Susceptibility of Hep3B cells in different phases of cell cycle to tBid.
Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S
2011-01-01
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.
Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L
2006-08-15
Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.
Danielsen, T.; Hvidsten, M.; Stokke, T.; Solberg, K.; Rofstad, E. K.
1998-01-01
Hypoxia has been shown to induce accumulation of p53 and of hypophosphorylated retinoblastoma protein (pRb) in tumour cells. In this study, the cell cycle dependence of p53 accumulation and pRb hypophosphorylation in four human melanoma cell lines that are wild type for p53 was investigated using two-parameter flow cytometry measurements of p53 or pRb protein content and DNA content. The hypoxia-induced increase in p53 protein was higher in S-phase than in G1 and G2 phases in all cell lines. The accumulation of p53 in S-phase during hypoxia was not related to hypoxia-induced apoptosis or substantial cell cycle specific cell inactivation during the first 24 h of reoxygenation. pRb was hypophosphorylated in all cell cycle phases by hypoxia treatment. The results did not support a direct link between p53 and pRb during hypoxia because p53 was induced in a cell cycle-specific manner, whereas no cell cycle-dependent differences in pRb hypophosphorylation were detected. Only a fraction of the cell populations (0.60+/-0.10) showed hypophosphorylated pRb. Thus, pRb is probably not the only mediator of the hypoxia-induced cell cycle block seen in all cells and all cell cycle phases. Moreover, the cell cycle-dependent induction of p53 by hypoxia suggests that the primary function of p53 accumulation during hypoxia is other than to arrest the cells. Images Figure 4 Figure 7 PMID:9862563
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Visualization of endothelial cell cycle dynamics in mouse using the Flt-1/eGFP-anillin system.
Herz, Katia; Becker, Alexandra; Shi, Chenyue; Ema, Masatsugo; Takahashi, Satoru; Potente, Michael; Hesse, Michael; Fleischmann, Bernd K; Wenzel, Daniela
2018-05-01
Endothelial cell proliferation is a key process during vascular growth but its kinetics could only be assessed in vitro or ex vivo so far. To enable the monitoring and quantification of cell cycle kinetics in vivo, we have generated transgenic mice expressing an eGFP-anillin construct under control of the endothelial-specific Flt-1 promoter. This construct labels the nuclei of endothelial cells in late G1, S and G2 phase and changes its localization during the different stages of M phase, thereby enabling the monitoring of EC proliferation and cytokinesis. In Flt-1/eGFP-anillin mice, we found eGFP + signals specifically in Ki67 + /PECAM + endothelial cells during vascular development. Quantification using this cell cycle reporter in embryos revealed a decline in endothelial cell proliferation between E9.5 to E12.5. By time-lapse microscopy, we determined the length of different cell cycle phases in embryonic endothelial cells in vivo and found a M phase duration of about 80 min with 2/3 covering karyokinesis and 1/3 cytokinesis. Thus, we have generated a versatile transgenic system for the accurate assessment of endothelial cell cycle dynamics in vitro and in vivo.
Diamant, Noam; Hendel, Ayal; Vered, Ilan; Carell, Thomas; Reißner, Thomas; de Wind, Niels; Geacinov, Nicholas; Livneh, Zvi
2012-01-01
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. PMID:21908406
High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
Lee, Wong Cheng; Bhagat, Ali Asgar S; Lim, Chwee Teck
2014-01-01
The development of mammalian cell cycle synchronization techniques has greatly advanced our understanding of many cellular regulatory events and mechanisms specific to different phases of the cell cycle. In this chapter, we describe a high-throughput microfluidic-based approach for cell cycle synchronization. By exploiting the relationship between cell size and its phase in the cell cycle, large numbers of synchronized cells can be obtained by size fractionation in a spiral microfluidic channel. Protocols for the synchronization of primary cells such as mesenchymal stem cells, and immortal cell lines such as Chinese hamster ovarian cells (CHO-CD36) and HeLa cells are provided as examples.
Cell cycle progression in irradiated endothelial cells cultured from bovine aorta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, D.B.; Drab, E.A.; Ward, W.F.
1988-11-01
Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.
2016-01-01
ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885
Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation.
Wee, Ping; Wang, Zhixiang
2017-01-01
Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing
Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-01-01
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261
Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.
Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David
2013-04-23
Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.
Pisu, Massimo; Concas, Alessandro; Cao, Giacomo
2015-04-01
Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saitou, Takashi; Imamura, Takeshi
2016-01-01
Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.
Siriwardana, Gamini; Seligman, Paul A
2013-12-01
Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.
Irons, R D
1981-01-01
A detailed description of flow cytofluorometric DNA cell cycle analysis is presented. A number of studies by the author and other investigators are reviewed in which a method is developed for the analysis of cell cycle phase in bone marrow of experimental animals. Bone marrow cell cycle analysis is a sensitive indicator of changes in bone marrow proliferative activity occurring early in chemically-induced myelotoxicity. Cell cycle analysis, used together with other hematologic methods, has revealed benzene-induced toxicity in proliferating bone marrow cells to be cycle specific, appearing to affect a population in late S phase which then accumulate in G2/M. PMID:7016521
Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J. O.; Bakal, Chris
2015-01-01
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. PMID:26333836
Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J O; Bakal, Chris
2015-09-01
We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. © 2015 The Authors.
Guha, Gunjan; Liang, Xiaobo; Kulesz-Martin, Molly F.; Mahmud, Taifo; Indra, Arup Kumar; Ganguli-Indra, Gitali
2015-01-01
Pactamycin, although putatively touted as a potent antitumor agent, has never been used as an anticancer drug due to its high cytotoxicity. In this study, we characterized the effects of two novel biosynthetically engineered analogs of pactamycin, de-6MSA-7-demethyl-7-deoxypactamycin (TM-025) and 7-demethyl-7-deoxypactamycin (TM-026), in head and neck squamous cell carcinoma (HNSCC) cell lines SCC25 and SCC104. Both TM-025 and TM-026 exert growth inhibitory effects on HNSCC cells by inhibiting cell proliferation. Interestingly, unlike their parent compound pactamycin, the analogs do not inhibit synthesis of nascent protein in a cell-based assay. Furthermore, they do not induce apoptosis or autophagy in a dose- or a time-dependent manner, but induce mild senescence in the tested cell lines. Cell cycle analysis demonstrated that both analogs significantly induce cell cycle arrest of the HNSCC cells at S-phase resulting in reduced accumulation of G2/M-phase cells. The pactamycin analogs induce expression of cell cycle regulatory proteins including master regulator p53, its downstream target p21Cip1/WAF1, p27kip21, p19, cyclin E, total and phospho Cdc2 (Tyr15) and Cdc25C. Besides, the analogs mildly reduce cyclin D1 expression without affecting expression of cyclin B, Cdk2 and Cdk4. Specific inhibition of p53 by pifithrin-α reduces the percentage of cells accumulated in S-phase, suggesting contribution of p53 to S-phase increase. Altogether, our results demonstrate that Pactamycin analogs TM-025 and TM-026 induce senescence and inhibit proliferation of HNSCC cells via accumulation in S-phase through possible contribution of p53. The two PCT analogs can be widely used as research tools for cell cycle inhibition studies in proliferating cancer cells with specific mechanisms of action. PMID:25938491
Bao, Yan; Mukai, Kuniaki; Hishiki, Takako; Kubo, Akiko; Ohmura, Mitsuyo; Sugiura, Yuki; Matsuura, Tomomi; Nagahata, Yoshiko; Hayakawa, Noriyo; Yamamoto, Takehiro; Fukuda, Ryo; Saya, Hideyuki; Suematsu, Makoto; Minamishima, Yoji Andrew
2013-09-01
Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry. Results showed that cells in G1-phase exhibited higher concentrations of ATP, NADH, and UDP-N-acetylglucosamine than those in S and G2-M phases, suggesting accelerated glycolysis in G1-phase cells in vivo. Quantitative determination of metabolites in cells synchronized in S, G2-M, and G1 phases suggested that efflux of lactate was elevated significantly in G1-phase. By contrast, ATP production in G2-M was highly dependent on mitochondrial respiration, whereas cells in S-phase mostly exhibited an intermediary energy metabolism between G1 and G2-M phases. Isogenic cells carrying a p53-null mutation appeared more active in glycolysis throughout the cell cycle than wild-type cells. Thus, as the cell cycle progressed from G2-M to G1 phases, the dependency of energy production on glycolysis was increased while the mitochondrial energy production was reciprocally decreased. These results shed light on distinct features of the phase-specific phenotypes of metabolic systems in cancer cells. ©2013 AACR.
Cell cycle G2/M arrest through an S phase-dependent mechanism by HIV-1 viral protein R.
Li, Ge; Park, Hyeon U; Liang, Dong; Zhao, Richard Y
2010-07-07
Cell cycle G2 arrest induced by HIV-1 Vpr is thought to benefit viral proliferation by providing an optimized cellular environment for viral replication and by skipping host immune responses. Even though Vpr-induced G2 arrest has been studied extensively, how Vpr triggers G2 arrest remains elusive. To examine this initiation event, we measured the Vpr effect over a single cell cycle. We found that even though Vpr stops the cell cycle at the G2/M phase, but the initiation event actually occurs in the S phase of the cell cycle. Specifically, Vpr triggers activation of Chk1 through Ser345 phosphorylation in an S phase-dependent manner. The S phase-dependent requirement of Chk1-Ser345 phosphorylation by Vpr was confirmed by siRNA gene silencing and site-directed mutagenesis. Moreover, downregulation of DNA replication licensing factors Cdt1 by siRNA significantly reduced Vpr-induced Chk1-Ser345 phosphorylation and G2 arrest. Even though hydroxyurea (HU) and ultraviolet light (UV) also induce Chk1-Ser345 phosphorylation in S phase under the same conditions, neither HU nor UV-treated cells were able to pass through S phase, whereas vpr-expressing cells completed S phase and stopped at the G2/M boundary. Furthermore, unlike HU/UV, Vpr promotes Chk1- and proteasome-mediated protein degradations of Cdc25B/C for G2 induction; in contrast, Vpr had little or no effect on Cdc25A protein degradation normally mediated by HU/UV. These data suggest that Vpr induces cell cycle G2 arrest through a unique molecular mechanism that regulates host cell cycle regulation in an S-phase dependent fashion.
Siriwardana, Gamini; Seligman, Paul A.
2013-01-01
Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612
Nanosecond pulsed electric fields and the cell cycle
NASA Astrophysics Data System (ADS)
Mahlke, Megan A.
Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when compared to sham treated cells. CHO cells undergoing mitosis after exposure also exhibit improper separation of chromatids which could indicate loss of function of the mitotic spindle checkpoint. Activation and loss of function of checkpoints in CHO but not Jurkat cells after nsPEF exposure suggests that activation of cell cycle checkpoints could be important in defining the character of cell line specific recovery after nsPEF exposure. Moreover, the increased sensitivity in G2/M phase exhibited by both cell lines indicates that cell cycle phase is an important consideration during nsPEF exposure, particularly when aiming to induce apoptosis.
Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells
NASA Astrophysics Data System (ADS)
Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.
2014-03-01
Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to survive nsPEFs. The ability of the CHO cytoskeleton to recover and complete mitosis after nsPEF-induced damage in G2/M phase may be integral to the cell line's higher tolerance of nsPEF exposure.
Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.
Ly, Tony; Endo, Aki; Lamond, Angus I
2015-01-02
Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (
Phosphatidylcholine catabolism in the MCF-7 cell cycle.
Lin, Weiyang; Arthur, Gilbert
2006-10-01
The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.
Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin
2014-01-01
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Cell cycle-coupled expansion of AR activity promotes cancer progression.
McNair, C; Urbanucci, A; Comstock, C E S; Augello, M A; Goodwin, J F; Launchbury, R; Zhao, S G; Schiewer, M J; Ertel, A; Karnes, J; Davicioni, E; Wang, L; Wang, Q; Mills, I G; Feng, F Y; Li, W; Carroll, J S; Knudsen, K E
2017-03-23
The androgen receptor (AR) is required for prostate cancer (PCa) survival and progression, and ablation of AR activity is the first line of therapeutic intervention for disseminated disease. While initially effective, recurrent tumors ultimately arise for which there is no durable cure. Despite the dependence of PCa on AR activity throughout the course of disease, delineation of the AR-dependent transcriptional network that governs disease progression remains elusive, and the function of AR in mitotically active cells is not well understood. Analyzing AR activity as a function of cell cycle revealed an unexpected and highly expanded repertoire of AR-regulated gene networks in actively cycling cells. New AR functions segregated into two major clusters: those that are specific to cycling cells and retained throughout the mitotic cell cycle ('Cell Cycle Common'), versus those that were specifically enriched in a subset of cell cycle phases ('Phase Restricted'). Further analyses identified previously unrecognized AR functions in major pathways associated with clinical PCa progression. Illustrating the impact of these unmasked AR-driven pathways, dihydroceramide desaturase 1 was identified as an AR-regulated gene in mitotically active cells that promoted pro-metastatic phenotypes, and in advanced PCa proved to be highly associated with development of metastases, recurrence after therapeutic intervention and reduced overall survival. Taken together, these findings delineate AR function in mitotically active tumor cells, thus providing critical insight into the molecular basis by which AR promotes development of lethal PCa and nominate new avenues for therapeutic intervention.
Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François
2016-11-01
Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics
Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.
2010-01-01
During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695
In situ survey of life cycle phases of the coccolithophore Emiliania huxleyi (Haptophyta).
Frada, Miguel J; Bidle, Kay D; Probert, Ian; de Vargas, Colomban
2012-06-01
The cosmopolitan coccolithophore Emiliania huxleyi is characterized by a strongly differentiated haplodiplontic life cycle consisting of a diploid phase, generally bearing coccoliths (calcified) but that can be also non-calcified, and a non-calcified biflagellated haploid phase. Given most studies have focused on the bloom-producing calcified phase, there is little-to-no information about non-calcified cells in nature. Using field mesocoms as experimental platforms, we quantitatively surveyed calcified and non-calcified cells using the combined calcareous detection fluorescent in situ hybridization (COD-FISH) method and qualitatively screened for haploid specific transcripts using reverse transcription-PCR during E. huxleyi bloom successions. Diploid, calcified cells formed dense blooms that were followed by the massive proliferation of E. huxleyi viruses (EhVs), which caused bloom demise. Non-calcified cells were also detected throughout the experiment, accounting for a minor fraction of the population but becoming progressively more abundant during mid-late bloom periods concomitant with EhV burst. Non-calcified cell growth also paralleled a distinct window of haploid-specific transcripts and the appearance of autotrophic flagellates morphologically similar to haploid cells, both of which are suggestive of meiosis and sexual life cycling during natural blooms of this prominent marine phytoplankton species. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping
2015-01-01
Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. © 2014 American Institute of Chemical Engineers.
Nucleosome architecture throughout the cell cycle
Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto
2016-01-01
Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620
Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells
Ly, Tony; Endo, Aki; Lamond, Angus I
2015-01-01
Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159
Johard, Helena; Mahdessian, Diana; Fedr, Radek; Marks, Carolyn; Medalová, Jiřina; Souček, Karel; Lundberg, Emma; Linnarsson, Sten; Bryja, Vítězslav; Sekyrova, Petra; Altun, Mikael; Andäng, Michael
2017-01-01
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development. PMID:29228002
Daigaku, Yasukazu; Mashiko, Satsuki; Mishiba, Keiichiro; Yamamura, Saburo; Ui, Ayako; Enomoto, Takemi; Yamamoto, Kazuo
2006-08-30
A CAN1/can1Delta heterozygous allele that determines loss of heterozygosity (LOH) was used to study recombination in Saccharomyces cerevisiae cells exposed to ultraviolet (UV) light at different points in the cell cycle. With this allele, recombination events can be detected as canavanine-resistant mutations after exposure of cells to UV radiation, since a significant fraction of LOH events appear to arise from recombination between homologous chromosomes. The radiation caused a higher level of LOH in cells that were in the S phase of the cell cycle relative to either cells at other points in the cell cycle or unsynchronized cells. In contrast, the inactivation of nucleotide excision repair abolished the cell cycle-specific induction by UV of LOH. We hypothesize that DNA lesions, if not repaired, were converted into double-strand breaks during stalled replication and these breaks could be repaired through recombination using a non-sister chromatid and probably also the sister chromatid. We argue that LOH may be an outcome used by yeast cells to recover from stalled replication at a lesion.
Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.
Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido
2007-09-15
When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.
Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression
Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro
2013-01-01
RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378
Multiparameter Cell Cycle Analysis.
Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G
2018-01-01
Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.
Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.
Chen, Jian; Guerriero, Emily; Lathrop, Kira; SundarRaj, Nirmala
2008-01-01
The authors' previous study showed that the expression of a Rho-associated serine/threonine kinase (ROCK) is regulated during cell cycle progression in corneal epithelial cells. The present study was conducted to determine whether and how Rho/ROCK signaling regulates cell cycle progression. Rabbit corneal epithelial cells (RCECs) in culture were arrested in the G(0) phase of the cell cycle by serum deprivation and then allowed to re-enter the cell cycle in the presence or absence of the ROCK inhibitor (Y27632) in serum-supplemented medium. The number of cells in the S phase, the relative levels of specific cyclins and CDKs and their intracellular distribution, and the relative levels of mRNAs were determined by BrdU labeling, Western blot and immunocytochemical analyses, and real-time RT-PCR, respectively. ROCK inhibition delayed the progression of G(1) to S phase and led to a decrease in the number of RCECs entering the S phase between 12 and 24 hours from 31.5% +/- 4.5% to 8.1% +/- 2.6%. During the cell cycle progression, protein and mRNA levels of cyclin-D1 and -D3 and cyclin-dependent kinases CDK4 and CDK6 were significantly lower, whereas the protein levels of the CDK inhibitor p27(Kip1) were higher in ROCK-inhibited cells. Intracellular mRNA or protein levels of cyclin-E and protein levels of CDK2 were not significantly affected, but their nuclear translocation was delayed by ROCK inhibition. ROCK signaling is involved in cell cycle progression in RCECs, possibly by upregulation of cyclin-D1 and -D3 and CDK4, -6, and -2; nuclear translocation of CDK2 and cyclin-E; and downregulation of p27(Kip1).
Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.
Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L
1984-11-01
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.
Gravitational force modulates G2/M phase exit in mechanically unloaded myoblasts
Benavides Damm, Tatiana; Franco-Obregón, Alfredo; Egli, Marcel
2013-01-01
Prolonged spaceflight gives rise to muscle loss and reduced strength, a condition commonly referred to as space atrophy. During exposure to microgravity, skeletal muscle myoblasts are mechanically unloaded and respond with attenuated cell proliferation, slowed cell cycle progression, and modified protein expression. To elucidate the underlying mechanisms by which muscle mass declines in response to prolonged microgravity exposure, we grew C2C12 mouse muscle cells under conditions of simulated microgravity (SM) and analyzed their proliferative capacity, cell cycle progression, and cyclin B and D expression. We demonstrated that the retarded cell growth observed in SM was correlated with an approximate 16 h delay in G2/M phase progression, where cells accumulated specifically between the G2 checkpoint and the onset of anaphase, concomitantly with a positive expression for cyclin B. The effect was specific for gravitational mechanical unloading as cells grown under conditions of hypergravity (HG, 4 g) for similar durations of time exhibited normal proliferation and normal cell cycle progression. Our results show that SM and HG exert phenomenological distinct responses over cell cycle progression. The deficits of SM can be restored by terrestrial gravitational force, whereas the effects of HG are indistinguishable from the 1 g control. This suggests that the mechanotransduction apparatus of cells responds differently to mechanical unloading and loading. PMID:23974110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa
2015-04-17
We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cellmore » proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.« less
Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.
2013-01-01
In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170
Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J
2015-12-02
The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.
Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém
2011-01-01
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605
Distinct mechanisms act in concert to mediate cell cycle arrest.
Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit
2009-01-20
In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.
Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F.
Loftus, Kyle M; Cui, Heying; Coutavas, Elias; King, David S; Ceravolo, Amanda; Pereiras, Dylan; Solmaz, Sozanne R
2017-08-03
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.
The G1 restriction point as critical regulator of neocortical neuronogenesis
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.
1999-01-01
Neuronogenesis in the pseudostratified ventricular epithelium is the initial process in a succession of histogenetic events which give rise to the laminate neocortex. Here we review experimental findings in mouse which support the thesis that the restriction point of the G1 phase of the cell cycle is the critical point of regulation of the overall neuronogenetic process. The neuronogenetic interval in mouse spans 6 days. In the course of these 6 days the founder population and its progeny execute 11 cell cycles. With each successive cycle there is an increase in the fraction of postmitotic cells which leaves the cycle (the Q fraction) and also an increase in the length of the cell cycle due to an increase in the length of the G1 phase of the cycle. Q corresponds to the probability that postmitotic cells will exit the cycle at the restriction point of the G1 phase of the cell cycle. Q increases non-linearly, but the rate of change of Q with cycle (i.e., the first derivative) over the course of the neuronogenetic interval is a constant, k, which appears to be set principally by cell internal mechanisms which are species specific. Q also seems to be modulated, but at low amplitude, by a balance of mitogenic and antimitogenic influences acting from without the cell. We suggest that intracellular signal transduction systems control a general advance of Q during development and thereby determine the general developmental plan (i.e., cell number and laminar composition) of the neocortex and that external mitogens and anti-mitogens modulate this advance regionally and temporally and thereby produce regional modifications of the general plan.
Abbas, Tarek; Keaton, Mignon; Dutta, Anindya
2013-07-15
Deregulation of the cell cycle and genome instability are common features of cancer cells and various mechanisms exist to preserve the integrity of the genome and guard against cancer. The cullin 4-RING ubiquitin ligase (CRL4) with the substrate receptor Cdt2 (CRL4 (Cdt2)) promotes cell cycle progression and prevents genome instability through ubiquitylation and degradation of Cdt1, p21, and Set8 during S phase of the cell cycle and following DNA damage. Two recently published studies report the ubiquitin-dependent degradation of Cdt2 via the cullin 1-RING ubiquitin ligase (CRL1) in association with the substrate specificity factor and tumor suppressor FBXO11 (CRL1 (FBXO11)). The newly identified pathway restrains the activity of CRL4 (Cdt2) on p21 and Set8 and regulates cellular response to TGF-β, exit from the cell cycle and cellular migration. Here, we show that the CRL1 (FBXO11) also promotes the degradation of Cdt2 during an unperturbed cell cycle to promote efficient progression through S and G 2/M phases of the cell cycle. We discuss how this new method of regulating the abundance of Cdt2 participates in various cellular activities.
Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...
Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st
TGFβ lengthens the G1 phase of stem cells in aged mouse brain.
Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André
2014-12-01
Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.
NASA Technical Reports Server (NTRS)
Hughes-Fulford, M.
1994-01-01
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the -49 lymphoma variant (cyc-) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc- cells. DNA synthesis is inhibited 42% by dmPGA1 (50 microM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the alpha, beta unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc- cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30-50 microns) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc- cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block.(ABSTRACT TRUNCATED AT 250 WORDS).
Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji
2015-04-10
Store-operated Ca(2+) entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca(2+) influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of Cell Cycle-regulated Genes in Fission YeastD⃞
Peng, Xu; Karuturi, R. Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua
2005-01-01
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found ∼140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC. PMID:15616197
Alteration of cell cycle progression by Sindbis virus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa
We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Veromore » cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.« less
Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch
Hwang, Yung; Futran, Melinda; Hidalgo, Daniel; Pop, Ramona; Iyer, Divya Ramalingam; Scully, Ralph; Rhind, Nicholas; Socolovsky, Merav
2017-01-01
Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase–dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions. PMID:28560351
Urakawa, Manami; Ideta, Atsushi; Sawada, Tokihiko; Aoyagi, Yoshito
2004-08-01
Somatic cell nuclear transfer has a low success rate, due to a high incidence of fetal loss and increased perinatal morbidity/mortality. One factor that may affect the successful development of nuclear transfer embryos is the cell cycle stage of the donor cell. In order to establish a cell cycle synchronization method that can consistently produce cloned embryos and offspring, we examined the effects of different combinations of three cell treatments on the recovery rate of mitotic phase cells using bovine fetal fibroblasts. In the first experiment, we examined the recovery rate of mitotic phase cells by a combination of treatment with a metaphase arrestant (1 microM 2-methoxyestradiol), shaking the plate and selecting cells with a diameter of 20 microns. As a result, 99% of mitotic phase cells were recovered by repeating the combined treatment of metaphase arrestant and shaking, and collection of cells with a specific diameter. In the second experiment, nuclear transfer was carried out using early G1 phase cells by choosing pairs of bridged cells derived from mitotic phase cells recovered by the combined treatment of 1 microM 2-methoxyestradiol and shaking, and collection of cells with a diameter of 20 microns. The reconstructed embryos were transferred to recipient heifers to determine post-implantation development. Development of embryos reconstructed from early G1 phase cells from the >/=6 cells stage on Day 3 to the morula-blastocyst stage on Day 6 was 100%. Ten blastocysts constructed from two cell lines were transferred into 10 recipient heifers. Nine of the 10 recipients delivered single live calves. In conclusion, mitotic phase bovine fibroblast cells were easily recovered by the combined treatments of 1 microM 2-methoxyestradiol, shaking, and selecting cells of the appropriate diameter. Furthermore, nuclear transfer using cells in the early G1 phase as donor cells gave a high rate of offspring production.
DREAMs make plant cells to cycle or to become quiescent.
Magyar, Zoltán; Bögre, László; Ito, Masaki
2016-12-01
Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying cell turnover using CFSE data.
Ganusov, Vitaly V; Pilyugin, Sergei S; de Boer, Rob J; Murali-Krishna, Kaja; Ahmed, Rafi; Antia, Rustom
2005-03-01
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based "Smith-Martin" model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by using the Gett-Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates during different stages of the cell cycle.
A single cyclin–CDK complex is sufficient for both mitotic and meiotic progression in fission yeast
Gutiérrez-Escribano, Pilar; Nurse, Paul
2015-01-01
The dominant model for eukaryotic cell cycle control proposes that cell cycle progression is driven by a succession of CDK complexes with different substrate specificities. However, in fission yeast it has been shown that a single CDK complex generated by the fusion of the Cdc13 cyclin with the CDK protein Cdc2 can drive the mitotic cell cycle. Meiosis is a modified cell cycle programme in which a single S-phase is followed by two consecutive rounds of chromosome segregation. Here we systematically analyse the requirements of the different fission yeast cyclins for meiotic cell cycle progression. We also show that a single Cdc13–Cdc2 complex, in the absence of the other cyclins, can drive the meiotic cell cycle. We propose that qualitatively different CDK complexes are not absolutely required for cell cycle progression either during mitosis or meiosis, and that a single CDK complex can drive both cell cycle programmes. PMID:25891897
Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges
2009-03-01
We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seula; Woo, Jong Kyu; Jung, Yuchae
In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less
DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1
de Bruin, R. A. M.; Kalashnikova, T. I.; Aslanian, A.; Wohlschlegel, J.; Chahwan, C.; Yates, J. R.; Russell, P.; Wittenberg, C.
2008-01-01
The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repressor acting at the transition from G1 to S phase of the cell cycle, is at the nexus between the cell cycle transcriptional program and the DNA replication checkpoint in fission yeast. Phosphorylation of Nrm1 by the Cds1 (Chk2) checkpoint protein kinase, which is activated in response to DNA replication stress, promotes its dissociation from the MBF transcription factor. This leads to the expression of genes encoding components that function in DNA replication and repair pathways important for cell survival in response to arrested DNA replication. PMID:18682565
Cell cycle dynamics in a response/signalling feedback system with a gap.
Gong, Xue; Buckalew, Richard; Young, Todd; Boczko, Erik
2014-01-01
We consider a dynamical model of cell cycles of n cells in a culture in which cells in one specific phase (S for signalling) of the cell cycle produce chemical agents that influence the growth/cell cycle progression of cells in another phase (R for responsive). In the case that the feedback is negative, it is known that subpopulations of cells tend to become clustered in the cell cycle; while for a positive feedback, all the cells tend to become synchronized. In this paper, we suppose that there is a gap between the two phases. The gap can be thought of as modelling the physical reality of a time delay in the production and action of the signalling agents. We completely analyse the dynamics of this system when the cells are arranged into two cell cycle clusters. We also consider the stability of certain important periodic solutions in which clusters of cells have a cyclic arrangement and there are just enough clusters to allow interactions between them. We find that the inclusion of a small gap does not greatly alter the global dynamics of the system; there are still large open sets of parameters for which clustered solutions are stable. Thus, we add to the evidence that clustering can be a robust phenomenon in biological systems. However, the gap does effect the system by enhancing the stability of the stable clustered solutions. We explain this phenomenon in terms of contraction rates (Floquet exponents) in various invariant subspaces of the system. We conclude that in systems for which these models are reasonable, a delay in signalling is advantageous to the emergence of clustering.
Mendoza-Maldonado, Ramiro; Paolinelli, Roberta; Galbiati, Laura; Giadrossi, Sara; Giacca, Mauro
2010-01-01
Background The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. Methodology/Principal Findings Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by specifically binding to origins of DNA replication in a cell cycle regulated manner. We show that, both in vitro and inside the cells, the largest subunit of the origin recognition complex (Orc1) specifically binds hypo-phosphorylated Rb and that this interaction is competitive with the binding of Rb to E2F1. The displacement of Rb-bound Orc1 by E2F1 at origins of DNA replication marks the progression of the G1 phase of the cell cycle toward the G1-S border. Conclusions/Significance The participation of Rb and E2F1 in the formation of the multiprotein complex that binds origins of DNA replication in mammalian cells appears to represent an effective mechanism to couple the expression of genes required for cell cycle progression to the activation of DNA replication. PMID:21085491
Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage
Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus
2013-01-01
The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675
Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.
Hinnant, Taylor D; Alvarez, Arturo A; Ables, Elizabeth T
2017-09-01
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.
Haass, Nikolas K; Gabrielli, Brian
2017-07-01
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Li, Xiaotong; Xie, Hongqing; Chen, Yajie; Lang, Mingzi; Chen, Yuyin; Shi, Liangen
2018-03-28
Silkworm pupae ( Bombyx mori ) are a high-protein nutrition source consumed in China since more than 2 thousand years ago. Recent studies revealed that silkworm pupae have therapeutic benefits to treat many diseases. However, the ability of the compounds of silkworm pupae to inhibit tumourigenesis remains to be elucidated. Here, we separated the protein of silkworm pupae and performed alcalase hydrolysis. Silkworm pupa protein hydrolysate (SPPH) can specifically inhibit the proliferation and provoke abnormal morphologic features of human gastric cancer cells SGC-7901 in a dose- and time-dependent manner. Moreover, flow cytometry indicated that SPPH can induce apoptosis and arrest the cell-cycle in S phase. Furthermore, SPPH was shown to provoke accumulation of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. Western blotting analysis indicated that SPPH inhibited Bcl-2 expression and promoted Bax expression, and subsequently induced apoptosis-inducing factor and cytochrome C release, which led to the activation of initiator caspase-9 and executioner caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), eventually caused cell apoptosis. Moreover, SPPH-induced S-phase arrest was mediated by up-regulating the expression of E2F1 and down-regulating those of cyclin E, CDK2 and cyclin A2. Transcriptome sequencing and gene set enrichment analysis (GSEA) also revealed that SPPH treatment could affect gene expression and pathway regulation related to tumourigenesis, apoptosis and cell cycle. In summary, our results suggest that SPPH could specifically suppress cell growth of SGC-7901 through an intrinsic apoptotic pathway, ROS accumulation and cell cycle arrest, and silkworm pupae have a potential to become a source of anticancer agents in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kito, Hiroaki; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto; Yamamura, Hisao
2015-04-10
Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cyclemore » progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.« less
Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon
2013-02-01
Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.
Miao, Xin; Koch, Gilbert; Ait-Oudhia, Sihem; Straubinger, Robert M.; Jusko, William J.
2016-01-01
Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0–120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations. PMID:27895579
Chen, Sha; Sun, Xiongshan; Guan, Xiao; Yang, Yao; Peng, Bingjie; Pan, Xiaodong; Li, Jinfang; Yi, Weijing; Li, Peng; Zhang, Hongwei; Feng, Dongfang; Chen, An; Li, Xiaohui; Yin, Zuoming
2018-01-01
Resistance to 5-fluorouracil (5-FU) and its induced immune suppression have prevented its extensive application in the clinical treatment of breast cancer. In this study, the combined effect of 50 Hz-EMFs and 5-FU in the treatment of breast cancer was explored. MCF-7 and MCF10A cells were pre-exposed to 50 Hz-EMFs for 0, 2, 4, 8 and 12 h and then treated with different concentrations of 5-FU for 24 h; cell viability was analyzed by MTT assay and flow cytometry. After pre-exposure to 50 Hz-EMFs for 12 h, apoptosis and cell cycle distribution in MCF-7 and MCF10A cells were detected via flow cytometry and DNA synthesis was measured by EdU incorporation assay. Apoptosis-related and cell cycle-related gene and protein expression levels were monitored by qPCR and western blotting. Pre-exposure to 50 Hz-EMFs for 12 h enhanced the antiproliferative effect of 5-FU in breast cancer cell line MCF-7 in a dose-dependent manner but not in normal human breast epithelial cell line MCF10A. Exposure to 50 Hz-EMFs had no effect on apoptosis and P53 expression of MCF-7 and MCF10A cells, whereas it promoted DNA synthesis, induced entry of MCF-7 cells into the S phase of cell cycle, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E. Considering the pharmacological mechanisms of 5-FU in specifically disrupting DNA synthesis, this enhanced inhibitory effect might have resulted from the specific sensitivity of MCF7 cells in active S phase to 5-FU. Our findings demonstrate the enhanced cytotoxic activity of 5-FU on MCF7 cells through promoting entry into the S phase of the cell cycle via exposure to 50 Hz-EMFs, which provides a novel method of cancer treatment based on the combinatorial use of 50 Hz-EMFs and chemotherapy. PMID:29617363
Angular-dependent light scattering from cancer cells in different phases of the cell cycle.
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhou, Yong
2017-10-10
Cancer cells in different phases of the cell cycle result in significant differences in light scattering properties. In order to harvest cancer cells in particular phases of the cell cycle, we cultured cancer cells through the process of synchronization. Flow cytometric analysis was applied to check the results of cell synchronization and prepare for light scattering measurements. Angular-dependent light scattering measurements of cancer cells arrested in the G1, S, and G2 phases have been performed. Based on integral calculations for scattering intensities from 5° to 10° and from 110° to 150°, conclusions have been reached. Clearly, the sizes of the cancer cells in different phases of the cell cycle dominated the forward scatter. Accompanying the increase of cell size with the progression of the cell cycle, the forward scattering intensity also increased. Meanwhile, the DNA content of cancer cells in every phase of the cell cycle is responsible for light scattering at large scatter angles. The higher the DNA content of cancer cells was, the greater the positive effect on the high-scattering intensity. As expected, understanding the relationships between the light scattering from cancer cells and cell cycles will aid in the development of cancer diagnoses. Also, it may assist in the guidance of antineoplastic drugs clinically.
Immunohistochemical estimation of cell cycle phase in laryngeal neoplasia
Chatrath, P; Scott, I S; Morris, L S; Davies, R J; Bird, K; Vowler, S L; Coleman, N
2006-01-01
We previously developed an immunohistochemical method for estimating cell cycle state and phase in tissue samples, including biopsies that are too small for flow cytometry. We have used our technique to examine whether primary abnormalities of the cell cycle exist in laryngeal neoplasia. Antibodies against the markers of cell cycle entry, minichromosome maintenance protein-2 (Mcm-2) and Ki67, and putative markers of cell cycle phase, cyclin D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis) were applied to paraffin-embedded sections of normal larynx (n=8), laryngeal dysplasia (n=10) and laryngeal squamous cell carcinoma (n=10). Cells expressing each marker were determined as a percentage of total cells, termed the labelling index (LI), and as a percentage of Mcm-2-positive cells, termed the labelling fraction (LF). The frequency of coexpression of each putative phase marker was investigated by confocal microscopy. There was a correlation between Mcm-2 and Ki67 LIs (ρ=0.93) but Mcm-2 LIs were consistently higher. All cells expressing a phase marker coexpressed Mcm-2, whereas Ki67 was not expressed in a proportion of these cells. The putative phase markers showed little coexpression. Labelling index values increased on progression from normal larynx through laryngeal dysplasia to squamous cell carcinoma for Mcm-2 (P=0.001), Ki67 (P=0.0002), cyclin D1 (P=0.015), cyclin A (P=0.0001) and cyclin B1 (P=0.0004). There was no evidence of an increase in the LF for any phase marker. Immunohistochemistry can be used to estimate cell cycle state and phase in laryngeal biopsies. Our data argues against primary cell cycle phase abnormalities in laryngeal neoplasia. PMID:16832409
The Abbreviated Pluripotent Cell Cycle
Kapinas, Kristina; Grandy, Rodrigo; Ghule, Prachi; Medina, Ricardo; Becker, Klaus; Pardee, Arthur; Zaidi, Sayyed K.; Lian, Jane; Stein, Janet; van Wijnen, Andre; Stein, Gary
2013-01-01
Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. PMID:22552993
Cell cycle dependent changes in the plasma membrane organization of mammalian cells.
Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland
2017-03-01
Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.
Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi
2012-06-01
Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.
Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek
2008-04-01
Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2008-04-01
The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.
Ciekot-Sołtysiak, Monika; Kusy, Krzysztof; Podgórski, Tomasz; Zieliński, Jacek
2017-10-24
An extensive body of literature exists on the effects of training on haematological parameters, but the previous studies have not reported how hematological parameters respond to changes in training loads within consecutive phases of the training cycle in highly-trained athletes in extremely different sport disciplines. The aim of this study was to identify changes in red blood cell (RBC) profile in response to training loads in consecutive phases of the annual training cycle in highly-trained sprinters (8 men, aged 24 ± 3 years) and triathletes (6 men, aged 24 ± 4 years) who competed at the national and international level. Maximal oxygen uptake (VO2max), RBC, haemoglobin (Hb), haematocrit (Ht), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and RBC distribution width (RDW) were determined in four characteristic training phases (transition, general subphase of the preparation phase, specific subphase of the preparation phase and competition phase). Our main findings are that (1) Hb, MCH and MCHC in triathletes and MCV in both triathletes and sprinters changed significantly over the annual training cycle, (2) triathletes had significantly higher values than sprinters only in case of MCH and MCHC after the transition and general preparation phases but not after the competition phase when MCH and MCHC were higher in sprinters and (3) in triathletes, Hb, MCH and MCHC substantially decreased after the competition phase, which was not observed in sprinters. The athletes maintained normal ranges of all haematological parameters in four characteristic training phases. Although highly-trained sprinters and triathletes do not significantly differ in their levels of most haematological parameters, these groups are characterized by different patterns of changes during the annual training cycle. Our results suggest that when interpreting the values of haematological parameters in speed-power and endurance athletes, a specific phase of the annual training cycle should be taken into account.
Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt
2016-01-01
Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731
Effects of HRAS oncogene on cell cycle progression in a cervical cancer-derived cell line.
Córdova-Alarcón, Emilio; Centeno, Federico; Reyes-Esparza, Jorge; García-Carrancá, Alejandro; Garrido, Efraín
2005-01-01
Human papillomavirus (HPV) infection is the most prevalent factor in anogenital cancers. However, epidemiological surveys and molecular data indicate that viral presence is not enough to induce cervical cancer, suggesting that cellular factors could play a key role. One of the most important genes involved in cancer development is the RAS oncogene, and activating mutations in this gene have been associated with HPV infection and cervical neoplasia. Thus, we determined the effect of HRAS oncogene expression on cell proliferation in a cell line immortalized by E6 and E7 oncogenes. HPV positive human cervical carcinoma-derived cell lines (HeLa), previously transfected with the HRAS oncogene or the empty vector, were used. We first determined the proliferation rate and cell cycle profile of these cells by using flow cytometry and BrdU incorporation assays. In order to determine the signaling pathway regulated by HRAS and implicated in the alteration of proliferation of these cells, we used specific chemical inhibitors to inactivate the Raf and PI3K pathways. We observed that HeLa cells stably transfected with oncogenic HRAS progressed faster than control cells on the cell cycle by reducing their G1 phase. Additionally, HRAS overexpression accelerated the G1/S transition. Specific chemical inhibitors for PI3K and MEK activities indicated that both PI3K/AKT and RAF/MEK/ERK pathways are involved in the HRAS oncogene-induced reduction of the G1 phase. Our results suggest that the HRAS oncogene could play an important role in the development of cervical cancer, in addition to the presence of HPV, by reducing the G1 phase and accelerating the G1/S transition of infected cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp; Yamauchi, Motohiro; Oka, Yasuyoshi
Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% andmore » 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.« less
Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral.
Oldach, Matthew J; Workentine, Matthew; Matz, Mikhail V; Fan, Tung-Yung; Vize, Peter D
2017-05-01
On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology. © 2017 John Wiley & Sons Ltd.
Determination of cell cycle phases in live B16 melanoma cells using IRMS.
Bedolla, Diana E; Kenig, Saša; Mitri, Elisa; Ferraris, Paolo; Marcello, Alessandro; Grenci, Gianluca; Vaccari, Lisa
2013-07-21
The knowledge of cell cycle phase distribution is of paramount importance for understanding cellular behaviour under normal and stressed growth conditions. This task is usually assessed using Flow Cytometry (FC) or immunohistochemistry. Here we report on the use of FTIR microspectroscopy in Microfluidic Devices (MD-IRMS) as an alternative technique for studying cell cycle distribution in live cells. Asynchronous, S- and G0-synchronized B16 mouse melanoma cells were studied by running parallel experiments based on MD-IRMS and FC using Propidium Iodide (PI) staining. MD-IRMS experiments have been done using silicon-modified BaF2 devices, where the thin silicon layer prevents BaF2 dissolution without affecting the transparency of the material and therefore enabling a better assessment of the Phosphate I (PhI) and II (PhII) bands. Hierarchical Cluster Analysis (HCA) of cellular microspectra in the 1300-1000 cm(-1) region pointed out a distribution of cells among clusters, which is in good agreement with FC results among G0/G1, S and G2/M phases. The differentiation is mostly driven by the intensity of PhI and PhII bands. In particular, PhI almost doubles from the G0/G1 to G2/M phase, in agreement with the trend followed by nucleic acids during cellular progression. MD-IRMS is then proposed as a powerful method for the in situ determination of the cell cycle stage of an individual cell, without any labelling or staining, which gives the advantage of possibly monitoring specific cellular responses to several types of stimuli by clearly separating the spectral signatures related to the cellular response from those of cells that are normally progressing.
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-08-10
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.
Two inhibitory systems and CKIs regulate cell cycle exit of mammalian cardiomyocytes after birth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tane, Shoji; Okayama, Hitomi; Ikenishi, Aiko
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which they exit their cell cycle after birth, and the exit is maintained. Previously, we showed that two inhibitory systems (the G1-phase inhibitory system: repression of cyclin D1 expression; the M-phase inhibitory system: inhibition of CDK1 activation) maintain the cell cycle exit of mouse adult cardiomyocytes. We also showed that two CDK inhibitors (CKIs), p21{sup Cip1} and p27{sup Kip1}, regulate the cell cycle exit in a portion of postnatal cardiomyocytes. It remains unknown whether the two inhibitory systems are involved in the cell cycle exit of postnatal cardiomyocytes and whether p21{sup Cip1}more » and p27{sup Kip1} also inhibit entry to M-phase. Here, we showed that more than 40% of cardiomyocytes entered an additional cell cycle by induction of cyclin D1 expression at postnatal stages, but M-phase entry was inhibited in the majority of cardiomyocytes. Marked cell cycle progression and endoreplication were observed in cardiomyocytes of p21{sup Cip1} knockout mice at 4 weeks of age. In addition, tri- and tetranucleated cardiomyocytes increased significantly in p21{sup Cip1} knockout mice. These data showed that the G1-phase inhibitory system and two CKIs (p21{sup Cip1} and p27{sup Kip1}) inhibit entry to an additional cell cycle in postnatal cardiomyocytes, and that the M-phase inhibitory system and p21{sup Cip1} inhibit M-phase entry of cardiomyocytes which have entered the additional cell cycle. - Highlights: • Many postnatal cardiomyocytes entered an additional cell cycle by cyclin D1 induction. • The majority of cardiomyocytes could not enter M-phase after cyclin D1 induction. • Cell cycle progressed markedly in p21{sup Cip1} knockout mice after postnatal day 14. • Tri- and tetranucleated cardiomyocytes increased in p21{sup Cip1} knockout mice.« less
Qian, D; Zhou, D; Ju, R; Cramer, C L; Yang, Z
1996-01-01
Farnesylation is required for membrane targeting, protein-protein interactions, and the biological activity of key regulatory proteins, such as Ras small GTPases and protein kinases in a wide range of eukaryotes. In this report, we describe the molecular identification of a plant protein farnesyltransferase (FTase) and evidence for its role in the control of the cell cycle in plants. A pea gene encoding a homolog of the FTase beta subunit was previously cloned using a polymerase chain reaction-based strategy. A similar approach was used to clone a pea gene encoding a homolog of the FTase alpha subunit. The biochemical function of the pea FTase homologs was demonstrated by the reconstitution of FTase enzyme activity using FTase fusion proteins coexpressed in Escherichia coll. RNA gel blot analyses showed that levels of FTase mRNAs are generally higher in tissues, such as those of nodules, that are active in cell division. The relationship of FTase to cell division was further analyzed during the growth of suspension-cultured tobacco BY-2 cells. A biphasic fluctuation of FTase enzyme activity preceded corresponding changes in mitotic activity at the early log phase of cell growth. Moreover, manumycin, a specific inhibitor of FTase, was effective in inhibiting mitosis and growth in these cells. Using synchronized BY-2 cells, manumycin completely blocked mitosis when added at the early S phase but not when added at the G2 phase. These data suggest that FTase is required for the plant cell cycle, perhaps by modulating the progression through the S phase and the transition from G1 to the S phase. PMID:8989889
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
Sun, Pei; Wu, Haoyang; Huang, Jiali; Xu, Ying; Yang, Feng; Zhang, Qi; Xu, Xingang
2018-05-22
Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection. Copyright © 2018 Elsevier B.V. All rights reserved.
Aplin, J D; Seif, M W; Graham, R A; Hey, N A; Behzad, F; Campbell, S
1994-09-30
The cell surface mucin MUC-1 is present in endometrial epithelial cells and their associated apical glycocalyx and is also released into gland lumens as a secretory product. MUC-1 mRNA and core protein are found at low levels in the proliferative phase of the cycle, but their abundance increases after ovulation. Endometrial MUC-1 has been found to carry sialokeratan sulphate chains and these show a dramatically increased abundance in cells and secretions in the post-ovulatory phase of the cycle, reaching a maximum in secretions 6-7 days after the LH peak. The apical epithelium also contains adhesion receptor molecules of the integrin and CD44 families. MUC-1 is large and highly glycosylated and probably extends farther from the cell surface than these 'conventional' glycoprotein receptors. It has the potential to inhibit sterically receptor-mediated cell-cell adhesion. However, it is also possible that MUC-1 displays specific (e.g., glycan) recognition structures for the initial attachment of the blastocyst or that the embryo may create a specialised microenvironment in which to implant.
Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V.; Karpen, Gary H.
2012-01-01
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote. PMID:23300382
Ramasamy, Rajesh; Fazekasova, Henrietta; Lam, Eric W-F; Soeiro, Inês; Lombardi, Giovanna; Dazzi, Francesco
2007-01-15
Mesenchymal stem cells (MSCs) play a crucial role in hematopoietic development and have been shown to exert a powerful immunosuppressive effect. In this study, we investigated the effect of bone marrow MSC on the differentiation and function of peripheral blood monocytes into dendritic cells (DCs). Human MSCs, generated from normal bone marrow, were added to peripheral blood monocytes stimulated in vitro with granulocyte-macrophage colony stimulating factor and interleukin-4 to become DCs. Monocytes were then examined for the expression of markers characteristic of DCs and their ability to stimulate allogeneic T cells. In addition, the effect of MSCs on the cell cycle of monocyte-derived DCs and the expression of various cell cycle proteins were analyzed by cytometric analysis and Western blotting with specific antibodies. MSCs blocked the differentiation of monocytes into DCs and impaired their antigen-presenting ability. This resulted from a block of monocytes from entering the G1 phase of the cell cycle with a progressive number of cells accumulating in the G0 phase. Cyclin D2 was downregulated. However, differently from what was observed in T-cells stimulated in the presence of MSCs, the expression of p27 was found decreased, suggesting the involvement of similar but not identical pathways. We conclude that MSCs impair monocyte differentiation and function by interfering with the cell cycle. These findings imply that MSC-induced immunosuppression might be a side product of a more general antiproliferative effect.
Russo, Lilian C; Araujo, Christiane B; Iwai, Leo K; Ferro, Emer S; Forti, Fabio L
2017-01-16
Protein degradation by the proteasome generates functional intracellular peptides. Pep5, a peptide derived from Cyclin D2, induces cell death in tumor cell lines and reduces the volume of rat C6 glioblastoma tumors in vivo. Here, we chose the human MDA-MB-231 breast cancer cells to evaluate the mechanism of cell death induced by pep5 in different phases of the cell cycle. Fluorescently labeled pep5, monitored by real time confocal microscopy, entered the MDA-MB-231 cells 3min after application and localized to the nucleus and cytoplasm. Pep5-induced cell death was increased when the MDA-MB-231 cell population was arrested at the G1/S transition or in S phase compared to asynchronous cells. Pep5 induced permanent extracellular signal-regulated kinase (ERK1/2) phosphorylation in MDA-MB-231 cells synchronized in G1/S or S phase. Affinity chromatography followed by mass spectrometry identified CLIC1 and Plectin as the only two proteins that interacted with pep5 in both asynchronous and synchronized MDA-MB-231 cells. These interactions could explain the long-lasting ERK1/2 phosphorylation and the cytoskeleton perturbations in the MDA-MB-231 cells, in which the stress fibers' integrity is affected by pep5 treatments. These data suggest that pep5 has potential therapeutic properties for treating specific types of cancers, such as breast cancer cells. Pep5, a natural intracellular peptide formed by the degradation of Cyclin D2 through the ubiquitin-proteasome system, induces cell death when reintroduced into MDA-MB-231 breast cancer cells, which express low levels of Cyclin D2, specifically in G1/S arrested cells or in cells that are passing through S phase. Under these conditions, pep5 is able to interact with different intracellular proteins, primarily cytoskeleton and proteasome components, which can lead to cellular apoptosis. Together, our data suggest that pep5 is an intracellular peptide with therapeutic potential for treating specific types of tumors with low expression of Cyclin D2 by inhibiting cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.
Signaling molecules involved in the transition of growth to development of Dictyostelium discoideum.
Mir, Hina A; Rajawat, Jyotika; Pradhan, Shalmali; Begum, Rasheedunnisa
2007-03-01
The social amoeba Dictyostelium discoideum, a powerful paradigm provides clear insights into the regulation of growth and development. In addition to possessing complex individual cellular functions like a unicellular eukaryote, D. discoideum cells face the challenge of multicellular development. D. discoideum undergoes a relatively simple differentiation process mainly by cAMP mediated pathway. Despite this relative simplicity, the regulatory signaling pathways are as complex as those seen in metazoan development. However, the introduction of restriction-enzyme-mediated integration (REMI) technique to produce developmental gene knockouts has provided novel insights into the discovery of signaling molecules and their role in D. discoideum development. Cell cycle phase is an important aspect for differentiation of D. discoideum, as cells must reach a specific stage to enter into developmental phase and specific cell cycle regulators are involved in arresting growth phase genes and inducing the developmental genes. In this review, we present an overview of the signaling molecules involved in the regulation of growth to differentiation transition (GDT), molecular mechanism of early developmental events leading to generation of cAMP signal and components of cAMP relay system that operate in this paradigm.
Mechanisms by which HPV Induces a Replication Competent Environment in Differentiating Keratinocytes
Moody, Cary A.
2017-01-01
Human papillomaviruses (HPV) are the causative agents of cervical cancer and are also associated with other genital malignancies, as well as an increasing number of head and neck cancers. HPVs have evolved their life cycle to contend with the different cell states found in the stratified epithelium. Initial infection and viral genome maintenance occurs in the proliferating basal cells of the stratified epithelium, where cellular replication machinery is abundant. However, the productive phase of the viral life cycle, including productive replication, late gene expression and virion production, occurs upon epithelial differentiation, in cells that normally exit the cell cycle. This review outlines how HPV interfaces with specific cellular signaling pathways and factors to provide a replication-competent environment in differentiating cells. PMID:28925973
Niesvizky, Ruben; Badros, Ashraf Z; Costa, Luciano J; Ely, Scott A; Singhal, Seema B; Stadtmauer, Edward A; Haideri, Nisreen A; Yacoub, Abdulraheem; Hess, Georg; Lentzsch, Suzanne; Spicka, Ivan; Chanan-Khan, Asher A; Raab, Marc S; Tarantolo, Stefano; Vij, Ravi; Zonder, Jeffrey A; Huang, Xiangao; Jayabalan, David; Di Liberto, Maurizio; Huang, Xin; Jiang, Yuqiu; Kim, Sindy T; Randolph, Sophia; Chen-Kiang, Selina
2015-01-01
This phase 1/2 study was the first to evaluate the safety and efficacy of the cyclin-dependent kinase (CDK) 4/6-specific inhibitor palbociclib (PD-0332991) in sequential combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. The recommended phase 2 dose was palbociclib 100 mg orally once daily on days 1-12 of a 21-day cycle with bortezomib 1.0 mg/m2 (intravenous) and dexamethasone 20 mg (orally 30 min pre-bortezomib dosing) on days 8 and 11 (early G1 arrest) and days 15 and 18 (cell cycle resumed). Dose-limiting toxicities were primarily cytopenias; most other treatment-related adverse events were grade≤3. At a bortezomib dose lower than that in other combination therapy studies, antitumor activity was observed (phase 1). In phase 2, objective responses were achieved in 5 (20%) patients; 11 (44%) achieved stable disease. Biomarker and pharmacodynamic assessments demonstrated that palbociclib inhibited CDK4/6 and the cell cycle initially in most patients.
Yeung, A T; Bascomb, N F; Turner, K J; Schmidt, R R
1981-05-01
By use of a rocket immunoelectrophoresis-activity stain procedure, it was shown that catalytic activity of an ammonium-inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) was accompanied by a coincident increase in enzyme antigen during the cell cycle of preinduced synchronous Chlorella sorokiniana cells growing in the continuous presence of ammonia. Between the fourth and fifth hours of the G-1 phase of the cell cycle, a three- to fourfold increase in linear accumulation of enzyme antigen was observed. Pulse-chase studies with [35S]sulfate, coupled with a specific indirect immunoadsorption procedure for enzyme antigen, showed that NADP-GDH antigen undergoes continuous degradation (i.e., a half-life of 88 to 110 min) during its linear pattern of accumulation during the cell cycle. The apparent half-life of the enzyme increased by approximately 23% of the 4.5-h positive rate change in antigen accumulation during the cell cycle. This increase in half-life is insufficient in itself to account for the large change in rate of NADP-GDH antigen accumulation. The data from immunoelectrophoresis, pulse-chase, and initial 35S incorporation rate experiments taken together support the inference that changes in the rate of NADP-GDH synthesis are primarily responsible for the accumulation patterns of NADP-GDH activity during the C. sorokiniana cell cycle.
Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G
2012-09-25
Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.
In-phase oscillation of global regulons is orchestrated by a pole-specific organizer
Janakiraman, Balaganesh; Mignolet, Johann; Narayanan, Sharath; Viollier, Patrick H.
2016-01-01
Cell fate determination in the asymmetric bacterium Caulobacter crescentus (Caulobacter) is triggered by the localization of the developmental regulator SpmX to the old (stalked) cell pole during the G1→S transition. Although SpmX is required to localize and activate the cell fate-determining kinase DivJ at the stalked pole in Caulobacter, in cousins such as Asticcacaulis, SpmX directs organelle (stalk) positioning and possibly other functions. We define the conserved σ54-dependent transcriptional activator TacA as a global regulator in Caulobacter whose activation by phosphorylation is indirectly down-regulated by SpmX. Using a combination of forward genetics and cytological screening, we uncover a previously uncharacterized and polarized component (SpmY) of the TacA phosphorylation control system, and we show that SpmY function and localization are conserved. Thus, SpmX organizes a site-specific, ancestral, and multifunctional regulatory hub integrating the in-phase oscillation of two global transcriptional regulators, CtrA (the master cell cycle transcriptional regulator A) and TacA, that perform important cell cycle functions. PMID:27791133
Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T
2011-01-01
A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.
Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.
2011-01-01
Background A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. Methodology/Principal Findings In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. Conclusions/Significance The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity. PMID:21765927
Regulation of a Rho-associated kinase expression during the corneal epithelial cell cycle.
Anderson, S C; SundarRaj, N
2001-04-01
It has been recognized that an increased expression of the Rho-associated kinase (ROCK-I), a downstream target of Rho (a Ras-related small guanosine triphosphatase [GTPase]), is associated with limbal-to-corneal epithelial transition. The purpose of the present study was to determine whether the expression of ROCK-I is regulated during the cell cycle of corneal epithelial cells. Rabbit corneal epithelial cells in culture were subjected to different culture conditions to enrich them in the G0, G1, and S phases of the cell cycle. Indirect immunofluorescence staining and western blot techniques were used for analyzing the changes in the relative intracellular concentrations of ROCK-I. Northern blot analysis of the isolated cellular RNA was performed to estimate the relative concentrations of ROCK-I mRNA. Serum deprivation did not cause all the corneal epithelial cells in culture to be arrested in the G0 phase of the cell cycle. However, the cells could be arrested in G0 by treating them with culture medium supplemented with transforming growth factor (TGF)-beta1. The relative concentration of ROCK-I in the G0-arrested cells was higher than in the corresponding control untreated cultures. G0-arrested cells were induced to enter G1, followed by the S phase of the cell cycle, by refeeding them with the medium devoid of TGF-beta1. The total intracellular concentration of ROCK-I significantly decreased during the G1 phase of the cell cycle and increased again during the S phase. The decrease in intracellular ROCK-I during the G1 phase was confirmed by arresting the cells in G1 with isoleucine deprivation and thymidine-mimosine treatments. ROCK-I mRNA levels were also found to be decreased during the G1 phase of the cell cycle. The levels of ROCK-I in the corneal epithelial cells were significantly lower in the G1 phase than those in the S and G0 phases of the cell cycle. Therefore, a Rho signaling pathway(s) involving ROCK-I may be regulated during the corneal epithelial cell cycle. The downregulation of ROCK-I during the G1 phase, at least in part, is due to the decreased levels of its mRNA. Based on these findings, ROCK-I may have a role in the progression of the cell cycle in the corneal epithelial cells as they migrate centripetally from the limbal to the corneal surface.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chundong; Zhang, Ying; Li, Yi
Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent withmore » those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited cell proliferation.« less
Li, Long-Zhu; Deng, Hong-Xia; Lou, Wen-Zhu; Sun, Xue-Yan; Song, Meng-Wan; Tao, Jing; Xiao, Bing-Xiu; Guo, Jun-Ming
2012-01-07
To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G₀/G₁ phase, whereas cells treated with high concentrations of PBA were arrested at the G₂/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G₀/ G₁ phase, cells treated with high concentrations of PBA were arrested at the S phase. The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G₀ /G₁ and G₂/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G₀/G₁ and S phases.
["Light" epithelial cells of swine and bovine oviducts].
Suuroia, T; Aunapuu, M; Arend, A; Sépp, E
2002-01-01
The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.
Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.
Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W
2006-08-30
The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.
Labeling of lectin receptors during the cell cycle.
Garrido, J
1976-12-01
Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.
Mort, Richard Lester; Ford, Matthew Jonathan; Sakaue-Sawano, Asako; Lindstrom, Nils Olof; Casadio, Angela; Douglas, Adam Thomas; Keighren, Margaret Anne; Hohenstein, Peter; Miyawaki, Atsushi; Jackson, Ian James
2014-01-01
Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.
Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank
2015-01-01
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256
Hu, Shen; Le, Zhang; Krylov, Sergey; Dovichi, Norman J
2003-07-15
Study of cell cycle-dependent protein expression is important in oncology, stem cell research, and developmental biology. In this paper, we report the first protein fingerprint from a single cell with known phase in the cell cycle. To determine that phase, we treated HT-29 colon cancer cells with Hoescht 33342, a vital nuclear stain. A microscope was used to measure the fluorescence intensity from one treated cell; in this form of image cytometry, the fluorescence intensity is proportional to the cell's DNA content, which varies in a predictable fashion during the cell cycle. To generate the protein fingerprint, the cell was aspirated into the separation capillary and lysed. Proteins were fluorescently labeled with 3-(2-furoylquinoline-2-carboxaldehyde, separated by capillary sieving electrophoresis, and detected by laser-induced fluorescence. This form of electrophoresis is the capillary version of SDS-PAGE. The single-cell electropherogram partially resolved approximately 25 components in a 30-min separation, and the dynamic range of the detector exceeded 5000. There was a large cell-to-cell variation in protein expression, averaging 40% relative standard deviation across the electropherogram. The dominant source of variation was the phase of the cell in the cell cycle; on average, approximately 60% of the cell-to-cell variance in protein expression was associated with the cell cycle. Cells in the G1 and G2/M phases of the cell cycle had 27 and 21% relative standard deviations in protein expression, respectively. Cells in the G2/M phase generated signals that were twice the amplitude of the signals generated by G1 phase cells, as expected for cells that are soon to divide into two daughter cells. When electropherograms were normalized to total protein content, the expression of only one component was dependent on cell cycle at the 99% confidence limit. That protein is tentatively identified as cytokeratin 18 in a companion paper.
Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana
Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert
2010-01-01
Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants. PMID:20706207
White, J H; Johnson, A L; Lowndes, N F; Johnston, L H
1991-01-01
By fusing the CDC9 structural gene to the PGK upstream sequences and the CDC9 upstream to lacZ, we showed that the cell cycle expression of CDC9 is largely due to transcriptional regulation. To investigate the role of six ATGATT upstream repeats in CDC9 regulation, synthetic copies of the sequence were attached to a heterologous gene. The repeats stimulated transcription strongly and additively, but, unlike conventional yeast UAS elements, only when present in one orientation. Transcription driven by the repeats declines in cells held at START of the cell cycle or in stationary phase, as occurs with CDC9. However, the repeats by themselves cannot impart cell cycle regulation to a heterologous gene. CDC9 may therefore be controlled by an activating system operating through the repeats that is sensitive to cellular proliferation and a separate mechanism that governs the periodic expression in the cell cycle. Images PMID:1901644
Kuriyama, Shigeki; Hitomi, Misuzu; Yoshiji, Hitoshi; Nonomura, Takako; Tsujimoto, Tatsuhiro; Mitoro, Akira; Akahane, Takami; Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Masaki, Tsutomu; Uchida, Naohito
2005-08-01
A number of studies have shown that various vitamins K, specifically vitamin K2, possessed antitumor activity on various types of rodent- and human-derived neoplastic cell lines. However, there are only a small number of reports demonstrating in vivo antitumor effects of vitamins K. Furthermore, the mechanism of antitumor effects of vitamins K still remains to be examined. In the present study, we examined the antitumor effects of vitamins K2, K3 and K5 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vivo. Furthermore, to examine the mechanism of antitumor actions of these vitamins K, mRNA expression levels of various G1 phase-related cell cycle molecules were evaluated by using a real-time reverse transcription-polymerase chain reaction (RT-PCR) method. HCC-bearing animals were produced by implanting PLC/PRF/5 cells subcutaneously into athymic nude mice, and drinking water containing vitamin K2, K3 or K5 was given to the animals. Treatments with vitamins K2, K3 and K5 were shown to markedly inhibit the growth of HCC tumors. To examine the mechanism of in vivo antitumor effects of vitamins K, total RNA was extracted from HCC tumors, and the expression of G1 phase-related cell cycle molecules was quantitatively examined. Real-time RT-PCR demonstrated that the expression of the cell cycle-driving molecule, cyclin-dependent kinase 4 (Cdk4), in HCC was significantly reduced by the treatments with vitamin K2, K3 and K5. Conversely, the expression of the cell cycle-suppressing molecules, Cdk inhibitor p16INK4a and retinoblastoma, in HCC was significantly enhanced by the treatments with vitamins K2, K3 and K5. These results indicate that vitamins K2, K3 and K5 exert antitumor effects on HCC by regulating the expression of G1 phase-related cell cycle molecules. These results also indicate that vitamins K2, K3 and K5 may be useful agents for the treatment of patients with HCC.
Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey
2007-12-31
Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. Thesemore » cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.« less
Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki
2018-01-01
Abstract DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure. PMID:29800455
Mori, Ryosuke; Matsuya, Yusuke; Yoshii, Yuji; Date, Hiroyuki
2018-05-01
DNA double-strand breaks (DSBs) are thought to be the main cause of cell death after irradiation. In this study, we estimated the probability distribution of the number of DSBs per cell nucleus by considering the DNA amount in a cell nucleus (which depends on the cell cycle) and the statistical variation in the energy imparted to the cell nucleus by X-ray irradiation. The probability estimation of DSB induction was made following these procedures: (i) making use of the Chinese Hamster Ovary (CHO)-K1 cell line as the target example, the amounts of DNA per nucleus in the logarithmic and the plateau phases of the growth curve were measured by flow cytometry with propidium iodide (PI) dyeing; (ii) the probability distribution of the DSB number per cell nucleus for each phase after irradiation with 1.0 Gy of 200 kVp X-rays was measured by means of γ-H2AX immunofluorescent staining; (iii) the distribution of the cell-specific energy deposition via secondary electrons produced by the incident X-rays was calculated by WLTrack (in-house Monte Carlo code); (iv) according to a mathematical model for estimating the DSB number per nucleus, we deduced the induction probability density of DSBs based on the measured DNA amount (depending on the cell cycle) and the calculated dose per nucleus. The model exhibited DSB induction probabilities in good agreement with the experimental results for the two phases, suggesting that the DNA amount (depending on the cell cycle) and the statistical variation in the local energy deposition are essential for estimating the DSB induction probability after X-ray exposure.
van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico
2014-01-01
Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation. PMID:24695638
van der Laan, Siem; Golfetto, Eleonora; Vanacker, Jean-Marc; Maiorano, Domenico
2014-01-01
Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.
JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K.; Keyomarsi, Khandan
2016-01-01
ABSTRACT Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen. PMID:27049344
JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan
2016-06-17
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.
Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.
Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer
2017-11-06
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells
Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah-Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang
2016-01-01
Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Li, Huan; Yang, Shuanghui; Yu, Ge; Shen, Liangfang; Fan, Jia; Xu, Ling; Zhang, Hedong; Zhao, Nianxi; Zeng, Zihua; Hu, Tony; Wen, Jianguo; Zu, Youli
2017-01-01
The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (K d = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy.
Li, Huan; Yang, Shuanghui; Yu, Ge; Shen, Liangfang; Fan, Jia; Xu, Ling; Zhang, Hedong; Zhao, Nianxi; Zeng, Zihua; Hu, Tony; Wen, Jianguo; Zu, Youli
2017-01-01
The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (Kd = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy. PMID:28435459
Roles of glucose in photoreceptor survival.
Chertov, Andrei O; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D; Sadilek, Martin; Sweet, Ian R; Hurley, James B
2011-10-07
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.
Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points
Miga, Karen H.; Sekulic, Nikolina; Soni, Gautam V.; Kim, Dong Hyun; Wong, Adeline K.; Lee, Ah Young; Nguyen, Kristen; Dekker, Cees; Ren, Bing; Black, Ben E.
2017-01-01
Chromatin assembled with centromere protein A (CENP-A) is the epigenetic mark of centromere identity. Using new reference models, we now identify sites of CENP-A and histone H3.1 binding within the megabase, α-satellite repeat–containing centromeres of 23 human chromosomes. The overwhelming majority (97%) of α-satellite DNA is found to be assembled with histone H3.1–containing nucleosomes with wrapped DNA termini. In both G1 and G2 cell cycle phases, the 2–4% of α-satellite assembled with CENP-A protects DNA lengths centered on 133 bp, consistent with octameric nucleosomes with DNA unwrapping at entry and exit. CENP-A chromatin is shown to contain equimolar amounts of CENP-A and histones H2A, H2B, and H4, with no H3. Solid-state nanopore analyses show it to be nucleosomal in size. Thus, in contrast to models for hemisomes that briefly transition to octameric nucleosomes at specific cell cycle points or heterotypic nucleosomes containing both CENP-A and histone H3, human CENP-A chromatin complexes are octameric nucleosomes with two molecules of CENP-A at all cell cycle phases. PMID:28235947
Li, Huiyan; Peng, Xuan; Wang, Yating; Cao, Shirong; Xiong, Liping; Fan, Jinjin; Wang, Yihan; Zhuang, Shougang; Yu, Xueqing; Mao, Haiping
2016-09-01
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.
Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang
2017-11-01
Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.
Chiang, Michael; Hallman, Sam; Cinquin, Amanda; de Mochel, Nabora Reyes; Paz, Adrian; Kawauchi, Shimako; Calof, Anne L; Cho, Ken W; Fowlkes, Charless C; Cinquin, Olivier
2015-11-25
Analysis of single cells in their native environment is a powerful method to address key questions in developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial information about the spatial organization of the tissue and morphological features of the cells. This technique is rapidly evolving but is still not in widespread use among research groups that do not specialize in technique development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the best use of their time in injecting their domain-specific knowledge. Here we focus on a well-established stem cell model system, the C. elegans gonad, as well as on two other model systems widely used to study cell fate specification and morphogenesis: the pre-implantation mouse embryo and the developing mouse olfactory epithelium. We report a pipeline that integrates machine-learning-based cell detection, fast human-in-the-loop curation of these detections, and running of active contours seeded from detections to segment cells. The procedure can be bootstrapped by a small number of manual detections, and outperforms alternative pieces of software we benchmarked on C. elegans gonad datasets. Using cell segmentations to quantify fluorescence contents, we report previously-uncharacterized cell behaviors in the model systems we used. We further show how cell morphological features can be used to identify cell cycle phase; this provides a basis for future tools that will streamline cell cycle experiments by minimizing the need for exogenous cell cycle phase labels. High-throughput 3D segmentation makes it possible to extract rich information from images that are routinely acquired by biologists, and provides insights - in particular with respect to the cell cycle - that would be difficult to derive otherwise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiaoyong; Cai, Cuizan; Xiao, Fei
Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs havemore » been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.« less
Application of First Principles Model to Spacecraft Operations
NASA Technical Reports Server (NTRS)
Timmerman, Paul; Bugga, Ratnakumar; DiStefano, Salvidor
1996-01-01
Previous models use a single phase reaction; cycled cell predicts cannot be met with a single phase; interphase conversion provides means for film aging; aging cells predictions display typical behaviors: pressure changes in NiH² cells; voltage fading upon cycling; second plateau on discharge of cycled cells; negative limited behavior for Ni-Cds.
G2 phase-specific proteins of HeLa cells.
Al-Bader, A A; Orengo, A; Rao, P N
1978-01-01
The objective of this study was to determine if HeLa cells irreversibly arrested in G2 phase of the cell cycle by a brief exposure to a nitrosourea compound were deficient in certain proteins when compared with G2-synchronized cells. Total cellular proteins of G2-synchronized, G2-arrested, and S phase-synchronized cells were compared by two-dimensional polyacrylamide gel electrophoresis. The S phase cells differed from the G2-synchronized and G2-arrested cells by the absence of about 35 and 25 protein spots, respectively, of a total of nearly 150. At least nine protein spots in the molecular weight range of 4--5 X 10(4) that were present in the G2-synchronized cells were absent in both the G2-arrested and the S phase cells. Thus, these studies suggest that the missing proteins are probably necessary for the transition of cells from G2 phase to mitosis. Supplying the missing proteins to the G2-arrested cells by fusion with G2-synchronized cells facilitated the entry of the former into mitosis. Images PMID:282623
Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH
2016-01-01
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527
Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús
2017-01-01
Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative stress, and further participates in the cell size checkpoint during vegetative growth. PMID:28111572
Transition zone cells reach G2 phase before initiating elongation in maize root apex
Alarcón, M. Victoria
2017-01-01
ABSTRACT Root elongation requires cell divisions in the meristematic zone and cell elongation in the elongation zone. The boundary between dividing and elongating cells is called the transition zone. In the meristem zone, initial cells are continuously dividing, but on the basal side of the meristem cells exit the meristem through the transition zone and enter in the elongation zone, where they stop division and rapidly elongate. Throughout this journey cells are accompanied by changes in cell cycle progression. Flow cytometry analysis showed that meristematic cells are in cycle, but exit when they enter the elongation zone. In addition, the percentage of cells in G2 phase (4C) strongly increased from the meristem to the elongation zone. However, we did not observe remarkable changes in the percentage of cells in cell cycle phases along the entire elongation zone. These results suggest that meristematic cells in maize root apex stop the cell cycle in G2 phase after leaving the meristem. PMID:28495964
The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle
ERIC Educational Resources Information Center
Scherer, Yvette D.
2014-01-01
In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…
Self-healing Li-Bi liquid metal battery for grid-scale energy storage
NASA Astrophysics Data System (ADS)
Ning, Xiaohui; Phadke, Satyajit; Chung, Brice; Yin, Huayi; Burke, Paul; Sadoway, Donald R.
2015-02-01
In an assessment of the performance of a Li|LiCl-LiF|Bi liquid metal battery, increasing the current density from 200 to 1250 mA cm-2 results in a less than 30% loss in specific discharge capacity at 550 °C. The charge and discharge voltage profiles exhibit two distinct regions: one corresponding to a Li-Bi liquid alloy and one corresponding to the two-phase mixture of Li-Bi liquid alloy and the intermetallic solid compound, Li3Bi. Full cell prototypes of 0.1 Ah nameplate capacity have been assembled and cycled at 3 C rate for over a 1000 cycles with only 0.004% capacity fade per cycle. This is tantamount to retention of over 85% of original capacity after 10 years of daily cycling. With minimal changes in design, cells of 44.8 Ah and 134 Ah capacity have been fabricated and cycled at C/3 rate. After a hundred cycles and over a month of testing, no capacity fade is observed. The coulombic efficiency of 99% and energy efficiency of 70% validate the ease of scalability of this battery chemistry. Post mortem cross sections of the cells in various states of charge demonstrate the total reversibility of the Li3Bi solid phase formed at high degrees of lithiation.
Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.
Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J
2008-11-01
Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.
Cell cycle gene expression under clinorotation
NASA Astrophysics Data System (ADS)
Artemenko, Olga
2016-07-01
Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.
Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953
Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as "replication domains", and recent findings indicate that replication timing is under developmental and cell type-specific regulation. We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome.
Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery
NASA Technical Reports Server (NTRS)
Bogner, R. S.
1972-01-01
A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.
Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D
2014-05-07
Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.
Burkhart, Deborah L.; Wirt, Stacey E.; Zmoos, Anne-Flore; Kareta, Michael S.; Sage, Julien
2010-01-01
The retinoblastoma tumor suppressor (Rb) is a potent and ubiquitously expressed cell cycle regulator, but patients with a germline Rb mutation develop a very specific tumor spectrum. This surprising observation raises the possibility that mechanisms that compensate for loss of Rb function are present or activated in many cell types. In particular, p107, a protein related to Rb, has been shown to functionally overlap for loss of Rb in several cellular contexts. To investigate the mechanisms underlying this functional redundancy between Rb and p107 in vivo, we used gene targeting in embryonic stem cells to engineer point mutations in two consensus E2F binding sites in the endogenous p107 promoter. Analysis of normal and mutant cells by gene expression and chromatin immunoprecipitation assays showed that members of the Rb and E2F families directly bound these two sites. Furthermore, we found that these two E2F sites controlled both the repression of p107 in quiescent cells and also its activation in cycling cells, as well as in Rb mutant cells. Cell cycle assays further indicated that activation of p107 transcription during S phase through the two E2F binding sites was critical for controlled cell cycle progression, uncovering a specific role for p107 to slow proliferation in mammalian cells. Direct transcriptional repression of p107 by Rb and E2F family members provides a molecular mechanism for a critical negative feedback loop during cell cycle progression and tumorigenesis. These experiments also suggest novel therapeutic strategies to increase the p107 levels in tumor cells. PMID:20585628
Bektik, Emre; Dennis, Adrienne; Pawlowski, Gary; Zhou, Chen; Maleski, Danielle; Takahashi, Satoru; Laurita, Kenneth R; Deschênes, Isabelle; Fu, Ji-Dong
2018-05-04
Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFP high iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFP low cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.
2010-01-01
Background Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. Results A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. Conclusions The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration. PMID:20459736
Scheduling Chemotherapy: Catch 22 between Cell Kill and Resistance Evolution
Gardner, Shea N.
2000-01-01
Dose response curves show that prolonged drug exposure at a low concentration may kill more cells than short exposures at higher drug concentrations, particularly for cell cycle phase specific drugs. Applying drugs at low concentrations for prolonged periods, however, allows cells with partial resistance to evolve higher levels of resistance through stepwise processes such as gene amplification. Models are developed for cell cycle specific (CS) and cell cycle nonspecific (CNS) drugs to identify the schedule of drug application that balances this tradeoff. The models predict that a CS drug may be applied most effectively by splitting the cumulative dose intomore » many (>40) fractions applied by long-term chemotherapy, while CNS drugs may be better applied in fewer than 10 fractions applied over a shorter term. The model suggests that administering each fraction by continuous infusion may be more effective than giving the drug as a bolus, whether the drug is CS or CNS. In addition, tumors with a low growth fraction or slow rate of cell division are predicted to be controlled more easily with CNS drugs, while those with a high proliferative fraction or fast cell division rate may respond better to CS drugs.« less
Scheduling Chemotherapy: Catch 22 between Cell Kill and Resistance Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea N.
Dose response curves show that prolonged drug exposure at a low concentration may kill more cells than short exposures at higher drug concentrations, particularly for cell cycle phase specific drugs. Applying drugs at low concentrations for prolonged periods, however, allows cells with partial resistance to evolve higher levels of resistance through stepwise processes such as gene amplification. Models are developed for cell cycle specific (CS) and cell cycle nonspecific (CNS) drugs to identify the schedule of drug application that balances this tradeoff. The models predict that a CS drug may be applied most effectively by splitting the cumulative dose intomore » many (>40) fractions applied by long-term chemotherapy, while CNS drugs may be better applied in fewer than 10 fractions applied over a shorter term. The model suggests that administering each fraction by continuous infusion may be more effective than giving the drug as a bolus, whether the drug is CS or CNS. In addition, tumors with a low growth fraction or slow rate of cell division are predicted to be controlled more easily with CNS drugs, while those with a high proliferative fraction or fast cell division rate may respond better to CS drugs.« less
Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.
Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V
2013-01-01
The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.
Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M
2017-09-25
Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Todd, Robert G.; van der Zee, Lucas
2016-01-01
Abstract The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914
From egg to gastrula: How the cell cycle is remodeled during the Drosophila mid-blastula transition
Farrell, Jeffrey A.; O’Farrell, Patrick H.
2015-01-01
Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes which only emerge as the cell cycle slows, at a major embryonic transition known as the mid-blastula transition (MBT) just prior to gastrulation. As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. While many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms. PMID:25195504
Basse, Britta; Ubezio, Paolo
2007-07-01
We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity < t < infinity. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t = 0, and then, at t=0 the cell line is exposed to cancer therapy. This corresponds to a change in the transition rate functions and perhaps incorporation of additional phases of the cell cycle. We discuss a number of these cancer therapies and applications of the model.
Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M
2010-10-22
Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.
Hui, Kenrie Pui-Yan; Sit, Wai-Hung; Wan, Jennifer Man-Fan
2005-07-01
Activation of the cell death program (apoptosis) is a strategy for the treatment of human cancer, and unfortunately a large number of drugs identified as cell cycle-specific agents for killing cancer cells are also toxic to normal cells. The present study demonstrates that the polysaccharide peptide (PSP) extracted from the Chinese medicinal mushroom, Coriolus versicolor, used in combination therapy in China, has the ability to lower the cytotoxicity of certain anti-leukemic drugs via their interaction with cell cycle-dependent and apoptotic pathways. Flow cytometry analysis demonstrated that pre-treatment of PSP (25-100 microg/ml) dose-dependently enhanced the cell cycle perturbation and apoptotic activity of doxorubicin (Doxo) and etoposide (VP-16), but not cytarabine (Ara-C) in human promyelocytic leukemia HL-60 cells. The antagonistic result from combined treatment with Ara-C and PSP may be caused by the removal of HL-60 cells in the G1-S boundary by PSP before exposure to Ara-C. A negative correlation between the increase in apoptotic cell population (pre-G1 peak) with the S-phase cell population expression (R2=0.998), the expression of cyclin E expression (R2=0.872) and caspase 3 activity (R2=0.997) suggests that PSP enhanced the apoptotic machinery of Doxo and VP-16 in a cell cycle-dependent manner and is mediated, at least in part, by the PSP-mediated modulation of the regulatory checkpoint cyclin E and caspase 3. This study is the first to describe the cell cycle mechanistic action of PSP and its interaction with other anticancer agents. Our data support the potential development of PSP as an adjuvant for leukemia treatment, but also imply the importance of understanding its interaction with individual anticancer agents.
Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J
2016-12-01
The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.
Ball, David A.
2016-01-01
The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947
Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri
2015-11-01
DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Poncelet, Luc; Garigliany, Mutien; Ando, Kunie; Franssen, Mathieu; Desmecht, Daniel; Brion, Jean-Pierre
2016-12-16
The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.
Cell cycle progression is regulated by intertwined redox oscillators.
da Veiga Moreira, Jorgelindo; Peres, Sabine; Steyaert, Jean-Marc; Bigan, Erwan; Paulevé, Loïc; Nogueira, Marcel Levy; Schwartz, Laurent
2015-05-29
The different phases of the eukaryotic cell cycle are exceptionally well-preserved phenomena. DNA decompaction, RNA and protein synthesis (in late G1 phase) followed by DNA replication (in S phase) and lipid synthesis (in G2 phase) occur after resting cells (in G0) are committed to proliferate. The G1 phase of the cell cycle is characterized by an increase in the glycolytic metabolism, sustained by high NAD+/NADH ratio. A transient cytosolic acidification occurs, probably due to lactic acid synthesis or ATP hydrolysis, followed by cytosolic alkalinization. A hyperpolarized transmembrane potential is also observed, as result of sodium/potassium pump (NaK-ATPase) activity. During progression of the cell cycle, the Pentose Phosphate Pathway (PPP) is activated by increased NADP+/NADPH ratio, converting glucose 6-phosphate to nucleotide precursors. Then, nucleic acid synthesis and DNA replication occur in S phase. Along with S phase, unpublished results show a cytosolic acidification, probably the result of glutaminolysis occurring during this phase. In G2 phase there is a decrease in NADPH concentration (used for membrane lipid synthesis) and a cytoplasmic alkalinization occurs. Mitochondria hyperfusion matches the cytosolic acidification at late G1/S transition and then triggers ATP synthesis by oxidative phosphorylation. We hypothesize here that the cytosolic pH may coordinate mitochondrial activity and thus the different redox cycles, which in turn control the cell metabolism.
Laguna, Richard; Romo, Jesus; Read, Betsy A.; Wahlund, Thomas M.
2001-01-01
Emiliania huxleyi is a unicellular marine alga that is considered to be the world's major producer of calcite. The life cycle of this alga is complex and is distinguished by its ability to synthesize exquisitely sculptured calcium carbonate cell coverings known as coccoliths. These structures have been targeted by materials scientists for applications relating to the chemistry of biomedical materials, robust membranes for high-temperature separation technology, lightweight ceramics, and semiconductor design. To date, however, the molecular and biochemical events controlling coccolith production have not been determined. In addition, little is known about the life cycle of E. huxleyi and the environmental and physiological signals triggering phase switching between the diploid and haploid life cycle stages. We have developed laboratory methods for inducing phase variation between the haploid (S-cell) and diploid (C-cell) life cycle stages of E. huxleyi. Plating E. huxleyi C cells on solid media was shown to induce phase switching from the C-cell to the S-cell life cycle stage, the latter of which has been maintained for over 2 years under these conditions. Pure cultures of S cells were obtained for the first time. Laboratory conditions for inducing phase switching from the haploid stage to the diploid stage were also established. Regeneration of the C-cell stage from pure cultures of S cells followed a predictable pattern involving formation of large aggregations of S cells and the subsequent production of cultures consisting predominantly of diploid C cells. These results demonstrate the ability to manipulate the life cycle of E. huxleyi under controlled laboratory conditions, providing us with powerful tools for the development of genetic techniques for analysis of coccolithogenesis and for investigating the complex life cycle of this important marine alga. PMID:11525973
Elias, Emmanuel; Lalun, Nathalie; Lorenzato, Marianne; Blache, Laurent; Chelidze, Pavel; O'Donohue, Marie-Françoise; Ploton, Dominique; Bobichon, Hélène
2003-11-15
Topoisomerase I (Topo I) is mostly known for its role in DNA relaxation, which is required for duplication and transcription. Topo I acts as a protein kinase mainly directed to the mRNA splicing factor SC35. Camptothecin is one of the specific Topo I inhibitors and is effective on the two functions of the enzyme. In this study we demonstrated that treatment of KB cells with camptothecin for only 30 min induced the 3D reorganization and redistribution of three proteins involved in the nucleus machinery, P 120, pKi-67, and SC 35, and this occurred in a cell cycle-dependent manner. Our data were obtained from confocal microscopic studies after immunolabeling, 3D reconstruction, and measurement of the nuclear components volumes. In the presence of camptothecin, P 120, which occupied the nucleolar volume, lost its reticulation and pKi-67 was redistributed within the nucleoplasm and even into the cytoplasm. Finally, for SC 35 the fusion of its dots into bigger volumes was observed specifically during the G1 phase. Variations of volumes were also observed for the nucleolus and for the nucleus. These results pointed out that, depending on the cell cycle phase, Topo I functions were selective toward the three different proteins.
Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E
2010-04-01
Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event. Copyright 2009 Wiley-Liss, Inc.
Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.
Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez
2012-01-01
The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet-unknown general, non-specific mechanism allowing fast inherited adaptation to unforeseen challenges.
Mairet-Coello, Georges; Tury, Anna; Van Buskirk, Elise; Robinson, Kelsey; Genestine, Matthieu; DiCicco-Bloom, Emanuel
2012-01-01
During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57KIP2, an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57KIP2 and p27KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation. PMID:22223678
Flipping the Switch from G1 to S Phase with E3 Ubiquitin Ligases
Rizzardi, Lindsay F.
2012-01-01
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication (“origin licensing”) to active DNA synthesis (“origin firing”). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells. PMID:23634252
Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra
2016-01-01
Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N. Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells. © 2015 John Wiley & Sons Ltd.
Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.
Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang
2017-05-01
Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.
Ionizing radiation and cell cycle progression in ataxia telangiectasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beamish, H.; Khanna, K.K.; Lavin, M.F.
1994-04-01
Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less
Wani, Willayat Yousuf; Kandimalla, Ramesh J L; Sharma, Deep Raj; Kaushal, Alka; Ruban, Anand; Sunkaria, Aditya; Vallamkondu, Jayalakshmi; Chiarugi, Alberto; Reddy, P Hemachandra; Gill, Kiran Dip
2017-07-01
In the previous study, we demonstrated that dichlorvos induces oxidative stress in dopaminergic neuronal cells and subsequent caspase activation mediates apoptosis. In the present study, we evaluated the effect and mechanism of dichlorvos induced oxidative stress on cell cycle activation in NGF-differentiated PC12 cells. Dichlorvos exposure resulted in oxidative DNA damage along with activation of cell cycle machinery in differentiated PC12 cells. Dichlorvos exposed cells exhibited an increased expression of p53, cyclin-D1, pRb and decreased expression of p21suggesting a re-entry of differentiated cells into the cell cycle. Cell cycle analysis of dichlorvos exposed cells revealed a reduction of cells in the G 0 /G 1 phase of the cell cycle (25%), and a concomitant increase of cells in S phase (30%) and G2/M phase (43.3%) compared to control PC12 cells. Further, immunoblotting of cytochrome c, Bax, Bcl-2 and cleaved caspase-3 revealed that dichlorvos induces a caspase-dependent cell death in PC12 cells. These results suggest that Dichlorvos exposure has the potential to generate oxidative stress which evokes activation of cell cycle machinery leading to apoptotic cell death via cytochrome c release from mitochondria and subsequent caspase-3 activation in differentiated PC12 cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.
Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E
2017-11-22
Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.
Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J
2011-06-14
The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.
Mizejewski, G J
2016-09-01
The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.
Contact guidance is cell cycle-dependent.
Pourfarhangi, Kamyar Esmaeili; De La Hoz, Edgar Cardenas; Cohen, Andrew R; Gligorijevic, Bojana
2018-09-01
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo , cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μ m-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo , breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
Kishimoto, Masanobu; Fukui, Toshiro; Suzuki, Ryo; Takahashi, Yu; Sumimoto, Kimi; Okazaki, Takashi; Sakao, Masayuki; Sakaguchi, Yutaku; Yoshida, Katsunori; Uchida, Kazushige; Nishio, Akiyoshi; Matsuzaki, Koichi; Okazaki, Kazuichi
2015-02-01
Quiescent (slow-cycling) and active (rapid-cycling) stem cells are demonstrated in small intestines. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in murine stomach, and suggested these cells are epithelial stem cells. Here, we explore whether pSmad2/3L-Thr could serve as a biomarker for small intestine and colon stem cells. We examined small intestines and colons from C57BL/6 mice and colons with dextran sulfate sodium (DSS)-induced colitis. We performed double-immunofluorescent staining of pSmad2/3L-Thr with Ki67, cytokeratin 8, chromogranin A, CDK4, DCAMKL1, and Musashi-1. Small intestines and colons from Lgr5-EGFP knock-in mice were examined by pSmad2/3L-Thr immunofluorescent staining. To examine BrdU label retention of pSmad2/3L-Thr immunostaining-positive cells, we collected specimens after BrdU administration and observed double-immunofluorescent staining of pSmad2/3L-Thr with BrdU. In small intestines and colons, pSmad2/3L-Thr immunostaining-strongly positive cells were detected around crypt bases. Immunohistochemical co-localization of pSmad2/3L-Thr with Ki67 was not observed. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with cytokeratin 8, CDK4, and Musashi-1 and different localization from chromogranin A and DCAMKL1 immunostaining-positive cells. Under a light microscope, pSmad2/3L-Thr immunostaining-strongly positive cells were morphologically undifferentiated. In Lgr5-EGFP knock-in mice, some but not all pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with Lgr5. pSmad2/3L-Thr immunostaining-strongly positive cells showed co-localization with BrdU at 5, 10, and 15 days after administration. In DSS-induced colitis, pSmad2/3L-Thr and Ki67 immunostaining-positive cells increased in the regeneration phase and decreased in the injury phase. In murine small intestines and colons, we suggest pSmad2/3L-Thr immunostaining-strongly positive cells are epithelial stem-like cells just before reentry to the cell cycle.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
NASA Astrophysics Data System (ADS)
Chaplain, Mark A. J.; Powathil, Gibin G.
2015-04-01
Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.
D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Antonella Ianuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio
2017-01-01
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.
Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images.
Ferro, Anabela; Mestre, Tânia; Carneiro, Patrícia; Sahumbaiev, Ivan; Seruca, Raquel; Sanches, João M
2017-05-01
In the past decades, there has been an amazing progress in the understanding of the molecular mechanisms of the cell cycle. This has been possible largely due to a better conceptualization of the cycle itself, but also as a consequence of technological advances. Herein, we propose a new fluorescence image-based framework targeted at the identification and segmentation of stained nuclei with the purpose to determine DNA content in distinct cell cycle stages. The method is based on discriminative features, such as total intensity and area, retrieved from in situ stained nuclei by fluorescence microscopy, allowing the determination of the cell cycle phase of both single and sub-population of cells. The analysis framework was built on a modified k-means clustering strategy and refined with a Gaussian mixture model classifier, which enabled the definition of highly accurate classification clusters corresponding to G1, S and G2 phases. Using the information retrieved from area and fluorescence total intensity, the modified k-means (k=3) cluster imaging framework classified 64.7% of the imaged nuclei, as being at G1 phase, 12.0% at G2 phase and 23.2% at S phase. Performance of the imaging framework was ascertained with normal murine mammary gland cells constitutively expressing the Fucci2 technology, exhibiting an overall sensitivity of 94.0%. Further, the results indicate that the imaging framework has a robust capacity to both identify a given DAPI-stained nucleus to its correct cell cycle phase, as well as to determine, with very high probability, true negatives. Importantly, this novel imaging approach is a non-disruptive method that allows an integrative and simultaneous quantitative analysis of molecular and morphological parameters, thus awarding the possibility of cell cycle profiling in cytological and histological samples.
Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung
2016-07-01
Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhard, E.J.; Maity, A.; McKenna, W.G.
1994-12-01
The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLamore » cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.« less
Self-healing Li-Bi liquid metal battery for grid-scale energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, XH; Phadke, S; Chung, B
In an assessment of the performance of a Li vertical bar LiCl-LiF vertical bar Bi liquid metal battery, increasing the current density from 200 to 1250 mA cm(-2) results in a less than 30% loss in specific discharge capacity at 550 degrees C. The charge and discharge voltage profiles exhibit two distinct regions: one corresponding to a Li-Bi liquid alloy and one corresponding to the two-phase mixture of Li-Bi liquid alloy and the intermetallic solid compound, Li3Bi. Full cell prototypes of 0.1 Ah nameplate capacity have been assembled and cycled at 3 C rate for over a 1000 cycles withmore » only 0.004% capacity fade per cycle. This is tantamount to retention of over 85% of original capacity after 10 years of daily cycling. With minimal changes in design, cells of 44.8 Ah and 134 Ah capacity have been fabricated and cycled at C/3 rate. After a hundred cycles and over a month of testing, no capacity fade is observed. The coulombic efficiency of 99% and energy efficiency of 70% validate the ease of scalability of this battery chemistry. Post mortem cross sections of the cells in various states of charge demonstrate the total reversibility of the Li3Bi solid phase formed at high degrees of lithiation. (C) 2014 Elsevier B.V. All rights reserved.« less
Yano, Shuya; Miwa, Shinji; Mii, Sumiyuki; Hiroshima, Yukihiko; Uehara, Fuminaru; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Zhao, Ming; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M
2015-01-01
The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.
Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon
2010-04-01
Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.
Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda
2014-01-01
DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766
Discrete gene replication events drive coupling between the cell cycle and circadian clocks
Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.
2016-01-01
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936
Discrete gene replication events drive coupling between the cell cycle and circadian clocks.
Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K
2016-04-12
Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.
The cell-cycle interactome: a source of growth regulators?
Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie
2014-06-01
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts.
Markopoulos, Georgios S; Roupakia, Eugenia; Tokamani, Maria; Vartholomatos, George; Tzavaras, Theodore; Hatziapostolou, Maria; Fackelmayer, Frank O; Sandaltzopoulos, Raphael; Polytarchou, Christos; Kolettas, Evangelos
2017-10-01
Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G 1 /S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G 1 /S and G 2 /M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Zheng, P; Fay, D S; Burton, J; Xiao, H; Pinkham, J L; Stern, D F
1993-09-01
SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.
New observations on endometrial physiology after transcervical injection of methylene blue dye.
Marconi, Guillermo; Vilela, Martín; Quintana, Ramiro; Diradourián, Marco; Young, Edgardo; Sueldo, Carlos
2004-12-01
We describe the in vivo features of endometrium stained with methylene blue dye and observed via microhysteroscopy, showing the patterns of endometrial glands and superficial cell changes during the midproliferative, periovulatory, and midluteal phases. These preliminary observations have allowed us to identify a series of changes occurring in the different phases of the ovulatory cycle of potential value in reproductive medicine for specific groups of infertile patients.
NASA Astrophysics Data System (ADS)
Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.
2008-01-01
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.
Dhara, Animesh; de Paula Baptista, Rodrigo; Kissinger, Jessica C; Snow, E Charles; Sinai, Anthony P
2017-11-21
The Toxoplasma genome encodes the capacity for distinct architectures underlying cell cycle progression in a life cycle stage-dependent manner. Replication in intermediate hosts occurs by endodyogeny, whereas a hybrid of schizogony and endopolygeny occurs in the gut of the definitive feline host. Here, we characterize the consequence of the loss of a cell cycle-regulated o varian tu mor (OTU family) deubiquitinase, OTUD3A of Toxoplasma gondii (TgOTUD3A; TGGT1_258780), in T. gondii tachyzoites. Rather than the mutation being detrimental, mutant parasites exhibited a fitness advantage, outcompeting the wild type. This phenotype was due to roughly one-third of TgOTUD3A-knockout (TgOTUD3A-KO) tachyzoites exhibiting deviations from endodyogeny by employing replication strategies that produced 3, 4, or 5 viable progeny within a gravid mother instead of the usual 2. We established the mechanistic basis underlying these altered replication strategies to be a dysregulation of centrosome duplication, causing a transient loss of stoichiometry between the inner and outer cores that resulted in a failure to terminate S phase at the attainment of 2N ploidy and/or the decoupling of mitosis and cytokinesis. The resulting dysregulation manifested as deviations in the normal transitions from S phase to mitosis (S/M) (endopolygeny-like) or M phase to cytokinesis (M/C) (schizogony-like). Notably, these imbalances are corrected prior to cytokinesis, resulting in the generation of normal progeny. Our findings suggest that decisions regarding the utilization of specific cell cycle architectures are controlled by a ubiquitin-mediated mechanism that is dependent on the absolute threshold levels of an as-yet-unknown target(s). Analysis of the TgOTUD3A-KO mutant provides new insights into mechanisms underlying the plasticity of apicomplexan cell cycle architecture. IMPORTANCE Replication by Toxoplasma gondii can occur by 3 distinct cell cycle architectures. Endodyogeny is used by asexual stages, while a hybrid of schizogony and endopolygeny is used by merozoites in the definitive feline host. Here, we establish that the disruption of an o varian- tu mor (OTU) family deubiquitinase, TgOTUD3A, in tachyzoites results in dysregulation of the mechanism controlling the selection of replication strategy in a subset of parasites. The mechanistic basis for these altered cell cycles lies in the unique biology of the bipartite centrosome that is associated with the transient loss of stoichiometry between the inner and outer centrosome cores in the TgOTUD3A-KO mutant. This highlights the importance of ubiquitin-mediated regulation in the transition from the nuclear to the budding phases of the cell cycle and provides new mechanistic insights into the regulation of the organization of the apicomplexan cell cycle. Copyright © 2017 Dhara et al.
Sağsöz, H; Akbalik, M E; Saruhan, B G; Ketani, M A
2011-08-01
The localization and distribution of estrogen receptors (ERα) and progesterone receptors (PR-B) in the cervix and vagina of sexually mature bovines during the follicular and luteal phases of the sexual cycle were studied using immunohistochemistry. The estrous cycle stage of 23 Holstein bovines was assessed by gross and histological appearance of ovaries and blood steroid hormone values. Tissue samples from cervix and vagina were fixed in 10% formaldehyde for routine histological processing. Nuclear staining for ERα and PR-B was observed in the epithelial cells of the surface epithelium, stromal cells and smooth muscle cells. Generally, in the cervix, ERα immunoreactivity was more intense in the epithelial and smooth muscle cells during the follicular phase and in the epithelial cells during the luteal phase (p < 0.05). PR-B immunoreactivity was more intense in the epithelial and smooth muscle cells than in the superficial and deep stromal cells during the follicular and luteal phases (p < 0.05). In the vagina, ERα and PR-B immunoreactivities were more intense in the epithelial cells than in the connective tissue cells and smooth muscle cells during the follicular and luteal phases (p < 0.05). These results indicated that the frequency and intensity of ERα and PR-B immunoreactivity in the cervix and vagina of bovines varied according to the cervical and vaginal cell types and the phases of the sexual cycle.
Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus blazei
Kasai, Hirotake
2007-01-01
We examined the effects of hemicellulase-treated Agaricus blazei (AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth. PMID:17342245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong
2014-03-07
Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less
Zerjatke, Thomas; Gak, Igor A; Kirova, Dilyana; Fuhrmann, Markus; Daniel, Katrin; Gonciarz, Magdalena; Müller, Doris; Glauche, Ingmar; Mansfeld, Jörg
2017-05-30
Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA) as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Siede, W; Friedberg, E C
1992-03-01
In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.
Singh, Badri Nath; Achary, V Mohan Murali; Panditi, Varakumar; Sopory, Sudhir K; Reddy, Malireddy K
2017-08-01
The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is required for individualization and condensation of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed.
Seidel, Hannah S; Kimble, Judith
2015-01-01
Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561
Preparative electrophoresis of cultured human cells: Effect of cell cycle phase
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.
1985-01-01
Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.
Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.
2017-01-01
We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489
Li, Fanni; Dong, Xiwen; Lin, Peng; Jiang, Jianli
2018-01-01
The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR. PMID:29360760
Sia, Kian Chuan; Huynh, Hung; Chung, Alexander Yaw Fui; Ooi, London Lucien Peng Jin; Lim, Kiat Hon; Hui, Kam Man; Lam, Paula Yeng Po
2013-08-01
Gene regulation of many key cell-cycle players in S-, G(2) phase, and mitosis results from transcriptional repression in their respective promoter regions during the G(0) and G(1) phases of cell cycle. Within these promoter regions are phylogenetically conserved sequences known as the cell-cycle-dependent element (CDE) and cell-cycle genes homology regions (CHR) sites. Thus, we hypothesize that transcriptional regulation of cell-cycle regulation via the CDE/CHR region together with liver-specific apolipoprotein E (apoE)-hAAT promoter could bring about a selective transgene expression in proliferating human hepatocellular carcinoma. We show that the newly generated vector AH-6CC-L2C could mediate hepatocyte-targeted luciferase gene expression in tumor cells and freshly isolated short-term hepatocellular carcinoma cultures from patient biopsy. In contrast, normal murine and human hepatocytes infected with AH-6CC-L2C expressed minimal or low luciferase activities. In the presence of prodrug 5-fluorocytosine (5-FC), AH-6CC-L2C effectively suppressed the growth of orthotopic hepatocellular carcinoma patient-derived xenograft mouse model via the expression of yeast cytosine deaminase (yCD) that converts 5-FC to anticancer metabolite 5-fluoruracil. More importantly, we show that combination treatment of AH-6CC-L2C with an EZH2 inhibitor, DZNep, that targets EpCAM-positive hepatocellular carcinoma, can bring about a greater therapeutic efficacy compared with a single treatment of virus or inhibitor. Our study showed that targeting proliferating human hepatocellular carcinoma cells through the transcriptional control of therapeutic gene could represent a feasible approach against hepatocellular carcinoma.
Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry.
Clarke, Scott T; Calderon, Veronica; Bradford, Jolene A
2017-10-02
The measurement of cellular proliferation is fundamental to the assessment of cellular health, genotoxicity, and the evaluation of drug efficacy. Labeling, detection, and quantification of cells in the synthesis phase of cell cycle progression are not only important for characterizing basic biology, but also in defining cellular responses to drug treatments. Changes in DNA replication during S-phase can provide valuable insights into mechanisms of cell growth, cell cycle kinetics, and cytotoxicity. A common method for detection of cell proliferation is the incorporation of a thymidine analog during DNA synthesis. This chapter presents a pulse labeling method using the thymidine analog, 5-ethynyl-2'-deoxyuridine (EdU), with subsequent detection by click chemistry. EdU detection using click chemistry is bio-orthogonal to most living systems and does not non-specifically label other biomolecules. Live cells are first pulsed with EdU. After antibody labeling cell surface markers, fixation, and permeabilization, the incorporated EdU is covalently labeled using click chemistry thereby identifying proliferating cells. Improvements in click chemistry allow for labeling in the presence of fluorescent proteins and phycobiliproteins without quenching due to copper. Measuring DNA replication during cell cycle progression has cell health applications in flow cytometry, fluorescence microscopy, and high content imaging. This protocol has been developed and optimized for research use only and is not suitable for use in diagnostic procedures. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Cell Cycle Deregulation in the Neurons of Alzheimer’s Disease
Moh, Calvin; Kubiak, Jacek Z.; Bajic, Vladan P.; Zhu, Xiongwei; Smith, Mark A.
2018-01-01
The cell cycle consists of four main phases: G1, S, G2, and M. Most cells undergo these cycles up to 40–60 times in their life. However, neurons remain in a nondividing, nonreplicating phase, G0. Neurons initiate but do not complete cell division, eventually entering apoptosis. Research has suggested that like cancer, Alzheimer’s disease (AD) involves dysfunction in neuronal cell cycle reentry, leading to the development of the two-hit hypothesis of AD. The first hit is abnormal cell cycle reentry, which typically results in neuronal apoptosis and prevention of AD. However, with the second hit of chronic oxidative damage preventing apoptosis, neurons gain “immortality” analogous to tumor cells. Once both of these hits are activated, AD can develop and produce senile plaques and neurofibrillary tangles throughout brain tissue. In this review, we propose a mechanism for neuronal cell cycle reentry and the development of AD. PMID:21630160
Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V
2017-01-01
Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.
Mo, En-Pan; Zhang, Rong-Rong; Xu, Jun; Zhang, Huan; Wang, Xiao-Xiong; Tan, Qiu-Tong; Liu, Fang-Lan; Jiang, Ren-Wang; Cai, Shao-Hui
2016-09-16
Calotropin (M11), an active compound isolated from Asclepias curasavica L., was found to exert strong inhibitory and pro-apoptotic activity specifically against cisplatin-induced resistant non-small cell lung cancer (NSCLC) cells (A549/CDDP). Molecular mechanism study revealed that M11 induced cell cycle arrest at the G2/M phase through down-regulating cyclins, CDK1, CDK2 and up-regulating p53 and p21. Furthermore, M11 accelerated apoptosis through the mitochondrial apoptotic pathway which was accompanied by increase Bax/Bcl-2 ratio, decrease in mitochondrial membrane potential, increase in reactive oxygen species production, activations of caspases 3 and 9 as well as cleavage of poly ADP-ribose polymerase (PARP). The activation and phosphorylation of JNK was also found to be involved in M11-induced apoptosis, and SP610025 (specific JNK inhibitor) partially prevented apoptosis induced by M11. In contrast, all of the effects that M11 induce cell cycle arrest and apoptosis in A549/CDDP cells were not significant in A549 cells. Drugs with higher sensitivity against resistant tumor cells than the parent cells are rather rare. Results of this study supported the potential application of M11 on the non-small lung cancer (NSCLC) with cisplatin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Cycling to Maintain and Improve Fitness: Line-1 Modes of Nuclear Entrance and Retrotransposition.
Mita, Paolo; Boeke, Jef D
2018-04-01
The LINE-1/L1 retrotransposon is a transposable element still active in the human genome. Most retrotransposons in the genome are inactive or repressed by several host mechanisms. In specific contexts, active L1 retrotransposons may evade repression and copy themselves into new genomic loci. Despite a general knowledge of the L1 life cycle, little was known about the dynamics of L1 proteins and function during the different stages of the host cell cycle. Our work highlighted a well-orchestrated localization of L1 proteins and mRNA that take advantage of mitotic nuclear membrane breakdown. Once in the nucleus, L1 ribonucleoproteins (RNPs) are able to retrotranspose during the S phase when L1 retrotransposition peaks. Our conclusions highlight previously unappreciated features of the L1 life cycle, such as the differences between cytoplasmic and nuclear RNPs and the cycling of L1 ORF1 protein and L1 activity during progression through the cell cycle. These new observations are discussed here in light of the evolutionary arms race between L1 retrotransposons and the host cell.
Suchánková, Jana; Kozubek, Stanislav; Legartová, Soňa; Sehnalová, Petra; Küntziger, Thomas; Bártová, Eva
2015-12-01
The DNA damage response is a fundamental, well-regulated process that occurs in the genome to recognise DNA lesions. Here, we studied kinetics of proteins involved in DNA repair pathways and their recruitment to DNA lesions during the cell cycle. In non-irradiated and irradiated cells, we analysed the distribution pattern and spatiotemporal dynamics of γH2AX, 53BP1, BMI1, MDC1, NBS1, PCNA, coilin and BRCA1 proteins. We observed that spontaneous and irradiation-induced foci (IRIF) demonstrated a high abundance of phosphorylated H2AX, which was consistent with 53BP1 and BMI1 protein accumulation. However, NBS1 and MDC1 proteins were recruited to nuclear bodies (NBs) to a lesser extent. Irradiation by γ-rays significantly increased the number of 53BP1- and γH2AX-positive IRIF, but cell cycle-dependent differences were only observed for γH2AX-positive foci in both non-irradiated and γ-irradiated cells. In non-irradiated cells, the G2 phase was characterised by an increased number of spontaneous γH2AX-foci; this increase was more pronounced after γ-irradiation. Cells in G2 phase had the highest number of γH2AX-positive foci. Similarly, γ-irradiation increased the number of NBS1-positive NBs only in G2 phase. Moreover, NBS1 accumulated in nucleoli after γ-irradiation showed the slowest recovery after photobleaching. Analysis of protein accumulation kinetics at locally induced DNA lesions showed that in HeLa cells, BMI1, PCNA and coilin were rapidly recruited to the lesions, 10-15 s after UVA-irradiation, whereas among the other proteins studied, BRCA1 demonstrated the slowest recruitment: BRCA1 appeared at the lesion 20 min after local micro-irradiation by UVA laser. We show that the kinetics of the accumulation of selected DNA repair-related proteins is protein specific at locally induced DNA lesions, and that the formation of γH2AX- and NBS1-positive foci, but not 53BP1-positive NBs, is cell cycle dependent in HeLa cells. Moreover, γH2AX is the most striking protein present not only at DNA lesions, but also spreading out in their vicinity. Our conclusions highlight the significant role of the spatiotemporal dynamics of DNA repair-related proteins and their specific assembly/disassembly at DNA lesions, which can be cell type- and cell cycle dependent. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
von Dassow, Peter; Ogata, Hiroyuki; Probert, Ian; Wincker, Patrick; Da Silva, Corinne; Audic, Stéphane; Claverie, Jean-Michel; de Vargas, Colomban
2009-01-01
Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only
2009-01-01
Background Eukaryotes are classified as either haplontic, diplontic, or haplo-diplontic, depending on which ploidy levels undergo mitotic cell division in the life cycle. Emiliania huxleyi is one of the most abundant phytoplankton species in the ocean, playing an important role in global carbon fluxes, and represents haptophytes, an enigmatic group of unicellular organisms that diverged early in eukaryotic evolution. This species is haplo-diplontic. Little is known about the haploid cells, but they have been hypothesized to allow persistence of the species between the yearly blooms of diploid cells. We sequenced over 38,000 expressed sequence tags from haploid and diploid E. huxleyi normalized cDNA libraries to identify genes involved in important processes specific to each life phase (2N calcification or 1N motility), and to better understand the haploid phase of this prominent haplo-diplontic organism. Results The haploid and diploid transcriptomes showed a dramatic differentiation, with approximately 20% greater transcriptome richness in diploid cells than in haploid cells and only ≤ 50% of transcripts estimated to be common between the two phases. The major functional category of transcripts differentiating haploids included signal transduction and motility genes. Diploid-specific transcripts included Ca2+, H+, and HCO3- pumps. Potential factors differentiating the transcriptomes included haploid-specific Myb transcription factor homologs and an unusual diploid-specific histone H4 homolog. Conclusions This study permitted the identification of genes likely involved in diploid-specific biomineralization, haploid-specific motility, and transcriptional control. Greater transcriptome richness in diploid cells suggests they may be more versatile for exploiting a diversity of rich environments whereas haploid cells are intrinsically more streamlined. PMID:19832986
Tributyltin induces cell cycle arrest at G1 phase in the yeast Saccharomyces cerevisiae.
Sekito, Takayuki; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Akiyama, Koichi; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi
2014-04-01
Tributyltin (TBT) has long been recognized as a major environmental pollutant that can cause significant damage to the cellular functions as well as disruption of endocrine homeostasis. TBT induces apoptosis accompanied by production of reactive oxygen species (ROS) in mammalian and yeast cells. We observed that the budding yeast cells exposed to this compound at low concentrations exhibited cell growth arrest, but not cell death. Flow cytometric analysis of yeast cells without synchronization and morphological assessment of cells synchronized at M phase by nocodazole treatment indicated that TBT-exposed Saccharomyces cerevisiae cells were arrested at G1 phase of the cell cycle. This arrest was recovered by the addition of N-acetylcysteine, suggesting the involvement of ROS production by TBT. This is the first study to evaluate the action of TBT on cell cycle events.
Proliferation marker pKi-67 affects the cell cycle in a self-regulated manner.
Schmidt, Mirko H H; Broll, Rainer; Bruch, Hans-Peter; Duchrow, Michael
2002-01-01
The proliferation marker pKi-67 is commonly used in research and pathology to detect proliferating cells. In a previous work, we found the protein to be associated with regulators of the cell cycle, controlling S-phase progression, as well as entry into and exit from mitosis. Here we investigate whether pKi-67 has a regulative effect on the cell cycle itself. For that purpose we cloned four fragments of pKi-67, together representing nearly the whole protein, and an N-terminal pKi-67 antisense oligonucleotide into a tetracycline inducible gene expression system. The sense fragments were C-terminally modified by addition of either a nuclear localization sequence (NLS) or a STOP codon to address the impact of their intracellular distribution. FACS based cell cycle analysis revealed that expression of nearly all pKi-67 domains and the antisense oligonucleotide led to a decreased amount of cells in S-phase and an increased number of cells in G(2)/M- and G(1)-phase. Subsequent analysis of the endogenous pKi-67 mRNA and protein levels revealed that the constructs with the most significant impact on the cell cycle were able to silence pKi-67 transcription as well. We conclude from the data that pKi-67 influences progression of S-phase and mitosis in a self-regulated manner and, therefore, effects the cell cycle checkpoints within both phases. Furthermore, we found pKi-67 mediates an anti-apoptotic effect on the cell and we verified that this marker, although it is a potential ribosomal catalyst, is not expressed in differentiated tissues with a high transcriptional activity. Copyright 2002 Wiley-Liss, Inc.
Massodi, Iqbal; Moktan, Shama; Rawat, Aruna; Bidwell, Gene L; Raucher, Drazen
2010-01-15
Current treatment of solid tumors is limited by normal tissue tolerance, resulting in a narrow therapeutic index. To increase drug specificity and efficacy and to reduce toxicity in normal tissues, we have developed a polypeptide carrier for a cell cycle inhibitory peptide, which has the potential to be thermally targeted to the tumor site. The design of this polypeptide is based on elastin-like polypeptide (ELP). The coding sequence of ELP was modified by the addition of the cell penetrating peptide Bac-7 at the N-terminus and a 23 amino acid peptide derived from p21 at the C-terminus (Bac-ELP1-p21). Bac-ELP1-p21 is soluble in aqueous solutions below physiological temperature (37 degrees C) but aggregates when the temperature is raised above 39 degrees C, making it a promising thermally responsive therapeutic carrier that may be actively targeted to solid tumors by application of focused hyperthermia. While Bac-ELP1-p21 at 37 degrees C did not have any effect on SKOV-3 cell proliferation, the use of hyperthermia increased the antiproliferative effect of Bac-ELP1-p21 compared with a thermally unresponsive control polypeptide. Bac-ELP1-p21 displayed both a cytoplasmic and nuclear distribution in the SKOV-3 cells, with nuclear-localized polypeptide enriched in the heated cells, as revealed by confocal microscopy. Using Western blotting, we show that Bac-ELP1-p21 caused a decrease in Rb phosphorylation levels in cells treated at 42 degrees C. The polypeptide also induced caspase activation, PARP cleavage, and cell cycle arrest in S-phase and G2/M-phase. These studies indicate that ELP is a promising macromolecular carrier for the delivery of cell cycle inhibitory peptides to solid tumors.
Padua, Maria B; Hansen, Peter J
2008-01-01
Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS), inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3) cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL)-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth. PMID:18218135
p53 represses autophagy in a cell cycle-dependent fashion.
Tasdemir, Ezgi; Maiuri, Maria Chiara; Orhon, Idil; Kepp, Oliver; Morselli, Eugenia; Criollo, Alfredo; Kroemer, Guido
2008-10-01
Autophagy is one of the principal mechanisms of cellular defense against nutrient depletion and damage to cytoplasmic organelles. When p53 is inhibited by a pharmacological antagonist (cyclic pifithrin-alpha), depleted by a specific small interfering RNA (siRNA) or deleted by homologous recombination, multiple signs of autophagy are induced. Here, we show by epistatic analysis that p53 inhibition results in a maximum level of autophagy that cannot be further enhanced by a variety of different autophagy inducers including lithium, tunicamycin-induced stress of the endoplasmic reticulum (ER) or inhibition of Bcl-2 and Bcl-X(L) with the BH3 mimetic ABT737. Chemical inducers of autophagy (including rapamycin, lithium, tunicamycin and ABT737) induced rapid depletion of the p53 protein. The absence or the inhibition of p53 caused autophagy mostly in the G(1) phase, less so in the S phase and spares the G(2)/M phase of the cell cycle. The possible pathophysiological implications of these findings are discussed.
Banerjee, Navonil; Bhattacharya, Raja; Francis, Michael M.
2017-01-01
Animal behaviors are often composed of distinct alternating behavioral states. Neuromodulatory signals are thought to be critical for establishing stable behavioral states and for orchestrating transitions between them. However, we have only a limited understanding of how neuromodulatory systems act in vivo to alter circuit performance and shape behavior. To address these questions, we have investigated neuromodulatory signaling in the context of Caenorhabditis elegans egg-laying. Egg-laying activity cycles between discrete states–short bursts of egg deposition (active phases) that alternate with prolonged quiescent periods (inactive phases). Here using genetic, pharmacological and optogenetic approaches for cell-specific activation and inhibition, we show that a group of neurosecretory cells (uv1) located in close spatial proximity to the egg-laying neuromusculature direct the temporal organization of egg-laying by prolonging the duration of inactive phases. We demonstrate that the modulatory effects of the uv1 cells are mediated by peptides encoded by the nlp-7 and flp-11 genes that act locally to inhibit circuit activity, primarily by inhibiting vesicular release of serotonin from HSN motor neurons. This peptidergic inhibition is achieved, at least in part, by reducing synaptic vesicle abundance in the HSN motor neurons. By linking the in vivo actions of specific neuropeptide signaling systems with the generation of stable behavioral outcomes, our study reveals how cycles of neuromodulation emanating from non-neuronal cells can fundamentally shape the organization of a behavioral program. PMID:28384151
Kocsisova, Zuzana; Kornfeld, Kerry; Schedl, Tim
2018-05-30
The proliferating cell nuclear antigen (PCNA or PCN-1 in C. elegans), an essential processivity factor for DNA polymerase δ, has been widely used as a marker of S-phase. In C. elegans early embryos, PCN-1 accumulation is cyclic, localizing to the nucleus during S-phase and the cytoplasm during the rest of the cell cycle. The C. elegans larval and adult germline is an important model systems for studying cell cycle regulation, and it was observed that the cell cycle regulator cyclin E (CYE-1 in C. elegans) displays a non-cyclic, continuous accumulation pattern in this tissue. The accumulation pattern of PCN-1 has not been well defined in the larval and adult germline, and the objective of this study was to determine if the accumulation pattern is cyclic, as in other cells and organisms, or continuous, similar to cyclin E. To study the larval and adult germline accumulation of PCN-1 expressed from its native locus, we used CRISPR/Cas9 technology to engineer a novel allele of pcn-1 that encodes an epitope-tagged protein. S-phase nuclei were labeled using EdU nucleotide incorporation, and FLAG::PCN-1 was detected by antibody staining. All progenitor zone nuclei, including those that were not in S-phase (as they were negative for EdU staining) showed PCN-1 accumulation, indicating that PCN-1 accumulated during all cell cycle phases in the germline progenitor zone. The same result was observed with a GFP::PCN-1 fusion protein expressed from a transgene. pcn-1 loss-of-function mutations were analyzed, and pcn-1 was necessary for robust fertility and embryonic development. In the C. elegans early embryo as well as other organisms, PCN-1 accumulates in nuclei only during S-phase. By contrast, in the progenitor zone of the germline of C. elegans, PCN-1 accumulated in nuclei during all cell cycle stages. This pattern is similar to accumulation pattern of cyclin E. These observations support the model that mitotic cell cycle regulation in the germline stem and progenitor cells is distinct from somatic cells, as it does not heavily rely on cyclic accumulation of classic cell cycle proteins.
Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha
2015-01-01
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
[Morphologic characteristics of the endometrium in women with endometriosis].
Skopichev, V G; Savitkiĭ, G A; Gorbushin, S M
1998-01-01
It was established that in accordance with certain phases of sexual cycle (menstrual cycle in women and estral cycle in rats) on the background of hormone action at follicular and luteal phase the surface of epitheliocytes acquires specific relief (formation and degradation of microvilli appropriately in first and second halves of the cycle, accordingly). Disturbance of cyclic change of the relief of apical surface of epitheliocytes of the endometrium, persistence of high binding activity of the cationic dye and formation of intercellular clefts were demonstrated in developing endometriosis, which significantly interferes with the reproductive function. This was suggested to be an unfavourable result of cytotoxic effect of autoimmune processes that develop due to implantation of cells of endometrium in abdominal cavity and initiation of cooperative cellular response, which seems to be morphologically demonstrated by significant increase in number of macrophages in tissues of the uterus and in menstrual discharge.
Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites
NASA Astrophysics Data System (ADS)
Dvorak, James A.; Crane, Mark St. J.
1981-11-01
Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.
2014-01-01
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A
2014-07-08
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.
Cell cycle re-entry sensitizes podocytes to injury induced death.
Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph
2016-07-17
Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy.
NASA Astrophysics Data System (ADS)
He, Jie; Zhang, Xiaoxian; Gao, Yong; Li, Shuijie; Sun, Yeqing
Some researchers suggest that the changes of cell cycle under the effect of microgravity may be associated with many serious adverse physiological changes. In the search for underlying mechanisms and possible new countermeasures, we used the slime mold Physarum polycephalum in which all the nuclei traverse the cell cycle in natural synchrony to study the effects of altered gravity on the cell cycle, actin cytoskeleton and proteome. In parallel, the cell cycle was analyzed in Physarum incubated (1) in altered gravity for 20 h, (2) in altered gravity for 40 h, (3) in altered gravity for 80 h, and (4) in ground controls. The cell cycle, the actin cytoskeleton, and proteome in the altered gravity and ground controls were examined. The results indicated that the duration of the G2 phase was lengthened 20 min in high aspect ratio vessel (HARV) for 20 h, and prolonged 2 h in altered gravity either for 40 h or for 80 h, whereas the duration of other phases in the cell cycle was unchanged with respect to the control. The microfilaments in G2 phase had a reduced number of fibers and a unique abnormal morphology in altered gravity for 40 h, whereas the microfilaments in other phases of cell cycle were unchanged when compared to controls. Employing classical two-dimensional electrophoresis (2-DE), we examined the effect of the altered gravity on P. polycephalum proteins. The increase in the duration of G2 phase in altered gravity for 40 h was accompanied by changes in the 2-DE protein profiles, over controls. Out of a total of 200 protein spots investigated in G2 phase, which were reproducible in repeated experiments, 72 protein spots were visually identified as specially expressed, and 11 proteins were up-regulated by 2-fold and 28 proteins were down-regulated by 2-fold over controls. Out of a total of three low-expressed proteins in G2 phase in altered gravity for 40 h, two proteins were unknown proteins, and one protein was spherulin 3b by MALDI-TOF mass spectrometry (MS). Our results suggest that a low level of spherulin 3b in G2 phase, which may lead to a reduction of Poly(b-L-malate) (PMLA), may contribute to the lengthened duration of G2 phase in altered gravity for 40 h. Present results indicate that altered gravity results in the prolongation of G2 phase with significantly altered actin cytoskeleton and proteome in P. polycephalum.
Dipietrantonio, A; Hsieh, T C; Wu, J M
1996-07-25
Incubation of the HL-60 cells with 3 microM of RA and 4-HPR resulted in suppression of cell growth and decrease in cell viability. A significant percentage of the RA-treated cells also displayed differentiation towards neutrophils, as assayed by changes in nitroblue tetrazolium reduction (NBT) and alpha-naphthyl-acetate esterase (ANAE) activities, whereas the 4-HPR treated cells remained essentially undifferentiated. Flow cytometric analysis showed 4-HPR to cause partial cell arrest in the G2/M phase after a 3-day treatment and an additional G1 phase arrest after a 7-day treatment. With RA-treated cells, a reduction in the percentage of cells in the G1 phase was observed after 7 days of treatment. In 4-HPR-treated cells an extra peak, characteristic of cells undergoing apoptosis, was found in the cell cycle phase distribution analysis. Determination of specific protein expression changes by Western blot analysis showed that the p34cdc2 was down-regulated by both chemicals. Furthermore, RA induced bcl-2 but prevented the processing of actin, whereas 4-HPR had little effect on bcl-2 but increased the specific processing of actin. These results suggest that RA promotes neutrophil differentiation and the establishment of a semi apoptosis-resistant state, possibly through the overexpression of the bcl-2 gene. By contrast, 4-HPR may trigger apoptosis by inducing overall cyto-architectural changes and specific DNA fragmentation subsequent to increased turnover of the protein actin.
McGrath, Emma; Ryan, Elizabeth J; Lynch, Lydia; Golden-Mason, Lucy; Mooney, Eoghan; Eogan, Maeve; O'Herlihy, Colm; O'Farrelly, Cliona
2009-04-01
Cycle-dependent fluctuations in natural killer (NK) cell populations in endometrium and circulation may differ, contributing to unexplained infertility. NK cell phenotypes were determined by flow cytometry in endometrial biopsies and matched blood samples. While circulating and endometrial T cell populations remained constant throughout the menstrual cycle in fertile and infertile women, circulating NK cells in infertile women increased during the secretory phase. However, increased expression of CD94, CD158b (secretory phase), and CD158a (proliferative phase) by endometrial NK cells from infertile women was observed. These changes were not reflected in the circulation. In infertile women, changes in circulating NK cell percentages are found exclusively during the secretory phase and not in endometrium; cycle-related changes in NK receptor expression are observed only in infertile endometrium. While having exciting implications for understanding NK cell function in fertility, our data emphasize the difficulty in attaching diagnostic or prognostic significance to NK cell analyses in individual patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadetaporn, D; The University of Texas MD Anderson Cancer Center, Houston, TX; Flint, D
Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 hmore » following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.« less
Wang, Chengrun; Lu, Xianwen; Tian, Yuan; Cheng, Tao; Hu, Lingling; Chen, Fenfen; Jiang, Chuanjun; Wang, Xiaorong
2011-11-01
Effects of lanthanum (La) on mineral nutrients, cell cycles, and root lengthening have been little reported. The present work investigated these physiological responses in roots of Vicia faba seedlings cultivated in La3+-contained solutions for 15 days. The results showed that the increasing contents of La in the roots and leaves contributed to disbalances of contents of Ca, Fe, Cu, Zn, Mg, Mn, P, and K elements, and potential redistributions of some elements in the roots and leaves. These disbalances might be involved in the subsequent alteration of cell cycle phases in the root tips. Low-dose promotion and high-dose inhibition (Hormetic effects) were demonstrated as the dose responses of G0/G1-, S- or G2/M-phase ratios. The cell cycles were most probably arrested at G1/S interphase by La3+ in the root tips. The fact that the root lengths were not consistent with the changes of cell cycle phases suggested that the cell proliferation activities might be masked by other factors (e.g., cell expansion) under long-time exposure to La3+.
Cytokinetics of adult rat SVZ after EAE.
Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A
2011-01-31
Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.
Raman spectral observation of a new phase observed in nickel electrodes cycled to failure
NASA Technical Reports Server (NTRS)
Loyselle, Patricia L.; Shan, X.; Cornilsen, B. C.; Reid, Margaret A.
1991-01-01
A new phase is reported in nickel electrodes from Ni/H2 boilerplate cells which were cycled to failure in electrolyte of variable KOH concentration (21 to 36 percent). Raman spectra clearly show the presence of this phase, and these spectra have been used to estimate the amounts present on these electrodes. Ten of 12 electrodes examined contain this new phase. The cycle life at higher KOH concentrations (31 and 36 percent) was greatly reduced, and nickel electrodes from these cells exhibited extensive amounts of this new phase. The presence of this new phase correlates with cell failure defined by low end of discharge voltages. It is proposed that the lowered capacity and failure of these electrodes was caused by loss of active mass and formation of a phase with reduced electrochemical activity. These results indicate that formation of the new phase is accelerated at higher KOH concentrations.
Xia, Xi; Yu, Yang; Zhang, Li; Ma, Yang; Wang, Hong
2016-01-01
Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless-type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β-catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs. PMID:27432753
Galindo, Mario; Pratap, Jitesh; Young, Daniel W.; Hovhannisyan, Hayk; Im, Hee-Jeong; Choi, Je-Yong; Lian, Jane B.; Stein, Janet L.; Stein, Gary S.; van Wijnen, Andre J.
2010-01-01
The Runx2 (CBFA1/AML3/PEBP2αA) transcription factor promotes skeletal cell differentiation, but it also has a novel cell growth regulatory activity in osteoblasts. We addressed here whether Runx2 activity is functionally linked to cell cycle-related mechanisms that control normal osteoblast proliferation and differentiation. We found that the levels of Runx2 gene transcription, mRNA and protein, are each up-regulated with cessation of cell growth (i.e. G0/G1 transition) in preconfluent MC3T3 osteoblastic cells that do not yet express mature bone phenotypic gene expression. Cell growth regulation of Runx2 is also observed in primary calvarial osteoblasts and other osteoblastic cells with relatively normal cell growth characteristics, but not in osteosarcoma cells (e.g. SAOS-2 and ROS17/2.8). Runx2 levels are cell cycle-regulated in MC3T3 cells with respect to the G1/S and M/G1 transitions: expression oscillates from maximal levels during early G1 to minimal levels during early S phase and mitosis. However, in normal or immortalized (e.g. ATDC5) chondrocytic cells, Runx2 expression is suppressed during quiescence, and Runx2 levels are not regulated during G1 and S phase in ATDC5 cells. Antisense or small interfering RNA-mediated reduction of the low physiological levels of Runx2 in proliferating MC3T3 cells does not accelerate cell cycle progression. However, forced expression of Runx2 suppresses proliferation of MC3T3 preosteoblasts or C2C12 mesenchymal cells which have osteogenic potential. Forced elevation of Runx2 in synchronized MC3T3 cells causes a delay in G1. We propose that Runx2 levels and function are biologically linked to a cell growth-related G1 transition in osteoblastic cells. PMID:15781466
Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.
Stuart, David T
2017-01-01
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B
2016-02-15
The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Weihrauch, Martin R; Ansén, Sascha; Jurkiewicz, Elke; Geisen, Caroline; Xia, Zhinan; Anderson, Karen S; Gracien, Edith; Schmidt, Manuel; Wittig, Burghardt; Diehl, Volker; Wolf, Juergen; Bohlen, Heribert; Nadler, Lee M
2005-08-15
We conducted a phase I/II randomized trial to evaluate the clinical and immunologic effect of chemotherapy combined with vaccination in primary metastatic colorectal cancer patients with a carcinoembryonic antigen-derived peptide in the setting of adjuvants granulocyte macrophage colony-stimulating factor, CpG-containing DNA molecules (dSLIM), and dendritic cells. HLA-A2-positive patients with confirmed newly diagnosed metastatic colorectal cancer and elevated serum carcinoembryonic antigen (CEA) were randomized to receive three cycles of standard chemotherapy (irinotecan/high-dose 5-fluorouracil/leucovorin) and vaccinations with CEA-derived CAP-1 peptide admixed with different adjuvants [CAP-1/granulocyte macrophage colony-stimulating factor/interleukin-2 (IL-2), CAP-1/dSLIM/IL-2, and CAP-1/IL-2]. After completion of chemotherapy, patients received weekly vaccinations until progression of disease. Immune assessment was done at baseline and after three cycles of combined chemoimmunotherapy. HLA-A2 tetramers complexed with the peptides CAP-1, human T-cell lymphotrophic virus type I TAX, cytomegalovirus (CMV) pp65, and EBV BMLF-1 were used for phenotypic immune assessment. IFN-gamma intracellular cytokine assays were done to evaluate CTL reactivity. Seventeen metastatic patients were recruited, of whom 12 completed three cycles. Therapy resulted in five complete response, one partial response, five stable disease, and six progressive disease. Six grade 1 local skin reactions and one mild systemic reaction to vaccination treatment were observed. Overall survival after a median observation time of 29 months was 17 months with a survival rate of 35% (6 of 17) at that time. Eight patients (47%) showed elevation of CAP-1-specific CTLs. Neither of the adjuvants provided superiority in eliciting CAP-1-specific immune responses. During three cycles of chemotherapy, EBV/CMV recall antigen-specific CD8+ cells decreased by an average 14%. The presented chemoimmunotherapy is a feasible and safe combination therapy with clinical and immunologic efficacy. Despite concurrent chemotherapy, increases in CAP-1-specific T cells were observed in 47% of patients after vaccination.
De Clercq, Katrien; Held, Katharina; Van Bree, Rieta; Meuleman, Christel; Peeraer, Karen; Tomassetti, Carla; Voets, Thomas; D'Hooghe, Thomas; Vriens, Joris
2015-06-01
Are members of the transient receptor potential (TRP) channel superfamily functionally expressed in the human endometrial stroma? The Ca(2+)-permeable ion channels TRPV2, TRPV4, TRPC6 and TRPM7 are functionally expressed in primary endometrial stromal cells. Intercellular communication between epithelial and stromal endometrial cells is required to initiate decidualization, a prerequisite for successful implantation. TRP channels are possible candidates as signal transducers involved in cell-cell communication, but no fingerprint is available of the functional distribution of TRP channels in the human endometrium during the luteal phase of the menstrual cycle. Endometrial biopsy samples (previously frozen) from patients of reproductive age with regular menstrual cycles, who were undergoing diagnostic laparoscopic surgery for pain and/or infertility, were analysed. Samples were obtained from the menstrual (Days 1-5, n = 3), follicular (Days 6-14, n = 6), early luteal (Days 15-20, n = 5) and late luteal (Days 21-28, n = 5) phases. In addition, a total of 13 patient samples taken during the luteal phase were used to set up primary cell cultures for further experiments. Quantitative real-time PCR (qRT-PCR), immunocytochemistry, Fura2-based Ca(2+)-microfluorimetry and whole-cell patch clamp experiments were performed to study the functional expression pattern of TRP channels. Specific pharmacological agents, such as Δ(9)-tetrahydrocannabinol, GSK1016790A and 1-oleoyl-2-acetyl-glycerol, were used to functionally assess the expression of TRPV2, TRPV4 and TRPC6, respectively. Expression of TRPV2, TRPV4, TRPC1, TRPC4, TRPC6, TRPM4 and TRPM7 was detected at the mRNA level in endometrial biopsies (n = 19) and in primary endometrial stromal cell cultures obtained from patients during the luteal phase (n = 5) of the menstrual cycle. Messenger RNA levels of TRPV2, TRPC4 and TRPC6 were significantly increased (P < 0.01) in the late luteal phase compared with the early luteal phase. Immunocytochemistry experiments showed a positive staining for TRPV2, TRPV4, TRPC6 and TRPM7 in the plasma membrane and in the cytoplasm of primary endometrial stromal cells. Ca(2+)-microfluorimetry revealed significant increases (P < 0.001) in intracellular Ca(2+) levels when stromal cells were incubated with specific activators of TRPV2, TRPV4 and TRPC6. Further functional characterization was performed using whole-cell patch clamp experiments. Taken together, these data provide evidence for the functional activity of TRPV2, TRPV4, TRPC6 and TRPM7 channels in primary stromal cell cultures. Although mRNA levels are detected for TRPV6, TRPC1, TRPC4 and TRPM4, the limited supply of specific antibodies and lack of selective pharmacological agents restricted any additional analysis of these ion channels. Embryo implantation is a dynamic developmental process that integrates many signalling molecules into a precisely orchestrated programme. Our findings identified certain members of the TRP superfamily as candidate sensors in the epithelial-stromal crosstalk. These results are very helpful to unravel the signalling cascade required for successful embryo implantation. In addition, this knowledge could lead to new strategies to correct implantation failure and facilitate the development of novel non-hormonal contraceptives. This work was supported by grants from the Research Foundation-Flanders (G.0856.13N to J.V.), the Research Council of the KU Leuven (OT/13/113 to J.V. and T.D. and PF-TRPLe to T.V.) and by the Planckaert-De Waele fund (to J.V.). K.D.C. and K.H. are funded by the FWO Belgium. None of the authors have a conflict of interest. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect
NASA Technical Reports Server (NTRS)
Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)
1994-01-01
Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.
Han, Yang; Jiang, Hang-Hang; Zhang, Yu-Jing; Hao, Xing-Jia; Sun, Yu-Zhe; Qi, Rui-Qun; Chen, Hong-Duo; Gao, Xing-Hua
2017-10-01
Candida albicans (C. albicans) is a commensal organism in human and a well-known dimorphic opportunistic pathogenic fungus. Though plenty of researches on the pathogenesis of C. albicans have been performed, the mechanism is not fully understood. The cell wall components of C. albicans have been documented to play important roles in its pathogenic processes. To further study the infectious mechanism of C. albicans, we investigated the potential functional role of its cell wall mannoprotein in cell cycle and apoptosis of HaCaT cells. We found that mannoprotein could promote the transition of cell cycle from G1/G0 to S phase, in which Cyclin D1, CDK4 and p-Rb, the major regulators of the cell cycle progression, showed significant upregulation, and CDKN1A (cyclin dependent kinase inhibitor 1A (p21)) showed significant downregulation. Mannoprotein also could inhibit apoptosis of HaCaT cells, which was well associated with increased expression of BCL2 (Bcl-2). Moreover, mannoprotein could increase the phosphorylation levels of RELA (p65) and NFKBIA (IκBα), as the key factors of NF-κB signal pathway in HaCaT cells, suggesting the activation of NF-κB signal pathway. Additionally, a NF-κB specific inhibitor, PDTC, could rescue the effect of mannoprotein on cell cycle and apoptosis of HaCaT cells, which suggested that mannoprotein could activate NF-κB signal pathway to mediate cell cycle alternation and inhibit apoptosis. Copyright © 2017. Published by Elsevier Ltd.
Ma, Zhaowu; Yu, Guanghui
2010-02-15
The role of mitogen-activated protein kinase (MAPK) in plant cytokinesis remains largely uncharacterized. To elucidate its role, tobacco Bright Yellow-2 (BY-2) cells have been synchronized using a two-step procedure, and the different phases of the cell cycle identified by Histone 4 gene expression and the mitotic index. MAPK expression was analyzed by semi-quantitative (SQ) RT-PCR and protein gel blot analysis for phosphorylated MAPK during cell cycle progression. The SQ RT-PCR analysis indicated that MAPK expression is lower in mitosis than in interphase (G1, G2 and S). However, the amount of phosphorylated MAPK remained stable throughout the cell cycle, indicating that MAPK activity is predominantly regulated at the post-translational level and that phosphorylation of MAPK plays an important role in mitosis. Application of the specific MAPK phosphorylation inhibitor U0126 revealed that while U0126 treatment decreases the phosphorylation of MAPK and the progression from telophase to early cytokinesis is significantly inhibited. The formation of the phragmoplast is also negatively affected at this stage. These results demonstrate that MAPK phosphorylation is involved in the formation of the cell plate within the phragmoplast during cytokinesis and that MAPK predominantly functions during the cytokinesis stage of the cell cycle in tobacco BY-2 cells. Copyright 2009 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Boydston-White, Susie; Diem, Max
1999-06-01
Advances in infrared spectroscopic methodology permit excellent infrared spectra to be collected from objects as small as single human cells. These advances have lead to an increased interest of the use of infrared spectroscopy as a medical diagnostic tool. Infrared spectra of myeloid leukemia (ML-1) cells are reported for cells derived from an asynchronous, exponentially-growing culture, as well as for cells that were fractionated according to their stage within the cell division cycle. The observed results suggest that the cells' DNA is detectable by infrared spectroscopy mainly when the cell is in the S phase, during the replication of DNA. In the G1 and G2 phases, the DNA is so tightly packed in the nucleus that it appears opaque to infrared radiation. Consequently, the nucleic acid spectral contributions in the G1 and G2 phases would be mostly that of cytoplasmic RNA. These results suggest that infrared spectral changes observed earlier between normal and abnormal cells may have been due to different distributions of cells within the stages of the cell division cycle.
Takahashi, Toshiyuki
2016-08-17
Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria.
Takahashi, Toshiyuki
2016-01-01
Endosymbioses are driving forces underlying cell evolution. The endosymbiosis exhibited by Paramecium bursaria is an excellent model with which to study symbiosis. A single-cell microscopic analysis of P. bursaria reveals that endosymbiont numbers double when the host is in the division phase. Consequently, endosymbionts must arrange their cell cycle schedule if the culture-condition-dependent change delays the generation time of P. bursaria. However, it remains poorly understood whether endosymbionts keep pace with the culture-condition-dependent behaviors of P. bursaria, or not. Using microscopy and flow cytometry, this study investigated the life cycle behaviors occurring between endosymbionts and the host. To establish a connection between the host cell cycle and endosymbionts comprehensively, multivariate analysis was applied. The multivariate analysis revealed important information related to regulation between the host and endosymbionts. Results show that dividing endosymbionts underwent transition smoothly from the division phase to interphase, when the host was in the logarithmic phase. In contrast, endosymbiont division stagnated when the host was in the stationary phase. This paper explains that endosymbionts fine-tune their cell cycle pace with their host and that a synchronous life cycle between the endosymbionts and the host is guaranteed in the symbiosis of P. bursaria. PMID:27531180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belucz, Bernadett; Dikpati, Mausumi
2013-12-10
Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-07-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.
Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel
2005-01-01
While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037
Mancebo Quintana, J M; Mancebo Quintana, S
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae.
An integrated system for synchronous culture of animal cells under controlled conditions.
Mendoza-Pérez, Elena; Hernández, Vanessa; Palomares, Laura A; Serrato, José A
2016-01-01
The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.
Bjarnason, G A; Jordan, R C; Wood, P A; Li, Q; Lincoln, D W; Sothern, R B; Hrushesky, W J; Ben-David, Y
2001-05-01
We studied the relative RNA expression of clock genes throughout one 24-hour period in biopsies obtained from the oral mucosa and skin from eight healthy diurnally active male study participants. We found that the human clock genes hClock, hTim, hPer1, hCry1, and hBmal1 are expressed in oral mucosa and skin, with a circadian profile consistent with that found in the suprachiasmatic nuclei and the peripheral tissues of rodents. hPer1, hCry1, and hBmal1 have a rhythmic expression, peaking early in the morning, in late afternoon, and at night, respectively, whereas hClock and hTim are not rhythmic. This is the first human study to show a circadian profile of expression for all five clock genes as documented in rodents, suggesting their functional importance in man. In concurrent oral mucosa biopsies, thymidylate synthase enzyme activity, a marker for DNA synthesis, had a circadian variation with peak activity in early afternoon, coinciding with the timing of S phase in our previous study on cell-cycle timing in human oral mucosa. The major peak in hPer1 expression occurs at the same time of day as the peak in G(1) phase in oral mucosa, suggesting a possible link between the circadian clock and the mammalian cell cycle.
Impact of cycling cells and cell cycle regulation on Hydra regeneration.
Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte
2018-01-15
Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice
2014-07-01
Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.
Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.
Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu
2016-06-01
Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.
Cell cycle re-entry sensitizes podocytes to injury induced death
Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph
2016-01-01
ABSTRACT Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy. PMID:27232327
Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F
1998-10-01
The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.
The Cellular Phenotype of Roberts Syndrome Fibroblasts as Revealed by Ectopic Expression of ESCO2
van der Lelij, Petra; van Gosliga, Djoke; Oostra, Anneke B.; Steltenpool, Jûrgen; de Groot, Jan; Scheper, Rik J.; Wolthuis, Rob M.; Waisfisz, Quinten; Darroudi, Firouz; Joenje, Hans; de Winter, Johan P.
2009-01-01
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability. PMID:19738907
Grinenko, Tatyana; Eugster, Anne; Thielecke, Lars; Ramasz, Beáta; Krüger, Anja; Dietz, Sevina; Glauche, Ingmar; Gerbaulet, Alexander; von Bonin, Malte; Basak, Onur; Clevers, Hans; Chavakis, Triantafyllos; Wielockx, Ben
2018-05-15
Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67 RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.
Modelling cell cycle synchronisation in networks of coupled radial glial cells.
Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R
2015-07-21
Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Azimian-Zavareh, Vajihe; Hossein, Ghamartaj; Janzamin, Ehsan
2012-01-01
Objective: Glycogen synthase kinase-3β (GSK-3β) has been reported to be required for androgen receptor (AR) activity. This study sought to determine the usefulness of lithium chloride (LiCl) as a highly selective inhibitor of GSK-3β to increase the sensitivity of LNCap cells to doxorubicin (Dox), etoposide (Eto), and vinblastine (Vin) drugs. Materials and Methods: Thiazolyl Blue Tetrazolium Blue (MTT) assay was used to determine the cytotoxic effect to LiCl alone or in combination with low dose and IC50 doses of drugs. Subsequently, cell cycle analysis was performed by using flow cytometry. Results: LiCl showed cytotoxic effect in a dose- and time-dependent manner (P<0.001). Both Dox (100 or 280 nM) and Vin IC50 (5 nM) doses caused G2/M-phase arrest (P<0.001) compared with control. However, low dose (10 μM) or IC50 (70 μM) Eto doses showed G2/M or S-phase arrests, respectively (P<0.001). Combination of low dose or IC50 dose of Eto with LiCl showed increased apoptosis as revealed by high percent of cells in SubG1 (P<0.05, P<0.01, respectively). Moreover, Eto (10 μM) led to decreased percent of cells in G2/M phase when combined with LiCl (P<0.05). Conclusion: This study showed that LiCl increases apoptosis of (LNCap) Lymph Node Carcinoma of the Prostate cells in the presence of Eto, which is S- and G2-phase-specific drug. PMID:23248400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yong-Cheng; Su, Nan; Shi, Xiao-Jing
2015-01-15
Jaridonin, a novel diterpenoid from Isodon rubescens, has been shown previously to inhibit proliferation of esophageal squamous cancer cells (ESCC) through G2/M phase cell cycle arrest. However, the involved mechanism is not fully understood. In this study, we found that the cell cycle arrest by Jaridonin was associated with the increased expression of phosphorylation of ATM at Ser1981 and Cdc2 at Tyr15. Jaridonin also resulted in enhanced phosphorylation of Cdc25C via the activation of checkpoint kinases Chk1 and Chk2, as well as in increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM in response to DNA damage. Furthermore,more » Jaridonin-mediated alterations in cell cycle arrest were significantly attenuated in the presence of NAC, implicating the involvement of ROS in Jaridonin's effects. On the other hand, addition of ATM inhibitors reversed Jaridonin-related activation of ATM and Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X and G2/M phase arrest. In conclusion, these findings identified that Jaridonin-induced cell cycle arrest in human esophageal cancer cells is associated with ROS-mediated activation of ATM–Chk1/2–Cdc25C pathway. - Highlights: • Jaridonin induced G2/M phase arrest through induction of redox imbalance. • Jaridonin increased the level of ROS through depleting glutathione in cell. • ATM–Chk1/2–Cdc25C were involved in Jaridonin-induced cell cycle arrest. • Jaridonin selectively inhibited cancer cell viability and cell cycle progression.« less
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M
2016-10-20
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V
2004-05-01
Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due to proteasome-mediated degradation of Cdc25C and Cdk1, and ectopic expression of Bcl-2 fails to confer resistance to PEITC-induced apoptosis. Furthermore, the results of the present study point toward involvement of both caspase-8- and caspase-9-mediated pathways in apoptosis induction by PEITC.
Environmental stress speeds up DNA replication in Pseudomonas putida in chemostat cultivations.
Lieder, Sarah; Jahn, Michael; Koepff, Joachim; Müller, Susann; Takors, Ralf
2016-01-01
Cellular response to different types of stress is the hallmark of the cell's strategy for survival. How organisms adjust their cell cycle dynamics to compensate for changes in environmental conditions is an important unanswered question in bacterial physiology. A cell using binary fission for reproduction passes through three stages during its cell cycle: a stage from cell birth to initiation of replication, a DNA replication phase and a period of cell division. We present a detailed analysis of durations of cell cycle phases, investigating their dynamics under environmental stress conditions. Applying continuous steady state cultivations (chemostats), the DNA content of a Pseudomonas putida KT2440 population was quantified with flow cytometry at distinct growth rates. Data-driven modeling revealed that under stress conditions, such as oxygen deprivation, solvent exposure and decreased iron availability, DNA replication was accelerated correlated to the severity of the imposed stress (up to 1.9-fold). Cells maintained constant growth rates by balancing the shortened replication phase with extended cell cycle phases before and after replication. Transcriptome data underpin the transcriptional upregulation of crucial genes of the replication machinery. Hence adaption of DNA replication speed appears to be an important strategy to withstand environmental stress. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko
2016-01-01
ABSTRACT The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper‐layer neurons are produced. Based on cumulative 5‐ethynyl‐2′‐deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S‐phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self‐renewal to those of neuron production. Hence, S‐phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal. J. Comp. Neurol. 524:456–470, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:25963823
Lucero, Claudia M.J.; Vega, Oscar A.; Osorio, Mariana M.; Tapia, Julio C.; Antonelli, Marcelo; Stein, Gary S.; Van Wijnen, Andre J.; Galindo, Mario A.
2013-01-01
Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. PMID:22949168
Mancebo Quintana, J. M.; Mancebo Quintana, S.
2012-01-01
The origin of sex is becoming a vexatious issue for Evolutionary Biology. Numerous hypotheses have been proposed, based on the genetic effects of sex, on trophic effects or on the formation of cysts and syncytia. Our approach addresses the change in cell cycle duration which would cause cell fusion. Several results are obtained through graphical and mathematical analysis and computer simulations. (1) In poor environments, cell fusion would be an advantageous strategy, as fusion between cells of different size shortens the cycle of the smaller cell (relative to the asexual cycle), and the majority of mergers would occur between cells of different sizes. (2) The easiest-to-evolve regulation of cell proliferation (sexual/asexual) would be by modifying the checkpoints of the cell cycle. (3) A regulation of this kind would have required the existence of the G2 phase, and sex could thus be the cause of the appearance of this phase. Regarding cell cycle, (4) the exponential curve is the only cell growth curve that has no effect on the optimal cell size in unicellular species; (5) the existence of a plateau with no growth at the end of the cell cycle explains the circadian cell cycle observed in unicellular algae. PMID:22666626
Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID
Le, Quy; Maizels, Nancy
2015-01-01
AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. PMID:26355458
Eupatilin, a dietary flavonoid, induces G2/M cell cycle arrest in human endometrial cancer cells.
Cho, Jung-Hoon; Lee, Jong-Gyu; Yang, Yeong-In; Kim, Ji-Hyun; Ahn, Ji-Hye; Baek, Nam-In; Lee, Kyung-Tae; Choi, Jung-Hye
2011-08-01
This study is the first to investigate the antiproliferative effect of eupatilin in human endometrial cancer cells. Eupatilin, a naturally occurring flavonoid isolated from Artemisia princeps, has anti-inflammatory, anti-oxidative, and anti-tumor activities. In the present study, we investigated the potential effect of eupatilin on cell growth and its molecular mechanism of action in human endometrial cancer cells. Eupatilin was more potent than cisplatin in inhibiting cell viability in the human endometrial cancer cell lines Hec1A and KLE. Eupatilin showed relatively low cytotoxicity in normal human endometrial cells HES and HESC cells when compared to cisplatin. Eupatilin induced G2/M phase cell cycle arrest in a time- and dose-dependent manner, as indicated by flow cytometry analysis. In addition, treatment of Hec1A cells with eupatilin resulted in a significant increase in the expression of p21(WAF1/CIP1) and in the phosphorylation of Cdc25C and Cdc2. Knockdown of p21 using specific siRNAs significantly compromised eupatilin-induced cell growth inhibition. Interestingly, levels of mutant p53 in Hec1A cells decreased markedly upon treatment with eupatilin, and p53 siRNA significantly increased p21 expression. Moreover, eupatilin modulated the phosphorylation of protein kinases ERK1/2, Akt, ATM, and Chk2. These results suggest that eupatilin inhibits the growth of human endometrial cancer cells via G2/M phase cell cycle arrest through the up-regulation of p21 by the inhibition of mutant p53 and the activation of the ATM/Chk2/Cdc25C/Cdc2 checkpoint pathway. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Temporal Regulation of S Phase Proteins During G1
Grant, Gavin D.; Cook, Jeanette G.
2018-01-01
Successful DNA replication requires intimate coordination with cell cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and the assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell cycle entry and cell cycle progression. PMID:29357066
"Constructing" the Cell Cycle in 3D
ERIC Educational Resources Information Center
Koc, Isil; Turan, Merve
2012-01-01
The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…
Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Kanayo; Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp; Tanaka, Satoshi
2014-01-03
Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDKmore » inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.« less
Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.
2014-01-01
The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131
Transcription-dependent induction of G1 phase during the zebra fish midblastula transition.
Zamir, E; Kam, Z; Yarden, A
1997-02-01
The early development of the zebra fish (Danio rerio) embryo is characterized by a series of rapid and synchronous cell cycles with no detectable transcription. This period is followed by the midblastula transition (MBT), during which the cell cycle gradually lengthens, cell synchrony is lost, and zygotic transcription is initially detected. In this work, we examined the changes in the pattern of the cell cycle during MBT in zebra fish and whether these changes are dependent on the initiation of zygotic transcription. To characterize the pattern of the early zebra fish cell cycles, the embryonic DNA content was determined by flow cytometric analysis. We found that G1 phase is below detection levels during the first 10 cleavages and can be initially detected at the onset of MBT. Inhibition of zygotic transcription, by microinjection of actinomycin D, abolished the appearance of G1 phase at MBT. Premature activation of zygotic transcription, by microinjection of nonspecific DNA, induced G1 phase before the onset of MBT, while coinjection of actinomycin D and nonspecific DNA abolished this early appearance of G1 phase. We therefore suggest that during the early development of the zebra fish embryo, G1 phase appears at the onset of MBT and that the activation of transcription at MBT is essential and sufficient for the G1-phase induction.
INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.
Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F
2007-07-01
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.
Ruijtenberg, Suzan; van den Heuvel, Sander
2016-01-01
ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227
NASA Astrophysics Data System (ADS)
Liu, T.; Fang, Y.; Zhang, C. P.; Chen, P.; Wang, C. Z.; Kang, H. X.; Shen, B. J.; Liang, J.; Fu, X. B.
2014-09-01
This study investigated the effect of low-level laser irradiation (LLLI) on the cell cycle and proliferative activity of cultured myoblasts, and sought to elucidate the possible cellular mechanism by which LLLI promotes the regeneration of skeletal muscle in vivo. Primary myoblasts isolated from rat hindlegs were irradiated with helium-neon laser light at different energy densities. Distributions of cell-cycle subpopulations and the expression of cell-cycle regulatory proteins in myoblasts were assessed using flow cytometric analysis and western blot assay. It was found that laser irradiation stimulated cell-cycle entry; induced the expression of cyclin A and cyclin D; and increased cell proliferation index and bromodeoxyuridine incorporation as compared to the unirradiated control cells, indicating LLLI augmented the number of proliferative myoblasts in the S phase and G2/M phase of the cell cycle. These results suggest that LLLI at certain fluxes and wavelengths could activate quiescent myoblasts, leading to cell division and facilitating new myofiber formation. This could contribute to the improvement of skeletal muscle regeneration following trauma and myopathic diseases.
DYRK1A Is a Regulator of S-Phase Entry in Hepatic Progenitor Cells.
Kruitwagen, Hedwig S; Westendorp, Bart; Viebahn, Cornelia S; Post, Krista; van Wolferen, Monique E; Oosterhoff, Loes A; Egan, David A; Delabar, Jean-Maurice; Toussaint, Mathilda J; Schotanus, Baukje A; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Spee, Bart
2018-01-15
Hepatic progenitor cells (HPCs) are adult liver stem cells that act as second line of defense in liver regeneration. They are normally quiescent, but in case of severe liver damage, HPC proliferation is triggered by external activation mechanisms from their niche. Although several important proproliferative mechanisms have been described, it is not known which key intracellular regulators govern the switch between HPC quiescence and active cell cycle. We performed a high-throughput kinome small interfering RNA (siRNA) screen in HepaRG cells, a HPC-like cell line, and evaluated the effect on proliferation with a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. One hit increased the percentage of EdU-positive cells after knockdown: dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Although upon DYRK1A silencing, the percentage of EdU- and phosphorylated histone H3 (pH3)-positive cells was increased, and total cell numbers were not increased, possibly through a subsequent delay in cell cycle progression. This phenotype was confirmed with chemical inhibition of DYRK1A using harmine and with primary HPCs cultured as liver organoids. DYRK1A inhibition impaired Dimerization Partner, RB-like, E2F, and multivulva class B (DREAM) complex formation in HPCs and abolished its transcriptional repression on cell cycle progression. To further analyze DYRK1A function in HPC proliferation, liver organoid cultures were established from mBACtgDyrk1A mice, which harbor one extra copy of the murine Dyrk1a gene (Dyrk+++). Dyrk+++ organoids had both a reduced percentage of EdU-positive cells and reduced proliferation compared with wild-type organoids. This study provides evidence for an essential role of DYRK1A as balanced regulator of S-phase entry in HPCs. An exact gene dosage is crucial, as both DYRK1A deficiency and overexpression affect HPC cell cycle progression.
Daenen, S; Huiges, W; Modderman, E; Halie, M R
1993-01-01
Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows that the cellular buoyant density increases slightly with up to 0.008 g/ml during the S-phase, at least in cryo-preserved cells used in this study. This contrasts with the generally accepted belief that S-phase cells have a lower or constant buoyant density. A practical implication is that separation of cell (sub)populations based on differences in buoyant density could be flawed to the extent that these populations contain S-phase cells.
Size and DNA distributions of electrophoretically separated cultured human kidney cells
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Plank, L. D.; Todd, P. W.
1985-01-01
Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.
Probing cooperative force generation in collective cancer invasion
NASA Astrophysics Data System (ADS)
Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo
2017-08-01
Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.
Functions and substrates of NEDDylation during cell cycle in the silkworm, Bombyx mori.
Li, Zhiqing; Cui, Qixin; Wang, Xiaoyan; Li, Bingqian; Zhao, Dongchao; Xia, Qingyou; Zhao, Ping
2017-11-01
NEDDylation, a post-translational modification mediated by the conjugation of the ubiquitin-like protein Nedd8 to specific substrates, is an essential biological process that regulates cell cycle progression in eukaryotes. Here, we report the conservation of NEDDylation machinery and NEDDylated proteins in the silkworm, Bombyx mori. We have identified all the components necessary for reversible NEDDylation in the silkworm including Nedd8, E1, E2, E3, and deNEDDylation enzymes. By the approach of RNAi-mediated gene silencing, it was shown that knockdown of BmNedd8 and the conjugating enzymes decreased the global level of NEDDylation, while knockdown of deNEDDylation enzymes increased the prevalence of this modification in cultured silkworm cells. Moreover, the lack of the NEDDylation system caused cell cycle arrest at the G2/M phase and resulted in defects in chromosome congression and segregation. Using the wild-type and mutants of BmNedd8, we identified the specific substrates of BmNedd8, which are involved in the regulation for many cellular processes, including ribosome biogenesis, spliceosome structure, spindle formation, metabolism, and RNA biogenesis. This clearly demonstrates that the NEDDylation system is able to control multiple pathways in the silkworm. Altogether, the information on the functions and substrates of the NEDDylation system presented here could provide a basis for future investigations of protein NEDDylation and its regulatory mechanism on cell cycle progression in the silkworm. Copyright © 2017. Published by Elsevier Ltd.
Arachidonic acid induces macrophage cell cycle arrest through the JNK signaling pathway.
Shen, Ziying; Ma, Yunqing; Ji, Zhonghao; Hao, Yang; Yan, Xuan; Zhong, Yuan; Tang, Xiaochun; Ren, Wenzhi
2018-02-09
Arachidonic acid (AA) has potent pro-apoptotic effects on cancer cells at a low concentration and on macrophages at a very high concentration. However, the effects of AA on the macrophage cell cycle and related signaling pathways have not been fully investigated. Herein we aim to observe the effect of AA on macrophages cell cycle. AA exposure reduced the viability and number of macrophages in a dose- and time-dependent manner. The reduction in RAW264.7 cell viability was not caused by apoptosis, as indicated by caspase-3 and activated caspase-3 detection. Further research illustrated that AA exposure induced RAW264.7 cell cycle arrested at S phase, and some cell cycle-regulated proteins were altered accordingly. Moreover, JNK signaling was stimulated by AA, and the stimulation was partially reversed by a JNK signaling inhibitor in accordance with cell cycle-related factors. In addition, nuclear and total Foxo1/3a and phosphorylated Foxo1/3a were elevated by AA in a dose- and time-dependent manner, and this elevation was suppressed by the JNK signaling inhibitor. Our study demonstrated that AA inhibits macrophage viability by inducing S phase cell cycle arrest. The JNK signaling pathway and the downstream FoxO transcription factors are involved in AA-induced RAW264.7 cell cycle arrest.
Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang
2014-11-13
Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer's disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction.
Association of pKi-67 with satellite DNA of the human genome in early G1 cells.
Bridger, J M; Kill, I R; Lichter, P
1998-01-01
pKi-67 is a nucleolar antigen that provides a specific marker for proliferating cells. It has been shown previously that pKi-67's distribution varies in a cell cycle-dependent manner: it coats all chromosomes during mitosis, accumulates in nuclear foci during G1 phase (type I distribution) and localizes within nucleoli in late G1 S and G2 phase (type II distribution). Although no function has as yet been ascribed to pKi-67, it has been found associated with centromeres in G1. In the present study the distribution pattern of pKi-67 during G1 in human dermal fibroblasts (HDFs) was analysed in more detail. Synchronization experiments show that in very early G1 cells pKi-67 coincides with virtually all satellite regions analysed, i.e. with centromeric (alpha-satellite), telomeric (minisatellite) and heterochromatic blocks (satellite III) on chromosomes 1 and Y (type Ia distribution). In contrast, later in the G1 phase, a smaller fraction of satellite DNA regions are found collocalized with pKi-67 foci (type Ib distribution). When all pKi-67 becomes localized within nucleoli, even fewer satellite regions remain associated with the pKi-67 staining. However, all centromeric and short arm regions of the acrocentric chromosomes, which are in very close proximity to or even contain the rRNA genes, are collocalized with anti-pKi-67 staining throughout the remaining interphase of the cell cycle. Thus, our data demonstrate that during post-mitotic reformation and nucleogenesis there is a progressive decline in the fraction of specific satellite regions of DNA that remain associated with pKi-67. This may be relevant to nucleolar reformation following mitosis.
Pervin, Shehla; Singh, Rajan; Chaudhuri, Gautam
2001-01-01
DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G1 phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 μM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G1 phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G1 phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G1 phase of the cell cycle. PMID:11248121
1996-01-01
Expression of the bcl-2 gene has been shown to effectively confer resistance to programmed cell death under a variety of circumstances. However, despite a wealth of literature describing this phenomenon, very little is known about the mechanism of resistance. In the experiments described here, we show that bcl-2 gene expression can result in an inhibition of cell division cycle progression. These findings are based upon the analysis of cell cycle distribution, cell cycle kinetics, and relative phosphorylation of the retinoblastoma tumor suppressor protein, using primary tissues in vivo, ex vivo, and in vitro, as well as continuous cell lines. The effects of bcl-2 expression on cell cycle progression appear to be focused at the G1 to S phase transition, which is a critical control point in the decision between continued cell cycle progression or the induction programmed cell death. In all systems tested, bcl-2 expression resulted in a substantial 30-60% increase in the length of G1 phase; such an increase is very substantial in the context of other regulators of cell cycle progression. Based upon our findings, and the related findings of others, we propose a mechanism by which bcl-2 expression might exert its well known inhibition of programmed cell death by regulating the kinetics of cell cycle progression at a critical control point. PMID:8642331
Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L
2013-10-01
The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners.
Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*
Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu
2016-01-01
Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675
Iida, Asako; Yamashita, Toshiya; Yamada, Yasuyuki; Morikawa, Hiromichi
1991-01-01
Plasmid DNA pB1221 harboring β-glucuronidase gene was delivered to synchronized cultured tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cells of different cell cycle stages by a pneumatic particle gun. The cells bombarded at M and G2 phases gave 4 to 6 times higher transformation efficiency than those bombarded at the S and G1 phases. ImagesFigure 2 PMID:16668589
Cyclophilin A Is Overexpressed in Hepatocellular Carcinoma and Is Associated with the Cell Cycle.
Gong, Zhaohua; Chi, Cheng; Huang, Xiaojuan; Chu, Hongjin; Wang, Jiahui; Du, Fengcai; Jiang, Lixin; Chen, Jian
2017-08-01
To investigate the expression of cyclophilin A (CypA) in human hepatocellular carcinoma (HCC) and explore the effects of CypA on the cell cycle in HCC. CypA expression was assessed by immunohistochemistry in 48 cases of HCC tissues and paired adjacent tissues. CypA plasmid was transfected into HCC cells and the cell cycle was analyzed. Positivity for CypA was higher in HCC tissues than in adjacent tissues (79.1% vs. 12.5%, p<0.05). Positivity for CypA was significantly higher in stage III and IV HCC than in stage I and II (p<0.05). Elevated CypA induced an increase of the percentage of S-phase cells (from 34.79% to 42.14%) and a decrease of G 0 -G 1 phase cells (from 58.10% to 50.64%). CypA is overexpressed in HCC and is associated with TNM stage. CypA also appears to promote the transition of the cell cycle from G 1 to S phase. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Attentional modulation of cell-class specific gamma-band synchronization in awake monkey area V4
Vinck, Martin; Womelsdorf, Thilo; Buffalo, Elizabeth A.; Desimone, Robert; Fries, Pascal
2013-01-01
Summary Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two macaque monkeys performing a selective visual attention task. Across cells, gamma phases scattered widely but were unaffected by stimulation or attention. During stimulation, NS cells lagged BS cells on average by ~60° and gamma synchronized twice as strongly. Attention enhanced and reduced the gamma locking of strongly and weakly activated cells, respectively. During a pre-stimulus attentional cue period, BS cells showed weak gamma synchronization, while NS cells gamma synchronized as strongly as with visual stimulation. These analyses reveal the cell-type specific dynamics of the gamma cycle in macaque visual cortex and suggest that attention affects neurons differentially depending on cell type and activation level. PMID:24267656
An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.
van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J
2001-04-01
Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.
Zheng, H; Xue, S; Hu, Z L; Shan, J G; Yang, W G
2014-03-24
The Gax gene has been implicated in a variety of cell-developmental and biological processes, and aberrant Gax expression is linked to many diseases. In this study, to provide important insights for Gax-based gene therapy in vein graft restenosis and its anti-restenotic mechanism, we used rabbit vascular smooth muscle cells (VSMCs) to investigate the effects of Gax overexpression on proliferation, migration, cell cycle, and apoptosis in a serum-stimulated culture. Rabbit VSMC lines that stably overexpressed Gax were established by transfection with recombinant adenoviral vector Ad5-Gax. The effect of Gax overexpression on in vitro serum-induced VSMCs proliferation, migration, cell cycle, and apoptosis was assessed by MTT, wound healing, and flow cytometry assays, respectively. To investigate the effect of Gax overexpression on PCNA and MMP-2 in serum-induced VSMCs, immunocytochemistry, RT-PCR, and gelatin zymography were performed. The results clearly showed that Gax overexpression decreases PCNA expression in serum-induced VSMCs. Gax overexpression also significantly inhibited cell proliferation by blocking entry into the S-phase of the cell cycle, promoted cell apoptosis, and reduced cell migration activity by downregulating MMP-2 release and activity. These findings indicate that Gax would be an optimal target gene for gene therapy to treat vein graft restenosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamoto, M.; Nakano, R.; Iwasaki, M.
The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate thatmore » the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.« less
Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Lin, Jiu-Mao; Zheng, Hai-Xia; Yang, Liu-Qing; Huang, Su-Ping; Lan, Yuan-Long; Chen, Ling; Guo, Fang
2013-08-01
To study the toxicity features of high glucose on the endothelial cell cycle and the influence of Dan Gua-Fang, a Chinese herbal compound prescription, on the reproductive cycle of vascular endothelial cells cultivated under a high glucose condition; to reveal the partial mechanisms of Dan Gua-Fang in the prevention and treatment of endothelial injury caused by hyperglycemia in diabetes mellitus (DM); and offer a reference for dealing with the vascular complications of DM patients with long-term high blood glucose. Based on the previous 3-(4,5)-dimethylthiahiazo (z-y1)-3-5-diphenytetrazoliumromide (MTT) experiment, under different medium concentrations of glucose and Dangua liquor, the endothelial cells of vein-304 (ECV-304) were divided into 6 groups as follows: standard culture group (Group A, 5.56 mmol/L glucose); 1/300 herb-standard group (Group B); high glucose culture group (Group C, 16.67 mmol/L glucose); 1/150 herb-high glucose group (Group D); 1/300 herb-high glucose group (Group E); and 1/600 herb-high glucose group (Group F). The cell cycle was assayed using flow cytometry after cells were cultivated for 36, 72 and 108 h, respectively. (1) The percentage of cells in the G0/G1 phase was significantly increased in Group C compared with that in Group A (P<0.05), while the percentage of S-phase (S%) cells in Group C was significantly reduced compared with Group A (P<0.05); the latter difference was dynamically related to the length of growing time of the endothelial cells in a high glucose environment. (2) The S% cells in Group A was decreased by 30.25% (from 40.23% to 28.06%) from 36 h to 72 h, and 12.33% (from 28.06% to 24.60%) from 72 h to 108 h; while in Group C, the corresponding decreases were 23.05% and 21.87%, respectively. The difference of S% cells between the two groups reached statistical significance at 108 h (P<0.05). (3) The percentage difference of cells in the G2/M phase between Group C and Group A was statistically significant at 72 h (P<0.01). (4) 1/300 Dan Gua-Fang completely reversed the harmful effect caused by 16.67 mmol/L high glucose on the cell cycle; moreover it did not disturb the cell cycle when the cell was cultivated in a glucose concentration of 5.56 mmol/L. High glucose produces an independent impact on the cell cycle. Persistent blocking of the cell cycle and its arrest at the G0/G1 phase are toxic effects of high glucose on the endothelial cell cycle. The corresponding variation of the arrest appears in the S phase. 1/300 Dan Gua-Fang completely eliminates the blockage of high glucose on the endothelial cell cycle.
Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko
2015-01-01
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300. PMID:26716455
Okuyama, Kohei; Kaida, Atsushi; Hayashi, Yoshiki; Hayashi, Yoshio; Harada, Kiyoshi; Miura, Masahiko
2015-01-01
KPU-300 is a novel colchicine-type anti-microtubule agent derived from plinabulin (NPI-2358). We characterized the effects of KPU-300 on cell cycle kinetics and radiosensitization using HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Cells treated with 30 nM KPU-300 for 24 h were efficiently synchronized in M phase and contained clearly detectable abnormal Fucci fluorescence. Two-dimensional flow-cytometric analysis revealed a fraction of cells distinct from the normal Fucci fluorescence pattern. Most of these cells were positive for an M phase marker, the phosphorylated form of histone H3. Cells growing in spheroids responded similarly to the drug, and the inner quiescent fraction also responded after recruitment to the growth fraction. When such drug-treated cells were irradiated in monolayer, a remarkable radiosensitization was observed. To determine whether this radiosensitization was truly due to the synchronization in M phase, we compared the radiosensitivity of cells synchronized by KPU-300 treatment and cells in early M phase isolated by a combined method that took advantage of shake-off and the properties of the Fucci system. Following normalization against the surviving fraction of cells treated with KPU-300 alone, the surviving fractions of cells irradiated in early M phase coincided. Taken together with potential vascular disrupting function in vivo, we propose a novel radiosensitizing strategy using KPU-300.
Sensory role of actin in auxin-dependent responses of tobacco BY-2.
Huang, Xiang; Maisch, Jan; Nick, Peter
2017-11-01
Polar auxin transport depends on the polar localization of auxin-efflux carriers. The cycling of these carriers between cell interior and plasma membrane depends on actin. The dynamic of actin not only affects auxin transport, but also changes the auxin-responsiveness. To study the potential link between auxin responsiveness and actin dynamics, we investigated developmental responses of the non-transformed BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cell line and the transgenic BY-2 strain GF11 (stably transformed BY-2 cells with a GFP-fimbrin actin-binding domain 2 construct). The developmental process was divided into three distinct stages: cell cycling, cell elongation and file disintegration. Several phenotypes were measured to monitor the cellular responses to different concentrations of exogenous natural auxin (Indole-3-acetic acid, IAA). We found that auxin stimulated and prolonged the mitotic activity, and delayed the exit from the proliferation phase. However, both responses were suppressed in the GF11 line. At the stationary phase of the cultivation cycle, auxin strongly accelerated the cell file disintegration. Interestingly, it was not suppressed but progressed to a more complete disintegration in the GF11 line. During the cultivation cycle, we also followed the organization of actin in the GF11 line and did not detect any significant difference in actin organization from untreated control or exogenous IAA treatment. Therefore, our findings indicate that the specific differences observed in the GF11 line must be linked with a function of actin that is not structural. It means that there is a sensory role of actin for auxin signaling. Copyright © 2017 Elsevier GmbH. All rights reserved.
Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells
Adeyemi, Richard O.; Pintel, David J.
2014-01-01
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942
Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.
Adeyemi, Richard O; Pintel, David J
2014-01-01
Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.
Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.
Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona
2017-05-01
Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.
Bombyx mori cyclin-dependent kinase inhibitor is involved in regulation of the silkworm cell cycle.
Tang, X-F; Zhou, X-L; Zhang, Q; Chen, P; Lu, C; Pan, M-H
2018-06-01
Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of the cell cycle. They can bind to cyclin-dependent kinase (CDK)-cyclin complexes and inhibit CDK activities. We identified a single homologous gene of the CDK interacting protein/kinase inhibitory protein (Cip/Kip) family, BmCKI, in the silkworm, Bombyx mori. The gene transcribes two splice variants: a 654-bp-long BmCKI-L (the longer splice variant) encoding a protein with 217 amino acids and a 579-bp-long BmCKI-S (the shorter splice variant) encoding a protein with 192 amino acids. BmCKI-L and BmCKI-S contain the Cip/Kip family conserved cyclin-binding domain and the CDK-binding domain. They are localized in the nucleus and have an unconventional bipartite nuclear localization signal at amino acid residues 181-210. Overexpression of BmCKI-L or BmCKI-S affected cell cycle progression; the cell cycle was arrested in the first gap phase of cell cycle (G1). RNA interference of BmCKI-L or BmCKI-S led to cells accumulating in the second gap phase and the mitotic phase of cell cycle (G2/M). Both BmCKI-L and BmCKI-S are involved in cell cycle regulation and probably have similar effects. The transgenic silkworm with BmCKI-L overexpression (BmCKI-L-OE), exhibited embryonic lethal, larva developmental retardation and lethal phenotypes. These results suggest that BmCKI-L might regulate the growth and development of silkworm. These findings clarify the function of CKIs and increase our understanding of cell cycle regulation in the silkworm. © 2018 The Royal Entomological Society.
Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells.
Peng, Z G; Yao, Y B; Yang, J; Tang, Y L; Huang, X
2015-05-12
This study aimed to determine the effect of mangiferin on the cell cycle in HL-60 leukemia cells and expression of the cell cycle-regulatory genes Wee1, Chk1 and CDC25C and to further investigate the molecular mechanisms of the antileukemic action of mangiferin. The inhibitory effect of mangiferin on HL-60 leukemia cell proliferation was determined by the MTT assay. The impact of mangiferin on the HL-60 cell cycle was evaluated by flow cytometry. After the cells were treated with different concentrations of mangiferin, the expression levels of Wee1, Chk1 and CDC25C mRNA were determined by RT-PCR, and Western blot was used to evaluate the expression levels of cdc25c, cyclin B1, and Akt proteins. The inhibition of HL-60 cell growth by mangiferin was dose- and time-dependent. After treatment for 24 h, cells in G2/M phase increased, and G2/M phase arrest appeared with increased mRNA expression of Wee1, Chk1 and CDC25C. Mangiferin inhibited Chk1 and cdc25c mRNA expression at high concentrations and induced Wee1 mRNA expression in a dose-dependent manner. It significantly inhibited ATR, Chk1, Wee1, Akt, and ERK1/2 phosphorylation but increased cdc2 and cyclin B1 phosphorylation. Furthermore, mangiferin reduced cdc25c, cyclin B1, and Akt protein levels while inducing Wee1 protein expression. It also antagonized the phosphorylation effect of vanadate on ATR, and the phosphorylation effect of EGF on Wee1. These findings indicated that mangiferin inhibits cell cycle progression through the ATR-Chk1 stress response DNA damage pathway, leading to cell cycle arrest at G2/M phase in leukemia cells.
Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk
2016-01-01
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner. PMID:27264542
Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk
2016-06-06
Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.
Roles for insulin and ecdysteroids in differentiation of an insect cell line of epidermal origin.
Hatt, P J; Moriniere, M; Oberlander, H; Porcheron, P
1994-10-01
During postembryonic development of insects, molting cycles affect epidermal cells with alternate periods of proliferation and differentiation. Cells of the cell line established from imaginal discs of the Indian meal moth (IAL-PID2) differentiate under the action of the molting hormone, 20-hydroxyecdysone, in a manner that is meaningful in terms of the development of the tissue from which they were derived. In particular, the hormone caused an accumulation of the cells in the G2 phase of their cycle and induced the formation of epithelial-like aggregates and the synthesis of specific proteoglycans. Recent discovery of members of the insulin superfamily in insects and the role of growth factors played by this family of molecules in vertebrates led us to check for their potential effects on IAL-PID2 cell cycle regulation. On the one hand, our results showed that insulin was involved in partial resumption of the cell cycle after an arrest caused by serum deprivation, but that other growth factors present in fetal calf serum were needed for full completion of mitosis. On the other hand, the cytostatic effect of 20-hydroxyecdysone was reversible, and, prior exposure of the cells to the hormone allowed the cells to complete one cell cycle in serum-free medium. These results suggest that the production of autocrine growth factors induced by ecdysteroids could circumvent the absence of serum. This cell culture model provides potential for further study of interactions between ecdysteroids and growth factor homologs during differentiation of insect epidermal cells.
The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly
Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.
2015-01-01
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. PMID:26067441
Mungun, Harr-Keshauve; Li, Shuzhen; Zhang, Yue; Huang, Songming; Jia, Zhanjun; Ding, Guixia; Zhang, Aihua
2018-01-01
Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has been used as an antimalarial drug. Recently, roles of artemisinin and its derivatives in treating diseases besides antimalarial effect were documented. Thus, this study was undertaken to investigate the role of DHA in indoxyl sulfate (IS)-promoted cell cycle progression in glomerular mesangial cells, as well as the potential mechanisms. Under the basal condition, DHA significantly retarded the cell cycle progression as shown by decreased cell percentage in S phase and increased cell percentage in G1/G0 phases in line with reduced cell cycle proteins cyclin A2 and cyclin D1. Interestingly, DHA also inactivated the COX-2/mPGES-1/PGE 2 cascade which has been shown to play a critical role in promoting the mesangial cell cycle progression by our previous studies. Next, we investigated the role of DHA in IS-triggered cell cycle progression in this mesangial cell line. As expected, DHA treatment significantly retarded IS-induced cell cycle progression and inhibited the activation of COX-2/mPGES-1/PGE 2 cascade induced by IS. In summary, these data indicated that DHA inhibited the cell cycle progression in glomerular mesangial cells under normal condition or IS challenge possibly through the inhibition of COX-2/mPGES-1/PGE 2 cascade, suggesting a potential of DHA in treating glomerular diseases with mesangial cell proliferation.
MyoD undergoes a distinct G2/M-specific regulation in muscle cells.
Batonnet-Pichon, Sabrina; Tintignac, Lionel J; Castro, Anna; Sirri, Valentina; Leibovitch, Marie Pierre; Lorca, Thierry; Leibovitch, Serge A
2006-12-10
The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.
Daughter-Specific Transcription Factors Regulate Cell Size Control in Budding Yeast
Di Talia, Stefano; Wang, Hongyin; Skotheim, Jan M.; Rosebrock, Adam P.; Futcher, Bruce; Cross, Frederick R.
2009-01-01
In budding yeast, asymmetric cell division yields a larger mother and a smaller daughter cell, which transcribe different genes due to the daughter-specific transcription factors Ace2 and Ash1. Cell size control at the Start checkpoint has long been considered to be a main regulator of the length of the G1 phase of the cell cycle, resulting in longer G1 in the smaller daughter cells. Our recent data confirmed this concept using quantitative time-lapse microscopy. However, it has been proposed that daughter-specific, Ace2-dependent repression of expression of the G1 cyclin CLN3 had a dominant role in delaying daughters in G1. We wanted to reconcile these two divergent perspectives on the origin of long daughter G1 times. We quantified size control using single-cell time-lapse imaging of fluorescently labeled budding yeast, in the presence or absence of the daughter-specific transcriptional regulators Ace2 and Ash1. Ace2 and Ash1 are not required for efficient size control, but they shift the domain of efficient size control to larger cell size, thus increasing cell size requirement for Start in daughters. Microarray and chromatin immunoprecipitation experiments show that Ace2 and Ash1 are direct transcriptional regulators of the G1 cyclin gene CLN3. Quantification of cell size control in cells expressing titrated levels of Cln3 from ectopic promoters, and from cells with mutated Ace2 and Ash1 sites in the CLN3 promoter, showed that regulation of CLN3 expression by Ace2 and Ash1 can account for the differential regulation of Start in response to cell size in mothers and daughters. We show how daughter-specific transcriptional programs can interact with intrinsic cell size control to differentially regulate Start in mother and daughter cells. This work demonstrates mechanistically how asymmetric localization of cell fate determinants results in cell-type-specific regulation of the cell cycle. PMID:19841732
Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W
2017-01-13
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.
Cell cycle in egg cell and its progression during zygotic development in rice.
Sukawa, Yumiko; Okamoto, Takashi
2018-03-01
Rice egg is arrested at G1 phase probably by OsKRP2. After fusion with sperm, karyogamy, OsWEE1-mediated parental DNA integrity in zygote nucleus, zygote progresses cell cycle to produce two-celled embryo. In angiosperms, female and male gametes exist in gametophytes after the complementation of meiosis and the progression of nuclear/cell division of the haploid cell. Within the embryo sac, the egg cell is specially differentiated for fertilization and subsequent embryogenesis, and cellular programs for embryonic development, such as restarting the cell cycle and de novo gene expression, are halted. There is only limited knowledge about how the cell cycle in egg cells restarts toward zygotic division, although the conversion of the cell cycle from a quiescent and arrested state to an active state is the most evident transition of cell status from egg cell to zygote. This is partly due to the difficulty in direct access and analysis of egg cells, zygotes and early embryos, which are deeply embedded in ovaries. In this study, precise relative DNA amounts in the nuclei of egg cells, developing zygotes and cells of early embryos were measured, and the cell cycle of a rice egg cell was estimated as the G1 phase with a 1C DNA level. In addition, increases in DNA content in zygote nuclei via karyogamy and DNA replication were also detectable according to progression of the cell cycle. In addition, expression profiles for cell cycle-related genes in egg cells and zygotes were also addressed, and it was suggested that OsKRP2 and OsWEE1 function in the inhibition of cell cycle progression in egg cells and in checkpoint of parental DNA integrity in zygote nucleus, respectively.
Carreiro, Artur N.; Diniz, João A. R. A.; Souza, Joyce G.; Araújo, Débora V. F.; Dias, Rômulo F. F.; Azerêdo, Liliane M. S.; Rocha, Ediane F.; La Salles, Ana Y. F.; Peña-Alfaro, Carlos E.; Carvalho, Maria A. M.; Illera, Maria J.
2018-01-01
The objective of the present study was to monitor and characterize morphological alterations in ovaries of agouti (Dasyprocta prymnolopha), reared in captivity, by using abdominal ultrasonography. All animals underwent daily vaginal cytological examination to identify the current cycle phase. For each phase of the estrous cycle, ultrasound examinations were carried out to identify and describe the morphology of both ovaries. Topographic parameters in an ultrasound window were established to locate the ovaries. The agouti estrous cycle lasted an average of 29.94 ± 6.77 days. During vaginal cytology examinations, all cell types were identified, and each phase of the estrous cycle was established by cell counts. No significant alterations were observed in the assessed ovarian morphometry measurements. In 75% of the animals examined, ovarian follicle presence was observed in the proestrus phase. PMID:29284211
Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary
2007-01-01
The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.
Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.
Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales
2013-03-01
Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.
Clare, Susan E; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z; Kim, J Julie; Khan, Seema A
2016-05-23
The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then identified a set of genes that overlap with human breast luteal-phase expressed genes and signify progesterone activity in both normal breast cells and breast cancer cell lines. TPA administration to T47D cells results in a 30 % decrease in cell number at 24 h, which is maintained over 72 h only in the presence of estradiol. Blockade of progesterone signaling by TPA for 24 h results in fewer cells in G2/M, attributable to decreased expression of genes that facilitate the G2/M transition. Gene expression data suggest that TPA affects several mechanisms that progesterone utilizes to control gene expression, including specific post-translational modifications, and nucleosomal organization and higher order chromatin structure, which regulate access of PR to its DNA binding sites. By comparing genes induced by the progestin R5020 in T47D cells with those increased in the luteal-phase normal breast, we have identified a set of genes that predict functional progesterone signaling in tissue. These data will facilitate an understanding of the ways in which drugs such as TPA may be utilized for the prevention, and possibly the therapy, of human breast cancer.
Huang, Chao-Ying; Chang, Cheng-Wei; Chen, Chaang-Ray; Chuang, Chun-Yu; Chiang, Chi-Shiun; Shu, Wun-Yi; Fan, Tai-Ching; Hsu, Ian C.
2014-01-01
In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure. PMID:25111195
Recovery from the DNA Replication Checkpoint
Chaudhury, Indrajit; Koepp, Deanna M.
2016-01-01
Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term “checkpoint recovery” to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress. PMID:27801838
Kumaraswamy, Easwari; Shiekhattar, Ramin
2007-01-01
BACH1 (also known as FANCJ and BRIP1) is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1. Previous biochemical and functional analyses have suggested a role for the BACH1 homolog in Caenorhabditis elegans during DNA replication. Here, we report the association of BACH1 with a distinct BRCA1/BRCA2-containing complex during the S phase of the cell cycle. Depletion of BACH1 or BRCA1 using small interfering RNAs results in delayed entry into the S phase of the cell cycle. Such timely progression through S phase requires the helicase activity of BACH1. Importantly, cells expressing a dominant negative mutation in BACH1 that results in a defective helicase displayed increased activation of DNA damage checkpoints and genomic instability. BACH1 helicase is silenced during the G1 phase of the cell cycle and is activated through a dephosphorylation event as cells enter S phase. These results point to a critical role for BACH1 helicase activity not only in the timely progression through the S phase but also in maintaining genomic stability. PMID:17664283
ZHU, JIE; CHEN, MEIJUAN; CHEN, NING; MA, AIZHEN; ZHU, CHUNYAN; ZHAO, RUOLIN; JIANG, MIAO; ZHOU, JING; YE, LIHONG; FU, HAIAN; ZHANG, XU
2015-01-01
Glycyrrhetinic acid (GA) is a natural compound extracted from liquorice, which is often used in traditional Chinese medicine. The purpose of the present study was to investigate the antitumor effect of GA in human non-small cell lung cancer (NSCLC), and its underlying mechanisms in vitro. We have shown that GA suppressed the proliferation of A549 and NCI-H460 cells. Flow cytometric analysis showed that GA arrested cell cycle in G0/G1 phase without inducing apoptosis. Western blot analysis indicated that GA mediated G1-phase cell cycle arrest by upregulation of cyclin-dependent kinase inhibitors (CKIs) (p18, p16, p27 and p21) and inhibition of cyclins (cyclin-D1, -D3 and -E) and cyclin-dependent kinases (CDKs) (CDK4, 6 and 2). GA also maintained pRb phosphorylation status, and inhibited E2F transcription factor 1 (E2F-1) in both cell lines. GA upregulated the unfolded proteins, Bip, PERK and ERP72. Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggered the unfolded protein response (UPR), which could be the mechanism by which GA inhibited cell proliferation in NSCLC cells. GA then coordinated the induction of ER chaperones, which decreased protein synthesis and induced cell cycle arrest in the G1 phase. This study provides experimental evidence to support the development of GA as a chemotherapeutic agent for NSCLC. PMID:25573651
Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M.
2017-01-01
Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG) which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anti-cancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study we investigated the anti-cancer effects of EL for several non-small cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The anti-proliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL- decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1-phase. The results suggest that EL inhibits the growth of NSCLC cell lines by down-regulating G1-phase cyclins and CDKs, and up-regulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy. PMID:28323486
Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M
2017-01-01
Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G 1 -phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G 1 -phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21 WAF1/CIP1 , a negative regulator of the G 1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G 1 -phase cyclins and CDKs, and upregulating p21 WAF1/CIP1 , which leads to G 1 -phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.
Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia
2013-01-01
Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407
Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico
2015-01-01
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472
Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia
2015-07-27
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.
Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie
2018-01-01
Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Replication of each copy of the yeast 2 micron DNA plasmid occurs during the S phase.
Zakian, V A; Brewer, B J; Fangman, W L
1979-08-01
Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA molecule is identical to that which controls the initiation of chromosomal DNA.
Changes in the position and volume of inactive X chromosomes during the G0/G1 transition.
Lyu, Guoliang; Tan, Tan; Guan, Yiting; Sun, Lei; Liang, Qianjin; Tao, Wei
2018-04-21
In female mammals, each cell silences one X chromosome by converting it into transcriptionally inert heterochromatin. The inactivation is concomitant with epigenetic changes including methylation of specific histone residues and incorporation of macroH2A. Such epigenetic changes may exert influence on the positioning of the inactive X chromosome (Xi) within the nucleus beyond the level of chromatin structure. However, the dynamic positioning of the inactive X chromosome during cell cycle remains unclear. Here, we show that H3K27me3 is a cell-cycle-independent marker for the inactivated X chromosomes in WI38 cells. By utilizing this marker, three types of Xi locations in the nuclei are classified, which are envelope position (associated with envelope), mid-position (between the envelope and nucleolus), and nucleolus position (associated with the nucleolus). Moreover, serial-section analysis revealed that the inactive X chromosomes in the mid-position appear to be sparser and less condensed than those associated with the nuclear envelope or nucleolus. During the transition from G0 to G1 phase, the inactive X chromosomes tend to move from the envelope position to the nucleolus position in WI38 cells. Our results imply a role of chromosome positioning in maintaining the organization of the inactive X chromosomes in different cell phases.
Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam
2015-01-01
Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.
Haller, K; Ruckes, T; Schmitt, I; Saul, D; Derow, E; Grassmann, R
2000-11-01
Human T cell leukemia virus protein induces T cells to permanent IL-2-dependent growth. These cells occasionally convert to factor independence. The viral oncoprotein Tax acts as an essential growth factor of transformed lymphocytes and stimulates the cell cycle in the G(1) phase. In T cells and fibroblasts Tax enhances the activity of the cyclin-dependent kinases (CDK) CDK4 and CDK6. These kinases, which require binding to cyclin D isotypes for their activity, control the G(1) phase. Coimmunoprecipitation from these cells revealed that Tax associates with cyclin D3/CDK6, suggesting a direct activation of this kinase. The CDK stimulation may account in part for the mitogenic Tax effect, which causes IL-2-dependent T cell growth by Tax. To address the conversion to IL-2-independent proliferation and to identify overexpressed genes, which contribute to the transformed growth, the gene expression patterns of HTLV-1-transformed T cells were compared with that of peripheral blood lymphocytes. Potentially overexpressed cDNAs were cloned, sequenced, and used to determine the RNA expression. Genes found to be up-regulated are involved in signal transduction (STAT5a, cyclin G(1), c-fgr, hPGT) and also glycoprotein synthesis (LDLC, ribophorin). Many of these are also activated during T cell activation and implicated in the regulation of growth and apoptosis. The transcription factor STAT5a, which is involved in IL-2 signaling, was strongly up-regulated only in IL-2-independent cells, thus suggesting that it contributes to factor-independent growth. Thus, the differentially expressed genes could cooperate with the Tax-induced cell cycle stimulation in the maintenance of IL-2-dependent and IL-2-independent growth of HTLV-transformed lymphocytes.
Bruzauskaite, Ieva; Bironaite, Daiva; Bagdonas, Edvardas; Skeberdis, Vytenis Arvydas; Denkovskij, Jaroslav; Tamulevicius, Tomas; Uvarovas, Valentinas; Bernotiene, Eiva
2016-04-30
The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores. mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.
Frada, Miguel José; Rosenwasser, Shilo; Ben-Dor, Shifra; Shemi, Adva; Sabanay, Helena; Vardi, Assaf
2017-12-01
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the 'Cheshire Cat' (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host-virus interactions in marine phytoplankton.
Rosenwasser, Shilo; Shemi, Adva; Sabanay, Helena; Vardi, Assaf
2017-01-01
Recognizing the life cycle of an organism is key to understanding its biology and ecological impact. Emiliania huxleyi is a cosmopolitan marine microalga, which displays a poorly understood biphasic sexual life cycle comprised of a calcified diploid phase and a morphologically distinct biflagellate haploid phase. Diploid cells (2N) form large-scale blooms in the oceans, which are routinely terminated by specific lytic viruses (EhV). In contrast, haploid cells (1N) are resistant to EhV. Further evidence indicates that 1N cells may be produced during viral infection. A shift in morphology, driven by meiosis, could therefore constitute a mechanism for E. huxleyi cells to escape from EhV during blooms. This process has been metaphorically coined the ‘Cheshire Cat’ (CC) strategy. We tested this model in two E. huxleyi strains using a detailed assessment of morphological and ploidy-level variations as well as expression of gene markers for meiosis and the flagellate phenotype. We showed that following the CC model, production of resistant cells was triggered during infection. This led to the rise of a new subpopulation of cells in the two strains that morphologically resembled haploid cells and were resistant to EhV. However, ploidy-level analyses indicated that the new resistant cells were diploid or aneuploid. Thus, the CC strategy in E. huxleyi appears to be a life-phase switch mechanism involving morphological remodeling that is decoupled from meiosis. Our results highlight the adaptive significance of morphological plasticity mediating complex host–virus interactions in marine phytoplankton. PMID:29244854
Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.
Zhang, Kun; Wang, Jin
2018-05-31
The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for controlling the cell cycle speed. This can help to design an effective strategy for drug discovery against cancer.
P21 and p27: roles in carcinogenesis and drug resistance.
Abukhdeir, Abde M; Park, Ben Ho
2008-07-01
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.
Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S
2010-05-01
Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.
Li, Dayu; Liu, Yun; Yu, Chunbo; Liu, Xiping; Fan, Fang
2017-12-01
Objective To study the effect of the knock-down of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on the cell cycle of the multidrug-resistant (MDR) Bel7402/5-Fu hepatocellular carcinoma cells and its MDR mechanism. Methods After cationic liposome-mediated siDNA-PKcs oligonucleotide transfection, the drug sensitivity of Bel7402/5-Fu cells to 5-fluorouracil (5-Fu) and adriamycin (ADM) was determined by MTT assay; the cell cycle were detected by flow cytometry; meanwhile, the protein expressions of cell cycle-related proteins P21, cell cycle protein B1 (cyclin B1), cell cycle division protein 2 (CDC2) were tested by Western blotting; the expressions of ataxia telangiectasia mutated (ATM) and p53 at both mRNA and protein levels were detected by real-time PCR and Western blot analysis. Results The MTT results showed siDNA-PKcs increased the chemotherapeutic sensitivity of Bel7402/5-Fu cells to 5-Fu and ADM. The flow cytometric analysis showed siDNA-PKcs decreased the percentage of S-phase cells but increased the percentage of G2/M phase cells. Western blotting showed siDNA-PKcs increased the protein expression of P21 but decreased cyclinB1 and CDC2 proteins. In addition, siDNA-PKcs also increased the expressions of ATM and p53. Conclusion DNA-PKcs silencing increases P21 while decreases cyclin B1 and CDC2 expressions, and finally induces G2/M phase arrest in Bel7402/5-Fu cells, which may be related to ATM-p53 signaling pathway.
Luciani, M Gloria; Campregher, Christoph; Fortune, John M; Kunkel, Thomas A; Gasche, Christoph
2007-01-01
Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116(p53-/-), HCT116+chr3, and LoVo were treated with 5-ASA for 2-96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis.
Wisniewski, Jan; Hajj, Bassam; Chen, Jiji; Mizuguchi, Gaku; Xiao, Hua; Wei, Debbie; Dahan, Maxime; Wu, Carl
2014-01-01
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3. DOI: http://dx.doi.org/10.7554/eLife.02203.001 PMID:24844245
Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana
2018-03-23
Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M
2017-03-04
We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G 2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.
2017-01-01
ABSTRACT We previously demonstrated that quiescent cancer cells in a tumor are resistant to conventional chemotherapy as visualized with a fluorescence ubiquitination cell cycle indicator (FUCCI). We also showed that proliferating cancer cells exist in a tumor only near nascent vessels or on the tumor surface as visualized with FUCCI and green fluorescent protein (GFP)-expressing tumor vessels. In the present study, we show the relationship between cell-cycle phase and chemotherapy-induced tumor angiogenesis using in vivo FUCCI real-time imaging of the cell cycle and nestin-driven GFP to detect nascent blood vessels. We observed that chemotherapy-treated tumors, consisting of mostly of quiescent cancer cells after treatment, had much more and deeper tumor vessels than untreated tumors. These newly-vascularized cancer cells regrew rapidly after chemotherapy. In contrast, formerly quiescent cancer cells decoyed to S/G2 phase by a telomerase-dependent adenovirus did not induce tumor angiogenesis. The present results further demonstrate the importance of the cancer-cell position in the cell cycle in order that chemotherapy be effective and not have the opposite effect of stimulating tumor angiogenesis and progression. PMID:27715464
Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui
2016-09-01
Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.
Pan, B L; Zhang, H T; Zhang, H J; Chen, W T; Yang, J
2016-11-20
Objective: To investigate the relationship between urinary polycyclic aromatic hydrocarbon metabolite and cell cycle of lymphocyte in coke oven workers. Methods: 437 coke oven workers and 163 work-ers in water treatment department were recruited in this study. Flow cytometry was used to detect the cell cycle of lymphocyte. For the measurement of urinary metabolites, urine samples were treated with β-glucuronidase and analyzed using HPLC with a fluorescence detector. Results: The concentrations of urinary 2-naphthol, 2-hydroxyfluorene, 9-phenanthrol and 1-hydroxypyrene l in coke oven workers were significantly higher than those in control group ( P <0.01) . The distributions of cell cycle were analyzed in high exposure group (the content of urinary metabolites high than P 75) and low exposure group (the content of urinary metabolites low than P 25) . According to the content of 1-hydroxypyrene, the proportions of S phase in high exposure group were significant-ly higher than those of low exposure group ( Z =-2.496, P =0.013) , but the proportions of G0/G1 phase were sig-nificantly lower than low exposure group ( Z =-2.074, P =0.038) . The similar results were not been found in other hydroxylated metabolites as internal exposure group. Conclusion: Increasing levels of urinary 1-hydroxypyrene might resulting in cell cycle of lymphocyte disorders, mainly for G0/G1 phase shorten and S phase arrest.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-07-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-01-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390
In vitro and in silico modeling of chromosomal instability
NASA Astrophysics Data System (ADS)
Andreev, Sergey; Eidelman, Yuri; Krasavin, Eugene; Govorun, Raisa; Koshlan, Igor; Pyatenko, Valentina; Korovchuk, Olga; Khvostunov, Igor; Sevankaev, Alexander
Exposure to ionizing radiation increases cancer risk in human population. Cancer is thought to originate from an altered expression of certain number of specific genes. It is widely recognized that chromosome aberrations (CA) are involved in stable change in expression of genes by gain or loss of their functions. Thus CA can contribute to initiation or progression of cancer. Radiation induces CA immediately after exposure (in first cell cycle) and results in formation of delayed CA in descendants of irradiated cells, or chromosomal instability phenotype (CI). Therefore quantification of CI is a prerequisite of any mechanistic model of radiation induced cancer risks. To quantify CI we designed a set of in vitr o and in silico experiments. Two experimental models for study of CI in vitro, CHO-K1 wild-type and V79 HPRT-mutant cells, were exploited. Chromosome and chromatid type aberrations (Giemsa staining) were scored following exposure to gamma-radiation and accelerated ions (protons, LET=0.22 keV/µm, 7 Li3+ , LET=20 keV/µm, 14 7+ N , LET=77 keV/µm). The obtained results suggested that slowly growing colonies of HPRT mutant cells originating from lowand high-LET irradiated wt V79 cells were formed. After 14 N7+ ions irradiation about 50-100% of colonies had the decreased growth rate and CI phenotype was observed mainly in slowly growing colonies. High, compared to control, level of unstable CA (dicentrics) was observed in the progeny of gamma-irradiated CHO-K1 cells at different time points up to 30 cell generations. CA frequency, the number of cells with aberrations and the shape of a CA-vs-time curve were found to be dependent on the cell culture state (stationary or logarithmic phase) in which they were irradiated. Inhibition of replication and repair DNA synthesis by ara-C and hydroxyurea resulted in small modification of CA dynamics for stat-phase cells. For log-phase cell culture, in contrast, DNA synthesis inhibitors drastically impacted CA dynamics. In order to investigate the relationship between radiation-induced DNA double-strand breaks, CA and their transmission through cell division cycles we proposed a mechanism of CI incorporating the idea of breakage-fusion-bridge cycle. It explains in biophysical terms the generation of CA, in particular, of unstable type, in cells survived radiation exposure. The in silico experiments were carried out to elucidate different scenarios of CI. The computational data showed that the increased frequency of delayed dicentrics at different times after exposure could be well described for both stat and log-phase exposed cultures by the proposed mechanism if the fraction of cells in different cell cycle phases at the time of iradiation is taken into account. The perspectives for further experimental and theoretical mechanistic study of CI and possible implications for cancer risk modeling are discussed.
Cell cycles and proliferation patterns in Haematococcus pluvialis
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Liu, Jianguo; Zhang, Litao
2017-09-01
Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.
Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells
Burke, Russell T.; Marcus, Joshua M.; Orth, James D.
2017-01-01
Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801
hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao
2013-01-01
Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435
Apoptosis induction and anti-cancer activity of LeciPlex formulations.
Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S
2014-10-01
Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.
De Cola, A; Bongiorno-Borbone, L; Bianchi, E; Barcaroli, D; Carletti, E; Knight, R A; Di Ilio, C; Melino, G; Sette, C; De Laurenzi, V
2012-02-02
Replication-dependent histone gene expression is a fundamental process occurring in S-phase under the control of the cyclin-E/CDK2 complex. This process is regulated by a number of proteins, including Flice-Associated Huge Protein (FLASH) (CASP8AP2), concentrated in specific nuclear organelles known as HLBs. FLASH regulates both histone gene transcription and mRNA maturation, and its downregulation in vitro results in the depletion of the histone pull and cell-cycle arrest in S-phase. Here we show that the transcription factor p73 binds to FLASH and is part of the complex that regulates histone gene transcription. Moreover, we created a novel gene trap to disrupt FLASH in mice, and we show that homozygous deletion of FLASH results in early embryonic lethality, owing to arrest of FLASH(-/-) embryos at the morula stage. These results indicate that FLASH is an essential, non-redundant regulator of histone transcription and cell cycle during embryogenesis.
Biphasic Incorporation of Centromeric Histone CENP-A in Fission Yeast
Takayama, Yuko; Sato, Hiroshi; Saitoh, Shigeaki; Ogiyama, Yuki; Masuda, Fumie
2008-01-01
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Δams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Δams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Δams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged. PMID:18077559
Davis, Ryan J.; Swanger, Jherek; Hughes, Bridget T.
2017-01-01
ABSTRACT Cyclin E, in conjunction with its catalytic partner cyclin-dependent kinase 2 (CDK2), regulates cell cycle progression as cells exit quiescence and enter S-phase. Multiple mechanisms control cyclin E periodicity during the cell cycle, including phosphorylation-dependent cyclin E ubiquitylation by the SCFFbw7 ubiquitin ligase. Serine 384 (S384) is the critical cyclin E phosphorylation site that stimulates Fbw7 binding and cyclin E ubiquitylation and degradation. Because S384 is autophosphorylated by bound CDK2, this presents a paradox as to how cyclin E can evade autocatalytically induced degradation in order to phosphorylate its other substrates. We found that S384 phosphorylation is dynamically regulated in cells and that cyclin E is specifically dephosphorylated at S384 by the PP2A-B56 phosphatase, thereby uncoupling cyclin E degradation from cyclin E-CDK2 activity. Furthermore, the rate of S384 dephosphorylation is high in interphase but low in mitosis. This provides a mechanism whereby interphase cells can oppose autocatalytic cyclin E degradation and maintain cyclin E-CDK2 activity while also enabling cyclin E destruction in mitosis, when inappropriate cyclin E expression is genotoxic. PMID:28137908
Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.
Azevedo, Anthony W; Wilson, Rachel I
2017-10-11
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun
2016-01-01
Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.
Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter
2014-01-01
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449
Content-specific activational effects of estrogen on working memory performance.
Vranić, Andrea; Hromatko, Ivana
2008-07-01
The authors explored the influence of task content and the menstrual cycle phase on working memory (WM) performance. They addressed the content specificity of WM in the framework of evolutionary psychology, proposing a hormone-mediated adaptive design governing face perception. The authors tested 2 groups of healthy young women (n = 66 women with regular menstrual cycle, n = 27 oral contraceptive users) on a WM task with adult male or infant face photographs. Analyses of variance showed significant interaction between task content and estrogen level. Women were more efficient in solving the male faces task during high-estrogen phase of the cycle than during low-estrogen phase. No differences were found in the efficacy of solving the infant faces task between different phases of the cycle. Results suggest content-specific activational effects of estrogen on the WM performance and are consistent with the notion of a hormonal mechanism underlying adaptive shifts in cognition related to mating motivation.
Antagonism between curcumin and the topoisomerase II inhibitor etoposide
Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.
2012-01-01
The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their physiological program. PMID:22895066
Takahashi, Y; Fukui, T; Kishimoto, M; Suzuki, R; Mitsuyama, T; Sumimoto, K; Okazaki, T; Sakao, M; Sakaguchi, Y; Yoshida, K; Uchida, K; Nishio, A; Matsuzaki, K; Okazaki, K
2016-01-01
The stem cell compartment in the esophageal epithelium is possibly located in the basal layer. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in the epithelial cells of murine stomach and intestine, and have suggested that these cells are epithelial stem cells. In this study, we explore whether pSmad2/3L-Thr could serve as a biomarker for esophageal stem cells. We examined esophageal tissues from normal C57BL/6 mice and those with esophagitis. Double immunofluorescent staining of pSmad2/3L-Thr with Ki67, CDK4, p63, or CK14 was performed. After immunofluorescent staining, we stained the same sections with hematoxylin-eosin and observed these cells under a light microscope. We used the 5-bromo-2-deoxyuridine (BrdU) labeling assay to examine label retention of pSmad2/3L-Thr immunostaining-positive cells. We collected specimens 5, 10, 15 and 20 days after repeated BrdU administrations and observed double immunofluorescent staining of pSmad2/3L-Thr with BrdU. In the esophagus, pSmad2/3L-Thr immunostaining-positive cells were detected in the basal layer. These cells were detected between Ki67 immunostaining-positive cells, but they were not co-localized with Ki67. pSmad2/3L-Thr immunostaining-positive cells showed co-localization with CDK4, p63, and CK14. Under a light microscope, pSmad2/3L-Thr immunostaining-positive cells indicated undifferentiated morphological features. Until 20 days follow-up period, pSmad2/3L-Thr immunostaining-positive cells were co-localized with BrdU. pSmad2/3L-Thr immunostaining-positive cells significantly increased in the regeneration phase of esophagitis mucosae, as compared with control mice (esophagitis vs. 6.889 ± 0.676/cm vs. 4.293 ± 0.659/cm; P < 0.001). We have identified significant expression of pSmad2/3L-Thr in the specific epithelial cells of murine esophagi. We suggest that these cells are slow-cycling epithelial stem-like cells before re-entry to the cell cycle. © 2016 International Society for Diseases of the Esophagus.
Damasceno, Flávia Silva; Barisón, María Julia; Pral, Elisabeth Mieko Furusho; Paes, Lisvane Silva; Silber, Ariel Mariano
2014-01-01
Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed) remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM). Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction) and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM). Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote) were more affected as were the processes of differentiation and cell invasion. PMID:24587468
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
ERK reinforces actin polymerization to power persistent edge protrusion during motility.
Mendoza, Michelle C; Vilela, Marco; Juarez, Jesus E; Blenis, John; Danuser, Gaudenz
2015-05-19
Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. We tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular signal-regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell surface receptors, and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. Copyright © 2015, American Association for the Advancement of Science.
ERK reinforces actin polymerization to power persistent edge protrusion during motility
Mendoza, Michelle C.; Vilela, Marco; Juarez, Jesus E.; Blenis, John; Danuser, Gaudenz
2016-01-01
Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. Here, we tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell-surface receptors and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy (qFSM) and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. Arp2/3 activity generates branched actin networks that can produce pushing force. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. PMID:25990957
Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri
2017-10-01
Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2: Prostaglandin E2, PI: Propidium iodide, PMSF: Phenylmethylsulfonyl fluoride, pRB: Phosphorylated retinoblastoma, R. angustifolia : Ruta angustifolia L. Pers, Rb: Retinoblastoma, rpm: Rotation per minute, RPMI: Roswell Park Memorial Institute, S phase: Synthesis phase, SD: Standard deviation, SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Smac: Second mitochondria-derived activator of caspase, SPSS: Statistical Package for the Social Sciences, STAT3: Signal transducer and activation of transcription 3, tBID: Truncated BID, TNF: Tumor necrosis factor, TRADD: Tumor necrosis factor receptor type-1 associated death domain, TRAIL: TNF-related apoptosis- inducing ligand, USA: United States of America, v/v: Volume over volume.
Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.
Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua
2017-05-01
Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.
Investigation of welded interconnection of large area wraparound contacted silicon solar cells
NASA Technical Reports Server (NTRS)
Lott, D. R.
1984-01-01
An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.
DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4.
Cannizzaro, Ester; Bannister, Andrew John; Han, Namshik; Alendar, Andrej; Kouzarides, Tony
2018-05-21
DDX3X is a multifunctional RNA helicase with documented roles in different cancer types. Here, we demonstrate that DDX3X plays an oncogenic role in breast cancer cells by modulating the cell cycle. Depletion of DDX3X in MCF7 cells slows cell proliferation by inducing a G1 phase arrest. Notably, DDX3X inhibits expression of Kruppel-like factor 4 (KLF4), a transcription factor and cell cycle repressor. Moreover, DDX3X directly interacts with KLF4 mRNA and regulates its splicing. We show that DDX3X-mediated repression of KLF4 promotes expression of S-phase inducing genes in MCF7 breast cancer cells. These findings provide evidence for a novel function of DDX3X in regulating expression and downstream functions of KLF4, a master negative regulator of the cell cycle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A dinoflagellate mutant with higher frequency of multiple fission.
Lam, C M; Chong, C; Wong, J T
2001-01-01
The dinoflagellate Crypthecodinium cohnii Biecheler propagates by both binary and multiple fission. By a newly developed mutagenesis protocol based on using ethyl methanesulfonate and a cell size screening method, a cell cycle mutant, mf2, was isolated with giant cells which predominantly divide by multiple fission. The average cell size of the mutant mf2 is larger than the control C. cohnii. Cell cycle synchronization experiments suggest that mutant mf2, when compared with the control strain, has a prolonged G1 phase with a corresponding delay of the G2 + M phase.
PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.
Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E
2001-10-11
Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.
LED street lighting evaluation -- phase II : LED specification and life-cycle cost analysis.
DOT National Transportation Integrated Search
2015-01-01
Phase II of this study focused on developing a draft specification for LED luminaires to be used by IDOT : and a life-cycle cost analysis (LCCA) tool for solid state lighting technologies. The team also researched the : latest developments related to...
A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors.
Papadopoulos, Kyriakos P; Burris, Howard A; Gordon, Michael; Lee, Peter; Sausville, Edward A; Rosen, Peter J; Patnaik, Amita; Cutler, Richard E; Wang, Zhengping; Lee, Susan; Jones, Suzanne F; Infante, Jeffery R
2013-10-01
Tolerability, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of carfilzomib, a selective proteasome inhibitor, administered twice weekly by 2-10-min intravenous (IV) infusion on days 1, 2, 8, 9, 15, and 16 in 28-day cycles, were assessed in patients with advanced solid tumors in this phase I/II study. Adult patients with solid tumors progressing after ≥1 prior therapies were enrolled. The dose was 20 mg/m(2) in week 1 of cycle 1 and 20, 27, or 36 mg/m(2) thereafter. The maximum tolerated dose or protocol-defined maximum planned dose (MPD) identified during dose escalation was administered to an expansion cohort and to patients with small cell lung, non-small cell lung, ovarian, and renal cancer in phase II tumor-specific cohorts. Fourteen patients received carfilzomib during dose escalation. The single dose-limiting toxicity at 20/36 mg/m(2) was grade 3 fatigue, establishing the MPD as the expansion and phase II dose. Sixty-five additional patients received carfilzomib at the MPD. Adverse events included fatigue, nausea, anorexia, and dyspnea. Carfilzomib PK was dose proportional with a half-life <1 h. All doses resulted in at least 80 % proteasome inhibition in blood. Partial responses occurred in two patients in phase I, with 21.5 % stable disease after four cycles in evaluable patients in the expansion and phase II cohorts. Carfilzomib 20/36 mg/m(2) was well tolerated when administered twice weekly by 2-10-min IV infusion. At this dose and infusion rate, carfilzomib inhibited the proteasome in blood but demonstrated limited antitumor activity in patients with advanced solid tumors.
The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells
NASA Astrophysics Data System (ADS)
Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.
2007-02-01
Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60μg/ml) + light at 630nm induced DNA fragmentation in a light dose-dependent manner; in contrast, PMF or light alone did not induce DNA fragmentation. In separate experiments, PMF alone treatment produced a dose-dependent DNA synthesis with a 90% inhibition at a concentration of 25μg/ml (IC90 = 25μg/ml). Expression of p53 and p27 cell cycle regulatory proteins was not altered by PMF alone, however, a dose-dependent increase in p21 expression was observed that correlates with PMF concentrations. Cyclin A and cyclin B protein levels showed a clear decrease inverse to the concentration of PMF. In the absence of light treatment, flow cytometry analysis showed that PMF alone results in G 0/G I cell cycle arrest, with a 2-fold increase in G 0/G I cells concomitant with 50% decrease in cells in both S and G II/M phases. However, flow cytometry on PMF alone-treated cells did not show sub G 0/G I peak, further evidence of the lack of apoptosis as a mechanism of effect of PMF in the dark. Conclusions: With respect to light treatment, apoptosis appears to play a vital role in PDT-induced cytotoxicity. The flow cytometry and DNA laddering results revealed that T24 cells demonstrated apoptotic responses in PMF-mediated PDT. Experiments conducted with PMF alone showed a dose-dependent inhibition of DNA synthesis associated with G 0/G I cell cycle arrest and the extract is able to coordinate changes in key cell cycle regulatory proteins in human bladder cancer cells. Both experimental conditions suggest PMF as a potent and effect anti-proliferative agent in cancer chemoprevention and therapy of human urothelial carcinoma cells.
Cell cycle regulation in Schizosaccharomyces pombe.
Moser, B A; Russell, P
2000-12-01
Cdc2, a cyclin-dependent kinase, controls cell cycle progression in fission yeast. New details of Cdc2 regulation and function have been uncovered in recent studies. These studies involve cyclins that associate with Cdc2 in G1-phase and the proteins that regulate inhibitory phosphorylation of Cdc2 during S-phase and G2-phase. Recent investigations have also provided a better understanding of proteins that regulate DNA replication and that are directly or indirectly controlled by Cdc2.
NASA Astrophysics Data System (ADS)
Sharma, Neeraj; Peterson, Vanessa K.; Elcombe, Margaret M.; Avdeev, Maxim; Studer, Andrew J.; Blagojevic, Ned; Yusoff, Rozila; Kamarulzaman, Norlida
The structural response to electrochemical cycling of the components within a commercial Li-ion battery (LiCoO 2 cathode, graphite anode) is shown through in situ neutron diffraction. Lithuim insertion and extraction is observed in both the cathode and anode. In particular, reversible Li incorporation into both layered and spinel-type LiCoO 2 phases that comprise the cathode is shown and each of these components features several phase transitions attributed to Li content and correlated with the state-of-charge of the battery. At the anode, a constant cell voltage correlates with a stable lithiated graphite phase. Transformation to de-lithiated graphite at the discharged state is characterised by a sharp decrease in both structural cell parameters and cell voltage. In the charged state, a two-phase region exists and is composed of the lithiated graphite phase and about 64% LiC 6. It is postulated that trapping Li in the solid|electrolyte interface layer results in minimal structural changes to the lithiated graphite anode across the constant cell voltage regions of the electrochemical cycle.
Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng
2014-01-01
To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.
Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon
2016-10-01
Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jin Young; Park, Raehee; Lee, Jin Hwan J; Shin, Jinyeon; Nickas, Jenna; Kim, Seonhee; Cho, Seo-Hee
2016-11-15
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development. Copyright © 2016 Elsevier Inc. All rights reserved.
Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn
2014-01-01
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabrielson, Marike; Reizer, Edwin; Stål, Olle
An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclearmore » Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.« less
Oestrous cycle of the common wombat, Vombatus ursinus, in Victoria, Australia.
West, M; Galloway, D; Shaw, J; Trouson, A; Paris, M C J
2004-01-01
Wild-caught female common wombats from Victoria, Australia, were studied in captivity to investigate the oestrous cycle by assessing vaginal cytology and peripheral plasma progesterone concentrations. Eight wombats, five adults (21-29 kg) and three subadults (19-23 kg), which were held for between 2 weeks and 11 months did not cycle in captivity. Their progesterone concentrations were consistently low (< or = 6.9 nmol L(-1)) and vaginal smears contained predominantly superficial epithelial cells. Three wombats (21-27 kg), held in captivity for >1 year, regularly cycled (when bodyweights exceeded 23.5 kg). Information gathered from four consecutive cycles in each of these three wombats revealed a follicular phase with low progesterone concentrations (< or = 6.9 nmol L(-1)) and vaginal smears with a high percentage of superficial epithelial cells alternating with periods of high progesterone concentrations (range 41.6-123.8 nmol L(-1)) and smears in which parabasal-intermediate epithelial cells predominated. The average length of the monitored oestrous cycles was 47.2 days (35-60 days). The follicular phase lasted ~19 days and the luteal phase lasted ~28 days. In conclusion, wombats can cycle regularly in captivity even under conditions of intensive monitoring.
Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.
Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan
2003-10-01
Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.
Cannabinoid receptor activation inhibits cell cycle progression by modulating 14-3-3β.
Jung, Hye-Won; Park, Inae; Ghil, Sungho
2014-09-01
Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.
Cell cycle sibling rivalry: Cdc2 vs. Cdk2.
Kaldis, Philipp; Aleem, Eiman
2005-11-01
It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings.
Skowronska, Agnieszka; Młotkowska, Patrycja; Wojciechowicz, Bartosz; Okrasa, Stanisław; Nielsen, Soren; Skowronski, Mariusz T
2015-02-18
The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression. Uterine tissues were collected on Days 10-12 and 14-16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry. The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus. This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the local fluid balance within the uterus during the mid-luteal phase of the estrous cycle and luteolysis in pigs.
Chen, Lingling; Jiao, Yang; Guan, Xin; Li, Xiliang; Feng, Yunpeng; Jiao, Mingda
2018-05-01
Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.
Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells.
Wang, Yifeng; Shi, Jingwen; Yan, Jiacong; Xiao, Zhengtao; Hou, Xiaoxiao; Lu, Peiwen; Hou, Shiyue; Mao, Tianyang; Liu, Wanli; Ma, Yuanwu; Zhang, Lianfeng; Yang, Xuerui; Qi, Hai
2017-08-01
Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (T FH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC T FH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by T FH cell-derived IL-9.
Fang, Shisong; Zhang, Kaining; Wang, Ting; Wang, Xin; Lu, Xing; Peng, Bo; Wu, Weihua; Zhang, Ran; Chen, Shiju; Zhang, Renli; Xue, Hong; Yu, Muhua; Cheng, Jinquan
2014-12-01
In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P < 0.05). After 48 h, cells infected with the virus strain sourced from fatal cases and severe cases had the highest apoptosis rate (P < 0.05), and after 72 h, cells infected with virus strains from fatal cases and ordinary cases had the highest apoptosis rate (P < 0.05). All the four influenza virus strains induced cell cycle arrest mainly at the G0/G1 phase. Eighteen differentially expressed proteins were identified, including galectin-1, cofilin-1, protein DJ-1, proteasome subunit α type-5, macrophage migration inhibitory factor, translationally controlled tumor protein, profilin 1, and interferon α-2. Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.
Gagné-Boulet, Mathieu; Moussa, Hanane; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; Fortin, Sébastien
2015-10-20
DNA double strand-breaks (DSBs) are the most deleterious lesions that can affect the genome of living beings and are lethal if not quickly and properly repaired. Recently, we discovered a new family of anticancer agents designated as N-phenyl ureidobenzenesulfonates (PUB-SOs) that are blocking the cells cycle progression in S-phase and inducing DNA DSBs. Previously, we have studied the effect of several modifications on the molecular scaffold of PUB-SOs on their cytocidal properties. However, the effect of the nature and the position of substituents on the aromatic ring B is still poorly studied. In this study, we report the preparation and the biological evaluation of 45 new PUB-SO derivatives substituted by alkyl, alkoxy, halogen and nitro groups at different positions on the aromatic ring B. All PUB-SOs were active in the submicromolar to low micromolar range (0.24-20 μM). The cell cycle progression analysis showed that PUB-SOs substituted at position 2 by alkyl, halogen or nitro groups or substituted at position 4 by a hydroxyl group arrest the cell cycle progression in S-phase. Interestingly, all others PUB-SOs substituted at positions 3 and 4 arrested the cell cycle in G2/M-phase. PUB-SOs arresting the cell cycle progression in S-phase also induced the phosphorylation of H2AX (γH2AX) which is indicating the generation of DNA DSBs. We evidenced that few modifications on the ring B of PUB-SOs scaffold lead to cytocidal derivatives arresting the cell cycle in S-phase and inducing γH2AX and DSBs. In addition, this study shows that these new anticancer agents are promising and could be used as alternative to circumvent some of the biopharmaceutical complications that might be encountered during the development of PUB-SOs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry
2018-04-01
Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.
1974-01-01
Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.
NASA Astrophysics Data System (ADS)
Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sun Jae; Kim, Sunwoong; Bae, Hongyeul; Choi, Gyeong Man
2017-06-01
We report design, fabrication method, and fast thermal-cycling ability of solid oxide fuel cells (SOFCs) that use stainless steel (STS) as a support, and a new 3-phase anode. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-d, LSTN), replaces some of the Ni in conventional Ni-yttria stabilized zirconia (YSZ) anode; the resultant LSTN-YSZ-Ni 3-phase-composite anode is tested as a new reduction (or decomposition)-resistant anode of STS-supported SOFCs that can be co-fired with STS. A multi-layered cell with YSZ electrolyte (thickness ∼5 μm), composite anode, STS-cermet contact-layer, and STS support is designed, then fabricated by tape casting, lamination, and co-firing at 1250 °C in reducing atmosphere. The maximum power density (MPD) is 325 mW cm-2 at 650 °C; this is one of the highest among STS-supported cells fabricated by co-firing. The cell also shows stable open-circuit voltage and Ohmic resistance during 100 rapid thermal cycles between 170 and 600 °C. STS support minimizes stress and avoids cracking of electrolyte during rapid thermal cycling. The excellent MPD and stability during thermal cycles, and promising characteristics of SOFC as a power source for vehicle or mobile devices that requires rapid thermal cycles, are attributed to the new design of the cell with new anode structure.
Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle*
Vogan, Jacob M.; Collins, Kathleen
2015-01-01
Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells. PMID:26170453
Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing
2016-10-01
Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.
Qiu, Yueqin; Ma, Xianyong; Yang, Xuefen; Wang, Li; Jiang, Zongyong
2017-04-01
Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.
Dnmt1-dependent Chk1 pathway suppression is protective against neuron division.
Oshikawa, Mio; Okada, Kei; Tabata, Hidenori; Nagata, Koh-Ichi; Ajioka, Itsuki
2017-09-15
Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance. © 2017. Published by The Company of Biologists Ltd.
Levels of Ycg1 Limit Condensin Function during the Cell Cycle
Arsenault, Heather E.; Benanti, Jennifer A.
2016-01-01
During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin, is cell cycle-regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. This cyclical expression pattern is established by a combination of cell cycle-regulated transcription and constitutive degradation. Interestingly, overexpression of YCG1 and mutations that stabilize Ycg1 each result in delayed cell-cycle entry and an overall proliferation defect. Overexpression of no other condensin subunit impacts the cell cycle, suggesting that Ycg1 is limiting for condensin complex formation. Consistent with this possibility, we find that levels of intact condensin complex are reduced in G1 phase compared to mitosis, and that increased Ycg1 expression leads to increases in both levels of condensin complex and binding to chromatin in G1. Together, these results demonstrate that Ycg1 levels limit condensin function in interphase cells, and suggest that the association of condensin with chromosomes must be reduced following mitosis to enable efficient progression through the cell cycle. PMID:27463097
Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin
2016-01-01
It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945
Li, N; Jiang, K; Fang, L P; Yao, L L; Yu, Z
2018-06-26
Long noncoding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in gastric cancer (GC) tissues compared with normal counterparts and CCAT1 upregulation can promote proliferation and migration of GC cells in vitro. B-cell specific moloney leukemia virus insertion site 1 (Bmi-1) expression is positively correlated with tumor progression. The present study aimed to investigate the biological functions of CCAT1 and the relationships between CCAT1 and Bmi-1 in GC progression. In the present study, CCAT1 was knocked down by specific shRNA transfection in two human GC cell lines (MGC-803 and SGC-7901). The effects of CCAT1 knockdown on GC cell proliferation, cell cycle, migration and invasion were investigated in vitro. The effect of CCAT1 knockdown on peritoneal metastasis was assessed in nude mice. Bmi-1 expression levels were examined both in vitro and in vivo. The results showed that CCAT1 knockdown markedly inhibited cell proliferation, migration and invasion, arrested the cell cycle at G0/G1 phase in vitro, and inhibited peritoneal metastasis in nude mice, along with the downregulation of Bmi-1. Taken together, CCAT1 is functionally involved in growth and metastasis of GC cells and it may be a potential target for GC therapy.
Chen, Jian; Chen, Shuai; Wang, Jiahui; Zhang, Mingjun; Gong, Zhaohua; Wei, Youheng; Li, Li; Zhang, Yuanyuan; Zhao, Xuemei; Jiang, Songmin; Yu, Long
2015-01-01
Cyclophilin J (CYPJ) is a new member of the peptidyl-prolyl cis/trans-isomerase (PPIase) identified with upregulated expression in human glioma. However, the biological function of CYPJ remained unclear. We aimed to study the role of CYPJ in hepatocellular carcinoma (HCC) carcinogenesis and its therapeutic potential. We determined the expression of CYPJ in HCC/adjacent normal tissues using Western blot, Northern blot and semi-quantitative RT-PCR, analyzed the biochemical characteristics of CYPJ, and resolved the 3D-structure of CYPJ/Cyclosporin A (CsA) complex. We also studied the roles of CYPJ in cell cycle, cyclin D1 regulation, in vitro and in vivo tumor growth. We found that CYPJ expression was upregulated in over 60% HCC tissues. The PPIase activity of CYPJ could be inhibited by the widely used immunosuppressive drug CsA. CYPJ was found expressed in the whole cell of HCC with preferential location at the cell nucleus. CYPJ promoted the transition of cells from G1 phase to S phase in a PPIase-dependent manner by activating cyclin D1 promoter. CYPJ overexpression accelerated liver cell growth in vitro (cell growth assay, colony formation) and in vivo (xenograft tumor formation). Inhibition of CYPJ by its inhibitor CsA or CYPJ-specific RNAi diminished the growth of liver cancer cells in vitro and in vivo. In conclusion, CYPJ could facilitate HCC growth by promoting cell cycle transition from G1 to S phase through the upregulation of cyclin D1. Suppression of CYPJ could repress the growth of HCC, which makes CYPJ a potential target for the development of new strategies to treat this malignancy. PMID:26020957
Fucikova, Jitka; Podrazil, Michal; Jarolim, Ladislav; Bilkova, Pavla; Hensler, Michal; Becht, Etienne; Gasova, Zdenka; Klouckova, Jana; Kayserova, Jana; Horvath, Rudolf; Fialova, Anna; Vavrova, Katerina; Sochorova, Klara; Rozkova, Daniela; Spisek, Radek; Bartunkova, Jirina
2018-01-01
Immunotherapy of cancer has the potential to be effective mostly in patients with a low tumour burden. Rising PSA (prostate-specific antigen) levels in patients with prostate cancer represents such a situation. We performed the present clinical study with dendritic cell (DC)-based immunotherapy in this patient population. The single-arm phase I/II trial registered as EudraCT 2009-017259-91 involved 27 patients with rising PSA levels. The study medication consisted of autologous DCs pulsed with the killed LNCaP cell line (DCVAC/PCa). Twelve patients with a favourable PSA response continued with the second cycle of immunotherapy. The primary and secondary objectives of the study were to assess the safety and determine the PSA doubling time (PSADT), respectively. No significant side effects were recorded. The median PSADT in all treated patients increased from 5.67 months prior to immunotherapy to 18.85 months after 12 doses (p < 0.0018). Twelve patients who continued immunotherapy with the second cycle had a median PSADT of 58 months that remained stable after the second cycle. In the peripheral blood, specific PSA-reacting T lymphocytes were increased significantly already after the fourth dose, and a stable frequency was detected throughout the remainder of DCVAC/PCa treatment. Long-term immunotherapy of prostate cancer patients experiencing early signs of PSA recurrence using DCVAC/PCa was safe, induced an immune response and led to the significant prolongation of PSADT. Long-term follow-up may show whether the changes in PSADT might improve the clinical outcome in patients with biochemical recurrence of the prostate cancer.
2012-01-01
Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057
Turcotte, Vanessa; Fortin, Sébastien; Vevey, Florence; Coulombe, Yan; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; C-Gaudreault, René
2012-07-12
Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents.
Wang, Juan; Huang, Shujuan; Xing, Lingxiao; Cui, Jinfeng; Tian, Ziqiang; Shen, Haitao; Jiang, Xiujuan; Yan, Xia; Wang, Junling; Zhang, Xianghong
2015-11-01
Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest, whereas in SV40LT-immortalized human esophageal epithelial cells, SV40LT-mediated G1 checkpoint inactivation occurred, and ST-DNA damage activated p53-p21 signaling pathway, up-regulating G2/M phase regulatory proteins and finally leading to a G2 phase arrest. Thus, the SV40LT-mediated G1 checkpoint inactivation is responsible for the difference in the cell cycle arrest by ST between immortalized and primary cultured human esophageal epithelial cells.
Sequential replication-coupled destruction at G1/S ensures genome stability
Coleman, Kate E.; Grant, Gavin D.; Haggerty, Rachel A.; Brantley, Kristen; Shibata, Etsuko; Workman, Benjamin D.; Dutta, Anindya; Varma, Dileep; Purvis, Jeremy E.; Cook, Jeanette Gowen
2015-01-01
Timely ubiquitin-mediated protein degradation is fundamental to cell cycle control, but the precise degradation order at each cell cycle phase transition is still unclear. We investigated the degradation order among substrates of a single human E3 ubiquitin ligase, CRL4Cdt2, which mediates the S-phase degradation of key cell cycle proteins, including Cdt1, PR-Set7, and p21. Our analysis of synchronized cells and asynchronously proliferating live single cells revealed a consistent order of replication-coupled destruction during both S-phase entry and DNA repair; Cdt1 is destroyed first, whereas p21 destruction is always substantially later than that of Cdt1. These differences are attributable to the CRL4Cdt2 targeting motif known as the PIP degron, which binds DNA-loaded proliferating cell nuclear antigen (PCNADNA) and recruits CRL4Cdt2. Fusing Cdt1's PIP degron to p21 causes p21 to be destroyed nearly concurrently with Cdt1 rather than consecutively. This accelerated degradation conferred by the Cdt1 PIP degron is accompanied by more effective Cdt2 recruitment by Cdt1 even though p21 has higher affinity for PCNADNA. Importantly, cells with artificially accelerated p21 degradation display evidence of stalled replication in mid-S phase and sensitivity to replication arrest. We therefore propose that sequential degradation ensures orderly S-phase progression to avoid replication stress and genome instability. PMID:26272819
Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H
2018-01-01
PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.
Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina
2013-07-01
This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.
Developmental Regulation of Nucleolus Size during Drosophila Eye Differentiation
Baker, Nicholas E.
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals. PMID:23472166
Developmental regulation of nucleolus size during Drosophila eye differentiation.
Baker, Nicholas E
2013-01-01
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.
Hassan, Hanaa A; Hafez, Hani S; Goda, Mona S
2013-01-01
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells, in particular to DNA, is due to oxidative stress enhancing apoptotic cell death. Our present study aimed to characterize and semi-quantify the radiation-induced apoptosis in CNS and the activity of Mentha extracts as neuron-protective agent. Our results through flow cytometry exhibited the significant disturbance and arrest in cell cycle in % of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase and M4: G2/M phase of cell cycle in brain tissue (p < 0.05). Significant increase in % of apoptosis and P53 protein expression as apoptotic biomarkers were coincided with significant decrease in Bcl(2) as an anti-apoptotic marker. The biochemical analysis recorded a significant decrease in the levels of reduced glutathione, superoxide dismutase, deoxyribonucleic acid (DNA) and ribonucleic acid contents. Moreover, numerous histopathological alterations were detected in brain tissues of gamma irradiated mice such as signs of chromatolysis in pyramidal cells of cortex, nuclear vacuolation, numerous apoptotic cell, and neural degeneration. On the other hand, gamma irradiated mice pretreated with Mentha extract showed largely an improvement in all the above tested parameters through a homeostatic state for the content of brain apoptosis and stabilization of DNA cycle with a distinct improvement in cell cycle analysis and antioxidant defense system. Furthermore, the aforementioned effects of Mentha extracts through down-regulation of P53 expression and up-regulation of Bcl(2) domain protected brain structure from extensive damage. Therefore, Mentha extract seems to have a significant role to ameliorate the neuronal injury induced by gamma irradiation.
Fang, Su-Chiung; Chung, Chin-Lin; Chen, Chun-Han; Lopez-Paz, Cristina; Umen, James G.
2014-01-01
We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses. PMID:25361960
Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
2015-01-01
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression. PMID:26439921
Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong
2018-03-02
Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.
A recursive vesicle-based model protocell with a primitive model cell cycle
NASA Astrophysics Data System (ADS)
Kurihara, Kensuke; Okura, Yusaku; Matsuo, Muneyuki; Toyota, Taro; Suzuki, Kentaro; Sugawara, Tadashi
2015-09-01
Self-organized lipid structures (protocells) have been proposed as an intermediate between nonliving material and cellular life. Synthetic production of model protocells can demonstrate the potential processes by which living cells first arose. While we have previously described a giant vesicle (GV)-based model protocell in which amplification of DNA was linked to self-reproduction, the ability of a protocell to recursively self-proliferate for multiple generations has not been demonstrated. Here we show that newborn daughter GVs can be restored to the status of their parental GVs by pH-induced vesicular fusion of daughter GVs with conveyer GVs filled with depleted substrates. We describe a primitive model cell cycle comprising four discrete phases (ingestion, replication, maturity and division), each of which is selectively activated by a specific external stimulus. The production of recursive self-proliferating model protocells represents a step towards eventual production of model protocells that are able to mimic evolution.
Cell cycle constraints on capsulation and bacteriophage susceptibility.
Ardissone, Silvia; Fumeaux, Coralie; Bergé, Matthieu; Beaussart, Audrey; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Dufrêne, Yves F; Viollier, Patrick H
2014-11-25
Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.
Dijkgraaf, Eveline M; Santegoets, Saskia J A M; Reyners, An K L; Goedemans, Renske; Nijman, Hans W; van Poelgeest, Mariëtte I E; van Erkel, Arien R; Smit, Vincent T H B M; Daemen, Toos A H H; van der Hoeven, Jacobus J M; Melief, Cornelis J M; Welters, Marij J P; Kroep, Judith R; van der Burg, Sjoerd H
2015-10-13
Preclinical tumor models show that chemotherapy has immune modulatory properties which can be exploited in the context of immunotherapy. The purpose of this study was to determine the feasibility and immunogenicity of combinations of such an immunomodulatory chemotherapeutic agent with immunotherapy, p53 synthetic long peptide (SLP) vaccine and Pegintron (IFN-α) in patients with platinum-resistant p53-positive epithelial ovarian cancer (EOC). This is a phase 1/2 trial in which patients sequential 6 cycles of gemcitabine (1000 mg/kg2 iv; n = 3), gemcitabine with Pegintron before and after the first gemcitabine cycle (Pegintron 1 μg/kg sc; n = 6), and gemcitabine and Pegintron combined with p53 SLP vaccine (0.3 mg/peptide, 9 peptides; n = 6). At baseline, 22 days after the 2nd and 6th cycle, blood was collected for immunomonitoring. Toxicity, CA-125, and radiologic response were evaluated after 3 and 6 cycles of chemotherapy. None of the patients enrolled experienced dose-limiting toxicity. Predominant grade 3/4 toxicities were nausea/vomiting and dyspnea. Grade 1/2 toxicities consisted of fatigue (78%) and Pegintron-related flu-like symptoms (72%). Gemcitabine reduced myeloid-derived suppressor cells (p = 0.0005) and increased immune-supportive M1 macrophages (p = 0.04). Combination of gemcitabine and Pegintron stimulated higher frequencies of circulating proliferating CD4+ and CD8+ T-cells but not regulatory T-cells. All vaccinated patients showed strong vaccine-induced p53-specific T-cell responses. Combination of gemcitabine, the immune modulator Pegintron and therapeutic peptide vaccination is a viable approach in the development of combined chemo-immunotherapeutic regimens to treat cancer.
Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D
2017-06-13
All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle. Copyright © 2017 Robbins et al.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.
Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.
2010-01-01
Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042
Tseng, Shun-Fu; Shen, Zih-Jie; Tsai, Hung-Ji; Lin, Yi-Hsuan; Teng, Shu-Chun
2009-06-01
Budding yeast telomerase is mainly activated by Tel1/Mec1 (yeast ATM/ATR) on Cdc13 from late S to G2 phase of the cell cycle. Here, we demonstrated that the telomerase-recruitment domain of Cdc13 is also phosphorylated by Cdk1 at the same cell cycle stage as the Tel1/Mec1-dependent regulation. Phosphor-specific gel analysis demonstrated that Cdk1 phosphorylates residues 308 and 336 of Cdc13. The residue T308 of Cdc13 is critical for efficient Mec1-mediated S306 phosphorylation in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13 S/TP motifs phosphorylated by Cdk1 caused cell cycle delay and telomere shortening and these phenotypes could be partially restored by the replacement with a negative charge residue. In the absence of Ku or Tel1, Cdk1-mediated phosphorylation of Cdc13 showed no effect on telomere length maintenance. Moreover, this Cdk1-mediated phosphorylation was required to promote the regular turnover of Cdc13. Together these results demonstrate that Cdk1 phosphorylates the telomerase recruitment domain of Cdc13, thereby preserves optimal function and expression level of Cdc13 for precise telomere replication and cell cycle progression.
Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A
2016-05-01
Aluminum oxide nanoparticles (Al2 O3 -NPs) are important ceramic materials that have been used in a variety of commercial and industrial applications. However, the impact of acute and chronic exposure to Al2 O3 -NPs on the environment and on human health has not been well studied. In this investigation, we evaluated the cytotoxic effects of Al2 O3 -NPs on human mesenchymal stem cells (hMSCs) by using a cell viability assay and observing cellular morphological changes, analyzing cell cycle progression, and monitoring the expression of cell cycle response genes (PCNA, EGR1, E2F1, CCND1, CCNC, CCNG1, and CYCD3). The Al2 O3 -NPs reduced hMSC viability in a dose- and time-dependent manner. Nuclear condensation and fragmentation, chromosomal DNA fragmentation, and cytoplasmic vacuolization were observed in Al2 O3 -NP-exposed cells. The nuclear morphological changes indicated that Al2 O3 -NPs alter cell cycle progression and gene expression. The cell cycle distribution revealed that Al2 O3 -NPs cause cell cycle arrest in the sub-G0-G1 phase, and this is associated with a reduction in the cell population in the G2/M and G0/G1 phases. Moreover, Al2 O3 -NPs induced the upregulation of cell cycle response genes, including EGR1, E2F1, and CCND1. Our results suggested that exposure to Al2 O3 -NPs could cause acute cytotoxic effects in hMSCs through cell cycle regulatory genes. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2018-04-01
Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.
Jaramillo-Lambert, Aimee; Hao, Jing; Xiao, Haijie; Li, Yongming; Han, Zhiyong; Zhu, Wenge
2013-01-01
The centromere is an epigenetically designated chromatin domain that is essential for the accurate segregation of chromosomes during mitosis. The incorporation of centromere protein A (CENP-A) into chromatin is fundamental in defining the centromeric loci. Newly synthesized CENP-A is loaded at centromeres in early G1 phase by the CENP-A-specific histone chaperone Holliday junction recognition protein (HJURP) coupled with other chromatin assembly factors. However, it is unknown whether there are additional HJURP-interacting factor(s) involving in this process. Here we identify acidic nucleoplasmic DNA-binding protein 1 (And-1) as a new factor that is required for the assembly of CENP-A nucleosomes. And-1 interacts with both CENP-A and HJURP in a prenucleosomal complex, and the association of And-1 with CENP-A is increased during the cell cycle transition from mitosis to G1 phase. And-1 down-regulation significantly compromises chromosome congression and the deposition of HJURP-CENP-A complexes at centromeres. Consistently, overexpression of And-1 enhances the assembly of CENP-A at centromeres. We conclude that And-1 is an important factor that functions together with HJURP to facilitate the cell cycle-specific recruitment of CENP-A to centromeres. PMID:23184928
Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.
Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressedmore » in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.« less
Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil
2016-01-01
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572
Jafri, Asif; Ahmad, Sheeba; Afzal, Mohammad; Arshad, Md
2014-01-01
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation. PMID:25330158
LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH
2007-01-01
Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873
Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development
Fox, Catherine A.; Dowdle, Megan E.; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee
2017-01-01
The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation. PMID:27975270
Berisha, Bajram; Schams, Dieter; Rodler, Daniela; Sinowatz, Fred; Pfaffl, Michael W
2018-06-06
The aim of this study was to characterize certain prostaglandin family members in the bovine corpus luteum (CL) during the oestrous cycle and pregnancy. The CL tissue was assigned to the following stages of the oestrous cycle: 1-2, 3-4, 5-7, 8-12, 13-16, >18 days (after regression) and of pregnancy: 1-2, 3-4, 6-7 and >8 months. In these samples, we investigated prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE) and their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS) and PTGE synthase (PTGES). The expression of mRNA was measured by RT-qPCR, hormones by EIA and localization by immunohistochemistry. The mRNA expression of COX-2, PTGFS and PTGES in CL during the early luteal phase was high followed by a continuous and significant downregulation afterwards, as well as during all phases of pregnancy. The concentration of PTGF in CL tissue was high during the early luteal phase, decreased significantly in the mid-luteal phase, and increased again afterwards. In contrast, the concentration of PTGE increased significantly during late luteal phase followed by a decrease during regression. The PTGE level increased again during late pregnancy. Immunohistochemically, the large granulose-luteal cells show strong staining for COX-2 and PTGES during the early luteal stage followed by lower activity afterwards. During pregnancy, most of the luteal cells were only weakly positive or negative. In conclusion, our results indicate that the examined prostaglandin family members are involved in the local mechanisms that regulate luteal function, specifically during CL formation, function and regression and during pregnancy in the cow. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate
USDA-ARS?s Scientific Manuscript database
Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...
Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas.
Formosa, R; Borg, J; Vassallo, J
2017-08-01
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G 0 /G 1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. © 2017 The authors.
Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas
Formosa, R; Borg, J
2017-01-01
Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. PMID:28649092
Saleem, Mohammad; Asif, Jawaria; Asif, Muhammad; Saleem, Uzma
2018-01-05
Amygdalin is a cyanogenic glycoside which is described as a naturally occurring anti-cancer agent. In 1830s, French chemists Robiquet and Boutron-Charlard isolated amygdalin from bitter almonds. Apoptosis is an important mechanism in cancer treatment by amygdalin. Amygdalin can probably stimulate apoptotic process in cancerous cells by increasing activity of Bax (pro-apoptotic protein) and caspase-3 and decreasing expression of Bcl-2 (anti-apoptotic protein). Amygdalin promotes arrest of cell cycle in G0/G1 phase followed by decreasing number of S and G2/M phase cells. So, amygdalin enhances deceleration of cell cycle by blocking cell proliferation and growth. The current review highlights that amygdalin has potential to be used as an anticancer agent in cancer therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chávez, Santiago; Eastman, Guillermo; Smircich, Pablo; Becco, Lorena Lourdes; Oliveira-Rizzo, Carolina; Fort, Rafael; Potenza, Mariana; Garat, Beatriz; Sotelo-Silveira, José Roberto
2017-01-01
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control. PMID:29182646
Mao, D; Qiao, L; Lu, H; Feng, Y
2016-01-01
Increasing evidences have shown that B-cell translocation gene 3 (BTG3) inhibits metastasis of multiple cancer cells. However, the role of BTG3 in colorectal cancer (CRC) and its possible mechanism have not yet been reported. In our study, we evaluated BTG3 expression in several CRC cell lines. Then, pcDNA3.1-BTG3 was transfected into SW480 cells. We found that BTG3 was upregulated in SW480 cells after overexpression plasmid transfection. BTG3 overexpression significantly inhibited cell growth and decreased PCNA (proliferating cell nuclear antigen) and Ki67 levels. BTG3 overexpression markedly downregulated Cyclin D1 and Cyclin E1 levels, whereas elevated p27. Overexpression of BTG3 arrested the cell cycle at G1 phase, which was abrogated by p27 silencing. Furthermore, migration, invasion and EMT of SW480 cells were significantly suppressed by BTG3 overexpression. Further investigations showed the inhibition of Wnt/β-catenin signaling pathway. We then used GSK3β specific inhibitor SB-216763 to activate the Wnt/β-catenin signaling pathway. We found that Wnt/β-catenin signaling pathway activation reversed the effect of BTG3 overexpression on cell proliferation, cell cycle progression, invasion and EMT. In conclusion, BTG3 overexpression inhibited cell growth, induced cell cycle arrest and suppressed the metastasis of SW480 cells via the Wnt/β-catenin signaling pathway. BTG3 may be considered as a therapeutic target in CRC treatment.
Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H
2009-01-01
6-Mercaptopurine (6-MP), an analogue of hypoxanthine, is used in the therapy of acute lymphoblastic leukemia and causes fetal neurotoxicity. To clarify the mechanisms of 6-MP-induced fetal neurotoxicity leading to the cell cycle arrest and apoptosis of neural progenitor cells, pregnant rats were treated with 50 mg/kg 6-MP on embryonic day (E) 13, and the fetal telencephalons were examined at 12 to 72 h (h) after treatment. Flow-cytometric analysis confirmed an accumulation of cells at G2/M, S, and sub-G1 (apoptotic cells) phases from 24 to 72 h. The number of phosphorylated histone H3-positive cells (mitotic cells) decreased from 36 to 72 h, and the phosphorylated (active) form of p53 protein, which is a mediator of apoptosis and cell cycle arrest, increased from 24 to 48 h. An executor of p53-mediated cell cycle arrest, p21, showed intense overexpression at both the mRNA and protein levels from 24 to 72 h. Cdc25A protein, which is needed for the progression of S phase, decreased at 36 and 48 h. In addition, phosphorylated cdc2 protein, which is an inactive form of cdc2 necessary for G2/M progression, increased from 24 to 48 h. These results suggest that 6-MP induced G2/M arrest, delayed S-phase progression, and finally induced apoptosis of neural progenitor cells mediated by p53 in the fetal rat telencephalon.
Transcriptome changes and cAMP oscillations in an archaeal cell cycle.
Baumann, Anke; Lange, Christian; Soppa, Jörg
2007-06-11
The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 microM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. The analysis of cell cycle-specific transcriptome changes of H. salinarum allowed to identify a strategy of transcript level regulation that is different from all previously characterized species. The transcript levels of only 3% of all genes are regulated, a fraction that is considerably lower than has been reported for four eukaryotic species (6%-28%) and for the bacterium C. crescentus (19%). It was shown that cAMP is present in significant concentrations in an archaeon, and the phylogenetic profile of the adenylate cyclase indicates that this signaling molecule is widely distributed in archaea. The occurrence of cell cycle-dependent oscillations of the cAMP concentration in an archaeon and in several eukaryotic species indicates that cAMP level changes might be a phylogenetically old signal for cell cycle progression.
A Cajal body-independent pathway for telomerase trafficking in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.
2010-10-15
The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTRmore » to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.« less
Osteil, Pierre; Tapponnier, Yann; Markossian, Suzy; Godet, Murielle; Schmaltz-Panneau, Barbara; Jouneau, Luc; Cabau, Cédric; Joly, Thierry; Blachère, Thierry; Gócza, Elen; Bernat, Agnieszka; Yerle, Martine; Acloque, Hervé; Hidot, Sullivan; Bosze, Zsuzsanna; Duranthon, Véronique; Savatier, Pierre; Afanassieff, Marielle
2013-01-01
Summary Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits. PMID:23789112
Direct non transcriptional role of NF-Y in DNA replication.
Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol
2016-04-01
NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Zhan, Ming; Riordon, Daniel R.; Yan, Bin; Tarasova, Yelena S.; Bruweleit, Sarah; Tarasov, Kirill V.; Li, Ronald A.; Wersto, Robert P.; Boheler, Kenneth R.
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity. PMID:22936984
Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
The DNA damage response during mitosis.
Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M
2013-10-01
Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.
Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G
2018-04-01
Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.
G₂/M cell cycle arrest by an N-acetyl-D-glucosamine specific lectin from Psathyrella asperospora.
Rouf, Razina; Stephens, Alexandre S; Spaan, Lina; Arndt, Nadia X; Day, Christopher J; May, Tom W; Tiralongo, Evelin; Tiralongo, Joe
2014-01-01
A new N-acetyl-D-glucosamine (GlcNAc) specific lectin was identified and purified from the fruiting body of the Australian indigenous mushroom Psathyrella asperospora. The functional lectin, named PAL, showed hemagglutination activity against neuraminidase treated rabbit and human blood types A, B and O, and exhibited high binding specificity towards GlcNAc, as well as mucin and fetuin, but not against asialofetuin. PAL purified to homogeneity by a combination of ammonium sulfate precipitation, chitin affinity chromatography and size exclusion chromatography, was monomeric with a molecular mass of 41.8 kDa, was stable at temperatures up to 55 °C and between pH 6-10, and did not require divalent cations for optimal activity. De novo sequencing of PAL using LC-MS/MS, identified 10 tryptic peptides that revealed substantial sequence similarity to the GlcNAc recognizing lectins from Psathyrella velutina (PVL) and Agrocybe aegerita (AAL-II) in both the carbohydrate binding and calcium binding sites. Significantly, PAL was also found to exert a potent anti-proliferative effect on HT29 cells (IC50 0.48 μM) that was approximately 3-fold greater than that observed on VERO cells; a difference found to be due to the differential expression of cell surface GlcNAc on HT29 and VERO cells. Further characterization of this activity using propidium iodine staining revealed that PAL induced cell cycle arrest at G2/M phase in a manner dependent on its ability to bind GlcNAc.
2010-01-01
Background α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action. Methods MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells. Results α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells. Conclusions This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models. PMID:20682067
Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi
2018-04-01
The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.
Tomioka, K; Miyasako, Y; Umezaki, Y
2008-01-01
Drosophila shows bimodal circadian locomotor rhythms with peaks around light-on (morning peak) and before light-off (evening peak). The rhythm synchronizes to light and temperature cycles and the synchronization is achieved by two sets of clocks: one entrains to light cycles and the other to temperature cycles. The light-entrainable clock consists of the clock neurons located in the lateral protocerebrum (LNs) and the temperature-entrainable clock involves those located in the dorsal protocerebrum (DNs) and the cells located in the posterior lateral protocerebrum (LPNs). To understand the interaction between the light-entrainable and the temperature-entrainable clock neurons, locomotor rhythms of the mutant flies lacking PDF or PDF-positive clock neurons were examined. Under the light cycles, they showed altered phase of the evening peak. When exposed to temperature cycles of lower temperature levels, the onset of evening peak showed larger advance in contrast to those of wild-type flies. The termination of the peak also advanced while that of wild-type flies remained almost at the same phase as in the constant temperature. These results support our hypothesis that the PDF-positive light entrainable cells regulate the phase of the temperature entrainable cells to be synchronized to their own phase using PDF as a coupling mediator.
Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae
2016-01-01
Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucidate the underlying mechanism, we investigated the cell cycle regulatory molecules involved in the G2/M cell cycle transition. After 24 h of menadione treatment, the protein level of CDK1, CDC25C and cyclin B1 in AGS cells was decreased in a menadione dose-dependent manner. In the time course experiment, the protein level of CDC25C decreased in 6 h, and CDK1and cyclin B1 protein levels began to decrease after 18 h of menadione treatment. We found that mRNA level of CDC25C decreased by menadione treatment in 6 h. Menadione did not have an influence on mRNA level of CDK1 and cyclin B1 though the protein levels were decreased. However, the decreased protein levels of CDK1 and cyclin B1 were recovered by inhibition of proteasome. Collectively, these results suggest that menadione inhibits growth of gastric cancer cells by reducing expression of CDC25C and promoting proteasome mediated degradation of CDK1 and cyclin B1 thereby blocking transition of the cell cycle from G2 phase to M phase. PMID:28077999
Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility.
Bolnick, Alan D; Bolnick, Jay M; Kilburn, Brian A; Stewart, Tamika; Oakes, Jonathan; Rodriguez-Kovacs, Javier; Kohan-Ghadr, Hamid-Reza; Dai, Jing; Diamond, Michael P; Hirota, Yasushi; Drewlo, Sascha; Dey, Sudhansu K; Armant, D Randall
2016-09-01
Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and β-catenin in epithelial cells. MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and β-catenin in epithelial cell junctions in the mid- and late-secretory phases. Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Microbial Avenue to Cell Cycle Control in the Plant Superkingdom[C][W][OPEN
Tulin, Frej; Cross, Frederick R.
2014-01-01
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage. PMID:25336509
Tributyltin impairs the reproductive cycle in female rats.
Lang Podratz, Priscila; Delgado Filho, Vicente Sathler; Lopes, Pedro Francisco Iguatemy; Cavati Sena, Gabriela; Matsumoto, Silvia Tamie; Samoto, Vivian Yochiko; Takiya, Christina Maeda; de Castro Miguel, Emilio; Silva, Ian Victor; Graceli, Jones Bernardes
2012-01-01
Triorganotins are environmental contaminants, commonly used in antifouling agents for boats, that bioaccumulate and thus are found in mammals and humans due to ingestion of contaminated seafood diets. The importance of triorganotins as environmental endocrine disruptors and consequent reproductive toxicity in different animal models is well known; however, the adverse effects on reproductive cycle are less well understood. The potential reproductive toxicity of tributyltin (TBT) on regular reproductive cycling of female rats was examined. Wistar female rats (12 wk old, weighing approximately 230 g) were divided into two groups: control (vehicle, ethanol 0.4%) and tributyltin (100 ng/kg/d, 7 d/wk, for 16 d by gavage). Tributyltin significantly decreased the cycle regularity (%), duration of the reproductive cycle, the proestrus and diestrus phases, and number of epithelial cell in proestrus phase. TBT also increased the duration of metestrus and the number of cornified cells in this phase. Ovary weight and serum 17β-estradiol levels decreased markedly, accompanied by a significant increase in progesterone levels. Histological analysis showed apoptotic cells in corpus luteum and granulosa cells layer, with cystic follicles after TBT exposure. Tributyltin also elevated number of atretic follicles and corpoa lutea. The micronucleus (MN) test, using Chinese hamster ovary cells, demonstrated a concentration-dependent mutagenic effect of TBT, and at 2.0 × 10(-2)ng/ml most of the cells were nonviable. The toxic potential of TBT over the reproductive cycle may be attributed to changes found in the ovarian weight, unbalanced levels of sexual female hormones, and number of ovarian follicles and corpora lutea.
Raman Spectral Observation of a "New Phase" Observed in Nickel Electrodes Cycled to Failure
NASA Technical Reports Server (NTRS)
Loyselle, P. L.; Shan, X.; Cornilsen, B. C.; Reid, M. A.
1991-01-01
A "new phase" is reported in nickel electrodes from Ni/H boilerplate cells which were cycled to failure in electrolyte of variable kOH concentration. Raman spectra clearly show the presence of this phase, and these spectra have been used to quantify the amounts present in these electrodes (in the volume sampled by the laser beam) Raman spectroscopy has been found to be capable of differentiating the various phases which can be present in nickel .This differentiation is possible because of the structural variation observed for these phases. Ten of twelve electrodes examined contain at least some of this new phase. The presence of this "new phase" correlates with cell failure, and it is proposed that the presence of this phase may play a role in early electrode failure.
He, Xiangfei; Sun, Fuguang; Guo, Fengfu; Wang, Kai; Gao, Yisheng; Feng, Yanfei; Song, Bin; Li, Wenzhi; Li, Yang
2017-01-26
Renal cell carcinoma (RCC) is one of the most common kidney cancers worldwide. Although great progressions have been made in the past decades, its morbidity and lethality remain increasing. Long noncoding RNAs (lncRNAs) are demonstrated to play significant roles in the tumorigenesis. This study aimed to investigate the detailed roles of lncRNA FTX in RCC cell proliferation and metastasis. Our results showed that the transcript levels of FTX in both clinical RCC tissues and the cultured RCC cells were significantly upregulated and associated with multiple clinical parameters of RCC patients, including familial status, tumor sizes, lymphatic metastasis, and TNM stages. With cell proliferation assays, colony formation assays, and cell cycle assays, we testified that knockdown of FTX in A498 and ACHIN cells with specific shRNAs inhibited cell proliferation rate, colony formation ability, and arrested cell cycle in the G0/G1 phase. FTX depletion also suppressed cell migration and invasion with Transwell assays and wound-healing assays. These data indicated the pro-oncogenic potential of FTX in RCC, which makes it a latent therapeutic target of RCC diagnosis and treatment in the clinic.
Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle
ERIC Educational Resources Information Center
Setalo, Gyorgy, Jr.
2013-01-01
Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…
Neurosecretory cells of the amygdaloid complex during estrous cycle.
Akhmadeev, A V; Kalimullina, L B
2005-02-01
Ultrastructure of neurosecretory cells of the dorsomedial nucleus of the cerebral amygdaloid complex (one of the main zones of sexual dimorphism) was studied in different phases of the estrous cycle. The characteristics of the "light" and "dark" cells change depending on the concentrations of sex steroids during estrus and metestrus.
Yong, Sheila T.; Wang, Xiao-Fan
2012-01-01
Background Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. Methods/Principal Findings Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. Conclusion: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle. PMID:22761665
BTG interacts with retinoblastoma to control cell fate in Dictyostelium.
Conte, Daniele; MacWilliams, Harry K; Ceccarelli, Adriano
2010-03-12
In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell) fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the evolution of multicellularity.
Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle
Gérard, Claude; Goldbeter, Albert
2009-01-01
We propose an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, and protein synthesis or degradation. Growth factors (GFs) trigger the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4–6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. The model accounts for the following major properties of the mammalian cell cycle: (i) repetitive cell cycling in the presence of suprathreshold amounts of GF; (ii) control of cell-cycle progression by the balance between antagonistic effects of the tumor suppressor retinoblastoma protein (pRB) and the transcription factor E2F; and (iii) existence of a restriction point in G1, beyond which completion of the cell cycle becomes independent of GF. The model also accounts for endoreplication. Incorporating the DNA replication checkpoint mediated by kinases ATR and Chk1 slows down the dynamics of the cell cycle without altering its oscillatory nature and leads to better separation of the S and M phases. The model for the mammalian cell cycle shows how the regulatory structure of the Cdk network results in its temporal self-organization, leading to the repetitive, sequential activation of the four Cdk modules that brings about the orderly progression along cell-cycle phases. PMID:20007375
BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori.
Pan, Minhui; Hong, Kaili; Chen, Xiangyun; Pan, Chun; Chen, Xuemei; Kuang, Xiuxiu; Lu, Cheng
2013-04-01
Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G 1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G 1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation.
Shimura, Tsutomu; Hamada, Nobuyuki; Sasatani, Megumi; Kamiya, Kenji; Kunugita, Naoki
2014-01-01
Cyclin D1 is a mitogenic sensor that responds to growth signals from the extracellular environment and regulates the G1-to-S cell cycle transition. When cells are acutely irradiated with a single dose of 10 Gy, cyclin D1 is degraded, causing cell cycle arrest at the G1/S checkpoint. In contrast, cyclin D1 accumulates in human tumor cells that are exposed to long-term fractionated radiation (0.5 Gy/fraction of X-rays). In this study we investigated the effect of fractionated low-dose radiation exposure on cyclin D1 localization in 3 strains of normal human fibroblasts. To specifically examine the nuclear accumulation of cyclin D1, cells were treated with a hypotonic buffer containing detergent to remove cytoplasmic cyclin D1. Proliferating cell nuclear antigen (PCNA) immunofluorescence was used to identify cells in S phase. With this approach, we observed S-phase nuclear retention of cyclin D1 following low-dose fractionated exposures, and found that cyclin D1 nuclear retention increased with exposure time. Cells that retained nuclear cyclin D1 were more likely to have micronuclei than non-retaining cells, indicating that the accumulation of nuclear cyclin D1 was associated with genomic instability. Moreover, inhibition of the v-akt murine thymoma viral oncogene homolog (AKT) pathway facilitated cyclin D1 degradation and eliminated cyclin D1 nuclear retention in cells exposed to fractionated radiation. Thus, cyclin D1 may represent a useful marker for monitoring long-term effects associated with exposure to low levels of radiation. PMID:24583467
Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre
2009-01-01
Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.
NASA Technical Reports Server (NTRS)
Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr
1996-01-01
Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.
NASA Astrophysics Data System (ADS)
Grigoryan, E.; Anton, H.-J.; Mitashov, V.
Regenerative response following local injury or tissue removal in urodele amphibians is dependent on cell cycle entry of cells sources for regeneration in the remaining tissue. In a number of our experiments performed aboard biosatellites in orbital flights and fast rotated clinostat we found enhanced proliferative activity and, as a result, regeneration quicker than that in controls. In each investigated case an activity of cell proliferation evaluated by 3H-thymidine radioautography and BrdU assay at the early stages of lens, retina, forelimb and tail regeneration in newts was about 1,2-1,7 fold higher both under conditions of real and physiological weightlessness as compared with controls. Faster S-phase entry under conditions of micro- g was demonstrated by cycling multipotent cells as well as by differentiated postmitotic cells both participated in regeneration. Important, that cycling cells outside areas of regeneration were also found as displayed faster cellular growth. In our papers (1,2,3,4) we offered some hypothesis that could explain mechanisms of low g stimulating effect upon cell growth in regeneration in Urodela. In particular, changes in expression of some growth factors and their receptors, as well as the synthesis of specific range of generalized stress proteins (AGSPs) were proposed. However, in fact, molecular mechanisms of micro- g effect upon cell proliferation are mediated by changes on organismic level induced by micro- g environment. Some of them which are able to trigger off signaling changes on the cellular level that, in turn, evoke cells to grow faster would be represented in our report. 1. Mitashov V. et al. Adv. Space Res. 1996. 17 (6/7): 241-255 2. Anton H.-J. et al. Adv. Space Res. 1996. 17 (6/7): 55-65 3. Grigoryan E. et al. Adv. Space Res. 1998. 22 (2): 293-301 4. Grigoryan E. et al. Adv. Space Res. 2002. 30 (4): 757-764
Lee, Jong-Gyu; Kim, Ji-Hyun; Ahn, Ji-Hye; Lee, Kyung-Tae; Baek, Nam-In; Choi, Jung-Hye
2013-05-01
Jaceosidin, a flavonoid derived from Artemisia princeps (Japanese mugwort), has been shown to inhibit the growth of several human cancer cells, However, the exact mechanism for the cytotoxic effect of jaceosidin is not completely understood. In this study, we investigated the molecular mechanism involved in the antiproliferative effect of jaceosidin in human endometrial cancer cells. We demonstrated that jaceosidin is a more potent inhibitor of cell growth than cisplatin in human endometrial cancer cells. In contrast, jaceosidin-induced cytotoxicity in normal endometrial cells was lower than that observed for cisplatin. Jaceosidin induced G2/M phase cell cycle arrest and modulated the levels of cyclin B and p-Cdc2 in Hec1A cells. Knockdown of p21 using specific siRNAs partially abrogated jaceosidin-induced cell growth inhibition. Additional mechanistic studies revealed that jaceosidin treatment resulted in an increase in phosphorylation of Cdc25C and ATM-Chk1/2. Ku55933, an ATM inhibitor, reversed jaceosidin-induced cell growth inhibition, in part. Moreover, jaceosidin treatment resulted in phosphorylation of ERK, and pretreatment with the ERK inhibitor, PD98059, attenuated cell growth inhibition by jaceosidin. These data suggest that jaceosidin, isolated from Japanese mugwort, modulates the ERK/ATM/Chk1/2 pathway, leading to inactivation of the Cdc2-cyclin B1 complex, followed by G2/M cell cycle arrest in endometrial cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inactivation of Mirk/Dyrk1b Kinase Targets Quiescent Pancreatic Cancer Cells *
Ewton, Daina Z.; Hu, Jing; Vilenchik, Maria; Deng, Xiaobing; Luk, Kin-chun; Polonskaia, Ann; Hoffman, Ann F.; Zipf, Karen; Boylan, John F.; Friedman, Eileen A.
2011-01-01
A major problem in the treatment of cancer arises from quiescent cancer cells that are relatively insensitive to most chemotherapeutic drugs and radiation. Such residual cancer cells can cause tumor regrowth or recurrence when they re-enter the cell cycle. Earlier studies demonstrated that levels of the serine/theronine kinase Mirk/dyrk1B are elevated up to 10-fold in quiescent G0 tumor cells, that Mirk uses several mechanisms to block cell cycling, and that Mirk increases expression of antioxidant genes which lower ROS levels and increase quiescent cell viability. We now show that a novel small molecule Mirk kinase inhibitor blocked tumor cells from undergoing reversible arrest in a quiescent G0 state and enabled some cells to exit quiescence. The inhibitor increased cycling in Panc1, AsPc1 and SW620 cells that expressed Mirk, but not in HCT116 cells that did not. Mirk kinase inhibition elevated ROS levels and DNA damage detected by increased phosphorylation of the histone protein H2AX and by S phase checkpoints. The Mirk kinase inhibitor increased cleavage of the apoptotic proteins PARP and caspase 3, and increased tumor cell kill several-fold by gemcitabine and cisplatin. A phenocopy of these effects occurred following Mirk depletion, showing drug specificity. In prior studies Mirk knockout or depletion had no detectable effect on normal tissue, suggesting that the Mirk kinase inhibitor could have a selective effect on cancer cells expressing elevated levels of Mirk kinase. PMID:21878655
Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line.
Freiburghaus, C; Janicke, B; Lindmark-Månsson, H; Oredsson, S M; Paulsson, M A
2009-06-01
Food components modify the risk of cancer at a large number of sites but the mechanism of action is unknown. In the present investigation, we studied the effect of the peptide lactoferricin derived from bovine milk lactoferrin on human colon cancer CaCo-2 cells. The cells were either untreated or treated with 2.0, 0.2, or 0.02 microM lactoferricin. Cell cycle kinetics were investigated with a bromodeoxyuridine DNA flow cytometric method. The results show that lactoferricin treatment slightly but significantly prolonged the S phase of the cell cycle. Lactoferricin treatment lowered the level of cyclin E1, a protein involved in the regulation of genes required for G(1)/S transition and consequently for efficient S phase progression. The slight prolongation of the S phase resulted in a reduction of cell proliferation, which became more apparent after a long treatment time.
Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin
2014-03-28
Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined themore » impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.« less
Chilampalli, Chandeshwari; Guillermo, Ruth; Zhang, Xiaoying; Kaushik, Radhey S; Young, Alan; Zeman, David; Hildreth, Michael B; Fahmy, Hesham; Dwivedi, Chandradhar
2011-10-20
Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm2, 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice.Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various signaling pathways. Magnolol could be a potentially safe and potent anticarcinogenic agent against skin cancer.
2011-01-01
Background Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. Methods UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Results Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm2, 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Conclusions Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various signaling pathways. Magnolol could be a potentially safe and potent anticarcinogenic agent against skin cancer. PMID:22014088
Robust G2 pausing of adult stem cells in Hydra.
Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte
2014-01-01
Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Chen, Lixiang; Wang, Cong; Li, Shun; Yu, Xin; Liu, Xue; Ren, Rongrong; Liu, Wenwen; Zhou, Xiaojing; Zhang, Xiaonan; Zhou, Xiaohui
2016-04-28
Chlamydiae, obligate intracellular bacteria, are associated with a variety of human diseases. The chlamydial life cycle undergoes a biphasic development: replicative reticulate bodies (RBs) phase and infectious elementary bodies (EBs) phase. At the end of the chlamydial intracellular life cycle, EBs have to be released to the surrounded cells. Therefore, the interactions between Chlamydiae and cell death pathways could greatly influence the outcomes of Chlamydia infection. However, the underlying molecular mechanisms remain elusive. Here, we investigated host cell death after Chlamydia infection in vitro, in L929 cells, and showed that Chlamydia infection induces cell necrosis, as detected by the propidium iodide (PI)-Annexin V double-staining flow-cytometric assay and Lactate dehydrogenase (LDH) release assay. The production of reactive oxygen species (ROS), an important factor in induction of necrosis, was increased after Chlamydia infection, and inhibition of ROS with specific pharmacological inhibitors, diphenylene iodonium (DPI) or butylated hydroxyanisole (BHA), led to significant suppression of necrosis. Interestingly, live-cell imaging revealed that Chlamydia infection induced lysosome membrane permeabilization (LMP). When an inhibitor upstream of LMP, CA-074-Me, was added to cells, the production of ROS was reduced with concomitant inhibition of necrosis. Taken together, our results indicate that Chlamydia infection elicits the production of ROS, which is dependent on LMP at least partially, followed by induction of host-cell necrosis. To our best knowledge, this is the first live-cell-imaging observation of LMP post Chlamydia infection and report on the link of LMP to ROS to necrosis during Chlamydia infection.
Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1?
Velappan, Yazhini; Signorelli, Santiago; Considine, Michael J
2017-10-17
Quiescence is a fundamental feature of plant life, which enables plasticity, renewal and fidelity of the somatic cell line. Cellular quiescence is defined by arrest in a particular phase of the cell cycle, typically G1 or G2; however, the regulation of quiescence and proliferation can also be considered across wider scales in space and time. As such, quiescence is a defining feature of plant development and phenology, from meristematic stem cell progenitors to terminally differentiated cells, as well as dormant or suppressed seeds and buds. While the physiology of each of these states differs considerably, each is referred to as 'cell cycle arrest' or 'G1 arrest'. Here the physiology and molecular regulation of (1) meristematic quiescence, (2) dormancy and (3) terminal differentiation (cell cycle exit) are considered in order to determine whether and how the molecular decisions guiding these nuclear states are distinct. A brief overview of the canonical cell cycle regulators is provided, and the genetic and genomic, as well as physiological, evidence is considered regarding two primary questions: (1) Are the canonical cell cycle regulators superior or subordinate in the regulation of quiescence? (2) Are these three modes of quiescence governed by distinct molecular controls? Meristematic quiescence, dormancy and terminal differentiation are each predominantly characterized by G1 arrest but regulated distinctly, at a level largely superior to the canonical cell cycle. Meristematic quiescence is intrinsically linked to non-cell-autonomous regulation of meristem cell identity, and particularly through the influence of ubiquitin-dependent proteolysis, in partnership with reactive oxygen species, abscisic acid and auxin. The regulation of terminal differentiation shares analogous features with meristematic quiescence, albeit with specific activators and a greater role for cytokinin signalling. Dormancy meanwhile appears to be regulated at the level of chromatin accessibility, by Polycomb group-type histone modifications of particular dormancy genes. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Nuclear incorporation of iron during the eukaryotic cell cycle
Robinson, Ian; Yang, Yang; Zhang, Fucai; ...
2016-10-18
Scanning X-ray fluorescence microscopy has been used to probe the distribution of S, P and Fe within cell nuclei. Nuclei, which may have originated at different phases of the cell cycle, are found to show very different levels of Fe present with a strongly inhomogeneous distribution. P and S signals, presumably from DNA and associated nucleosomes, are high and relatively uniform across all the nuclei; these agree with X-ray phase contrast projection microscopy images of the same samples. Finally, we discuss possible reasons for the Fe incorporation.
Ferreira de Oliveira, José Miguel P; Pacheco, Ana Rita; Coutinho, Laura; Oliveira, Helena; Pinho, Sónia; Almeida, Luis; Fernandes, Eduarda; Santos, Conceição
2018-03-01
Osteosarcoma chemotherapy is often limited by chemoresistance, resulting in poor prognosis. Combined chemotherapy could, therefore, be used to prevent resistance to chemotherapeutics. Here, the effects of fisetin on osteosarcoma cells were investigated, as well as cytostatic potential in combination with the anti-cancer drug etoposide. For this, different osteosarcoma cell lines were treated with fisetin, with etoposide and with respective combinations. Fisetin was associated with decrease in colony formation in Saos-2 and in U2OS cells but not in MG-63 cells. Notwithstanding, upon evaluation of cellular growth by crystal violet assay, MG-63 and Saos-2 cells showed decreased cell proliferation at 40 and 20 µM fisetin, respectively. Depending on the relative concentrations, fisetin:etoposide combinations showed negative-to-positive interactions on the inhibition of cell proliferation. In addition, fisetin treatment up to 50 µM for 48 h resulted in G2-phase cell cycle arrest. Regardless of the combination, fisetin:etoposide increased % cells in G2-phase and decreased % cells in G1-phase. In addition, mixtures with more positive combined effects induced increased % cells in S-phase. Compared to etoposide treatment, these combinations resulted in decreased levels of cyclins B1 and E1, pointing to the role of these regulators in fisetin-induced cell cycle arrest. In conclusion, these results show that the combination of fisetin with etoposide has higher anti-proliferative effects in osteosarcoma associated with cell cycle arrest, allowing the use of lower doses of the chemotherapeutic agent, which has important implications for osteosarcoma treatment.
Spitzer, Jan
2013-04-01
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Picazo, R A; García Ruiz, J P; Santiago Moreno, J; González de Bulnes, A; Muñoz, J; Silván, G; Lorenzo, P L; Illera, J C
2004-11-01
The actions of prolactin (PRL) on target cells depend on the type of prolactin receptor (PRLr) predominantly expressed, particularly whether the long PRLr isoform is expressed. The aims of this study were to determine the cellular localization and the changes in expression of long and short PRLr isoforms in sheep ovary throughout the estrous cycle. Long and short PRLrs were localized mostly in the same ovarian cells. Maximum signal intensity, particularly for long PRLrs, was found in stromal cells surrounding primordial and primary follicles, and, for both PRLrs, in granulosa cells of preantral follicles and in luteal cells. Moderate signal intensity for PRLrs was found in theca cells of preantral to ovulatory follicles, and in granulosa cells of antral follicles up to the gonadotropin-dependent stage. Decreasing immunoreactivity to PRLrs was found in granulosa cells of gonadotropin-dependent to ovulatory follicles. For long PRLrs in particular, no signal was found in mural granulosa cells of gonadotropin-dependent follicles; for both isoforms, no signal was found in most granulosa cells of ovulatory follicles. In primordial to gonadotropin-dependent follicles, cellular localization of PRLr was similar on days 0, 10 and 15 of the cycle. Oocytes consistently showed positive immunostaining for PRLrs. Comparative RT-PCR analysis of long and short PRLr expression showed that the short isoform is evenly expressed throughout the estrous cycle, whereas the expression of the long form increases at the time of estrus and decreases at mid-luteal phase and at the onset of the follicular phase. Expression of long PRLrs was greater than that of short PRLrs on day 0 of cycle; expression of both isoforms was similar on day 10 and on day 15, long PRLrs expression was lower than that of short PRLrs. Our results indicate that in sheep ovary, the maximum responsiveness to PRL might occur during the preovulatory phase of the estrous cycle.
Ye, Weizhen; Blain, Stacy W
2010-08-01
A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.
Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.
Risal, Sanjiv; Adhikari, Deepak; Liu, Kui
2016-01-01
Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.
Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen
2016-06-01
The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0.75 µg/g taraxerol acetate injection reduced the tumor volume from 1.3 cm3 in the PBS-treated group (control) to 0.67 and 0.25 cm3, respectively.
Changes in cell-cycle kinetics responsible for limiting somatic growth in mice
Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey
2009-01-01
In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488
Protein PSMD8 may mediate microgravity-induced cell cycle arrest
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning
Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line
George, Joseph; Banik, Naren L.; Ray, Swapan K.
2011-01-01
Human telomerase reverse transcriptase (hTERT) is the catalytic component of telomerase that facilitates tumor cell invasion and proliferation. Telomerase and hTERT are remarkably upregulated in majority of cancers including glioblastoma. Interferon-gamma (IFN-γ) modulates several cellular activities including cell cycle and multiplication through transcriptional regulation. The present investigation was designed to unravel the molecular mechanisms of the inhibition of cell proliferation, migration, and invasion of human glioblastoma SNB-19 and LN-18 cell lines after knockdown of hTERT using a plasmid vector based siRNA and concurrent treatment with IFN-γ. We observed more than 80% inhibition of cell proliferation, migration, and invasion of both cell lines after the treatment with combination of hTERT siRNA and IFN-γ. Our studies also showed accumulation of apoptotic cells in subG1 phase and an increase in cell population in G0/G1 with a reduction in G2/M phase indicating cell cycle arrest in G0/G1 phase for apoptosis. Semiquantitative and real-time RT-PCR analyses demonstrated significant downregulation of c- Myc and upregulation of p21 Waf1 and p27 Kip1. Western blotting confirmed the downregulation of the molecules involved in cell proliferation, migration, and invasion and also showed upregulation of cell cycle inhibitors. In conclusion, our study demonstrated that knockdown of hTERT siRNA and concurrent treatment with IFN-γ effectively inhibited cell proliferation, migration, and invasion in glioblastoma cells through downregulation of the molecules involved in these processes and cell cycle inhibition. Therefore, the combination of hTERT siRNA and IFN-γ offers a potential therapeutic strategy for controlling growth of human glioblastoma cells. PMID:20394835
Sulforaphane inhibits mitotic clonal expansion during adipogenesis through cell cycle arrest.
Choi, Kyeong-Mi; Lee, Youn-Sun; Sin, Dong-Mi; Lee, Seunghyun; Lee, Mi Kyeong; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo
2012-07-01
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Buisson, Rémi; Boisvert, Jessica L.; Benes, Cyril H.; Zou, Lee
2015-01-01
The ATR-Chk1 pathway is critical for DNA damage responses and cell cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here, we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells. PMID:26365377
Spontaneous mutation during the sexual cycle of Neurospora crassa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watters, M.K.; Stadler, D.R.
The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less
Shibui, S; Hoshino, T; Iwasaki, K; Nomura, K; Jastreboff, M M
1989-05-01
A method of identifying thymidylate synthase (TS) at the cellular level was developed using anti-TS monoclonal antibody (M-TS-4), a monoclonal antibody created against purified TS from a HeLa cell line. In HeLa cells and four human glioma cell lines (U-251, U-87, 343-MGA, and SF-188), TS was identified primarily in the cytoplasm. Autoradiographic and flow cytometric studies showed that TS appeared mainly in the G1 phase and subsided early in the S phase; thus, the G1 phase can be divided into TS-positive and -negative fractions. Nuclear TS was not demonstrated unequivocally with M-TS-4, and the relationship between nuclear TS and DNA synthesis could not be determined. Although the percentage of TS-positive cells was larger than the S-phase fraction measured by autoradiography after a pulse of tritiated thymidine or by the immunoperoxidase method using BUdR, the ratios were within a similar range (1.2-1.4) in all cell lines studied. Therefore, the S-phase fraction can be estimated indirectly from the percentage of TS-positive cells measured by M-TS-4. Because the emergence of TS detected by our method is cell cycle dependent, M-TS-4 may be useful for biochemical studies of TS and for cytokinetic analysis.
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M.
2016-01-01
Stomach cancer carcinomatosis peritonitis (SCCP) is a recalcitrant disease. The goal of the present study was to establish an in vitro-in vivo-like imageable model of SCCP to develop cell-cycle-based therapeutics of SCCP. We established 3-D Gelfoam® histoculture and tumor-sphere models of SCCP. FUCCI-expressing MKN-45 stomach cancer cells were transferred to express the fluorescence ubiquinized cell-cycle indicator (FUCCI). FUCCI-expressing MKN-45 cells formed spheres on agarose or on Gelfoam® grew into tumor-like structures with G0/G1 cancer cells in the center and S/G2 cancer cells located in the surface as indicated by FUCCI imaging when the cells fluoresced red or green, respectively. We treated FUCCI-expressing cancer cells forming SCCP tumors in Gelfoam® histoculture with OBP-301, cisplatinum (CDDP), or paclitaxel. CDDP or paclitaxel killed only cycling cancer cells and were ineffective against G1/G2 MKN-45 cells in tumors growing on Gelfoam®. In contrast, the telomerase-dependent adenovirus OBP-301 decoyed the MKN-45 cells in tumors on Gelfoam® to cycle from G0/G1 phase to S/G2 phase and reduced their viability. CDDP- or paclitaxel-treated MKN-45 tumors remained quiescent and did not change in size. In contrast, OB-301 reduced the size of the MKN-45 tumors on Gelfoam®. We examined the cell cycle-related proteins using Western blotting. CDDP increased the expression of p53 and p21 indicating cell cycle arrest. In contrast, OBP-301 decreased the expression of p53 and p21 Furthermore, OBP-301 increased the expression of E2F and pAkt as further indication of cell cycle decoy. This 3-D Gelfoam® histoculture and FUCCI imaging are powerful tools to discover effective therapy of SCCP such as OBP-301. PMID:27673332
Sun, Xiaoming; Bizhanova, Aizhan; Matheson, Timothy D.; Yu, Jun; Zhu, Lihua Julie
2017-01-01
ABSTRACT The Ki-67 protein is widely used as a tumor proliferation marker. However, whether Ki-67 affects cell cycle progression has been controversial. Here we demonstrate that depletion of Ki-67 in human hTERT-RPE1, WI-38, IMR90, and hTERT-BJ cell lines and primary fibroblast cells slowed entry into S phase and coordinately downregulated genes related to DNA replication. Some gene expression changes were partially relieved in Ki-67-depleted hTERT-RPE1 cells by codepletion of the Rb checkpoint protein, but more thorough suppression of the transcriptional and cell cycle defects was observed upon depletion of the cell cycle inhibitor p21. Notably, induction of p21 upon depletion of Ki-67 was a consistent hallmark of cell types in which transcription and cell cycle distribution were sensitive to Ki-67; these responses were absent in cells that did not induce p21. Furthermore, upon Ki-67 depletion, a subset of inactive X (Xi) chromosomes in female hTERT-RPE1 cells displayed several features of compromised heterochromatin maintenance, including decreased H3K27me3 and H4K20me1 labeling. These chromatin alterations were limited to Xi chromosomes localized away from the nuclear lamina and were not observed in checkpoint-deficient 293T cells. Altogether, our results indicate that Ki-67 integrates normal S-phase progression and Xi heterochromatin maintenance in p21 checkpoint-proficient human cells. PMID:28630280
Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael
2017-02-01
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.