Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U
2015-06-01
A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.
Tomioka, K; Miyasako, Y; Umezaki, Y
2008-01-01
Drosophila shows bimodal circadian locomotor rhythms with peaks around light-on (morning peak) and before light-off (evening peak). The rhythm synchronizes to light and temperature cycles and the synchronization is achieved by two sets of clocks: one entrains to light cycles and the other to temperature cycles. The light-entrainable clock consists of the clock neurons located in the lateral protocerebrum (LNs) and the temperature-entrainable clock involves those located in the dorsal protocerebrum (DNs) and the cells located in the posterior lateral protocerebrum (LPNs). To understand the interaction between the light-entrainable and the temperature-entrainable clock neurons, locomotor rhythms of the mutant flies lacking PDF or PDF-positive clock neurons were examined. Under the light cycles, they showed altered phase of the evening peak. When exposed to temperature cycles of lower temperature levels, the onset of evening peak showed larger advance in contrast to those of wild-type flies. The termination of the peak also advanced while that of wild-type flies remained almost at the same phase as in the constant temperature. These results support our hypothesis that the PDF-positive light entrainable cells regulate the phase of the temperature entrainable cells to be synchronized to their own phase using PDF as a coupling mediator.
Pulse charging of lead-acid traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1980-01-01
Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Dikpati, Mausumi
2013-12-10
Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less
Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.
Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer
2017-11-06
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro.
Engelbrecht, Dewaldt; Coetzer, Thérèsa Louise
2016-12-01
The asexual erythrocytic cycle of the protozoan parasite Plasmodium falciparum is responsible for the pathogenesis of malaria and causes the overwhelming majority of malaria deaths. Rapidly increasing parasitaemia during this 48hour cycle threatens the survival of the human host and the parasite prior to transmission of the slow-maturing sexual stages to the mosquito host. The parasite may utilise regulated cell death (RCD) to control the burden of infection on the host and thus aid its own survival and transmission. The occurrence of RCD in P. falciparum remains a controversial topic. We provide strong evidence for the occurrence of an apoptosis-like phenotype of RCD in P. falciparum under conditions of high parasite density. P. falciparum was maintained in vitro and stressed by allowing growth to an unrestricted peak parasitaemia. Cell death markers, including morphological changes, DNA fragmentation, mitochondrial polarisation and phosphatidylserine externalisation were used to characterise parasite death at the time of peak parasitaemia and 24h later. At peak parasitaemia, mitochondrial depolarisation was observed, together with phosphatidylserine externalisation in both parasitised- and neighbouring non-infected erythrocytes. DNA fragmentation coincided with a decline in parasitaemia. Fewer merozoites were observed in mature schizonts at peak parasitaemia. Growth recovery to near-peak parasitaemia was noted within two intraerythrocytic cycles. The combination and chronological order of the biochemical markers of cell death suggest the occurrence of an apoptosis-like phenotype. The identification of a RCD pathway in P. falciparum may provide novel drug targets, particularly if the pathway differs from the host machinery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tane, Shoji; Ikenishi, Aiko; Okayama, Hitomi
2014-01-17
Highlights: •Expression of p21 and p27 in the hearts showed a peak during postnatal stages. •p21 and p27 bound to cyclin E, cyclin A and CDK2 in the hearts at postnatal stages. •Cardiomyocytes in both KO mice showed failure in the cell cycle exit at G1-phase. •These data show the first apparent phenotypes in the hearts of Cip/Kip KO mice. -- Abstract: Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remainsmore » largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21{sup Cip1} and p27{sup Kip1} but not p57{sup Kip2} showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21{sup Cip1} and p27{sup Kip1} bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21{sup Cip1} and p27{sup Kip1} knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21{sup Cip1} and p27{sup Kip} play important roles in the cell cycle exit of postnatal cardiomyocytes.« less
Kawasaki, M; Sasaki, K; Satoh, T; Kurose, A; Kamada, T; Furuya, T; Murakami, T; Todoroki, T
1997-01-01
We have demonstrated a method for the in situ determination of the cell cycle phases of TIG-7 fibroblasts using a laser scanning cytometer (LSC) which has not only a function equivalent to flow cytometry (FCM) but also has a capability unique in itself. LSC allows a more detailed analysis of the cell cycle in cells stained with propidium iodide (PI) than FCM. With LSC it is possible to discriminate between mitotic cells and G2 cells, between post-mitotic cells and G1 cells, and between quiescent cells and cycling cells in a PI fluorescence peak (chromatin condensation) vs. fluorescence value (DNA content) cytogram for cells stained with PI. These were amply confirmed by experiments using colcemid and adriamycin. We were able to identify at least six cell subpopulations for PI stained cells using LSC; namely G1, S, G2, M, postmitotic and quiescent cell populations. LSC analysis facilitates the monitoring of effects of drugs on the cell cycle.
Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.
2012-01-01
We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant. PMID:22740631
Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry
NASA Astrophysics Data System (ADS)
Shibagaki, Toshio; Merla, Yu; Offer, Gregory J.
2018-01-01
Diagnosing the state-of-health of lithium ion batteries in-operando is becoming increasingly important for multiple applications. We report the application of differential thermal voltammetry (DTV) to lithium iron phosphate (LFP) cells for the first time, and demonstrate that the technique is capable of diagnosing degradation in a similar way to incremental capacity analysis (ICA). DTV has the advantage of not requiring current and works for multiple cells in parallel, and is less sensitive to temperature introducing errors. Cells were aged by holding at 100% SOC or cycling at 1C charge, 6D discharge, both at an elevated temperature of 45 °C under forced air convection. Cells were periodically characterised, measuring capacity fade, resistance increase (power fade), and DTV fingerprints. The DTV results for both cells correlated well with both capacity and power, suggesting they could be used to diagnose SOH in-operando for both charge and discharge. The DTV peak-to-peak capacity correlated well with total capacity fade for the cycled cell, suggesting that it should be possible to estimate SOC and SOH from DTV for incomplete cycles within the voltage hysteresis region of an LFP cell.
Bjarnason, G A; Jordan, R C; Wood, P A; Li, Q; Lincoln, D W; Sothern, R B; Hrushesky, W J; Ben-David, Y
2001-05-01
We studied the relative RNA expression of clock genes throughout one 24-hour period in biopsies obtained from the oral mucosa and skin from eight healthy diurnally active male study participants. We found that the human clock genes hClock, hTim, hPer1, hCry1, and hBmal1 are expressed in oral mucosa and skin, with a circadian profile consistent with that found in the suprachiasmatic nuclei and the peripheral tissues of rodents. hPer1, hCry1, and hBmal1 have a rhythmic expression, peaking early in the morning, in late afternoon, and at night, respectively, whereas hClock and hTim are not rhythmic. This is the first human study to show a circadian profile of expression for all five clock genes as documented in rodents, suggesting their functional importance in man. In concurrent oral mucosa biopsies, thymidylate synthase enzyme activity, a marker for DNA synthesis, had a circadian variation with peak activity in early afternoon, coinciding with the timing of S phase in our previous study on cell-cycle timing in human oral mucosa. The major peak in hPer1 expression occurs at the same time of day as the peak in G(1) phase in oral mucosa, suggesting a possible link between the circadian clock and the mammalian cell cycle.
Shimada, Tomohiro; Tanaka, Kan
2016-10-01
Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
Retinal ganglion cell topography and spatial resolving power in penguins.
Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S
2012-01-01
Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule-associated protein 2. This suite of retinal specializations, which is also observed in the closely related procellariiform seabirds, affords the eyes of the little and king penguins panoramic surveillance of the horizon and motion detection in the frontal visual field. Copyright © 2012 S. Karger AG, Basel.
Galvanic high energy cells with molten salt electrolytes
NASA Astrophysics Data System (ADS)
Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.
1981-02-01
Engineering scale LiAl/LiCl Kcl/FeS electrochemical storage cells were developed for electric vehicle propulsion and peak current compensation. More than 300 deep cycles and 50 Whr/kg in 100 Ahr cells and up to 100 deep cycles and more than 80 Whr/kg in 200 Ahr cells were demonstrated. Separator development for LiAl/FeS cells was focused on ceramic powders. The aluminum nitride powder separator is promising for LiAl/FeS cells. The further development of these cells includes the enhancement of energy density and lifetime as well as ceramic powder separators.
Identification of Cell Cycle-regulated Genes in Fission YeastD⃞
Peng, Xu; Karuturi, R. Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua
2005-01-01
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found ∼140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC. PMID:15616197
Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L
2006-08-15
Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.
Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica
2017-01-01
Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.
Effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in root tip cells of Allium cepa.
Ng, W Y; Chao, C Y
1981-01-01
The effects of ginsenosides Rg1 and Rb1 of Panax ginseng on mitosis in the onion root tip cells as well as on the rate of DNA synthesis in onion seedlings were studied. Results obtained from the concentration and time course study in bulb and seeding root tip cells indicate that Rg1 promotes and Rb1 inhibits mitosis, both being dose-dependent. The promoting effect of Rg1 on the rate of DNA synthesis was observed at the peak hour which occurs at the same time as that of the control. Rb1 was found to shift the peak hour of DNA synthesis to a later period of the experiment. These results are in agreement with the results obtained from the study of the cell cycle by pulse labeling and autoradiography, which show that Rg1 shortens the mitotic cell cycle and S period while Rb1 lengthens them. They in turn increase and decrease the mitotic indices respectively.
Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).
Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I
2013-01-01
Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.
Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect
NASA Technical Reports Server (NTRS)
Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)
1994-01-01
Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.
NASA Astrophysics Data System (ADS)
Tarran, Glen A.; Bruun, John T.
2015-09-01
The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box-Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.
Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.
Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix
2014-07-15
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Test Results of a Ten Cell Bipolar Nickel-hydrogen Battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1984-01-01
A study was initiated to design and evaluate a new design concept for nickel-hydrogen cells. This concept involved constructing a battery in a bipolar stack with cells consisting of a one plate for each nickel and hydrogen electrode. Preliminary designs at the system level of this concept promised improvements in both volumetric and gravimetric energy densities, thermal management, life extension, costs, and peak power capability over more conventional designs. Test results were most encouraging. This preprototype battery, built with less than ideal components and hardware, exceeded expectations. A total of 2000 LEO cycles at 80 percent depth of discharge were accrued. A cycle life goal of 30,000 cycles appears achievable with minor design changes. These improvements include advanced technology nickel electrodes, insulated bipolar plates and specifically designed frames to minimize shunt currents. The discharge rate capability of this design exceeds 25C. At the 10C discharge rate, 80% of the battery capacity can be withdrawn in six minutes. This data shows that the bipolar design is well suited for those applications requiring high peak power pulses.
Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine
2012-04-01
This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Fukuda, Tatsuya; Fukuchi, Tomokazu; Yagi, Shinomi; Shiojiri, Nobuyoshi
2016-05-20
The liver has a remarkable regeneration capacity, and, after surgical removal of its mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its constituent cells. Although hepatocytes synchronously proliferate under the control of various signaling molecules from neighboring cells, there have been few detailed analyses on how biliary cells regenerate for their cell population after liver resection. The present study was undertaken to clarify how biliary cells regenerate after partial hepatectomy of mice through extensive analyses of their cell cycle progression and gene expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67 antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers, was immunohistochemically examined during liver regeneration, hepatocytes had a peak of the S phase and M phase at 48-72 h after resection. By contrast, biliary epithelial cells had much lower proliferative activity than that of hepatocytes, and their peak of the S phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR analyses of gene expression of biliary markers such as Spp1 (osteopontin), Epcam and Hnf1b demonstrated that they were upregulated during liver regeneration. Periportal hepatocytes expressed some of biliary markers, including Spp1 mRNA and protein. Some periportal hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells during development was upregulated during liver regeneration. Notch signaling may be involved in biliary regeneration.
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing
Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-01-01
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.
Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-04-23
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.
Rolland-Debord, Camille; Morelot-Panzini, Capucine; Similowski, Thomas; Duranti, Roberto; Laveneziana, Pierantonio
2017-12-01
Exercise induces release of cytokines and increase of circulating natural killers (NK) lymphocyte during strong activation of respiratory muscles. We hypothesised that non-fatiguing respiratory muscle loading during exercise causes an increase in NK cells and in metabolic stress indices. Heart rate (HR), ventilation (VE), oesophageal pressure (Pes), oxygen consumption (VO 2 ), dyspnoea and leg effort were measured in eight healthy humans (five men and three women, average age of 31 ± 4 years and body weight of 68 ± 10 kg), performing an incremental exercise testing on a cycle ergometer under control condition and expiratory flow limitation (FL) achieved by putting a Starling resistor. Blood samples were obtained at baseline, at peak of exercise and at iso-workload corresponding to that reached at the peak of FL exercise during control exercise. Diaphragmatic fatigue was evaluated by measuring the tension time index of the diaphragm. Respiratory muscle overloading caused an earlier interruption of exercise. Diaphragmatic fatigue did not occur in the two conditions. At peak of flow-limited exercise compared to iso-workload, HR, peak inspiratory and expiratory Pes, NK cells and norepinephrine were significantly higher. The number of NK cells was significantly related to ΔPes (i.e. difference between the most and the less negative Pes) and plasmatic catecholamines. Loading of respiratory muscles is able to cause an increase of NK cells provided that activation of respiratory muscles is intense enough to induce a significant metabolic stress.
Levels of Ycg1 Limit Condensin Function during the Cell Cycle
Arsenault, Heather E.; Benanti, Jennifer A.
2016-01-01
During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle. PMID:27463097
Role of estrogens in anterior pituitary gland remodeling during the estrous cycle.
Zárate, S; Zaldivar, V; Jaita, G; Magri, L; Radl, D; Pisera, D; Seilicovich, A
2010-01-01
In this review, we analyze the action of estrogens leading to the remodeling of the anterior pituitary gland, especially during the estrous cycle. Proliferation and death of anterior pituitary cells and especially lactotropes is regulated by estrogens, which act by sensitizing these cells to both mitotic and apoptotic stimuli such as TNF-alpha, FasL and dopamine. During the estrous cycle, the changing pattern of gonadal steroids is thought to modulate both cell proliferation and death in the anterior pituitary gland, estrogens being key players in cell turnover. The mechanisms involved in estrogen-modulated cell renewal in the anterior pituitary gland during the estrous cycle could include an increase in the expression of proapoptotic cytokines as well as the increase in the Bax/Bcl-2 ratio at proestrus, when estrogen levels are highest and a peak of apoptosis, in particular of lactotropes, is evident in this gland. Estrogens exert rapid antimitogenic and proapoptotic actions in the anterior pituitary through membrane-associated estrogen receptors, a mechanism that might also be involved in remodeling of this gland during the estrous cycle. Copyright (c) 2010 S. Karger AG, Basel.
Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W
2017-10-16
Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.
Casalino, Laura; Bakiri, Latifa; Talotta, Francesco; Weitzman, Jonathan B; Fusco, Alfredo; Yaniv, Moshe; Verde, Pasquale
2007-01-01
Fra-1 is frequently overexpressed in epithelial cancers and implicated in invasiveness. We previously showed that Fra-1 plays crucial roles in RAS transformation in rat thyroid cells and mouse fibroblasts. Here, we report a novel role for Fra-1 as a regulator of mitotic progression in RAS-transformed thyroid cells. Fra-1 expression and phosphorylation are regulated during the cell cycle, peaking at G2/M. Knockdown of Fra-1 caused a proliferative block and apoptosis. Although most Fra-1-knockdown cells accumulated in G2, a fraction of cells entering M-phase underwent abortive cell division and exhibited hallmarks of genomic instability (micronuclei, lagging chromosomes and anaphase bridges). Furthermore, we established a link between Fra-1 and the cell-cycle machinery by identifying cyclin A as a novel transcriptional target of Fra-1. During the cell cycle, Fra-1 was recruited to the cyclin A gene (ccna2) promoter, binding to previously unidentified AP-1 sites and the CRE. Fra-1 also induced the expression of JunB, which in turn interacts with the cyclin A promoter. Hence, Fra-1 induction is important in thyroid tumorigenesis, critically regulating cyclin expression and cell-cycle progression. PMID:17347653
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.
2005-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.
The DREAM complex: Master coordinator of cell cycle dependent gene expression
Sadasivam, Subhashini; DeCaprio, James A.
2014-01-01
Preface The dimerization partner (DP), retinoblastoma (RB)-like, E2F and MuvB (DREAM) complex provides a previously unsuspected unifying role in the cell cycle by directly linking p130, p107, E2F, BMYB and FOXM1. DREAM mediates gene repression during G0 and coordinates periodic gene expression with peaks during G1/S and G2/M. Perturbations in DREAM regulation shift the balance from quiescence towards proliferation and contribute to increased mitotic gene expression levels frequently observed in cancers with poor prognosis. PMID:23842645
Booth, Victoria; Poe, Gina R.
2005-01-01
In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during REM sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Poe et al., 2000). Changes in the theta drive between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (> 290 μm from the soma) invoked firing at hyperpolarizing theta troughs. The location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. PMID:16411243
Cycling to Maintain and Improve Fitness: Line-1 Modes of Nuclear Entrance and Retrotransposition.
Mita, Paolo; Boeke, Jef D
2018-04-01
The LINE-1/L1 retrotransposon is a transposable element still active in the human genome. Most retrotransposons in the genome are inactive or repressed by several host mechanisms. In specific contexts, active L1 retrotransposons may evade repression and copy themselves into new genomic loci. Despite a general knowledge of the L1 life cycle, little was known about the dynamics of L1 proteins and function during the different stages of the host cell cycle. Our work highlighted a well-orchestrated localization of L1 proteins and mRNA that take advantage of mitotic nuclear membrane breakdown. Once in the nucleus, L1 ribonucleoproteins (RNPs) are able to retrotranspose during the S phase when L1 retrotransposition peaks. Our conclusions highlight previously unappreciated features of the L1 life cycle, such as the differences between cytoplasmic and nuclear RNPs and the cycling of L1 ORF1 protein and L1 activity during progression through the cell cycle. These new observations are discussed here in light of the evolutionary arms race between L1 retrotransposons and the host cell.
Advanced fuel cell concepts for future NASA missions
NASA Technical Reports Server (NTRS)
Stedman, J. K.
1987-01-01
Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-01-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921
Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man
2016-03-01
Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.
The effects of DRIE operational parameters on vertically aligned micropillar arrays
NASA Astrophysics Data System (ADS)
Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An
2013-03-01
Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.
Kostanyan, Artak E; Erastov, Andrey A
2016-09-02
The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.
Aplin, J D; Seif, M W; Graham, R A; Hey, N A; Behzad, F; Campbell, S
1994-09-30
The cell surface mucin MUC-1 is present in endometrial epithelial cells and their associated apical glycocalyx and is also released into gland lumens as a secretory product. MUC-1 mRNA and core protein are found at low levels in the proliferative phase of the cycle, but their abundance increases after ovulation. Endometrial MUC-1 has been found to carry sialokeratan sulphate chains and these show a dramatically increased abundance in cells and secretions in the post-ovulatory phase of the cycle, reaching a maximum in secretions 6-7 days after the LH peak. The apical epithelium also contains adhesion receptor molecules of the integrin and CD44 families. MUC-1 is large and highly glycosylated and probably extends farther from the cell surface than these 'conventional' glycoprotein receptors. It has the potential to inhibit sterically receptor-mediated cell-cell adhesion. However, it is also possible that MUC-1 displays specific (e.g., glycan) recognition structures for the initial attachment of the blastocyst or that the embryo may create a specialised microenvironment in which to implant.
NASA Technical Reports Server (NTRS)
Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.
2000-01-01
Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.
Birthdating Studies Reshape Models for Pituitary Gland Cell Specification
Davis, Shannon W.; Mortensen, Amanda H.; Camper, Sally A.
2011-01-01
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke’s pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the post-natal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke’s pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke’s pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. PMID:21262217
Birthdating studies reshape models for pituitary gland cell specification.
Davis, Shannon W; Mortensen, Amanda H; Camper, Sally A
2011-04-15
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell-cell communication likely plays an important role in regulating this process. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; Almer, Jonathan D.; Okasinski, John S.; Braun, Paul V.; Dunand, David C.
2017-11-01
Volume changes associated with the (de)lithiation of a nanostructured Ni3Sn2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni3Sn2 anode material and its mechanically supporting Ni scaffold. Using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni3Sn2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiation (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni3Sn2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni3Sn2 is lower due to the lower (de)lithiation-induced contraction/expansion.
Birthdating of myenteric neuron subtypes in the small intestine of the mouse.
Bergner, Annette J; Stamp, Lincon A; Gonsalvez, David G; Allison, Margaret B; Olson, David P; Myers, Martin G; Anderson, Colin R; Young, Heather M
2014-02-15
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. Copyright © 2013 Wiley Periodicals, Inc.
Li, Wenfeng; Desmarets, Lowiese M B; De Gryse, Gaëtan M A; Theuns, Sebastiaan; Van Tuan, Vo; Van Thuong, Khuong; Bossier, Peter; Nauwynck, Hans J
2015-09-01
The replication cycle of white spot syndrome virus (WSSV) was investigated in secondary cell cultures from the lymphoid organ of Litopenaeus vannamei. The secondary cells formed a confluent monolayer at 24 h post-reseeding, and this monolayer could be maintained for 10 days with a viability of 90 %. Binding of WSSV to cells reached a maximum (73 ± 3 % of cells and 4.84 ± 0.2 virus particles per virus-binding cell) at 120 min at 4 °C. WSSV entered cells by endocytosis. The co-localization of WSSV and early endosomes was observed starting from 30 min post-inoculation (p.i.). Double indirect immunofluorescence staining showed that all cell-bound WSSV particles entered these cells in the period between 0 and 60 min p.i. and that the uncoating of WSSV occurred in the same period. After 1 h inoculation at 27 °C, the WSSV nucleocapsid protein VP664 and envelope protein VP28 started to be synthesized in the cytoplasm from 1 and 3 h p.i., and were transported into nuclei from 3 and 6 h p.i., respectively. The percentage of cells that were VP664- and VP28-positive in their nuclei peaked (50 ± 4 %) at 12 h p.i. Quantitative PCR showed that WSSV DNA started to be synthesized from 6 h p.i. In vivo titration of the supernatants showed that the progeny WSSV were released from 12 h p.i. and peaked at 18 h p.i. In conclusion, the secondary cell cultures from the lymphoid organ were proven to be ideal for examination of the replication cycle of WSSV.
Dual-cycle ergometry as an exercise modality during prebreathe with 100 percent oxygen
NASA Technical Reports Server (NTRS)
Heaps, Cristine L.; Fischer, Michele D.; Webb, James T.
1994-01-01
In an effort to reduce prebreathe time requirements prior to extravehicular activities and high-altitude flights, a combined arm and leg exercise task proposes to enhance denitrogenation by incorporation of both upper and lower body musculature at a moderately high work intensity during prebreathe with 100% oxygen. Preliminary findings indicated peak oxygen consumption (VO2peak) levels attained on the dual-cycle ergometer do not differ significantly from those levels attained on the treadmill. Eight male subjects were exercised to VO2peak using leg-only cycle ergometry and dual-cycle ergometry on separate days. Preliminary data during dual-cycle ergometry showed arm work equaling 30% of the leg workrate at each stage of the incremental test resulted in arm fatigue in several subjects and a reduced VO2peak compared to dual-cycle ergometry with arm work at 20%. Thus, the 20% workrate was used during the dual-cycle VO2peak trial. On a third experimental day, subjects performed a 10 minute exercise test at a workrate required to elicit 75% of VO2peak for each subject on the dual-cycle ergometer. Blood lactate response to the exercise was monitored as an objective measure of fatigue. Peak VO2 levels attained on the leg-only and the dual-cycle ergometry tasks were not significantly different. Blood lactate levels were significantly elevated following the dual-cycle ergometry at 75% VO2peak. However, lactate levels show the expected rate of decline during recovery and, as demonstrated in the literature, should return to baseline levels within 30 minutes following exercise cessation. Thus, dual-cycle ergometry at 75% VO2peak appears to be a valid exercise for use during prebreathe and should not contribute to fatigue during subsequent EVA's.
Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.
2013-01-01
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247
Life, performance and safety of Grace rechargeable lithium-titanium disulfide cells
NASA Astrophysics Data System (ADS)
Zuckerbrod, D.; Giovannoni, R. T.; Grossman, K. R.
The development of rechargeable Li-TiS2 cells is discussed. This proprietary process produces thin, flexible TiS2 cathodes with a life in excess of 500 cycles. TiS2 utilization of 93 percent is typically achieved at a C/5 discharge rate. A life of 200 cycles has been achieved for AA-size cells at a C/5 discharge rate and 60 cycles at the C rate. The practical energy density is 115 Wh/kg. Safety testing is underway. Vibration and high altitude did not cause venting. Crushing did not result in ignition or temperature rise. Forced overcharge and overdischarge did not result in skin temperatures above 40 C. The peak skin temperature during the short-circuit test was 120 C. Safety analyses point to the need for careful control of electrolyte volume and the benefits of a fusible separator. Grace is developing such a separator, which would shut down the electrochemical cell reaction at a temperature of 130 C.
In vivo and in vitro studies of MUC1 regulation in sheep endometrium.
Raheem, Kabir A; Marei, Waleed F A; Campbell, Bruce K; Fouladi-Nashta, Ali A
2016-06-01
In this study, we investigated the expression of mucin 1 (MUC1) mRNA and protein in sheep endometrium at different time points during follicular and luteal phases of estrous cycle, and also determined the effect of steroid hormone treatments and interferon tau (IFNτ) on MUC1 mRNA expression in endometrial cell culture in vitro. In experiment one, 15 Welsh mountain ewes were synchronized to a common estrus and killed at precise stages of estrous cycle corresponding to (1) pre-LH peak, (2) LH peak, (3) post-LH peak, (4) early luteal, and (5) mid-luteal. Reproductive tracts were harvested and mRNA was extracted from the endometrial tissues. Parts of the uterine horns were fixed for immunohistochemistry. In experiment two, mixed populations of ovine endometrial cells (from slaughterhouse material collected at the postovulatory stage of the estrous cycle) were cultured to 70% confluence before treatment with (1) progesterone (P4, 10 ng/mL, for 48 hours), (2) estradiol (E2, 100 pg/mL, for 48 hours), or with (3) E2 priming for 12 hours (100 pg/mL) followed by P4 (10 ng/mL) for 36 hours. These were compared with: (4) IFNτ (10 ng/mL, for 48 hours), and (5) basic medium (Dulbecco Modified Eagle Medium /F12) as control. The results showed that MUC1 mRNA and protein expression in sheep endometrium were highest during the midluteal stage and very low during the post-LH period compared with the other stages (P < 0.05). MUC1 immunostaining in the luminal epithelium was apically restricted and was not significantly different across all stages of estrous cycle except at the post-LH peak where it was significantly low. In cell culture, MUC1 mRNA expression was significantly upregulated by both steroids either singly or in combination (P < 0.05), and downregulated in the presence of IFNτ. In conclusion, endometrial MUC1 expression is cyclically regulated by both E2 and P4in vivo and in vitro, and directly downregulated by IFNτ treatment in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.
Hui, Kenrie Pui-Yan; Sit, Wai-Hung; Wan, Jennifer Man-Fan
2005-07-01
Activation of the cell death program (apoptosis) is a strategy for the treatment of human cancer, and unfortunately a large number of drugs identified as cell cycle-specific agents for killing cancer cells are also toxic to normal cells. The present study demonstrates that the polysaccharide peptide (PSP) extracted from the Chinese medicinal mushroom, Coriolus versicolor, used in combination therapy in China, has the ability to lower the cytotoxicity of certain anti-leukemic drugs via their interaction with cell cycle-dependent and apoptotic pathways. Flow cytometry analysis demonstrated that pre-treatment of PSP (25-100 microg/ml) dose-dependently enhanced the cell cycle perturbation and apoptotic activity of doxorubicin (Doxo) and etoposide (VP-16), but not cytarabine (Ara-C) in human promyelocytic leukemia HL-60 cells. The antagonistic result from combined treatment with Ara-C and PSP may be caused by the removal of HL-60 cells in the G1-S boundary by PSP before exposure to Ara-C. A negative correlation between the increase in apoptotic cell population (pre-G1 peak) with the S-phase cell population expression (R2=0.998), the expression of cyclin E expression (R2=0.872) and caspase 3 activity (R2=0.997) suggests that PSP enhanced the apoptotic machinery of Doxo and VP-16 in a cell cycle-dependent manner and is mediated, at least in part, by the PSP-mediated modulation of the regulatory checkpoint cyclin E and caspase 3. This study is the first to describe the cell cycle mechanistic action of PSP and its interaction with other anticancer agents. Our data support the potential development of PSP as an adjuvant for leukemia treatment, but also imply the importance of understanding its interaction with individual anticancer agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung
Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less
Glazer, Matthew P. B.; Wang, Junjie; Cho, Jiung; ...
2017-11-01
Volume changes associated with the (de)lithiation of a nanostructured Ni 3Sn 2 coated nickel inverse opal scaffold anode create mismatch stresses and strains between the Ni 3Sn 2 anode material and its mechanically supporting Ni scaffold. By using in operando synchrotron x-ray diffraction measurements, elastic strains in the Ni scaffold are determined during cyclic (dis)charging of the Ni 3Sn 2 anode. These strains are characterized using both the center position of the Ni diffraction peaks, to quantify the average strain, and the peak breadth, which describes the distribution of strain in the measured volume. Upon lithiation (half-cell discharging) or delithiationmore » (half-cell charging), compressive strains and peak breadth linearly increase or decrease, respectively, with charge. The evolution of the average strains and peak breadths suggests that some irreversible plastic deformation and/or delamination occurs during cycling, which can result in capacity fade in the anode. The strain behavior associated with cycling of the Ni 3Sn 2 anode is similar to that observed in recent studies on a Ni inverse-opal supported amorphous Si anode and demonstrates that the (de)lithiation-induced deformation and damage mechanisms are likely equivalent in both anodes, even though the magnitude of mismatch strain in the Ni 3Sn 2 is lower due to the lower (de)lithiation-induced contraction/expansion.« less
Ferraris, Jimena; Radl, Daniela Betiana; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Zaldivar, Verónica; Clapp, Carmen; Seilicovich, Adriana; Pisera, Daniel
2011-01-01
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.
Ferraris, Jimena; Radl, Daniela Betiana; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Zaldivar, Verónica; Clapp, Carmen; Seilicovich, Adriana; Pisera, Daniel
2011-01-01
The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal. PMID:21760910
Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona Jm; Murch, Susan J
2015-01-01
Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to "light on." The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The "dark" IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways.
Predicting Solar Cycle 24 Using a Geomagnetic Precursor Pair
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean
2014-01-01
We describe using Ap and F(10.7) as a geomagnetic-precursor pair to predict the amplitude of Solar Cycle 24. The precursor is created by using F(10.7) to remove the direct solar-activity component of Ap. Four peaks are seen in the precursor function during the decline of Solar Cycle 23. A recurrence index that is generated by a local correlation of Ap is then used to determine which peak is the correct precursor. The earliest peak is the most prominent but coincides with high levels of non-recurrent solar activity associated with the intense solar activity of October and November 2003. The second and third peaks coincide with some recurrent activity on the Sun and show that a weak cycle precursor closely following a period of strong solar activity may be difficult to resolve. A fourth peak, which appears in early 2008 and has recurrent activity similar to precursors of earlier solar cycles, appears to be the "true" precursor peak for Solar Cycle 24 and predicts the smallest amplitude for Solar Cycle 24. To determine the timing of peak activity it is noted that the average time between the precursor peak and the following maximum is approximately equal to 6.4 years. Hence, Solar Cycle 24 would peak during 2014. Several effects contribute to the smaller prediction when compared with other geomagnetic-precursor predictions. During Solar Cycle 23 the correlation between sunspot number and F(10.7) shows that F(10.7) is higher than the equivalent sunspot number over most of the cycle, implying that the sunspot number underestimates the solar-activity component described by F(10.7). During 2003 the correlation between aa and Ap shows that aa is 10 % higher than the value predicted from Ap, leading to an overestimate of the aa precursor for that year. However, the most important difference is the lack of recurrent activity in the first three peaks and the presence of significant recurrent activity in the fourth. While the prediction is for an amplitude of Solar Cycle 24 of 65 +/- 20 in smoothed sunspot number, a below-average amplitude for Solar Cycle 24, with maximum at 2014.5+/-0.5, we conclude that Solar Cycle 24 will be no stronger than average and could be much weaker than average.
Minshull, J; Golsteyn, R; Hill, C S; Hunt, T
1990-01-01
Cyclins play a key role in the induction of mitosis. In this paper we report the isolation of a cyclin A cDNA clone from Xenopus eggs. Its cognate mRNA encodes a protein that shows characteristic accumulation and destruction during mitotic cell cycles. The cyclin A polypeptide is associated with a protein that cross-reacts with an antibody against the conserved 'PSTAIR' epitope of p34cdc2, and the cyclin A-cdc2 complex exhibits protein kinase activity that oscillates with the cell cycle. This kinase activity rises more smoothly than that of the cyclin B-cdc2 complexes and reaches a peak earlier in the cell cycle; indeed, cyclin A is destroyed before nuclear envelope breakdown. None of the cyclin-cdc2 complexes show simple relationships between the concentration of the cyclin moiety and the kinase activity. All three cyclin associated kinases (A, B1 and B2) phosphorylate identical sites on histones with the consensus XSPXK/R, although they show significant differences in their substrate preferences. We discuss possible models for the different roles of the A- and B-type cyclins in the control of cell division. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:2143983
Barfod, I H; Barfod, N M
1980-01-01
A method for the evaluation of cell-production rates is described which combines flow cytometry (FCM) and the stathmokinetic method. By means of FCM it is possible to estimate the distribution of cells with G1, S and (G2 + M) DNA content in a population. As this method gives the relative (G2 + M) DNA content of cells within the cell cycle, it may be possible to evaluate cell-production rates by this technique. In the present study it was found that administration of a metaphase-arresting (stathmokinetic) agent, vincristine sulphate (VS), to asynchronous cell populations of three different murine tumour cell lines in vitro increased the peak representing cells with (G2 + M) DNA content as the number of mitotic (M) cells increased during the period of treatment. The accumulation of mitotic cells was determined by cell counts on smears under the microscope and compared with increase in the (G2 + M) DNA peak measured by FCM as a function of time after the administration of VS. Good agreement was obtained between the cell-production rates as estimated by FCM and by mitotic counts in all three cell lines investigated.
Priyadarsini, R Vidya; Murugan, R Senthil; Sripriya, P; Karunagaran, D; Nagini, S
2010-06-01
Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention in recent years owing to their potent antioxidant and anti-proliferative effects. The present study was designed to investigate the cellular and molecular mechanisms by which azadirachtin and nimbolide exert cytotoxic effects in the human cervical cancer (HeLa) cell line. Both azadirachtin and nimbolide significantly suppressed the viability of HeLa cells in a dose-dependent manner by inducing cell cycle arrest at G0/G1 phase accompanied by p53-dependent p21 accumulation and down-regulation of the cell cycle regulatory proteins cyclin B, cyclin D1 and PCNA. Characteristic changes in nuclear morphology, presence of a subdiploid peak and annexin-V staining pointed to apoptosis as the mode of cell death. Increased generation of reactive oxygen species with decline in the mitochondrial transmembrane potential and release of cytochrome c confirmed that the neem limonoids transduced the apoptotic signal via the mitochondrial pathway. Altered expression of the Bcl-2 family of proteins, inhibition of NF-kappaB activation and over-expression of caspases and survivin provide compelling evidence that azadirachtin and nimbolide induce a shift of balance toward a pro-apoptotic phenotype. Antioxidants such as azadirachtin and nimbolide that can simultaneously arrest the cell cycle and target multiple molecules involved in mitochondrial apoptosis offer immense potential as anti-cancer therapeutic drugs.
Design study of long-life PWR using thorium cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul
2012-06-06
Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less
2006-04-01
Schmidt, S. A., Clark, K. J. & Murray, A. W. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin - 43 in...hours later adherent and floating cells were collected and analyzed for cell cycle and apoptosis (hypodiploid peak) using flow cytometry of propidium...pathophysiology of ovarian cancer, provides a major opportunity to identify markers that could contribute to early diagnosis. We have demonstrated that the
Test results of a ten cell bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1983-01-01
A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low Earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes.
Coevolution can reverse predator–prey cycles
Cortez, Michael H.; Weitz, Joshua S.
2014-01-01
A hallmark of Lotka–Volterra models, and other ecological models of predator–prey interactions, is that in predator–prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator–prey coevolution can also drive population cycles where the opposite of canonical Lotka–Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage–cholera, mink–muskrat, and gyrfalcon–rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator–prey coevolution and reveal unique ways in which predator–prey coevolution can shape, and possibly reverse, community dynamics. PMID:24799689
Coevolution can reverse predator-prey cycles.
Cortez, Michael H; Weitz, Joshua S
2014-05-20
A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dynamics of natural systems, leading to novel dynamics including antiphase and cryptic cycles. Here, using an eco-coevolutionary model, we show that predator-prey coevolution can also drive population cycles where the opposite of canonical Lotka-Volterra oscillations occurs: predator peaks precede prey peaks. These reversed cycles arise when selection favors extreme phenotypes, predator offense is costly, and prey defense is effective against low-offense predators. We present multiple datasets from phage-cholera, mink-muskrat, and gyrfalcon-rock ptarmigan systems that exhibit reversed-peak ordering. Our results suggest that such cycles are a potential signature of predator-prey coevolution and reveal unique ways in which predator-prey coevolution can shape, and possibly reverse, community dynamics.
Changing On Diurnal Cycle Of Rainfall In Northern Coastal Of West Java
NASA Astrophysics Data System (ADS)
Yulihastin, E.; Hadi, T. W.; Ningsih, N. S.
2017-12-01
The floods event in the north of Java was largely due to persistent of rainfall that occurred in the morning which indicated of deviation of diurnal pattern of rainfall. The shift of the phase of diurnal rainfall cycle using TRMM satellite hourly data of 3B41RT on the rainy period of 2000-2016 exhibits over land from Late Afternoon-Early Midnight (LA-EM) to morning. The peak of the cycle changes from diurnal to semidiurnal with a peak occurring in LA-EM and morning. Location of rainfall which usually occurs in the oceans shifted into near coastal area. The classification of diurnal rainfall cycles based on composite analysis shows four types: Normal (N) Type (45.6%) with one peak rainfall occurring in the afternoon until night, Diurnal (D) Type (26%) with one peak and phase opposite to normal type, Semidiurnal (SD) Type (6.5 %) with two peaks and the main peak occurring in the afternoon until night, Third Diurnal (TD) Type (21.7%) with three peaks and the main peak occurs in the morning. The classification was confirmed using the objective method of Empirical Mode Decomposition (EMD) and obtained three IMFs representing three diurnal cycle modes of Type TD (67.8%) with the main rain peak taking place in the afternoon, Type D with rain peak occurring in the early hours (18.9%), and SD type (9.9%) with the first peak occurred in the afternoon. For D Type, the results also prove that the diurnal cycle with significant deviations in amplitude occurred in February 2002, 2004, 2008, 2014, wich is the maximum rainfall occurs in the EM. It also seems that in those years, rainfall intensity is concentrated on the northern coast of West Java while in the Java Sea rainfall was minimum.
Beilby, Mary J; Turi, Christina E; Baker, Teesha C; Tymm, Fiona JM; Murch, Susan J
2015-01-01
Giant-celled Characeae (Chara australis Brown), grown for 4 months on 12/12 hr day/night cycle and summer/autumn temperatures, exhibited distinct concentration maxima in auxin (indole-3-acetic acid; IAA), melatonin and serotonin about 4 hr after subjective daybreak. These concentration peaks persisted after 3 day pretreatment in continuous darkness: confirming a circadian rhythm, rather than a response to “light on.” The plants pretreated for 3 d in continuous light exhibited several large IAA concentration maxima throughout the 24 hr. The melatonin and serotonin concentrations decreased and were less synchronized with IAA. Chara plants grown on 9/15 hr day/night cycle for 4 months and winter/spring temperatures contained much smaller concentrations of IAA, melatonin and serotonin. The IAA concentration maxima were observed in subjective dark phase. Serotonin concentration peaks were weakly correlated with those of IAA. Melatonin concentration was low and mostly independent of circadian cycle. The “dark” IAA concentration peaks persisted in plants treated for 3 d in the dark. The plants pretreated for 3 d in the light again developed more IAA concentration peaks. In this case the concentration maxima in melatonin and serotonin became more synchronous with those in IAA. The abscisic acid (ABA) and jasmonic acid (JA) concentrations were also measured in plants on winter regime. The ABA concentration did not exhibit circadian pattern, while JA concentration peaks were out of phase with those of IAA. The data are discussed in terms of crosstalk between metabolic pathways. PMID:26382914
Evidence from thymidine-3H-labeled meristems of Vicia faba of two cell populations.
Webster, P L; Davidson, D
1968-11-01
Treatments with tritiated thymidine (TdR-(3)H) have revealed the existence of two populations of mitotically active cells in meristems of lateral roots of Vicia faba. A rapidly dividing population, with a cycle time of 14 hr, constitutes about half the cells in the meristem. A second population of cells, with a cycle time in excess of 30 hr, is also present. Estimates of the relative size of this slowly dividing population are more difficult to make, but we calculate that this population includes 27-43% of meristem cells. The remaining fraction of the meristem is made up of cells that divide rarely or not at all. Since, at all times, both populations contribute to the mitotic index, the curve of the percentage of labeled mitoses that can be determined after a pulse label with TdR-(3)H differs from the curve expected of an ideal population in an important way: the peak value of the curve of the percentage of labeled mitoses is always less than 100%, usually between 75 and 80%. This heterogeneity within a meristem must be borne in mind in terms of the response of meristems to disruptive treatments, the mechanisms controlling mitotic cycle duration, and the spatial organization of a heterogeneous population in an organ that shows polarized growth.
Advanced spacecraft fuel cell systems
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1972-01-01
The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.
Test results of a ten cell bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1983-01-01
A ten cell bipolar nickel hydrogen 6.5 ampere-hour battery demonstrated over 2000 low earth orbit cycles at an 80 percent depth-of-discharge. Charge/discharge cyclic ampere-hour and watt-hour efficiencies of 88 and 76 percent, respectively, observed. Peak power capability was determined at 1.1 kW. A 10C discharge rate yields 83 percent of the nominal stark capacity to the 1.0 volt cut off in just under 6 minutes. Previously announced in STAR as N83-26253
Conceptual design study of small long-life PWR based on thorium cycle fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul
2014-09-30
A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less
Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis
2015-11-01
In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.
Torque, power and muscle activation of eccentric and concentric isokinetic cycling.
Green, David J; Thomas, Kevin; Ross, Emma Z; Green, Steven C; Pringle, Jamie S M; Howatson, Glyn
2018-06-01
This study aimed to establish the effect of cycling mode and cadence on torque, external power output, and lower limb muscle activation during maximal, recumbent, isokinetic cycling. After familiarisation, twelve healthy males completed 6 × 10 s of maximal eccentric (ECC) and concentric (CON) cycling at 20, 40, 60, 80, 100, and 120 rpm with five minutes recovery. Vastus lateralis, medial gastrocnemius, rectus femoris, and biceps femoris surface electromyography was recorded throughout. As cadence increased, peak torque linearly decreased during ECC (350-248 N·m) and CON (239-117 N·m) and peak power increased in a parabolic manner. Crank angle at peak torque increased with cadence in CON (+13°) and decreased in ECC (-9.0°). At all cadences, peak torque (mean +129 N·m, range 111-143 N·m), and power (mean +871 W, range 181-1406 W), were greater during ECC compared to CON. For all recorded muscles the crank angle at peak muscle activation was greater during ECC compared to CON. This difference increased with cadence in all muscles except the vastus lateralis. Additionally, peak vastus laterallis and biceps femoris activation was greater during CON compared to ECC. Eccentric cycling offers a greater mechanical stimulus compared to concentric cycling but the effect of cadence is similar between modalities. Markers of technique (muscle activation, crank angle at peak activation and torque) were different between eccentric and concentric cycling and respond differently to changes in cadence. Such data should be considered when comparing between, and selecting cadences for, recumbent, isokinetic, eccentric and concentric cycling. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
LINE-1 protein localization and functional dynamics during the cell cycle
Wudzinska, Aleksandra; Sun, Xiaoji; Andrade, Joshua; Nayak, Shruti; Kahler, David J; Badri, Sana; LaCava, John; Ueberheide, Beatrix; Yun, Chi Y; Fenyö, David
2018-01-01
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology. However, a clear understanding of L1’s lifecycle and the processes involved in restricting its insertion and intragenomic spread remains elusive. Here we identify modes of L1 proteins’ entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition. PMID:29309036
Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten
2014-01-01
Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885
Benoit, Beatrice; He, Chun Hua; Zhang, Fan; Votruba, Sarah M; Tadros, Wael; Westwood, J Timothy; Smibert, Craig A; Lipshitz, Howard D; Theurkauf, William E
2009-03-01
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophila MBT is marked by blastoderm cellularization and follows 13 cleavage-stage divisions. The RNA-binding protein Smaug is required for cleavage-independent maternal transcript destruction during the Drosophila MZT. Here, we show that smaug mutants also disrupt syncytial blastoderm stage cell-cycle delays, DNA replication checkpoint activation, cellularization, and high-level zygotic expression of protein coding and micro RNA genes. We also show that Smaug protein levels increase through the cleavage divisions and peak when the checkpoint is activated and zygotic transcription initiates, and that transgenic expression of Smaug in an anterior-to-posterior gradient produces a concomitant gradient in the timing of maternal transcript destruction, cleavage cell cycle delays, zygotic gene transcription, cellularization and gastrulation. Smaug accumulation thus coordinates progression through the MZT.
Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis.
Chemineau, Philippe; Pellicer-Rubio, Maria-Theresa; Lassoued, Narjess; Khaldi, Gley; Monniaux, Danielle
2006-01-01
The existence of short ovulatory cycles (5-day duration) after the first male-induced ovulations in anovulatory ewes and goats, associated or not with the appearance of oestrous behaviour, is the origin of the two-peak abnormal distribution of parturitions after the "male effect". We propose here a working hypothesis to explain the presence of these short cycles. The male-effect is efficient during anoestrus, when follicles contain granulosa cells of lower quality than during the breeding season. They generate corpora lutea (CL) with a lower proportion of large luteal cells compared to small cells, which secrete less progesterone, compared to what is observed in the breeding season cycle. This is probably not sufficient to block prostaglandin synthesis in the endometrial cells of the uterus at the time when the responsiveness to prostaglandins of the new-formed CL is initiated and, in parallel, to centrally reduce LH pulsatility. This LH pulsatility stimulates a new wave of follicles secreting oestradiol which, in turn, stimulates prostaglandin synthesis and provokes luteolysis and new ovulation(s). The occurrence of a new follicular wave on days 3-4 of the first male-induced cycle and the initiation of the responsiveness to prostaglandins of the CL from day 3 of the oestrous cycle are probably the key elements which ensure such regularity in the duration of the short cycles. Exogenous progesterone injection suppresses short cycles, probably not by delaying ovulation time, but rather by blocking prostaglandin synthesis, thus impairing luteolysis. The existence, or not, of oestrous behaviour associated to these ovulatory events mainly varies with species: ewes, compared to does, require a more intense endogenous progesterone priming; only ovulations preceded by normal cycles are associated with oestrous behaviour. Thus, the precise and delicate mechanism underlying the existence of short ovulatory and oestrous cycles induced by the male effect appears to be dependent on the various levels of the hypothalamo-pituitary-ovario-uterine axis.
Frequency and peak stretch magnitude affect alveolar epithelial permeability.
Cohen, T S; Cavanaugh, K J; Margulies, S S
2008-10-01
The present study measured stretch-induced changes in transepithelial permeability to uncharged tracers (1.5-5.5 A) using cultured monolayers of alveolar epithelial type-I like cells. Cultured alveolar epithelial cells were subjected to uniform cyclic (0, 0.25 and 1.0 Hz) biaxial stretch from 0% to 12, 25 or 37% change in surface area (DeltaSA) for 1 h. Significant changes in permeability of cell monolayers were observed when stretched from 0% to 37% DeltaSA at all frequencies, and from 0% to 25% DeltaSA only at high frequency (1 Hz), but not at all when stretched from 0% to 12% DeltaSA compared with unstretched controls. At stretch oscillation amplitudes of 25 and 37% DeltaSA, imposed at 1 Hz, tracer permeability increased compared with that at 0.25 Hz. Cells subjected to a single stretch cycle at 37% DeltaSA (0.25 Hz), to simulate a deep sigh, were not distinguishable from unstretched controls. Reducing stretch oscillation amplitude while maintaining a peak stretch of 37% DeltaSA (0.25 Hz) via the application of a simulated post-end-expiratory pressure did not protect barrier properties. In conclusion, peak stretch magnitude and stretch frequency were the primary determining factors for epithelial barrier dysfunction, as opposed to oscillation amplitude.
THE MECHANISM OF 5-AMINOURACIL-INDUCED SYNCHRONY OF CELL DIVISION IN VI CIA FABA ROOT MERISTEMS
Prensky, Wolf; Smith, Harold H.
1965-01-01
Cessation of mitosis was brought about in Vicia faba roots incubated for 24 hours in the thymine analogue, 5-aminouracil. Recovery of mitotic activity began 8 hours after removal from 5-aminouracil and reached a peak at 15 hours. If colchicine was added 4 hours before the peak of mitoses, up to 80 per cent of all cells accumulated in mitotic division stages. By use of single and double labeling techniques, it was shown that synchrony of cell divisions resulted from depression in the rate of DNA synthesis by 5-aminouracil, which brought about an accumulation of cells in the S phase of the cell cycle. Treatment with 5-aminouracil may have also caused a delay in the rate of exit of cells from the G2 period. It appeared to have no effect on the duration of the G1 period. When roots were removed from 5-aminouracil, DNA synthesis resumed in all cells in the S phase. Although thymidine antagonized the effects of 5-aminouracil, an exogenous supply of it was not necessary for the resumption of DNA synthesis, as shown by incorporation studies with tritiated deoxycytidine. PMID:19866644
Electrofishing power requirements in relation to duty cycle
Miranda, L.E.; Dolan, C.R.
2004-01-01
Under controlled laboratory conditions we measured the electrical peak power required to immobilize (i.e., narcotize or tetanize) fish of various species and sizes with duty cycles (i.e., percentage of time a field is energized) ranging from 1.5% to 100%. Electrofishing effectiveness was closely associated with duty cycle. Duty cycles of 10-50% required the least peak power to immobilize fish; peak power requirements increased gradually above 50% duty cycle and sharply below 10%. Small duty cycles can increase field strength by making possible higher instantaneous peak voltages that allow the threshold power needed to immobilize fish to radiate farther away from the electrodes. Therefore, operating within the 10-50% range of duty cycles would allow a larger radius of immobilization action than operating with higher duty cycles. This 10-50% range of duty cycles also coincided with some of the highest margins of difference between the electrical power required to narcotize and that required to tetanize fish. This observation is worthy of note because proper use of duty cycle could help reduce the mortality associated with tetany documented by some authors. Although electrofishing with intermediate duty cycles can potentially increase effectiveness of electrofishing, our results suggest that immobilization response is not fully accounted for by duty cycle because of a potential interaction between pulse frequency and duration that requires further investigation.
MAP kinase dependent cyclinE/cdk2 activity promotes DNA replication in early sea urchin embryos
Kisielewska, J.; Philipova, R.; Huang, J.-Y.; Whitaker, M.
2009-01-01
Sea urchins provide an excellent model for studying cell cycle control mechanisms governing DNA replication in vivo. Fertilization and cell cycle progression are tightly coordinated by Ca2+ signals, but the mechanisms underlying the onset of DNA replication after fertilization remain less clear. In this study we demonstrate that calcium-dependent activation of ERK1 promotes accumulation of cyclinE/cdk2 into the male and female pronucleus and entry into first S-phase. We show that cdk2 activity rises quickly after fertilization to a maximum at 4 min, corresponding in timing to the early ERK1 activity peak. Abolishing MAP kinase activity after fertilization with MEK inhibitor, U0126, substantially reduces the early peak of cdk2 activity and prevents cyclinE and cdk2 accumulation in both sperm pronucleus and zygote nucleus in vivo. Both p27kip1 and roscovitine, cdk2 inhibitors, prevented DNA replication suggesting cdk2 involvement in this process in sea urchin. Inhibition of cdk2 activity using p27kip1 had no effect on the phosphorylation of MBP by ERK, but completely abolished phosphorylation of retinoblastoma protein, a cdk2 substrate, indicating that cdk2 activity is downstream of ERK1 activation. This pattern of regulation of DNA synthesis conforms to the pattern observed in mammalian somatic cells. PMID:19665013
Barnard, P.L.; Hubbard, D.M.; Dugan, J.E.
2012-01-01
A 17-year time series of near-daily sand thickness measurements at a single intertidal location was compared with 5. years of semi-annual 3-dimensional beach surveys at the same beach, and at two other beaches within the same littoral cell. The daily single point measurements correlated extremely well with the mean beach elevation and shoreline position of ten high-spatial resolution beach surveys. Correlations were statistically significant at all spatial scales, even for beach surveys 10s of kilometers downcoast, and therefore variability at the single point monitoring site was representative of regional coastal behavior, allowing us to examine nearly two decades of continuous coastal evolution. The annual cycle of beach oscillations dominated the signal, typical of this region, with additional, less intense spectral peaks associated with seasonal wave energy fluctuations (~. 45 to 90. days), as well as full lunar (~. 29. days) and semi-lunar (~. 13. days; spring-neap cycle) tidal cycles. Sand thickness variability was statistically linked to wave energy with a 2. month peak lag, as well as the average of the previous 7-8. months of wave energy. Longer term anomalies in sand thickness were also apparent on time scales up to 15. months. Our analyses suggest that spatially-limited morphological data sets can be extremely valuable (with robust validation) for understanding the details of beach response to wave energy over timescales that are not resolved by typical survey intervals, as well as the regional behavior of coastal systems. ?? 2011.
Gauthaman, Kalamegam; Fong, Chui-Yee; Bongso, Ariff
2010-03-01
The Rho associated coiled coil protein kinase (ROCK) dependent signaling pathway plays an important role in numerous physiological functions such as cell proliferation, adhesion, migration and inflammation. Human embryonic stem cells (hESCs) undergo differentiation and poor survival after single cell dissociation in culture thus limiting their expansion for cell based therapies. We evaluated the role of the selective ROCK inhibitor Y-27632 on hESC colonies and disassociated single hESCs from two different hESC lines. Karyotypically normal hESCs (HES3) and variant hESCs (BG01V) were treated with Y-27632 at 5, 10 and 20 muM concentrations for 72 h and its effects on hESC self renewal, colony morphology, cell cycle and pluripotency were evaluated. Increased cell proliferation of both HES3 and BG01V were observed for all three concentrations compared to untreated controls following passaging of cell clusters or dissociated single cells and some of these increases were statistically significant. Cell cycle assay demonstrated normal cell cycle progression with no peaks evident of apoptosis. No morphological differentiation was evident following treatment with the highest concentration of Y-27632 (20 muM) and the stemness related genes continued to be highly expressed in both HES3 and BG01V cells compared to untreated controls. The results confirmed that Y-27632 is a useful agent that aids in the expansion of undifferentiated hESC numbers for downstream applications in regenerative medicine.
EVIDENCE FROM THYMIDINE-3H-LABELED MERISTEMS OF VICIA FABA OF TWO CELL POPULATIONS
Webster, P. L.; Davidson, D.
1968-01-01
Treatments with tritiated thymidine (TdR-3H) have revealed the existence of two populations of mitotically active cells in meristems of lateral roots of Vicia faba. A rapidly dividing population, with a cycle time of 14 hr, constitutes about half the cells in the meristem. A second population of cells, with a cycle time in excess of 30 hr, is also present. Estimates of the relative size of this slowly dividing population are more difficult to make, but we calculate that this population includes 27–43% of meristem cells. The remaining fraction of the meristem is made up of cells that divide rarely or not at all. Since, at all times, both populations contribute to the mitotic index, the curve of the percentage of labeled mitoses that can be determined after a pulse label with TdR-3H differs from the curve expected of an ideal population in an important way: the peak value of the curve of the percentage of labeled mitoses is always less than 100%, usually between 75 and 80%. This heterogeneity within a meristem must be borne in mind in terms of the response of meristems to disruptive treatments, the mechanisms controlling mitotic cycle duration, and the spatial organization of a heterogeneous population in an organ that shows polarized growth. PMID:5677968
Transition to Double Mach Stem for Nuclear Explosion at 104 ft Height of Burst.
1981-11-17
P ROIS, 0 L BOOK UNCLASS II D NP.l--4630Mhhnnmmmnmhunm *uunummmummuuuu EllllIhllllllIIIIIIIII VA . L, BOK -- Wotk~ ~ ~ hit ftIlum Zsm Noe4be 01 NOV1...resolved on the mesh. By the time it occupies a region of 15 cells high and 35 cells wide, the peak pressures are in good agreement with the HE data and...2800 3220 2800 32 RADIUS- cm RADIUS -cm 35 1 kt AT 104 f t HOB TIME =5.47 nisec CYCLE= 5400 PRESSURE VELOC IT Y 350
Ulk4 Regulates Neural Stem Cell Pool.
Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing
2016-09-01
The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331. © 2016 AlphaMed Press.
INPP5E Preserves Genomic Stability through Regulation of Mitosis.
Sierra Potchanant, Elizabeth A; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz
2017-03-15
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development. Copyright © 2017 Sierra Potchanant et al.
Sonoporation of endothelial cells by vibrating targeted microbubbles.
Kooiman, Klazina; Foppen-Harteveld, Miranda; van der Steen, Antonius F W; de Jong, Nico
2011-08-25
Molecular imaging using ultrasound makes use of targeted microbubbles. In this study we investigated whether these microbubbles could also be used to induce sonoporation in endothelial cells. Lipid-coated microbubbles were targeted to CD31 and insonified at 1 MHz at low peak negative acoustic pressures at six sequences of 10 cycle sine-wave bursts. Vibration of the targeted microbubbles was recorded with the Brandaris-128 high-speed camera (~13 million frames per second). In total, 31 cells were studied that all had one microbubble (1.2-4.2 micron in diameter) attached per cell. After insonification at 80 kPa, 30% of the cells (n=6) had taken up propidium iodide, while this was 20% (n=1) at 120 kPa and 83% (n=5) at 200 kPa. Irrespective of the peak negative acoustic pressure, uptake of propidium iodide was observed when the relative vibration amplitude of targeted microbubbles was greater than 0.5. No relationship was found between the position of the microbubble on the cell and induction of sonoporation. This study shows that targeted microbubbles can also be used to induce sonoporation, thus making it possible to combine molecular imaging and drug delivery. Copyright © 2011 Elsevier B.V. All rights reserved.
Bacteria and fluorescent organic matter: processing and production.
NASA Astrophysics Data System (ADS)
Fox, B. G.; Thorn, R. M. S.; Reynolds, D. M.
2017-12-01
There is a need for a greater understanding of the importance of aquatic organic matter (OM) within global biogeochemical cycling. This need has prompted characterisation of OM using fluorescence spectroscopy. The origin, transformation and fate of fluorescent organic matter (FOM) is not fully understood within freshwater systems. This work demonstrates the importance of microbial processing in the creation and transformation of FOM, highlighting the dynamics of microbial-FOM interactions, using a model system. The FOM signature of different bacterial species common to surface freshwaters were analysed using a non-fluorescent media; Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. By undertaking bacterial growth curves, alongside fluorescence spectroscopy, we have been able to determine FOM development in relation to population growth. Within this, we have identified that FOM peaks are associated with different species and driven by bacterial processes, such as cell multiplication or as metabolic by-products. The intracellular and extracellular fluorescence signature of each species has also been analysed to better understand how the microbial community structure may impact the FOM signal in aquatic systems. For example, Peak T develops within the growth curves of all the cultured species and has been identified as both intracellular and extracellular FOM. Whilst Peak T has been termed `microbially-derived' previously, other fluorescence peaks associated with terrestrial high molecular weight compounds, e.g. Peak C, have also been shown to be produced by bacteria throughout growth stages. Additionally, the notion that cell lysis is responsible for the presence of larger FOM compounds was also explored. Our work highlights the capacity of bacteria to not only utilise and process OM but to actively be a source of both labile and recalcitrant OM in situ. The bacteria fluorescence signatures seen are complex with comparable fluorescence peaks to those seen in real-world freshwaters. Interestingly, this includes a range of FOM currently considered high molecular weight compounds attributed to terrestrial origin. The role of bacterial processing in aquatic systems may prove to have a wider impact on DOM transformation along the hydrological continuum and global biogeochemical cycling.
Valent, Linda J M; Dallmeijer, Annet J; Houdijk, Han; Slootman, Hans J; Janssen, Thomas W; Post, Marcel W M; van der Woude, Lucas H
2009-10-01
Regular physical activity is important for people with tetraplegia to maintain fitness but may not always be easily integrated into daily life. In many countries, hand cycling has become a serious option for daily mobility in people with tetraplegia. However, little information exists regarding the suitability of this exercise mode for this population. The purpose of this study was to evaluate the effects of a structured hand cycle training program in individuals with chronic tetraplegia. Pretraining and posttraining outcome measurements of physical capacity were compared. Structured hand cycle interval training was conducted at home or in a rehabilitation center in the Netherlands. Twenty-two patients with tetraplegia (American Spinal Injury Association Impairment Scale classification A-D) at least 2 years since injury participated. The intervention was an 8- to 12-week hand cycle interval training program. Primary outcomes of physical capacity were: peak power output (POpeak) and peak oxygen uptake (Vo(2)peak), as determined in hand cycle peak exercise tests on a motor-driven treadmill. Secondary outcome measures were: peak muscle strength (force-generating capacity) of the upper extremities (as assessed by handheld dynamometry), respiratory function (forced vital capacity and peak expiratory flow) and participant-reported shoulder pain. Significant improvements following a mean of 19 (SD=3) sessions of hand cycle training were found in POpeak (from 42.5 W [SD=21.9] to 50.8 W [SD=25.4]), Vo(2)peak (from 1.32 L.min(-1) [SD=0.40] to 1.43 L.min(-1) [SD=0.43]), and mechanical efficiency, as reflected by a decrease in submaximal oxygen uptake. Except for shoulder abduction strength, no significant effects were found on the secondary outcomes. Common health complications, such as urinary tract infections, bowel problems, and pressure sores, led to dropout and nonadherence. Patients with tetraplegia were able to improve their physical capacity through regular hand cycle interval training, without participant-reported shoulder-arm pain or discomfort.
Arm and Intensity-Matched Leg Exercise Induce Similar Inflammatory Responses.
Leicht, Christof A; Paulson, Thomas A W; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2016-06-01
The amount of active muscle mass can influence the acute inflammatory response to exercise, associated with reduced risk for chronic disease. This may affect those restricted to upper body exercise, for example, due to injury or disability. The purpose of this study was to compare the inflammatory responses for arm exercise and intensity-matched leg exercise. Twelve male individuals performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak A) and cycling (V˙O2peak C): 1) arm cranking exercise at 60% V˙O2peak A, 2) moderate cycling at 60% V˙O2peak C, and 3) easy cycling at 60% V˙O2peak A. Cytokine, adrenaline, and flow cytometric analysis of monocyte subsets were performed before and up to 4 h postexercise. Plasma IL-6 increased from resting concentrations in all trials; however, postexercise concentrations were higher for arm exercise (1.73 ± 1.04 pg·mL) and moderate cycling (1.73 ± 0.95 pg·mL) compared with easy cycling (0.87 ± 0.41 pg·mL; P < 0.04). Similarly, the plasma IL-1ra concentration in the recovery period was higher for arm exercise (325 ± 139 pg·mL) and moderate cycling (316 ± 128 pg·mL) when compared with easy cycling (245 ± 77 pg·mL, P < 0.04). Arm exercise and moderate cycling induced larger increases in monocyte numbers and larger increases of the classical monocyte subset in the recovery period than easy cycling (P < 0.05). The postexercise adrenaline concentration was lowest for easy cycling (P = 0.04). Arm exercise and cycling at the same relative exercise intensity induces a comparable acute inflammatory response; however, cycling at the same absolute oxygen uptake as arm exercise results in a blunted cytokine, monocyte, and adrenaline response. Relative exercise intensity appears to be more important to the acute inflammatory response than modality, which is of major relevance for populations restricted to upper body exercise.
Protein tyrosine phosphatase, PTP1B, expression and activity in rat corneal endothelial cells
Harris, Deshea L.
2007-01-01
Purpose The current studies were conducted to determine whether the protein tyrosine phosphatase, PTP1B, plays a role in regulating epidermal growth factor receptor (EGFR) Tyr992 phosphorylation and cell cycle entry in rat corneal endothelial cells. Methods Corneas were obtained from male Sprague-Dawley rats. PTP1B mRNA and protein expression were compared in confluent and subconfluent cells by RT-PCR and western blots. Immunocytochemistry was used to determine the subcellular localization of both PTP1B and EGFR following epidermal growth factor (EGF) stimulation. Western blots were used to analyze the time-dependent effect of EGF on phosphorylation of EGFR Tyr992 plus or minus CinnGEL 2Me, an inhibitor of PTP1B activity. The effect of PTP1B inhibition on cell cycle entry was determined by calculating the percent of Ki67-positive cells following EGF treatment. Results PTP1B mRNA expression was similar in confluent and subconfluent cells, but PTP1B protein was expressed at 3 fold higher levels in subconfluent cells. Positive staining for PTP1B was localized in vesicular structures below the plasma membrane. EGFR staining was located at cell-cell borders in untreated endothelium, but was mainly cytoplasmic by 15 min after EGF treatment. In control cultures, phosphorylation of EGFR Tyr992 peaked by 5 min following EGF stimulation and rapidly decreased to basal levels by 30 min. In cultures pretreated with CinnGEL 2Me, Tyr992 phosphorylation peaked 2 min following EGF addition and was consistently sustained at a higher level than controls until 60 min after treatment. By 18 h following EGF treatment, cultures pretreated with CinnGEL 2Me exhibited a 1.7 fold increase in the number of Ki67-positive cells compared with control cultures. Conclusions Comparison of PTP1B mRNA and protein levels indicates that PTP1B expression is regulated mainly at the protein level and is higher in subconfluent cells. PTP1B was located in vesicles below the plasma membrane. The fact that EGFR is internalized in response to EGF stimulation suggests that it could interact with and be regulated by PTP1B. The ability of PTP1B inhibitor to sustain EGFR Tyr992 phosphorylation and increase the number of Ki67-positive cells indicates that PTP1B plays a role in the negative regulation of EGF-induced signaling and helps suppress cell cycle entry. PMID:17563729
Motl, Robert W; Fernhall, Bo
2012-03-01
To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events
NASA Astrophysics Data System (ADS)
Suriano, Z. J.; Leathers, D. J.
2017-12-01
In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.
How active was solar cycle 22?
NASA Technical Reports Server (NTRS)
Hoegy, W. R.; Pesnell, W. D.; Woods, T. N.; Rottman, G. J.
1993-01-01
Solar EUV observations from the Langmuir probe on Pioneer Venus Orbiter suggest that at EUV wavelengths solar cycle 22 was more active than solar cycle 21. The Langmuir probe, acting as a photodiode, measured the integrated solar EUV flux over a 13 1/2 year period from January 1979 to June 1992, the longest continuous solar EUV measurement. The Ipe EUV flux correlated very well with the SME measurement of L-alpha during the lifetime of SME and with the UARS SOLSTICE L-alpha from October 1991 to June 1992 when the Ipe measurement ceased. Starting with the peak of solar cycle 21, there was good general agreement of Ipe EUV with the 10.7 cm, Ca K, and He 10830 solar indices, until the onset of solar cycle 22. From 1989 to the start of 1992, the 10.7 cm flux exhibited a broad maximum consisting of two peaks of nearly equal magnitude, whereas Ipe EUV exhibited a strong increase during this time period making the second peak significantly higher than the first. The only solar index that exhibits the same increase in solar activity as Ipe EUV and L-alpha during the cycle 22 peak is the total magnetic flux. The case for high activity during this peak is also supported by the presence of very high solar flare intensity.
Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn
2017-08-01
From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.
Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions
NASA Astrophysics Data System (ADS)
Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.
2018-04-01
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, K.I.; Bell, L.G.
1982-11-01
Autoradiography has been used to examine the migration of proteins from a radioactivity labelled amoeba nucleus following transplantation into an unlabelled homophasic amoeba. Nuclei were transferred at three times in the cell cycle coinciding with DNA synthesis (4 h post-division); a peak of RNA synthesis (25 h); and a relative lull in synthetic activity (43 h). Six amino acids were added individually to the culture medium to label the nuclear proteins. Migration of the proteins from the donor nucleui and least with proteins labelled with the basic amino acids. All amino acids exhibited the greatest extent of migration following themore » 25-h transfers, i.e., coinciding with a peak of RNA synthesis at 26-27.5 h. Actinomycin D (actD) inhibition of RNA synthesis reduced, but did not eliminate the extent of protein migration from the transplanted nucleus, thus indicating the existence of two classes of migratory proteins. Firstly, proteins, associated with RNA transport, which migrated mainly into the host cytoplasm. The second class migrated into the host nucleus from the transplanted nucleus, irrespective of RNA synthesis. The shuttling character of the latter class of proteins is consistent with a role of regulation of nuclear activity.« less
Chandavar, Vidya R; Naik, Prakash R
2008-06-01
The present investigation was carried out to know the seasonal variation in plasma glucose,insulin and glucagon cells during the reproductive cycle of untreated Melanochelys trijuga. Pancreatic endocrine cells were immunochemically localized.Insulin-immunoreactive (IR) cells occurred in groups of 3-20 and were in close apposition, while glucagon-IR cells were distributed individually between the exocrine pancreas or formed anastomosing cords where cells were not intimately attached. Whenever both IR cell types were present together forming an islet,insulin-IR cells formed clusters in the centre with glucagon-IR cells being scattered at the periphery. Glucagon-IR cells seemed to be secretory throughout the pancreas during the reproductive cycle,while insulin-IR cells were found to be pulsating in their secretion. Mean size of the islet was 1.306, 0.184 and 2.558 mm in the regenerative, reproductive and regressive periods,respectively. In general,insulin-IR cells measured 5.18 (mu)m and glucagon-IR cells 5.22 (mu)m in their longest axis. Invariably, glucagon-IR cells were more in number than insulin-IR cells. The fasting plasma glucose level was 69.97 mg% during the regenerative period, which increased to 97.96 mg% during the reproductive period,and reached a peak value of 113.52 mg% in the regressive period.
Imsirovic, Jasmin; Derricks, Kelsey; Buczek-Thomas, Jo Ann; Rich, Celeste B; Nugent, Matthew A; Suki, Béla
2013-01-01
A broad range of cells are subjected to irregular time varying mechanical stimuli within the body, particularly in the respiratory and circulatory systems. Mechanical stretch is an important factor in determining cell function; however, the effects of variable stretch remain unexplored. In order to investigate the effects of variable stretch, we designed, built and tested a uniaxial stretching device that can stretch three-dimensional tissue constructs while varying the strain amplitude from cycle to cycle. The device is the first to apply variable stretching signals to cells in tissues or three dimensional tissue constructs. Following device validation, we applied 20% uniaxial strain to Gelfoam samples seeded with neonatal rat lung fibroblasts with different levels of variability (0%, 25%, 50% and 75%). RT-PCR was then performed to measure the effects of variable stretch on key molecules involved in cell-matrix interactions including: collagen 1α, lysyl oxidase, α-actin, β1 integrin, β3 integrin, syndecan-4, and vascular endothelial growth factor-A. Adding variability to the stretching signal upregulated, downregulated or had no effect on mRNA production depending on the molecule and the amount of variability. In particular, syndecan-4 showed a statistically significant peak at 25% variability, suggesting that an optimal variability of strain may exist for production of this molecule. We conclude that cycle-by-cycle variability in strain influences the expression of molecules related to cell-matrix interactions and hence may be used to selectively tune the composition of tissue constructs.
NASA Astrophysics Data System (ADS)
Chu, Fuqiang; Li, Xingxing; Yuan, Wensen; Zhu, Huanhuan; Qin, Yong; Zhang, Shuai; Yuan, Ningyi; Lin, Bencai; Ding, Jianning
Catalysts are a key component of polymer electrolyte membrane fuel cells (PEMFCs). In this work, nitrogen-doped three-dimensional graphene-supported platinum (Pt-3DNG) catalysts are successfully prepared and characterized. SEM and TEM images show the Pt nanoparticles are uniformly dispersed in the sheets of nitrogen-doped 3DNG. Compared with that of the commercial Pt/C catalysts, Pt-3DNG show much better oxygen reduction reaction (ORR) activity and cycling stability, and the reduction in limit current density after 1000 cycles is only about 1.6% for the Pt-3DNG catalysts, whereas 7.2% for the commercial Pt/C catalysts. The single cell using Pt-3DNG catalysts in both the anode and the cathode show a higher peak power density (21.47mW cm-2) than that using commercial Pt/C catalysts (20.17mW cm-2) under the same conditions. These properties make this type of catalyst suitable for the application in PEMFCs.
Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin's lymphomas.
Stokke, T.; Holte, H.; Smedshammer, L.; Smeland, E. B.; Kaalhus, O.; Steen, H. B.
1998-01-01
We have examined apoptosis and proliferation in lymph node cell suspensions from patients with B-cell non-Hodgkin's lymphoma using flow cytometry. A method was developed which allowed estimation of the fractions of apoptotic cells and cells in the S-phase of the cell cycle simultaneously with tumour-characteristic light chain expression. Analysis of the tumour S-phase fraction and the tumour apoptotic fraction in lymph node cell suspensions from 95 B-cell non-Hodgkin's lymphoma (NHL) patients revealed a non-normal distribution for both parameters. The median fraction of apoptotic tumour cells was 1.1% (25 percentiles 0.5%, 2.7%). In the same samples, the median fraction of apoptotic normal cells was higher than for the tumour cells (1.9%; 25 percentiles 0.7%, 4.0%; P = 0.03). The median fraction of tumour cells in S-phase was 1.4% (25 percentiles 0.8%, 4.8%), the median fraction of normal cells in S-phase was significantly lower than for the tumour cells (1.0%; 25 percentiles 0.6%, 1.9%; P = 0.004). When the number of cases was plotted against the logarithm of the S-phase fraction of the tumour cells, a distribution with two Gaussian peaks was needed to fit the data. One peak was centred around an S-phase fraction of 0.9%; the other was centred around 7%. These peaks were separated by a valley at approximately 3%, indicating that the S-phase fraction in NHL can be classified as 'low' (< 3%) or 'high' (> 3%), independent of the median S-phase fraction. The apoptotic fractions were log-normally distributed. The median apoptotic fraction was higher (1.5%) in the 'high' S-phase group than in the 'low' S-phase group (0.8%; P = 0.02). However, there was no significant correlation between the two parameters (P > 0.05). PMID:9667654
NASA Astrophysics Data System (ADS)
Lensky, N. G.; Lensky, I. M.; Peretz, A.; Gertman, I.; Tanny, J.; Assouline, S.
2018-01-01
Partitioning between the relative effects of the radiative and aerodynamic components of the atmospheric forcing on evaporation is challenging since diurnal distributions of wind speed and solar radiation typically overlap. The Dead Sea is located about a 100 km off the Eastern Mediterranean coast, where and the Mediterranean Sea breeze front reaches it after sunset. Therefore, in the Dead Sea the peaks of solar radiation and wind speed diurnal cycles in the Dead Sea are distinctly separated in time, offering a unique opportunity to distinguish between their relative impacts on evaporation. We present mid-summer eddy covariance and meteorological measurements of evaporation rate and surface energy fluxes over the Dead Sea. The evaporation rate is characterized by a clear diurnal cycle with a daytime peak, few hours after solar radiation peak, and a nighttime peak coincident with wind speed peak. Evaporation rate is minimum during sunrise and sunset. Measurements of evaporation rate from two other water bodies that are closer to the Mediterranean coast, Eshkol Reservoir, and Lake Kinneret, present a single afternoon peak, synchronous with the sea breeze. The inland diurnal evaporation rate cycle varies with the distance from the Mediterranean coast, following the propagation of sea breeze front: near the coast, wind speed, and radiation peaks are close and consequently a single daily evaporation peak appears in the afternoon; at the Dead Sea, about a 100 km inland, the sea breeze front arrives at sunset, resulting in a diurnal evaporation cycle characterized by a distinct double peak.
Rojas, Claudio A; Barros, Verônica A; Almeida-Santos, Selma M
2013-02-01
This study describes the male reproductive cycle of Sibynomorphus mikanii from southeastern Brazil considering macroscopic and microscopic variables. Spermatogenesis occurs during spring-summer (September-December) and spermiogenesis or maturation occurs in summer (December-February). The length and width of the kidney, the tubular diameter, and the epithelium height of the sexual segment of the kidney (SSK) are larger in summer-autumn (December-May). Histochemical reaction of the SSK [periodic acid-Schiff (PAS) and bromophenol blue (BB)] shows stronger results during summer-autumn, indicating an increase in the secretory activity of the granules. Testicular regression is observed in autumn and early winter (March-June) when a peak in the width of the ductus deferens occurs. The distal ductus deferens as well as the ampulla ductus deferentis exhibit secretory activities with positive reaction for PAS and BB. These results suggest that this secretion may nourish the spermatozoa while they are being stored in the ductus deferens. The increase in the Leydig cell nuclear diameter in association with SSK hypertrophy and the presence of sperm in the female indicate that the mating season occurs in autumn when testes begin to decrease their activity. The peak activity of Leydig cells and SSK exhibits an associated pattern with the mating season. However, spermatogenesis is dissociated of the copulation characterizing a complex reproductive cycle. At the individual level, S. mikanii males present a continuous cyclical reproductive pattern in the testes and kidneys (SSK), whereas at the populational level the reproductive pattern may be classified as seasonal semisynchronous. Copyright © 2012 Wiley Periodicals, Inc.
Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik
2009-06-01
Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.
Sonoporation as a cellular stress: induction of morphological repression and developmental delays.
Chen, Xian; Wan, Jennifer M F; Yu, Alfred C H
2013-06-01
For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Inhibin may be involved in negative feedback in the prairie dog (Cynomys ludovicianus).
Foreman, Darhl
2007-02-01
The changes in inhibin immunostaining in the gonads during the annual reproductive cycle of both sexes of the prairie dog are described. No inhibin immunostaining was found in primary or secondary follicles of the ovary. Theca and granulosa cells of preovulatory Graafian follicles found in January and February stained for inhibin. Corpora lutea of both pregnant and non-pregnant females stain more densely for inhibin than follicles. Inhibin staining is present in luteal cells for at least 4 months during regression, longer than detectable progesterone is secreted. Sertoli cells in the testes do not have inhibin immunostaining during recrudescence. These cells show light immunostain for inhibin during peak spermatogenic activity in January and February but stain more deeply during early regression of the testis. Stain is gradually lost in the next 4-5 months as the tubules close. Leydig cells and germ cells do not stain for inhibin at any stage of the annual cycle but interstitial cells and tunic cells stain during the breeding phase. The presence of immunochemical staining for inhibin in prairie dog gonads during regression suggests that inhibin is part of a negative feedback complex that includes progesterone in the female and testosterone or another androgen in the male. Negative feedback during regression may also cause gonadal inactivity.
Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, S.; Yi, Y., E-mail: suyeonoh@jnu.ac.kr
The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cyclesmore » and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.« less
Li, J; French, B A; Nan, L; Fu, P; French, S W
2005-06-01
The mechanism of the UAL cycle in the intragastric feeding model of alcoholic liver disease in the rat was investigated by administering dinitrophenol (DNP) with ethanol in the diet. The question was: is the rate of oxidative phosphorylation fluxuation essential for the cycle to occur? The question has been partially answered by showing that rotenone, which inhibits complex I, blocks the cycle by preventing the generation of NAD from NADH. This would inhibit ATP generation from complex I but would not affect oxidative phosphorylation by complex 2 and 3. Since the rate of O2 consumption is normal at the troughs of the cycle and decreases at the peaks of the cycle and the levels of ATP are reduced at the peaks of the cycle, it is likely that the rate of oxidative phosphorylation also cycles. Since 2-4 dinitrophenol (DNP) uncouples oxidative phosphorylation, it was anticipated that feeding it with ethanol would prevent the cycle from occurring. This proved to be the case. In addition, DNP caused energy wasting and prevented the increase in serum alanine aminotranspeptidase caused by ethanol feeding, probably by preventing the hypoxia which occurs at the peaks of the cycle.
Chromatin conformation in living cells: support for a zig-zag model of the 30 nm chromatin fiber
NASA Technical Reports Server (NTRS)
Rydberg, B.; Holley, W. R.; Mian, I. S.; Chatterjee, A.
1998-01-01
A new method was used to probe the conformation of chromatin in living mammalian cells. The method employs ionizing radiation and is based on the concept that such radiation induces correlated breaks in DNA strands that are in spatial proximity. Human dermal fibroblasts in G0 phase of the cell cycle and Chinese hamster ovary cells in mitosis were irradiated by X-rays or accelerated ions. Following lysis of the cells, DNA fragments induced by correlated breaks were end-labeled and separated according to size on denaturing polyacrylamide gels. A characteristic peak was obtained for a fragment size of 78 bases, which is the size that corresponds to one turn of DNA around the nucleosome. Additional peaks between 175 and 450 bases reflect the relative position of nearest-neighbor nucleosomes. Theoretical calculations that simulate the indirect and direct effect of radiation on DNA demonstrate that the fragment size distributions are closely related to the chromatin structure model used. Comparison of the experimental data with theoretical results support a zig-zag model of the chromatin fiber rather than a simple helical model. Thus, radiation-induced damage analysis can provide information on chromatin structure in the living cell. Copyright 1998 Academic Press.
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
Wing, Simon; Rider, Lisa G.; Johnson, Jay R.; ...
2015-05-15
Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
Wing, Simon; Rider, Lisa G; Johnson, Jay R; Miller, Federick W; Matteson, Eric L; Gabriel, Sherine E
2015-01-01
Objective To examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods We used data from patients with GCA (1950–2004) and RA (1955–2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results The correlation of GCA incidence with AL is highly significant: GCA incidence peaks 0–1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5–7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4–5 years. However, the RA incidence power spectrum main peak is broader (8–11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4–5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. The link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases. PMID:25979866
Do solar cycles influence giant cell arteritis and rheumatoid arthritis incidence?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wing, Simon; Rider, Lisa G.; Johnson, Jay R.
Our objective was to examine the influence of solar cycle and geomagnetic effects on the incidence of giant cell arteritis (GCA) and rheumatoid arthritis (RA). Methods: We used data from patients with GCA (1950-2004) and RA (1955-2007) obtained from population-based cohorts. Yearly trends in age-adjusted and sex-adjusted incidence were correlated with the F10.7 index (solar radiation at 10.7 cm wavelength, a proxy for the solar extreme ultraviolet radiation) and AL index (a proxy for the westward auroral electrojet and a measure of geomagnetic activity). Fourier analysis was performed on AL, F10.7, and GCA and RA incidence rates. Results: The correlationmore » of GCA incidence with AL is highly significant: GCA incidence peaks 0-1 year after the AL reaches its minimum (ie, auroral electrojet reaches a maximum). The correlation of RA incidence with AL is also highly significant. RA incidence rates are lowest 5-7 years after AL reaches maximum. AL, GCA and RA incidence power spectra are similar: they have a main peak (periodicity) at about 10 years and a minor peak at 4-5 years. However, the RA incidence power spectrum main peak is broader (8-11 years), which partly explains the lower correlation between RA onset and AL. The auroral electrojets may be linked to the decline of RA incidence more strongly than the onset of RA. The incidences of RA and GCA are aligned in geomagnetic latitude. Conclusions: AL and the incidences of GCA and RA all have a major periodicity of about 10 years and a secondary periodicity at 4-5 years. Geomagnetic activity may explain the temporal and spatial variations, including east-west skewness in geographic coordinates, in GCA and RA incidence, although the mechanism is unknown. Lastly, the link with solar, geospace and atmospheric parameters need to be investigated. These novel findings warrant examination in other populations and with other autoimmune diseases.« less
Effect of KOH concentration and anions on the performance of Ni-H2 battery positive plate
NASA Astrophysics Data System (ADS)
Vaidyanathan, H.; Robbins, Kathleen; Gopalakrishna, Rao M.
1995-04-01
The capacity and voltage behavior of electrochemically impregnated sintered nickel positive plates was examined by galavanostatic charging; and discharging in a flooded electrolyte cell. Three different concentrations of KOH (40 percent, 31 percent, and 26 percent) and 31 percent KOH containing dissolved nitrate, sulfate or silicate were investigated. The end of charge voltage at C/10 charge and at 10 C showed the following order: 40 percent KOH is greater than 31 percent KOH alone and in the presence of the anions greater than 26 percent KOE. The middischarge voltage at C/2 discharge was higher in 26 percent KOH, almost the same for 31 percent KOH with and without the added contaminants and much lower for 40 percent KOH. The plate capacity was marginally affected by cycling in all cases except for 40 percent KOH where the capacity declined after 1000 cycles at 80 percent DOD. At the end of cycling the plate tested in the presence of sulfate and silicate experienced measurable weight loss as a result of active material extrusion. Cyclic voltammetry of miniature electrodes in 31 percent KOH showed that the second oxidation peak that corresponds to the formation of a different phase of oxidized Ni has a lower peak current at -5 C compared to 25 C and oxygen evolution occurs a higher potential at -5 C. The reduction peak (discharge reaction) is more polarized at 25 C compared to -5 C. The presence of silicate alters the potentials only marginally. The implications of these results in plate treatment and low temperature operation are discussed.
Effect of KOH concentration and anions on the performance of Ni-H2 battery positive plate
NASA Technical Reports Server (NTRS)
Vaidyanathan, H.; Robbins, Kathleen; Gopalakrishna, Rao M.
1995-01-01
The capacity and voltage behavior of electrochemically impregnated sintered nickel positive plates was examined by galavanostatic charging; and discharging in a flooded electrolyte cell. Three different concentrations of KOH (40 percent, 31 percent, and 26 percent) and 31 percent KOH containing dissolved nitrate, sulfate or silicate were investigated. The end of charge voltage at C/10 charge and at 10 C showed the following order: 40 percent KOH is greater than 31 percent KOH alone and in the presence of the anions greater than 26 percent KOE. The middischarge voltage at C/2 discharge was higher in 26 percent KOH, almost the same for 31 percent KOH with and without the added contaminants and much lower for 40 percent KOH. The plate capacity was marginally affected by cycling in all cases except for 40 percent KOH where the capacity declined after 1000 cycles at 80 percent DOD. At the end of cycling the plate tested in the presence of sulfate and silicate experienced measurable weight loss as a result of active material extrusion. Cyclic voltammetry of miniature electrodes in 31 percent KOH showed that the second oxidation peak that corresponds to the formation of a different phase of oxidized Ni has a lower peak current at -5 C compared to 25 C and oxygen evolution occurs a higher potential at -5 C. The reduction peak (discharge reaction) is more polarized at 25 C compared to -5 C. The presence of silicate alters the potentials only marginally. The implications of these results in plate treatment and low temperature operation are discussed.
Smiles, William J; Conceição, Miguel S; Telles, Guilherme D; Chacon-Mikahil, Mara P T; Cavaglieri, Cláudia R; Vechin, Felipe C; Libardi, Cleiton A; Hawley, John A; Camera, Donny M
2017-02-01
Autophagy is an intracellular degradative system sensitive to hypoxia and exercise-induced perturbations to cellular bioenergetics. We determined the effects of low-intensity endurance-based exercise performed with blood-flow restriction (BFR) on cell signaling adaptive responses regulating autophagy and substrate metabolism in human skeletal muscle. In a randomized cross-over design, nine young, healthy but physically inactive males completed three experimental trials separated by 1 week of recovery consisting of either a resistance exercise bout (REX: 4 × 10 leg press repetitions, 70% 1-RM), endurance exercise (END: 30 min cycling, 70% VO 2peak ), or low-intensity cycling with BFR (15 min, 40% VO 2peak ). A resting muscle biopsy was obtained from the vastus lateralis 2 weeks prior to the first exercise trial and 3 h after each exercise bout. END increased ULK1 Ser757 phosphorylation above rest and BFR (~37 to 51%, P < 0.05). Following REX, there were significant elevations compared to rest (~348%) and BFR (~973%) for p38γ MAPK Thr180/Tyr182 phosphorylation (P < 0.05). Parkin content was lower following BFR cycling compared to REX (~20%, P < 0.05). There were no exercise-induced changes in select markers of autophagy following BFR. Genes implicated in substrate metabolism (HK2 and PDK4) were increased above rest (~143 to 338%) and BFR cycling (~212 to 517%) with END (P < 0.001). A single bout of low-intensity cycling with BFR is insufficient to induce intracellular "stress" responses (e.g., high rates of substrate turnover and local hypoxia) necessary to activate skeletal muscle autophagy signaling.
Wang, Zhong-Min; Lu, Jian; Zhang, Li-Yun; Lin, Xiao-Zhu; Chen, Ke-Min; Chen, Zhi-Jin; Liu, Fen-Ju; Yan, Fu-Hua; Teng, Gao-Jun; Mao, Ai-Wu
2015-01-01
AIM: To determine the mechanism of the radiation-induced biological effects of 125I seeds on pancreatic carcinoma cells in vitro. METHODS: SW1990 and PANC-1 pancreatic cancer cell lines were cultured in DMEM in a suitable environment. Gray’s model of iodine-125 (125I) seed irradiation was used. In vitro, exponential phase SW1990, and PANC-1 cells were exposed to 0, 2, 4, 6, and 8 Gy using 125I radioactive seeds, with an initial dose rate of 12.13 cGy/h. A clonogenic survival experiment was performed to observe the ability of the cells to maintain their clonogenic capacity and to form colonies. Cell-cycle and apoptosis analyses were conducted to detect the apoptosis percentage in the SW1990 and PANC-1 cells. DNA synthesis was measured via a tritiated thymidine (3H-TdR) incorporation experiment. After continuous low-dose-rate irradiation with 125I radioactive seeds, the survival fractions at 2 Gy (SF2), percentage apoptosis, and cell cycle phases of the SW1990 and PANC-1 pancreatic cancer cell lines were calculated and compared. RESULTS: The survival fractions of the PANC-1 and SW1990 cells irradiated with 125I seeds decreased exponentially as the dose increased. No significant difference in SF2 was observed between SW1990 and PANC-1 cells (0.766 ± 0.063 vs 0.729 ± 0.045, P < 0.05). The 125I seeds induced a higher percentage of apoptosis than that observed in the control in both the SW1990 and PANC-1 cells. The rate of apoptosis increased with increasing radiation dosage. The percentage of apoptosis was slightly higher in the SW1990 cells than in the PANC-1 cells. Dose-dependent G2/M cell-cycle arrest was observed after 125I seed irradiation, with a peak value at 6 Gy. As the dose increased, the percentage of G2/M cell cycle arrest increased in both cell lines, whereas the rate of DNA incorporation decreased. In the 3H-TdR incorporation experiment, the dosimetry results of both the SW1990 and PANC-1 cells decreased as the radiation dose increased, with a minimum at 6 Gy. There were no significant differences in the dosimetry results of the two cell lines when they were exposed to the same dose of radiation. CONCLUSION: The pancreatic cancer cell-killing effects induced by 125I radioactive seeds mainly occurred via apoptosis and G2/M cell cycle arrest. PMID:25741139
Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M
2010-10-22
Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.
Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.
Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2017-08-01
Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.
Steinman, K J; O'Brien, J K; Monfort, S L; Robeck, T R
2012-02-01
Recent, successful application of assisted reproductive technologies in captive beluga has resulted from the extensive study of male beluga reproductive biology. Optimization of assisted reproduction requires additional detailed knowledge of the female estrous cycle. Our specific objectives were to: (1) validate urinary immunoassays for use in this species; (2) elucidate annual ovarian cycle dynamics through the combined use of hormone excretion patterns and transabdominal ultrasound; and (3) establish whether ovulation in this species is spontaneous or induced by male factors. Ovulation was observed in four of 15 estrous cycles monitored in four adult female beluga maintained in a single-sex group. After introduction of a breeding male, ovulation was observed in six of seven estrous cycles. All estrous cycles occurred from March through June. For spontaneous ovulations (n=4), the inter-estrous interval was 34d (range 33-35d), with a follicular phase length (FPL) of 25±8d (mean±SD). For all ovulatory estrous cycles (with and without a breeding male), urinary estrogen conjugates (EC, 15.3±7.9ng/mg Cr) and ovulatory luteinizing hormone (ovLH, 17.1±6.6ng/mg Cr) concentrations both peaked on Day 0, and EC concentrations returned to baseline 8±7d later. For non-conceptive cycles, urinary progestagen (Pg) concentrations increased on Day 0 (3.5±1.7ng/mg Cr), peaked on Day+19 (19.7±17.1ng/mg Cr), and were elevated above baseline for 27±4d. Preovulatory follicular diameter and circumference on Day -2±2 (range: Day -4 to -1) from peak EC were 2.5±0.7 and 7.8±1.3cm, respectively. The FPL in non-ovulatory estrous cycles (n=11) lasted 24±10d and EC concentrations gradually declined to baseline over a 21±10d interval following the EC peak (27.8±28.8ng/mg Cr). Non-ovulatory estrous cycles were characterized by the absence of an ovLH surge and no concomitant increase in Pg concentrations above baseline excretion; the mean follicular diameter at or near peak EC was 3.1±0.8cm on Day 2 ±3d from peak EC (range: -1 to +5days from peak EC). Overall, these data confirm that captive beluga exhibit reproductive seasonality and demonstrate that the species is a facultative-induced ovulator. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Walther, A.; Jeong, J.-H.; Chen, D.
2009-04-01
Rainfall events exhibit diurnal cycle in both frequency and amount, of which phase and amplitude show substantial geographic and seasonal variation. Although the diurnal cycle of precipitation is one of the fundamental characteristics to determine local weather and climate, most of sophisticated climate models still have great deficiencies in reproducing it. Thus more exact understanding of the diurnal precipitation cycle and its mechanisms is thought to be very important to improve climate models and their prediction results. In this work we investigate the diurnal cycle of precipitation in Sweden using ground based hourly observations for 1996-2008. For the precipitation amount and frequency, mean diurnal cycles are computed, and the peak timing and amplitude of the diurnal and semi-diurnal cycle of precipitation are estimated by the harmonic analysis method. Clear mean diurnal precipitation cycles as well as distinct spatial patterns for all seasons are derived. In summer, showing the most distinct pattern, the majority of the stations show a clear rainfall maximum in the afternoon (12-18 LST) except for the coastal part of Central Sweden where we see an early-morning peak (00-06 LST) and the east coast of southern Sweden where we find a morning peak (06-12 LST). The clear afternoon peak may be due to high insolation accumulated during the day time in summer leading to a local convection activity later on that day. These coastal bands mostly consist of the stations closest to the Baltic Sea. Meso-scale convection connected to temperature differences between sea and land combined with a favorable wind pattern seems to play a role here. In the transition seasons, spring and autumn, the amplitude is weaker and the spatial pattern of peak timing is less distinct than in summer. In spring the westcoast stations have a morning peak and stations in southeastern Sweden show an afternoon peak. In autumn we see a zonal division with a clear afternoon peak in southern Sweden. This might be due to a steeply decreasing energy input from the solar insolation in the northern parts causing less convection activity but still enough insolation to cause an afternoon peak in southern Sweden. In both seasons, spring and autumn, north of 60 degrees the pattern is mixed showing early-morning, morning and afternoon peaks. The winter pattern is characterized by afternoon peaks along the eastcoast and central South Sweden and morning peaks over the most of the other parts of the country. However, the amplitude of the diurnal cycle is much weaker compared to that in summer or autumn. In order to examine the large scale circulation which might modulate the diurnal cycle, the Lamb weather types are computed based on sea level pressure fields from the NCEP/NCAR reanalysis 2 dataset with daily and 6-hourly resolution, respectively. The Lamb types based on 6-hourly SLP underline the high temporal variability of atmospheric conditions over the research area. Throughout all seasons, on about 45% of the days two or more circulation classes are different. In 6.3% (JJA) to 8.4% (DJF) of the days can observe 4 different Lamb classes. Using Lamb types with 6-hourly resolution leads to a somewhat finer classification. On average, for about one third of the days with precipitation the daily Lamb type and the appropriate 6-hourly one are different. The most frequent large-scale circulation classes coupled to precipitation events are of cyclonic or directional type. The atmospheric circulation patterns do not follow a diurnal cycle, whereas the local observed precipitation does. Knowledge about the timing of the rainfall is important in order to assign the right underlying circulation patterns to precipitation events.
NUCLEIC ACID AND PROTEIN METABOLISM DURING THE MITOTIC CYCLE IN VICIA FABA
Woodard, John; Rasch, Ellen; Swift, Hewson
1961-01-01
In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. PMID:13786522
Fritz, Rani; Jindal, Sangita; Feil, Heather; Buyuk, Erkan
2017-12-01
The aim of this study is to evaluate the correlation between serum estradiol (E 2 ) levels during artificial autologous frozen embryo transfer (FET) cycles and ongoing pregnancy/live birth rates (OP/LB). A historical cohort study was conducted in an academic setting in order to correlate peak and average estradiol levels with ongoing pregnancy/live birth rates for all autologous artificial frozen embryo transfer cycles performed from 1/2011 to 12/2014. Average and peak E 2 levels from 110 autologous artificial FET cycles from 95 patients were analyzed. Average E 2 levels were significantly lower in cycles resulting in OP/LB compared to those that did not (234.1 ± 16.6 pg/ml vs. 315 ± 24.8 pg/ml, respectively, p = 0.04). Although peak E 2 levels were not significantly different between cycles resulting in OP/LB compared with those that did not (366.9 ± 27.7 pg/ml vs. 459.1 ± 32.3 pg/ml, respectively, p = 0.19), correlation analysis revealed a statistically significant (p = 0.02) downward trend in OP/LB rates with increasing peak E 2 levels. This study suggests that elevated E 2 levels in artificial autologous FET cycles are associated with lower OP/LB rates. Estradiol levels should be monitored during artificial FET cycles.
NASA Technical Reports Server (NTRS)
Delalle, I.; Takahashi, T.; Nowakowski, R. S.; Tsai, L. H.; Caviness, V. S. Jr
1999-01-01
We have analyzed the expression patterns of mRNAs of five cell cycle related proteins in the ventricular zone of the neocortical cerebral wall over the course of the neuronogenetic interval in the mouse. One set of mRNAs (cyclin E and p21) are initially expressed at high levels but expression then falls to a low asymptote. A second set (p27, cyclin B and cdk2) are initially expressed at low levels but ascend to peak levels only to decline again. These patterns divide the overall neuronogenetic interval into three phases. In phase 1 cyclin E and p21 levels of mRNA expression are high, while those of mRNAs of p27, cdk2 and cyclin B are low. In this phase the fraction of cells leaving the cycle after each mitosis, Q, is low and the duration of the G1 phase, TG1, is short. In phase 2 levels of expression of cyclin E and p21 fall to asymptote while levels of expression of mRNA of the other three proteins reach their peaks. Q increases to approach 0.5 and TG1 increases even more rapidly to approach its maximum length. In phase 3 levels of expression of cyclin E and p21 mRNAs remain low and those of the mRNAs of the other three proteins fall. TG1 becomes maximum and Q rapidly increases to 1.0. The character of these phases can be understood in part as consequences of the reciprocal regulatory influence of p27 and cyclin E and of the rate limiting functions of p27 at the restriction point and of cyclin E at the G1 to S transition.
Kang, You-Jin; Park, Kwang-Kyun; Chung, Won-Yoon; Hwang, Jae-Kwan; Lee, Sang Kook
2009-11-01
Xanthorrhizol is a sesquiterpenoid from the rhizome of Curcuma xanthorrhiza. In our previous studies, xanthorrhizol suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, inhibited cancer cell growth, and exerted an anti-metastatic effect in an animal model. However, the exact mechanisms for its inhibitory effects against cancer cell growth have not yet been fully elucidated. In the present study, we investigated the growth inhibitory effect of xanthorrhizol on cancer cells. Xanthorrhizol dose-dependently exerted antiproliferative effects against HCT116 human colon cancer cells. Xanthorrhizol also arrested cell cycle progression in the G0/G1 and G2/M phase and induced the increase of sub-G1 peaks. Cell cycle arrest was highly correlated with the downregulation of cyclin A, cyclin B1, and cyclin D1; cyclin-dependent kinase 1 (CDK1), CDK2, and CDK4; proliferating cell nuclear antigen; and inductions of p21 and p27, cyclin-dependent kinase inhibitors. The apoptosis by xanthorrhizol was markedly evidenced by induction of DNA fragmentation, release of cytochrome c, activation of caspases, and cleavage of poly-(ADP-ribose) polymerase. In addition, xanthorrhizol increased the expression and promoter activity of pro-apoptotic non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1). These findings provide one plausible mechanism for the growth inhibitory activity of xanthorrhizol against cancer cells.
Pasion, S G; Brown, G W; Brown, L M; Ray, D S
1994-12-01
In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.
Boussuge, P-Y; Rance, M; Bedu, M; Duche, P; Praagh, E Van
2006-01-01
The two aims of this study were first to measure short-term muscle power (STMP) by means of a cycling force-velocity test (cycling peak power: CPP) and a vertical jump test (jumping peak performance: JPP) and second, to examine the relationships between physical activity (PA) level, peak oxygen uptake (peak VO2) and STMP in healthy elderly women. Twenty-three independent community-dwelling elderly women (mean age: 64+/-4.4) performed on separate days, a peak oxygen uptake test on cycle ergometer, a cycling force-velocity test and a vertical jump test. A questionnaire (QUANTAP) was used to assess lifespan exercise habits. Four indices expressed in kJ day(-1) kg(-1) were calculated. Two indices represented average past PA level: 1/quantity of habitual physical activity (QHPA), 2/quantity of sports activities (QSA). Two indices represented the actual PA level: 3/actual quantity of habitual physical activity (AQHPA), 4/actual quantity of sports activities (AQSA). CPP (6.3+/-1.2 W kg(-1)) was closely correlated to JPP (14.8+/-3.4 cm) (r=0.80, P<0.001). AQHPA and AQSA were only positively associated with peak VO2 (ml min(-1) kg(-1)) (r=0.49; r=0.50, P<0.05, respectively). Past PA level was not related to fitness measurements. Results show that in this population: (1) jumping peak performance was closely related to CPP measured in the laboratory; (2) the cardio-respiratory fitness was related to the actual habitual physical activity level; (3) only age and anthropometric variables explained the actual performances in multivariate analysis.
NASA Technical Reports Server (NTRS)
Bond, Gerard C.; Beavan, John; Kominz, Michelle A.; Devlin, William
1992-01-01
Spectral analyses of two sequences of shallow marine sedimentary cycles that were deposited between 510 and 530 million years ago were completed. One sequence is from Middle Cambrian rocks in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In spite of the antiquity of these strata, and even though there are differences in the age, location, and cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly similar periodicities. A null model constructed to test for significance of the spectral peaks and circulatory in the methodology indicates that all but one of the spectral peaks are significant at the 90 percent confidence level. When the ratios between the statistically significant peaks are measured, we find a consistent relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and Canadian examples imply that a significant amount of the variance in the cyclic records is driven by the short eccentricity (approximately 109 ky) and by the precessional (approximately 21 ky) components of the Earth's orbital variations. Neither section contains a significant component of variance at the period of the obliquity cycle, however.
Hard clam extracts induce atypical apoptosis in human gastric cancer cells
Song, Eing-Ju; Chan, Michael W.Y.; Shin, Jyh-Wei; Chen, Che-Chun
2017-01-01
Hard clams (HCs) are a nutritionally high-quality and popular seafood, and are established to be a potent antitumor food. The aim of the present study was to determine whether HC extracts induce apoptosis in the human gastric cancer cell line, AGS. In contrast with previously reported methods of extraction, crude extracts of HC were obtained by freezing and thawing and by a method free of hot water or organic solvents. The composition, quality and properties of the HC extracts were demonstrated to be stable since the extracts that were evaluated by capillary electrophoresis and HPLC analysis at different timepoints were similar. HC extracts also have an inhibitory effect against the survival of AGS cells. Treatment with HC extracts induced a marked sub-G1 DNA peak and reduced the expression of the anti-apoptotic genes BIRC5 and KPNA2. However, hallmarks of classical apoptosis such as DNA fragmentation and apoptotic body formation were not observed, indicating atypical apoptosis. Furthermore, it was revealed that HC extracts interrupted cell cycle progression in AGS cells through altered expression of six cell cycle-associated genes: CDC20, KPNA2, BIRC5, ANAPC2, CDKN1A and RB1. The present findings suggest that HC may contribute to a novel future anticancer agent. PMID:28810604
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Investigation of long term stability in metal hydrides
NASA Technical Reports Server (NTRS)
Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana
1991-01-01
It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.
PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST
Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.
2015-01-01
Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750
Electrochemical studies on LiCoO 2 surface coated with Y 3Al 5O 12 for lithium-ion cells
NASA Astrophysics Data System (ADS)
Chen, Jin-Ming; Cho, Yung-Da; Hsiao, Chiao-Ling; Fey, George Ting-Kuo
Synthesized yttrium aluminum garnet (YAG) sol was coated on the surface of the LiCoO 2 cathode particles by an in situ sol-gel process, followed by calcination at 923 K for 10 h in air. Based on XRD, TEM, and ESCA data, a compact YAG kernel with an average thickness of ∼20 nm was formed on the surface of the core LiCoO 2 particles, which ranged from ∼90 to 120 nm in size. The charge-discharge cycling studies for the coated materials suggest that 0.3 wt.% YAG-coated LiCoO 2 heated at 923 K for 10 h in air, delivered a discharge capacity of 167 mAh g -1 and a cycle stability of about 164 cycles with a fading rate of 0.2 mAh cycle -1 at a 0.2 C-rate between 2.75 and 4.40 V vs. Li/Li +. The differential capacity plots revealed that impedance growth was slower for YAG surface treated LiCoO 2, when cells were charged at 4.40 V. DSC results exemplified that the exothermic peak at ∼468 K corresponded to the release of much less oxygen and greater thermal-stability.
Observations of Space Weather and Space Climate Over the Past 15 Years From SABER (And Longer!)
NASA Technical Reports Server (NTRS)
Mlynczak, Marty; Hunt, Linda; Russell, James M., III
2016-01-01
The global infrared (IR) energy budget of the thermosphere has been reconstructed back 70 years (to 1947). IR cooling, integrated over a solar cycle, is relatively constant over the 5 complete cycles (19 -23) studied. Result implies that solar energy (particles and photons) has similar, small (< 7%) variation from one cycle to next. From Earth's upper atmosphere perspective, solar cycles are really more similar than different, over their length. No consistent relationship between peak of IR cooling and sunspot number peak. Results submitted to GRL 8/2016.
[The mechanism of docetaxel-induced apoptosis in human lung cancer cells].
Li, Y; Shi, T; Zhao, W
2000-05-01
To study the mechanism of docetaxel-induced apoptosis. Morphological study, DNA gel electrophoresis, flow cytometry and fluorescin labeled Annexin V to detect apoptosis, RT-PCR to detect the gene related with apoptosis. Human lung cancer A549 cells treated with docetaxel induced cell cycle arrest at G2M phase, leading to apoptosis. The morphology of A549 showed nuclear chromatine condensation and fragmentation. Typical ladder pattern of DNA fragmentation was observed. Sub-G1 peak was found by flow cytometry. Transcription of Fas gene was enhanced, while no change in c-myc and bcl-2 genes. Annexin labeling results revealed the co-existence of cell apoptosis and necrosis in docetaxel-treated A549 cells. Docetaxel induces apoptosis and necrosis of human lung cancer. The induction of apoptosis may be related to expression of Fas.
The influence of the oestrous cycle on the radiation response of solid tumours
NASA Astrophysics Data System (ADS)
Swann, Patricia R.
Oestrogen increases the transcription of nitric oxide synthase, thus increasing nitric oxide production, which can result in vasodilation of blood vessels. Fluctuating levels of oestrogen throughout the menstrual cycle has the potential to affect tumour blood flow. Variations of blood supply to a solid tumour can influence tumour oxygenation and subsequently the percentage of hypoxic cells. As hypoxic cells are more resistant to radiation than well-oxygenated cells, this could potentially affect the radiation response of the tumour. This project evaluated the impact of the oestrous stage on the radiation response of BCHT, RIF-1 and SCCvii tumours in syngeneic C3H mice. The oestrous cycle consists of the following stages, pro-oestrus, oestrus, metoestrus and dioestrus and each stage can be determined by the cellular composition of vaginal smears. The peak of oestrogen occurs in the ovulatory phase and a second smaller peak occurs in dioestrus. Subcutaneous tumour were treated at a volume of 200 - 250 mm3 with local irradiation of 10 Gy ionising radiation at different stages of the oestrous cycle. Tumours were excised either immediately or 24 hours after irradiation and disaggregated into a single cell suspension. Tumour cell survival was assessed by clonogenic assay of the excised tumour relative to untreated tumours excised at the corresponding oestrous stage. Tumours irradiated in oestrus consistently produced the lowest surviving fraction after immediate and delayed excision. Tumours irradiated in pro-oestrus and excised immediately after irradiation, showed a two-fold increase in surviving fraction compared to tumours irradiated in oestrus. The surviving fractions of tumours excised 24 hours after irradiation were less than for tumours excised immediately after irradiation. Surviving fractions of irradiated, clamped KHT tumours were independent of oestrous stage. To confirm that these oestrous stage dependent changes were due to changes in tumour perfusion, the degree of transient perfusion in the tumours was assessed. This used a fluorescent double-staining technique by intravenous injection of the fluorescent dyes Hoechst 33342 and diheptyloxacarbocyanine with a 20 minute interval between dye administrations. These dyes stain functional blood vessels and can be viewed under the fluorescent microscope. Regions of vasculature stained with both dyes indicate constant perfusion throughout the experiment, whereas only one dye indicates mismatch or transient perfusion. Tumour vasculature that experiences intermittent perfusion will result in areas of acute hypoxia that can impact on the radiation response of the tumour. The results shows that in oestrus, KHT and RIF-1 tumours showed the lowest proportion of transient perfusion, where as this oestrous stage produced the most mismatch perfusion in the SCCvii tumour. The metastatic spread of KHT tumour cells was influenced by the oestrous cycle. Fractionated irradiation of a primary tumour during metoestrus and dioestrus showed less tumour control by radiation when compared to tumours irradiated in oestrus. The intravenous injection of KHT tumour cells in oestrus and dioestrus also produced a less metastatic burden to the lungs than cells injected in pro-oestrus and metoestrus. The results of this project suggest that there are oestrous stage dependent effects that could alter the radiation response of tumours.
Interactive effect of body posture on exercise-induced atrial natriuretic peptide release.
Ray, C A; Delp, M D; Hartle, D K
1990-05-01
The purpose of this investigation was to test the hypothesis that supine exercise elicits a greater atrial natriuretic peptide (ANP) response than upright exercise because of higher atrial filling pressure attained in the supine posture. Plasma ANP concentration ([ANP]) was measured during continuous graded supine and upright exercise in eight healthy men at rest after 4 min of cycling exercise at 31, 51, and 79% of posture-specific peak oxygen uptake (VO2 peak), after 2 min of cycling at posture-specific VO2 peak, and 5 and 15 min postexercise. [ANP] was significantly increased (P less than 0.05) above rest by 64, 140, and 228% during supine cycling at 51 and 79% and VO2 peak, respectively. During upright cycling, [ANP] was significantly increased (P less than 0.05) at 79% (60%) and VO2 peak (125%). After 15 min of postexercise rest, [ANP] remained elevated (P less than 0.05) only in the supine subjects. [ANP] was 63, 79, and 75% higher (P less than 0.05) in the supine than in the upright position during cycling at 51 and 79% and VO2 peak. Systolic, diastolic, and mean blood pressures were not significantly (P greater than 0.05) different between positions in all measurement periods. Heart rates were lower (P less than 0.05) in the supine position compared with the upright position. In conclusion, these results suggest that supine exercise elicits greater ANP release independent of blood pressure and heart rate but presumably caused by greater venous return, central blood volume, and concomitant atrial filling pressure and stretch.
Smith, S S
1995-09-01
1. In the present study, locomotor-correlated activity of cerebellar Purkinje cells, recorded using arrays of microwires chronically implanted in adult female rats, was examined across estrous-cycle-associated fluctuations in endogenous sex steroids. Ongoing studies from this laboratory have shown that systemic and local administration of the sex steroid 17 beta-estradiol (E2) augments excitatory responses of cerebellar Purkinje cells to iontophoretically applied glutamate, recorded in vivo from anesthetized female rats. In addition, this steroid potentiated discharge correlated with limb movement. For the present study, extracellular single-unit activity was recorded from as many as 5-11 Purkinje cells simultaneously during treadmill locomotion paradigms. Motor modulation of activity was recorded across three to five consecutive estrous cycles from behaviorally identified cohorts of neurons to test the hypothesis that fluctuations in endogenous sex steroids alter motor modulation of Purkinje cell discharge. 2. Locomotor-associated discharge correlated with treadmill locomotion was increased by a mean of 47% on proestrus, when E2 levels are elevated, relative to diestrus 1. These changes in discharge rate during treadmill locomotion were of significantly greater magnitude than corresponding cyclic alterations in discharge during stationary periods. 3. Correlations with the circadian cycle were also significant, because peak levels of locomotor-associated discharge on the night of behavioral estrus, following elevations in circulating E2, were on average 67% greater than corresponding discharge recorded during the light (proestrus). 4. Alterations in the step cycle were also observed across the estrous cycle: significant decreases in the duration of the flexion phase (by 265 ms, P < 0.05) were noted on estrus compared with diestrus. 5. When recorded on estrus, Purkinje cell discharge correlated with the stance or flexion phase of the step cycle was greater in magnitude and preceded the event by an average of 130 ms, compared with values determined on diestrus. 6. On estrus, responses of Purkinje neurons to iontophoretically applied quisqualate were enhanced fourfold after administration of exogenous E2, assessed in urethan-anesthetized female rats. 7. In addition, systemic administration of E2 (30 ng iv) potentiated responses of cerebellar Purkinje cells to electrical stimulation of the forepaw by an average of 150%, recorded in anesthetized female rats. 8. These results are consistent with the hypothesis that elevations in circulating E2 are associated with enhanced discharge of cerebellar Purkinje cells in response to pharmacological or electrical stimuli or associated with locomotor behavior.
Correlation of Toughness between H-Plate and Charpy Impact Tests
1959-09-01
thermal cycles having peak temperatures in or near the range of critical transformation temperatures. Notch sensitivity in these regions has been...21- In their recent work the transition temperatures of heat-affected-zone struc- tures produced by thermal cycles having peak temperatures in the...gradient of thermal cycles associated with welding is too complex to have been included in the scope of this report. The superior toughness of the Ni
System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
Lewis, L A
1982-01-01
The temporal frequencies of different stages of prophase I were determined cytologically in Sordaria brevicollis (Olive and Fantini) as the basis for ascertaining the degree of synchrony in meiosis in this ascomycete. Croziers, karyogamy-zygotene and pachytene asci were shown to be in significant majorities at three distinct periods of the meiotic cycle. The response of recombination frequency to ionizing radiation was examined for the entire meiotic cycle. Three radiosensitive periods were determined. This response, which correlated temporally with each of the three peaks in ascal frequency, is interpreted as showing that the meiotic cycle of this organism is divided into periods of recombination commitment (radiation reduced frequencies) during the pre-meiotic S phase and recombination consummation (radiation induced frequencies) during zygotene and pachytene. The results are discussed in the context of the time at which recombination is consummated in eukaryotes such as yeast and Drosophila.
... occurs during the second half of the menstrual cycle. ... Hormone changes during the menstrual cycle likely lead to breast swelling. More estrogen is made early in the cycle and it peaks just before mid-cycle. This ...
Spectroscopic planetary detection
NASA Technical Reports Server (NTRS)
Deming, Drake
1991-01-01
One of the most promising methods for the detection of extra-solar planets is the spectroscopic method, where a small Doppler shift (approx. 10 meter/sec) in the spectrum of the parent star reveals the presence of planetary companions. However, solar type stars may show spurious Doppler shifts due to surface activity. If these effects are periodic, as is the solar activity cycle, then they may masquerade as planetary companions. The goal of this study was to determine whether the solar cycle affects the Doppler stability of integrated sunlight. Observations of integrated sunlight were made in the near infrared (approx. 2 micron), using the Kitt Peak McMath Fourier transform spectrometer, with a N2O gas absorption cell for calibration. An accuracy of approx. 5 meter/sec was achieved.
[Phloretin induces apoptosis of BEL-7402 cells in vitro].
Luo, Hui; Wang, Ya-jun; Chen, Jie; Liu, Jiang-qin; Zhang, Hai-tao
2008-07-01
To examine the effect of phloretin on apoptosis of BEL-7402 cells. The viability changes of BEL- 7402 cells as a result of phloretin-induced toxicity were analyzed using MTT assay, and the cell morphology changes were observed with fluorescence microscope. Flow cytometry was used to analyze the cell cycle and mitochondrial membrane potential changes, and chromogenic substrate assay performed to detect caspase activity. Phloretin induced obvious cytotoxicity against BEL-7402 cells with IC50 of 89.23 microg/mL. The growth curve demonstrated decreased growth of the cells as phloretin concentration increased. Cell apoptosis occurred 24 h after treatment with 40-160 microg/mL phloretin. Morphological, the cells exposed to phloretin exhibited nuclear chromatin condensation and increased fluorescence intensity. The activity of caspase-9 reached the peak level 12 h after phloretin exposure, and leak levels of caspase-6 and caspase-3 activities occurred 18 and 24 h after the exposure, respectively. Phloretin can induce BEL-7402 cell apoptosis though the mitochondrial pathway.
Tamburini, M; Di Piazza, A; Liseykina, T V; Keitel, C H
2014-07-11
A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. Here we show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh-intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive result is explained with the larger reflectivity of a heavy foil, which compensates for its lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our multidimensional particle-in-cell simulations show that even few-cycle counterpropagating laser pulses can be further shortened (both temporally and in the number of laser cycles) with pulse amplification. A single few-cycle, multipetawatt laser pulse with several joules of energy and with a peak intensity exceeding 10(23) W/cm(2) can be generated already employing next-generation high-power laser systems. In addition, the carrier-envelope phase of the generated few-cycle pulse can be tuned provided that the carrier-envelope phase of the initial counterpropagating pulse is controlled.
2010-01-01
Background The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. Results The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. Conclusions Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes. PMID:20670397
NASA Technical Reports Server (NTRS)
Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori
2014-01-01
There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity required to maintain VO2peak. As the FD105 average exercise intensity and time did not prevent a decline in VO2peak from preflight, astronauts' exercise prescriptions should target at least 160 min of weekly aerobic exercise at an average above 75% peak HR with increased time at intensities above 90% of peak HR starting early in the mission.
Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição
2011-07-18
Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society
From space weather toward space climate time scales: Substorm analysis from 1993 to 2008
NASA Astrophysics Data System (ADS)
Tanskanen, E. I.; Pulkkinen, T. I.; Viljanen, A.; Mursula, K.; Partamies, N.; Slavin, J. A.
2011-05-01
Magnetic activity in the Northern Hemisphere auroral region was examined during solar cycles 22 and 23 (1993-2008). Substorms were identified from ground-based magnetic field measurements by an automated search engine. On average, 550 substorms were observed per year, which gives in total about 9000 substorms. The interannual, seasonal and solar cycle-to-cycle variations of the substorm number (Rss), substorm duration (Tss), and peak amplitude (Ass) were examined. The declining phases of both solar cycles 22 and 23 were more active than the other solar cycle phases due to the enhanced solar wind speed. The spring substorms during the declining solar cycle phase (∣Ass,decl∣ = 500 nT) were 25% larger than the spring substorms during the ascending solar cycle years (∣Ass,acs∣ = 400 nT). The following seasonal variation was found: the most intense substorms occurred during spring and fall, the largest substorm frequency in the Northern Hemisphere winter, and the longest-duration substorms in summer. Furthermore, we found a winter-summer asymmetry in the substorm number and duration, which is speculated to be due to the variations in the ionospheric conductivity. The solar cycle-to-cycle variation was found in the yearly substorm number and peak amplitude. The decline from the peak substorm activity in 1994 and 2003 to the following minima took 3 years during solar cycle 22, while it took 6 years during solar cycle 23.
Relaxation peak near 200 K in NiTi alloy
NASA Astrophysics Data System (ADS)
Zhu, J. S.; Schaller, R.; Benoit, W.
1989-10-01
Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Physiological characteristics of elite short- and long-distance triathletes.
Millet, Grégoire P; Dréano, Patrick; Bentley, David J
2003-01-01
The purpose of this study was to compare the physiological responses in cycling and running of elite short-distance (ShD) and long-distance (LD) triathletes. Fifteen elite male triathletes participating in the World Championships were divided into two groups (ShD and LD) and performed a laboratory trial that comprised submaximal treadmill running, maximal then submaximal ergometry cycling and then an additional submaximal run. "In situ" best ShD triathlon performances were also analysed for each athlete. ShD demonstrated a significantly faster swim time than LD whereas .VO(2max) (ml kg(-1) min(-1)), cycling economy (W l(-1) min(-1)), peak power output (.W(peak),W) and ventilatory threshold (%.VO(2max)) were all similar between ShD and LD. Moreover, there were no differences between the two groups in the change (%) in running economy from the first to the second running bout. Swimming time was correlated to .W(peak)(r=-0.76; P<0.05) and economy ( r=-0.89; P<0.01) in the ShD athletes. Also, cycling time in the triathlon was correlated to .W(peak)(r=-0.83; P<0.05) in LD. In conclusion, ShD triathletes had a faster swimming time but did not exhibit different maximal or submaximal physiological characteristics measured in cycling and running than LD triathletes.
Polyamine biosynthesis during germination of yeast ascospores.
Brawley, J V; Ferro, A J
1979-01-01
The role of the diamine putrescine during germination and outgrowth of ascospores of Saccharomyces cerevisiae was examined. Ornithine decarboxylase activity increased and declined rapidly during germination and outgrowth; peak activity was attained after the cells had proceeded through the G1 interval of the cell cycle, whereas minimal activity was present at the completion of the first cell division. alpha-Methylornithine inhibited both ornithine decarboxylase activity and the in vivo accumulation of putrescine. In the presence of alpha-methylornithireak dormancy and proceed through one cell division. Subsequent cellular growth, however, was retarded but not completely inhibited. The supplementation of Methylglyoxal bis(guanylhydrazone) to sporulation medium greatly inhibited this sexual process. These data suggest that the synthesis of putrescine is not required for the breaking of spore dormancy, but that polyamine biosynthesis may be essential for meiosis and sporulation. PMID:387744
Cardio-pulmonary responses to incremental eccentric and concentric cycling tests to task failure.
Lipski, Marcin; Abbiss, Chris R; Nosaka, Kazunori
2018-05-01
This study compared cardio-pulmonary responses between incremental concentric and eccentric cycling tests, and examined factors affecting the maximal eccentric cycling capacity. On separate days, nine men and two women (32.6 ± 9.4 years) performed an upright seated concentric (CON) and an eccentric (ECC) cycling test, which started at 75 W and increased 25 W min -1 until task failure. Gas exchange, heart rate (HR) and power output were continuously recorded during the tests. Participants also performed maximal voluntary contractions of the quadriceps (MVC), squat and countermovement jumps. Peak power output was 53% greater (P < 0.001, g = 1.77) for ECC (449 ± 115 W) than CON (294 ± 61 W), but peak oxygen consumption was 43% lower (P < 0.001, g = 2.18) for ECC (30.6 ± 5.6 ml kg min -1 ) than CON (43.9 ± 6.9 ml kg min -1 ). Maximal HR was not different between ECC (175 ± 20 bpm) and CON (182 ± 13 bpm), but the increase in HR relative to oxygen consumption was 33% greater (P = 0.01) during ECC than CON. Moderate to strong correlations (P < 0.05) were observed between ECC peak power output and CON peak power (r = 0.84), peak oxygen consumption (r = 0.54) and MVC (r = 0.53), while no significant relationships were observed between ECC peak power output and squat as well as countermovement jump heights. Unexpectedly, maximal HR was similar between CON and ECC. Although ECC power output can be predicted from CON peak power output, an incremental eccentric cycling test performed after 3-6 familiarisation sessions may be useful in programming ECC training with healthy and accustomed individuals.
IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas
Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.
2012-01-01
Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921
Simulated Night Shift Disrupts Circadian Rhythms of Immune Functions in Humans.
Cuesta, Marc; Boudreau, Philippe; Dubeau-Laramée, Geneviève; Cermakian, Nicolas; Boivin, Diane B
2016-03-15
Recent research unveiled a circadian regulation of the immune system in rodents, yet little is known about rhythms of immune functions in humans and how they are affected by circadian disruption. In this study, we assessed rhythms of cytokine secretion by immune cells and tested their response to simulated night shifts. PBMCs were collected from nine participants kept in constant posture over 24 h under a day-oriented schedule (baseline) and after 3 d under a night-oriented schedule. Monocytes and T lymphocytes were stimulated with LPS and PHA, respectively. At baseline, a bimodal rhythmic secretion was detected for IL-1β, IL-6, and TNF-α: a night peak was primarily due to a higher responsiveness of monocytes, and a day peak was partly due to a higher proportion of monocytes. A rhythmic release was also observed for IL-2 and IFN-γ, with a nighttime peak due to a higher cell count and responsiveness of T lymphocytes. Following night shifts, with the exception of IL-2, cytokine secretion was still rhythmic but with peak levels phase advanced by 4.5-6 h, whereas the rhythm in monocyte and T lymphocyte numbers was not shifted. This suggests distinct mechanisms of regulation between responsiveness to stimuli and cell numbers of the human immune system. Under a night-oriented schedule, only cytokine release was partly shifted in response to the change in the sleep-wake cycle. This led to a desynchronization of rhythmic immune parameters, which might contribute to the increased risk for infection, autoimmune diseases, cardiovascular and metabolic disorders, and cancer reported in shift workers. Copyright © 2016 by The American Association of Immunologists, Inc.
Linamarase Expression in Cassava Cultivars with Roots of Low- and High-Cyanide Content1
Santana, María Angélica; Vásquez, Valeria; Matehus, Juan; Aldao, Rafael Rangel
2002-01-01
This paper reports the expression and localization of linamarase in roots of two cassava (Manihot esculenta Crantz) cultivars of low and high cyanide. Two different patterns of linamarase activity were observed. In the low-cyanide type, young leaves displayed very high enzyme activity during the early plant growing stage (3 months), whereas in root peel, the activity increased progressively to reach a peak in 11-month-old plants. Conversely, in the high-cyanide cultivar (HCV), root peel linamarase activity decreased during the growth cycle, whereas in expanded leaves linamarase activity peaked in 11-month-old plants. The accumulation of linamarin showed a similar pattern in both cultivars, although a higher concentration was always found in the HCV. Linamarase was found mainly in laticifer cells of petioles and roots of both cultivars with no significant differences between them. At the subcellular level, there were sharp differences because linamarase was found mainly in the cell walls of the HCV, whereas in the low-cyanide cultivar, the enzyme was present in vacuoles and cell wall of laticifer cells. Reverse transcriptase-PCR on cassava tissues showed no expression of linamarase in cassava roots, thus, the transport of linamarase from shoots to roots through laticifers is proposed. PMID:12177481
New in-situ neutron diffraction cell for electrode materials
NASA Astrophysics Data System (ADS)
Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen
2014-02-01
A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.
Lotfy, S; Lofty, S; Fleuriet, A; Ramos, T; Macheix, J J
1989-02-01
In cell suspensions cultures from grape berry pulp (Vitis vinifera cv. Gamay fréaux)hydroxycinnamoyl CoA ligase (CoAL) displayed maximum activity (100 %) forp-coumaric acid and then, in decreasing order, for ferulic acid (81.3 %) and caffeic acid (60.4 %). No activity was detected with sinapic and cinnamic acids. The changes in CoAL activity during the growth cycle of the culture displayed two peaks : the highest (6 h after subculturing) was linked with a strong increase in protein caused by dilution ; the second was weaker and occurred on the 7th day of culture.Grape cell suspension accumulated mainly peonidin (Pn) and cyanidin (Cy) glucosides (Pn 3-glucoside, Cy 3-glucoside, Pn 3-acetylglucoside, Pn 3-caffeylglucoside, Pn 3-p-coumarylglucoside, and Cy 3-p-coumarylglucoside). Maximum accumulation of anthocyanins was associated with the exponential growth phase of the culture and might be the result of the substantial increase in CoAL activity resulting from the effect of dilution. The second enzyme activity peak was probably oriented towards the acylation of anthocyanins since the percentage of acylated forms increased with time after subculturing.
Souza, C A; Oliveira, T C; Crovella, S; Santos, S M; Rabêlo, K C N; Soriano, E P; Carvalho, M V D; Junior, A F Caldas; Porto, G G; Campello, R I C; Antunes, A A; Queiroz, R A; Souza, S M
2017-04-28
The use of Y chromosome haplotypes, important for the detection of sexual crimes in forensics, has gained prominence with the use of databases that incorporate these genetic profiles in their system. Here, we optimized and validated an amplification protocol for Y chromosome profile retrieval in reference samples using lesser materials than those in commercial kits. FTA ® cards (Flinders Technology Associates) were used to support the oral cells of male individuals, which were amplified directly using the SwabSolution reagent (Promega). First, we optimized and validated the process to define the volume and cycling conditions. Three reference samples and nineteen 1.2 mm-diameter perforated discs were used per sample. Amplification of one or two discs (samples) with the PowerPlex ® Y23 kit (Promega) was performed using 25, 26, and 27 thermal cycles. Twenty percent, 32%, and 100% reagent volumes, one disc, and 26 cycles were used for the control per sample. Thereafter, all samples (N = 270) were amplified using 27 cycles, one disc, and 32% reagents (optimized conditions). Data was analyzed using a study of equilibrium values between fluorophore colors. In the samples analyzed with 20% volume, an imbalance was observed in peak heights, both inside and in-between each dye. In samples amplified with 32% reagents, the values obtained for the intra-color and inter-color standard balance calculations for verification of the quality of the analyzed peaks were similar to those of samples amplified with 100% of the recommended volume. The quality of the profiles obtained with 32% reagents was suitable for insertion into databases.
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-11-24
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-01-01
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance. PMID:26503466
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-01-01
Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-02-17
Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.
Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno
2012-12-01
The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P < 0.001) after 1 week of training, and by 19 % (P < 0.001) after 7 weeks of training. This increase in MVC was accompanied by no significant changes in the time constant of the V'O(2) on-kinetics during 6 min of moderate and heavy cycling intensities. Strength training resulted in a significant decrease (by ~7 %; P < 0.02) in the amplitude of the fundamental component of the V'O(2) on-kinetics, and therefore in a lower O(2) cost of cycling during moderate cycling intensity. The amplitude of the slow component of V'O(2) on-kinetics during heavy cycling intensity did not change with training. Training had no effect on the V'O(2peak), whereas the maximal power output reached at V'O(2peak) was slightly but significantly increased (P < 0.05). Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.
DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.
Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz
2017-01-01
Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.
NASA Astrophysics Data System (ADS)
Lewerenz, Meinert; Marongiu, Andrea; Warnecke, Alexander; Sauer, Dirk Uwe
2017-11-01
In this work the differential voltage analysis (DVA) is evaluated for LiFePO4|Graphite cylindrical cells aged in calendaric and cyclic tests. The homogeneity of the active lithium distribution and the loss of anode active material (LAAM) are measured by the characteristic shape and peaks of the DVA. The results from this analysis exhibit an increasing homogeneity of the lithium-ion distribution during aging for all cells subjected to calendaric aging. At 60 °C, LAAM is found additionally and can be associated with the deposition of dissolved Fe from the cathode on the anode, where it finally leads to the clogging of pores. For cells aged under cyclic conditions, several phenomena are correlated to degradation, such as loss of active lithium and local LAAM for 100% DOD. Moreover, the deactivation of certain parts of anode and cathode due to a lithium-impermeable covering layer on top of the anode is observed for some cells. While the 100% DOD cycling is featured by a continuous LAAM, the LAAM due to deactivation by a covering layer of both electrodes starts suddenly. The homogeneity of the active lithium distribution within the cycled cells is successively reduced with deposited passivation layers and with LAAM that is lost locally at positions with lower external pressure on the electrode.
Edwards, Thomas; Motl, Robert W; Pilutti, Lara A
2018-01-01
Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.
A New Method of Metallization for Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
The determination of the firing cycle in a horizontal tube furnace for MoO3: Sn ink composition applied by silk screening process on P or N structured solar cells is presented. In comparison with the strip heater used to determine the reaction mechanism, the reduction of MoO3 in the tube furnace progresses at a much faster rate and the Sn:Mo alloy forms at a much lower temperature. The device characteristics determined by the V-I curve showed a high resistance (approx. 10 Ohms) at peak temperatures between 600 C and 800 C. The high series resistance is attributed to the lack of formation of MoSi2 within the used temperature range.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
Jin, Hong; Jiang, Yibo; Wei, Qin; Wang, Bilei; Ma, Genshan
2012-01-01
To evaluate the effect of aerobic cycling training with lower limb weights on cardiovascular fitness (peak VO(2)) and walking ability in chronic stroke survivors, and to investigate the relationship between changes in these parameters. 133 Chinese patients with chronic hemiparetic stroke (mean age 58 years) were randomized to either 8-week (5×/week) aerobic cycling training with lower limb weights group (n = 68) or a low-intensity overground walking group (n = 65). Peak VO(2), 6-minute walk distance (6MWD), knee muscle strength, balance and spasticity were measured before and after intervention. Cycling training increased peak VO(2) (24% vs. 3%, p < 0.001), 6MWD (2.7% vs. 0.5%, p < 0.001), paretic (11% vs. 1.6%, p < 0.001) and nonparetic knee strength (16% vs. 1.0%, p < 0.001). In the cycling group, percent changes in peak VO(2) were positively associated with those in paretic (r = 0.491, p < 0.001) and nonparetic knee strength (r = 0.432, p < 0.001). Increased 6MWD correlated significantly with improved balance, spasticity and paretic knee strength by the stepwise regression analysis (r(2) = 0.342, p = 0.004), but not fitness gains. The enhanced cardiovascular fitness after aerobic cycling training in Chinese patients with chronic stroke is not associated with the increased walking ability. Unparallel improvements in these parameters related different determinants may have implications for intervention strategy.
Yamamoto, Yuki; Yuto, Natsuki; Yamamoto, Tatsuya; Kaewmanee, Saroch; Shiina, Osamu; Mouri, Yasushi; Narushima, Etsuo; Katayanagi, Masayuki; Sugimura, Keisuke; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi
2012-01-01
The ovary of female elephants has multiple corpora lutea (CL) during the estrous cycle and gestation. The previous reports clearly demonstrated that inhibin was secreted from lutein cells as well as granulosa cells of antral follicles in cyclic Asian elephants. The aim of this study is to investigate the inhibin secretion during the pregnancy in African and Asian elephants. Two African elephants and two Asian elephants were subjected to this study. Circulating levels of immunoreactive (ir-) inhibin and progesterone were measured by radioimmunoassay. Four pregnant periods of an African elephant and three pregnant periods of an Asian elephant were analyzed in this study. Circulating levels of ir-inhibin started to increase at 1 or 2 week before the ovulation and reached the peak level 3 or 4 weeks earlier than progesterone during the estrous cycle in both African and Asian elephants. After last luteal phase, the serum levels of ir-inhibin remained low throughout pregnancy in both an African and an Asian elephant. The mean levels of ir-inhibin during the pregnancy were lower than the luteal phase in the estrous cycle despite high progesterone levels were maintained throughout the pregnancy. These results strongly suggest that CL secrete a large amount of progesterone but not inhibin during the pregnancy in elephants. © 2011 Wiley Periodicals, Inc.
Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.
2015-01-01
This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357
The influence of sporadic anovulation on hormone levels in ovulatory cycles
Hambridge, H.L.; Mumford, S.L.; Mattison, D.R.; Ye, A.; Pollack, A.Z.; Bloom, M.S.; Mendola, P.; Lynch, K.L.; Wactawski-Wende, J.; Schisterman, E.F.
2013-01-01
STUDY QUESTION Do ovulatory hormone profiles among healthy premenopausal women differ between women with and without sporadic anovulation? SUMMARY ANSWER Women with one anovulatory cycle tended to have lower estradiol, progesterone and LH peak levels during their ovulatory cycle. WHAT IS KNOWN ALREADY Anovulation occurs sporadically in healthy premenopausal women, but the influence of hormones in a preceding cycle and the impact on a subsequent cycle's hormone levels is unknown. STUDY DESIGN, SIZE, DURATION The BioCycle Study was a prospective cohort including 250 healthy regularly menstruating women, 18–44 years of age, from Western New York with no history of menstrual or ovulation disorders. The women were followed with up to eight study visits per cycle for two cycles, most of which were consecutive. PARTICIPANTS/MATERIALS, SETTING AND METHODS All study visits were timed to menstrual cycle phase using fertility monitors and located at the University at Buffalo women's health research center from 2005 to 2007. The main outcomes measured were estradiol, progesterone, LH and follicle-stimulating hormone levels in serum at up to 16 visits over two cycles. Anovulation was defined as peak serum progesterone concentrations ≤5 ng/ml and no serum LH peak detected during the mid- or late-luteal phase visit. MAIN RESULTS AND THE ROLE OF CHANCE Reproductive hormone concentrations were lower during anovulatory cycles, but significant reductions were also observed in estradiol (−25%, P = 0.003) and progesterone (−22%, P = 0.001) during the ovulatory cycles of women with one anovulatory cycle compared with women with two ovulatory cycles. LH peak concentrations were decreased in the ovulatory cycle of women with an anovulatory cycle (significant amplitude effect, P = 0.004; geometric mean levels 38% lower, P < 0.05). LIMITATIONS, REASONS FOR CAUTION Follow-up was limited to two menstrual cycles, and no ultrasound assessment of ovulation was available. Data were missing for a total of 168 of a possible 4072 cycle visits (4.1%), though all women had at least five visits per cycle (94% had seven or more per cycle). WIDER IMPLICATIONS OF THE FINDINGS These results suggest a possible underlying cause of anovulation, such as a longer-term subclinical follicular, ovarian or hypothalamic/pituitary dysfunction, even among healthy, regularly menstruating women. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (Contract no. HHSN275200403394C). The authors have no potential competing interests. PMID:23589536
Jinson, S Terrell; Liebich, Jan; Senft, Stephen L; Mäthger, Lydia M
2018-05-14
Investigating retinal specializations offers insights into eye functionality. Using retinal wholemount techniques, we investigated the distribution of retinal ganglion cells in the Little skate Leucoraja erinacea by (1) dye-backfilling into the optic nerve prior to retinal wholemounting; (2) Nissl-staining of retinal wholemounts. Retinas were examined for regional specializations (higher numbers) of ganglion cells that would indicate higher visual acuity in those areas. Total ganglion cell number were low compared to other elasmobranchs (backfilled: average 49,713 total ganglion cells, average peak cell density 1,315 ganglion cells mm -2 ; Nissl-stained: average 47,791 total ganglion cells, average peak cell density 1,319 ganglion cells mm -2 ). Ganglion cells fit into three size categories: small (5-20µm); medium (20-30µm); large: (≥ 30µm), and they were not homogeneously distributed across the retina. There was a dorsally located horizontal visual streak with increased ganglion cell density; additionally, there were approximately 3 local maxima in ganglion cell distribution (potential areae centrales) within this streak in which densities were highest. Using computerized tomography (CT) and micro-CT, geometrical dimensions of the eye were obtained. Combined with ganglion cell distributions, spatial resolving power was determined to be between 1.21 to 1.37 cycles per degree. Additionally, photoreceptor sizes across different retinal areas varied; photoreceptors were longest within the horizontal visual streak. Variations in the locations of retinal specializations appear to be related to the animal's anatomy: shape of the head and eyes, position of eyes, location of tapetum, and shape of pupil, as well as the visual demands associated with lifestyle and habitat type. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.
Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H
2012-06-01
The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Environmental Controls on Stratocumulus Cloud Fraction
NASA Astrophysics Data System (ADS)
Burleyson, Casey Dale
Marine stratocumulus clouds are widespread, low, optically thick, and persist for long periods of time. Their high albedo allows stratocumulus clouds to reflect large amounts of incoming shortwave radiation. Understanding the processes that lead to changes in stratocumulus cloud fraction is critically important in capturing the effects of stratocumulus in global climate models (GCMs). This research presents two analyses which seek to better understand the governing processes that drive variability in the stratocumulus-topped boundary layer system. The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using ship-based meteorological data obtained during the 2008 VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows us to resolve the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 80°W for most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 80°W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 80°W, total drizzle area peaks at 3:00 am, 2-3 hours before sunrise. Peak drizzle cell frequency is three times higher west of 80°W compared to east of 80°W. The waning of drizzle several hours prior to the ramp up of shortwave fluxes may be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced stratification of potential temperature and a buildup of moisture near the surface. We also present an analysis of patterns of cloud fraction variability on a variety of time scales ranging from seasonal to sub-diurnal. The goal of this analysis is to understand which modes of variability, and thus the processes that drive variability on that time scale, may be more or less important to capturing the total variations in cloud fraction. We developed for marine regions of predominantly low cloud a novel method to separate infrared brightness temperatures measured by geostationary satellites into cloudy and cloud free pixels. The resulting cloud identification maps have a native spatial resolution of 4 km x 4 km and are available every 30 minutes from 2003-2010. Analysis of the low cloud frequency dataset shows that the diurnal cycle of low cloud fraction within a given season and region unfolds in a very regular manner. The largest diurnal cycles occur on the edges of the cloud deck where cloud fractions are generally lower. Large scale decreases in cloudiness overnight, such as those that would occur with the formation of pockets-of-open cells, occur infrequently. Total cloud fraction at sunrise is on average only a few percent lower than the maximum that occurs overnight whereas the average cloud breakup during the day is an order of magnitude larger. We show that up to 50% of the total variance of cloud fraction on 30 minute time scales can be explained solely by the time of day and day of the year. In order to improve simulation of stratocumulus within GCMs, models should be able to replicate the processes leading to variability on seasonal and diurnal time scales.
Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong
2009-01-01
We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.
Dynamo theory prediction of solar activity
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
The dynamo theory technique to predict decadal time scale solar activity variations is introduced. The technique was developed following puzzling correlations involved with geomagnetic precursors of solar activity. Based upon this, a dynamo theory method was developed to predict solar activity. The method was used successfully in solar cycle 21 by Schatten, Scherrer, Svalgaard, and Wilcox, after testing with 8 prior solar cycles. Schatten and Sofia used the technique to predict an exceptionally large cycle, peaking early (in 1990) with a sunspot value near 170, likely the second largest on record. Sunspot numbers are increasing, suggesting that: (1) a large cycle is developing, and (2) that the cycle may even surpass the largest cycle (19). A Sporer Butterfly method shows that the cycle can now be expected to peak in the latter half of 1989, consistent with an amplitude comparable to the value predicted near the last solar minimum.
Yeang, Hoong-Yeet
2015-07-01
An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Selås, Vidar
2016-06-01
Herbivore cycles are often synchronized over larger areas than what could be explained by dispersal. In Norway, the 3-4 year lemming cycle usually show no more than a one-year time lag between different regions, despite distances of up to 1000 km. If important food plants are forced to reallocate defensive proteins in years with high seed production, spatially synchronized herbivore outbreaks may be due to climate-synchronized peaks in flowering. Because lemming peaks are expected to occur one year after a flowering peak, and the formation of flower buds is induced in the year before flowering, a two-year time lag between flower-inducing climate events and lemming peaks is predicted. At Hardangervidda, South Norway, the probability that a year was a population peak year of lemming during 1920-2014 increased with increasing midsummer atmospheric pressure two years earlier, even when the number of years since the previous peak was accounted for.
Wu, Junjie; Waxman, David J
2015-01-01
Cancer chemotherapy using cytotoxic drugs can induce immunogenic tumor cell death; however, dosing regimens and schedules that enable single-agent chemotherapy to induce adaptive immune-dependent ablation of large, established tumors with activation of long-term immune memory have not been identified. Here, we investigate this issue in a syngeneic, implanted GL261 glioma model in immune-competent mice given cyclophosphamide on a 6-day repeating metronomic schedule. Two cycles of metronomic cyclophosphamide treatment induced sustained upregulation of tumor-associated CD8+ cytotoxic T lymphocyte (CTL) cells, natural killer (NK) cells, macrophages, and other immune cells. Expression of CTL- and NK–cell-shared effectors peaked on Day 6, and then declined by Day 9 after the second cyclophosphamide injection and correlated inversely with the expression of the regulatory T cell (Treg) marker Foxp3. Sustained tumor regression leading to tumor ablation was achieved after several cyclophosphamide treatment cycles. Tumor ablation required CD8+ T cells, as shown by immunodepletion studies, and was associated with immunity to re-challenge with GL261 glioma cells, but not B16-F10 melanoma or Lewis lung carcinoma cells. Rejection of GL261 tumor re-challenge was associated with elevated CTLs in blood and increased CTL infiltration in tumors, consistent with the induction of long-term, specific CD8+ T-cell anti-GL261 tumor memory. Co-depletion of CD8+ T cells and NK cells did not inhibit tumor regression beyond CD8+ T-cell depletion alone, suggesting that the metronomic cyclophosphamide-activated NK cells function via CD8a+ T cells. Taken together, these findings provide proof-of-concept that single-agent chemotherapy delivered on an optimized metronomic schedule can eradicate large, established tumors and induce long-term immune memory. PMID:26137402
NASA Astrophysics Data System (ADS)
Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.
2004-05-01
The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.
Prabhakaran, Priya M; Sheeba, Vasu
2014-10-01
Recent studies under semi-natural conditions have revealed various unique features of activity/rest rhythms in Drosophilids that differ from those under standard laboratory conditions. An additional afternoon peak (A-peak) has been reported for Drosophila melanogaster and another species D. malerkotliana while D. ananassae exhibited mostly unimodal diurnal activity. To tease apart the role of light and temperature in mediating these species-specific behaviours of four Drosophilid species D. melanogaster, D. malerkotliana, D. ananassae, and Zaprionus indianus we simulated gradual natural light and/or temperature cycles conditions in laboratory. The pattern observed under semi-natural conditions could be reproduced in the laboratory for all the species under a variety of simulated conditions. D. melanogaster and D. malerkotliana showed similar patterns where as D. ananassae consistently exhibited predominant morning activity under almost all regimes. Z. indianus showed clearly rhythmic activity mostly when temperature cycles were provided. We find that gradually changing light intensities reaching a sufficiently high peak value can elicit A-peak in D. melanogaster, D. malerkotliana, and D. ananassae even at mild ambient temperature. Furthermore, we show that high mid-day temperature could induce A-peak in all species even under constant light conditions suggesting that this A-peak is likely to be a stress response.
MUSTOE, AARYN C.; JENSEN, HEATHER A.; FRENCH, JEFFREY A.
2012-01-01
Endocrine data and characteristics of nonconceptive ovarian cycling and pregnancy are limited within the genus Callithrix to the common marmoset (C. jacchus) and Wied's black tufted-ear marmoset (C. kuhlii). This paper presents patterns of urinary pregnandiol-3-glucuronide (PdG) excretion, as determined by enzyme immunoassay, throughout the course of ovarian cycling and pregnancy in white-faced marmosets (C. geoffroyi). Furthermore, characteristics of reproductive parameters including litter size, duration of gestation, maternal age, and information about ovarian cycling following administration of contraceptives are also described. A steep increase in PdG, an indication of ovulation, characterizes normative ovarian cycles, with peak-to-peak intervals between cycles being 27.82 ± 1.49 days in length. PdG excretion (μg/mg Cr) across pregnancy peaked during the 1st and 2nd trimesters (1st = 20.71 ± 2.98, 2nd = 21.16 ± 2.60) and declined gradually to near preconception levels over the 3rd trimester until parturition (3rd = 5.74 ± 1.60). Gestation lasted 148.55 ± 1.89 days. Most pregnancies (82.8%) resulted in an immediate postpartum ovulation (PPO) of 17.45 ± 2.22 days with 58.3% of PPOs resulting in conception. No differences in PdG excretion during the 1st trimester between full pregnancies and miscarriages were found, and pregnancy characteristics such as litter size, duration of gestation, and maternal age were not associated with PdG concentrations. Administration of cloprostenol resulted in shorter cycle durations, but ovulation was detectable with similar concentrations of peak PdG to a normal non-conceptive cycle. Conversely, medroxyprogesterone acetate (DMPA) injections resulted in little to no PdG excretion across the ovarian cycle, with both methods of contraception providing effective prevention of conception. Overall, these results show that strong similarities in reproductive parameters persist within the genus Callithrix and to a lesser extent across the Callitrichidae family. PMID:22865351
Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi
2004-10-01
Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.
Circadian clock gene plays a key role on ovarian cycle and spontaneous abortion.
Li, Ruiwen; Cheng, Shuting; Wang, Zhengrong
2015-01-01
Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk. © 2015 S. Karger AG, Basel.
Hettinga, Dries M; Andrews, Brian J
2008-01-01
A lesion in the spinal cord leads in most cases to a significant reduction in active muscle mass, whereby the paralysed muscles cannot contribute to oxygen consumption (VO2) during exercise. Consequently, persons with spinal cord injury (SCI) can only achieve high VO2 values by excessively stressing the upper body musculature, which might increase the risk of musculoskeletal overuse injury. Alternatively, the muscle mass involved may be increased by using functional electrical stimulation (FES). FES-assisted cycling, FES-cycling combined with arm cranking (FES-hybrid exercise) and FES-rowing have all been suggested as candidates for cardiovascular training in SCI. In this article, we review the levels of VO2 (peak [VO2peak] and sub-peak [VO2sub-peak]) that have been reported for SCI subjects using these FES exercise modalities. A systematic literature search in MEDLINE, EMBASE, AMED, CINAHL, SportDiscus and the authors' own files revealed 35 studies that reported on 499 observations of VO2 levels achieved during FES-exercise in SCI. The results show that VO2peak during FES-rowing (1.98 L/min, n = 17; 24.1 mL/kg/min, n = 11) and FES-hybrid exercise (1.78 L/min, n = 67; 26.5 mL/kg/min, n = 35) is considerably higher than during FES-cycling (1.05 L/min, n = 264; 14.3 mL/kg/min, n = 171). VO2sub-peak values during FES-hybrid exercise were higher than during FES-cycling. FES-exercise training can produce large increases in VO2peak; the included studies report average increases of +11% after FES-rowing training, +12% after FES-hybrid exercise training and +28% after FES-cycling training. This review shows that VO2 during FES-rowing or FES-hybrid exercise is considerably higher than during FES-cycling. These observations are confirmed by a limited number of direct comparisons; larger studies to test the differences in effectiveness of the various types of FES-exercise as cardiovascular exercise are needed. The results to date suggest that FES-rowing and FES-hybrid are more suited for high-intensity, high-volume exercise training than FES-cycling. In able-bodied people, such exercise programmes have shown to result in superior health and fitness benefits. Future research should examine whether similar high-intensity and high-volume exercise programmes also give persons with SCI superior fitness and health benefits. This kind of research is very timely given the high incidence of physical inactivity-related health conditions in the aging SCI population.
Krueger, G R; Bertram, G; Ramon, A; Koch, B; Ablashi, D V; Brandt, M E; Wang, G; Buja, L M
2001-01-01
Ten adult patients with active HHV-6 variant A infections and clinical infectious mononucleosis-like disease (IM) were studied over a period of 32 weeks after onset of disease for their viral DNA load, changes in peripheral blood T-lymphocytes and subpopulations and frequency of cell death in peripheral blood cells. The data were collected as the basis for an advanced computer simulation study for which available data in the literature were too varied. Since the exact time of primary infection of the patients was not known and thus no time relationship of viral effects at cellular level were determined, we supplemented such data from separate tissue culture studies using HHV-6 alpha infection of HSB2 cells. Patients with IM demonstrate an increase in-HHV-6 DNA copies from 0 to 8.2 log 10/5 microL blood within 4 weeks return to normal by 16 weeks. Total T-lymphocytes follow infection with a 20-fold increase above normal peaking at 8-10 weeks and then return to normal by 24-28 weeks. Coincidently, less mature lymphoid cells carrying markers for stem cells, thymic cortical and medullary cells increase 8-10-fold indicating an enhanced mobilization of such cells from premature cell compartments. Cell death in peripheral mononuclear cells peaked with 30% at 8 weeks after onset of clinical disease and normalized by 24 weeks. HHV-6 replication in cell culture as determined by antigen expression, electron microscopy and harvest of infectious virus indicated a complete cycle of virus infection and replication of at least 6 days. The presented data compare well with others from the literature and will serve for testing in a computer simulation model, which is the subject of a forthcoming paper.
Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells
NASA Astrophysics Data System (ADS)
Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki
Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).
Real-Time PCR Quantification Using A Variable Reaction Efficiency Model
Platts, Adrian E.; Johnson, Graham D.; Linnemann, Amelia K.; Krawetz, Stephen A.
2008-01-01
Quantitative real-time PCR remains a cornerstone technique in gene expression analysis and sequence characterization. Despite the importance of the approach to experimental biology the confident assignment of reaction efficiency to the early cycles of real-time PCR reactions remains problematic. Considerable noise may be generated where few cycles in the amplification are available to estimate peak efficiency. An alternate approach that uses data from beyond the log-linear amplification phase is explored with the aim of reducing noise and adding confidence to efficiency estimates. PCR reaction efficiency is regressed to estimate the per-cycle profile of an asymptotically departed peak efficiency, even when this is not closely approximated in the measurable cycles. The process can be repeated over replicates to develop a robust estimate of peak reaction efficiency. This leads to an estimate of the maximum reaction efficiency that may be considered primer-design specific. Using a series of biological scenarios we demonstrate that this approach can provide an accurate estimate of initial template concentration. PMID:18570886
Electric power generating plant having direct-coupled steam and compressed-air cycles
Drost, M.K.
1981-01-07
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Electric power generating plant having direct coupled steam and compressed air cycles
Drost, Monte K.
1982-01-01
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Better Bet-Hedging with coupled positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Narula, Jatin; Igoshin, Oleg
2011-03-01
Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.
Nanog interact with CDK6 to regulates astrocyte cells proliferation following spinal cord injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jun; Department of Orthopaedics, Xishan People's Hospital, Wuxi, Jiangsu; Ni, Yingjie
2016-01-22
Previous research had reported transcription factors Nanog expressed in pluripotent embryonic stem cells (ESCS) that played an important role in regulating the cell proliferation. Nanog levels are frequently elevated in ESCS, but the role in the spinal cord was not clear. To examine the biological relevance of Nanog, we studied its properties in spinal cord injury model. The expression of Nanog and PCNA was gradually increased and reached a peak at 3 day by western blot analysis. The expression of Nanog was further analyzed by immunohistochemistry. Double immunofluorescent staining uncovered that Nanog can co-labeled with PCNA and GFAP in themore » spinal cord tissue. In vitro, Nanog can promote the proliferation of astrocyte cell by Fluorescence Activating Cell Sorter (FACS) and CCK8. Meanwhile, the cell-cycle protein CDK6 could interact with Nanog in the spinal cord tissue. Taken together, these data suggested that both Nanog may play important roles in spinal cord pathophysiology via interact with CDK6.« less
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Leppert, Kenneth D.; Cecil, Daniel J.
2018-01-01
Previous work has indicated a clear, consistent diurnal cycle in rainfall and cold cloudiness coverage around tropical cyclones. This cycle may have important implications for structure and intensity changes of these storms and the forecasting of such changes. The goal of this paper is to use passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to better understand the tropical cyclone diurnal cycle throughout a deep layer of a tropical cyclone’s clouds. The composite coverage by PR reflectivity ≥20 dBZ at various heights as a function of local standard time (LST) and radius suggests the presence of a diurnal signal for radii <500 km through a deep layer (2–10 km height) of the troposphere using 1998–2011 Atlantic tropical cyclones of at least tropical storm strength. The area covered by reflectivity ≥20 dBZ at radii 100–500 km peaks in the morning (0130–1030 LST) and reaches a minimum 1030–1930 LST. Radii between 300–500 km tend to reach a minimum in coverage closer to 1200 LST before reaching another peak at 2100 LST. The inner core (0–100 km) appears to be associated with a single-peaked diurnal cycle only at upper levels (8–10 km) with a maximum at 2230−0430 LST. The TMI rainfall composites suggest a clear diurnal cycle at all radii between 200 and 1000 km with peak rainfall coverage and rain rate occurring in the morning (0130−0730 LST). PMID:29371745
The VIP/VPACR system in the reproductive cycle of male lizard Podarcis sicula.
Agnese, Marisa; Rosati, Luigi; Prisco, Marina; Coraggio, Francesca; Valiante, Salvatore; Scudiero, Rosaria; Laforgia, Vincenza; Andreuccetti, Piero
2014-09-01
Starting from the knowledge that in the reproductive period the Vasoactive Intestinal Peptide (VIP) is widely distributed in Podarcis sicula testis, we studied VIP expression and the localization of the neuropeptide and its receptors in the testis of the Italian wall lizard P. sicula in the other phases of its reproductive cycle (summer stasis, autumnal resumption, winter stasis, spring resumption). By Real Time-PCR, we demonstrated that testicular VIP mRNA levels change during the reproductive cycle, showing a cyclic trend with two peaks, one in the mid-autumnal resumption and the other in the reproductive period. By in situ hybridization and immunohistochemistry, we demonstrated that both VIP mRNA and protein were widely distributed in the testis in almost all the phases of the cycle, except in the early autumnal resumption. As regards the receptors, the VPAC1R was localized mainly in Leydig cells, while the VPAC2R showed the same distribution of VIP. Our results demonstrate that, differently from mammals, where VIP is present only in nerve fibres innerving the testis, an endotesticular synthesis takes place in the lizard and the VIP synthesis changes throughout the reproductive cycle. Moreover, the VIP/VPAC receptor system distribution observed in germ and somatic cells in various phases of the cycle, and particularly in the autumnal resumption and the reproductive period, strongly suggests its involvement in both spermatogenesis and steroidogenesis. Finally, the wider distribution of VIP in lizards with respect to mammals leads us to hypothesize that during the evolution the synthesis sites have been transferred from the testis to other districts, such as the brain. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, Ji-In; Kim, Kyu-Myong
2011-01-01
In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.
Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow
NASA Astrophysics Data System (ADS)
Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.
2017-12-01
Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.
Pozzi, Lara; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald; Rüst, Christoph Alexander
2014-01-01
The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. For all finishers, the age of peak cycling performance decreased significantly (β = -0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = -0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = -0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35-39 years. In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance.
Tsai, Dah-Shyang; Chang, Chuan-hua; Chiang, Wei-Wen; Lee, Kuei-Yi; Huang, Ying-Sheng
2014-10-24
Capacity degradation and ion insertion of a miniaturized electrochemical capacitor are studied using ionic liquid [EMI] [TFSI] as the electrolyte. This capacitor is featured with two comb-like electrodes of vertical carbon nanotubes, ∼70 μm in height and 20 μm in interelectrode gap. We quantify the levels of ion insertion damage with Raman spectroscopy after the electrode experiences 120 consecutive voltammetric cycles to various potential limits. Distinct structural damage emerges due to [EMI] when the negative potential reaches -1.7 V, and those due to [TFSI] arise when the positive potential reaches 1.7 V vs. RHE. Judging from the peak broadenings, [EMI] is more detrimental than [TFSI]. When the voltage window ΔU is set as less than or equal to 2.8 V, both electrode potentials are within the two intercalation limits, little or no decay is observed in 10(4) charge/discharge cycles. When ΔU is 3.4 V, the positive potential exceeds the upper limit, but the negative potential stays within the lower limit, the cell capacitance decreases moderately. When ΔU increases to 3.8 V, both electrodes suffer from damages because of exceeding the intercalation limits. And the cell capacitance decreases substantially, even leading to a premature failure.
NASA Astrophysics Data System (ADS)
Anothumakkool, Bihag; Dupré, Nicolas; Moreau, Philippe; Guyomard, Dominique; Brousse, Thierry; Gaubicher, Joel
2018-02-01
We report experimental evidence for the specific Li-storage at turbostratic graphene edges of a well-known and cheap Super P® carbon black (Csp) material, which is usually used as a conductive additive in composite electrodes. Indeed, operando XRD and HR-TEM consistently demonstrate Li insertion occurs with zero expansion of graphene layer up to a composition of Li0.4C6 (150 mA h/g) that is reached at 0.01 V vs. Li+/Li. 7Li NMR substantiates these results and suggests that the weak electronic transfer from the carbon host to the intercalant could help local reorganization of the layer order as suggested by the unexpected reversible changes of the (002) Bragg peak intensity during the charge-discharge process. Our observations also indicate this insertion mechanism is kinetically favored resulting in remarkable cycling stability over 1000 cycles and power capability allowing to sustain 110 mA h/g at 8 A/g (21 C) in half cell. The capability of Csp as an efficient anode is ultimately demonstrated in a lithium hybrid capacitor against a positive electrode of activated carbon. The full cell delivers a maximum energy of 120 Wh/kg (4.3-2 V) and remarkable capacity retention over 1800 cycles.
Sengupta, Anamika; Kumar Maitra, Saumen
2006-01-01
The role of the pineal gland and its hormone melatonin in the regulation of annual testicular events was investigated for the first time in a psittacine bird, the roseringed parakeet (Psittacula krameri). Accordingly, the testicular responsiveness of the birds was evaluated following surgical pinealectomy with or without the exogenous administration of melatonin and the experimental manipulations of the endogenous levels of melatonin through exposing the birds to continuous illumination. An identical schedule was followed during the four reproductive phases, each characterizing a distinct testicular status in the annual cycle, namely, the phases of gametogenic quiescence (preparatory phase), seasonal recovery of gametogenesis (progressive phase), seasonal initiation of sperm formation (pre-breeding phase), and peak gametogenic activity (breeding phase). In each reproductive phase, the birds were subjected to various experimental conditions, and the effects were studied comparing the testicular conditions in the respective control birds. The study included germ cell profiles of the seminiferous tubules, the activities of steroidogenic enzymes 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and Delta(5)3beta-hydroxysteroid dehydrogenase (Delta(5)3beta- HSD) in the testis, and the serum levels of testosterone and melatonin. An analysis of the data reveals that the pineal gland and its hormone melatonin may play an inhibitory role in the development of the testis until the attainment of the seasonal peak in the annual reproductive cycle. However, in all probability, the termination of the seasonal activity of the testis or the initiation of testicular regression in the annual reproductive cycle appears to be the function of the pineal gland, but not of melatonin.
Long-term EEJ variations by using the improved EE-index
NASA Astrophysics Data System (ADS)
Fujimoto, A.; Uozumi, T.; Abe, Sh.; Matsushita, H.; Imajo, Sh.; Ishitsuka, J. K.; Yoshikawa, A.
2016-03-01
In 2008, International Center for Space Weather Science and Education, Kyushu University (ICSWSE) proposed the EE-index, which is an index to monitor the equatorial geomagnetic phenomena. EE-index has been improved with the development of the MAGnetic Data Acquisition System and the Circum-pan Pacific Magnetometer Network (MAGDAS/CPMN) and the enormous archive of MAGDAS/CPMN data over 10 years since the initial article. Using the improved EE-index, we examined the solar cycle variation of equatorial electrojet (EEJ) by the time series analysis for EUEL (one part of EE-index) at Ancon in Peru and the solar activity from September 18, 1998 to March 31, 2015. We found that the long-term variation of daily EEJ peak intensity has a trend similar to that of F10.7 (the solar activity). The power spectrum of the daily EEJ peak has clearly two dominant peaks throughout the analysis interval: 14.5 days and 180 days (semi-annual). The solar cycle variation of daily EEJ peak correlates well with that of F10.7 (the correlation coefficient 0.99). We conclude that the daily EEJ peak intensity is roughly determined as the summation of the long-period trend of the solar activity resulting from the solar cycle and day-to-day variations caused by various sources such as lunar tides, geometric effects, magnetospheric phenomena and atmospheric phenomena. This work presents the primary evidence for solar cycle variations of EEJ on the long-term study of the EE-index
Franco-Vidal, Leticia; Morán, Xosé Anxelu G
2011-02-01
Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated BB, indicating that low standing stocks tend to present unbalanced growth. Discrepancies about the true magnitude of specific growth rates must be solved before fully appreciating the role of bacteria in the ocean carbon cycle.
Progress in the development of Ovonic nickel-metal hydride batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatesan, S.; Corrigan, D.A.; Gifford, P.R.
1993-05-01
Proprietary, multicomponent hydrogen storage alloys using the principles of atomic engineering form the heart of Ovonic Nickel-Metal Hydride (Ni/MH) battery technology. This battery system, in development for 10 years, has been licensed to several manufacturers both for consumer cells and electric vehicle batteries. These cells have achieved a specific energy of over 80 Wh/kg, a peak power in excess of 200 W/kg, and over 1000 cycles at 100% depth of discharge. They also have an intrinsic ability to withstand overcharge and overdischarge abuse. Ovonic Ni/MH batteries are environmentally friendly and can be recycled. Performance data will be presented showing themore » successful scale-up of this technology for electric vehicle applications.« less
Phillips, Rebecca Sellin; Wheaton, Catharine J
2008-07-01
The objective of this study was to determine if sexual swellings in mandrills (Mandrillus sphinx) are a reflection of reproductive endocrine state. Urine samples were assayed using an enzyme immunoassay measuring pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1)C). Hormone patterns of ovarian cycles, pregnancy and lactation were characterized and compared with sexual swellings and copulations relative to menses and peak E(1)C. Cycle lengths averaging 28.7 days and pregnancy length of 181 days determined by hormonal and sexual swelling measures were similar to those reported in other Old World primate species. First day of copulation was observed during rising E(1)C concentrations and preceded observations of peak swelling by 1-2 days. Observations of peak sexual swellings occurred at or on the day after peak E(1)C and decreased following the ovulatory increase in PdG. Observations of menses and sexual swellings are a useful method to track mandrill ovarian cycles and can assist zoos in determining the reproductive state of females in their collections. Zoo Biol 27:320-330, 2008. (c) 2008 Wiley-Liss, Inc.
Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui
2015-01-01
Objective: To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Design: Prospective laboratory study. Setting: University hospital. Patients: Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Intervention(s): Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Main outcome measure(s): Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. Results: All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Conclusion: Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles. PMID:26464631
Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui
2015-01-01
To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Prospective laboratory study. University hospital. Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles.
NASA Astrophysics Data System (ADS)
Gholibeigian, Kazem; Gholibeigian, Hassan
2016-04-01
On March 13, 1989 the entire province of Quebec Blackout by solar storm during solar cycle 22. The solar storm of 1859, also known as the Carrington event, was a powerful geomagnetic solar storm during solar cycle 10. The solar storm of 2012 during solar cycle 24 was of similar magnitude, but it passed Earth's orbit without striking the plane. All of these solar storms occurred in the peak of 11 yearly solar cycles. In this way, the White House in its project which is focusing on hazards from solar system, in a new strategy and action plan to increase protection from damaging solar emissions, should focus on coupling of the matched Gravity and Electromagnetic Fields)GEFs) of the Sun with Jupiter and its moons together. On the other hand, in solar system, the Jupiter's gravity has largest effect to the Sun's core and its dislocation, because the gravity force between the Jupiter and the Sun is 11.834 times, In addition overlapping of the solar cycles with the Jupiter's orbit period is 11.856 years. These observable factors lead us to the effect of the Jupiter and Sun gravity fields coupling as the main cause of the approximately 11 years duration for solar cycles. Its peak in each cycle is when the Jupiter is in nearest portion to the Sun in its orbit. In this way, the other planets in their coupling with Sun help to the variations and strengthening solar cycles. [Gholibeigian, 7/24/2015http://adsabs.harvard.edu/abs/2014EGU]. In other words, the both matched GEFs are generating by the large scale forced convection system inside the stars and planets [Gholibeigian et. al, AGU Fall Meeting 2015]. These two fields are couple and strengthening each other. The Jupiter with its 67 moons generate the largest coupled and matched GEFs in its core and consequently strongest effect on the Sun's core. Generation and coupling of the Jupiter's GEFs with its moons like Europa, Io and Ganymede make this planet of thousands of times brighter and many times bigger than Earth as the strongest variable GEFs in solar system after the Sun. For example, Ganymede is the largest moon of Jupiter and in the Solar System. Completing an orbit in roughly seven days. It means that it generates 52 GEFs oscillations (loading, unloading) per year in solar cycle while it is rotating around the Jupiter. New observations of the planet's extreme ultraviolet emissions show that bright explosions of Jupiter's aurora by the planet-moon interaction, not by solar activity [Tomoki Kimura, JAEA]. Coupling of Jupiter's GEFs and its moons with the Sun generate very strong GEFs and approximately 11 yearly solar cycles. The peaks of each cycle is when the Jupiter passes from the nearest portion of its orbit to the Sun. which some of its peaks generate gigantic solar storms and hazards to the Earth. The Earth passes from between of Sun and Jupiter eleven times in each solar cycle and may be under shooting of storms from the both side specially during 2-3 years in cycle's peak.
Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)
1995-01-01
A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
Singh, Michele D; Morris, Michael J; Guimarães, Diva Anelie; Bourne, Gregory; Garcia, Gary W
2016-12-01
The objective of this study was to evaluate serum progesterone (P4) and 17β estradiol (E2) concentrations throughout the estrous cycle in the red-rumped agouti (Dasyprocta leporina). A total of eight multiparous, captive-bred females were bled throughout their estrous cycle via saphenous venipuncture, with E2 and P4 concentrations being measured via ELISA of the serum collected. Serum E 2 ranged from 1212 to 3500pg/ml with a peak value coinciding with observed estrus. However, two additional peak values for E 2 were also recorded, one each in metestrus and proestrus respectively. P4 concentrations reached a maximum of 4.23ng/ml, and increases in P4 immediately followed the second E2 peak in metestrus. The highest concentrations of P4 were recorded in mid diestrus; between days 23-25 of the 31-day cycle. This phase was the longest in the agouti, consisting of approximately 19days and accounted for 61% of the cycle. This study increased the basal scientific reproductive knowledge of this potentially valuable neo-tropical species. Copyright © 2016 Elsevier B.V. All rights reserved.
Ren, Yan-Ping; Zhang, Ming-Juan; Zhang, Ting; Huang, Ruo-Wen
2014-01-01
To elucidate the effect of ouabain on the regulation of proliferation and apoptosis of HUVECs and involvement of different Na(+)-K(+)-ATPase α-subunits and NF-κB. HUVECs were isolated by collagenase perfusion, and MTT assays and cell cycle analysis were performed to study proliferation. NF-κB expression and function were examined by immunohistochemical staining and western blotting. Na(+)-K(+)-ATPase activity was determined by measuring released ouabain inhibitable inorganic phosphate (Pi). The expression of different α-subunits was investigated by real RT-PCR, western blotting and cell immunofluorescence. 0.3 nM ouabain treatment for 0.5 h triggered the proliferation of HUVECs, peaking at 1-2 h. At 1.8 nM for 0.5 h, ouabain induced an increase of cell proliferation for a short time, and then triggered a decrease after 1 h. Cell cycle analysis show that 37% of HUVECs were in G2/M phase of the cell cycle following incubation with 1.8 nM ouabain, compared with 18% with 0.3 nM ouabain. NF-κB activity was assessed by western blot analysis of IκB expression, which was significantly reduced with 0.3 nM ouabain treatment; there was no different between 1.8 nM ouabain treatment and untreated cells. Na(+)-K(+)-ATPase activity in HUVECs was markedly reduced after treatment with 0.3 nM and 1.8 nM ouabain. Real RT-PCR and western blotting indicated that Na(+)-K(+)-ATPase α1-subunit mRNA expression levels increased after 0.3 nM ouabain treatment and decreased after 1.8 nM ouabain treatment. However, α2- and α3-subunit mRNA decreased after 0.3 nM ouabain treatment and increased after 1.8 nM ouabain treatment. Ouabain at different concentrations caused dual effects on proliferation and apoptosis in HUVECs.
Li, F Y; Sheng, Z M; Chen, M; Yu, L L; Meyer-ter-Vehn, J; Mori, W B; Zhang, J
2014-10-01
Attosecond bursts of coherent synchrotronlike radiation are found when driving ultrathin relativistic electron disks in a quasi-one-dimensional regime of wakefield acceleration, in which the laser waist is larger than the wake wavelength. The disks of overcritical density shrink radially due to focusing wakefields, thus providing the transverse currents for the emission of an intense, radially polarized, half-cycle pulse of about 100 attoseconds in duration. The electromagnetic pulse first focuses to a peak intensity (7×10(20)W/cm(2)) 10 times larger than the driving pulse and then emerges as a conical beam. Basic dynamics of the radiative process are derived analytically and in agreement with particle-in-cell simulations. By making use of gas targets instead of solids to form the ultrathin disks, this method allows for high repetition rates required for applications.
Pushchin, Igor I; Karetin, Yuriy A
2009-10-20
The topography and morphology of retinal ganglion cells (RGCs) in the eastern newt were studied. Cells were retrogradely labeled with tetramethylrhodamine-conjugated dextran amines or horseradish peroxidase and examined in retinal wholemounts. Their total number was 18,025 +/- 3,602 (mean +/- SEM). The spatial density of RGCs varied from 2,100 cells/mm(2) in the retinal periphery to 4,500 cells/mm(2) in the dorsotemporal retina. No prominent retinal specializations were found. The spatial resolution estimated from the spatial density of RGCs varied from 1.4 cycles per degree in the periphery to 1.95 cycles per degree in the region of the peak RGC density. A sample of 68 cells was camera lucida drawn and subjected to quantitative analysis. A total of 21 parameters related to RGC morphology and stratification in the retina were estimated. Partitionings obtained by using different clustering algorithms combined with automatic variable weighting and dimensionality reduction techniques were compared, and an effective solution was found by using silhouette analysis. A total of seven clusters were identified and associated with potential cell types. Kruskal-Wallis ANOVA-on-Ranks with post hoc Mann-Whitney U tests showed significant pairwise between-cluster differences in one or more of the clustering variables. The average silhouette values of the clusters were reasonably high, ranging from 0.52 to 0.79. Cells assigned to the same cluster displayed similar morphology and stratification in the retina. The advantages and limitations of the methodology adopted are discussed. The present classification is compared with known morphological and physiological RGC classifications in other salamanders.
NASA Astrophysics Data System (ADS)
Liu, Qingfang; Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong; Yu, Lixia; Du, Yan; Jin, Wenjie; Li, Wenjian
2013-06-01
In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of 12C6+ beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of 12C6+ beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.
High-intensity cycle interval training improves cycling and running performance in triathletes.
Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A
2014-01-01
Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.
Are lemmings prey or predators?
NASA Astrophysics Data System (ADS)
Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.
2000-06-01
Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.
Diagnosis and treatment of urea cycle disorder in Japan.
Nakamura, Kimitoshi; Kido, Jun; Mitsubuchi, Hiroshi; Endo, Fumio
2014-08-01
Urea cycle disorder (UCD) is an inborn error of the metabolic pathway producing urea from ammonia, which occurs primarily in the liver. Decreased excretion of nitrogen in the urea cycle due to deficiency of carbamoyl phosphate synthase I (CPSI), ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and N-acetyl glutamate synthase (NAGS) causes hyperammonemia. We examined the clinical manifestations, treatment, and prognosis of 177 patients with UCD from January 1999 to March 2009 in Japan. Compared with a previous study conducted in Japan, a larger number of patients survived without mental retardation, even when the peak blood ammonia was >360 μmol/L. In those with peak blood ammonia >360 μmol/L, an indicator of poor prognosis, the frequency of convulsions, mental retardation, brain abnormality on magnetic resonance imaging, hemodialysis, liver transplantation, and intake of non-protein formulas was significantly higher than in those with peak blood ammonia <360 μmol/L. In this article, we have reported the current state of UCD to evaluate prognosis and its relationship with peak blood ammonia and hemodialysis. © 2014 Japan Pediatric Society.
Ferguson, Hugh W.; Schulze, Angela D.; Kaukinen, Karia H.; Li, Shaorong; Vanderstichel, Raphaël; Wessel, Øystein; Rimstad, Espen; Gardner, Ian A.; Hammell, K. Larry; Miller, Kristina M.
2017-01-01
Heart and skeletal muscle inflammation (HSMI) is an emerging disease of marine-farmed Atlantic Salmon (Salmo salar), first recognized in 1999 in Norway, and later also reported in Scotland and Chile. We undertook a longitudinal study involving health evaluation over an entire marine production cycle on one salmon farm in British Columbia (Canada). In previous production cycles at this farm site and others in the vicinity, cardiac lesions not linked to a specific infectious agent or disease were identified. Histologic assessments of both live and moribund fish samples collected at the farm during the longitudinal study documented at the population level the development, peak, and recovery phases of HSMI. The fish underwent histopathological evaluation of all tissues, Twort’s Gram staining, immunohistochemistry, and molecular quantification in heart tissue of 44 agents known or suspected to cause disease in salmon. Our analysis showed evidence of HSMI histopathological lesions over an 11-month timespan, with the prevalence of lesions peaking at 80–100% in sampled fish, despite mild clinical signs with no associated elevation in mortalities reported at the farm level. Diffuse mononuclear inflammation and myodegeneration, consistent with HSMI, was the predominant histologic observation in affected heart and skeletal muscle. Infective agent monitoring identified three agents at high prevalence in salmon heart tissue, including Piscine orthoreovirus (PRV), and parasites Paranucleospora theridion and Kudoa thyrsites. However, PRV alone was statistically correlated with the occurrence and severity of histopathological lesions in the heart. Immunohistochemical staining further localized PRV throughout HSMI development, with the virus found mainly within red blood cells in early cases, moving into the cardiomyocytes within or, more often, on the periphery of the inflammatory reaction during the peak disease, and reducing to low or undetectable levels later in the production cycle. This study represents the first longitudinal assessment of HSMI in a salmon farm in British Columbia, providing new insights on the pathogenesis of the disease. PMID:28225783
Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming
NASA Astrophysics Data System (ADS)
Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.
2001-12-01
The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results. Spectral peaks at 6, 13, 31 and 122 m appear mainly in the Tipton and the Wilkins Peak members. The correlation between oil shale yield, lithology and relative water depth was examined in the upper part of the Wilkins Peak Member and the Lower part of the Laney Member. The succession from microlaminated black oil shale to laminated micrite corresponds with documented lateral changes in facies from deep to shallow environments, thus confirming the use of these facies as relative water-depth proxies. Furthermore, the upsection record of oil shale yields correlates with these facies, with higher yields corresponding to deeper water facies. This correlation supports the use of the oil shale yield record as a proxy for short-term lake-level changes, and therefore a proxy for climate. The spectral analysis results from both basins show the importance of the obliquity cycle in these continental records. This cycle cannot be identified by cycle-counting, and therefore was not previously recognized. Earlier published attempts at spectral analysis of short records from the Piceance Creek and Uinta basins misinterpreted the observed cycles. This is the first time both the obliquity cycle and the long-term eccentricity cycle have been identified in the Green River and Piceance Creek basins.
Ackermann, Katrin; Revell, Victoria L.; Lao, Oscar; Rombouts, Elwin J.; Skene, Debra J.; Kayser, Manfred
2012-01-01
Study Objectives: The sleep/wake cycle is accompanied by changes in circulating numbers of immune cells. The goal of this study was to provide an in-depth characterization of diurnal rhythms in different blood cell populations and to investigate the effect of acute sleep deprivation on the immune system, as an indicator of the body's acute stress response. Design: Observational within-subject design. Setting: Home environment and Clinical Research Centre. Participants: 15 healthy male participants aged 23.7 ± 5.4 (standard deviation) yr. Interventions: Total sleep deprivation. Measurements and Results: Diurnal rhythms of several blood cell populations were assessed under a normal sleep/wake cycle followed by 29 hr of extended wakefulness. The effect of condition (sleep versus sleep deprivation) on peak time and amplitude was investigated. Interindividual variation of, and the level of correlation between, the different cell populations was assessed. Comprehensive nonlinear curve fitting showed significant diurnal rhythms for all blood cell types investigated, with CD4 (naïve) cells exhibiting the most robust rhythms independent of condition. For those participants exhibiting significant diurnal rhythms in blood cell populations, only the amplitude of the granulocyte rhythm was significantly reduced by sleep deprivation. Granulocytes were the most diverse population, being most strongly affected by condition, and showed the lowest correlations with any other given cell type while exhibiting the largest interindividual variation in abundance. Conclusions: Granulocyte levels and diurnal rhythmicity are directly affected by acute sleep deprivation; these changes mirror the body's immediate immune response upon exposure to stress. Citation: Ackermann K; Revell VL; Lao O; Rombouts EJ; Skene DJ; Kayser M. Diurnal rhythms in blood cell populations and the effect of acute sleep deprivation in healthy young men. SLEEP 2012;35(7):933-940. PMID:22754039
Cardiopulmonary Responses to Supine Cycling during Short-Arm Centrifugation
NASA Technical Reports Server (NTRS)
Vener, J. M.; Simonson, S. R.; Stocks, J.; Evettes, S.; Bailey, K.; Biagini, H.; Jackson, C. G. R.; Greenleaf, J. E.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
The purpose of this study was to investigate cardiopulmonary responses to supine cycling with concomitant +G(sub z) acceleration using the NASA/Ames Human Powered Short-Arm Centrifuge (HPC). Subjects were eight consenting males (32+/-5 yrs, 178+/-5 cm, 86.1+/- 6.2 kg). All subjects completed two maximal exercise tests on the HPC (with and without acceleration) within a three-day period. A two tailed t-test with statistical significance set at p less than or equal to 0.05 was used to compare treatments. Peak acceleration was 3.4+/-0.1 G(sub z), (head to foot acceleration). Peak oxygen uptake (VO2(sub peak) was not different between treatment groups (3.1+/-0.1 Lmin(exp -1) vs. 3.2+/-0.1 Lmin(exp -1) for stationary and acceleration trials, respectively). Peak HR and pulmonary minute ventilation (V(sub E(sub BTPS))) were significantly elevated (p less than or equal to 0.05) for the acceleration trial (182+/-3 BPM (Beats per Minute); 132.0+/-9.0 Lmin(exp -1)) when compared to the stationary trial (175+/-3 BPM; 115.5+/-8.5 Lmin(exp -1)). Ventilatory threshold expressed as a percent of VO2(sub peak) was not different for acceleration and stationary trials (72+/-2% vs. 68+/-2% respectively). Results suggest that 3.4 G(sub z) acceleration does not alter VO2(sub peak) response to supine cycling. However, peak HR and V(sub E(sub BTPS)) response may be increased while ventilatory threshold response expressed as a function of percent VO2(sub peak) is relatively unaffected. Thus, traditional exercise prescription based on VO2 response would be appropriate for this mode of exercise. Prescriptions based on HR response may require modification.
Scott, William; York, Henry; Theyagaraj, Melita; Price-Miller, Naomi; McQuaid, Jean; Eyvazzadeh, Megan; Ivey, Frederick M.; Macko, Richard F.
2016-01-01
Objective To assess the effectiveness of robotically assisted body weight supported treadmill training (RABWSTT) for improving cardiovascular fitness in chronic motor incomplete spinal cord injury (CMISCI). Design Pilot prospective randomized, controlled clinical trial. Setting Outpatient rehabilitation specialty hospital. Participants Eighteen individuals with CMISCI with American Spinal Injury Association (ASIA) level between C4 and L2 and at least one-year post injury. Interventions CMISCI participants were randomized to RABWSTT or a home stretching program (HSP) three times per week for three months. Those in the home stretching group were crossed over to three months of RABWSTT following completion of the initial three month phase. Outcome measures Peak oxygen consumption (peak VO2) was measured during both robotic treadmill walking and arm cycle ergometry: twice at baseline, once at six weeks (mid-training) and twice at three months (post-training). Peak VO2 values were normalized for body mass. Results The RABWSTT group improved peak VO2 by 12.3% during robotic treadmill walking (20.2 ± 7.4 to 22.7 ± 7.5 ml/kg/min, P = 0.018), compared to a non-significant 3.9% within group change observed in HSP controls (P = 0.37). Neither group displayed a significant change in peak VO2 during arm cycle ergometry (RABWSTT, 8.5% (P = 0.25); HSP, 1.76% (P = 0.72)). A repeated measures analysis showed statistically significant differences between treatments for peak VO2 during both robotic treadmill walking (P = 0.002) and arm cycle ergometry (P = 0.001). Conclusion RABWSTT is an effective intervention model for improving peak fitness levels assessed during robotic treadmill walking in persons with CMISCI. PMID:25520035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, S. B.; Bihari, B.; Biruduganti, M.
Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions andmore » by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.« less
Physiological correlates of pulmonary function in children with cystic fibrosis.
Wells, Greg D; Wilkes, Donna L; Schneiderman, Jane E; Thompson, Sara; Coates, Allan L; Ratjen, Felix
2014-09-01
Although peak aerobic capacity (VO(2peak)) has been linked to outcome in patients with cystic fibrosis (CF), measuring is time consuming, and requires expensive equipment and expertise that is not readily available in all centers. Other fitness parameters such as peak anaerobic power, measures of power and strength may be simpler to deliver in the clinic. The relationship between these measures and established outcomes such as forced expiratory volume in one second (FEV(1)) and peak aerobic power (VO(2peak)) in CF remains unclear. Therefore we evaluated (a) aerobic fitness, (b) anaerobic fitness, and (c) upper and lower body muscle strength to determine their relationship to FEV(1) and VO(2peak) in children with CF. Eighty-two patients (7-18 years) with CF (40 female) from the CF clinic at The Hospital for Sick Children in Toronto performed a maximal incremental cycling test to exhaustion. Anaerobic power (W) for 10 and 30 sec cycling trials as well as vertical jump (VJ) and hand grip strength (HG) were compared to FEV(1) and VO(2peak). Absolute VO(2peak) (R(2) = 0.16, P < 0.001), anaerobic power (R(2) = 0.21, P < 0.001), and hand grip strength (R(2) = 0.10, P = 0.003) were significantly correlated to lung function whereas measures of explosive lower body strength (VJ) were not. Anaerobic power (R(2) = 0.16, P = 0.001) and hand grip strength (R(2) = 0.08, P = 0.01) were related to VO(2peak). Vertical jump was correlated with VO(2peak) (R(2) = 0.29, P < 0.001) but not FEV(1). Simple fitness tests such as hand grip strength and anaerobic cycle tests may be useful indicators of lung health and fitness. © 2013 Wiley Periodicals, Inc.
Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo.
Speksnijder, J E; Dohmen, M R; Tertoolen, L G; de Laat, S W
1985-07-01
Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1'-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lobe area as compared to the animal plasma membrane area (on average 30%), demonstrating the existence of an animal-vegetal polarity in plasma membrane properties. At third cleavage, the differences between animal and vegetal plasma membrane region become even more pronounced; in the four animal micromeres the diffusion coefficient (D) and mobile fraction (MF) are 2.9 +/- 0.2 X 10(-9) cm2/sec and 51 +/- 2%, respectively, while in the four vegetal macromeres D = 5.0 +/- 0.3 X 10(-9) cm2/sec and MF = 78 +/- 2%. Superimposed upon the observed animal-vegetal polarity, the lateral diffusion in the polar lobe membrane area shows a cell-cycle-dependent modulation. The highest mean values for D are reached during the S phase (ranging from 7.0 to 7.8 X 10(-9) cm2/sec in the three cycles measured), while at the end of G2 phase and during early mitosis mean values for D have decreased significantly (ranging from 5.0 to 5.9 X 10(-9) cm2/sec). Diffusion rates in the animal membranes of the embryo are constant during the three successive cell cycles (D = 4.3-5.0 X 10(-9) cm2/sec), except for a peak at the S phase of the first cell cycle (D = 6.0 X 10(-9) cm2/sec). These results are discussed in relation with previously observed ultrastructural heterogeneities in the Nassarius egg plasma membrane. It is speculated that the observed animal-vegetal polarity in the organization of the egg membrane might play an important role in the process of cell diversification during early development.
The Solar Cycle and, How Do We Know What We Know?
NASA Technical Reports Server (NTRS)
Adams, Mitzi
2013-01-01
Through the use of observations, mathematics, mathematical tools (such as graphs), inference, testing, and prediction we have gathered evidence that there are sunspots, a solar cycle, and have begun to understand more about our star, the Sun. We are making progress in understanding the cause of the solar cycle. We expect solar cycle 24 to peak soon. Cycle 24 will be the smallest cycle in 100 years.
Metal-supported solid oxide fuel cells operated in direct-flame configuration
Tucker, Michael C.; Ying, Andrew S.
2017-08-19
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less
Respiratory Mechanical and Cardiorespiratory Consequences of Cycling with Aerobars.
Charlton, Jesse M; Ramsook, Andrew H; Mitchell, Reid A; Hunt, Michael A; Puyat, Joseph H; Guenette, Jordan A
2017-12-01
Aerobars place a cyclist in a position where the trunk is flexed forward and the elbows are close to the midline of the body. This position is known to improve cycling aerodynamics and time trial race performance compared with upright cycling positions. However, the aggressive nature of this position may have important cardiorespiratory and metabolic consequences. The purpose of this investigation was to examine the respiratory mechanical, ventilatory, metabolic, and sensory consequences of cycling while using aerobars during laboratory-based cycling. Eleven endurance-trained male cyclists (age, 26 ± 9 yr; V˙O2peak, 55 ± 5 mL·kg·min) were recruited. Visit 1 consisted of an incremental cycling test to determine peak power output. Visit 2 consisted of 6-min bouts of constant load cycling at 70% of peak incremental power output in the aerobar position, drop position, and upright position while grasping the brake hoods. Metabolic and ventilatory responses were measured using a commercially available metabolic cart, and respiratory pressures were measured using an esophageal catheter. Cycling in the aerobar position significantly increased the work of breathing (Wb), power of breathing (Pb), minute ventilation, ventilatory equivalent for oxygen and carbon dioxide, and transdiaphragmatic pressure compared with the upright position. Increases in the Wb and Pb in the aerobars relative to the upright position were strongly correlated with the degree of thoracic restriction, measured as the shoulder-to-aerobar width ratio (Wb: r = 0.80, P = 0.01; Pb: r = 0.69, P = 0.04). Aerobars significantly increase the mechanical cost of breathing and leads to greater ventilatory inefficiency compared with upright cycling. Future work is needed to optimize aerobar width to minimize the respiratory mechanical consequences while optimizing aerodynamics.
Yamamoto, Kazuki; Chikaoka, Yoko; Hayashi, Gosuke; Sakamoto, Ryosuke; Yamamoto, Ryuji; Sugiyama, Akira; Kodama, Tatsuhiko; Okamoto, Akimitsu; Kawamura, Takeshi
2015-01-01
Mass spectrometric proteomics is an effective approach for identifying and quantifying histone post-translational modifications (PTMs) and their binding proteins, especially in the cases of methylation and acetylation. However, another vital PTM, phosphorylation, tends to be poorly quantified because it is easily lost and inefficiently ionized. In addition, PTM binding proteins for phosphorylation are sometimes resistant to identification because of their variable binding affinities. Here, we present our efforts to improve the sensitivity of detection of histone H4 tail peptide phosphorylated at serine 1 (H4S1ph) and our successful identification of an H4S1ph binder candidate by means of a chemical proteomics approach. Our nanoLC-MS/MS system permitted semi-quantitative label-free analysis of histone H4 PTM dynamics of cell cycle-synchronized HeLa S3 cells, including phosphorylation, methylation, and acetylation. We show that H4S1ph abundance on nascent histone H4 unmethylated at lysine 20 (H4K20me0) peaks from late S-phase to M-phase. We also attempted to characterize effects of phosphorylation at H4S1 on protein–protein interactions. Specially synthesized photoaffinity bait peptides specifically captured 14-3-3 proteins as novel H4S1ph binding partners, whose interaction was otherwise undetectable by conventional peptide pull-down experiments. This is the first report that analyzes dynamics of PTM pattern on the whole histone H4 tail during cell cycle and enables the identification of PTM binders with low affinities using high-resolution mass spectrometry and photo-affinity bait peptides. PMID:26819910
Fowler, Eileen G; Knutson, Loretta M; Demuth, Sharon K; Siebert, Kara L; Simms, Victoria D; Sugi, Mia H; Souza, Richard B; Karim, Roksana; Azen, Stanley P
2010-03-01
Effective interventions to improve and maintain strength (force-generating capacity) and endurance are needed for children with cerebral palsy (CP). This study was performed to examine the effects of a stationary cycling intervention on muscle strength, locomotor endurance, preferred walking speed, and gross motor function in children with spastic diplegic CP. This was a phase I randomized controlled trial with single blinding. The interventions were performed in community-based outpatient physical therapy clinics. Outcome assessments were performed in university laboratories. Sixty-two ambulatory children aged 7 to 18 years with spastic diplegic CP and Gross Motor Function Classification System levels I to III participated in this study. Participants were randomly assigned to cycling or control (no-intervention) groups. Thirty intervention sessions occurred over 12 weeks. Primary outcomes were peak knee extensor and flexor moments, the 600-Yard Walk-Run Test, the Thirty-Second Walk Test, and the Gross Motor Function Measure sections D and E (GMFM-66). Significant baseline-postintervention improvements were found for the 600-Yard Walk-Run Test, the GMFM-66, peak knee extensor moments at 120 degrees /s, and peak knee flexor moments at 30 degrees /s for the cycling group. Improved peak knee flexor moments at 120 degrees/s were found for the control group only, although not all participants could complete this speed of testing. Significant differences between the cycling and control groups based on change scores were not found for any outcomes. Limitations Heterogeneity of the patient population and intrasubject variability were limitations of the study. Significant improvements in locomotor endurance, gross motor function, and some measures of strength were found for the cycling group but not the control group, providing preliminary support for this intervention. As statistical differences were not found in baseline-postintervention change scores between the 2 groups; the results did not demonstrate that stationary cycling was more effective than no intervention. The results of this phase I study provide guidance for future research.
2014-01-01
Background The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Methods Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. Results For all finishers, the age of peak cycling performance decreased significantly (β = −0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = −0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = −0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35–39 years. Conclusion In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance. PMID:24883191
Thermochromic halide perovskite solar cells.
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Thermochromic halide perovskite solar cells
NASA Astrophysics Data System (ADS)
Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong
2018-03-01
Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.
Testing activities at the National Battery Test Laboratory
NASA Astrophysics Data System (ADS)
Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.
The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.
Datta, M; Roy, P; Banerjee, J; Bhattacharya, S
1998-09-01
Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN
Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth
2015-01-01
Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078
[Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].
Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming
2012-12-01
A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.
NASA Astrophysics Data System (ADS)
Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi
2017-05-01
An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.
A solar cycle timing predictor - The latitude of active regions
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1990-01-01
A 'Spoerer butterfly' method is used to examine solar cycle 22. It is shown from the latitude of active regions that the cycle can now be expected to peak near November 1989 + or - 8 months, basically near the latter half of 1989.
Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral.
Oldach, Matthew J; Workentine, Matthew; Matz, Mikhail V; Fan, Tung-Yung; Vize, Peter D
2017-05-01
On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology. © 2017 John Wiley & Sons Ltd.
The VRLA modular wound design for 42 V mild hybrid systems
NASA Astrophysics Data System (ADS)
Trinidad, F.; Gimeno, C.; Gutiérrez, J.; Ruiz, R.; Sainz, J.; Valenciano, J.
Mild hybrid vehicles with 42 V electrical systems require advanced batteries with low cost, very high reliability and peak power performance. Valve-regulated lead-acid (VRLA) batteries could provide better performance/cost ratio than any other electrochemical couples, by improving their cycle life performance at partial state-of-charge (SoC), charge acceptance of the negative plate and thermal management under power assist conditions. Modular wound designs are being developed for this application, because they can combine the best attributes of the high power VRLA designs (low resistance and high compression) with a more efficient thermal management and could improve reliability by reducing the potential cell failures in manufacturing (better quality control could be assured for individual 3-cell modules than for complete 18-cell block batteries). Thermal management is an important issue for VRLA batteries in a power assist cycling profile. Although water cooling is very efficient, it is not economical and increases the weight of the complete storage system. The modular VRLA design allows air circulation around the external walls of every cell in order to maintain the temperature around 40 °C, even at very high power cycling profiles. In order to increase the life at higher depth-of-discharge (DoD) and consequently to optimise the weight of the complete battery systems, a new 6 V module has been designed with improved thermal management features. Cycle life performance under partial-SoC conditions (around 60% SoC) has been tested in both 6 and 12 V modules. The basic power assist profile as specified by the European car manufacturers is composed of a high power discharge (boost) period followed by a rest (cruise) and recharge in three steps (regenerative braking). Very good results have been obtained for 12 V VRLA spiral wound batteries under power assist profile (more than 200,000 cycles at 1.25% DoD, equivalent to 2500 times the nominal capacity), but smaller 6 V modules, although providing very promising results (50,000 power assist cycles at 2.5% DoD, equivalent to 1250 times the nominal capacity), still need further improvement to comply with the very demanding conditions of mild hybrid vehicles. Failure mode is related to negative active material sulfation, that could be overcome by improving charge acceptance with high surface conducting additives in the active material.
Diurnal Cycle of Convection in the East Pacific ITCZ during EPIC-2001
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.; Petersen, Walter A.; Cifelli, Robert; Rutledge, Steven A.; Arnold, James O. (Technical Monitor)
2002-01-01
During the last three weeks of September 2001, the EPIC-2001 intensive field campaign focused on studies of deep convection in the ITCZ over the Mexican warm pool region (10N, 95W) of the East Pacific. This study focuses on the pronounced observed diurnal cycle of environmental and convective parameters within the experiment domain. Data from three primary sources are examined: the R/V Ronald H. Brown C-band weather radar, 4-hourly soundings from the Brown and the Global Atmospherics, Inc. National Lightning Detection Network (long range product). Satellite data from TRMM, GOES and OV-1 are also used. The domain boundary layer shows a robust daily evolution of moist enthalpy (as reflect by equivalent potential temperature, theta-e, or wet bulb potential temperature, theta-w), with contributions from changes in both dry and moist entropy. Peak theta-w is found after local nightfall; the average diurnal range of theta-w is approximately 1 deg C. A composite diurnal cycle of convective properties was derived from the C-band volume scans, sampled continuously through the experiment at 10 minute updates. Products derived from the volumetric data include a surface PPI, 15 and 30 dBZ echo top height, vertically integrated liquid, and 6 km (mixed phase region) reflectivity CAPPIs. For almost all products, the parameter means showed virtually no diurnal cycle. However, for the upper-level products, the parameter spectra showed a clear peak in the occurrence of deep/vigorous convection (the "tail end of the distribution") between 7-9 UTC (1-3 AM local), while overall frequency of occurrence peaked later, from 12-15 UTC (6-9 AM local). This represents a daily "outbreak" of isolated deep cells a couple of hours after sunset and subsequent growth, organization and decay through the nighttime hours. The coherence of the diurnal cycle of the convective spectrum is impressive given the wide variety of convective organization observed during the experiment, and given the modulation by passage of 3-5 day easterly waves. While earlier satellite OLR composites suggested an offshore coastal migration of storms into the domain at night, examination of the 150 km and 300 km range radar products showed little evidence of such organization; almost all convection developed "in-place" within the analysis domain. Consistent with the diurnal thermodynamic and microphysical evolution, a clear cycle in cloud-to-ground (CG) lightning occurrence was observed. The local CG diurnal cycle is significantly stronger than the satellite-derived tropical ocean diurnal cycle of total (IC+CG) lightning. Flash rates of 3-4 fl/min were often visually observed after nightfall; these are fairly 'healthy' flash rates for tropical ocean storms, and the domain was qualitatively noted to be unusually lightning-productive by the R/V Brown crew (also consistent with satellite-based climatologies).
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-10-03
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-01-01
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242
Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P
2012-11-01
We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cyclic softening based on dislocation annihilation at sub-cell boundary for SA333 Grade-6 C-Mn steel
NASA Astrophysics Data System (ADS)
Bhattacharjee, S.; Dhar, S.; Acharyya, S. K.; Gupta, S. K.
2018-01-01
In this work, the response of SA333 Grade-6 C-Mn steel subjected to uniaxial and in-phase biaxial tension-torsion cyclic loading is experimented and an attempt is made to model the material behaviour. Experimentally observed cyclic softening is modelled based on ‘dislocation annihilation at low angle grain boundary’, while Ohno-Wang kinematic hardening rule is used to simulate the stress-strain hysteresis loops. The relevant material parameters are extracted from the appropriate experimental results and metallurgical investigations. The material model is plugged as user material subroutine into ABAQUS FE platform to simulate pre-saturation low cycle fatigue loops with cyclic softening and other cyclic plastic behaviour under prescribed loading. The stress-strain hysteresis loops and peak stress with cycles were compared with the experimental results and good agreements between experimental and simulated results validated the material model.
Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja
2012-01-01
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS. PMID:22792212
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1998-01-01
To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak) was measured in a group of physically fit subjects and compared with VO2peak in a group of relatively unfit subjects before and after 10 days of continuous 6 degrees head-down tilt (HDT). Ten fit subjects (40 +/- 2 year) with mean +/- SE VO2peak = 48.9 +/- 1.7 mL kg-1 min-1 were matched for age, height, and lean body weight with 10 unfit subjects (VO2peak = 37.7 +/- 1.6 mL kg-1 min-1). Before and after HDT, plasma, blood, and red cell volumes and body composition were measured and all subjects underwent a graded supine cycle ergometer test to determine VO2peak period needed. Reduced VO2peak in fit subjects (-16.2%) was greater than that of unfit subjects (-6.1%). Similarly, reductions in plasma (-18.3%) and blood volumes (-16.0%) in fit subjects were larger than those of unfit subjects (blood volume = -5.6%; plasma volume = -6.6%). Reduced plasma volume was associated with greater negative body fluid balance during the initial 24 h of HDT in the fit group (912 +/- 154 mL) compared with unfit subjects (453 +/- 200 mL). The percentage change for VO2peak correlated with percentage change in plasma volume (r = +0.79). Following exposure to simulated microgravity, fit subjects demonstrated larger reductions in VO2peak than unfit subjects which was associated with larger reductions in plasma and blood volume. These data suggest that the magnitude of physical deconditioning induced by exposure to microgravity without intervention of countermeasures was influenced by the initial fitness of the subjects.
Miyashita, Y; Nagao, S
1984-01-01
Ionophoretic application of bicuculline, an antagonist of gamma-aminobutyric acid (GABA), was used to examine the contribution of intracortical inhibition to vestibular responses of Purkinje cells in the cerebellar flocculus of alert rabbits. Purkinje cells were sampled extracellularly (with triple-barrelled micropipettes) from the floccular area where electrical stimulation through the micro-electrode evoked abduction of the ipsilateral eye, indicating its close functional relationship to the horizontal vestibulo-ocular reflex. These cells exhibited frequency modulation of simple spike discharges in-phase or out-phase with sinusoidal head rotation (0.5 cycles/s, 5 degrees peak-to-peak) in the horizontal plane. Bicuculline was ejected ionophoretically through one barrel with a 20-60 nA current. The pharmacological effectiveness of the ejected bicuculline was confirmed for each Purkinje cell by its blocking action upon the depressant action of GABA applied ionophoretically through another barrel. Bicuculline usually shifted the simple spike modulation in the in-phase direction: it reduced the amplitude of out-phase modulation in three cells, converted out-phase modulation to the in-phase type in four cells, and increased in-phase modulation in five cells. In three other cells, however, bicuculline shifted the modulation in the out-phase direction. Because bicuculline application usually increased the resting discharge level of a Purkinje cell, ionophoretic application of DL-homocysteate was used in ten Purkinje cells to control for the effect of a generalized increase in excitability. In contrast to bicuculline, DL-homocysteate generally induced a slight increase of the simple spike modulation regardless of the phase relationship. Since frequency modulation of the simple spike discharges of flocculus Purkinje cells is presumed to contribute to the control of vestibulo-ocular reflexes, these results point to an important functional role of intracortical post-synaptic inhibition in the cerebellar cortex. PMID:6611408
Anodes for protonic ceramic fuel cells (PCFCs) =
NASA Astrophysics Data System (ADS)
Nasani, Narendar
One of the more promising possibilities for future "green" electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-delta cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-delta cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.
Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin
2014-11-26
Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.
Wong, Chung-Ki; Luo, Qingfei; Zotev, Vadim; Phillips, Raquel; Chan, Kam Wai Clifford; Bodurka, Jerzy
2018-03-31
In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection. Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle. The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy. The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB. The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.
2016-11-01
The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.
Bilateral pedaling asymmetry during a simulated 40-km cycling time-trial.
Carpes, F P; Rossato, M; Faria, I E; Bolli Mota, C
2007-03-01
This study investigated the pedaling asymmetry during a 40-km cycling time-trial (TT). Six sub-elite competitive male cyclists pedaled a SRM Training Systems cycle ergometer throughout a simulated 40-km TT. A SRM scientific crank dynamometer was used to measure the bilateral crank torque (N.m) and pedaling cadence (rpm). All data were analyzed into 4 stages with equal length obtained according to total time. Comparisons between each stage of the 40-km TT were made by an analysis of variance (ANOVA). Dominant (DO) and non-dominant (ND) crank peak torque asymmetry was determined by the equation: asymmetry index (AI%)=[(DO-ND)/DO] 100. Pearson correlation analysis was performed to verify the relationship between exercise intensity, mean and crank peak torque. The crank peak torque was significantly (P<0.05) greater in the 4th stage compared with other stages. During the stages 2 and 3, was observed the AI% of 13.51% and 17.28%, respectively. Exercise intensity (%VO(2max)) was greater for stage 4 (P<0.05) and was highly correlated with mean and crank peak torque (r=0.97 and r=0.92, respectively) for each stage. The DO limb was always responsible for the larger crank peak torque. It was concluded that pedaling asymmetry is present during a simulated 40-km TT and an increase on crank torque output and exercise intensity elicits a reduction in pedaling asymmetry.
NASA Astrophysics Data System (ADS)
Huang, Tai-Yin
2018-06-01
Variations of airglow intensity, Volume Emission Rate (VER), and VER peak height induced by the CO2 increase, and by the F10.7 solar cycle variation and geomagnetic activity were investigated to quantitatively assess their influences on airglow. This study is an extension of a previous study by Huang (2016) covering a time period of 55 years from 1960 to 2015 and includes geomagnetic variability. Two airglow models, OHCD-90 and MACD-90, are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow for this study. Overall, our results demonstrate that airglow intensity and the peak VER variations of the three airglow emissions are strongly correlated, and in phase, with the F10.7 solar cycle variation. In addition, there is a linear trend, be it increasing or decreasing, existing in the airglow intensities and VERs due to the CO2 increase. On other hand, airglow VER peak heights are strongly correlated, and out of phase, with the Ap index variation of geomagnetic activity. The CO2 increase acts to lower the VER peak heights of OH(8,3) airglow and O(1S) greenline by 0.2 km in 55 years and it has no effect on the VER peak height of O2(0,1) atmospheric band.
Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene
2007-01-01
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917
Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene
2007-12-26
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.
Hartnett, M. Elizabeth; Martiniuk, David; Byfield, Grace; Geisen, Pete; Zeng, Gefei; Bautch, Victoria L.
2008-01-01
Purpose To study the effects of vascular endothelial growth factor (VEGF) on endothelial nitric oxide synthetase (eNOS) and retinal vascular tortuosity and cleavage planes in a rat model of retinopathy of prematurity (ROP). Methods Within 4 hours of birth, pups and mothers were cycled between 50% and 10% oxygen daily. At postnatal day (p)12, pups received either intravitreous anti-rat neutralizing antibody to VEGF or control nonimmune rat IgG in one eye and returned to oxygen cycling until p14 when they were placed in room air (RA) for 4 days (50/10 oxygen-induced retinopathy [50/10 OIR]). Tortuosity indices and endothelial cleavage plane angles relative to the long axes of the major retinal vessels during anaphase were calculated from phosphohistone- and Alexa-isolectin-stained retinal flatmounts. Some retinas were processed for eNOS protein or phosphorylated/total eNOS. Results Retinas from 50/10 OIR had increased tortuosity over time with peaks at p12 and p14 (P < 0.001 vs. RA) before the development of intravitreous neovascularization, which peaked at p18. Compared with RA, eNOS/actin in 50/10 OIR retinas was increased at p12 (P = 0.0003) and p14 (P = 0.047). Inhibition of VEGF with a neutralizing antibody decreased tortuosity and caused endothelial mitosis cleavage planes to orient in favor of vessel elongation but did not affect eNOS protein or activation. Conclusions In the 50/10 OIR model, a model with relevance to ROP, arteriolar tortuosity, and venous dilation are increased through VEGF, which influences the orientation of endothelial cell cleavage in major arterioles and veins, independent of eNOS. PMID:18378573
Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong
2014-05-01
Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.
Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk
Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.
2016-01-01
The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117
Thayer, S A; Miller, R J
1990-01-01
1. Simultaneous whole-cell patch-clamp and Fura-2 microfluorimetric recordings of calcium currents (ICa) and the intracellular free Ca2+ concentration ([Ca2+]i) were made from neurones grown in primary culture from the dorsal root ganglion of the rat. 2. Cells held at -80 mV and depolarized to 0 mV elicited a ICa that resulted in an [Ca2+]i transient which was not significantly buffered during the voltage step and lasted long after the cell had repolarized and the current ceased. The process by which the cell buffered [Ca2+]i back to basal levels could best be described with a single-exponential equation. 3. The membrane potential versus ICa and [Ca2+]i relationship revealed that the peak of the [Ca2+]i transient evoked at a given test potential closely paralleled the magnitude of the ICa suggesting that neither voltage-dependent nor Ca2(+)-induced Ca2+ release from intracellular stores made a significant contribution to the [Ca2+]i transient. 4. When the cell was challenged with Ca2+ loads of different magnitude by varying the duration or potential of the test pulse, [Ca2+]i buffering was more effective for larger Ca2+ loads. The relationship between the integrated ICa and the peak of the [Ca2+]i transient reached an asymptote at large Ca2+ loads indicating that Ca2(+)-dependent processes became more efficient or that low-affinity processes had been recruited. 5. Inhibition of Ca2+ influx with neuropeptide Y demonstrated that inhibition of a large ICa produced minor alterations in the peak of the [Ca2+]i transient, while inhibition of smaller currents produced corresponding decreases in the [Ca2+]i transient. Thus, inhibition of the ICa was reflected by a change in the peak [Ca2+]i only when submaximal Ca2+ loads were applied to the cell, implying that modulation of [Ca2+]i is dependent on the activation state of the cells. 6. Intracellular dialysis with the mitochondrial Ca2+ uptake blocker Ruthenium Red in whole-cell patch-clamp experiments removed the buffering component which was responsible for the more efficient removal of [Ca2+]i observed when large Ca2+ loads were applied to the cell. 7. When cells were superfused with 50 mM-K+, [Ca2+]i transients recorded from the cell soma returned to control levels very slowly. Pharmacological studies indicated that mitochondria were cycling Ca2+ during this sustained elevation in [Ca2+]i. In contrast, [Ca2+]i transients recorded from cell processes returned to basal levels relatively rapidly. 8. Extracellular Na(+)-dependent Ca2+ efflux did not significantly contribute to buffering [Ca2+]i transients in dorsal root ganglion neurone cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2213592
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612
Alternatives to the Six-Minute Walk Test in Pulmonary Arterial Hypertension
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
Introduction The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Methods Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Results Peak oxygen consumption (VO2peak) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO2peak reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Conclusion Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests. PMID:25111294
Pluto's Haze from 2002 - 2015: Correlation with the Solar Cycle
NASA Astrophysics Data System (ADS)
Young, Eliot; Klein, Viliam; Hartig, Kara; Resnick, Aaron; Mackie, Jason; Carriazo, Carolina; Watson, Charles; Skrutskie, Michael; Verbiscer, Anne; Nelson, Matthew; Howell, Robert; Wasserman, Lawrence; Hudson, Gordon; Gault, David; Barry, Tony; Sicardy, Bruno; Cole, Andrew; Giles, Barry; Hill, Kym
2017-04-01
Occultations by Pluto were observed 2002, 2007, 2011 and 2015, with each event observed simultaneously in two or more wavelengths. Separate wavelengths allow us to discriminate between haze opacity and refractive effects due to an atmosphere's thermal profile - these two effects are notoriously hard to separate if only single-wavelength lightcurves are available. Of those four occultations, the amount of haze in Pluto's atmosphere was highest in 2002 (Elliot et al. 2003 report an optical depth of 0.11 at 0.73 µm in the zenith direction), but undetectable in the 2007 and 2011 events (we find optical depth upper limits of 0.012 and 0.010 at 0.6 µm). Cheng et al. (2016) report a zenith optical depth of 0.018 at 0.6 µm from the haze profiles seen in New Horizons images. These four data points are correlated with the solar cycle. The 2002 haze detection occurred just after the peak of solar cycle 23, the 2007 and 2011 non-detections occurred during the solar minimum between peaks 23 and 24, and the New Horizons flyby took place just after the peak of solar cycle 24. This suggests that haze production on Pluto (a) is driven by solar UV photons or charged particles, (b) that sources and sinks on Pluto have timescales shorter than a few Earth years, and (c) the haze precursors on Pluto are not produced by Lyman-alpha radiation, because Lyman-alpha output only decreased by about one third in between the cycle 23 and 24 peaks, much less than the observed change in Pluto's haze abundances. References: Elliot, J.L. et al. (2003) Nature, Volume 424, Issue 6945, pp. 165-168.
Alternatives to the six-minute walk test in pulmonary arterial hypertension.
Mainguy, Vincent; Malenfant, Simon; Neyron, Anne-Sophie; Saey, Didier; Maltais, François; Bonnet, Sébastien; Provencher, Steeve
2014-01-01
The physiological response during the endurance shuttle walk test (ESWT), the cycle endurance test (CET) and the incremental shuttle walk test (ISWT) remains unknown in PAH. We tested the hypothesis that endurance tests induce a near-maximal physiological demand comparable to incremental tests. We also hypothesized that differences in respiratory response during exercise would be related to the characteristics of the exercise tests. Within two weeks, twenty-one PAH patients (mean age: 54(15) years; mean pulmonary arterial pressure: 42(12) mmHg) completed two cycling exercise tests (incremental cardiopulmonary cycling exercise test (CPET) and CET) and three field tests (ISWT, ESWT and six-minute walk test (6MWT)). Physiological parameters were continuously monitored using the same portable telemetric device. Peak oxygen consumption (VO(2peak)) was similar amongst the five exercise tests (p = 0.90 by ANOVA). Walking distance correlated markedly with the VO(2peak) reached during field tests, especially when weight was taken into account. At 100% exercise, most physiological parameters were similar between incremental and endurance tests. However, the trends overtime differed. In the incremental tests, slopes for these parameters rose steadily over the entire duration of the tests, whereas in the endurance tests, slopes rose sharply from baseline to 25% of maximum exercise at which point they appeared far less steep until test end. Moreover, cycling exercise tests induced higher respiratory exchange ratio, ventilatory demand and enhanced leg fatigue measured subjectively and objectively. Endurance tests induce a maximal physiological demand in PAH. Differences in peak respiratory response during exercise are related to the modality (cycling vs. walking) rather than the progression (endurance vs. incremental) of the exercise tests.
Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.
2012-01-01
The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation, thereby modifying the thermal structure of the atmosphere and its circulation. Results presented in other papers at this workshop show that including the radiative effects of water ice clouds greatly influence the water cycle and the vigor of weather systems in both the northern and southern hemispheres. Our goal is to investigate the effects of fully coupling the dust and water cycles on the dust cycle. We show that including water ice clouds and their radiative effects greatly affect the magnitude, spatial extent and seasonality of dust lifting and the season of maximum atmospheric dust loading.
Thermal energy storage for power generation applications
NASA Astrophysics Data System (ADS)
Drost, M. K.; Antoniak, Zen I.; Brown, D. R.
1990-03-01
Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.
NASA Astrophysics Data System (ADS)
Shi, Zengliang; Duan, Yue; Zhu, Xingjun; Wang, Qiwei; Li, DongDong; Hu, Ke; Feng, Wei; Li, Fuyou; Xu, Chunxiang
2018-03-01
Lanthanide-doped up-conversion nanoparticles (UCNPs) provide a remote temperature sensing approach to monitoring biological microenvironments. In this research, the UCNPs of NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ with hexagonal (β)-phase were synthesized and applied in cell temperature sensing as well as imaging after surface modification with meso-2, 3-dimercaptosuccinic acid. In the core-shell UCNPs, Yb3+ ions were introduced as energy transfer media between sensitizers of Nd3+ and activators of Er3+ to improve Er3+emission and prevent their quenching behavior due to multiple energy levels of Nd3+. Under the excitations of 808 nm and 980 nm lasers, the NaYF4:Yb3+, Er3+@NaYF4:Yb3+, Nd3+ nanoparticles exhibited an efficient green band with two emission peaks at 525 nm and 545 nm, respectively, which originated from the transitions of 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 for Er3+ ions. We demonstrate that an occurrence of good logarithmic linearity exists between the intensity ratio of these two emission peaks and the reciprocal of the inside or outside temperature of NIH-3T3 cells. A better thermal stability is proved through temperature-dependent spectra with a heating-cooling cycle. The obtained viability of NIH-3T3 cells is greater than 90% after incubations of about 12 and 24 (h), and they possess a lower cytotoxicity of UCNPs. This work provides a method for monitoring the cell temperature and its living state from multiple dimensions including temperature response, cell images and visual up-conversion fluorescent color.
Aggregate Mesenchymal Stem Cell Delivery Ameliorates the Regenerative Niche for Muscle Repair.
Ruehle, Marissa A; Stevens, Hazel Y; Beedle, Aaron M; Guldberg, Robert E; Call, Jarrod A
2018-05-18
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane which renders the muscle susceptible to continuous damage. In DMD patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with non-contractile tissue, limit mobility and lifespan. Since the loss of dystrophin result in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study we used both an established myotoxic injury model in wildtype (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hours after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fiber cross section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at day 14 than SC or saline-treated mice and a greater CSA at day 10, compared to SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared to SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor (HGF). Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities. This article is protected by copyright. All rights reserved.
Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan
2014-01-01
DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.
Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L
2017-10-17
The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.
Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity
Muller, Richard A.; MacDonald, Gordon J.
1997-01-01
Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741
Kraemer, William J; Fragala, Maren S; van Henegouwen, Wendy R H Beijersbergen; Gordon, Scott E; Bush, Jill A; Volek, Jeff S; Triplett, N Travis; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Luk, Hui-Ying; Mastro, Andrea M
2013-04-01
Proenkephalin Peptide F [107-140] is an enkephalin-containing peptide found predominantly within the adrenal medulla, co-packaged with epinephrine within the chromaffin granules. In vivo studies indicate that Peptide F has classic opioid analgesia effects; in vitro studies suggest potential immune cell interactions. In this investigation we examined patterns of Peptide F concentrations in different bio-compartments of the blood at rest and following sub-maximal cycle exercise to determine if Peptide F interacts with the white blood cell (WBC) bio-compartment during aerobic exercise. Eight physically active men (n=8) performed sub-maximal (80-85% V˙O2peak) cycle ergometer exercise for 30 min. Plasma Peptide F and WBC Peptide F immunoreactivity were examined pre-exercise, mid-exercise and immediately post-, 5-min post-, 15-min post-, 30-min post- and 60-min post-exercise and at similar time-points during a control condition (30 min rest). Peptide F concentrations significantly (p<0.05) increased at 5 and 60 min post-exercise, compared to pre-exercise concentrations. No significant increases in Peptide F concentrations in the WBC fraction were observed during or after exercise. However, a significant decrease was observed at 30 min post-exercise. An ultradian pattern of Peptide F distribution was apparent during rest. Furthermore, concentrations of T cells, B cells, NK cells, and total WBCs demonstrated significant changes in response to aerobic exercise. Data indicated that Peptide F was bound in significant molar concentrations in the WBC fraction and that this biocompartment may be one of the tissue targets for binding interactions. These data indicate that Peptide F is involved with immune cell modulation in the white blood circulatory biocompartment of blood. Copyright © 2013. Published by Elsevier Inc.
Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.
Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales
2013-03-01
Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.
On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms
NASA Technical Reports Server (NTRS)
Deming, Drake; Plymate, Claude
1994-01-01
We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.
On the apparent velocity of integrated sunlight. 2: 1983-1992 and comparisons with magnetograms
NASA Astrophysics Data System (ADS)
Deming, Drake; Plymate, Claude
1994-05-01
We report additional results in our program to monitor the wavelength stability of lines in the 2.3 micrometer spectrum of integrated sunlight. We use the McMath Fourier transform spectrometer (FTS) of the National Solar Observatory to monitor 16 delta V = 2 lines of (12)C(16)O, as well as five atomic lines. Wavenumber calibration is achieved using a low-pressure N2O absorption cell and checked against terrestrial atmospheric lines. Imperfect optical integration of the solar disk remains the principal source of error, but this error has been reduced by improved FTS/telescope collimation and observing procedures. The present results include data from an additional 13 quarterly observing runs since 1985. We continue to find that the apparent velocity of integrated sunlight is variable, in the sense of having a greater reshift at solar maximum. This is supported by the temporal dependence of the integrated light velocity, and by the presence of a correlation between velocity and the disk-averaged magnetic flux derived from Kitt Peak magnetograms. The indicated peak-to-peak apparent velocity amplitude over a solar cycle is approximately the same as the velocity amplitude of the Sun's motion about the solar system barycenter. This represents about half the amplitude which we inferred in Paper I (Deming et al. 1987), but the present result has a much greater statistical significance. Our results have implications for those investigations which search for the Doppler signatures of planetary-mass companions to solar-type stars. We contrast our results to the recent finding by McMillan et al. 1993 that solar absorption lines in the violet spectral region are wavelength-stable over the solar cycle.
Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar
2017-05-15
The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm -1 and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Forecasting the peak of the present solar activity cycle 24
NASA Astrophysics Data System (ADS)
Hamid, R. H.; Marzouk, B. A.
2018-06-01
Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aamin. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between maximum of solar cycles (RM) and spotless event around the preceding minimum gives R24t = 88.4 with rise time Tr = 4.6 years. For the even cycles R24E = 77.9 with rise time Tr = 4.5 y's. Based on the average aamin. index for cycles (12-23), we estimate the expected amplitude for cycle 24 to be Raamin = 99.4 and 98.1 with time rise of Traamin = 4.04 & 4.3 years for both the total and even cycles in consecutive. The application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 126 with rise time Tr107 = 3.7 years, which are over estimation. Our result indicating to somewhat weaker of cycle 24 as compared to cycles 21-23.
A map of protein dynamics during cell-cycle progression and cell-cycle exit
Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan
2017-01-01
The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491
Kaighobadi, Farnaz; Stevens, Jeffrey R
2013-07-18
Informed by the research on adaptive decision making in other animal species, this study investigated human females' intertemporal and risky choices across the ovulatory cycle. We tested the hypothesis that at peak fertility, women who are exposed to environments that signal availability of higher quality mates (by viewing images of attractive males), become more impulsive and risk-seeking in economic decision tasks. To test this, we collected intertemporal and risky choice measures before and after exposure to images of either attractive males or neutral landscapes both at peak and low fertility conditions. The results showed an interaction between women's fertility status and image type, such that women at peak fertility viewing images of attractive men chose the smaller, sooner monetary reward option less than women at peak fertility viewing neutral images. Neither fertility status nor image type influenced risky choice. Thus, though exposure to images of men altered intertemporal choices at peak fertility, this occurred in the opposite direction than predicted--i.e., women at peak fertility became less impulsive. Nevertheless, the results of the current study provide evidence for shifts in preferences over the ovulatory cycle and opens future research on economic decision making.
Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.
Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua
2017-05-01
Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.
Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease
Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio
2017-01-01
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair. PMID:28199407
Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.
Confalonieri, Marco; Buratti, Emanuele; Grassi, Gabriele; Bussani, Rossana; Chilosi, Marco; Farra, Rossella; Abrami, Michela; Stuani, Cristiana; Salton, Francesco; Ficial, Miriam; Confalonieri, Paola; Zandonà, Lorenzo; Romano, Maurizio
2017-01-01
The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14) expression during diffuse alveolar damage (DAD), but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein) only in human lung samples with DAD or interstitial lung disease (ILD). In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC) just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.
Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle
Li, Chunhe; Wang, Jin
2014-01-01
Cell cycles, essential for biological function, have been investigated extensively. However, enabling a global understanding and defining a physical quantification of the stability and function of the cell cycle remains challenging. Based upon a mammalian cell cycle gene network, we uncovered the underlying Mexican hat landscape of the cell cycle. We found the emergence of three local basins of attraction and two major potential barriers along the cell cycle trajectory. The three local basins of attraction characterize the G1, S/G2, and M phases. The barriers characterize the G1 and S/G2 checkpoints, respectively, of the cell cycle, thus providing an explanation of the checkpoint mechanism for the cell cycle from the physical perspective. We found that the progression of a cell cycle is determined by two driving forces: curl flux for acceleration and potential barriers for deceleration along the cycle path. Therefore, the cell cycle can be promoted (suppressed), either by enhancing (suppressing) the flux (representing the energy input) or by lowering (increasing) the barrier along the cell cycle path. We found that both the entropy production rate and energy per cell cycle increase as the growth factor increases. This reflects that cell growth and division are driven by energy or nutrition supply. More energy input increases flux and decreases barrier along the cell cycle path, leading to faster oscillations. We also identified certain key genes and regulations for stability and progression of the cell cycle. Some of these findings were evidenced from experiments whereas others lead to predictions and potential anticancer strategies. PMID:25228772
Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.
Liu, Chenglin; Cui, Peng; Huang, Tao
2017-01-01
The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells
NASA Astrophysics Data System (ADS)
Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.
2007-02-01
Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60μg/ml) + light at 630nm induced DNA fragmentation in a light dose-dependent manner; in contrast, PMF or light alone did not induce DNA fragmentation. In separate experiments, PMF alone treatment produced a dose-dependent DNA synthesis with a 90% inhibition at a concentration of 25μg/ml (IC90 = 25μg/ml). Expression of p53 and p27 cell cycle regulatory proteins was not altered by PMF alone, however, a dose-dependent increase in p21 expression was observed that correlates with PMF concentrations. Cyclin A and cyclin B protein levels showed a clear decrease inverse to the concentration of PMF. In the absence of light treatment, flow cytometry analysis showed that PMF alone results in G 0/G I cell cycle arrest, with a 2-fold increase in G 0/G I cells concomitant with 50% decrease in cells in both S and G II/M phases. However, flow cytometry on PMF alone-treated cells did not show sub G 0/G I peak, further evidence of the lack of apoptosis as a mechanism of effect of PMF in the dark. Conclusions: With respect to light treatment, apoptosis appears to play a vital role in PDT-induced cytotoxicity. The flow cytometry and DNA laddering results revealed that T24 cells demonstrated apoptotic responses in PMF-mediated PDT. Experiments conducted with PMF alone showed a dose-dependent inhibition of DNA synthesis associated with G 0/G I cell cycle arrest and the extract is able to coordinate changes in key cell cycle regulatory proteins in human bladder cancer cells. Both experimental conditions suggest PMF as a potent and effect anti-proliferative agent in cancer chemoprevention and therapy of human urothelial carcinoma cells.
Cai, Xiaoni; Gao, Kunshan
2015-01-01
While the diazotrophic cyanobacterium Trichodesmium is known to display inverse diurnal performances of photosynthesis and N2 fixation, such a phenomenon has not been well documented under different day-night (L-D) cycles and different levels of light dose exposed to the cells. Here, we show differences in growth, N2 fixation and photosynthetic carbon fixation as well as photochemical performances of Trichodesmium IMS101 grown under 12L:12D, 8L:16D and 16L:8D L-D cycles at 70 μmol photons m-2 s-1 PAR (LL) and 350 μmol photons m-2 s-1 PAR (HL). The specific growth rate was the highest under LL and the lowest under HL under 16L:8D, and it increased under LL and decreased under HL with increased levels of daytime light doses exposed under the different light regimes, respectively. N2 fixation and photosynthetic carbon fixation were affected differentially by changes in the day-night regimes, with the former increasing directly under LL with increased daytime light doses and decreased under HL over growth-saturating light levels. Temporal segregation of N2 fixation from photosynthetic carbon fixation was evidenced under all day-night regimes, showing a time lag between the peak in N2 fixation and dip in carbon fixation. Elongation of light period led to higher N2 fixation rate under LL than under HL, while shortening the light exposure to 8 h delayed the N2 fixation peaking time (at the end of light period) and extended it to night period. Photosynthetic carbon fixation rates and transfer of light photons were always higher under HL than LL, regardless of the day-night cycles. Conclusively, diel performance of N2 fixation possesses functional plasticity, which was regulated by levels of light energy supplies either via changing light levels or length of light exposure.
Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.
Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L
1984-11-01
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.
The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle
Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173
Indirect-fired gas turbine dual fuel cell power cycle
Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.
1996-01-01
A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.
The global regulatory architecture of transcription during the Caulobacter cell cycle.
Zhou, Bo; Schrader, Jared M; Kalogeraki, Virginia S; Abeliuk, Eduardo; Dinh, Cong B; Pham, James Q; Cui, Zhongying Z; Dill, David L; McAdams, Harley H; Shapiro, Lucy
2015-01-01
Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5' RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle.
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.
The cell cycle as a brake for β-cell regeneration from embryonic stem cells.
El-Badawy, Ahmed; El-Badri, Nagwa
2016-01-13
The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.
Sturm, Patrick; Leuenberger, Markus; Moncrieff, John; Ramonet, Michel
2005-01-01
Regular vertical aircraft sampling has been performed in the lower troposphere above Griffin Forest, near Aberfeldy, Perthshire, UK (56 degrees 37'N, 3 degrees 47'W), between February 2003 and May 2004, for analysis of O2/N2, CO2 and delta13C of CO2. We sampled flasks between 800 and 3100 m above sea level. The peak-to-peak amplitude of the seasonal cycle of O2/N2 decreases from 171 per meg at 800 m to 113 per meg at 3100 m. Furthermore, the seasonal cycle is shifted from low to high altitudes with a lag of about 1 month. The same features are observed for CO2 with a decrease in the peak-to-peak amplitude of the seasonal cycle from 17.6 ppm at 800 m to 11.4 ppm at 3100 m. The vertical profiles show decreasing O2/N2 ratios in summer and increasing O2/N2 ratios in wintertime with increasing sampling height, due to surface exchange of oxygen with the land biosphere and the ocean. The O2:CO2 exchange ratios of the vertical profiles vary between -1.5 and -2.4 mol O2/mol CO2. Copyright (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Barringer, Julia L.; Wilson, Timothy P.; Szabo, Zoltan; Bonin, Jennifer L.; Fischer, Jeffrey M.; Smith, Nicholas P.
2008-01-01
Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 μg/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 μg/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity.
Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael
2017-01-01
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1992-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.
The development and reliability of a repeated anaerobic cycling test in female ice hockey players.
Wilson, Kier; Snydmiller, Gary; Game, Alex; Quinney, Art; Bell, Gordon
2010-02-01
The purpose of this study was to develop and assess the reliability of a repeated anaerobic power cycling test designed to mimic the repeated sprinting nature of the sport of ice hockey. Nineteen female varsity ice hockey players (mean X +/- SD age, height and body mass = 21 +/- 2 yr, 166.6 +/- 6.3 cm and 62.3 +/- 7.3) completed 3 trials of a repeated anaerobic power test on a Monark cycle ergometer on different days. The test consisted of "all-out" cycling for 5 seconds separated by 10 seconds of low-intensity cycling, repeated 4 times. The relative load factor used for the resistance setting was equal to 0.095 kg per kilogram body mass. There was no significant difference between the peak 5-second power output (PO), mean PO, or the fatigue index (%) among the 3 different trials. The peak 5-second PO was 702.6 +/- 114.8 w and 11.3 +/- 1.1 w x kg, whereas the mean PO across the 4 repeats was 647.1 +/- 96.3 w and 10.4 +/- 1.0 w x kg averaged for the 3 different tests. The fatigue index averaged 17.8 +/- 6.5%. The intraclass correlation coefficient for peak 5-second, mean PO, and fatigue index was 0.82, 0.86, and 0.82, respectively. This study reports the methodology of a repeated anaerobic power cycling test that was reliable for the measurement of PO and calculated fatigue index in varsity women ice hockey players and can be used as a laboratory-based assessment of repeated anaerobic fitness.
Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching
2014-08-01
Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.
Singh, N; Lim, R B; Sawyer, M A
2000-07-01
The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.
Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer
2014-11-01
Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.
Pathological implications of cell cycle re-entry in Alzheimer disease.
Bonda, David J; Lee, Hyun-pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon
2010-06-29
The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.
NASA Astrophysics Data System (ADS)
Sebaa, Meriam Amel
In an attempt to develop conductive, biodegradable, mechanically strong, and biocompatible nerve conduits, pure magnesium (Mg) was used as the biodegradable substrate material to provide strength while the conductive polymer, poly(3,4ethylenedioxythiophene) (PEDOT) was used as a conductive coating material to control Mg degradation and improve cytocompatibility of Mg substrates. A series of electrochemical deposition conditions were explored to produce a uniform, consistent PEDOT coating on Mg substrates. Five cycles of CV with the potential ranging from -0.5V to 2.0V were used to produce consistent coatings for further evaluation. Scanning electron micrographs showed the micro-porous structure of PEDOT coatings. Energy Dispersive X-ray Spectroscopy (EDS) showed the peaks of sulfur, oxygen, and carbon, indicating PEDOT coating. Adhesion strength of the coating was measured using ASTM-D 3359 standard tape test. The adhesion strength of PEDOT coating was within the classifications of 3B to 4B. Tafel tests of the PEDOT coated Mg showed a corrosion current (ICORR) of 6.14e-5A and critical voltage of -1.10V, as compared with ICORR of 9.08e-4A with a critical voltage of -1.35V for non-coated Mg. The calculated corrosion rate for the PEDOT coated Mg was 8.6 mm/year, much slower than 126.9mm/year for the non-coated Mg. H9 human embryonic stem cell (hESC) culture studies were conducted using magnesium (Mg) coated with a conductive polymer poly (3,4-ethylenedioxythiophene) (PEDOT) to study viability for potential neural applications. Stem cells cultured indirectly with the Mg coated with PEDOT for 2 cycles were viable for a about half the amount of time when compared with the stem cells cultured with the 5 cycle PEDOT coated Mg.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042
Accuracy of Consumer Monitors for Estimating Energy Expenditure and Activity Type.
Woodman, James A; Crouter, Scott E; Bassett, David R; Fitzhugh, Eugene C; Boyer, William R
2017-02-01
Increasing use of consumer-based physical activity (PA) monitors necessitates that they are validated against criterion measures. Thus, the purpose of this study was to examine the accuracy of three consumer-based PA monitors for estimating energy expenditure (EE) and PA type during simulated free-living activities. Twenty-eight participants (mean ± SD: age, 25.5 ± 3.7 yr; body mass index, 24.9 ± 2.6 kg·m) completed 11 activities ranging from sedentary behaviors to vigorous intensities. Simultaneous measurements were made with an Oxycon portable calorimeter (criterion), a Basis Peak and Garmin Vivofit on the nondominant wrist, and three Withings Pulse devices (right hip, shirt collar, dominant wrist). Repeated-measures ANOVA were used to examine differences between measured and predicted EE. Intraclass correlation coefficients were calculated to determine reliability of EE predictions between Withings placements. Paired samples t tests were used to determine mean differences between observed minutes and Basis Peak predictions during walking, running, and cycling. On average, the Basis Peak was within 8% of measured EE for the entire PA routine (P > 0.05); however, there were large individual errors (95% prediction interval, -290.4 to +233.1 kcal). All other devices were significantly different from measured EE for the entire PA routine (P < 0.05). For activity types, Basis Peak correctly identified ≥92% of actual minutes spent walking and running (P > 0.05), and 40.4% and 0% of overground and stationary cycling minutes, respectively (P < 0.001). The Basis Peak was the only device that did not significantly differ from measured EE; however, it also had the largest individual errors. Additionally, the Basis Peak accurately predicted minutes spent walking and running, but not cycling.
Forbes, Scott C; Candow, Darren G; Little, Jonathan P; Magnus, Charlene; Chilibeck, Philip D
2007-10-01
The purpose of this study was to determine the effects of Red Bull energy drink on Wingate cycle performance and muscle endurance. Healthy young adults (N = 15, 11 men, 4 women, 21 +/- 5 y old) participated in a crossover study in which they were randomized to supplement with Red Bull (2 mg/kg body mass of caffeine) or isoenergetic, isovolumetric, noncaffeinated placebo, separated by 7 d. Muscle endurance (bench press) was assessed by the maximum number of repetitions over 3 sets (separated by 1-min rest intervals) at an intensity corresponding to 70% of baseline 1-repetition maximum. Three 30-s Wingate cycling tests (load = 0.075 kp/kg body mass), with 2 min recovery between tests, were used to assess peak and average power output. Red Bull energy drink significantly increased total bench-press repetitions over 3 sets (Red Bull = 34 +/- 9 vs. placebo = 32 +/- 8, P %%%lt; 0.05) but had no effect on Wingate peak or average power (Red Bull = 701 +/- 124 W vs. placebo = 700 +/- 132 W, Red Bull = 479 +/- 74 W vs. placebo = 471 +/- 74 W, respectively). Red Bull energy drink significantly increased upper body muscle endurance but had no effect on anaerobic peak or average power during repeated Wingate cycling tests in young healthy adults.
Dietzel, Erik; Kolesnikova, Larissa; Sawatsky, Bevan; Heiner, Anja; Weis, Michael; Kobinger, Gary P; Becker, Stephan; von Messling, Veronika; Maisner, Andrea
2015-12-16
Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles. Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can be studied only in biosafety level 4 (BSL-4) laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrixless viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Menegatos, J; Chadio, S; Kalogiannis, T; Kouskoura, T; Kouimtzis, S
2003-04-01
The aim of the present study was to investigate the endocrinology of the periestrus period and that of the subsequent estrous cycle in ewes synchronized during the breeding season. Animals were treated for 14 days with either MAP intravaginal sponges or subcutaneous progesterone implants, followed by administration of 500 IU PMSG at the time of withdrawal. The time to estrus occurrence following progestagen withdrawal differed significantly between groups (45.3+/-2.7h for the MAP and 21.5+/-1.2h for the implant group, P<0.001). Estradiol levels around estrus did not differ between groups, but a significant difference was detected for the interval from peak estradiol to estrus, with a shorter interval for the implant group (26.7+/-0.7 and 2.7+/-0.9h, P<0.001). Progesterone implants shortened the interval from removal to LH surge, compared to the MAP group (31.2+/-4.4 and 56.5+/-3.6h, respectively, P<0.05). An earlier response was also observed for the interval from estradiol peak to LH peak in the implant group (12.1+/-3.3 and 37+/-2h, respectively, P<0.005), but no difference was observed for the interval from estrus to LH surge. Progesterone levels, particularly during the Days 6 to 10 of the subsequent estrous cycle were significantly higher (P<0.05) in the implant group. It is concluded that the kind of progesterone treatment may affect the time of estrus and the LH peak as well as the progesterone levels of the subsequent cycle.
Proteomic profiling of the rat cerebral cortex in sleep and waking.
Cirelli, C; Pfister-Genskow, M; McCarthy, D; Woodbury, R; Tononi, G
2009-09-01
Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 "sleep" peaks, 4 "waking" peaks, and 4 "long sleep deprivation" peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This region encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.
Difference between even and odd 11-year cycles in cosmic ray intensity
NASA Technical Reports Server (NTRS)
Otaola, J. A.; Perez-Enriquez, R.; Valdes-Galicia, J. F.
1985-01-01
Cosmic ray data for the period 1946-1984 are used to determine the run of the cosmic ray intensity over three complete solar cycles. The analysis shows a tendency towards a regular alternation of cosmic ray intensity cycles with double and single maxima. Whereas a saddle-like shape is characteristic of even cycles, odd cycles are characterized by a peak-like shape. The importance of this behavior is discussed in terms of different processes influencing cosmic ray transport in the heliosphere.
Seasonal changes in pancreatic B-cell function in euthermic yellow-bellied marmots.
Florant, G L; Lawrence, A K; Williams, K; Bauman, W A
1985-08-01
Fasting plasma insulin (PI) and glucose (PG) concentrations were measured throughout the body weight cycle of marmots. Animals gained weight during summer, and in late fall body weight peaked, after which they ceased feeding. Each month euthermic animals were injected intra-arterially with either dextrose (500 mg/kg) or porcine insulin (0.1 U/kg), and blood samples were collected over the subsequent 2 h. During weight gain fasting PI concentration and pancreatic B-cell response to injected dextrose increased markedly. Maximal insulin release to a dextrose challenge was measured during peak body weight or when body weight initially began to decline. The PG concentration after exogenous insulin administration was slight (less than 10%) in the fall but increased approximately 25% in the spring after marmots lost weight. Basal PG levels were not significantly different throughout the year. Basal fasting PI concentrations were significantly higher during the fall (P less than 0.01). It is suggested that in the fall, when marmots are obese, hyperinsulinemia and peripheral insulin resistance appear. Furthermore, in two animals with an increase in body weight of approximately 30% or less over the summer, peripheral resistance was demonstrable, albeit not as marked as in animals that appropriately doubled their body weights when given food ad libitum. Thus we hypothesize that factors other than adiposity, i.e., food intake, central nervous system input to the pancreatic B-cell, and/or changes in B-cell sensitivity to PG, may contribute to the observed peripheral insulin resistance and may be involved in body weight regulation.
Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles.
Collin, Rachel; Kerr, Kecia; Contolini, Gina; Ochoa, Isis
2017-08-01
Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2-week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species ( Crepidula cf. marginalis and Nerita scabricosta ) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species ( Cerithideopsis carlifornica var. valida, Littoraria variegata , and Natica chemnitzi ), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica , and in particular, Littoraria variegata , between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.
SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; McMahon, S; Kaminuma, T
2016-06-15
Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhavenmore » National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.« less
NASA Astrophysics Data System (ADS)
Wade, Andrew; Palmer-Felgate, Elizabeth; Halliday, Sarah; Skeffington, Richard; Loewenthal, Matthew; Jarvie, Helen; Bowes, Michael; Greenway, Gillian; Haswell, Stephen; Bell, Ian; Joly, Etienne; Fallatah, Ahmed; Neal, Colin; Williams, Richard; Gozzard, Emma; Newman, Jonathan
2013-04-01
This work focuses on the insights obtained from in situ, high-resolution hydrochemical monitoring in three lowland UK catchments experiencing different levels of nutrient enrichment. Between November 2009 and February 2012, the upper River Kennet, the River Enborne and The Cut, all located within the Thames basin, southeast England, were instrumented with in situ analytical equipment to make hourly measurements of a range of hydrochemical determinands. The upper River Kennet is a rural catchment with limited effluent inputs above the selected monitoring point. The River Enborne is a rural catchment, impacted by agricultural runoff, and septic tank and sewage treatment works (STWs) discharges. The Cut is a highly urbanised system significantly affected by STW discharges. On the upper River Kennet and the River Enborne hourly measurements of Total Reactive Phosphorus (TRP) were made using a Systea Micromac C. In addition on the River Enborne, a Hach Lange Nitratax was used to measure nitrate (NO3). On The Cut both Total P and TRP were measured using a Hach Lange Phosphax Sigma. At all stations nutrient monitoring was supplemented with hourly pH, chlorophyll, dissolved oxygen, conductivity, turbidity and water temperature using YSI 6600 Multi-parameter sondes. Instream hydrochemical dynamics were investigated using non-stationary time-series analysis techniques. The results reveal complex nutrient dynamics, with diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by flow conditions, shading and nutrient sources. On the River Enborne a marked diurnal cycle was present within the streamwater NO3 time-series. The cycle was strongest in the spring before riparian shading developed. At times of low flow a two peak diurnal cycle was also evident in the streamwater NO3 time-series. The reduction in diurnal NO3 processing after the development of riparian shading was also accompanied by a marked drop in dissolved oxygen at this time. The presence of a two peak diurnal cycle is indicative of the dominance of STW discharges to the system, as STW discharges exhibit a marked two peak diurnal cycle associated with peak water usage. This two peak diurnal cycling can also been seen in the River Enborne TRP data. The dominance of effluent discharges was also evident in the River Enborne seasonal NO3 and TRP dynamics. Both determinands displayed summer time peaks caused by the reduced dilution capacity of the system and increased water residence time during the low flow summer months. The TP and TRP dynamics on The Cut were highly complex with significant diurnal fluctuations. Although, a two peak diurnal signal was evident within the TRP time-series it was difficult to characterise due to the complexity of the dynamics observed. Monitoring on the upper River Kennet highlighted the challenges associated with undertaking in situ analytical monitoring without mains electricity. Resampling of the data at lower sampling frequencies demonstrated that within the point-source dominated catchments, daily monitoring was sufficient for accurate load estimation.
Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J
2013-03-01
Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.
SAR11 bacteria linked to ocean anoxia and nitrogen loss
Tsementzi, Despina; Wu, Jieying; Deutsch, Samuel; Nath, Sangeeta; Rodriguez-R, Luis M; Burns, Andrew S.; Ranjan, Piyush; Sarode, Neha; Malmstrom, Rex R.; Padilla, Cory C.; Stone, Benjamin K.; Bristow, Laura A.; Larsen, Morten; Glass, Jennifer B.; Thamdrup, Bo; Woyke, Tanja; Konstantinidis, Konstantinos T.; Stewart, Frank J.
2016-01-01
Summary Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. DNA sequences from SAR11 are also abundant in oxygen minimum zones (OMZs) where oxygen falls below detection and anaerobic microbes play important roles in converting bioavailable nitrogen to N2 gas. Evidence for anaerobic metabolism in SAR11 has not yet been observed, and the question of how these bacteria contribute to OMZ biogeochemical cycling is unanswered. Here, we identify the metabolic basis for SAR11 activity in anoxic ocean waters. Genomic analysis of single cells from the world’s largest OMZ revealed diverse and previously uncharacterized SAR11 lineages that peak in abundance at anoxic depths, but are largely undetectable in oxygen-rich ocean regions. OMZ SAR11 contain adaptations to low oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalyzing the nitrite-producing first step of denitrification and constituted ~40% of all OMZ nar transcripts, with transcription peaking in the zone of maximum nitrate reduction rates. These results redefine the ecological niche of Earth’s most abundant organismal group and suggest an important contribution of SAR11 to nitrite production in OMZs, and thus to pathways of ocean nitrogen loss. PMID:27487207
Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan
2015-03-01
The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.
Alteration of cell cycle progression by Sindbis virus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa
We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less
Intensive Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1997-01-01
Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
NASA Astrophysics Data System (ADS)
Capri, Miriam; Mesirca, Pietro; Remondini, Daniel; Carosella, Simona; Pasi, Sara; Castellani, Gastone; Franceschi, Claudio; Bersani, Ferdinando
2004-12-01
In the last 30 years, an increasing public concern about the possible harmful effects of electromagnetic fields generated by power lines and domestic appliances has pushed the scientific community to search for a correct and comprehensive answer to this problem. In this work the effects of exposure to 50 Hz sinusoidal magnetic fields, with a magnetic flux density of 0.05 mT and 2.5 mT (peak values), were studied on human peripheral blood mononuclear cells (PBMCs) collected from healthy young and elderly donors. Cell activation and proliferation were investigated by using flow cytometry techniques and 3H-TdR incorporation assays, respectively. The results obtained indicated that exposure to the fields altered neither DNA synthesis nor the capacity of lymphocytes to enter the activation phase and progress into the cell cycle. Thus, the conclusions are that two important functional phases of human lymphocytes, such as activation and proliferation, are not affected by exposures to 50 Hz magnetic fields similar to those found under power lines.
NASA Astrophysics Data System (ADS)
Compagnino, A.; Romano, P.; Zuccarello, F.
2017-01-01
We investigated some properties of coronal mass ejections (CMEs), such as speed, acceleration, polar angle, angular width, and mass, using data acquired by the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) from 31 July 1997 to 31 March 2014, i.e. during the Solar Cycles 23 and 24. We used two CME catalogs: one provided by the Coordinated Data Analysis Workshops (CDAW) Data Center and one obtained by the Computer Aided CME Tracking software (CACTus) detection algorithm. For each dataset, we found that the number of CMEs observed during the peak of Cycle 24 was higher than or comparable to the number during Cycle 23, although the photospheric activity during Cycle 24 was weaker than during Cycle 23. Using the CMEs detected by CACTus, we noted that the number of events [N] is of the same order of magnitude during the peaks of the two cycles, but the peak of the CME distribution during Cycle 24 is more extended in time (N > 1500 during 2012 and 2013). We ascribe the discrepancy between the CDAW and CACTus results to the observer bias for CME definition in the CDAW catalog. We also used a dataset containing 19,811 flares of C-, M-, and X-class observed by the Geostationary Operational Environmental Satellite (GOES) during the same period. Using both datasets, we studied the relationship between the mass ejected by the CMEs and the flux emitted during the corresponding flares: we found 11,441 flares that were temporally correlated with CMEs for CDAW and 9120 for CACTus. Moreover, we found a log-linear relationship between the flux of the flares integrated from the start to end in the 0.1 - 0.8 nm range and the CME mass. We also found some differences in the mean CMEs velocity and acceleration between the events associated with flares and those that were not.
Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.; ...
2015-09-09
Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m –2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m –2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m –2, and varies widely from day to day.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt-Collow, Allison; Ghate, Virendra P.; Miller, Mark A.
The diurnal cycles of meteorological and radiation variables are analyzed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) program’s Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Center for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapor and liquid water measurements, and cloud radar measurements ofmore » frequency and location. These meteorological measurements are complemented by 3-hour measurements of the diurnal cycles of the TOA and surface shortwave (SW) and longwave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the Lifting Condensation Level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10-30 Wm^(-2) depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 Wm^(-2). A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 Wm^(-2), and varies widely from day to day.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collow, Allison B.; Ghate, Virendra P.; Miller, Mark A.
Here, the diurnal cycles of meteorological and radiation variables are analysed during the wet and dry seasons over the Sahel region of West Africa during 2006 using surface data collected by the Atmospheric Radiation Measurement (ARM) programme's Mobile Facility, satellite radiation measurements from the Geostationary Earth Radiation Budget (GERB) instrument aboard Meteosat 8, and reanalysis products from the National Centers for Environmental Prediction (NCEP). The meteorological analysis builds upon past studies of the diurnal cycle in the region by incorporating diurnal cycles of lower tropospheric wind profiles, thermodynamic profiles, integrated water vapour and liquid water measurements, and cloud radar measurementsmore » of frequency and location. These meteorological measurements are complemented by 3 h measurements of the diurnal cycles of the top-of-atmosphere (TOA) and surface short-wave (SW) and long-wave (LW) radiative fluxes and cloud radiative effects (CREs), and the atmospheric radiative flux divergence (RFD) and atmospheric CREs. Cirrus cloudiness during the dry season is shown to peak in coverage in the afternoon, while convective clouds during the wet season are shown to peak near dawn and have an afternoon minimum related to the rise of the lifting condensation level into the Saharan Air Layer. The LW and SW RFDs and CREs exhibit diurnal cycles during both seasons, but there is a relatively small difference in the LW cycles during the two seasons (10 – 30 W m –2 depending on the variable and time of day). Small differences in the TOA CREs during the two seasons are overwhelmed by large differences in the surface SW CREs, which exceed 100 W m –2. A significant surface SW CRE during the wet season combined with a negligible TOA SW CRE produces a diurnal cycle in the atmospheric CRE that is modulated primarily by the SW surface CRE, peaks at midday at ~150 W m –2, and varies widely from day to day.« less
Saitou, Takashi; Imamura, Takeshi
2016-01-01
Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.
Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species
Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.
2016-01-01
The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527
53 W average power few-cycle fiber laser system generating soft x rays up to the water window.
Rothhardt, Jan; Hädrich, Steffen; Klenke, Arno; Demmler, Stefan; Hoffmann, Armin; Gotschall, Thomas; Eidam, Tino; Krebs, Manuel; Limpert, Jens; Tünnermann, Andreas
2014-09-01
We report on a few-cycle laser system delivering sub-8-fs pulses with 353 μJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.
Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.
Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G
2018-04-01
Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building
;Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" on offset grid charges associated with peak facility demands. The analyzed scenarios will focus on how the alternative peak-shaving apparatus. View the past webinar. -Sara Havig
Modelling cell cycle synchronisation in networks of coupled radial glial cells.
Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R
2015-07-21
Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.
Lisney, Thomas J; Collin, Shaun P
2008-01-01
The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison of the BDA- labeled material and tissue stained for Nissl substance indicates that 76% of the cells in the retinal ganglion cell and inner plexiform layers of the central retina in this species are non-ganglion cells. Copyright 2008 S. Karger AG, Basel.
Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.
Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S
2018-06-19
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.
Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J
2016-09-01
This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.
Synthesis of monopolar ultrasound pulses for therapy: the frequency-compounding transducer.
Lin, Kuang-Wei; Hall, Timothy L; McGough, Robert J; Xu, Zhen; Cain, Charles A
2014-07-01
In diagnostic ultrasound, broadband transducers capable of short acoustic pulse emission and reception can improve axial resolution and provide sufficient bandwidth for harmonic imaging and multi-frequency excitation techniques. In histotripsy, a cavitation-based ultrasound therapy, short acoustic pulses (<2 cycles) can produce precise tissue ablation wherein lesion formation only occurs when the applied peak negative pressure exceeds an intrinsic threshold of the medium. This paper investigates a frequency compounding technique to synthesize nearly monopolar (half-cycle) ultrasound pulses. More specifically, these pulses were generated using a custom transducer composed of 23 individual relatively-broadband piezoceramic elements with various resonant frequencies (0.5, 1, 1.5, 2, and 3 MHz). Each frequency component of the transducer was capable of generating 1.5-cycle pulses with only one high-amplitude negative half-cycle using a custom 23-channel high-voltage pulser. By varying time delays of individual frequency components to allow their principal peak negative peaks to arrive at the focus of the transducer constructively, destructive interference occurs elsewhere in time and space, resulting in a monopolar pulse approximation with a dominant negative phase (with measured peak negative pressure [P-]: peak positive pressure [P+] = 4.68: 1). By inverting the excitation pulses to individual elements, monopolar pulses with a dominant positive phase can also be generated (with measured P+: P- = 4.74: 1). Experiments in RBC phantoms indicated that monopolar pulses with a dominant negative phase were able to produce very precise histotripsy-type lesions using the intrinsic threshold mechanism. Monopolar pulses with a dominant negative phase can inhibit shock scattering during histotripsy, leading to more predictable lesion formation using the intrinsic threshold mechanism, while greatly reducing any constructive interference, and potential hot-spots elsewhere. Moreover, these monopolar pulses could have many potential benefits in ultrasound imaging, including axial resolution improvement, speckle reduction, and contrast enhancement in pulse inversion imaging.
The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.
Harigane, K; Sumi, A; Mise, K; Kobayashi, N
2015-09-01
Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.
Controlled ovarian hyperstimulation with sequential letrozole co-treatment in normo/high responders.
Ecemis, Tolga; Tasci, Yasemin; Caglar, Gamze Sinem
2016-01-01
To investigate the effect of co-administration of letrozole in an ovarian stimulation protocol using recombinant FSH and GnRH antagonists for ICSI in normo/high responders. Computerized data of 320 antagonist ICSI/ET cycles with or without letrozole were retrospectively analyzed. In 105 cases, letrozole (5 mg/day) was started at the second day of the cycle continued for 5 days. At the second day of letrozole, gonadotropins were added. The remaining 215 cases were stimulated with recombinant FSH only. In all cases on day 6, GnRH antagonist was started. Ovarian stimulation protocols with or without letrozole were compared for cycle outcome parameters. In cycles with letrozole, significantly lower gonadotropin consumption and lower peak estradiol levels were found. In cycles with letrozole, mean number of metaphase II and fertilized oocytes retrieved were significantly higher compared to cycles without letrozole. The pregnancy and clinical pregnancy rates were similar. Should the number of oocytes retrieved being higher in letrozole group might indicate that letrozole might contribute to successful ovarian stimulation with a lower dosage of gonadotropins. Despite the lower peak estradiol levels, pregnancy rates being similar to other group also support the idea that letrozole can contribute to normal potential of implantation.
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Roberts, Matthew R; Madsen, Alex; Nicklin, Chris; Rawle, Jonathan; Palmer, Michael G; Owen, John R; Hector, Andrew L
2014-04-03
The phase changes that occur during discharge of an electrode comprised of LiFePO 4 , carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO 4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate.
2014-01-01
The phase changes that occur during discharge of an electrode comprised of LiFePO4, carbon, and PTFE binder have been studied in lithium half cells by using X-ray diffraction measurements in reflection geometry. Differences in the state of charge between the front and the back of LiFePO4 electrodes have been visualized. By modifying the X-ray incident angle the depth of penetration of the X-ray beam into the electrode was altered, allowing for the examination of any concentration gradients that were present within the electrode. At high rates of discharge the electrode side facing the current collector underwent limited lithium insertion while the electrode as a whole underwent greater than 50% of discharge. This behavior is consistent with depletion at high rate of the lithium content of the electrolyte contained in the electrode pores. Increases in the diffraction peak widths indicated a breakdown of crystallinity within the active material during cycling even during the relatively short duration of these experiments, which can also be linked to cycling at high rate. PMID:24790684
Mancebo Quintana, J M; Mancebo Quintana, S
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells
Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena
2012-01-01
In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906
Effects of menstrual cycle phase on cocaine self-administration in rhesus macaques.
Cooper, Ziva D; Foltin, Richard W; Evans, Suzette M
2013-01-01
Epidemiological findings suggest that men and women vary in their pattern of cocaine use resulting in differences in cocaine dependence and relapse rates. Preclinical laboratory studies have demonstrated that female rodents are indeed more sensitive to cocaine's reinforcing effects than males, with estrous cycle stage as a key determinant of this effect. The current study sought to extend these findings to normally cycling female rhesus macaques, a species that shares a nearly identical menstrual cycle to humans. Dose-dependent intravenous cocaine self-administration (0.0125, 0.0250, and 0.0500 mg/kg/infusion) using a progressive-ratio schedule of reinforcement was determined across the menstrual cycle. The menstrual cycle was divided into 5 discrete phases - menses, follicular, periovulatory, luteal, and late luteal phases - verified by the onset of menses and plasma levels of estradiol and progesterone. Dependent variables including number of infusions self-administered per session, progressive ratio breakpoint, and cocaine intake were analyzed according to cocaine dose and menstrual cycle phase. Analysis of plasma hormone levels verified phase-dependent fluctuations of estradiol and progesterone, with estrogen levels peaking during the periovulatory phase, and progesterone peaking during the luteal phase. Progressive ratio breakpoint, infusions self-administered, and cocaine intake did not consistently vary based on menstrual cycle phase. These findings demonstrate that under the current experimental parameters, the reinforcing effects of cocaine did not vary across the menstrual cycle in a systematic fashion in normally cycling rhesus macaques. Copyright © 2012 Elsevier Inc. All rights reserved.
Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.
2013-01-01
Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175
Cycle life test and failure model of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1983-01-01
Six ampere hour individual pressure vessel nickel hydrogen cells were charge/discharge cycled to failure. Failure as used here is defined to occur when the end of discharge voltage degraded to 0.9 volts. They were cycled under a low earth orbit cycle regime to a deep depth of discharge (80 percent of rated ampere hour capacity). Both cell designs were fabricated by the same manufacturer and represent current state of the art. A failure model was advanced which suggests both cell designs have inadequate volume tolerance characteristics. The limited existing data base at a deep depth of discharge (DOD) was expanded. Two cells of each design were cycled. One COMSAT cell failed at cycle 1712 and the other failed at cycle 1875. For the Air Force/Hughes cells, one cell failed at cycle 2250 and the other failed at cycle 2638. All cells, of both designs, failed due to low end of discharge voltage (0.9 volts). No cell failed due to electrical shorts. After cell failure, three different reconditioning tests (deep discharge, physical reorientation, and open circuit voltage stand) were conducted on all cells of each design. A fourth reconditioning test (electrolyte addition) was conducted on one cell of each design. In addition post cycle cell teardown and failure analysis were performed on the one cell of each design which did not have electrolyte added after failure.
An early solar dynamo prediction: Cycle 23 is approximately cycle 22
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.; Pesnell, W. Dean
1993-01-01
In this paper, we briefly review the 'dynamo' and 'geomagnetic precursor' methods of long-term solar activity forecasting. These methods depend upon the most basic aspect of dynamo theory to predict future activity, future magnetic field arises directly from the magnification of pre-existing magnetic field. We then generalize the dynamo technique, allowing the method to be used at any phase of the solar cycle, through the development of the 'Solar Dynamo Amplitude' (SODA) index. This index is sensitive to the magnetic flux trapped within the Sun's convection zone but insensitive to the phase of the solar cycle. Since magnetic fields inside the Sun can become buoyant, one may think of the acronym SODA as describing the amount of buoyant flux. Using the present value of the SODA index, we estimate that the next cycle's smoothed peak activity will be about 210 +/- 30 solar flux units for the 10.7 cm radio flux and a sunspot number of 170 +/- 25. This suggests that solar cycle #23 will be large, comparable to cycle #22. The estimated peak is expected to occur near 1999.7 +/- 1 year. Since the current approach is novel (using data prior to solar minimum), these estimates may improve when the upcoming solar minimum is reached.
Brandmaier, Andrew; Hou, Sheng-Qi; Shen, Wen H
2017-07-21
Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.
Madempudi, Ratna Sudha; Kalle, Arunasree M
2017-10-01
In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.
Sheng, Yanghao; Zhou, Boting
2017-05-26
Therapeutic drug monitoring (TDM) is one of the most important services of clinical laboratories. Two main techniques are commonly used: the immunoassay and chromatography method. We have developed a cost-effective system of two-dimensional liquid chromatography with ultraviolet detection (2D-LC-UV) for high-throughput determination of vancomycin in human plasma that combines the automation and low start-up costs of the immunoassay with the high selectivity and sensitivity of the liquid chromatography coupled with mass spectrometric detection without incurring their disadvantages, achieving high cost-effectiveness. This 2D-LC system offers a large volume injection to provide sufficient sensitivity and uses simulated gradient peak compression technology to control peak broadening and to improve peak shape. A middle column was added to reduce the analysis cycle time and make it suitable for high-throughput routine clinical assays. The analysis cycle time was 4min and the peak width was 0.8min. Compared with other chromatographic methods that have been developed, the analysis cycle time and peak width for vancomycin was reduced significantly. The lower limit of quantification was 0.20μg/mL for vancomycin, which is the same as certain LC-MS/MS methods that have been recently developed and validated. The method is rapid, automated, and low-cost and has high selectivity and sensitivity for the quantification of vancomycin in human plasma, thus making it well-suited for use in hospital clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus.
Yin, L K; Zheng, J J; Zhao, L; Hao, X Z; Zhang, X X; Tian, J Q; Zheng, K; Yang, Y M
2017-11-01
The changes of CSF flow dynamics in idiopathic normal pressure hydrocephalus (iNPH) are not fully elucidated. Most previous studies took the whole cardiac cycle as a unit. In this work, it is divided into systole and diastole phase and compared between iNPH patients and normal elderly and paid special attention to the change of netflow direction. Twenty iNPH patients according to international guideline and twenty healthy volunteers were included in this study and examined by MRI. Three categories of CSF flow parameters were measured: peak velocity (V peak ), stroke volume (SV), and minute flow volume (MinV) covering the whole cycle; peak velocity (V peak-s , V peak-d ) and flow volume (Vol s , Vol d ) of the systole and diastole, respectively; net flow. Evans index (EI) was also measured and compared statistically between the two groups. EI, V peak , SV, MinV, Vol s , Vol d , and V peak-d significantly increased in iNPH group (P<0.05). V peak-s of the two groups were not significantly different (P>0.05). The net flow of 16 iNPH patients (16/20) was in the caudo-cranial direction, while 15 volunteers (15/20) were in the opposite direction, which showed statistically significant differences (P=.001). INPH patients present hyperdynamic flow with increased velocity and volume both in systole and diastole phase. Degree of rising in diastole phase exceeds that of systole phase. The resulting reversal of netflow direction may play a key role in the occurrence of ventriculomegaly in iNPH patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gross, T.S.; Wieser, C.M.; Sepulveda, M.S.; Wiebe, J.J.; Schoeb, T.R.; Denslow, N.D.
2002-01-01
The annual reproductive cycle of hatchery-raised largemouth bass (Florida subspecies Micropterus salmoides floridanus) was characterized over a one-year period. Largemouth bass have a distinct annual reproductive cycle with a spring spawning season (approximately between mid-January and mid-June). Cycle characterization focused on an evaluation of gonadal development and plasma concentrations of several sex steroids and vitellogenin (VTG). Adult largemouth bass (n = 20: 10 females and 10 males) were collected monthly from hatchery ponds for one full calendar year. Plasma samples were analyzed for estradiol-17?? (E2), 11-ketotestosterone (11-KT), testosterone (T), progesterone (P), and VTG. Gonadal tissues were weighed to calculate gonadosomatic index (GSI) and evaluated histologically to characterize reproductive stage. In both sexes, GSI began to increase in November, and peaked in February-March. Increases in gonad weights were correlated with maturation of gonads as evidenced by histological evaluations. Bass exhibited seasonal changes in plasma sex steroids and VTG. In males, 11-KT was the only sex steroid that showed strong seasonality, with highest values in February. In females, although E2 and T concentrations followed a similar annual cycle, with highest and lowest values in February and August, respectively, the strongest pattern was observed with E2. 11-KT concentrations were less variable across months, and values were about half of those observed in males. In females, P peaked two months after E2, with high values still in May and June and decreased thereafter, and VTG began to increase in October, but peaked a month prior to the observed peaked in E2. VTG was also detected in males but at concentrations that were about 1/12 that of females, and no seasonal pattern was evident. This study is the first to fully characterize the seasonal endocrine cycle for largemouth bass. These data will be useful when conducting reproductive evaluations of free-ranging populations of largemouth bass and for assessing potential reproductive effects due to environmental contaminants in this species. ?? 2002 by the American Fisheries Society.
Bailey, Tom G; Perissiou, Maria; Windsor, Mark; Russell, Fraser; Golledge, Jonathan; Green, Daniel J; Askew, Christopher D
2017-05-01
Impaired endothelial function is observed with aging and in those with low cardiorespiratory fitness (V̇o 2peak ). Improvements in endothelial function with exercise training are somewhat dependent on the intensity of exercise. While the acute stimulus for this improvement is not completely understood, it may, in part, be due to the flow-mediated dilation (FMD) response to acute exercise. We examined the hypothesis that exercise intensity alters the brachial (systemic) FMD response in elderly men and is modulated by V̇o 2peak Forty-seven elderly men were stratified into lower (V̇o 2peak = 24.3 ± 2.9 ml·kg -1 ·min -1 ; n = 27) and higher fit groups (V̇o 2peak = 35.4 ± 5.5 ml·kg -1 ·min -1 ; n = 20) after a test of cycling peak power output (PPO). In randomized order, participants undertook moderate-intensity continuous exercise (MICE; 40% PPO) or high-intensity interval cycling exercise (HIIE; 70% PPO) or no-exercise control. Brachial FMD was assessed at rest and 10 and 60 min after exercise. FMD increased after MICE in both groups {increase of 0.86% [95% confidence interval (CI), 0.17-1.56], P = 0.01} and normalized after 60 min. In the lower fit group, FMD was reduced after HIIE [reduction of 0.85% (95% CI, 0.12-1.58), P = 0.02] and remained decreased at 60 min. In the higher fit group, FMD was unchanged immediately after HIIE and increased after 60 min [increase of 1.52% (95% CI, 0.41-2.62), P < 0.01, which was correlated with V̇o 2peak , r = 0.41; P < 0.01]. In the no-exercise control, FMD was reduced in both groups after 60 min ( P = 0.05). Exercise intensity alters the acute FMD response in elderly men and V̇o 2peak modulates the FMD response following HIIE but not MICE. The sustained decrease in FMD in the lower fit group following HIIE may represent a signal for vascular adaptation or endothelial fatigue. NEW & NOTEWORTHY This study is the first to show that moderate-intensity continuous cycling exercise increased flow-mediated dilation (FMD) transiently before normalization of FMD after 1 h, irrespective of cardiorespiratory fitness level in elderly men. Interestingly, we show increased FMD after high-intensity cycling exercise in higher fit men, with a sustained reduction in FMD in lower fit men. The prolonged reduction in FMD after high-intensity cycling exercise may be associated with future vascular adaptation but may also reflect a period of increased cardiovascular risk in lower fit elderly men. Copyright © 2017 the American Physiological Society.
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Reid, M. A.
1982-01-01
The Cr(III) complexes in the NASA Redox Energy Storage System were isolated and identified as Cr(H2O)6(+3) and Cr(H2O)5Cl(+2) by ion exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles were followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations calculated using Beer's Law. During the charge mode Cr(H2O)5Cl(+2) is reduced to Cr(H2O)5Cl(+) and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(+2). Both electrode reactions occur via a chloride-bridge inner-sphere reaction pathway. Hysteresis effects can be explained by the slow attainment of equilibrium between Cr(H2O)6(+3) and Cr(H2O)5Cl(+2).
The therapeutic potential of cell cycle targeting in multiple myeloma.
Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke
2017-10-27
Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.
Ultra-sensitive detection of leukemia by graphene
NASA Astrophysics Data System (ADS)
Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza
2014-11-01
Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K
NASA Lewis advanced IPV nickel-hydrogen technology
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Britton, Doris L.
1993-01-01
Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.
Barringer, J.L.; Wilson, T.P.; Szabo, Z.; Bonin, J.L.; Fischer, J.M.; Smith, N.P.
2008-01-01
Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 ??g/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 ??g/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity. ?? 2007 Springer-Verlag.
Chen, Chun-Kai; Weng, Ming-Cheng; Chen, Tien-Wen; Huang, Mao-Hsiung
2013-11-01
This study evaluated the impact of severity of hemiparesis on oxygen uptake (VO2) response in post-acute stroke patients. Sixty-four patients with a mean poststroke interval of 8.6 ± 3.8 days underwent a ramp cardiopulmonary exercise test on a cycling ergometer to volitional termination. Mean peak VO2 (VO2peak) and work efficiency (ΔVO2/ΔWR) were measured by open-circuit spirometry during standard upright ergometer cycling. Severity of the hemiparetic lower limb was assessed by Brunnstrom's motor recovery stages lower extremity (BMRSL). VO2peak was 10% lower in hemiparetic leg with BMRSL V than in that with BMRSL VI, 20% lower in BMRSL IV, and 50% lower in BMRSL III. ΔVO2/ΔWR was higher for the group with increased BMRSL. The relations were consistent after adjustment for age, sex, body mass index, stroke type, hemiparetic side, modified Ashworth Scale, time poststroke, comorbidities, and medications. Our findings revealed that O2peak is dependent on the severity of hemiparesis in leg, and along with ΔO2/ΔWR closely related to the severity of hemiparesis in post-acute stroke patients, regardless of the types and locations of lesion after stroke, as well as the differences in comorbidities and medications. Copyright © 2013. Published by Elsevier B.V.
Thompson, Kevin G; Turner, Louise; Prichard, Jonathon; Dodd, Fiona; Kennedy, David O; Haskell, Crystal; Blackwell, James R; Jones, Andrew M
2014-03-01
Dietary inorganic nitrate supplementation causes physiological effects which may enhance exercise tolerance. However it is not known whether nitrate might alter cognitive function during exercise. In a double-blind, cross-over study, sixteen subjects ingested either nitrate-rich beetroot juice or a placebo and completed a continuous cycle exercise test involving 20min stages at 50% and 70% V˙O2peak and a final stage at 90% V˙O2peak until volitional exhaustion. Cognitive tasks were completed before, during and after exercise. In the dietary nitrate condition: plasma [nitrite] increased (p<0.01), systolic blood pressure decreased (p<0.05) and there was a trend for a reduced oxygen uptake at 50% V˙O2peak. Tissue oxygenation improved across exercise intensities and exercise tolerance was greater at 90% V˙O2peak (p<0.05). Rating of perceived exertion, energy levels and cognitive performance were similar between conditions with mental fatigue being evident from 70% V˙O2peak onwards (p<0.05). Dietary nitrate supplementation enhanced short-term endurance exercise performance with concomitant mental fatigue but did not improve cognitive performance post-fatigue. Copyright © 2014 Elsevier B.V. All rights reserved.
Shedding Light on the Nature of Seminal Round Cells
Palermo, Gianpiero D.; Neri, Queenie V.; Cozzubbo, Tyler; Cheung, Stephanie; Pereira, Nigel; Rosenwaks, Zev
2016-01-01
Introduction In this investigation we assess the incidence of round cells (RCs) in semen samples in our infertile patient population and their significance on intracytoplasmic sperm injection (ICSI) cycle outcomes. We also evaluate the usefulness of RCs as indicators of bacterial infection and highlight the origin of this cell-type, as well as its role in the human ejaculate. Patients and Methods In a prospective fashion, a total of 4,810 ejaculated samples were included in the study during a period of 24 months. RCs were characterized for white blood cell (WBC) components versus exfoliated germ cells by testing for multiple markers of ploidy as well as protamine assays. Cases displaying ≥ 2 x 106/ml RCs were screened for bacteria. Raw specimens containing RC were processed by peroxidase and other leukocyte assays, specific stains for protamines were used to identify spermiogenic stage, aneuploidy (FISH) assessment was carried out, and the presence of various Sertoli-cell cytoplasmic remnants was analyzed to identify and characterize immature germ cells. The effect of RC on clinical outcome was assessed in specimens used for ICSI. Results The average age of the men involved was 39.2 ± 7 years. Semen samples had a mean concentration of 40.7 ± 31 x 106/ml, motility of 42.6 ± 35%, and morphology of 2.3 ± 2%. RCs were identified in 261 specimens, representing a proportion of 5.4%. Men with RCs had comparable age but lower sperm concentration and morphology than the control group (P<0.001). The aneuploidy rate of 4.3% in RCs group was remarkably higher than the control group (2.3%; P<0.001). Sperm aneuploidy rate positively correlated with the number of RCs (P<0.001). Of 44 men, 17 of them in 18 cycles had up to 1.9 x 106/ml RCs without affecting fertilization and clinical pregnancy rates when compared to controls (n = 365 cycles). In 27 men undergoing 33 ICSI cycles with ≥ 2 x 106/ml RCs, the fertilization rate trended lower and the miscarriage rate was significantly increased (P = 0.05). There was lack of correlation between RC and bacteriological growth. Specific markers indicated that seminal RCs are mostly immature germ cells encased in the remnants of Sertoli cell cytoplasm. Moreover, their modest protamine content and their haploid status confirm that they are post-meiotic. Sequential observation in the same man showed that RC episodes were followed by an amelioration of semen parameters, and interestingly, the episodic occurrence of RCs often coincides with flu season peaks. Conclusions Seminal RCs are not a marker of infectiousness but rather a transient indicator of spermatogenic insult that possibly occurs in most men following a mild and transient ailment such as the flu. PMID:26982590
Effect of cycling on the lithium/electrolyte interface in organic electrolytes
NASA Technical Reports Server (NTRS)
Surampudi, S.; Shen, D. H.; Huang, C.-K.; Narayanan, S. R.; Attia, A.; Halpert, G.; Peled, E.
1993-01-01
Nondestructive methods such as ac impedance spectroscopy and microcalorimetry are used to study the effect of cell cycling on the lithium/electrolyte interface. The reactivity of both uncycled and cycled lithium towards various electrolytes is examined by measuring the heat evolved from the cells under open-circuit conditions at 25 C by microcalorimetry. Cycled cells at the end of charge/discharge exhibited considerably higher heat output compared with the uncycled cells. After 30 d of storage, the heat output of the cycled cells is similar to that of the uncycled cells. The cell internal resistance increases with cycling, and this is attributed to the degradation of the electrolyte with cycling.
Cellular injury evidenced by impedance technology and infrared microspectroscopy
NASA Astrophysics Data System (ADS)
le Roux, K.; Prinsloo, L. C.; Meyer, D.
2015-03-01
Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.
Playing with the cell cycle to build the spinal cord.
Molina, Angie; Pituello, Fabienne
2017-12-01
A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
The Martian Dust Cycle: Observations and Modeling
NASA Technical Reports Server (NTRS)
Kahre, Melinda A.
2013-01-01
The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in these models: wind-stress lifting (i.e., saltation) and dust devil lifting. Although the predicted patterns of dust lifting and atmospheric dust loading from these simulations capture some aspects of the observed dust cycle, there are many notable differences between the simulated and observed dust cycles. For example, it is common for models to predict one peak in global dust loading near northern winter solstice due to excessive dust lifting in the Hellas basin at this season. Additionally, it is difficult for models to realistically capture the observed interannual variability in global dust storms. New avenues of dust cycle modeling research include exploring the effects of finite surface dust reservoirs and the effects of coupling the dust and water cycles on the predicted dust cycle.
Cell cycle proteins as promising targets in cancer therapy.
Otto, Tobias; Sicinski, Piotr
2017-01-27
Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.
Technology for Bayton-cycle powerplants using solar and nuclear energy
NASA Technical Reports Server (NTRS)
English, R. E.
1986-01-01
Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.
NASA Astrophysics Data System (ADS)
Sharma, A.; Tibai, Z.; Hebling, J.; Fülöp, J. A.
2018-03-01
Laser-driven proton acceleration from a micron-sized cryogenic hydrogen microjet target is investigated using multi-dimensional particle-in-cell simulations. With few-cycle (20-fs) ultraintense (2-PW) laser pulses, high-energy quasi-monoenergetic proton acceleration is predicted in a new regime. A collisionless shock-wave acceleration mechanism influenced by Weibel instability results in a maximum proton energy as high as 160 MeV and a quasi-monoenergetic peak at 80 MeV for 1022 W/cm2 laser intensity with controlled prepulses. A self-generated strong quasi-static magnetic field is also observed in the plasma, which modifies the spatial distribution of the proton beam.
Cell cycle nucleic acids, polypeptides and uses thereof
Gordon-Kamm, William J [Urbandale, IA; Lowe, Keith S [Johnston, IA; Larkins, Brian A [Tucson, AZ; Dilkes, Brian R [Tucson, AZ; Sun, Yuejin [Westfield, IN
2007-08-14
The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.
Zerjatke, Thomas; Gak, Igor A; Kirova, Dilyana; Fuhrmann, Markus; Daniel, Katrin; Gonciarz, Magdalena; Müller, Doris; Glauche, Ingmar; Mansfeld, Jörg
2017-05-30
Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA) as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Roy, Debmalya; Sheng, Gao Ying; Herve, Semukunzi; Carvalho, Evandro; Mahanty, Arpan; Yuan, Shengtao; Sun, Li
2017-05-01
A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.
The menstrual cycle and the skin.
Raghunath, R S; Venables, Z C; Millington, G W M
2015-03-01
Perimenstrual exacerbations of dermatoses are commonly recognized, yet our knowledge of the underlying pathophysiological mechanisms remains imperfect. Research into the effects of oestrogen on the skin has provided evidence to suggest that oestrogen is associated with increases in skin thickness and dermal water content, improved barrier function, and enhanced wound healing. Research into the effects of progesterone suggests that the presence of various dermatoses correlates with peak levels of progesterone. Dermatoses that are exacerbated perimenstrually include acne, psoriasis, atopic eczema and irritant dermatitis, and possibly also erythema multiforme. Exacerbations occur at the peak levels of progesterone in the menstrual cycle. Underlying mechanisms include reduced immune and barrier functions as a result of cyclical fluctuations in oestrogen and/or progesterone. Autoimmune progesterone and oestrogen dermatitis are the best-characterized examples of perimenstrual cutaneous reactions to hormones produced during the menstrual cycle. In this review, we describe the current understanding of the menstrual cycle, and its effect on the skin and cutaneous disorders. © 2015 British Association of Dermatologists.
NASA Astrophysics Data System (ADS)
Oguri, Katsuya; Mashiko, Hiroki; Ogawa, Tatsuya; Hanada, Yasutaka; Nakano, Hidetoshi; Gotoh, Hideki
2018-04-01
We demonstrate the generation of ultrabroad bandwidth attosecond continua extending to sub-50-as duration in the extreme ultraviolet (EUV) region based on a 1.6-cycle Ti:sapphire laser pulse. The combination of the amplitude gating scheme with a sub-two-cycle driver pulse and the double optical gating scheme achieves the continuum generation with a bandwidth of 70 eV at the full width at half maximum near the peak photon energy of 140 eV, which supports a Fourier-transform-limited pulse duration as short as 32 as. The carrier-envelope-phase (CEP) dependence of the attosecond continua shows a single-peak structure originating from the half-cycle cut-off at appropriate CEP values, which strongly indicates the generation of a single burst of an isolated attosecond pulse. Our approach suggests a possibility for isolated sub-50-as pulse generation in the EUV region by compensating for the intrinsic attosecond chirp with a Zr filter.
Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.
Zhang, Kun; Wang, Jin
2018-05-31
The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for controlling the cell cycle speed. This can help to design an effective strategy for drug discovery against cancer.
TEST-retest reliability of kinetic variables measured on campus board in sport climbers.
Abreu, Edgardo Alvares de Campos; Araújo, Sílvia Ribeiro Santos; Cançado, Gustavo Henrique da Cunha Peixoto; Andrade, André Gustavo Pereira de; Chagas, Mauro Heleno; Menzel, Hans-Joachim Karl
2018-05-16
Sport climbers frequently use campus board (CB) to improve their upper limb strength under similar conditions of high-difficulty sport climbing routes. The objective of this study was to assess the test-retest reliability of peak force and impulse measured using a CB instrumented with two load cells on starting holds. The same evaluator examined 22 climbers on two days with 48 h between the assessments. The participants performed five concentric lunges (CL) and five lunges with stretch-shortening cycle with 1 min intervals between repetitions and 10 min between exercises. All variables were associated with significant intraclass correlation coefficient (ICC) values (p = 0.001), and none variable showed systematic errors (p > 0.05). Peak force ICC was higher than 0.88, and the standard error of measurement (SEM%) was less than 5%. Impulse ICC for the CL was greater than 0.90, and the SEM% was less than 14%. We conclude that the kinetic variables measured using the CB were reliable. The ability of the hands to maintain contact with the holds (peak force) and the abilities of the arms and shoulders vertically move the centre of mass (impulse) should be taken into account by coaches on CB training prescription as well for further research.
Lisman, John
2005-01-01
In the hippocampus, oscillations in the theta and gamma frequency range occur together and interact in several ways, indicating that they are part of a common functional system. It is argued that these oscillations form a coding scheme that is used in the hippocampus to organize the readout from long-term memory of the discrete sequence of upcoming places, as cued by current position. This readout of place cells has been analyzed in several ways. First, plots of the theta phase of spikes vs. position on a track show a systematic progression of phase as rats run through a place field. This is termed the phase precession. Second, two cells with nearby place fields have a systematic difference in phase, as indicated by a cross-correlation having a peak with a temporal offset that is a significant fraction of a theta cycle. Third, several different decoding algorithms demonstrate the information content of theta phase in predicting the animal's position. It appears that small phase differences corresponding to jitter within a gamma cycle do not carry information. This evidence, together with the finding that principle cells fire preferentially at a given gamma phase, supports the concept of theta/gamma coding: a given place is encoded by the spatial pattern of neurons that fire in a given gamma cycle (the exact timing within a gamma cycle being unimportant); sequential places are encoded in sequential gamma subcycles of the theta cycle (i.e., with different discrete theta phase). It appears that this general form of coding is not restricted to readout of information from long-term memory in the hippocampus because similar patterns of theta/gamma oscillations have been observed in multiple brain regions, including regions involved in working memory and sensory integration. It is suggested that dual oscillations serve a general function: the encoding of multiple units of information (items) in a way that preserves their serial order. The relationship of such coding to that proposed by Singer and von der Malsburg is discussed; in their scheme, theta is not considered. It is argued that what theta provides is the absolute phase reference needed for encoding order. Theta/gamma coding therefore bears some relationship to the concept of "word" in digital computers, with word length corresponding to the number of gamma cycles within a theta cycle, and discrete phase corresponding to the ordered "place" within a word. Copyright 2005 Wiley-Liss, Inc.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells-update 2
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1991-01-01
An update of validation test results confirming the breakthrough in low earth orbit (LEO) cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40 000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. This test was conducted at Hughes Aircraft Company under a NASA Lewis contract. The purpose was to investigate the effect of KOH concentration on cycle life. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The boiler plate test results are in the process of being validated using flight hardware and real time LEO test at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. Six 48 Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16600 cycles during the continuing test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, G.; Roble, R.G.; Ridley, E.C.
Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 /sup 0/N, 105.5 /sup 0/W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north ofmore » Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours.« less
Cell-cycle control in the face of damage--a matter of life or death.
Clarke, Paul R; Allan, Lindsey A
2009-03-01
Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.
The cell cycle of early mammalian embryos: lessons from genetic mouse models.
Artus, Jérôme; Babinet, Charles; Cohen-Tannoudji, Michel
2006-03-01
Genes coding for cell cycle components predicted to be essential for its regulation have been shown to be dispensable in mice, at the whole organism level. Such studies have highlighted the extraordinary plasticity of the embryonic cell cycle and suggest that many aspects of in vivo cell cycle regulation remain to be discovered. Here, we discuss the particularities of the mouse early embryonic cell cycle and review the mutations that result in cell cycle defects during mouse early embryogenesis, including deficiencies for genes of the cyclin family (cyclin A2 and B1), genes involved in cell cycle checkpoints (Mad2, Bub3, Chk1, Atr), genes involved in ubiquitin and ubiquitin-like pathways (Uba3, Ubc9, Cul1, Cul3, Apc2, Apc10, Csn2) as well as genes the function of which had not been previously ascribed to cell cycle regulation (Cdc2P1, E4F and Omcg1).
Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments
Seaton, Daniel D; Krishnan, J
2016-01-01
Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
NOSH-Aspirin Inhibits Colon Cancer Cell Growth: Effects Of Positional Isomerism.
Vannini, Federica; Kodela, Ravinder; Chattopadhyay, Mitali; Kashfi, Khosrow
2015-08-01
NOSH-aspirin, a novel hybrid that releases nitric oxide (NO) and hydrogen sulfide (H 2 S) was designed to overcome the potential side effects of aspirin. We compared the cell growth inhibitory properties of ortho-, meta-, and para-NOSH-aspirins. Effects of electron donating/withdrawing groups on the stability and biological activity of these novel compounds were also evaluated. Cell line: HT-29 (Cyclooxygenase, COX-1 & -2 expressing) and HCT 15 (COX null) human colon adenocarcimoa; Cell growth: MTT; Cell cycle phase distribution: Flow cytometry; Apoptosis: subdiploid (sub-G 0 /G 1 ) peak in DNA content histograms; Proliferation: PCNA; ROS: measured hydrogen peroxide and super oxide by flow cytometry using DCFDA and DHE dyes. The IC 50 s for growth inhibition in µM at 24h were, HT-29: ortho-NOSH-ASA (0.04±0.011), meta-NOSH-ASA (0.24±0.11), para-NOSH-ASA (0.46±0.17); significance between the groups were: o vs m P>0.05, o vs p P<0.05, m vs p P>0.05; HCT 15: ortho-NOSH-ASA (0.062±0.006), meta-NOSH-ASA (0.092±0.004), para-NOSH-ASA (0.37±0.04); significance between the groups were: o vs m P<0.01, o vs p P<0.001, m vs p P<0.001. Electron donating/withdrawing groups significantly affected these IC 50 s. All positional isomers qualitatively had similar effects on proliferation, apoptosis, and caused G 0 /G 1 cell cycle arrest in both colon cancer cell lines. The underlying mechanism for these observations appeared to be mediated through ROS, as pretreatment of the cells with N-acetylcysteine, partially blocked these effects. Positional isomerism affects the potency of NOSH-aspirin. The effects appear to be COX independent. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Shruti; Amar, Saroj Kumar; Academy of Scientific and Innovative Research
The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. Themore » role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. - Highlights: • Photodegradation of A132 and formation of novel photoproduct • Involvement of ROS in A132 phototoxicity • Role of ROS in DNA damage, CPD and micronuclei formation • Release of Smac/DIABLO from mitochondria during apoptosis • Caspase 3 dependent apoptotic cell death.« less
Mancebo Quintana, J. M.; Mancebo Quintana, S.
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae. PMID:22666626
Demura, Shinichi; Morishita, Koji; Yamada, Takayoshi; Yamaji, Shunsuke; Komatsu, Miho
2011-11-01
L-Ornithine plays an important role in ammonia metabolism via the urea cycle. This study aimed to examine the effect of L-ornithine hydrochloride ingestion on ammonia metabolism and performance after intermittent maximal anaerobic cycle ergometer exercise. Ten healthy young adults (age, 23.8 ± 3.9 year; height, 172.3 ± 5.5 cm; body mass, 67.7 ± 6.1 kg) with regular training experience ingested L-ornithine hydrochloride (0.1 g/kg, body mass) or placebo after 30 s of maximal cycling exercise. Five sets of the same maximal cycling exercise were conducted 60 min after ingestion, and maximal cycling exercise was conducted after a 15 min rest. The intensity of cycling exercise was based on each subject's body mass (0.74 N kg(-1)). Work volume (watt), peak rpm (rpm) before and after intermittent maximal ergometer exercise and the following serum parameters were measured before ingestion, immediately after exercise and 15 min after exercise: ornithine, ammonia, urea, lactic acid and glutamate. Peak rpm was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion. Serum ornithine level was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion immediately and 15 min after intermittent maximal cycle ergometer exercise. In conclusion, although maximal anaerobic performance may be improved by L-ornithine hydrochloride ingestion before intermittent maximal anaerobic cycle ergometer exercise, the above may not depend on increase of ammonia metabolism with L-ornithine hydrochloride.
Cell Cycle Regulation of Stem Cells by MicroRNAs.
Mens, Michelle M J; Ghanbari, Mohsen
2018-06-01
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-07-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-01-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390
Crisafulli, Daniel L; Buddhadev, Harsh H; Brilla, Lorrie R; Chalmers, Gordon R; Suprak, David N; San Juan, Jun G
2018-01-01
Creatine supplementation is recommended as an ergogenic aid to improve repeated sprint cycling performance. Furthermore, creatine uptake is increased in the presence of electrolytes. Prior research examining the effect of a creatine-electrolyte (CE) supplement on repeated sprint cycling performance, however, did not show post-supplementation improvement. The purpose of this double blind randomized control study was to investigate the effect of a six-week CE supplementation intervention on overall and repeated peak and mean power output during repeated cycling sprints with recovery periods of 2 min between sprints. Peak and mean power generated by 23 male recreational cyclists (CE group: n = 12; 24.0 ± 4.2 years; placebo (P) group: n = 11; 23.3 ± 3.1 years) were measured on a Velotron ergometer as they completed five 15-s cycling sprints, with 2 min of recovery between sprints, pre- and post-supplementation. Mixed-model ANOVAs were used for statistical analyses. A supplement-time interaction showed a 4% increase in overall peak power (pre: 734 ± 75 W; post: 765 ± 71 W; p = 0.040; η p 2 = 0.187) and a 5% increase in overall mean power (pre: 586 ± 72 W; post: 615 ± 74 W; p = 0.019; η p 2 = 0.234) from pre- to post-supplementation for the CE group. For the P group, no differences were observed in overall peak (pre: 768 ± 95 W; post: 772 ± 108 W; p = 0.735) and overall mean power (pre: 638 ± 77 W; post: 643 ± 92 W; p = 0.435) from pre- to post-testing. For repeated sprint analysis, peak (pre: 737 ± 88 W; post: 767 ± 92 W; p = 0.002; η p 2 = 0.380) and mean (pre: 650 ± 92 W; post: 694 ± 87 W; p < 0.001; η p 2 = 0.578) power output were significantly increased only in the first sprint effort in CE group from pre- to post-supplementation testing. For the P group, no differences were observed for repeated sprint performance. A CE supplement improves overall and repeated short duration sprint cycling performance when sprints are interspersed with adequate recovery periods.
Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.
2014-01-01
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131
Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons.
Rodríguez-Aznar, Eva; Barrallo-Gimeno, Alejandro; Nieto, M Angela
2013-03-20
During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.
An extensive program of periodic alternative splicing linked to cell cycle progression
Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng
2016-01-01
Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110
Creep analysis of solid oxide fuel cell with bonded compliant seal design
NASA Astrophysics Data System (ADS)
Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.
2013-12-01
Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.
Analysis of growth of tetraploid nuclei in roots of Vicia faba.
Bansal, J; Davidson, D
1978-03-01
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.
Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate
USDA-ARS?s Scientific Manuscript database
Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...
Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females.
Doré, E; Bedu, M; França, N M; Van Praagh, E
2001-05-01
The purpose of this study was to determine whether the relationships between short-term power and body dimensions in young females were similar whatever the age of the individuals. A cohort of 189 prepubescent (mean age 9.5 years), adolescent (mean age 14.4 years) and young adult (mean age 18.2 years) females performed three all-out sprints on a friction-loaded cycle ergometer against three braking forces corresponding to applied loads of 25, 50 and 75 g.kg-1 body mass (BM). For each sprint, peak power including flywheel inertia was calculated. Results showed that a braking load of 75 g.kg-1 BM was too high for prepubescent and adolescent girls. Therefore, when measuring short-term cycling performance in heterogeneous female populations, a braking load of 50 g.kg-1 BM (0.495 N.kg-1 BM) is recommended. During growth, cycling peak power (CPP; defined as the highest peak power obtained during the three sprints) increased, as did total BM, fat-free mass (FFM) and lean leg volume (LLV) (P < 0.001). Analysis of covariance revealed that the slopes of the linear relationships between CPP and biometric characteristics were similar in the three groups (P > 0.7 for the CPP/BM and CPP/FFM relationships, and P > 0.2 for the CPP/LLV relationship). However, the adjusted means were always significantly higher in young women (P < 0.001) compared with both of the other groups. Although differences in performance during anaerobic cycling in growing females are primarily dependent upon body dimensions, other as yet undetermined factors may be involved during late adolescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamir, H.; Theoharides, T.C.; Gershon, M.D.
1982-06-01
The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10/sup -6/ M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD/sub 1/ = 4.5 x 10/sup -/8 M; KD/sub 2/ = 3.9 x 10/sup -6/ M) did not bind to Con A. Moreover, binding of (/sup 3/H)serotonin to protein ofmore » Peak I was sensitive to inhibition by reserpine, while binding of (/sup 3/H)serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of (/sup 3/H) serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules.« less
Typeability of DNA in Touch Traces Deposited on Paper and Optical Data Discs.
Sołtyszewski, Ireneusz; Szeremeta, Michał; Skawrońska, Małgorzata; Niemcunowicz-Janica, Anna; Pepiński, Witold
2015-01-01
Nucleated epithelial cells that are transferred by casual touching and handling of objects are the primary source of biological evidence that is found in high-volume crimes. Cellular material associated with touch traces usually contains low levels of DNA template making it challenging to acquire an informative profile. The main purpose of this study was to examine the efficacy of DNA typing in fingerprints deposited on optical data discs and the office paper. Latent fingerprints were made by 60 subjects of both sexes (30 males and 30 females). A highly effective DNA extraction method with QIAamp DNA Mini Kit (Qiagen) and an increased sensitivity PCR by AmpFlSTR® NGM™ Amplification Kit (Applied Biosystems) carried out at standard 30 cycles and at increased 34 cycles were used. The mean value of total DNA recovery was 0.4 ng from CDs/DVDs and 0.3 ng from the office paper. Amplification of Low Template DNA (LT-DNA) resulted in improved analytical success by increasing the number of PCR cycles from standard 30 to 34. On the other hand, the increased PCR cycles resulted in allele drop-ins showing additional peaks, the majority of which were outside the stutter positions. Rigorous procedures and interpretation guidelines are required during LT-DNA for producing reliable and reproducible DNA profiles for forensic purposes.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1990-01-01
A breakthrough in low earth orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and a real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana, to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There was two failures, however, for the cells containing 31 percent KOH.
Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells
NASA Technical Reports Server (NTRS)
Smithrick, John J.; Hall, Stephen W.
1990-01-01
A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.
Cell cycle in egg cell and its progression during zygotic development in rice.
Sukawa, Yumiko; Okamoto, Takashi
2018-03-01
Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella
2013-05-25
Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H.; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27Kip1 and p21Cip1 expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells. PMID:22073316
Loponen, Heidi; Ylikoski, Jukka; Albrecht, Jeffrey H; Pirvola, Ulla
2011-01-01
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
Slow-cycling stem cells in hydra contribute to head regeneration
Govindasamy, Niraimathi; Murthy, Supriya; Ghanekar, Yashoda
2014-01-01
ABSTRACT Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals. PMID:25432513
Conceptual design of thermal energy storage systems for near term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.
1979-01-01
Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.
Predictions of Solar Cycle 24: How are We Doing?
NASA Technical Reports Server (NTRS)
Pesnell, William D.
2016-01-01
Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.
A review of the Nimbus-7 ERB solar dataset
NASA Technical Reports Server (NTRS)
Kyle, H. L.; Hoyt, D. V.; Hickey, J. R.
1994-01-01
Fourteen years (November 16, 1978 through January 24, 1993) of Nimbus-7 total solar irradiance measurements have been made. The measured mean annual solar energy just outside of the Earth's atmosphere was about 0.1% (1.4 W per sq m) higher in the peak years of 1979 (cycle 21) and 1991 (cycle 22) than in the quiet Sun years of 1985/86. Comparison with shorter independent solar measurement sets and with empirical models qualitatively confirms the Nimbus-7 results. But these comparisons also raise questions of detail for future studies: in which years did the peaks actually occur and just how accurate are the models and the measurements?
Reddy, M V; Yu, Cai; Jiahuan, Fan; Loh, Kian Ping; Chowdari, B V R
2013-05-22
We report the synthesis of CuO material by molten salt method at a temperature range, 280 to 950 °C for 3 h in air. This report includes studies on the effect of morphology, crystal structure and electrochemical properties of CuO prepared at different temperatures. Obtained CuO was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area methods. Samples prepared at ≥410 °C showed a single-phase material with a lattice parameter value of a = 4.69 Å, b = 3.43 Å, c = 5.13 Å and surface area values are in the range 1.0-17.0 m(2) g(-1). Electrochemical properties were evaluated via cyclic voltammetry (CV) and galvanostatic cycling studies. CV studies showed a minor difference in the peak potentials depending on preparation temperature and all compounds exhibit a main anodic peak at ~2.45 V and cathodic peaks at ~0.85 V and ~1.25 V vs Li. CuO prepared at 750 °C showed high and stable capacity of ~620 mA h g(-1) at the end of 40th cycle.
Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit.
Minahan, C; Chia, M; Inbar, O
2007-10-01
The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O (2) deficit. Peak power and the maximal accumulated O (2) deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O (2) deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.
Cycle Analysis of a New Air Engine Design
NASA Astrophysics Data System (ADS)
Attar, Wiam Fadi
This thesis investigates a new externally heated engine design being developed by Soony Systems Inc. to serve as the prime mover in a residential-scale combined heat and power system. This is accomplished by developing a thermodynamic model for the engine and sweeping through the design parameter space in order to identify designs that maximize power output, efficiency, and brake mean effective pressure (BMEP). It was discovered that the original engine design was flawed so a new design was proposed and analyzed. The thermodynamic model was developed in four stages. The first model was quasi-static while the other three were time-dependent and used increasingly realistic models of the heat exchangers. For the range of design parameters investigated here, the peak power output is 6.8 kW, the peak efficiency is approximately 60%, and the peak BMEP is 389 kPa. These performance levels are compared to those of other closed-cycle engines. The results suggest that the Soony engine has the potential to be more efficient than Stirlings because it more closely approximates the Carnot cycle, but this comes at the cost of significantly lower BMEP (389 kPa vs. 2,760 kPa for the SOLO Stirling engine).
Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.
2005-03-01
Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.
Sierra, Crystal S.; Haase, Steven B.
2016-01-01
The pathogenic yeast Cryptococcus neoformans causes fungal meningitis in immune-compromised patients. Cell proliferation in the budding yeast form is required for C. neoformans to infect human hosts, and virulence factors such as capsule formation and melanin production are affected by cell-cycle perturbation. Thus, understanding cell-cycle regulation is critical for a full understanding of virulence factors for disease. Our group and others have demonstrated that a large fraction of genes in Saccharomyces cerevisiae is expressed periodically during the cell cycle, and that proper regulation of this transcriptional program is important for proper cell division. Despite the evolutionary divergence of the two budding yeasts, we found that a similar percentage of all genes (~20%) is periodically expressed during the cell cycle in both yeasts. However, the temporal ordering of periodic expression has diverged for some orthologous cell-cycle genes, especially those related to bud emergence and bud growth. Genes regulating DNA replication and mitosis exhibited a conserved ordering in both yeasts, suggesting that essential cell-cycle processes are conserved in periodicity and in timing of expression (i.e. duplication before division). In S. cerevisiae cells, we have proposed that an interconnected network of periodic transcription factors (TFs) controls the bulk of the cell-cycle transcriptional program. We found that temporal ordering of orthologous network TFs was not always maintained; however, the TF network topology at cell-cycle commitment appears to be conserved in C. neoformans. During the C. neoformans cell cycle, DNA replication genes, mitosis genes, and 40 genes involved in virulence are periodically expressed. Future work toward understanding the gene regulatory network that controls cell-cycle genes is critical for developing novel antifungals to inhibit pathogen proliferation. PMID:27918582
AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21.
Gongpan, Pianchou; Lu, Yanting; Wang, Fang; Xu, Yuhui; Xiong, Wenyong
2016-07-02
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.
Xiao, Jian-Ying; Liu, Chao; Sun, Xiao-Han; Yu, Bing-Zhi
2012-02-25
To further test whether protein kinase A (PKA) can affect the mitotic cell cycle, one-cell stage mouse embryos at S phase (22 h after hCG injection) were incubated in M16 medium containing various concentrations of H-89, a PKA inhibitor. With increasing concentrations of H-89 (0-50 μmol/L), the G(2) phase of eggs was decreased and the cleavage rate was accelerated. A concentration of 40 μmol/L H-89 led to all of the mouse eggs entering the M phase of mitosis. Furthermore, to study the role of PKA in regulating the phosphorylation status of S149 and S321 sites of cell division cycle 25B (CDC25B) on one-cell stage fertilized mouse eggs, pBSK-CDC25B-WT, pBSK-CDC25B-S149A, pBSK-CDC25B-S321A and pBSK-CDC25B-S149A/S321A were transcribed into mRNAs in vitro, then mRNAs were microinjected into S phase of mouse fertilized eggs and cultured in M16 medium pretreated with H-89. Then, the cleavage of fertilized eggs, maturation promoting factor (MPF) activity and phosphorylation status of CDC2-Tyr15 were observed. In the presence of 40 μmol/L H-89, the cleavage rate of fertilized eggs in CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups was significantly higher than that in the control groups, and the peak of MPF activity appeared in the CDC25B-S/A-mRNAs and CDC25B-WT-mRNA injected groups earlier than that in the control groups. CDC2-Tyr15 phosphorylation state was consistent with MPF activity. In conclusion, the present study suggests that PKA regulates the early development of mouse embryos by phosphorylation of S149 and S321 of CDC25B, which plays an important role in the regulation of G(2)/M transition in the mitotic cell cycle of fertilized mouse eggs.
van Rijnberk, Lotte M.; van der Horst, Suzanne E. M.; van den Heuvel, Sander; Ruijtenberg, Suzan
2017-01-01
Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit. PMID:28158315
Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M
2017-09-25
Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is muscular strength balance influenced by menstrual cycle in female soccer players?
Dos Santos Andrade, Marília; Mascarin, Naryana C; Foster, Roberta; de Jármy di Bella, Zsuzsanna I; Vancini, Rodrigo L; Barbosa de Lira, Claudio A
2017-06-01
Muscular strength imbalance is an important risk factor for ACL injury, but it is not clear the impact of menstrual cycle on muscular strength balance. Our aims were to compare muscular balance (hamstring-to-quadriceps peak torque strength balance ratio) between luteal and follicular phases and compare gender differences relative to strength balance to observe possible fluctuations in strength balance ratio. Thirty-eight soccer athletes (26 women and 12 men) took part in this study. Athletes participated in two identical isokinetic strength evaluations for both knee (non-dominant [ND] and dominant [D]). Peak torque for quadriceps and hamstring muscles were measured in concentric mode and hamstring-to-quadriceps peak torque strength balance ratio calculated. Women had significantly lower hamstring-to-quadriceps peak torque strength balance ratio during the follicular compared to luteal phase, for the ND limb (P=0.011). However, no differences, between luteal and follicular phases, were observed in the D limb. In men, no difference in strength balance ratios was found between the ND and D limbs. These data may be useful in prevention programs for knee (ACL) injuries among soccer female athletes.
Kong, Zhaowei; Sun, Shengyan; Liu, Min
2016-01-01
This study was to determine the effects of five-week high-intensity interval training (HIIT) on cardiorespiratory fitness, body composition, blood glucose, and relevant systemic hormones when compared to moderate-intensity continuous training (MICT) in overweight and obese young women. Methods. Eighteen subjects completed 20 sessions of HIIT or MICT for five weeks. HIIT involved 60 × 8 s cycling at ~90% of peak oxygen consumption (V˙O2peak) interspersed with 12 s recovery, whereas MICT involved 40-minute continuous cycling at 65% of V˙O2peak. V˙O2peak, body composition, blood glucose, and fasting serum hormones, including leptin, growth hormone, testosterone, cortisol, and fibroblast growth factor 21, were measured before and after training. Results. Both exercise groups achieved significant improvements in V˙O2peak (+7.9% in HIIT versus +11.7% in MICT) and peak power output (+13.8% in HIIT versus +21.9% in MICT) despite no training effects on body composition or the relevant systemic hormones. Blood glucose tended to be decreased after the intervention (p = 0.062). The rating of perceived exertion in MICT was higher than that in HIIT (p = 0.042). Conclusion. Compared with MICT, short-term HIIT is more time-efficient and is perceived as being easier for improving cardiorespiratory fitness and fasting blood glucose for overweight and obese young women. PMID:27774458
Impedance measurements on a spiral-wound nickel/metal hydride cell cycled in a simulated Leo orbit
NASA Technical Reports Server (NTRS)
Reid, Margaret A.
1993-01-01
A spiral-wound size C cell was cycled at 25 C in a low earth orbit (LEO) regime at 50 percent depth of discharge (DOD) with approximately five percent over-charge. The nominal capacity was 3.5 AH. The cell was cycled for 2000 cycles. Capacity checks and impedance measurements over the complete range of state of charge were made upon receipt and after 500, 1000, and 2000 cycles. The capacity of the cell was essentially unchanged until after the impedance measurements at 2000 cycles. Only small changes in the impedance parameters were observed, but there was somewhat more scatter in the data after 2000 cycles. When the cell was returned to LEO cycling after 2000 cycles, only 38 percent of the capacity could be obtained. It is believed that the cell failed because of an equipment failure at the end of the final impedance measurements which allowed an over-discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Neeraj; Anderson, Virginia R.; Johnson, Scooter D.
The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities duemore » to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to understand nucleation and growth mechanisms of ALEp to enable improvement in material quality and broaden its application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Hanif, Sumaira; Liu, Hailing; Chen, Ming; Muhammad, Pir; Zhou, Yue; Cao, Jiao; Ahmed, Saud Asif; Xu, Jingjuan; Xia, Xinghua; Chen, Hongyuan; Wang, Kang
2017-02-21
It is challenging to develop a robust nanoprobe for real-time operational and accurate detection of heavy metals in single cells. Fe-CN coordination chemistry has been well studied to determine the structural characteristics of hemeproteins by different techniques. However, the frequently used cyanide ligands are inorganic molecules that release cyanide anion under particular conditions and cause cyanide poisoning. In the present study, organic cyanide (4-mercaptobenzonitrile, MBN) was utilized for the first time in developing a facile nanoprobe based on surface-enhanced Raman scattering (SERS) for quantitative detection of hemeproteins (oxy-Hb) and trivalent iron (Fe 3+ ) ions. The nanoprobe prepared by coating the glass capillary tip (100 nm) with a thin gold film, which enables highly localized study in living cell system. The cyanide stretching vibration in MBN was highly sensitive and selective to Fe 3+ and oxy-Hb with excellent binding affinity (K d 0.4 pM and 0.1 nM, respectively). The high sensitivity of the nanoprobe to analyte (Fe 3+ ) was attributed to the two adsorption conformations (-SH and -CN) of MBN to the gold surface. Therefore, MBN showed an exceptional dual-peak (2126 and 2225 cm -1 ) behavior. Furthermore, the special Raman peaks of cyanide in 2100-2300 cm -1 (silent region of SERS spectra) are distinguishable from other biomolecules characteristic peaks. The selective detection of Fe 3+ in both free and protein-bound states in aqueous solution is achieved with 0.1 pM and 0.08 μM levels of detection limits, respectively. Furthermore, practical applicability of fabricated nanoprobe was validated by detection of free Fe 3+ in pretreated living HeLa cells by direct insertion of a SERS active nanoprobe. Regarding the appropriate precision, good reproducibility (relative standard deviation, RSD 7.2-7.6%), and recyclability (retain good Raman intensity even after three renewing cycles) of the method, the developed sensing strategy on a nanopipette has potential benefits for label-free, qualitative and quantitative recognition of heavy metal ions within nanoliter volumes.
A single cyclin–CDK complex is sufficient for both mitotic and meiotic progression in fission yeast
Gutiérrez-Escribano, Pilar; Nurse, Paul
2015-01-01
The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13–Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes. PMID:25891897
NASA Astrophysics Data System (ADS)
McMahon, D.; Jackson, R. B.
2017-12-01
Plantation forestry can produce woody biomass many times faster than native vegetation, particularly in the tropical regions where plantations have expanded rapidly in the past three decades. However, activists and practitioners have raised concerns over the sustainability of intensive plantations, suggesting that changes to soil properties may inhibit vegetation growth after multiple harvest cycles. We use a 32-year time series of remotely sensed vegetation indices derived from Landsat data, coupled with recent geospatial and wood volume data from plantation companies, to identify trends in management and vegetation productivity in thousands of individual eucalyptus plantation stands. We find that peak vegetation index values at canopy closure, which are correlated with annual wood volume increment, increase over successive harvest cycles, while the length of each cycle decreases. These opposing trends suggest that the number of harvests required to produce a given wood volume peaks around the second harvest cycle and then declines, likely due to refinement of management practices. Across the region, vegetation index data do not support the hypothesized decrease in productivity over multiple harvest cycles. Additional field data and ongoing soil analyses will complement the remote sensing approach to quantifying plantations' long-term effects on the land they occupy.
Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet
NASA Astrophysics Data System (ADS)
Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang
2013-05-01
Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.
Gilardi, Federica; Liechti, Robin; Martin, Olivier; Harshman, Keith; Delorenzi, Mauro; Desvergne, Béatrice; Herr, Winship; Deplancke, Bart; Schibler, Ueli; Rougemont, Jacques; Guex, Nicolas; Hernandez, Nouria; Naef, Felix
2012-01-01
Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver. PMID:23209382
A metal-free organic-inorganic aqueous flow battery.
Huskinson, Brian; Marshak, Michael P; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R; Galvin, Cooper J; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J
2014-01-09
As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.
Danielsen, T.; Hvidsten, M.; Stokke, T.; Solberg, K.; Rofstad, E. K.
1998-01-01
Hypoxia has been shown to induce accumulation of p53 and of hypophosphorylated retinoblastoma protein (pRb) in tumour cells. In this study, the cell cycle dependence of p53 accumulation and pRb hypophosphorylation in four human melanoma cell lines that are wild type for p53 was investigated using two-parameter flow cytometry measurements of p53 or pRb protein content and DNA content. The hypoxia-induced increase in p53 protein was higher in S-phase than in G1 and G2 phases in all cell lines. The accumulation of p53 in S-phase during hypoxia was not related to hypoxia-induced apoptosis or substantial cell cycle specific cell inactivation during the first 24 h of reoxygenation. pRb was hypophosphorylated in all cell cycle phases by hypoxia treatment. The results did not support a direct link between p53 and pRb during hypoxia because p53 was induced in a cell cycle-specific manner, whereas no cell cycle-dependent differences in pRb hypophosphorylation were detected. Only a fraction of the cell populations (0.60+/-0.10) showed hypophosphorylated pRb. Thus, pRb is probably not the only mediator of the hypoxia-induced cell cycle block seen in all cells and all cell cycle phases. Moreover, the cell cycle-dependent induction of p53 by hypoxia suggests that the primary function of p53 accumulation during hypoxia is other than to arrest the cells. Images Figure 4 Figure 7 PMID:9862563
Sutherland, Michael F.; Johnston, Fay H.; Lampugnani, Edwin R.; McCarthy, Michael A.; Jacobs, Stephanie J.; Pezza, Alexandre B.; Newbigin, Edward J.
2018-01-01
We examine the seasonality of asthma-related hospital admissions in Melbourne, Australia, in particular the contribution and predictability of episodic thunderstorm asthma. Using a time-series ecological approach based on asthma admissions to Melbourne metropolitan hospitals, we identified seasonal peaks in asthma admissions that were centred in late February, June and mid-November. These peaks were most likely due to the return to school, winter viral infections and seasonal allergies, respectively. We performed non-linear statistical regression to predict daily admission rates as functions of the seasonal cycle, weather conditions, reported thunderstorms, pollen counts and air quality. Important predictor variables were the seasonal cycle and mean relative humidity in the preceding two weeks, with higher humidity associated with higher asthma admissions. Although various attempts were made to model asthma admissions, none of the models explained substantially more variation above that associated with the annual cycle. We also identified a list of high asthma admissions days (HAADs). Most HAADs fell in the late-February return-to-school peak and the November allergy peak, with the latter containing the greatest number of daily admissions. Many HAADs in the spring allergy peak may represent episodes of thunderstorm asthma, as they were associated with rainfall, thunderstorms, high ambient grass pollen levels and high humidity, a finding that suggests thunderstorm asthma is a recurrent phenomenon in Melbourne that occurs roughly once per five years. The rarity of thunderstorm asthma events makes prediction challenging, underscoring the importance of maintaining high standards of asthma management, both for patients and health professionals, especially during late spring and early summer. PMID:29649224
Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.
Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain
Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong
2008-01-01
TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127
Cell cycle gene expression under clinorotation
NASA Astrophysics Data System (ADS)
Artemenko, Olga
2016-07-01
Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.
KOH concentration effect on cycle life of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Lim, Hong S.; Verzwyvelt, S. A.
1987-01-01
A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low Earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.
Mizejewski, G J
2016-09-01
The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.
Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles
Wheeler, Richard John
2015-01-01
Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196
Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K
2014-02-01
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Influence of climate cycles on grapevine domestication and ancient migrations in Eurasia.
Mariani, Luigi; Cola, Gabriele; Maghradze, David; Failla, Osvaldo; Zavatti, Franco
2018-09-01
The objective of this work is to investigate the Holocenic climate cycles that may have influenced the domestication of grapevine in the Subcaucasian area and its subsequent spread in Eurasia. The analysis covered the longitudinal belt ranging from the Iberian Peninsula to Japan, seen as the preferential pathway for the Holocenic spread of grapevine and many other crops in Eurasia. Spectral analysis was considered as the criterion of investigation and the Holocenic cycles were analyzed considering different geochemical and biological proxies, of which seven are directly referred to vine. In this context the relation of the abovementioned proxies with spectral peaks of possible causal factors like Solar activity (SA), North Atlantic oceanic factors (Atlantic Multidecadal Oscillation - AMO and North Atlantic Oscillation - NAO), and subtropical oceanic factors (El Nino Southern Oscillation - ENSO) was also analyzed. In order to acquire a sufficiently wide number of proxies sensitive to the causal factors, we referred to a latitudinal belt wider than the one colonized by vine, also acquiring proxy from the Scandinavian area, notoriously susceptible to North Atlantic forcings. The analysis of the proxy spectral peaks, considering 20 classes with a 50-years step in the 0-1000 years range, showed that the 50% of the classes have a higher frequency of peaks at East than West, the 20% a higher frequency at West than East and the 10% an equal frequency, showing the efficiency of the propagation of Western signals towards the center of Eurasia. The search of the causal factors spectral peaks in the proxy series showed that AMO, NAO and SA acted with a certain regularity on the entire belt investigated both latitudinally and longitudinally, while spectral peaks linked to ENSO underwent a considerable attenuation moving northward. Finally, the specific analysis on viticultural proxies showed common peaks with causal factors. Copyright © 2018 Elsevier B.V. All rights reserved.
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielson, Marike; Reizer, Edwin; Stål, Olle
An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclearmore » Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.« less
Prediction Methods in Solar Sunspots Cycles
Ng, Kim Kwee
2016-01-01
An understanding of the Ohl’s Precursor Method, which is used to predict the upcoming sunspots activity, is presented by employing a simplified movable divided-blocks diagram. Using a new approach, the total number of sunspots in a solar cycle and the maximum averaged monthly sunspots number Rz(max) are both shown to be statistically related to the geomagnetic activity index in the prior solar cycle. The correlation factors are significant and they are respectively found to be 0.91 ± 0.13 and 0.85 ± 0.17. The projected result is consistent with the current observation of solar cycle 24 which appears to have attained at least Rz(max) at 78.7 ± 11.7 in March 2014. Moreover, in a statistical study of the time-delayed solar events, the average time between the peak in the monthly geomagnetic index and the peak in the monthly sunspots numbers in the succeeding ascending phase of the sunspot activity is found to be 57.6 ± 3.1 months. The statistically determined time-delayed interval confirms earlier observational results by others that the Sun’s electromagnetic dipole is moving toward the Sun’s Equator during a solar cycle. PMID:26868269
In-situ study of the cracking of metal hydride electrodes by acoustic emission technique
NASA Astrophysics Data System (ADS)
Didier-Laurent, S.; Idrissi, H.; Roué, L.
Pulverisation phenomena occurring during the charge/discharge cycling of metal hydride materials were studied by acoustic emission coupled to electrochemical measurements. Two kinds of materials were studied: a commercial LaNi 5-based alloy and a ball-milled MgNi alloy. In both alloys, two populations of acoustic signals were detected during charging steps: P1, showing peak frequencies between 230 and 260 kHz, high energy and low rise time, and P2 with peak frequencies between 150 and 180 kHz, lower energy and longer rise time. Population P2 is related to the hydrogen evolution reaction whereas P1 is associated with pulverisation phenomena. No acoustic activity was detected during discharge. We also investigated pulverisation phenomena through cycles by monitoring the P1 population. It appears that pulverisation occurs mainly during the five first cycles for LaNi 5 with a maximum at the second cycle, while pulverisation takes place all along the cycling for MgNi, but at a decreasing rate. By comparing the P1 activities, it appears that the pulverization phenomenon is less intensive on the MgNi electrode than on the LaNi 5-based electrode.
Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua
2017-06-01
Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Life-cycle environmental inventory of passenger transportation modes in the United States
NASA Astrophysics Data System (ADS)
Chester, Mikhail Vin
To appropriately mitigate environmental impacts from transportation, it is necessary for decision makers to consider the life-cycle energy consumption and emissions associated with each mode. A life-cycle energy, greenhouse gas, and criteria air pollutant emissions inventory is created for the passenger transportation modes of automobiles, urban buses, heavy rail transit, light rail transit, and aircraft in the U.S. Each mode's inventory includes an assessment of vehicles, infrastructure, and fuel components. For each component, analysis is performed for material extraction through use and maintenance in both direct and indirect (supply chain) processes. For each mode's life-cycle components, energy inputs and emission outputs are determined. Energy inputs include electricity and petroleum-based fuels. Emission outputs include greenhouse gases (CO2, CH4, and N2O) and criteria pollutants (CO, SO2, NOx , VOCs, and PM). The inputs and outputs are normalized by vehicle lifetime, vehicle mile traveled, and passenger mile traveled. A consistent system boundary is applied to all modal inventories which captures the entire life-cycle, except for end-of-life. For each modal life-cycle component, both direct and indirect processes are included if possible. A hybrid life-cycle assessment approach is used to estimate the components in the inventories. We find that life-cycle energy inputs and emission outputs increase significantly compared to the vehicle operational phase. Life-cycle energy consumption is 39-56% larger than vehicle operation for autos, 38% for buses, 93-160% for rail, and 19-24% for air systems per passenger mile traveled. Life-cycle greenhouse gas emissions are 47-65% larger than vehicle operation for autos, 43% for buses, 39-150% for rail, and 24-31% for air systems per passenger mile traveled. The energy and greenhouse gas increases are primarily due to vehicle manufacturing and maintenance, infrastructure construction, and fuel production. For criteria air pollutants, life-cycle components often dominate total emissions and can be a magnitude larger than operational counterparts. Per passenger mile traveled, total SO2 emissions (between 350 and 460 mg) are 19-27 times larger than operational emissions as a result of electricity generation in vehicle manufacturing, infrastructure construction, and fuel production. NOx emissions increase 50-73% for automobiles, 24% for buses, 13-1300% for rail, and 19-24% for aircraft. Non-tailpipe VOCs are 27-40% of total automobile, 71-95% of rail, and 51-81% of air total emissions. Infrastructure and parking construction are major components of total PM10 emissions resulting in total emissions over three times larger than operational emissions for autos and even larger for many rail systems and aircraft (the major contributor being emissions from hot-mix asphalt plants and concrete production). Infrastructure construction and operation as well as vehicle manufacturing increase total CO emissions by 5-17 times from tailpipe performance for rail and 3-9 times for air. A case study comparing the environmental performance of metropolitan regions is presented as an application of the inventory results. The San Francisco Bay Area, Chicago, and New York City are evaluated capturing passenger transportation life-cycle energy inputs and greenhouse gas and criteria air pollutant emissions. The regions are compared between off-peak and peak travel as well as personal and public transit. Additionally, healthcare externalities are computed from vehicle emissions. It is estimated that life-cycle energy varies from 6.3 MJ/PMT in the Bay Area to 5.7 MJ/PMT in Chicago and 5.3 MJ/PMT in New York for an average trip. Life-cycle GHG emissions range from 480 g CO2e/PMT in the Bay Area to 440 g CO2e/PMT for Chicago and 410 g CO 2e/PMT in New York. CAP emissions vary depending on the pollutant with differences as large as 25% between regions. Life-cycle CAP emissions are between 11% and 380% larger than their operational counterparts. Peak travel, with typical higher riderships, does not necessarily environmentally outperform off-peak travel due to the large share of auto PMT and less than ideal operating conditions during congestion. The social costs of travel range from ¢51 (in ¢2007) per auto passenger per trip during peak in New York to ¢6 per public transit passenger per trip during peak hours in the Bay Area and New York. Average personal transit costs are around ¢30 while public transit ranges from ¢28 to ¢41. (Abstract shortened by UMI.)
Dedov, Vadim N; Dedova, Irina V; Nicholson, Garth A
2004-04-01
Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.
[Effects of methyl tertiary butyl ether on cell cycle and cell apoptosis].
Zhou, W; Huang, G; Zhang, H; Ye, S
2000-07-01
To explore the effects of the new gasoline additive, methyl tertiary butyl ether (MTBE) on cell cycle and cell apoptosis. Flow cytometry was used to evaluate the effect of MTBE (1, 2, 4 microl/ml, 24 h) on NIH/3T3 cell cycles; and the effect of MTBE on Hela cell apoptosis was evaluated by detecting cell survival using crystal violet staining. Flow cytometry showed that MTBE could change NIH/3T3 cell cycles, decrease the number of cells in S stage, and arrest cells at G(2) + M stage. The results suggested that MTBE could affect NIH/3T3 cell cycles and induce cell proliferation. This situation existed 48 hours after the treatment, and cell cycles came back normal 96 hours after the treatment. By detecting cell survival using crystal violet staining, we found that MTBE could inhibit the apoptosis of Hela cells which was induced by tumor necrosis factor (TNF)alpha and cycloheximide. MTBE's carcinogenicity to animals may relate to induction of cell proliferation and inhibition of cell apoptosis.
KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse
NASA Technical Reports Server (NTRS)
Lim, H. S.; Verzwyvelt, S. A.
1989-01-01
Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.
The cell-cycle interactome: a source of growth regulators?
Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie
2014-06-01
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
On the Relation Between Spotless Days and the Sunspot Cycle
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2005-01-01
Spotless days are examined as a predictor for the size and timing of a sunspot cycle. For cycles 16-23 the first spotless day for a new cycle, which occurs during the decline of the old cycle, is found to precede minimum amplitude for the new cycle by about approximately equal to 34 mo, having a range of 25-40 mo. Reports indicate that the first spotless day for cycle 24 occurred in January 2004, suggesting that minimum amplitude for cycle 24 should be expected before April 2007, probably sometime during the latter half of 2006. If true, then cycle 23 will be classified as a cycle of shorter period, inferring further that cycle 24 likely will be a cycle of larger than average minimum and maximum amplitudes and faster than average rise, peaking sometime in 2010.
Stricker, Reto; Eberhart, Raphael; Chevailler, Marie-Christine; Quinn, Frank A; Bischof, Paul; Stricker, René
2006-01-01
During a normal menstrual cycle, serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol, and progesterone can vary widely between cycles for the same woman, as well as between different woman. Reliable reference values based on the local population are important for correct interpretation of laboratory results. The purpose of our study was to determine detailed reference values for these hormones throughout the menstrual cycle using the Abbott ARCHITECT system. From 20 volunteers (age 20-36 years) with normal cycles and no use of oral contraceptives, samples were taken every day during their cycle. Volunteers received three vaginal ultrasound examinations (days 10 and 13, and 1 or 2 days after ovulation) to measure follicular and corpus luteum development. Hormone levels were measured using the corresponding ARCHITECT assay and were synchronized to the LH peak. Median, and 5th and 95th percentile values were determined for each day of the cycle, as well as for early follicular (days -15 to -6), late follicular (days -5 to -1), LH peak (day 0), early luteal (+1 to +4), mid-luteal (days +5 to +9), and late luteal (days +10 to +14) phases of the cycle. Based on our data, we were able to establish detailed reference values for LH, FSH, estradiol, and progesterone, which should aid in the interpretation of results for these reproductive hormones in a variety of circumstances.
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo2O5.5+δ thin films
NASA Astrophysics Data System (ADS)
Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin; Zhang, Yamei; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qinyu
2015-12-01
Single-crystalline epitaxial thin films of PrBaCo2O5.5+δ (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200-800 °C. During the oxidation cycle under O2, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co2+/Co3+ → Co3+ and Co3+ → Co3+/Co4+, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO2)(PrO)(CoO2) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.
A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.
Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C
2014-06-09
DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.
Ozaki, T; Hata, K; Xie, H; Takahashi, K; Miyazaki, K
2002-12-01
To investigate the relationship between color Doppler indices of dominant follicular blood flow and clinical factors in in vitro fertilization-embryo transfer cycles. This was a prospective study involving 26 patients completing a total of 33 in vitro fertilization cycles. Dominant follicular blood flow indices, peak systolic velocities, the resistance index and the pulsatility index were evaluated using transvaginal color Doppler. The indices were compared to the clinical outcomes of in vitro fertilization-embryo transfer. There was a significant correlation between dominant follicular peak systolic velocities and the number of oocytes retrieved, as well as the number of mature oocytes obtained. There was no significant correlation between dominant follicular resistance index or pulsatility index and the number of follicles > 10 mm in diameter, the number of oocytes retrieved or the number of mature oocytes. There were no significant differences between dominant follicular peak systolic velocities, resistance index or pulsatility index, and fertilization rate or the ratio of good quality embryos. However, significant differences were found between the number of oocytes retrieved, as well as the number of mature oocytes for those patients in which the peak systolic velocity was below 25 cm/s. Doppler assessment of dominant follicle blood flow alone is useful for predicting the number of retrievable oocytes. However, morphological quality of the embryo produced or the pregnancy rate cannot be predicted by this method.
1975-01-01
A wide variety of inhibitors (drugs, antibiotics, and antimetabolites) will block cell division within an ongoing cell cycle in autotrophic cultures of Chlamydomonas reinhardtii. To determine when during the cell cycle a given inhibitor is effective in preventing cell division, a technique is described which does not rely on the use of synchronous cultures. The technique permits the measurement of transition points, the cell cycle stage at which the subsequent cell division becomes insensitive to the effects of an inhibitor. A map of transition points in the cell cycle reveals that they are grouped into two broad periods, the second and fourth quarters. In general, inhibitors which block organellar DNA, RNA, and protein synthesis have second-quarter transition points, while those which inhibit nuclear cytoplasmic macromolecular synthesis have fourth-quarter transition points. The specific grouping of these transition points into two periods suggests that the synthesis of organellar components is completed midway through the cell cycle and that the synthesis of nonorganellar components required for cell division is not completed until late in the cell cycle. PMID:1176526
Periodic Impact Cratering and Extinction Events Over the Last 260 Million Years
NASA Technical Reports Server (NTRS)
Rampino, Michael R.; Caldeira, Ken
2015-01-01
The claims of periodicity in impact cratering and biological extinction events are controversial. Anewly revised record of dated impact craters has been analyzed for periodicity, and compared with the record of extinctions over the past 260 Myr. A digital circular spectral analysis of 37 crater ages (ranging in age from 15 to 254 Myr ago) yielded evidence for a significant 25.8 +/- 0.6 Myr cycle. Using the same method, we found a significant 27.0 +/- 0.7 Myr cycle in the dates of the eight recognized marine extinction events over the same period. The cycles detected in impacts and extinctions have a similar phase. The impact crater dataset shows 11 apparent peaks in the last 260 Myr, at least 5 of which correlate closely with significant extinction peaks. These results suggest that the hypothesis of periodic impacts and extinction events is still viable.
A Pseudo Fractional-N Clock Generator with 50% Duty Cycle Output
NASA Astrophysics Data System (ADS)
Yang, Wei-Bin; Lo, Yu-Lung; Chao, Ting-Sheng
A proposed pseudo fractional-N clock generator with 50% duty cycle output is presented by using the pseudo fractional-N controller for SoC chips and the dynamic frequency scaling applications. The different clock frequencies can be generated with the particular phase combinations of a four-stage voltage-controlled oscillator (VCO). It has been fabricated in a 0.13µm CMOS technology, and work with a supply voltage of 1.2V. According to measured results, the frequency range of the proposed pseudo fractional-N clock generator is from 71.4MHz to 1GHz and the peak-to-peak jitter is less than 5% of the output period. Duty cycle error rates of the output clock frequencies are from 0.8% to 2% and the measured power dissipation of the pseudo fractional-N controller is 146µW at 304MHz.
Effect of horizontal pick and place locations on shoulder kinematics.
Könemann, R; Bosch, T; Kingma, I; Van Dieën, J H; De Looze, M P
2015-01-01
In this study the effects of horizontal bin locations in an order picking workstation on upper arm elevation, trunk inclination and hand use were investigated. Eight subjects moved (self-paced) light or heavy products (0.2 and 3.0 kg) from a central product bin to an inner or outer order bin (at 60 or 150 cm) on the left or right side of the workstation, while movements were recorded. The outer compared to inner bin location resulted in more upper arm elevation and trunk inclination per work cycle, both in terms of number of peak values and in terms of time integrals of angles (which is a dose measure over time). Considering the peak values and time integrals per minute (instead of per work cycle), these effects are reduced, due to the higher cycle times for outer bins. Hand use (left, right or both) was not affected by order bin locations.
Fatigue-environment interactions in a SiC/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Lerch, B. A.
1993-01-01
Load-controlled isothermal and nonisothermal fatigue lives of a (0-deg)s SiC/Ti-15-3 were evaluated at temperatures between 150 and 550 C and a target strain range of about 0.45 percent. In nonisothermal fatigue tests, load was first cycled at minimum temperature and then temperature was cycled at zero load. For fatigue tests with peak temperatures at or above 300 C, fatigue life was dramatically reduced compared to that at 150 C. The shortest life was produced by the nonisothermal test with the greatest temperature range (Delta T = 400 C) and highest peak temperature (T(max) = 550 C). Vacuum testing showed that much of the life reduction under isothermal and nonisothermal conditions was related to environmental effects, although the nature of the fatigue-environment interaction was decidedly different for the isothermal and nonisothermal test cycles which were studied.
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Watanabe, Shoichiro; Kinoshita, Masahiro; Nakura, Kensuke
2014-02-01
Ni-based LiNi(1-x-y)CoxAlyO2 (NCA) and LiCoO2 (LCO) cathode materials taken out of lithium-ion cells after storage for 2 years at 45 °C were analyzed by various spectroscopic techniques. X-ray photoelectron spectroscopy exhibited that there was no difference between NCA and LCO. On the other hand, scanning transmission electron microscopy-electron energy-loss spectroscopy demonstrated there was a remarkably large difference between the two cathode materials. Ni-L2,3 energy-loss near-edge structure (ELNES) spectra of the NCA showed a peak at about 856.5 eV, which was assigned to trivalent nickel, was maintained even after storage, indicating that the NCA had no significant change in its surface structure during storage. On the other hand, in the Co-L2,3 ELNES spectra of the LCO a peak at about 782.5 eV, which was assigned to trivalent cobalt, significantly shifted to the lower energies after storage. These results suggest that crystal structure change of the active material surface is a predominant reason of deterioration during the storage test.
Moon, Y.; Chandrasekaran, J.; Hsu, I.M.K.; Rice, I.M.; Hsiao-Wecksler, E.T.; Sosnoff, J.J.
2013-01-01
Background Manual wheelchair users report a high prevalence of shoulder pain. Growing evidence shows that variability in forces applied to biological tissue is related to musculoskeletal pain. The purpose of this study was to examine the variability of forces acting on the shoulder during wheelchair propulsion as a function of shoulder pain. Methods Twenty-four manual wheelchair users (13 with pain, 11 without pain) participated in the investigation. Kinetic and kinematic data of wheelchair propulsion were recorded for three minutes maintaining a constant speed at three distinct propulsion speeds (fast speed of 1.1 m/s, a self-selected speed, and a slow speed of 0.7 m/s). Peak resultant shoulder forces in the push phase were calculated using inverse dynamics. Within individual variability was quantified as the coefficient of variation of cycle to cycle peak resultant forces. Findings There was no difference in mean peak shoulder resultant force between groups. The pain group had significantly smaller variability of peak resultant force than the no pain group (p < 0.01, η2 = 0.18). Interpretation The observations raise the possibility that propulsion variability could be a novel marker of upper limb pain in manual wheelchair users. PMID:24210512
Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.
2013-01-01
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170
Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar
2016-10-01
Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.
Wani, Willayat Yousuf; Kandimalla, Ramesh J L; Sharma, Deep Raj; Kaushal, Alka; Ruban, Anand; Sunkaria, Aditya; Vallamkondu, Jayalakshmi; Chiarugi, Alberto; Reddy, P Hemachandra; Gill, Kiran Dip
2017-07-01
In the previous study, we demonstrated that dichlorvos induces oxidative stress in dopaminergic neuronal cells and subsequent caspase activation mediates apoptosis. In the present study, we evaluated the effect and mechanism of dichlorvos induced oxidative stress on cell cycle activation in NGF-differentiated PC12 cells. Dichlorvos exposure resulted in oxidative DNA damage along with activation of cell cycle machinery in differentiated PC12 cells. Dichlorvos exposed cells exhibited an increased expression of p53, cyclin-D1, pRb and decreased expression of p21suggesting a re-entry of differentiated cells into the cell cycle. Cell cycle analysis of dichlorvos exposed cells revealed a reduction of cells in the G 0 /G 1 phase of the cell cycle (25%), and a concomitant increase of cells in S phase (30%) and G2/M phase (43.3%) compared to control PC12 cells. Further, immunoblotting of cytochrome c, Bax, Bcl-2 and cleaved caspase-3 revealed that dichlorvos induces a caspase-dependent cell death in PC12 cells. These results suggest that Dichlorvos exposure has the potential to generate oxidative stress which evokes activation of cell cycle machinery leading to apoptotic cell death via cytochrome c release from mitochondria and subsequent caspase-3 activation in differentiated PC12 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Ondracka, Andrej; Dudin, Omaya; Ruiz-Trillo, Iñaki
2018-06-18
Coordination of the cell division cycle with the growth of the cell is critical to achieve cell size homeostasis [1]. Mechanisms coupling the cell division cycle with cell growth have been described across diverse eukaryotic taxa [2-4], but little is known about how these processes are coordinated in organisms that undergo more complex life cycles, such as coenocytic growth. Coenocytes (multinucleate cells formed by sequential nuclear divisions without cytokinesis) are commonly found across the eukaryotic kingdom, including in animal and plant tissues and several lineages of unicellular eukaryotes [5]. Among the organisms that form coenocytes are ichthyosporeans, a lineage of unicellular holozoans that are of significant interest due to their phylogenetic placement as one of the closest relatives of animals [6]. Here, we characterize the coenocytic cell division cycle in the ichthyosporean Sphaeroforma arctica. We observe that, in laboratory conditions, S. arctica cells undergo a uniform and easily synchronizable coenocytic cell cycle, reaching up to 128 nuclei per cell before cellularization and release of daughter cells. Cycles of nuclear division occur synchronously within the coenocyte and in regular time intervals (11-12 hr). We find that the growth of cell volume is dependent on concentration of nutrients in the media; in contrast, the rate of nuclear division cycles is constant over a range of nutrient concentrations. Together, the results suggest that nuclear division cycles in the coenocytic growth of S. arctica are driven by a timer, which ensures periodic and synchronous nuclear cycles independent of the cell size and growth. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles
2012-09-01
Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.
2012-01-01
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214
ERIC Educational Resources Information Center
Laursen, Paul B.; Shing, Cecilia M.; Jenkins, David G.
2004-01-01
The power output achieved at peak oxygen consumption (V[O.sub.2]peak) and the time this power can be maintained (i.e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the V[O.sub.2] response to exercise at the cycling power that output well trained cyclists…
hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao
2013-01-01
Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435
SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonifati, Serena; Daly, Michele B.; St Gelais, Corine
SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G{sub 1}/G{sub 0} phase and reduces apoptosis. These alterationsmore » correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.« less
Li Causi, Eleonora; Parikh, Suraj C.; Chudley, Lindsey; Layfield, David M.; Ottensmeier, Christian H.; Stevenson, Freda K.; Di Genova, Gianfranco
2015-01-01
CD4+ T helper memory (Thmem) cells influence both natural and vaccine-boosted immunity, but mechanisms for their maintenance remain unclear. Pro-survival signals from the common gamma-chain cytokines, in particular IL-7, appear important. Previously we showed in healthy volunteers that a booster vaccination with tetanus toxoid (TT) expanded peripheral blood TT-specific Thmem cells as expected, but was accompanied by parallel increase of Thmem cells specific for two unrelated and non cross-reactive common recall antigens. Here, in a new cohort of healthy human subjects, we compare blood vaccine-specific and bystander Thmem cells in terms of differentiation stage, function, activation and proliferative status. Both responses peaked 1 week post-vaccination. Vaccine-specific cytokine-producing Thmem cells were predominantly effector memory, whereas bystander cells were mainly of central memory phenotype. Importantly, TT-specific Thmem cells were activated (CD38High HLA-DR+), cycling or recently divided (Ki-67+), and apparently vulnerable to death (IL-7RαLow and Bcl-2 Low). In contrast, bystander Thmem cells were resting (CD38Low HLA-DR- Ki-67-) with high expression of IL-7Rα and Bcl-2. These findings allow a clear distinction between vaccine-specific and bystander Thmem cells, suggesting the latter do not derive from recent proliferation but from cells mobilized from as yet undefined reservoirs. Furthermore, they reveal the interdependent dynamics of specific and bystander T-cell responses which will inform assessments of responses to vaccines. PMID:26332995
Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.
Cooper, Stephen
2017-11-01
Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.
Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S
2009-05-01
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.
1992-12-01
During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.
The Abbreviated Pluripotent Cell Cycle
Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary
2013-01-01
Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993
Differential expression of melanopsin mRNA and protein in Brown Norwegian rats.
Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan
2013-01-01
Melanopsin is expressed in a subpopulation of retinal ganglion cells rendering these cells intrinsically photosensitive (ipRGCs). The ipRGCs are the primary RGCs mediating light entrainment of the circadian clock and control of the pupillary light reflex, light regulated melatonin secretion and negative masking behaviour. Previous studies have demonstrated that melanopsin expression in albino rats is regulated by light and darkness. The present study was undertaken to study the influence of light and darkness during the circadian day and after extended periods of constant light and darkness on melanopsin expression in the pigmented retina of the Brown Norwegian rat (Rattus norvegicus). The diurnal and circadian expressions were examined in retinal extracts from rats euthanized every 4 h during a 24 h light/dark (LD) and a 24 h dark cycle (DD) using quantitative real-time PCR and Western blotting. To study whether light regulates melanopsin expression, rats were sacrificed after being placed in either constant light (LL) or darkness for 3 or 21 d. Flat mount retinas from animals kept during either LL or DD were also examined by immunohistochemistry. Melanopsin mRNA expression displayed a significant rhythmic change during the LD cycle with peak expression around dusk and nadir at dawn. Melanopsin protein also changed over the LD cycle with peak expression at the end of the night and nadir at dusk. Rhythmic expression of melanopsin mRNA but not melanopsin protein was found in constant darkness. After 3 or 21 d in either LL or DD melanopsin mRNA expression was unaltered. Melanopsin protein was at the same high level after 3 and 21 d in DD, whereas a significant decrease was found after prolonging the light period for 3 or 21 d. The change in melanopsin protein was primarily due to change in immunoreactivity in the dendritic processes. In conclusion we found that light and darkness are important for regulation of melanopsin protein expression whereas input from a retinal networks regulates melanopsin mRNA expression. It is likely to speculate that altered level of melanopsin is one way in which the retina adapts to environmental light and darkness conditions ensuring optimal light sensitivity for the transmission to the brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sandoval, Juan S; Steward, Ryan G; Chen, Chen; Li, Yi-Ju; Price, Thomas M; Muasher, Suheil J
2016-01-01
To define the relationship between peak estradiol (E2)/mature oocyte ratio and pregnancy outcomes in gonadotropin-releasing hormone (GnRH) antagonist intracytoplasmic sperm injection (ICSI) cycles. Retrospective cohort study in the setting of an academic reproductive medicine practice. Records from 162 fresh, autologous, GnRH antagonist ICSI cycles performed between 2009 and 2012 .were analyzed. The main outcome measures were rates of clinical pregnancy (CPR), ongoing pregnancy (OPR), and live birth (LBR). For the primary analysis, 4 groups were created based on peak E2/mature oocyte ratio (group 1: <200, group 2: 200-300, group 3: 300-400, and group 4: >400 pg/mL/oocyte). After adjusting for age, basal FSH, and the number of mature oocytes, a significantly lower OPR was seen in group 4 as compared to group I (OR 0.15, 95% CI 0.03-0.86; p=0.032) and group 3 (OR 0.17, 95% CI 0.03-0.98; p=0.048), respectively. The adjusted LBR was also significantly lower in group 4 as compared to group 1 (OR 0.15, 95% CI 0.03-0.83; p=0.030). In a secondary analysis, 3 ranges of peak E2/ mature oocyte ratio (<200, 200-400, and >400 pg/ mL/oocyte) were compared between low, normal, and high responders (<6, 6-15, and >15 mature oocytes, respectively). Clinical pregnancy rate, OPR, and LBR were all lower in normal responders when the E2/oocyte ratio exceeded 400 pg/mL/oocyte as compared to <200 pg/mL/oocyte and 200-300 pg/mL/oocyte (CPR 1% vs. 16% and 32%, respectively, p=0.017; OPR 0 vs. 15% and 27%, respectively, p=0.011; and LBR 0 vs. 13% and 26%, respectively, p=0.018). Very elevated peak E2/mature oocyte ratio is associated with a lower CPR, OPR, and LBR in fresh, autologous, GnRH antagonist ICSI cycles.
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
Proteomic analysis of the bacterial cell cycle
Grünenfelder, Björn; Rummel, Gabriele; Vohradsky, Jiri; Röder, Daniel; Langen, Hanno; Jenal, Urs
2001-01-01
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. PMID:11287652
Zheng, Yingfeng; Murphy, Leigh C.
2016-01-01
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927
1996-01-01
Expression of the bcl-2 gene has been shown to effectively confer resistance to programmed cell death under a variety of circumstances. However, despite a wealth of literature describing this phenomenon, very little is known about the mechanism of resistance. In the experiments described here, we show that bcl-2 gene expression can result in an inhibition of cell division cycle progression. These findings are based upon the analysis of cell cycle distribution, cell cycle kinetics, and relative phosphorylation of the retinoblastoma tumor suppressor protein, using primary tissues in vivo, ex vivo, and in vitro, as well as continuous cell lines. The effects of bcl-2 expression on cell cycle progression appear to be focused at the G1 to S phase transition, which is a critical control point in the decision between continued cell cycle progression or the induction programmed cell death. In all systems tested, bcl-2 expression resulted in a substantial 30-60% increase in the length of G1 phase; such an increase is very substantial in the context of other regulators of cell cycle progression. Based upon our findings, and the related findings of others, we propose a mechanism by which bcl-2 expression might exert its well known inhibition of programmed cell death by regulating the kinetics of cell cycle progression at a critical control point. PMID:8642331
Targeted Approaches to Overcoming Endocrine Resistance in Breast Cancer
2011-08-01
NM_001012271 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog AF053305 CDC20 Cell division cycle 20 homolog BG256659 CDC25B Cell division cycle...by benzimidazoles 1 homolog), BIRC5/ Survivin, CDCA8 (cell division cycle-associated protein 8), AURKB (aurora kinase B), CDC25B (cell division cycle
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre
2018-06-01
The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.
Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle
Van Teeffelen, Jurgen W G E; Segal, Steven S
2000-01-01
The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = ∼50% maximum; low = ∼25% maximum). Vasodilatory responses (diameter × time integral, DTI) to rhythmic contractions (1 per 2 s for 65 s) were evaluated in first, second and third orderarterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2·5–25 %) effectively maintained the total active tension (tension × time integral, TTI) constant across recruitment levels. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units. PMID:10747197