Fujiyama; Ribeiro, Daniel Araki

    2017-02-01

    Waste collectors collect, transport, and process the garbage produced by people living in the city. Nowadays, this activity requires special attention due to the environmental impact of garbage and its potential consequences on human health. The aim of this study was to evaluate potential cytotoxic and mutagenic effects of garbage collection on waste collectors. For this purpose, a total of 47 male waste collectors aged from 24 to 53 years were included in the experimental group. A total of 30 men matched by age were used as the control group. Cytotoxicity and mutagenicity were analyzed by micronucleus test in buccal mucosaI cells. No statistically significant difference (p>0.05) in the frequency of micronuclei was detected in the waste collectors when compared to controls. Nevertheless, higher frequencies of karyolysis and pyknosis (p<0.05) were detected in buccal mucosaI cells from waste collectors when compared to matched controls. Taken together, our results indicate that waste collectors comprise an at-risk group as a result of increased cytotoxicity apparent from buccal mucosa cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Chlorinated river and lake water extract caused oxidative damage, DNA migration and cytotoxicity in human cells.

    PubMed

    Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker

    2005-01-01

    Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.

  10. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography.

    PubMed

    Cerqueira, E M M; Meireles, J R C; Lopes, M A; Junqueira, V C; Gomes-Filho, I S; Trindade, S; Machado-Santelli, G M

    2008-10-01

    The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were the frequencies of nuclear alterations indicative of apoptosis (P < 0.001). These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.

  11. Genotoxic damage in auto body shop workers.

    PubMed

    Siebel, Anna Maria; Basso da Silva, Luciano

    2010-10-01

    Some studies have shown increased DNA damage among car painters, but other professionals working in auto body and paint shops have not been extensively assessed. The aim of this study was to assess DNA damage in different types of auto body shop workers by measuring micronucleus (MN) levels in exfoliated buccal cells. The mean number of cells with MN per 2000 exfoliated buccal cells was analyzed in three groups of male workers: auto body repair technicians, painters, and office workers (control group). All participants answered a questionnaire inquiring about age, smoking habits, alcohol consumption, work practices, occupational exposure time, job activities, and use of protective equipment. The mean number of cells with MN was 3.50 ± 1.50 in auto body painters, 3.91 ± 2.10 in auto body repair technicians, and 0.80 ± 0.78 in office workers, with a significant difference between the control group and the two other groups (p = 0.0001). Age, occupational exposure time, use of protective masks, alcohol consumption, and smoking habit did not affect MN results. The findings indicate that technicians and painters working in auto body shops are at risk for genotoxic damage, while office workers seem to be protected.

  12. Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico.

    PubMed

    Martinez-Valenzuela, Carmen; Soto, Fernanda Balderrama; Waliszewski, Stefan M; Meza, Enrique; Arroyo, Sandra Gómez; Martínez, Luis Daniel Ortega; Meraz, Eliakym Arambula; Caba, Mario

    2017-01-01

    Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.

  13. Graphistrength© C100 MultiWalled Carbon Nanotubes (MWCNT): thirteen-week inhalation toxicity study in rats with 13- and 52-week recovery periods combined with comet and micronucleus assays

    NASA Astrophysics Data System (ADS)

    Régnier, Jean-François; Pothmann-Krings, Daniela; Simar, Sophie; Dony, Eva; Le Net, Jean-Loïc; Beausoleil, Julien

    2017-06-01

    Graphistrength© C100 provides superior electrical and mechanical properties for various applications and is one of the industrial MWCNT referenced in the OECD sponsorship program for the safety testing of nanomaterials. Graphistrength© C100 is formed of MWCNT (ca. 12 walls, outer mean diameter ca. 12 nm, length ca. 1 µm) agglomerated in particles with a granulometry centered on 400 µm. A general feature of MWCNT after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. Most of the in vitro and in vivo genotoxicity data available on Graphistrength© C100 are negative. However, a weak DNA damage activity in the in vitro and in vivo FPG-modified Comet assays and a weak clastogenic effect in the in vitro micronucleus test were reported. After investigating different parameters for the aerosol generation, male and female Wistar rats were exposed by nose-only inhalation (6h/day, 5d/week) to target concentrations of 0.05, 0.25 and 5.0 mg/m3 air of a respirable aerosol (MMAD < 3 µm) and sacrificed immediately after 4 and 13 weeks of exposure and 13 and 52 weeks of recovery after the 13-week exposure. Clinical, biological and histological evaluations were performed according to the OECD TG 413. Broncho-alveolar lavage fluid (BALF) was collected and analysed for cytokines and inflammatory parameters. Immediately after 13 weeks of exposure, chromosomal aberrations in the bone marrow cells of males and females were evaluated by the micronucleus test (OECD TG 474) and DNA damage in the lung, kidney and liver cells of males were assessed by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay (OECD TG 489). Concentration-related deposition of black particles (MWCNT) was observed in lungs. At all sacrifice periods, an inflammatory lung reaction was observed in rats exposed to 5.0 mg/m3 associated with changes in the differential white blood cells counts. The lung inflammation was characterized by changes in the cytological, biochemical and cytokine parameters of the BALF, an increase of the lung weight, an interstitial inflammation mainly around the alveolar ducts at the bronchiole-alveolar junction and a cell hypertrophy/hyperplasia in the terminal and respiratory bronchioles. The slight changes in BALF parameters observed at 0.25 mg/m3 recovered after the 13-week treatment-free period and were not associated with any of the histological changes observed in lungs at 5.0 mg/m3. Signs of lung clearance of the MWCNT were observed at 0.05 and 0.25 mg/m3. After a one year treatment-free period, the inflammatory lung reaction was slight and of similar intensity that at the earlier sacrifice periods. Additional findings were minimal/slight bronchiolar/alveolar cell hypertrophy/hyperplasia and focally extensive alveolar septal fibrosis. No other pathological change was observed, nor was there any brain translocation via the olfactory bulb. The microscopic observations of the pleura were unremarkable. Neither increase in the number of micronucleated polychromatic erythrocytes nor increase in percent DNA damage were observed at any concentration. In conclusion, a lung inflammation characteristic of an overload with insoluble particles was observed after a 13-week inhalation exposure to 5.0 mg/m3 of Graphistrength© C100. A No-Observed Adverse Effect Concentration (NOAEC) of 0.25 mg/m3 was established for the repeated-dose toxicity and Graphistrength© C100 appears of low concern in term of local and systemic genotoxicity.

  14. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation

    PubMed Central

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K.; Shao, Chunlin

    2015-01-01

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. PMID:25896631

  15. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation.

    PubMed

    Dong, Chen; He, Mingyuan; Tu, Wenzhi; Konishi, Teruaki; Liu, Weili; Xie, Yuexia; Dang, Bingrong; Li, Wenjian; Uchihori, Yukio; Hei, Tom K; Shao, Chunlin

    2015-07-10

    The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Cytomorphometric and Morphological Analysis in Women with Trichomonas vaginalis Infection: Micronucleus Frequency in Exfoliated Cervical Epithelial Cells.

    PubMed

    Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz

    2015-01-01

    The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.

  17. Assessment of cytotoxic and genotoxic potential of refinery waste effluent using plant, animal and bacterial systems.

    PubMed

    Gupta, Amit Kumar; Ahmad, Masood

    2012-01-30

    The work described here presents the toxic effect of Mathura refinery wastewater (MRWW) in plant (Allium cepa), bacterial (E. coli K12) and human (blood) system. The samples were collected from adjoining area of Mathura refinery, Dist. Mathura, U.P. (India). Chromosomal aberration test and micronucleus assay in (A. cepa) system, E. coli K12 survival assay as well as hemolysis assay in human blood were employed to assess the toxicity of MRWW. MRWW exposure resulted in the formation of micronuclei and bridges in chromosomes of A. cepa cells. A significant decline occurred in survival of DNA repair defective mutants of E. coli K12 exposed to MRWW. On incubation with MRWW, calf thymus DNA-EtBr fluorescence intensity decreased and percent hemolysis of human blood cells increased. An induction in the MDA levels of MRWW treated A. cepa roots indicated lipid peroxidation also. Collectively, the results demonstrate a significant genotoxic and cytotoxic potential of MRWW. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis.

    PubMed

    Martin, Carol-Anne; Murray, Jennie E; Carroll, Paula; Leitch, Andrea; Mackenzie, Karen J; Halachev, Mihail; Fetit, Ahmed E; Keith, Charlotte; Bicknell, Louise S; Fluteau, Adeline; Gautier, Philippe; Hall, Emma A; Joss, Shelagh; Soares, Gabriela; Silva, João; Bober, Michael B; Duker, Angela; Wise, Carol A; Quigley, Alan J; Phadke, Shubha R; Wood, Andrew J; Vagnarelli, Paola; Jackson, Andrew P

    2016-10-01

    Compaction of chromosomes is essential for accurate segregation of the genome during mitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here, we report that biallelic mutations in NCAPD2, NCAPH, or NCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish "condensinopathies" as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size. © 2016 Martin et al.; Published by Cold Spring Harbor Laboratory Press.

  19. The combined use of the PLHC-1 cell line and the recombinant yeast assay to assess the environmental quality of estuarine and coastal sediments.

    PubMed

    Schnell, Sabine; Olivares, Alba; Piña, Benjamin; Echavarri-Erasun, Beatriz; Lacorte, Silvia; Porte, Cinta

    2013-12-15

    Sediment contamination poses a potential risk for both ecosystems and human health. Risk assessment is troublesome as sediments contain complex mixtures of toxicants, and traditional chemical analyses can neither provide information about potential hazards to organisms nor identify and measure all present contaminants. This work combines the use of the PLHC-1 cell line and the recombinant yeast assay (RYA) to assess the environmental quality of estuarine and coastal sediments. The application of multiple endpoints (cytotoxicity, generation of oxidative stress, presence of CYP1A inducing agents, micronucleus formation and estrogenicity) revealed that the organic extracts of those sediments affected by industrial activities or collected near harbours and untreated urban discharges showed significant cytotoxicity, micronuclei and CYP1A induction. The study highlights the usefulness of the applied bioassays to identify those sediments that could pose risk to aquatic organisms and that require further action to improve their environmental quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A novel comprehensive evaluation platform to assess nanoparticle toxicity in vitro

    NASA Astrophysics Data System (ADS)

    Hirsch, C.; Kaiser, J.-P.; Wessling, F.; Fischer, K.; Roesslein, M.; Wick, P.; Krug, H. F.

    2011-07-01

    The amount of engineered nanomaterials (ENM) is constantly increasing. Their unique properties, compared to their bulk counterparts, render them suitable for various applications in many areas of life. Hence, nanomaterials appear in a variety of different consumer products leading to the exposure of human beings and the environment during their lifecycle. Even though results on biological effects of ENM are available, harmonized and validated test systems are still missing. One major problem concerning the reliable and robust toxicity testing arises from interactions of ENM with different assay systems. Modifications or damage to DNA can have fatal consequences, such as the formation of tumor cells and hence carcinogenesis. Therefore we focused on the re-evaluation of two genotoxicity assays concerning their nanomaterial compatibility; namely the cytokinesis-block micronucleus cytome assay (MN-assay) and the alkaline single cell gel electorphoresis assay (comet assay). We demonstrate the interference of ENM agglomerates with the read-out of both assays and discuss possibilities how to acquire relevant genotoxicity data.

  1. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.

    PubMed

    Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu

    2009-01-01

    Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.

  2. Testing the genotoxicity of coking wastewater using Vicia faba and Hordeum vulgare bioassays.

    PubMed

    Dong, Yiru; Zhang, Jintun

    2010-07-01

    The coking wastewater induces severe environmental problems in China, however, its toxicity has not been well known. In the present study, the genotoxicity of coking wastewater was studied using Vicia faba and Hordeum vulgare root tip cytogenetic bioassays. Results show that the tested coking wastewater decreased the mitotic index, and significantly enhanced the frequencies of micronucleus, sister chromatid exchange and pycnotic cell in concentration-dependent manners. Exposure to the same concentration wastewater, the increasing ratios of above genetic injuries were higher in V. faba than that in H. vulgare. The results imply that coking wastewater is a genotoxic agent in plant cells and exposure to the wastewater in environment may pose a potential genotoxic risk to organisms. It also suggests that both bioassays can be used for testing the genotoxicity of coking wastewater, but the V. faba assay is more sensitive than H. vulgare assay during the process. Copyright (c) 2010. Published by Elsevier Inc.

  3. Mutagenicity and genotoxicity studies of aspartame.

    PubMed

    Otabe, Akira; Ohta, Fumio; Takumi, Asuka; Lynch, Barry

    2018-02-08

    Two studies were conducted to further assess its mutagenic and genotoxic potential. In a bacterial reverse mutation pre-incubation study, Salmonella typhimurium strains TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2 uvrA were treated with aspartame at concentrations of up to 5000 μg/plate with or without metabolic activation and showed no mutagenic potential. Similarly, in vivo micronucleus testing of aspartame following gavage administration (500-2000 mg/kg body weight) to Crlj:CD1(ICR) strain SPF male mice showed no increase in the proportion of micronucleated polychromatic erythrocytes in bone marrow cells collected and evaluated 24 or 48 h post administration. Overall, aspartame had no potential for mutagenic or genotoxic activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Cobalt chloride induces metaphase when topically applied to larvae and pupae of the stingless bee Melipona scutellaris (Hymenoptera, Apidae, Meliponini).

    PubMed

    Ueira-Vieira, C; Tavares, R R; Morelli, S; Pereira, B B; Silva, R P; Torres-Mariano, A R; Kerr, W E; Bonetti, A M

    2013-06-20

    In order to optimize preparations of bee metaphases, we tested cobalt chloride, which has been used as a metaphase inducer in other organisms, such as hamsters and fish. Four microliters of 65 mM cobalt chloride aqueous solution was topically applied to larval and pupal stages of the stingless bee Melipona scutellaris. The cerebral ganglion was removed after treatment and prepared for cytogenetic analysis. Identically manipulated untreated individuals were used as controls. The number of metaphases was increased 3-fold in treated individuals compared to controls. The micronucleus test showed no mutagenic effects of cobalt chloride on M. scutellaris cells. We concluded that cobalt chloride is a metaphase-inducing agent in M. scutellaris, thus being useful for cytogenetic analyses.

  5. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.

    PubMed

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-10-03

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.

  6. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy

    PubMed Central

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-01-01

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242

  7. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  8. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    PubMed

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of in vitro cytoxicity and genotoxicity of size-fractionated air particles sampled during road tunnel construction.

    PubMed

    Dominici, Luca; Guerrera, Elena; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo; Blasi, Paolo; Monarca, Silvano

    2013-01-01

    In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium's capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m(3)/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells' ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test.

  10. Evaluation of In Vitro Cytoxicity and Genotoxicity of Size-Fractionated Air Particles Sampled during Road Tunnel Construction

    PubMed Central

    Dominici, Luca; Guerrera, Elena; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo; Blasi, Paolo; Monarca, Silvano

    2013-01-01

    In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium's capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m3/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells' ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test. PMID:24069598

  11. Assessment of DNA damage in underground coal miners using the cytokinesis-block micronucleus assay in peripheral blood lymphocytes.

    PubMed

    Sinitsky, Maxim Yu; Minina, Varvara I; Gafarov, Nikolay I; Asanov, Maxim A; Larionov, Aleksey V; Ponasenko, Anastasia V; Volobaev, Valentin P; Druzhinin, Vladimir G

    2016-11-01

    Coal miners are exposed to coal dust, containing mineral particles, inorganic compounds and polycyclic aromatic hydrocarbons, and to ionizing radiation. These factors can induce oxidative stress and promote inflammation that leads to DNA damage. The aim of this investigation is to analyse the degree of DNA damage in miners working in underground coal mines in Kemerovo Region (Russian Federation) using the cytokinesis-block micronucleus assay (CBMN) in peripheral blood lymphocytes. The exposed group included 143 coal miners (mean age = 50.11±7.36 years; mean length of service in coal mining conditions = 23.26±9.66 years). As a control group, we have used venous blood extracted from 127 healthy non-exposed men. The mean age in this group was 47.67±8.45 years. We have discovered that coal miners are characterized by a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN), nucleoplasmic bridges (NPBs) and protrusions (NBUDs) compared to non-exposed donors. In addition, we report, for the first time, a reduction of cell proliferation in a cohort of coal miners. These data are evidence of the genotoxic and cytostatic effects of occupational harmful factors of the coal mining industry. No correlation between the level of chromosome damage and age, smoking status or length of service in coal mining conditions were discovered. We suggest that the CBMN assay would be useful in biomonitoring studies to monitor hygiene and prevention strategies in occupational settings in coal mining countries. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Comparison in vivo Study of Genotoxic Action of High- Versus Very Low Dose-Rate γ-Irradiation

    PubMed Central

    Osipov, A. N.; Klokov, D. Y.; Elakov, A. L.; Rozanova, O. M.; Zaichkina, S. I.; Aptikaeva, G. F.; Akhmadieva, A. Kh.

    2004-01-01

    The aim of the present study was to compare genotoxicity induced by high- versus very low dose-rate exposure of mice to γ-radiation within a dose range of 5 to 61 cGy using the single-cell gel electrophoresis (comet) assay and the micronucleus test. CBA/lac male mice were irradiated at a dose rate of 28.2 Gy/h (high dose rate) or 0.07 mGy/h (very low dose rate). The comet assay study on spleen lymphocytes showed that very low dose-rate irradiation resulted in a statistically significant increase in nucleoid relaxation (DNA breaks), starting from a dose of 20 cGy. Further prolongation of exposure time and, hence, increase of a total dose did not, however, lead to further increase in the extent of nucleoid relaxation. Doses of 20 and 61 cGy were equal in inducing DNA breaks in mouse spleen lymphocytes as assayed by the comet assay. Of note, the level of DNA damage by 20–61 cGy doses of chronic irradiation (0.07 mGy/h) was similar to that an induced by an acute (28.2 Gy/h) dose of 14 cGy. The bone marrow micronucleus test revealed that an increase in polychromatic erythrocytes with micronuclei over a background level was induced by very low-level γ-irradiation with a dose of 61 cGy only, with the extent of the cytogenetic effect being similar to that of 10 cGy high-dose-rate exposure. In summary, presented results support the hypothesis of the nonlinear threshold nature of mutagenic action of chronic low dose-rate irradiation. PMID:19330145

  13. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 2: intratracheal instillation and intravenous injection.

    PubMed

    Guichard, Yves; Maire, Marie-Aline; Sébillaud, Sylvie; Fontana, Caroline; Langlais, Cristina; Micillino, Jean-Claude; Darne, Christian; Roszak, Joanna; Stępnik, Maciej; Fessard, Valérie; Binet, Stéphane; Gaté, Laurent

    2015-03-01

    Synthetic amorphous silica nanomaterials (SAS) are extensively used in food and tire industries. In many industrial processes, SAS may become aerosolized and lead to occupational exposure of workers through inhalation in particular. However, little is known about the in vivo genotoxicity of these particulate materials. To gain insight into the toxicological properties of four SAS (NM-200, NM-201, NM-202, and NM-203), rats are treated with three consecutive intratracheal instillations of 3, 6, or 12 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection (cumulative doses of 9, 18, and 36 mg/kg). Deoxyribonucleic acid (DNA) damage was assessed using erythrocyte micronucleus test and the standard and Fpg-modified comet assays on cells from bronchoalveolar lavage fluid (BALF), lung, blood, spleen, liver, bone marrow, and kidney. Although all of the SAS caused increased dose-dependent changes in lung inflammation as demonstrated by BALF neutrophilia, they did not induce any significant DNA damage. As the amount of SAS reaching the blood stream and subsequently the internal organs is probably to be low following intratracheal instillation, an additional experiment was performed with NM-203. Rats received three consecutive intravenous injections of 5, 10, or 20 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection. Despite the hepatotoxicity, thrombocytopenia, and even animal death induced by this nanomaterial, no significant increase in DNA damage or micronucleus frequency was observed in SAS-exposed animals. It was concluded that under experimental conditions, SAS induced obvious toxic effects but did cause any genotoxicity following intratracheal instillation and intravenous injection. © 2014 Wiley Periodicals, Inc.

  14. Comet assay and micronucleus test in circulating erythrocytes of Cyprinus carpio specimens exposed in situ to lake waters treated with disinfectants for potabilization.

    PubMed

    Buschini, A; Martino, A; Gustavino, B; Monfrinotti, M; Poli, P; Rossi, C; Santoro, M; Dörr, A J M; Rizzoni, M

    2004-02-14

    The detection of a possible genotoxic effect of surface water treated with disinfectants for potabilization is the aim of the present work. The Comet assay and the micronucleus test were applied in circulating erythrocytes of Cyprinus carpio. Young specimens (20-30 g) were exposed in experimental basins, built within the potabilization plant of Castiglione del Lago (Perugia, Italy). In this plant the water of the Trasimeno Lake is treated and disinfected for potabilization before it is distributed to the people in the net of drinkable water. A continuous flow of water at a constant rate was supplied to basins; the water was continuously treated at a constant concentration with one of the three tested disinfectants (sodium hypochlorite, peracetic acid and chloride dioxide), one control basin being supplied with untreated water. Three sampling campaigns were performed: October 2000, February 2001 and June 2001. Repeated blood samplings through intracardiac punctures allowed to follow the same fish populations after different exposure times: before introduction of the disinfectant, and 10 or 20 days afterwards. An additional blood sampling was performed 3 h after addition of the disinfectant in other, simultaneously exposed, fish populations. Genotoxic damage was shown in fish exposed to water disinfected with sodium hypochlorite and chloride dioxide. The Comet assay showed an immediate response, i.e. DNA damage that was induced directly in circulating erythrocytes, whereas micronuclei reached their highest frequencies at later sampling times, when a genotoxic damage in stem cells of the cephalic kidney is expressed in circulating erythrocytes. The quality of the untreated surface water seems to be the most important parameter for the long-term DNA damage in circulating erythrocytes.

  15. Genotoxicity of doxorubicin in F344 rats by combining the comet assay, flow-cytometric peripheral blood micronucleus test, and pathway-focused gene expression profiling.

    PubMed

    Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei

    2014-01-01

    Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species. Copyright © 2013 Wiley Periodicals, Inc.

  16. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing

    PubMed Central

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Walker, David; Camacho, Oscar M.; Büttner, Ansgar; Dillon, Debbie; Meredith, Clive

    2016-01-01

    Abstract Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement). PMID:27160659

  17. Recent Advances in In Vivo Genotoxicity Testing: Prediction of Carcinogenic Potential Using Comet and Micronucleus Assay in Animal Models

    PubMed Central

    Kang, Seung Hun; Kwon, Jee Young; Lee, Jong Kwon; Seo, Young Rok

    2013-01-01

    Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer. PMID:25337557

  18. Dose-Response Assessment of Four Genotoxic Chemicals in a Combined Mouse and Rat Micronucleus and Comet Assay Protocol

    PubMed Central

    Recio, Leslie; Hobbs, Cheryl; Caspary, William; Witt, Kristine L.

    2012-01-01

    The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH>13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hour intervals (VS was administered to rats for 3 days); animals were euthanized 4 hours after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern. PMID:20371966

  19. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, γ-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Chad M.; Wolf, Jeffrey C.; Elbekai, Reem H.

    2015-08-01

    Lifetime exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal damage and an increase in duodenal tumors in B6C3F1 mice. To assess whether these tumors could be the result of a direct mutagenic or genotoxic mode of action, we conducted a GLP-compliant 7-day drinking water study to assess crypt health along the entire length of the duodenum. Mice were exposed to water (vehicle control), 1.4, 21, or 180 ppm Cr(VI) via drinking water for 7 consecutive days. Crypt enterocytes in Swiss roll sections were scored as normal, mitotic, apoptotic, karyorrhectic, or as having micronuclei. Amore » single oral gavage of 50 mg/kg cyclophosphamide served as a positive control for micronucleus induction. Exposure to 21 and 180 ppm Cr(VI) significantly increased the number of crypt enterocytes. Micronuclei and γ-H2AX immunostaining were not elevated in the crypts of Cr(VI)-treated mice. In contrast, treatment with cyclophosphamide significantly increased numbers of crypt micronuclei and qualitatively increased γ-H2AX immunostaining. Synchrotron-based X-ray fluorescence (XRF) microscopy revealed the presence of strong Cr fluorescence in duodenal villi, but negligible Cr fluorescence in the crypt compartment. Together, these data indicate that Cr(VI) does not adversely effect the crypt compartment where intestinal stem cells reside, and provide additional evidence that the mode of action for Cr(VI)-induced intestinal cancer in B6C3F1 mice involves chronic villous wounding resulting in compensatory crypt enterocyte hyperplasia.« less

  20. Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing.

    PubMed

    Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Walker, David; Camacho, Oscar M; Büttner, Ansgar; Dillon, Debbie; Meredith, Clive

    2016-06-01

    Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).

  1. Modulation of O6-alkylating agent induced clastogenicity by enhanced DNA repair capacity of bone marrow cells.

    PubMed

    Chinnasamy, N; Fairbairn, L J; Laher, J; Willington, M A; Rafferty, J A

    1998-08-07

    The murine bone marrow micronucleus assay has been used to examine (1) the potentiation of fotemustine and streptozotocin induced-clastogenicity by the O6-alkylguanine-DNA alkyltransferase (ATase) inactivator O6-benzylguanine (O6-beG) and (2) the level of protection afforded against this potentiation by retrovirus-mediated expression of an O6-beG-resistant mutant of human ATase (haTPA/GA) in mouse bone marrow. Both fotemustine and streptozotocin induced significantly higher levels of micronucleated polychromatic erythrocytes (p < 0.001 for the highest doses studied) compared to those seen in vehicle-treated animals. The number of micronuclei produced by either agent was dramatically elevated by pretreatment with O6-beG (p < 0.001). Furthermore, in myeloablated mice reconstituted with bone marrow expressing the O6-beG-resistant hATPA/GA as a result of retroviral gene transfer, the frequency of micronucleus formation following exposure of mice to otherwise clastogenic doses of fotemustine or streptozotocin, in the presence of O6-beG, wash highly significantly reduced (p < 0.001 for both agents) relative to that in mock transduced controls. These data clearly implicate O6-chloroethyl- and O6-methylguanine as clastogenic lesions in vivo and establish ATase as a major protective mechanism operating to reduce the frequency of such damage. The potentiation of drug induced clastogenicity by O6-beG suggests that the clinical use of this inactivator in combination with O6-alkylating agents, could substantially increase the risk of therapy related malignancy. Nevertheless the use of hATPA/GA as a protective mechanism via gene therapy may overcome this risk.

  2. Genotoxicity assessment of Pyungwi-san (PWS), a traditional herbal prescription.

    PubMed

    Shin, In Sik; Seo, Chang Seob; Ha, Hye Kyung; Lee, Mee Young; Huang, Dae Sun; Huh, Jung Im; Shin, Hyeun-Kyoo

    2011-01-27

    Pyungwi-san (PWS, Heii-san in Japanese) is a mixture of six herbs and is traditionally used in Northeast Asia (especially Korea and Japan) for the treatment of gastrointestinal disorder, such as dyspepsia and inappetance induced by gastric dilatation and gastrointestinal catarrh. Although PWS is a widely used herbal prescription in Korea and Japan, little information is available in the literature on the safety and toxicity of PWS. As part of a safety evaluation of PWS, the present study evaluated the potential genotoxicity of PWS using a standard battery of test. We prepared PWS using a water extraction method and simultaneously extracted three compounds from PWS using high performance liquid chromatography. The PWS extract that was obtained was assayed for genotoxicity using the standard three tests recommended by the Korea Food and Drug Administration. These tests included the bacterial reverse mutation test (Ames test), the chromosomal aberration test using China hamster lung cells, and the micronucleus test using ICR mice. The Ames test showed that the PWS extract did not induce an increase in the number of revertant colonies compared with vehicle control at any dose in all of tester strains. In the micronucleus test, no significant increase was observed in micronucleated polychromatic erythrocytes (MNPCEs) at any dose of PWS extract compared with vehicle control. Conversely, chromosomal aberration test showed that the PWS extract at a dosage of 4500 μg/mL induced an increase in the number of chromosomal aberrations in the 6 h group with metabolic activation compared with the vehicle control. PWS extract exhibits genotoxicity, based on the results of the chromosomal aberration test. Thus, further detailed experiments will be needed to identify the ingredient responsible for inducing this genotoxicity and to determine its mechanism. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Mutagenic assessment of Lithobates catesbeianus tadpoles exposed to the 2,4-D herbicide in a simulated realistic scenario.

    PubMed

    Mesak, Carlos; de Oliveira Mendes, Bruna; de Oliveira Ferreira, Raíssa; Malafaia, Guilherme

    2018-05-01

    The aim of the current study is to assess possible erythrocyte mutagenic effects on Lithobates catesbeianus tadpoles exposed to water contaminated with 2,4-D. In order to do so, tadpoles were exposed to a predictive and environmentally relevant herbicide concentration (1.97 mg/L), which is likely to be found in lentic environments formed by superficial water runoffs in pasture areas where the herbicide was applied. The micronucleus test, as well as tests for other nuclear abnormalities, was conducted after 3, 5, and 9 days of exposure (d.e.). Changes in the biomass and mouth-cloaca length or interference in the larval development of the animals (in the three evaluated times) were not recorded. However, tadpoles exposed to 2,4-D showed the highest total number of nuclear abnormalities, as well as the highest frequency of binucleated erythrocytes and kidney-shaped nuclei (shortly after 3 d.e.). The micronucleus frequency was also higher in animals exposed to 2,4-D (in the 3rd, 5th, and 9th d.e.), as well as the frequency of binucleated cells (3rd, 5th, and 9th d.e.) presenting notched (9th d.e.) and blebbled (9th d.e.) nuclei in comparison to those of the control, after 5 and 9 days of exposure. Therefore, the current study is a pioneer in showing that 2,4-D has a mutagenic effect on L. catesbeianus tadpoles, even at low concentrations (environmentally relevant) and for a short period of time, a fact that may lead to direct losses in anuran populations living in areas adjacent to those subjected to 2,4-D herbicide application.

  4. In vitro genotoxicity of neutral red after photo-activation and metabolic activation in the Ames test, the micronucleus test and the comet assay.

    PubMed

    Guérard, Melanie; Zeller, Andreas; Singer, Thomas; Gocke, Elmar

    2012-07-04

    Neutral red (Nr) is relatively non-toxic and is widely used as indicator dye in many biological test systems. It absorbs visible light and is known to act as a photosensitizer, involving the generation of reactive oxygen species (type-I reaction) and singlet oxygen (type-II reaction). The mutagenicity of Nr was determined in the Ames test (with Salmonella typhimurium strains TA1535, TA97, TA98, TA98NR, TA100, and TA102) with and without metabolic activation, and with and without photo-activation on agar plates. Similarly to the situation following metabolic activation, photo-mutagenicity of Nr was seen with all Salmonella strains tested, albeit with different effects between these strains. To our knowledge, Nr is the only photo-mutagen showing such a broad action. Since the effects are also observed in strains not known to be responsive to ROS, this indicates that ROS production is not the sole mode of action that leads to photo-genotoxicity. The reactive species produced by irradiation are short-lived as pre-irradiation of an Nr solution did not produce mutagenic effects when added to the bacteria. In addition, mutagenicity in TA98 following irradiation was stronger than in the nitroreductase-deficient strain TA98NR, indicating that nitro derivatives that are transformed by bacterial nitroreductase to hydroxylamines appear to play a role in the photo-mutagenicity of Nr. Photo-genotoxicity of Nr was further investigated in the comet assay and micronucleus test in L5178Y cells. Concentration-dependent increases in primary DNA damage and in the frequency of micronuclei were observed after irradiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Cytokinesis-block micronucleus cytome assay parameters in peripheral blood lymphocytes of the general population: Contribution of age, sex, seasonal variations and lifestyle factors.

    PubMed

    Gajski, Goran; Gerić, Marko; Oreščanin, Višnja; Garaj-Vrhovac, Vera

    2018-02-01

    The cytokinesis-block micronucleus cytome (CBMN Cyt) assay was used to evaluate the baseline frequency of cytogenetic damage in peripheral blood lymphocytes of the general population (average age, 38.28 ± 12.83 years) in relation to age, sex, body mass index, seasonal variations (season of sampling, period of sampling and different meteorological parameters) and lifestyle factors (smoking habit, alcohol consumption, exposure to medications and diagnostic radiation, physical activity, and family history of cancer). The background frequency of micronuclei (MNi) for the 200 subjects assayed was 5.06 ± 3.11 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 1.21 ± 1.46 and of nuclear buds (NBUDs) 3.48 ± 2.14. The background frequency of apoptosis and necrosis was 1.58 ± 1.50 and 1.39 ± 1.56, respectively, while the mean nuclear division index (NDI) was 1.99 ± 0.14. The cut-off value, which corresponds to the 95th percentile of the distribution of 200 individual values, was 11 MNi, 4 NPBs and 7 NBUDs. The study also confirmed an association of the above mentioned parameters with age, sex and several lifestyle factors. Moreover, significant confounders based on our results are also sampling season, sampling period and different meteorological parameters that were dependent on the CBMN Cyt assay parameters. In line with the above mentioned, several factors should be taken into account when it comes to the monitoring of exposed populations using cytogenetic biomarkers. Moreover, the normal and cut-off values obtained in this study present background data for the general population, and can later serve as baseline values for further biomonitoring studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  7. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  8. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  9. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  10. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  11. 40 CFR 721.9928 - Urea, tetraethyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Requirements as specified in § 721.80(r) (445,000 kg) (a dermal developmental toxicity study in mice and rats and either a chromosome aberration assay in mice (40 CFR 798.5385) or a micronucleus assay in mice (40...

  12. Micronucleus analysis in a Portuguese population exposed to pesticides: preliminary survey.

    PubMed

    Costa, Carla; Silva, Susana; Coelho, Patrícia; Roma-Torres, Joana; Teixeira, João Paulo; Mayan, Olga

    2007-05-01

    The general population is exposed in their everyday life to different chemicals namely to pesticides. Many of these compounds are capable of inducing mutations in DNA and lead to several diseases including cancer. With this study we intended to evaluate DNA damage inflicted by pesticide exposure in a population occupationally exposed to those chemicals by means of the micronucleus (MN) test. The obtained results showed a significant increase in MN frequency in occupationally exposed individuals (p<0.001) compared with the control group. Higher frequencies of MN were associated with a specific workplace (greenhouses) and the lack of protective measures (gloves) during labour activities. These results reinforce that conditions in workplace should be improved to minimize exposure to these chemicals. This study also emphasizes the need to reinforce the good practices campaigns in order to enlighten those who work with pesticides on the potential hazard of occupational exposure and the importance of using protective measures.

  13. Role of Macronutrients and Micronutrients in DNA Damage: Results From a Food Frequency Questionnaire.

    PubMed

    Ladeira, Carina; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel

    2017-01-01

    The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein ( P < .05, Spearman correlation). Calorie and omega-6 intakes are negatively correlated with DNA damage measured by the comet assay. These results are somewhat controversial because some of the correlations found are contrary to dominant views in the literature; however, we suggest that unraveling the association between diet and genetic instability requires a much better understanding of the modulating role of macronutrients and micronutrients.

  14. Determination of genotoxic effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave voltammetry.

    PubMed

    Stivaktakis, Polychronis D; Giannakopoulos, Evangelos; Vlastos, Dimitris; Matthopoulos, Demetrios P

    2017-02-01

    The interaction of pesticides with environmental factors, such as pH, may result in alterations of their physicochemical properties and should be taken into consideration in regard to their classification. This study investigates the genotoxicity of methidathion and its alkaline hydrolysis by-products in cultured human lymphocytes, using the square-wave voltammetry (square wave-adsorptive cathodic stripping voltammetry (SW-AdCSV) technique) and the cytokinesis block micronucleus assay (CBMN assay). According to the SW-AdCSV data the alkaline hydrolysis of methidathion results in two new molecules, one non-electro-active and a second electro-active which is more genotoxic than methidathion itself in cultured human lymphocytes, inducing higher micronuclei frequencies. The present study confirms the SW-AdCSV technique as a voltammetric method which can successfully simulates the electrodynamics of the cellular membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Micronucleus as biomarkers of cancer risk in anabolic androgenic steroids users.

    PubMed

    Souza, L da Cunha Menezes; da Cruz, L A; Cerqueira, E de Moraes Marcílio; Meireles, Jrc

    2017-03-01

    The use of anabolic androgenic steroids (AAS) has grown among practitioners of recreational bodybuilding, with significant contributions of designer steroids, aiming muscle hypertrophy in healthy subjects. The abusive use of AAS in general is associated with adverse effects; one of the most worrisome is cancer development. The aim of this study was to evaluate the effectiveness of the cytokinesis block micronucleus (CBMN) test in human lymphocytes in identifying risk groups for cancer development in users of AAS. Blood was collected from 15 AAS users bodybuilders (G1), 20 non-users bodybuilders (G2) and 20 non-users sedentary (G3). MN analysis was performed on a minimum of 1000 binucleated lymphocytes. The occurrence of MN was significantly higher ( p < 0.05) in individuals of G1 compared to G2 and G3. The results indicate the sensitivity of CBMN in human lymphocytes in the identification of chromosomal damage in consequence of AAS.

  16. Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    PubMed Central

    Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H. William; Miceli, Cristina

    2012-01-01

    Background The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. Methodology/Principal Findings With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. Conclusion/Significance We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis. PMID:22745812

  17. Nuclear damage in peripheral lymphocytes of obese and overweight Italian children as evaluated by the gamma-H2AX focus assay and micronucleus test.

    PubMed

    Scarpato, Roberto; Verola, Carmela; Fabiani, Barbara; Bianchi, Vanessa; Saggese, Giuseppe; Federico, Giovanni

    2011-02-01

    Childhood obesity, often characterized by a chronic low-grade inflammation, has been associated with an increased risk of developing some types of cancer later in life. Nuclear γ-H2AX foci represent the first detectable response of cells to DNA tumorigenesis lesions, such as the double-strand breaks (DSBs). An excess of micronucleated peripheral lymphocytes was found in subjects with cancer or inflammation-based diseases. We set out to investigate the expression of genome damage, from DNA lesions to chromosome mutations (micronuclei), in overweight and obese children. Using the γ-H2AX focus assay and micronucleus (MN) test, we analyzed peripheral lymphocytes from 119 Italian children classified as normal weight (n=38), overweight (n=20), or obese (n=61). Cultures treated with bleomycin (BLM) were also set up for each child in both assays to check functioning of the apparatus that ensures DNA integrity. We measured serum TNF-α, IL-6, and C-reactive protein (CRP) as markers of inflammation. Overweight and obese children had significantly higher levels of H2AX phosphorylation (0.0191±0.0039 and 0.0274±0.0029 γ-H2AXF/n) and increased MN frequencies (2.30±0.25 and 2.45±0.22‰) than normal-weight children (0.0034±0.0006 γ-H2AXF/n, and 0.92±0.12‰ MN), while all subjects responded to BLM induction, irrespective of their weight status. The fold increase of spontaneous MN frequencies in overweight and obese subjects was 2.5 and 2.7, respectively, well below the corresponding increase in the γ-H2AX foci (5.6- and 8.0-fold, respectively). IL-6 and CRP mean values were significantly higher in obese and overweight children than in controls. Here, we demonstrated that peripheral cells of overweight and obese children showed increased levels of DSBs, which were not completely repaired as part of them has been converted into micronuclei. Characterization of childhood obesity inflammation could be implemented using molecular markers of genome damage.

  18. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins.

    PubMed

    Kirkland, David; Reeve, Lesley; Gatehouse, David; Vanparys, Philippe

    2011-03-18

    In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-04-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.

  20. Circadian Clock Synchronization of the Cell Cycle in Zebrafish Occurs through a Gating Mechanism Rather Than a Period-phase Locking Process

    PubMed Central

    Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David

    2018-01-01

    Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612

  1. Cytotoxicity of diesel engine exhaust among the Chinese occupational population: a complement of cytokinesis-block micronucleus cytome.

    PubMed

    Zhang, Xiao; Xiao, Xinhua; Duan, Huawei; Gao, Feng; Li, Yuanyuan; Niu, Yong; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    Diesel engine exhaust (DEE), a ubiquitous environmental pollutant, has been associated with adverse health effects. Revelation of cellular and molecular changes is critical for understanding environmental exposure-related diseases. Although the molecular-level effects of DEE exposure have been investigated, whether it is associated with aberrant changes at cellular level is largely unknown at the population level. In the present study, we measured urinary concentrations of 6 mono-hydroxylated PAHs (OH-PAHs) and cytotoxicity-related endpoints including apoptosis and necrosis frequencies, and nuclear division cytotoxicity index (NDCI) in peripheral blood lymphocytes (PBLs) of 79 DEE-exposed workers and 59 non-DEE-exposed workers. We found that DEE-exposed workers had significantly higher necrosis frequency and lower NDCI than did non-DEE-exposed workers (both p < 0.001). In all study subjects and nonsmoking workers, urinary summed OH-PAHs was associated with increased necrosis frequency and reduced NDCI. In nonsmoking workers, an interquartile range increase in urinary summed OH-PAHs was associated with 105.03% increase in necrosis frequency and 8.70% decrease in NDCI. Taking advantage of the previous measure of micronucleus frequency, we observed that micronucleus frequency was positively correlated with apoptosis and necrosis frequencies (r = 0.277, p = 0.047 and r = 0.452, p = 0.001, respectively) and negatively correlated with NDCI (r = -0.477, p < 0.001). In conclusion, our results suggested that DEE exposure was associated with increased necrosis frequency and further with reduced NDCI in PBLs, providing evidence of DEE exposure-induced cytotoxicity in humans.

  2. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.

    PubMed

    Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan

    2011-03-01

    Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.

  3. Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.

    PubMed

    Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales

    2013-03-01

    Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.

  4. Bucky Tubes Induce Oxidative Stress Mediated Cell Death in Human Lung Cells

    PubMed Central

    Singhal, Jaya; Singh, Surinder P.; Karuppiah, Stalin; Pandey, Alok K.

    2015-01-01

    Unique physicochemical properties of carbon nanomaterials (CNMs) have opened a new era for therapeutics and diagnosis (known as theranostics) of various diseases. This exponential increase in application makes them important for toxicology studies. The present study was aimed at exploring the toxic potential of one of the CNMs, that is, bucky tubes (BTs), in human lung adenocarcinoma (A549) cell line. BTs were characterised by electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform spectroscopy (FTIR), and X-ray diffraction (XRD). Flow cytometric study showed a concentration and time dependent increase in intracellular internalization as well as reduction in cell viability upon exposure to BTs. However, a significant increase in intracellular reactive oxygen species (ROS) production was observed as evident by increased fluorescence intensity of 2′,7′-dichlorofluorescein (DCF). BTs induced oxidative stress in cells as evident by depletion in glutathione with concomitant increase in lipid peroxidation with increasing concentrations. A significant increase in micronucleus formation and apoptotic cell population and loss of mitochondrial membrane potential (MMP) as compared to control were observed. Moreover, in the present study, BTs were found to be mild toxic and it is encouraging to conclude that BTs having outer diameter in the range of 7–12 nm and length 0.5–10 μm can be used for theranostics. PMID:26090421

  5. [Protective Effect of S-isopentenyl-L-cysteine against DNA Damage in Irradiated Mice].

    PubMed

    Zheng, Qi-sheng; Yu, Guang-yun; He, Xin; Jiang, Ming; Chu, Xiao-fei; Zhao, Shu-yi; Fan, Sai-jun; Liu, Pei-xun

    2015-10-01

    To evaluate the protective effect of S-isopentenyl-L-cysteine,a new cysteine derivative,on DNA damage induced by radiation by using acute radiation injury animal models. Forty ICR mice were randomly divided into five groups:the control group,1.0Gy gamma irradiation group,1.0Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,7.2Gy gamma irradiation group,and 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,with 8 mice in each group.The comet assay and bone marrow polychromatic micronucleus experiments were performed to evaluate the double-strand DNA breaks in ICR mice exposed to 1.0 and 7.2Gy gamma-ray, respectively. The tail DNA percentage,tail length,tail moment,and olive tail moment of peripheral blood lymphocytes in 7.2Gy gamma irradiation group were significantly higher than that of the control group (P<0.01).And it was also observed that above experimental indexes of 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group was significantly less than that of 7.2Gy gamma irradiation group (P<0.05). In addition,the micronucleus rate of 1.0Gy gamma irradiation group and 7.2Gy gamma irradiation group were both significantly higher than in the control group (P<0.01). In addition,in mice given S-isopentenyl-L-cysteine before irradiation,the micronucleus rate of ICR mice exposed to 1.0 and 7.2Gy gamma-ray decreased from (39.5000 ± 3.3141)‰ to (28.1667±4.1345)‰ (P=0.033) and from (76.5000 ± 4.6242)‰ to (22.8333 ± 3.6553)‰(P=0.000),respectively. The bone marrow polychromatic micronucleus experiment indicated that the value of polychromatic erythrocyte (PCE)/normochromatic erythrocyte(NCE) of ICR mice exposed to 1.0 and 7.2Gy gamma-ray was less than the control group(P<0.05). Meanwhile,after irradiating by certain dose,the value of PCE/NCE in mice given S-isopentenyl-L-cysteine before irradiation was significantly higher than the corresponding groups (P<0.05). S-isopentenyl-L-cysteine has a good protective effect against DNA damage induced by radiation.

  6. A map of protein dynamics during cell-cycle progression and cell-cycle exit

    PubMed Central

    Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan

    2017-01-01

    The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491

  7. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    PubMed

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  8. Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle

    PubMed Central

    Li, Chunhe; Wang, Jin

    2014-01-01

    Cell cycles, essential for biological function, have been investigated extensively. However, enabling a global understanding and defining a physical quantification of the stability and function of the cell cycle remains challenging. Based upon a mammalian cell cycle gene network, we uncovered the underlying Mexican hat landscape of the cell cycle. We found the emergence of three local basins of attraction and two major potential barriers along the cell cycle trajectory. The three local basins of attraction characterize the G1, S/G2, and M phases. The barriers characterize the G1 and S/G2 checkpoints, respectively, of the cell cycle, thus providing an explanation of the checkpoint mechanism for the cell cycle from the physical perspective. We found that the progression of a cell cycle is determined by two driving forces: curl flux for acceleration and potential barriers for deceleration along the cycle path. Therefore, the cell cycle can be promoted (suppressed), either by enhancing (suppressing) the flux (representing the energy input) or by lowering (increasing) the barrier along the cell cycle path. We found that both the entropy production rate and energy per cell cycle increase as the growth factor increases. This reflects that cell growth and division are driven by energy or nutrition supply. More energy input increases flux and decreases barrier along the cell cycle path, leading to faster oscillations. We also identified certain key genes and regulations for stability and progression of the cell cycle. Some of these findings were evidenced from experiments whereas others lead to predictions and potential anticancer strategies. PMID:25228772

  9. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    PubMed

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants.

    PubMed

    López-Jornet, Pía; Perrez, Francisco Parra; Calvo-Guirado, José Luis; Ros-Llor, Irene; LLor-Ros, Irene; Ramírez-Fernández, Piedad

    2014-07-01

    The aim of this study was to assess the potential genotoxicity of dental implants, evaluating biomarkers of DNA damage (micronuclei and/or nuclear buds), cytokinetic defects (binucleated cells) and the presence of trace metals in gingival cells of patients with implants, comparing these with a control group. A total of 60 healthy adults (30 patients with dental implants and 30 control patients without) were included in the study. Medical and dental histories were made for each including life-style factors. Genotoxicity effects were assessed by micronucleus assays in the gingival epithelial cells of each patient; 1,000 epithelial cells were analyzed, evaluating the frequency of micronucleated cells and other nuclear anomalies. The concentration of metals (Al(27), Ag(107), Co (59), Cr (52), Cu(63), Fe(56), Sn(118), Mn(55), Mo(92), Ni(60), Pb(208), Ti(47)) were assayed by means of coupled plasma-mass spectrophotometry (ICP-MS). The frequency of micronuclei in the patient group with implants was higher than in the control group but without statistically significant differences (P > 0.05). Similar results were found for binucleated cells and nuclear buds (P > 0.05). For metals assayed by ICP-MS, significant differences were found for Ti(47) (P ≤ 0.045). Univariate analysis identified a significant association between the presence of micronuclei and age. Dental implants do not induce DNA damage in gingival cells, the slight effects observed cannot be indicated as biologically relevant.

  11. Drinking water disinfection byproduct iodoacetic acid induces tumorigenic transformation of NIH3T3 cells.

    PubMed

    Wei, Xiao; Wang, Shu; Zheng, Weiwei; Wang, Xia; Liu, Xiaolin; Jiang, Songhui; Pi, Jingbo; Zheng, Yuxin; He, Gengsheng; Qu, Weidong

    2013-06-04

    Iodoacetic acid (IAA) and iodoform (IF) are unregulated iodinated disinfection byproducts (DBPs) found in drinking water. Their presence in the drinking water of China has not been documented. Recently, the carcinogenic potential of IAA and IF has been a concern because of their mutagenicity in bacteria and genotoxicity in mammalian cells. Therefore, we measured their concentrations in Shanghai drinking water and assessed their cytotoxicity, genotoxicity, and ability to transform NIH3T3 cells to tumorigenic lines. The concentrations of IAA and IF in Shanghai drinking water varied between summer and winter with maximum winter levels of 2.18 μg/L IAA and 0.86 μg/L IF. IAA with a lethal concentration 50 (LC50) of 2.77 μM exhibited more potent cytotoxicity in NIH3T3 cells than IF (LC50 = 83.37 μM). IAA, but not IF, induced a concentration-dependent DNA damage measured by γ-H2AX staining and increased tail moment in single-cell gel electrophoresis. Neither IAA nor IF increased micronucleus frequency. Prolonged exposure of NIH3T3 cells to IAA increased the frequencies of transformed cells with anchorage-independent growth and agglutination with concanavalin A. IAA-transformed cells formed aggressive fibrosarcomas after inoculation into Balb/c nude mice. This study demonstrated that IAA has a biological activity that is consistent with a carcinogen and human exposure should be of concern.

  12. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.

    PubMed

    Plamadeala, Cristina; Wojcik, Andrzej; Creanga, Dorina

    2015-03-01

    An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.

  13. Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells

    PubMed Central

    PLAMADEALA, Cristina; WOJCIK, Andrzej; CREANGA, Dorina

    2015-01-01

    Background: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. Results: The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Conclusion: Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes (i=(1,5)¯) - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest. PMID:25905075

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.; Shy, C.M.; Allen, J.W.

    The exfoliated-cell micronucleus (MN) assay was used to assess cytogenetic effects of exposure to radon progeny and cigarette smoke among 99 Colorado plateau uranium workers. Subjects were selected at random from employees in underground and open-pit uranium mines, ore mills, laboratories, and offices participating in a sputum screening program from 1964-88. The prevalence of cells with MN was determined by scoring one sputum specimen for each worker. Data obtained by interview were used to classify exposure to radon progeny and smoking at the time sputum specimens were taken. Underground miners were considered exposed to radon progeny, and others were consideredmore » unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of cells with MN; crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CE 0.6-1.3), respectively. The effects of radon and smoking were not confounded by each other or by age, and there was no evidence of synergy between exposures. The findings appear to cast doubt on the epidemiological utility of a sputum-based MN assay for studies of other populations exposed to occupational or environmental lung carcinogens.« less

  15. Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity.

    PubMed

    Merhi, Maysaloun; Dombu, Christophe Youta; Brient, Alizée; Chang, Jiang; Platel, Anne; Le Curieux, Frank; Marzin, Daniel; Nesslany, Fabrice; Betbeder, Didier

    2012-02-14

    We used well-characterized and positively charged nanoparticles (NP(+)) to investigate the importance of cell culture conditions, specifically the presence of serum and proteins, on NP(+) physicochemical characteristics, and the consequences for their endocytosis and genotoxicity in bronchial epithelial cells (16HBE14o-). NP(+) surface charge was significantly reduced, proportionally to NP(+)/serum and NP(+)/BSA ratios, while NP(+) size was not modified. Microscopy studies showed high endocytosis of NP(+) in 16HBE14o-, and serum/proteins impaired this internalization in a dose-dependent manner. Toxicity studies showed no cytotoxicity, even for very high doses of NP(+). No genotoxicity was observed with classic comet assay while primary oxidative DNA damage was observed when using the lesion-specific repair enzyme, formamidopyrimidine DNA-glycosylase (FPG). The micronucleus test showed NP(+) genotoxicity only for very high doses that cannot be attained in vivo. The low toxicity of these NP(+) might be explained by their high exocytosis from 16HBE14o- cells. Our results confirm the importance of serum and proteins on nanoparticles endocytosis and genotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Genotoxicity tests on D-tagatose.

    PubMed

    Kruger, C L; Whittaker, M H; Frankos, V H

    1999-04-01

    D-tagatose is a low-calorie sweetener that tastes like sucrose. Its genotoxic potential was examined in five standard assays: the Ames Salmonella typhimurium reverse mutation assay, the Escherichia coli/mammalian microsome assay, a chromosomal aberration assay in Chinese hamster ovary cells, a mouse lymphoma forward mutation assay, and an in vivo mouse micronucleus assay. D-tagatose was not found to increase the number of revertants per plate relative to vehicle controls in either the S. typhimurium tester strains or the WP2uvrA- tester strain with or without metabolic activation at doses up to 5000 microg/plate. No significant increase in Chinese hamster ovary cells with chromosomal aberrations was observed at concentrations up to 5000 microg/ml with or without metabolic activation. D-tagatose was not found to increase the mutant frequency in mouse lymphoma L5178Y cells with or without metabolic activation up to concentrations of 5000 microg/ml. D-tagatose caused no significant increase in micronuclei in bone marrow polychromatic erythrocytes at doses up to 5000 mg/kg. D-tagatose was not found to be genotoxic under the conditions of any of the assays described above. Copyright 1999 Academic Press.

  17. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    PubMed

    Carpentier, Rodolphe; Platel, Anne; Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  18. Evaluation of oxidative stress and genotoxicity in battery manufacturing workers occupationally exposed to lead.

    PubMed

    Singh, Zorawar; Chadha, Pooja; Sharma, Suman

    2013-01-01

    Battery manufacturing workers are occupationally exposed to lead (Pb), which is a highly toxic heavy metal. The aim of this study was to investigate the blood lead levels (BLL) of 30 battery manufacturing workers and find the correlation between BLL, micronucleated cell (MNC) frequency, binucleated cell (BNC) frequency in buccal mucosal cells and malondialdehyde concentrations in serum. 30 subjects of the BMW group, exposed to lead, and 30 control subjects, matched with the exposed subjects with respect to age, socio-economic status, sex, diet, smoking and drinking habits, were monitored for this study. BLL was found to have highly significant difference between both the groups (P < 0.001). The serum MDA levels were observed at significantly higher levels (6.76 ± 3.26) for the exposed group as compared to the control group (2.10 ± 1.02; P < 0.001). Buccal micronucleus test showed that both MNC and BNC frequencies were higher among the workers, in comparison to the control subjects. A positive correlation has been found between BLL and all the parameters. Our results indicate an increased health associated risk for workers occupationally exposed to lead.

  19. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin.

    PubMed

    Bacanlı, Merve; Başaran, A Ahmet; Başaran, Nurşen

    2015-07-01

    Phenolic compounds not only contribute to the sensory qualities of fruits and vegetables but also exhibit several health protective properties. Limonene and naringin are the most popular phenolics found in Citrus plants. In this study, we investigated the antioxidant capacities of limonene and naringin by the trolox equivalent antioxidant capacity (TEAC) assay and the cytotoxic effects by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Chinese hamster fibroblast (V79) cells. The genotoxic potentials of limonene and naringin were evaluated by micronucleus (MN) and alkaline COMET assays in human lymphocytes and V79 cells. Limonene and naringin, were found to have antioxidant activities at concentrations of 2-2000 µM and 5-2000 µM respectively. IC50 values of limonene and naringin were found to be 1265 µM and 9026 µM, respectively. Limonene at the concentrations below 10,000 µM and naringin at the all concentrations studied, have not exerted genotoxic effects in lymphocytes and in V79 cells. Limonene and naringin at all concentrations revealed a reduction in the frequency of MN and DNA damage induced by H2O2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Increased frequency of micronuclei in peripheral blood lymphocytes of subjects infected with Helicobacter pylori.

    PubMed

    Suárez, Susanna; Sueiro, Rosa Ana; Araujo, Manuel; Pardo, Fernanda; Menéndez, M Dolores; Pardiñas, M Carmen; Alvarez, Angel

    2007-01-10

    Epidemiological studies have demonstrated a close association between infection with Helicobacter pylori and the development of gastric carcinoma and mucosa-associated lymphoid tissue lymphomas in humans. The cytokinesis-block micronucleus assay was performed on peripheral blood lymphocytes of H. pylori-infected patients in order to investigate the possible induction of genotoxic damage. The study group consisted of 70 infected subjects including 33 women and 37 men, and 66 healthy controls (37 females and 29 males). Our results indicate that in the infected group the overall frequency of binucleated micronucleated cells (BNMN) per 1000 cells was higher (17.65+/-1.55) than in the controls (7.39+/-0.66), this difference being statistically significant. No differences were found between the infected and control groups regarding the cytokinesis-block proliferation index (CBPI). When the effect of different counfounding factors was evaluated, mutivariate statistical analysis revealed that age and alcohol consumption modulated the frequency of BNMN in infected people, and the interaction between alcohol use-smoking-infection also affected the BNMN frequency in H. pylori patients. Our results indicate that infection by H. pylori is associated with an increased level of cytogenetic damage in the cells of the host.

  1. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.

    PubMed

    Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L

    1984-11-01

    During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.

  2. Toxicological assessment of Anionic Methacrylate Copolymer: I. Characterization, bioavailability and genotoxicity.

    PubMed

    Eisele, Johanna; Haynes, Geoff; Kreuzer, Knut; Hall, Caroline

    2016-12-01

    Anionic Methacrylate Copolymer (AMC) is a fully polymerized copolymer used in the pharmaceutical industry as an enteric/delayed-release coating to permit the pH-dependent release of active ingredients in the gastrointestinal tract from oral dosage forms. This function is of potential use for food supplements. Oral administration of radiolabeled copolymer to rats resulted in the detection of chemically unchanged copolymer in the feces, with negligible absorption (<0.1%). AMC is therefore determined not to be bioavailable. Within a genotoxicity test battery AMC did not show any evidence of genotoxicity in bacteria and mammalian cells. Furthermore, no genotoxic effects occurred in vivo within a micronucleus test. There would therefore appear to be no safety concerns under intended conditions of oral use for the discussed toxicological endpoints. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antioxidant and antigenotoxic potencies of Sempervivum armenum on human lymphocytes in vitro.

    PubMed

    Sunar, Serap; Anar, Mustafa; Sengul, Meryem; Agar, Guleray

    2016-12-01

    In this research, the genotoxic and antigenotoxic effects of methanol extract of Sempervivum armenum (MSA) were studied using micronucleus (MN) test and sister chromatid exchange (SCE) test systems in cultured human peripheral blood cells. According to the SCE and MN tests results, MSA reduced the genotoxic effects of aflatoxin B 1 . In order to explain the reason for the antigenotoxic effects of MSA, antioxidants levels were determined. Cotreatments of 5, 10, 20 mg/mL concentrations of MSA with aflatoxin B 1 decreased the frequencies of SCE, MN and the malondialdehyde level and increased the amount of superoxide dismutase, glutathione and glutathione peroxidase which were decreased by aflatoxin. The results of this experiment showed that MSA has strong antioxidative and antigenotoxic effects and this antigenotoxic activities of MSA can be due to the antioxidant activities.

  4. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  5. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  6. The global regulatory architecture of transcription during the Caulobacter cell cycle.

    PubMed

    Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.

  7. Influence of processing and storage of integral grape juice (Vitis labrusca L.) on its physical and chemical characteristics, cytotoxicity, and mutagenicity in vitro.

    PubMed

    Düsman, E; Almeida, I V; Pinto, E P; Lucchetta, L; Vicentini, V E P

    2017-05-31

    Integral grape juice is extracted from the grape through processes that allow the retention of their natural composition. However, due to the severity of some processes, fruit juices can undergo changes in their quality. The present study evaluated the cytotoxic and mutagenic effects of integral grape juice by a cytokinesis-blocked micronucleus assay in Rattus norvegicus hepatoma cells (HTC) in vitro. Vitis labrusca L. (variety Concord) were produced organically and by a conventional system, and their juice was extracted by a hot extraction process. The organic grapes were subjected to ultraviolet-type C radiation (UV-C). Experiments were performed after production and after 6 months in storage. Physicochemical analyses revealed that UV-C irradiation of organic grapes, the juice production process, and storage resulted in nutraceutical alterations. However, none of the juice concentrations were cytotoxic to HTC cells by the cytokinesis-blocked proliferation index results or were mutagenic, because the formation of micronucleated cells was not induced. In general, juice induced cell proliferation, possibly due to the presence of vitamins and sugar content (total soluble solid). The data increased the understanding of food technology and confirmed the quality and safety consumption of these juices.

  8. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    PubMed

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  9. In vitro micronuclei tests to evaluate the genotoxicity of surface water under the influence of tanneries.

    PubMed

    Lemos, A O; Oliveira, N C D; Lemos, C T

    2011-06-01

    Leather manufacturing has a high potential for environmental pollution due to hides and chemicals that are not completely absorbed during the tanning process. This study aims to investigate the mutagenic potential of surface water samples from Cadeia and Feitoria rivers (RS, Brazil) in areas influenced by tanneries and leather footwear industry. Micronucleus assays using V79 cells and human lymphocytes were used. Cells were exposed to surface water collected bimonthly from three sites for a year, totaling six samples. Significant MN induction in human lymphocytes was shown by 83% of samples from sites FEI001 and CAD001 located downstream from the industrial area, followed by FEI004 (33%), upstream. Only a single sample from site FEI004 showed a positive response for MN in V79 cells. Thirteen discordant and five concordant responses were found between the two in vitro tests. Mutagenic agents were found at the sites where chemical quality was worst, corroborating studies on chronic toxicity, oxidative stress and mutagenicity performed in this area. The assay using human lymphocytes was more sensitive than V79 cells to detect the contaminants from this area, showing that it is an excellent biomarker of environmental genotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Protective activity of Cynara scolymus L. leaf extract against chemically induced complex genomic alterations in CHO cells.

    PubMed

    Jacociunas, Laura Vicedo; de Andrade, Heloisa Helena Rodrigues; Lehmann, Mauricio; Pedersini, Larissa Wölfle; Ferraz, Alexandre de Barros Falcão; da Silva, Juliana; Dihl, Rafael Rodrigues

    2013-09-15

    Cynara scolymus L., popularly known as artichoke, has been widely used in traditional medicine as an herbal medicament for therapeutic purposes. The study aimed at assessing the protective activity of Cynara scolymus leaf extract (LE) against DNA lesions induced by the alkylating agent ethylmethnesulphonate (EMS) in Chinese hamster ovary cells (CHO). The ability of C. scolymus L. LE to modulate the mutagenicity of EMS was examined using the cytokinesis block micronucleus (CBMN) cytome assay in three antigenotoxic protocols, pre- post- and simultaneous treatments. In the pre-treatment, C. scolymus L. LE reduced the frequencies of MNi and NBUDs induced by EMS in the lower concentration. In contrast, at the highest concentration (5 mg/ml) artichoke enhanced the frequency of MNi, potentiating EMS genotoxicity. In the simultaneous treatment only the induction of MNi was repressed by the exposure of cells to C. scolymus L. LE. No modification in genotoxicity was observed in LE post-treatment. The results obtained in this study suggest that lower concentrations of artichoke prevent chemically induced genomic damage in mammalian cells. In this context, the protective activity of C. scolymus L. could be associated to its constitutive antioxidants compounds. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.

  12. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  13. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells

    PubMed Central

    Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael

    2017-01-01

    The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002

  14. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.

  15. The cell cycle.

    PubMed

    Singh, N; Lim, R B; Sawyer, M A

    2000-07-01

    The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.

  16. Pathological implications of cell cycle re-entry in Alzheimer disease.

    PubMed

    Bonda, David J; Lee, Hyun-pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon

    2010-06-29

    The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.

  17. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  18. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  19. Y chromothripsis?

    PubMed

    Hatch, Emily M

    2016-12-23

    Micronucleation of missegregated chromatin can lead to substantial chromosome rearrangements via chromothripsis. However, the molecular details of micronucleus-based chromothripsis are still unclear. Now, an elegant system that specifically induces missegregation of the Y chromosome provides insight into this process, including a role for non-homologous end joining.

  20. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: a contribution to the optimization of gene and drug delivery.

    PubMed

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Castellano, Agostina Congiu

    2011-12-15

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Słonina, Dorota, E-mail: z5slonin@cyfronet.pl; Biesaga, Beata; Janecka, Anna

    Purpose: In our previous study, using the micronucleus assay, a low-dose hyper-radiosensitivity (HRS)-like phenomenon was observed for normal fibroblasts of 2 of the 40 cancer patients investigated. In this article we report, for the first time, the survival response of primary fibroblasts from 25 of these patients to low-dose irradiation and answer the question regarding the effect of G2-phase enrichment on HRS elicitation. Methods and Materials: The clonogenic survival of asynchronous as well as G2-phase enriched fibroblast populations was measured. Separation of G2-phase cells and precise cell counting was performed using a fluorescence-activated cell sorter. Sorted and plated cells weremore » irradiated with single doses (0.1-4 Gy) of 6-MV x-rays. For each patient, at least 4 independent experiments were performed, and the induced-repair model was fitted over the whole data set to confirm the presence of HRS effect. Results: The HRS response was demonstrated for the asynchronous and G2-phase enriched cell populations of 4 patients. For the rest of patients, HRS was not defined in either of the 2 fibroblast populations. Thus, G2-phase enrichment had no effect on HRS elicitation. Conclusions: The fact that low-dose hyper-radiosensitivity is not a common effect in normal human fibroblasts implies that HRS may be of little consequence in late-responding connective tissues with regard to radiation fibrosis.« less

  2. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users

    PubMed Central

    Rocha, Rodrigo dos Santos; Meireles, José Roberto Cardoso; de Moraes Marcílio Cerqueira, Eneida

    2014-01-01

    Chromosomal damage and apoptosis were analyzed in users of mouthwash and/or alcoholic beverages, using the micronucleus test on exfoliated oral mucosa cells. Samples from four groups of 20 individuals each were analyzed: three exposed groups (EG1, EG2 and EG3) and a control group (CG). EG1 comprised mouthwash users; EG2 comprised drinkers, and EG3 users of both mouthwashes and alcoholic beverages. Cell material was collected by gently scraping the insides of the cheeks. Then the cells were fixed in a methanol/acetic acid (3:1) solution and stained and counterstained, respectively, with Schiff reactive and fast green. Endpoints were computed on 2,000 cells in a blind test. Statistical analysis showed that chromosomal damage and apoptosis were significantly higher in individuals of groups EG1 and EG3 than in controls (p < 0.005 and p < 0.001, respectively). No significant difference in chromosomal damage and apoptosis was observed between the exposed groups. In EG2, only the occurrence of apoptosis was significantly higher than in the controls. These results suggest that mouthwashes alone or in association with alcoholic drinks induce genotoxic effects, manifested as chromosomal damage and apoptosis. They also suggest that alcoholic drinks are effective for stimulating the process of apoptosis. However, these data need to be confirmed in larger samples. PMID:25505845

  3. The NAD+ precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation.

    PubMed

    Weidele, Kathrin; Beneke, Sascha; Bürkle, Alexander

    2017-04-01

    NAD + is an essential cofactor for enzymes catalyzing redox-reactions as well as an electron carrier in energy metabolism. Aside from this, NAD + consuming enzymes like poly(ADP-ribose) polymerases and sirtuins are important regulators involved in chromatin-restructuring processes during repair and epigenetics/transcriptional adaption. In order to replenish cellular NAD + levels after cleavage, synthesis starts from precursors such as nicotinamide, nicotinamide riboside or nicotinic acid to match the need for this essential molecule. In the present study, we investigated the impact of supplementation with nicotinic acid on resting and proliferating human mononuclear blood cells with a focus on DNA damage and repair processes. We observed that nicotinic acid supplementation increased NAD + levels as well as DNA repair efficiency and enhanced genomic stability evaluated by micronucleus test after x-ray treatment. Interestingly, resting cells displayed lower basal levels of DNA breaks compared to proliferating cells, but break-induction rates were identical. Despite similar levels of p53 protein upregulation after irradiation, higher NAD + concentrations led to reduced acetylation of this protein, suggesting enhanced SIRT1 activity. Our data reveal that even in normal primary human cells cellular NAD + levels may be limiting under conditions of genotoxic stress and that boosting the NAD + system with nicotinic acid can improve genomic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fruit extract of the medicinal plant Crataegus oxyacantha exerts genotoxic and mutagenic effects in cultured cells.

    PubMed

    de Quadros, Ana Paula Oliveira; Mazzeo, Dania Elisa Christofoletti; Marin-Morales, Maria Aparecida; Perazzo, Fábio Ferreira; Rosa, Paulo Cesar Pires; Maistro, Edson Luis

    2017-01-01

    Crataegus oxyacantha, a plant of the Rosaceae family also known "English hawthorn, haw, maybush, or whitethorn," has long been used for medicinal purposes such as digestive disorders, hyperlipidemia, dyspnea, inducing diuresis, and preventing kidney stones. However, the predominant use of this plant has been to treat cardiovascular disorders. Due to a lack of studies on the genotoxicity of C. oxyacantha, this investigation was undertaken to determine whether its fruit extract exerts cytotoxic, genotoxic, or clastogenic/aneugenic effects in leukocytes and HepG2 (liver hepatocellular carcinoma) cultured human cells, or mutagenic effects in TA100 and TA98 strains of Salmonella typhimurium bacterium. Genotoxicity analysis showed that the extract produced no marked genotoxic effects at concentrations of 2.5 or 5 µg/ml in either cell type; however, at concentrations of 10 µg/ml or higher significant DNA damage was detected. The micronucleus test also demonstrated that concentrations of 10 µg/ml or higher produced clastogenic/aneugenic responses. In the Ames test, the extract induced mutagenic effects in TA98 strain of S. typhimurium with metabolic activation at all tested concentrations (2.5 to 500 µg/ml). Data indicate that, under certain experimental conditions, the fruit extract of C. oxyacantha exerts genotoxic and clastogenic/aneugenic effects in cultured human cells, and with metabolism mutagenicity occurs in bacteria cells.

  5. Alteration of cell cycle progression by Sindbis virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less

  6. Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme: Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO).

    PubMed

    Correia, Jorge E; Christofoletti, Cintya Ap; Ansoar-Rodríguez, Yadira; Guedes, Thays A; Fontanetti, Carmem S

    2017-04-01

    In Brazil vinasse, a main sugarcane distillery residue, stands out because every liter of alcohol generates 10-15 L of vinasse as waste. An alternative for the disposal of this waste is the fertirrigation of the sugarcane culture itself. However, the high amount released can saturate the soil and through leaching/percolation contaminate water resources. The aim of this study is verifying the toxic potential of vinasse in tilapias and effectiveness of the physicalchemical treatment of this waste with pH adjustment with lime (CaO). The comet assay and the micronucleus test were applied on animals exposed to dilutions of raw vinasse and vinasse adjusted to neutral pH. Bioassays with raw vinasse dilutions indicated a toxic and genotoxic potential; fish exposed to the highest concentration died less than 48 h after the exposure; the incidence of micronucleus was significantly higher when compared to negative control for all dilutions. For the comet assay, the scores of damage were statistically higher for all dilutions, with the exception of the 1% dillution. However, in the bioassay with the chemically treated vinasse (neutral pH), most fish in the 10% dilution survived and there was no significant difference when compared to the control. Damage scores in the comet assay were similar to the results of the untreated vinasse. The chemical treatment of vinasse with lime to neutralize the pH proved to be an effective alternative for the toxicity reduction of this residue, since it reduced the mortality of fish at higher concentrations and the incidence of damage to DNA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  8. Micronucleus frequency in Danish schoolchildren and their mothers from the DEMOCOPHES population.

    PubMed

    Mørck, Thit A; Loock, Kim Vande; Poulsen, Maria Bech; Siersma, Volkert D; Nielsen, Jeanette K S; Hertel, Ole; Kirsch-Volders, Micheline; Knudsen, Lisbeth E

    2016-01-01

    Micronucleus (MN) frequency is a biomarker for early genetic effects which is often used in human biomonitoring studies. Increased frequency of micronuclei has been associated with high levels of traffic exposure. Further high MN frequency was found predictive for cancer development in several studies of adults. In the present study, the MN frequency in blood samples from the Danish participants of the European pilot project DEMOCOPHES was analysed and related to the area of residence, self-reported and calculated exposure to road traffic as well as to mercury in hair and blood concentrations of persistent organic pollutants and dioxin-like activity measured in the same participants. The MN frequency analysis was performed with the cytokinesis-block micronucleus (CBMN) assay and included 100 children and 119 mothers. We found a significant correlation between mothers and children in the levels of micronuclei in 1000 binucleated T lymphocytes (‰MNBN) and in the proliferation index. Further the levels of ‰MNBN were significantly higher in mothers compared with their children. No significant associations were found for ‰MNBN for traffic related exposure in neither children nor their mothers. In children, a 2.5 times higher micronuclei in mononuclear T lymphocytes were found in children living within 50 m of a busy road, however, this was not found in mothers or in MNBN and the effect of exposure to road traffic on MN frequency needs further investigation. No significant associations were found between MN frequencies and the other biomarkers measured in the same participants. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. In vitro genotoxicity assessment of MTES, GPTES and TEOS, three precursors intended for use in food contact coatings.

    PubMed

    Lionti, Krystelle; Séverin, Isabelle; Dahbi, Laurence; Toury, Bérangère; Chagnon, Marie-Christine

    2014-03-01

    Organoalkoxysilanes are precursors that are used increasingly in the synthesis of food contact coatings. To comply with the EU regulation, their potential toxicity must be assessed, and very little information is known. The genotoxicity of three common precursors was studied, namely, tetraethylorthosilicate (TEOS), methyltriethoxysilane (MTES) and 3-glycidyloxypropyltriethoxysilane (GPTES). By the Ames test, MTES and TEOS were not mutagenic for bacteria. A significant positive response was observed with GPTES in the TA100 and TA1535 strains. The mutagenic effect was more pronounced in the presence of the exogenous metabolic activation system with an increase of the induction factor (ten-fold higher for the TA1535 strain). In the micronucleus assay performed with a human hepatoma cell line (HepG2 cells), GPTES gave negative results even in the presence of an exogenous activation system. To ascertain the possibility of using this precursor in food contact material, its migration must be monitored according to the coating formulation because migration might result in hazardous human exposure. Copyright © 2014. Published by Elsevier Ltd.

  10. Photo-inducible cytotoxic and clastogenic activities of 3,6-di-substituted acridines obtained by acylation of proflavine.

    PubMed

    Benchabane, Yohann; Di Giorgio, Carole; Boyer, Gérard; Sabatier, Anne-Sophie; Allegro, Diane; Peyrot, Vincent; De Méo, Michel

    2009-06-01

    The cytotoxicity and photo-enhanced cytotoxicity of a series of 18 3,6-di-substituted acridines were evaluated on both tumour CHO cells and human normal keratinocytes, and compared to their corresponding clastogenicity as assessed by the micronucleus assay. Compounds 2f tert-butyl N-[(6-tert-butoxycarbonylamino)acridin-3-yl]carbamate and 2d N-[6-(pivalamino)acridin-3-yl]pivalamide displayed a specific cytotoxicity on CHO cells. These results suggested that the two derivatives could be considered as interesting candidates for anticancer chemotherapy and hypothesized that the presence of 1,1-dimethylethyl substituents was responsible for a strong nonclastogenic cytotoxicity. Compounds 2b and 2c, on the contrary, displayed a strong clastogenicity. They indicated that the presence of nonbranched aliphatic chains on positions 3 and 6 of the acridine rings tended to induce a significant clastogenic effect. Finally, they established that most of the acridine compounds could be photo-activated by UVA-visible rays and focussed on the significant role of light irradiation on their biological properties.

  11. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure.

    PubMed

    Sharma, Madhu; Chadha, Pooja

    2017-07-01

    The detection of a possible DNA damaging effect of 4-nonylphenol (NP) after subchronic exposure and repair after cessation of exposure to Channa punctatus is the aim of the present study. Channa punctatus was exposed to different concentrations (0.15 mg/l, 0.10 mg/l, and 0.07 mg/l) of NP along with positive control (ethanol) and negative control (water) for 90 d and after that allowed to recover for 30 d. Comet assay and micronucleus assay were used for the determination of DNA damage and repair by using blood cells. The effect was seen after 30, 60, and 90 d of exposure. Time- and dose-dependent increase in DNA damage was found as revealed by both the end points studied. Evident recovery was observed after 30 d of cessation of exposure. Blood cells were successfully appeared to achieve the restoration of DNA integrity. Hence, the study aimed to improve the knowledge of the genetic hazard to fish associated with NP exposure and provide a wide scope to discover the efficiency of DNA repair system in C. punctatus.

  12. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba.

    PubMed

    Unyayar, Serpil; Celik, Ayla; Cekiç, F Ozlem; Gözel, Aysin

    2006-01-01

    Cadmium (Cd) is one of the most toxic environmental pollutants affecting cytogenetically the various organisms. The cytogenetic damage in root tip cells exposed to cadmium nitrate (CdNO3) solutions at four different concentrations (1, 10, 100 and 200 microM) was evaluated with biological tests based on micronucleus (MN) assay in two plant species, Allium sativum and Vicia faba. Additionally to the cytogenetic analysis, lipid peroxidation analyses were performed in both A.sativum and V.faba roots. Cd enhanced the MN frequency in both A.sativum and V.faba root tip cells, but no dose-dependent. Induction of MN is not depending on CdNO3 concentrations. Besides, high concentrations of Cd decreased the mitotic index and caused the delay in mitosis stages in both plants, mainly in V.faba. On the other hand, lipid peroxidation was significantly enhanced with external Cd in V.faba. The results clearly indicate that high concentrations of cadmium induce the lipid peroxidation resulting in oxidative stress that may contribute to the genotoxicity and cytotoxicity of Cd ions.

  13. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression.

    PubMed

    Saitou, Takashi; Imamura, Takeshi

    2016-01-01

    Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.

  14. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    PubMed Central

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  15. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    PubMed

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mille modis morimur: We die in a thousand ways.

    PubMed

    Banfalvi, Gaspar

    2017-02-01

    Dying cells subjected to apoptotic programs are engulfed by neighboring cells or by professional phagocytes, without inflammation or immunological reactions in the tissue where apoptosis takes place. Apoptotic cells release danger-associated project signals to their neighbours, through different molecular patterns, stimulate antigen production and immune responses. Microenvironmental effects with several functional consequences indicate that cell death is a complex process and may take place in several ways. This idea is expressed by the title of the Special Issue and by the title of the guest editorial "Mille modis morimur" meaning that not only multicellular organisms, but also single cells may die in a thousand ways. This idea is demonstrated by the papers serving as examples for cell death. Apoptosis was induced by clary sage oil in Candida cells. Heavy metal (Gd) induced cell motility and apoptosis was found in mammalian cells. RNA oxidation enhanced the reversion frequency of apoptosis in yeast mutants. The frequency of apoptotic micronucleus formation increased in a concentration-dependent manner by methotrexate. The antioxidant coenzyme Q10 protected renal proximal tubule cells against nicotine-induced apoptosis. The synergy of 2-deoxy-D-glucose combined with berberine induced lysosome/autophagy. The mitochondrial apoptotic pathway could be regulated by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Cylindrospermopsin induced biochemical changes led to apoptosis in plants. Mechanisms of stress seriously impacted the risk of apoptosis. Transcriptional control of apoptotic cell clearance was achieved by macrophage nuclear receptors. Finally, the clinical aspects of apoptosis-induced lymphopenia were reviewed in sepsis and other severe injuries. These examples not only support the view of many ways of cell death, but predict further potential ways to induce or reduce the risk of cell death.

  17. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    PubMed

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.

    PubMed

    Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S

    2018-06-19

    Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Coordination of Myeloid Differentiation with Reduced Cell Cycle Progression by PU.1 Induction of MicroRNAs Targeting Cell Cycle Regulators and Lipid Anabolism.

    PubMed

    Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P

    2017-05-15

    During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.

  20. Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line.

    PubMed

    Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica

    2017-01-01

    Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.

  1. FEASIBILITY OF MICRONUCLEUS METHODS FOR MONITORING GENETIC DAMAGE IN TWO FERAL SPECIES OF SMALL MAMMALS

    EPA Science Inventory

    Peromyscus leucopus (white-footed mouse) and Cryptotis parva (least shrew) possess desirable attributes for biomonitoring contamination of terrestrial ecoystems, but few studies have examined the potential use of these species for monitoring exposure to genotoxic contaminants. Th...

  2. A Short-Term Advantage for Syngamy in the Origin of Eukaryotic Sex: Effects of Cell Fusion on Cell Cycle Duration and Other Effects Related to the Duration of the Cell Cycle-Relationship between Cell Growth Curve and the Optimal Size of the Species, and Circadian Cell Cycle in Photosynthetic Unicellular Organisms.

    PubMed

    Mancebo Quintana, J M; Mancebo Quintana, S

    2012-01-01

    The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.

  3. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    PubMed Central

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  4. Eco- and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays.

    PubMed

    Eck-Varanka, Bettina; Kováts, Nora; Horváth, Eszter; Ferincz, Árpád; Kakasi, Balázs; Nagy, Szabolcs Tamás; Imre, Kornélia; Paulovits, Gábor

    2018-04-30

    Biodiesel is considered an important renewable energy source but still there is some controversy about its environmental toxicity, especially to aquatic life. In our study, the toxicity of water soluble fraction of biodiesel was evaluated in relatively low concentrations using a battery of bioassays: Vibrio fischeri bioluminescence inhibition, Sinapis alba root growth inhibition, Daphnia magna immobilization, boar semen live/dead ratio and DNA fragmentation and Unio pictorum micronucleus test. While the S. alba test indicated nutritive (stimulating) effect of the sample, the biodiesel exerted toxic effect in the aquatic tests. D. magna was the most sensitive with EC 50 value of 0.0226%. For genotoxicity assessment, the mussel micronucleus test (MNT) was applied, detecting considerable genotoxic potential of the biodiesel sample: it elucidated micronuclei formation already at low concentration of 3.3%. Although this test has never been employed in biodiesel eco/genotoxicity assessments, it seems a promising tool, based on its appropriate sensitivity, and representativity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Development of a data-processing method based on Bayesian k-means clustering to discriminate aneugens and clastogens in a high-content micronucleus assay.

    PubMed

    Huang, Z H; Li, N; Rao, K F; Liu, C T; Huang, Y; Ma, M; Wang, Z J

    2018-03-01

    Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.

  6. Role of Macronutrients and Micronutrients in DNA Damage: Results From a Food Frequency Questionnaire

    PubMed Central

    Ladeira, Carina; Carolino, Elisabete; Gomes, Manuel C; Brito, Miguel

    2017-01-01

    The links between diet and genomic instability have been under investigation for several decades, and evidence suggests a significant causal or preventive role for various dietary factors. This study investigates the influence of macronutrients (calories, protein, and glucides) and micronutrients, such as vitamins and minerals, as assessed by a food frequency questionnaire, on genotoxicity biomarkers measured by cytokinesis-blocked micronucleus assay and comet assay. The results found significant positive and negative correlations. Micronucleus frequency tends to increase with higher intake of caffeine, calcium, magnesium, zinc, and protein (P < .05, Spearman correlation). Calorie and omega-6 intakes are negatively correlated with DNA damage measured by the comet assay. These results are somewhat controversial because some of the correlations found are contrary to dominant views in the literature; however, we suggest that unraveling the association between diet and genetic instability requires a much better understanding of the modulating role of macronutrients and micronutrients. PMID:28469462

  7. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  8. Cycle life test and failure model of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1983-01-01

    Six ampere hour individual pressure vessel nickel hydrogen cells were charge/discharge cycled to failure. Failure as used here is defined to occur when the end of discharge voltage degraded to 0.9 volts. They were cycled under a low earth orbit cycle regime to a deep depth of discharge (80 percent of rated ampere hour capacity). Both cell designs were fabricated by the same manufacturer and represent current state of the art. A failure model was advanced which suggests both cell designs have inadequate volume tolerance characteristics. The limited existing data base at a deep depth of discharge (DOD) was expanded. Two cells of each design were cycled. One COMSAT cell failed at cycle 1712 and the other failed at cycle 1875. For the Air Force/Hughes cells, one cell failed at cycle 2250 and the other failed at cycle 2638. All cells, of both designs, failed due to low end of discharge voltage (0.9 volts). No cell failed due to electrical shorts. After cell failure, three different reconditioning tests (deep discharge, physical reorientation, and open circuit voltage stand) were conducted on all cells of each design. A fourth reconditioning test (electrolyte addition) was conducted on one cell of each design. In addition post cycle cell teardown and failure analysis were performed on the one cell of each design which did not have electrolyte added after failure.

  9. Cell Cycle Control by PTEN.

    PubMed

    Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H

    2017-07-21

    Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  11. NASA Lewis advanced IPV nickel-hydrogen technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.

  12. Effect of cycling on the lithium/electrolyte interface in organic electrolytes

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E.

    1993-01-01

    Nondestructive methods such as ac impedance spectroscopy and microcalorimetry are used to study the effect of cell cycling on the lithium/electrolyte interface. The reactivity of both uncycled and cycled lithium towards various electrolytes is examined by measuring the heat evolved from the cells under open-circuit conditions at 25 C by microcalorimetry. Cycled cells at the end of charge/discharge exhibited considerably higher heat output compared with the uncycled cells. After 30 d of storage, the heat output of the cycled cells is similar to that of the uncycled cells. The cell internal resistance increases with cycling, and this is attributed to the degradation of the electrolyte with cycling.

  13. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    PubMed

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Playing with the cell cycle to build the spinal cord.

    PubMed

    Molina, Angie; Pituello, Fabienne

    2017-12-01

    A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance.

    PubMed

    Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse

    2011-08-01

    Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.

  16. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    PubMed

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  17. Cell cycle proteins as promising targets in cancer therapy.

    PubMed

    Otto, Tobias; Sicinski, Piotr

    2017-01-27

    Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

  18. Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro.

    PubMed

    Lazaro, J Enrico H; Nitcheu, Josiane; Predicala, Rey Z; Mangalindan, Gina C; Nesslany, Fabrice; Marzin, Daniel; Concepcion, Gisela P; Diquet, Bertrand

    2002-12-01

    Heptyl prodigiosin was purified from a culture of alpha-proteobacteria isolated from a marine tunicate collected in Zamboanga, Philippines, as part of a program to screen natural products for antiparasitic activity. An in vitro antimalarial activity similar to that of quinine was found against the chloroquine-sensitive strain Plasmodium falciparum 3D7. The in vitro antimalarial activity was about 20 times the in vitro cytotoxic activity against L5178Y mouse lymphocytes. A single subcutaneous administration of 5 and 20 mg/kg significantly extended survival of P. berghei ANKA strain-infected mice but also caused sclerotic lesions at the site of injection. A single administration by gavage of 50 mg/kg did not increase survival time. The compound was not found to be mutagenic using in vitro micromethods for the Ames Salmonella typhimurium assay and the micronucleus assay using L5178Y mouse lymphoma cells.

  19. Electronic Cigarette: Role in the Primary Prevention of Oral Cavity Cancer.

    PubMed

    Franco, Teresa; Trapasso, Serena; Puzzo, Lidia; Allegra, Eugenia

    2016-01-01

    Cigarette smoke has been identified as the main cause of oral cavity carcinoma. Recently, the electronic cigarette, a battery-operated device, was developed to help smokers stop their tobacco addiction. This study aimed to evaluate the safety of electronic cigarettes and to establish the possible role of such device in the primary prevention of oral cavity cancer. This study included 65 subjects who were divided into three groups (smokers, e-cigarette smokers, and nonsmokers). All subjects were submitted to cytologic examination by scraping of oral mucosa. The slides were microscopically evaluated through a micronucleus assay test. The prevalence of micronuclei was significantly decreased in the e-cigarette smoker group. There were no statistically significant differences in micronuclei distribution according to the type of cigarette, gender, and age. The use of electronic cigarettes seems to be safe for oral cells and should be suggested as an aid to smoking cessation.

  20. Clastogenic and mitodepressive effects of the insecticide dichlorvos on root meristems of Vicia faba.

    PubMed

    Kontek, Renata; Osiecka, Regina; Kontek, Bodgan

    2007-01-01

    Plant bioassays are an important and integral part of the test battery used in detecting genotoxic/carcinogenic contamination in the environment. Highly sensitive biomonitoring of plant models have been developed, which enables the detection of hazards arising from pesticides, insecticides, industrial contamination, heavy metals and radiation. Root tips of Vicia faba ssp. minor were treated with 1-60 mM of the organophosphorus insecticide dichlorvos (DDVP) for 2 h, followed by a 20-h recovery period. Maleic acid hydrazide (MH) was used as a positive control for the mitotic index, micronucleus and chromosomal aberration assays performed on the Vicia model system. All treatments with DDVP significantly decreased the mitotic activity and increased the frequency of chromosomal aberrations at the metaphase. The frequency of micronuclei was significantly increased at DDVP concentrations starting from 10 mM. The results demonstrate clastogenic and mitodepressive effects of DDVP on Vicia faba cells.

Top