Science.gov

Sample records for cell cycle-related regulatory

  1. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    PubMed

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  2. Radiation-induced, cell cycle-related gene expression in aging hematopoietic stem cells: enigma of their recovery.

    PubMed

    Hirabayashi, Yoko

    2014-03-01

    This paper reviews quantitative and qualitative studies conducted to identify changes in the characteristics of hematopoietic stem/progenitor cells (HSCs/HPCs) with or without radiation exposure. The numerical recovery of HSCs/HPCs after radiation exposure is lower than for other types of cells, an effect that may depend on hierarchical ordering of generation age during blood cell differentiation, from primitive HSCs to various differentiated HPCs. Studies are in progress to evaluate gene expression in bone marrow cells and cells in the lineage-negative, c-Kit(+), stem cell antigen(+) (LKS) fraction from 21-month-old mice, with or without radiation exposure. Preliminary data suggest that cell cycle-related genes, that is, cyclin D1 (Ccnd1), phosphatidylinositol 3 kinase regulatory subunit polypeptide 1 (PiK3r1), and Fyn, are upregulated solely in the LKS fraction from 21-month-old mice irradiated at 6 weeks of age, compared with the LKS fraction from age-matched nonirradiated control mice. Additional studies may provide evidence that the aging phenotype is exaggerated following exposure to ionizing radiation, specifically in the LKS fraction. © 2014 New York Academy of Sciences.

  3. Expression of cell cycle-related gene products in different forms of primary versus recurrent PVNS.

    PubMed

    Weckauf, Helgard; Helmchen, Birgit; Hinz, Ulf; Meyer-Scholten, Carola; Aulmann, Sebastian; Otto, Herwart F; Berger, Irina

    2004-07-08

    Expression patterns of cell cycle regulating gene products and Ki-67 in proliferating synovial cells of primary and recurrent pigmented villonodular synovitis (PVNS) in localized and diffuse lesions were examined by immunohistochemistry. Alterations of cell cycle-related proteins were seen in 98.7% of analyzed lesions. Both RB- and p53 pathways play a role in cell cycle dysregulation in PVNS. The RB pathway was more frequently altered in primary disease, while alterations of the p53 pathway seemed to be more important in recurrent lesions, regardless of the histomorphological type of disease. Ki-67 proliferation rate was elevated in recurrent tumors. Copyright 2004 Elsevier Ireland Ltd.

  4. Propranolol enhances cell cycle-related gene expression in pressure overloaded hearts

    PubMed Central

    Musumeci, Marco; Maccari, Sonia; Sestili, Paola; Signore, Michele; Molinari, Paola; Ambrosio, Caterina; Stati, Tonino; Colledge, William H; Grace, Andrew A; Catalano, Liviana; Marano, Giuseppe

    2011-01-01

    BACKGROUND AND PURPOSE Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the β-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload. EXPERIMENTAL APPROACH Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg−1·day−1) was administered in drinking water for 14 days. KEY RESULTS Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL−1, blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. β-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of β-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a β1-adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice. CONCLUSIONS AND IMPLICATIONS Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via β2-adrenoceptor-mediated mechanisms. PMID:21615725

  5. A putative role for cell cycle-related proteins in microtubule-based neuroplasticity.

    PubMed

    Schmetsdorf, Stefanie; Arnold, Erik; Holzer, Max; Arendt, Thomas; Gärtner, Ulrich

    2009-03-01

    Cyclins and cyclin-dependent kinases (Cdks) are the main components that control the orderly progression through cell cycle. In the mature nervous system, terminally differentiated neurons are permanently withdrawn from cell cycle, as mitotic quiescence is essential for the functional stability of the complexly wired neuronal system. Recently, we characterized the expression and colocalization of cyclins and Cdks in terminally differentiated pyramidal neurons. The functional impact of the expression of cell cycle-related proteins in differentiated neurons, however, has not been elucidated yet. In the present study, we show by immunoelectron microscopy and immunobiochemical methods an association of cyclins and Cdks with the microtubule network. Cyclins D, E, A and B as well as Cdks 1, 2 and 4 were also found to be associated with the microtubule-associated protein tau. Cyclin/Cdk complexes, in addition, exhibit kinase activity towards tau. In vitro, downregulation of cyclins and Cdks by a siRNA approach and by pharmacological inhibition promotes neurite extension. Taken together, these results indicate that the expression of cell cycle-related proteins in terminal differentiated neurons is associated with physiological functions beyond cell cycle control that might be involved in microtubule-based mechanisms of neuroplasticity.

  6. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins.

    PubMed

    Zheng, Nana; Wang, Zhiwei; Wei, Wenyi

    2016-04-01

    F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.

  7. Cell cycle-related protein expression in vascular dementia and Alzheimer's disease.

    PubMed

    Smith, M Z; Nagy, Z; Esiri, M M

    1999-08-13

    Recent findings from our and other laboratories indicate that cell cycle-related phenomena may play a key role in the formation of Alzheimer-type pathology and neuronal cell death in both Alzheimer's and cerebro-vascular diseases. In this study we examine the expression patterns of cyclins A, B1, D1 and E in neuronal nuclei in the hippocampus in autopsied healthy elderly individuals, Alzheimer's disease patients and subjects suffering from cerebrovascular disease with and without co-existing Alzheimer's disease. Nuclear cyclin B1 and cyclin E expression was detected in hippocampal neurones in each subject category. However, cyclin B1 expression was significantly elevated in the CA1 of patients suffering from cerebro-vascular disease alone, while cyclin E expression was significantly higher in the CA4 subfield in patients suffering from mixed Alzheimer's and cerebro-vascular diseases compared to subjects in other categories. We hypothesize that cell cycle re-entry may occur in healthy elderly people leading to age-related cell death and mild Alzheimer-type pathology in the hippocampus. However, in pathological conditions, the cell cycle arrest may lead either to the development of severe Alzheimer-related pathology or to excess apoptotic cell death as in vascular dementia.

  8. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  9. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression

    PubMed Central

    Kong, Yan; Li, Ke; Fu, Tingting; Wan, Chao; Zhang, Dongdong; Song, Hang; Zhang, Yao; Liu, Na; Gan, Zhenji; Yuan, Liudi

    2016-01-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins. PMID:27626494

  10. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression.

    PubMed

    Kong, Yan; Li, Ke; Fu, Tingting; Wan, Chao; Zhang, Dongdong; Song, Hang; Zhang, Yao; Liu, Na; Gan, Zhenji; Yuan, Liudi

    2016-10-18

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins.

  11. Nuclear binding of cell cycle-related proteins: cyclin A versus proliferating cell nuclear antigen (PCNA).

    PubMed

    Stivala, L A; Scovassi, A I; Bianchi, L; Prosperi, E

    1995-01-01

    We have investigated the cell cycle-dependent nuclear binding of cyclin A and of the proliferating cell nuclear antigen (PCNA) in asynchronously growing human fibroblasts. To this purpose, we have applied flow cytometry immunofluorescence, a powerful technique for elucidating the cell cycle phase during which the nuclear binding occurs. We have observed that, in striking contrast with the distribution of nuclear-bound PCNA which is restricted to S phase, the immunofluorescence signal of the nuclear-bound form of cyclin A is high in the G1 and G2 phases of the cell cycle. These results suggest the involvement of nuclear-bound cyclin A in the G1/S and G2/M phase transitions.

  12. Regulatory T cell memory

    PubMed Central

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  13. Cell cycle-related genes p57kip2, Cdk5 and Spin in the pathogenesis of neural tube defects.

    PubMed

    Li, Xinjun; Yang, Zhong; Zeng, Yi; Xu, Hong; Li, Hongli; Han, Yangyun; Long, Xiaodong; You, Chao

    2013-07-15

    In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an important role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.

  14. [Regulatory T cells].

    PubMed

    Marinić, Igor; Gagro, Alenka; Rabatić, Sabina

    2006-12-01

    Regulatory T-cells are a subset of T cells that have beene extensively studied in modern immunology. They are important for the maintenance of peripheral tolerance, and have an important role in various clinical conditions such as allergy, autoimmune disorders, tumors, infections, and in transplant medicine. Basically, this population has a suppressive effect on the neighboring immune cells, thus contributing to the local modulation and control of immune response. There are two main populations of regulatory T cells - natural regulatory T cells, which form a distinct cellular lineage, develop in thymus and perform their modulatory action through direct intercellular contact, along with the secreted cytokines; and inducible regulatory T cells, which develop in the periphery after contact with the antigen that is presented on the antigen presenting cell, and their primary mode of action is through the interleukin 10 (IL-10) and transforming growth factor beta (TGF-alpha) cytokines. Natural regulatory T cells are activated through T cell receptor after contact with specific antigen and inhibit proliferation of other T cells in an antigen independent manner. One of the major difficulties in the research of regulatory T cells is the lack of specific molecular markers that would identify these cells. Natural regulatory T cells constitutively express surface molecule CD25, but many other surface and intracellular molecules (HLA-DR, CD122, CD45RO, CD62, CTLA-4, GITR, PD-1, Notch, FOXP3, etc.) are being investigated for further phenotypic characterization of these cells. Because regulatory T cells have an important role in establishing peripheral tolerance, their importance is manifested in a number of clinical conditions. In the IPEX syndrome (immunodysregulation, polyendocrinopathy and enteropathy, X-linked), which is caused by mutation in Foxp3 gene that influences the development and function of regulatory T cells, patients develop severe autoimmune reactions that

  15. Growth pattern switch of renal cells and expression of cell cycle related proteins at the early stage of diabetic nephropathy

    SciTech Connect

    Zhang Yanling; Shi Yonghong; Liu Yaling; Dong Hui; Liu, Maodong; Li Ying; Duan Huijun

    2007-11-09

    Renal hypertrophy, partly due to cell proliferation and hypertrophy, has been found correlated to renal function deterioration in diabetes mellitus. We screened the up-regulated cell cycle related genes to investigate cell growth and the expression of cell cycle regulating proteins at the early stage of diabetic nephropathy using STZ-induced diabetic rats. Cyclin E, CDK{sub 2} and P{sup 27} were found significantly up-regulated in diabetic kidney. Increased cell proliferation in the kidney was seen at day 3, peaked at day 5, and returned to normal level at day 30. Cyclin E and CDK{sub 2} expression also peeked at day 5 and P{sup 27} activity peaked at day 14. These findings indicate that a hyperplastic growth period of renal cells is followed by a hypertrophic growth period at the early stage of diabetes. The growth pattern switch may be regulated by cell cycle regulating proteins, Cyclin E, CDK{sub 2}, and P{sup 27}.

  16. Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber.

    PubMed

    Fu, F Q; Mao, W H; Shi, K; Zhou, Y H; Yu, J Q

    2010-01-01

    We investigated the temporal and spatial changes in cell division, endoreduplication and expression of cell cycle-related genes in developing cucumber fruits at 0-20 days after anthesis (DAA). Cell division was intense at 0-4 DAA and then decreased until to 8 DAA. Meanwhile, endoreduplication started at 4 DAA and increased gradually to 20 DAA, accompanied by an increase in fruit weight. Cell division was mainly observed in the exocarp, while endoreduplication occurred mostly in the endocarp and pulp. Among the six cell cycle-related genes examined, two mitotic cyclin genes (CycA and CycB) and CDKB had the highest transcript levels within 2 DAA, while transcripts of two CycD3 genes and CDKA peaked at 4 DAA and 20 DAA, respectively. Naphthaleneacetic acid (NAA), N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) and 24-epibrassinolide (EBR) all induced parthenocarpic growth as well as active cell division, and enhanced transcripts of cell cycle-related genes. In comparison, gibberellic acid (GA(3)) had little effect on the induction of parthenocarpy and transcripts of cell cycle-related genes. These results provide evidence for the important roles of cell division and endoreduplication during cucumber fruit development, and suggest the essential roles of cell cycle-related genes and plant growth substances in fruit development.

  17. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    SciTech Connect

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-02-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression.

  18. Cell cycle-related transformation of the E2F4-p130 repressor complex

    SciTech Connect

    Popov, Boris . E-mail: popov_478@hotmail.com; Chang, L.-S.; Serikov, Vladimir

    2005-10-28

    During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.

  19. Regulatory T cells.

    PubMed

    Thompson, Claire; Powrie, Fiona

    2004-08-01

    Regulatory T (TR) cells are a subset of T cells that function to control immune responses. Different populations of TR cells have been described, including thymically derived CD4(+)CD25+ TR cells and Tr1 cells induced in the periphery through exposure to antigen. A transcription factor, Foxp3, has been identified that is essential for CD4(+)CD25+ TR cell development and function. There is now evidence that transforming growth factor-beta might play a role in this pathway. CD4(+)CD25+ TR cells proliferate extensively in vivo in an antigen-specific manner, and can respond to both self and foreign peptides. By suppressing excessive immune responses, TR cells play a key role in the maintenance of self-tolerance, thus preventing autoimmune disease, as well as inhibiting harmful inflammatory diseases such as asthma and inflammatory bowel disease.

  20. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells.

    PubMed

    Hong, Bok Sil; Cho, Ji-Hoon; Kim, Hyunjung; Choi, Eun-Jeong; Rho, Sangchul; Kim, Jongmin; Kim, Ji Hyun; Choi, Dong-Sic; Kim, Yoon-Keun; Hwang, Daehee; Gho, Yong Song

    2009-11-25

    Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells. We present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles. Our study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.

  1. [Quercetin regulates cell cycle-related gene expression in a model of glucose-oxygen deprivation in astrocytes].

    PubMed

    Yao, Fang; Zhang, Lanlan; Yuan, Zhaohu; Zeng, Yong; Wu, Bingyi

    2013-09-01

    To study the effect of quercetin on gene expression in astrocytes after glucose-oxygen deprivation and the underlying mechanism. The primary cultured astrocytes were randomly divided into glucose-oxygen deprivation group (only treated with glucose-oxygen deprivation for 4 hours) and glucose-oxygen deprivation combined with quercetin-treated group (glucose-oxygen deprivation for 4 hours combined with quercetin treatment for 24 hours). Their mRNA expressions were analyzed by the large-scale oligo microarray. The differential genes obtained were further confirmed by real-time quantitative PCR (qRT-PCR). Compared with the glucose-oxygen deprivation group, the glucose-oxygen deprivation combined with quercetin-treated group presented the changes in the expressions of 31 genes that were related to cell cycle, of which 5 genes were up-regulated and 26 were down-regulated. Six of those differential genes were confirmed by qRT-PCR and the result of their differential expressions was consistent with that by large-scale oligo microarray. Quercetin can regulate some of cell cycle-related genes in astrocytes after glucose-oxygen deprivation.

  2. DNA alkylation and tumor induction in regenerating rat liver after cell cycle-related continuous N-nitrosodimethylamine infusion

    SciTech Connect

    Rabes, H.M.; Kerler, R.; Wilhelm, R.

    1983-01-01

    Synchronized regenerating rat liver after partial hepatectomy was used to study cell cycle-related DNA base alkylation and liver carcinogenesis. A continuous iv infusion of (/sup 14/C)N-nitrosodimethylamine (DMN) at a dose of 0.5 mg/kg/hour was given to inbred male Wistar Af/Han rats over a period of 8 hours either during the G1 phase, hydroxyurea-synchronized DNA synthesis, or the G2+M-phase of regenerating liver or to untreated rats (G0-phase liver--carcinogen dose, 1.5 mg/kg/hour). Two hours after the end of the infusion, the amount of 7-methylguanine was highest in the G0-phase liver, with a decrease in the G1 phase, the S-phase, and the G2+M-phase. After continuous DMN exposure, the O6-methylguanine:7-methylguanine ratio was lower in the S-phase and G2+M-phase livers than in the G0-phase and G1-phase livers, indicating an increased O6-methylguanine repair during DNA synthesis and the G2+M-phase. Liver tumors in rats treated by continuous DMN infusion either during the G0 phase or the S-phase developed only after carcinogen exposure during DNA synthesis.

  3. Targeting regulatory T cells.

    PubMed

    Ménétrier-Caux, Christine; Curiel, Tyler; Faget, Julien; Manuel, Manuarii; Caux, Christophe; Zou, Weiping

    2012-03-01

    Cancers express tumor-associated antigens that should elicit immune response to antagonize the tumor growth, but spontaneous immune rejection of established cancer is rare, suggesting an immunosuppressive environment hindering host antitumor immunity. Among the specific and active tumor-mediated mechanisms, CD4(+)CD25(high) T regulatory cells (Treg) are important mediators of active immune evasion in cancer. In this review, we will discuss Treg subpopulations and the mechanisms of their suppressive functions. Treg depletion improves endogenous antitumor immunity and the efficacy of active immunotherapy in animal models for cancer, suggesting that inhibiting Treg function could also improve the limited successes of human cancer immunotherapy. We will also discuss specific strategies for devising effective cancer immunotherapy targeting Treg.

  4. Regulatory T cells and COPD.

    PubMed

    Dancer, Rachel; Sansom, David M

    2013-12-01

    While the innate immune system has long been implicated in the pathogenesis of COPD, a role for the acquired immune system is less well studied. The increasing recognition that COPD shares features with autoimmune disease has led to interest in a potential role for regulatory T cells, which are intimately involved in the control of autoimmunity. The suggestion that regulatory T cell numbers are increased in patients with COPD may indicate their dysfunction or resistance to suppression by target cells. Investigation of regulatory T cells may therefore be of importance in understanding the inflammation and tissue damage that occurs in patients with COPD who cease smoking.

  5. Anti-regulatory T cells.

    PubMed

    Andersen, Mads Hald

    2017-04-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells-termed anti-regulatory T cells (anti-Tregs)-that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.

  6. Demethylation and alterations in the expression level of the cell cycle-related genes as possible mechanisms in arsenic trioxide-induced cell cycle arrest in human breast cancer cells.

    PubMed

    Moghaddaskho, Farima; Eyvani, Haniyeh; Ghadami, Mohsen; Tavakkoly-Bazzaz, Javad; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2017-02-01

    Arsenic trioxide (As2O3) has been used clinically as an anti-tumor agent. Its mechanisms are mostly considered to be the induction of apoptosis and cell cycle arrest. However, the detailed molecular mechanisms of its anti-cancer action through cell cycle arrest are poorly known. Furthermore, As2O3 has been shown to be a potential DNA methylation inhibitor, inducing DNA hypomethylation. We hypothesize that As2O3 may affect the expression of cell cycle regulatory genes by interfering with DNA methylation patterns. To explore this, we examined promoter methylation status of 24 cell cycle genes in breast cancer cell lines and in a normal breast tissue sample by methylation-specific polymerase chain reaction and/or restriction enzyme-based methods. Gene expression level and cell cycle distribution were quantified by real-time polymerase chain reaction and flow cytometric analyses, respectively. Our methylation analysis indicates that only promoters of RBL1 (p107), RASSF1A, and cyclin D2 were aberrantly methylated in studied breast cancer cell lines. As2O3 induced CpG island demethylation in promoter regions of these genes and restores their expression correlated with DNA methyltransferase inhibition. As2O3 also induced alterations in messenger RNA expression of several cell cycle-related genes independent of demethylation. Flow cytometric analysis revealed that the cell cycle arrest induced by As2O3 varied depending on cell lines, MCF-7 at G1 phase and both MDA-MB-231 and MDA-MB-468 cells at G2/M phase. These changes at transcriptional level of the cell cycle genes by the molecular mechanisms dependent and independent of demethylation are likely to represent the mechanisms of cell cycle redistribution in breast cancer cells, in response to As2O3 treatment.

  7. Regulatory myeloid cells in transplantation.

    PubMed

    Rosborough, Brian R; Raïch-Regué, Dàlia; Turnquist, Heth R; Thomson, Angus W

    2014-02-27

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages, regulatory dendritic cells, and myeloid-derived suppressor cells to regulate alloimmunity, their potential as cellular therapeutic agents, and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity after RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and to promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and to usher in a new era of immune modulation exploiting cells of myeloid origin.

  8. Lewis y regulate cell cycle related factors in ovarian carcinoma cell RMG-I in vitro via ERK and Akt signaling pathways.

    PubMed

    Liu, Dawo; Liu, Juanjuan; Lin, Bei; Liu, Shuice; Hou, Rui; Hao, Yingying; Liu, Qing; Zhang, Shulan; Iwamori, Masao

    2012-01-01

    To investigate the effect of Lewis y overexpression on the expression of proliferation-related factors in ovarian cancer cells. mRNA levels of cyclins, CDKs, and CKIs were measured in cells before and after transfection with the α1,2-fucosyltransferase gene by real-time PCR, and protein levels of cyclins, CDKs and CKIs were determined in cells before and after gene transfection by Western blot. Lewis y overexpression led to an increase in both mRNA and protein expression levels of cyclin A, cyclin D1 and cyclin E in ovarian cancer cells, decrease in both mRNA and protein expression levels of p16 and p21, and decrease of p27 at only the protein expression level without change in its mRNA level. There were no differences in proteins and the mRNA levels of CDK2, CDK4 and CDK6 before and after gene transfection. Anti-Lewis y antibody, ERK and PI3K pathway inhibitors PD98059 and LY294002 reduced the difference in cyclin and CKI expression caused by Lewis y overexpression. Lewis y regulates the expression of cell cycle-related factors through ERK/MAPK and PI3K/Akt signaling pathways to promote cell proliferation.

  9. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  10. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling

    PubMed Central

    Cai, Xiqiang; Xu, Bing; Li, Xiaowei; Zhou, Jinfeng; Zhang, Xiangyuan; Chu, Yi; Wang, Weijie; Liang, Jie; Horvath, Tamas; Yang, Xiaoyong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-01-01

    O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC. PMID:27542217

  11. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling.

    PubMed

    Jiang, Mingzuo; Qiu, Zhaoyan; Zhang, Song; Fan, Xing; Cai, Xiqiang; Xu, Bing; Li, Xiaowei; Zhou, Jinfeng; Zhang, Xiangyuan; Chu, Yi; Wang, Weijie; Liang, Jie; Horvath, Tamas; Yang, Xiaoyong; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-09-20

    O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC.

  12. Effects of phenylcarboxylic acids on mitosis, endoreduplication and expression of cell cycle-related genes in roots of cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Yun; Gu, Min; Xia, Xiaojian; Shi, Kai; Zhou, Yanhong; Yu, Jingquan

    2009-06-01

    Several benzoic and cinnamic acid derivatives were identified from cucumber root exudates. The effects of these phenylcarboxylic acids on root growth and cell cycle progression were examined in germinated seeds of cucumber. All 12 phenylcarboxylic acids (0.25 mM) tested significantly inhibited cucumber radicle growth, and cinnamic acid exerted a dose-dependent inhibitory effect. At 6 h after exposure to the acids, transcript levels of the cell cycle-related genes, including two cyclin-dependent kinases (CDKs) and four cyclins were reduced. Among them, transcript of CycB, a marker gene for mitosis showed a remarkable reduction. The temporal analysis showed that expression of mitotic genes (CDKB, CycA, and CycB) were reduced throughout the experiment, while the reduction of the other genes (CDKA, CycD3;1, and CycD3;2) were observed only at earlier time points. At 48 h after treatment with benzoic and cinnamic acids, an enhancement of endoreduplication was observed. Further time course analysis indicated that endoreduplication started as early as 6 h after exposure to cinnamic acid. These results provide evidence that exposure to benzoic and cinnamic acids can induce rapid and dramatic down-regulation of cell cycle-related genes, thus leading to root growth inhibition. Meanwhile, the block of mitosis caused by phenylcarboxylic acids also induced an increased level of endoreduplication.

  13. Adipocytes as immune regulatory cells

    PubMed Central

    Vielma, Silvana A.; Klein, Richard L.; Levingston, Corinne A.; Young, M. Rita I.

    2013-01-01

    Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4+ or CD8+ T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8+ T-cells, not CD4+ T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators. PMID:23587489

  14. Immunometabolism of regulatory T cells

    PubMed Central

    Newton, Ryan; Priyadharshini, Bhavana; Turka, Laurence A

    2016-01-01

    The bidirectional interaction between the immune system and whole-body metabolism has been well recognized for many years. Via effects on adipocytes and hepatocytes, immune cells can modulate whole-body metabolism (in metabolic syndromes such as type 2 diabetes and obesity) and, reciprocally, host nutrition and commensal-microbiota-derived metabolites modulate immunological homeostasis. Studies demonstrating the metabolic similarities of proliferating immune cells and cancer cells have helped give birth to the new field of immunometabolism, which focuses on how the cell-intrinsic metabolic properties of lymphocytes and macrophages can themselves dictate the fate and function of the cells and eventually shape an immune response. We focus on this aspect here, particularly as it relates to regulatory T cells. PMID:27196520

  15. Diel Expression of Cell Cycle-Related Genes in Synchronized Cultures of Prochlorococcus sp. Strain PCC 9511

    PubMed Central

    Holtzendorff, J.; Partensky, F.; Jacquet, S.; Bruyant, F.; Marie, D.; Garczarek, L.; Mary, I.; Vaulot, D.; Hess, W. R.

    2001-01-01

    The cell cycle of the chlorophyll b-possessing marine cyanobacterium Prochlorococcus is highly synchronized under natural conditions. To understand the underlying molecular mechanisms we cloned and sequenced dnaA and ftsZ, two key cell cycle-associated genes, and studied their expression. An axenic culture of Prochlorococcus sp. strain PCC 9511 was grown in a turbidostat with a 12 h–12 h light-dark cycle for 2 weeks. During the light periods, a dynamic light regimen was used in order to simulate the natural conditions found in the upper layers of the world's oceans. This treatment resulted in strong cell cycle synchronization that was monitored by flow cytometry. The steady-state mRNA levels of dnaA and ftsZ were monitored at 4-h intervals during four consecutive division cycles. Both genes exhibited clear diel expression patterns with mRNA maxima during the replication (S) phase. Western blot experiments indicated that the peak of FtsZ concentration occurred at night, i.e., at the time of cell division. Thus, the transcript accumulation of genes involved in replication and division is coordinated in Prochlorococcus sp. strain PCC 9511 and might be crucial for determining the timing of DNA replication and cell division. PMID:11208789

  16. T regulatory cells in xenotransplantation.

    PubMed

    Muller, Yannick D; Golshayan, Déla; Ehirchiou, Driss; Wekerle, Thomas; Seebach, Jörg D; Bühler, Leo H

    2009-01-01

    The role of T regulatory cells (Treg) in the induction and maintenance of allograft tolerance is being studied to a great extent. In contrast, little is known on their potential to prevent graft rejection in the field of xenotransplantation, where acute vascular rejection mediated by cellular and humoral mechanisms and thrombotic microangiopathy still prevents long-term graft survival. In this regard, the induction of donor-specific tolerance through isolation and expansion of xenoantigen-specific recipient Treg is currently becoming a focus of interest. This review will summarize the present knowledge concerning Treg and their potential use in xenotransplantation describing in particular CD4(+)CD25(+)Foxp3(+) T cells, CD8(+)CD28(-) Treg, double negative CD4(-)CD8(-) T cells, and natural killer Treg. Although only studied in vitro so far, human CD4(+)CD25(+)Foxp3(+) Treg is currently the best characterized subpopulation of regulatory cells in xenotransplantation. CD8(+)CD28(-) Treg and double negative CD4(-)CD8(-) Treg also seem to be implicated in tolerance maintenance of xenografts. Finally, one study revealing a role for natural killer CD4(+)Valpha14(+) Treg in the prolongation of xenograft survival needs further confirmation. To our opinion, CD4(+)CD25(+)Foxp3(+) Treg are a promising candidate to protect xenografts. In contrast to cadaveric allotransplantation, the donor is known prior to xenotransplantation. This advantage allows the expansion of recipient Treg in a xenoantigen specific manner before transplantation.

  17. The core regulatory network in human cells.

    PubMed

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  18. Regulatory B cells in autoimmune diseases

    PubMed Central

    Yang, Min; Rui, Ke; Wang, Shengjun; Lu, Liwei

    2013-01-01

    B cells are generally considered to be positive regulators of the immune response because of their capability to produce antibodies, including autoantibodies. The production of antibodies facilitates optimal CD4+ T-cell activation because B cells serve as antigen-presenting cells and exert other modulatory functions in immune responses. However, certain B cells can also negatively regulate the immune response by producing regulatory cytokines and directly interacting with pathogenic T cells via cell-to-cell contact. These types of B cells are defined as regulatory B (Breg) cells. The regulatory function of Breg cells has been demonstrated in mouse models of inflammation, cancer, transplantation, and particularly in autoimmunity. In this review, we focus on the recent advances that lead to the understanding of the development and function of Breg cells and the implications of B cells in human autoimmune diseases. PMID:23292280

  19. Regulatory T cells and vasectomy.

    PubMed

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-11-01

    CD4+ CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24h of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12-16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at 7 months, the antibody titers fluctuated over time, suggesting a dynamic "balance" between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance.

  20. REGULATORY T CELLS AND VASECTOMY

    PubMed Central

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-01-01

    CD4+CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24 hours of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12–16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at seven months, the antibody titers fluctuated over time, suggesting a dynamic “balance” between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance. PMID:24080233

  1. PC-SPES inhibits cell proliferation by modulating p21, cyclins D, E and B and multiple cell cycle-related genes in prostate cancer cells.

    PubMed

    Lu, Xiaohua; Guo, Junqiao; Hsieh, Tze-chen

    2003-01-01

    PC-SPES is an herbal mixture, with evidence of clinical efficacy against prostate cancer (CaP), recently attracting tremendous attention. Using immunoblot and cell cycle specific cDNA array analyses, we investigated effects of PC-SPES on LNCaP, a hormone-dependent prostate cancer cell line. PC-SPES inhibited expression of cyclins D and E, inhibited Rb phosphorylation, switching it to a G1-to-S inhibitory state. Moreover, cDNA array analysis showed that PC-SPES caused up-regulation of p21(WAF1/CIP1) and decreased expression of cyclin B, Nedd8, cdc2, skp1, PCNA, MAD2L1, cyclin H, CKS2, E2F, Rbx1, MCM2, MCM5, Mpp2, Cullin-Cul4A, Cks1p9 and McM7, which are involved in cell cycle progression. Taken together, our results provide a mechanistic explanation for antiproliferative and antitumor effects of PC-SPES, suggesting that induction of CDK inhibitors and downregulation of cyclins leads to dephosphorylation of Rb and growth arrest.

  2. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis.

    PubMed

    Sugimura, Yusaku; Saito, Katsuharu

    2017-02-01

    The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.

  3. Cancer-Associated Myeloid Regulatory Cells

    PubMed Central

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  4. Special regulatory T cell review: How I became a T suppressor/regulatory cell maven

    PubMed Central

    Shevach, Ethan M

    2008-01-01

    I have briefly reviewed the factors that motivated me to change my views about the existence and importance of suppressor/regulatory T cells and to devote the majority of my laboratory efforts to this newly revitalized area of immunologic research. I am optimistic that manipulation of regulatory T-cell function will shortly be applicable to the clinic. PMID:18154610

  5. T Regulatory Cells and Transplantation Tolerance

    PubMed Central

    Gorantla, Vijay S.; Schneeberger, Stefan; Brandacher, Gerald; Sucher, Robert; Zhang, Dong; Lee, Andrew; Zheng, Xin Xiao

    2010-01-01

    Despite the development of successful immunosuppression protocols and tremendous improvement in short-term graft survival rates, the problem of chronic graft loss remains the bane of clinical transplantation. The induction and maintenance of transplantation tolerance is the “Holy grail” of transplantation. The recent identification and characterization of regulatory T cells (T regs) has opened up exciting opportunities for tolerance induction, immunotherapy and immunomodulation in transplantation. This review focuses on current understanding of regulatory T cells and their role in transplantation tolerance. PMID:20541385

  6. Mechanisms of T regulatory cell function.

    PubMed

    Askenasy, Nadir; Kaminitz, Ayelet; Yarkoni, Shai

    2008-05-01

    Regulatory T cells (Treg) play a pivotal role in tolerance to self-antigens and tissue grafts, and suppression of autoimmune reactions. These cells modulate the intensity and quality of immune reactions through attenuation of the cytolytic activities of reactive immune cells. Treg cells operate primarily at the site of inflammation where they modulate the immune reaction through three major mechanisms: a) direct killing of cytotoxic cells through cell-to-cell contact, b) inhibition of cytokine production by cytotoxic cells, in particular interleukin-2, c) direct secretion of immunomodulatory cytokines, in particular TGF-beta and interleukin-10. In addition to differential contributions of these mechanisms under variable inflammatory conditions, mechanistic complexity and diversity evolves from the diverse tasks performed by various Treg cell subsets in different stages of the immune reaction. Here we attempt to integrate the current experimental evidence to delineate the major suppressive pathways of Treg cells.

  7. Regulatory T cells in Allergic Diseases

    PubMed Central

    Rivas, Magali Noval; Chatila, Talal A.

    2016-01-01

    The pathogenesis of allergic diseases entails an ineffective tolerogenic immune response towards allergens. Regulatory T cells (TReg) cells play a key role in sustaining immune tolerance to allergens, yet mechanisms by which TReg cells fail to maintain tolerance in allergic diseases are not well understood. We review current concepts and established mechanisms regarding how TReg cells regulate different components of allergen-triggered immune responses to promote and maintain tolerance. We will also discuss more recent advances that emphasize the “dual” functionality of TReg cells in allergic diseases: how TReg cells are essential in promoting tolerance to allergens but also how a pro-allergic inflammatory environment can skew TReg cells towards a pathogenic phenotype that aggravates and perpetuates disease. These advances highlight opportunities for novel therapeutic strategies that aim to re-establish tolerance in chronic allergic diseases by promoting TReg cell and stability function. PMID:27596705

  8. Human regulatory B cells control the TFH cell response.

    PubMed

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (TFH) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of TFH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on TFH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate TFH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing TFH cell maturation. In cocultures they differentiated B cells into CD138(+) plasma and IgD(-)CD27(+) memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented TFH cell development. Added to TFH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3(+)CXCR5(+)PD-1(+) follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on TFH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control TFH cell maturation, expand follicular regulatory T cells, and inhibit the TFH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the TFH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Foxp3(+) regulatory T cells in tuberculosis.

    PubMed

    Larson, Ryan P; Shafiani, Shahin; Urdahl, Kevin B

    2013-01-01

    The immune response to Mycobacterium tuberculosis (Mtb) must be tightly regulated to mount a sufficient response to limit bacterial growth and dissemination while avoiding excessive inflammation that could damage host tissues. A wide variety of cell types, cell surface molecules, and cytokines are likely to contribute to this regulation, but recent studies have revealed that a subset of CD4 T cells expressing the transcription factor Foxp3, called regulatory T (reg) cells, play a critical role [1-3]. Although the first reports of T reg cells in tuberculosis (TB) occurred only recently (i.e., 2006) [4, 5], we have already gained many insights into their activity during TB. While it is likely that T reg cells do play some beneficial roles by preventing inflammation-mediated damage to host tissues during TB, this aspect of their function has not been well studied to date. What is clear, however, is that during the initial T cell response to Mtb infection, Mtb induces the expansions of T reg cells that delay the onset of adaptive immunity, suggesting that Mtb has hijacked T reg cell-mediated immune suppression to allow it to replicate unabated in the lung until T cells finally arrive [6]. In this chapter, we will first provide an overview of the delayed T cell response to Mtb and a brief introduction to regulatory T cells. We will then review what is known about T reg cells from observations in human populations, discuss mechanistic insights revealed in the mouse model, and speculate about the relevance of this understanding for future efforts to prevent and treat TB.

  10. Regulatory T cells and autoimmune disease.

    PubMed

    Paust, Silke; Cantor, Harvey

    2005-04-01

    Although T-cell clones bearing T-cell receptors with high affinity for self-peptide major histocompatibility complex (MHC) products are generally eliminated in the thymus (recessive tolerance), the peripheral T-cell repertoire remains strongly biased toward self-peptide MHC complexes and includes autoreactive T cells. A search for peripheral T cells that might exert dominant inhibitory effects on autoreactivity has implicated a subpopulation of CD4(+)CD25(+) T cells called regulatory T cells (Tregs). Here, we discuss the role of cytokines and costimulatory molecules in the generation, maintenance, and function of Tregs. We also summarize evidence for the involvement of Tregs in controlling autoimmune diseases, including type 1 diabetes, experimental autoimmune encephalomyelitis, and inflammatory bowel disease. Last, we discuss our recent definition of the potential role of B7 expressed on activated T-effector cells as a target molecule for Treg-dependent suppression. These observations suggest that the engagement of B7 on effector T cells transmits an inhibitory signal that blocks or attenuates effector T-cell function. We restrict our comments to the suppression mediated by cells within the CD4 lineage; the impact of the cells within the CD8 lineage that may suppress via engagement of Qa-1 on effector T cells is not addressed in this review.

  11. Harnessing Regulatory T cells to Suppress Asthma

    PubMed Central

    Thorburn, Alison N.; Hansbro, Philip M.

    2010-01-01

    Regulatory T cells (Tregs) play an essential role in maintaining the homeostatic balance of immune responses. Asthma is an inflammatory condition of the airways that is driven by dysregulated immune responses toward normally innocuous antigens. Individuals with asthma have fewer and less functional Tregs, which may lead to uncontrolled effector cell responses and promote proasthmatic responses of T helper type 2, T helper 17, natural killer T, antigen-presenting, and B cells. Tregs have the capacity to either directly or indirectly suppress these responses. Hence, the induced expansion of functional Tregs in predisposed or individuals with asthma is a potential approach for the prevention and treatment of asthma. Infection by a number of micro-organisms has been associated with reduced prevalence of asthma, and many infectious agents have been shown to induce Tregs and reduce allergic airways disease in mouse models. The translation of the regulatory and therapeutic properties of infectious agents for use in asthma requires the identification of key modulatory components and the development and trial of effective immunoregulatory therapies. Further translational and clinical research is required for the induction of Tregs to be harnessed as a therapeutic strategy for asthma. PMID:20097830

  12. Regulatory T cells: history and perspective.

    PubMed

    Sakaguchi, Shimon

    2011-01-01

    Despite the skepticism that once prevailed among immunologists, it is now widely accepted that the normal immune system harbors a T-cell population, called regulatory T cells (Treg cells), specialized for immune suppression. It was first shown that depletion of a T-cell subpopulation from normal rodents produced autoimmune disease. Search for a molecular marker specific for such autoimmune-preventive Treg cells has revealed that the majority, if not all, of them constitutively express the CD25 molecule as depletion of CD25(+)CD4(+) T cells spontaneously evokes autoimmune disease in otherwise normal rodents. The expression of CD25 by Treg cells has made it possible to delineate their developmental pathways, in particular their thymic development, and establish simple in vitro assay for assessing their suppressive activity. The marker and the in vitro assay have helped to identify human Treg cells with similar functional and phenotypic characteristics. Recent efforts have shown that natural Treg cells specifically express the transcription factor Foxp3 and that mutations of the Foxp3 gene produce a variety of immunological diseases in humans and rodents. Specific expression of Foxp3 in natural Treg cells has enabled their functional and developmental characterization by genetic approach. These studies altogether have provided firm evidence for Foxp3(+)CD25(+)CD4(+) Treg cells as an indispensable cellular constituent of the normal immune system for establishing and maintaining immunologic self-tolerance and immune homeostasis. Treg cells are now within the scope of clinical use to treat immunological diseases and control physiological and pathological immune responses.

  13. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.

  14. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  15. Role of Regulatory Cells in Oral Tolerance

    PubMed Central

    Wawrzyniak, Marcin; O'Mahony, Liam

    2017-01-01

    The immune system is continuously exposed to great amounts of different antigens from both food and intestinal microbes. Immune tolerance to these antigens is very important for intestinal and systemic immune homeostasis. Oral tolerance is a specific type of peripheral tolerance induced by exposure to antigen via the oral route. Investigations on the role of intestinal immune system in preventing hypersensitivity reactions to innocuous dietary and microbial antigens have been intensively performed during the last 2 decades. In this review article, we discuss how food allergens are recognized by the intestinal immune system and draw attention to the role of regulatory T (Treg) and B (Breg) cells in the establishment of oral tolerance and tolerogenic features of intestinal dendritic cells. We also emphasize the potential role of tonsils in oral tolerance induction because of their anatomical location, cellular composition, and possible usage to develop novel ways of specific immunotherapy for the treatment of allergic diseases. PMID:28102055

  16. Radiation Enhances Regulatory T Cell Representation

    SciTech Connect

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Doerthe

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  17. Combined treatment with X-ray irradiation and 5-aminolevulinic acid elicits better transcriptomic response of cell cycle-related factors than X-ray irradiation alone.

    PubMed

    Takahashi, Junko; Misawa, Masaki; Iwahashi, Hitoshi

    2016-12-01

    5-Aminolevulinic acid (ALA) is a precursor of the photosensitizer protoporphyrin (PpIX) used in photodynamic therapy. In our previous work, PpIX enhanced the generation of reactive oxygen species by X-ray irradiation. In this study, we evaluated the potential of ALA as an endogenous sensitizer to X-ray irradiation. Tumor-bearing C57BL/6J mice implanted with B16-BL6 melanoma cells were subsequently treated with irradiation (3 Gy/day for 10 days; total, 30 Gy) plus local administration of 50 mg/kg ALA 24 hours prior to each irradiation (ALA-XT). Tumor-bearing mice without treatment (NT), those treated with ALA only (ALAT), and those treated with X-ray irradiation only (XT) were used as controls. ALA potentiated tumor suppression by X-ray irradiation. In microarray analyses using tumor tissue collected after 10 sessions of fractional irradiation, functional analysis revealed that the majority of dysregulated genes in the XT and ALA-XT groups were related to cell-cycle arrest. Finally, the XT and ALA-XT groups differed in the strength of expression, but not in the pattern of expression. mRNA analysis revealed that the combined use of ALA and X-ray irradiation sensitized tumors to X-ray treatment. Furthermore, the present results were consistent with ALA's tumor suppressive effects in vivo.

  18. [Circadian rhythm variation of the clock genes Per1 and cell cycle related genes in different stages of carcinogenesis of buccal mucosa in animal model].

    PubMed

    Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong

    2015-07-01

    To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P < 0.05), while in precancerous lesions the circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P < 0.05), yet the median of CDK1, CyclinB1 and CyclinD1 mRNA expression were significantly increased (P < 0.05). The amplitude of Per1, p53 and CyclinD1 mRNA expression was significantly decreased as the development of carcinoma (P < 0.05), however the

  19. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  20. Icilin inhibits E2F1-mediated cell cycle regulatory programs in prostate cancer.

    PubMed

    Lee, Sanghoon; Chun, Jung Nyeo; Kim, Su-Hwa; So, Insuk; Jeon, Ju-Hong

    2013-11-29

    Aberrant expression of cell cycle regulators have been implicated in prostate cancer development and progression. Therefore, understanding transcriptional networks controlling the cell cycle remain a challenge in the development of prostate cancer treatment. In this study, we found that icilin, a super-cooling agent, down-regulated the expression of cell cycle signature genes and caused G1 arrest in PC-3 prostate cancer cells. With reverse-engineering and an unbiased interrogation of a prostate cancer-specific regulatory network, master regulator analysis discovered that icilin affected cell cycle-related transcriptional modules and identified E2F1 transcription factor as a target master regulator of icilin. Experimental analyses confirmed that icilin reduced the activity and expression levels of E2F1. These results demonstrated that icilin inactivates a small regulatory module controlling the cell cycle in prostate cancer cells. Our study might provide insight into the development of cell cycle-targeted cancer therapeutics. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Regulatory Functions of Natural Killer Cells in Multiple Sclerosis

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Wiendl, Heinz; Marcenaro, Emanuela; Kerlero de Rosbo, Nicole; Uccelli, Antonio; Laroni, Alice

    2016-01-01

    There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying treatments effective in MS apparently enhance the frequencies and/or regulatory function of NK cells, further pointing toward an immunoprotective role of NK cells in MS. Here, we summarize the current knowledge on the regulatory functions of NK cells, based on their interactions with other cells belonging to the innate compartment, as well as with adaptive effector cells. We review the more recent data reporting disruption of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for MS affect NK cells. PMID:28066417

  2. Regulatory T cells in experimental autoimmune disease.

    PubMed

    Suri-Payer, Elisabeth; Fritzsching, Benedikt

    2006-08-01

    During the past 10 years, CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) have been extensively studied for their function in autoimmune disease. This review summarizes the evidence for a role of Treg in suppression of innate and adaptive immune responses in experimental models of autoimmunity including arthritis, colitis, diabetes, autoimmune encephalomyelitis, lupus, gastritis, oophoritis, prostatitis, and thyroiditis. Antigen-specific activation of Treg, but antigen-independent suppressive function, emerges as a common paradigm derived from several disease models. Treg suppress conventional T cells (Tcon) by direct cell contact in vitro. However, downmodulation of dendritic cell function and secretion of inhibitory cytokines such as IL-10 and TGF-beta might underlie Treg function in vivo. The final outcome of autoimmunity vs tolerance depends on the balance between stimulatory signals (Toll-like receptor engagement, costimulation, and antigen dose) and inhibitory signals from Treg. Whereas most experimental settings analyze the capacity of Treg to prevent onset of autoimmune disease, more recent efforts indicate successful treatment of ongoing disease. Thus, Treg are on the verge of moving from experimental animal models into clinical applications in humans.

  3. PDGF upregulates CLEC-2 to induce T regulatory cells.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-10-06

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells.

  4. Radiation Enhances Regulatory T Cell Representation

    PubMed Central

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2010-01-01

    PURPOSE Immunotherapy (IT) could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease although successful integration of IT into treatment protocols will require further understanding of how standard therapies affect the generation of anti-tumor immune responses. This study was undertaken to evaluate the impact of radiation therapy on immunosuppressive T regulatory (Treg) cells. MATERIALS and METHODS Tregs were identified as a CD4+CD25hiFoxp3+ lymphocyte subset and their fate followed in a murine TRAMP-C1 model of prostate cancer in mice with and without radiation therapy. RESULTS CD4+CD25hiFoxp3+ Treg cells increased in immune organs following local leg or whole body radiation. A large part, but not all, of this increase following leg-only irradiation could be ascribed to radiation scatter and Tregs being intrinsically more radiation resistant than other lymphocyte subpopulations resulting in their selection. Their functional activity on a per cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg population in the response to RT was shown by systemic elimination of Tregs, which greatly enhanced radiation-induced tumor regression. CONCLUSIONS We conclude that Tregs are more resistant to radiation than other lymphocytes resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation. PMID:21093169

  5. Regulatory T Cell Immunotherapy in Immune-Mediated Diseases

    PubMed Central

    Pierini, Antonio; Schneidawind, Dominik; Nishikii, Hidekazu; Negrin, Robert S.

    2015-01-01

    Broad clinical interest rapidly followed the recent discovery of different subpopulations of T cells that have immune regulatory properties and a number of studies have been conducted aiming to dissect the translational potential of these promising cells. In this review we will focus on forkhead box P3 (FoxP3) positive regulatory T cells, T regulatory type 1 cells and invariant natural killer T cells (iNKT). We will analyze their ability to correct immune dysregulation in animal models of immune mediated diseases and we will examine the first clinical approaches where these cells have been directly or indirectly employed. We will discuss successes, challenges and limitations that rose in the road to the clinical use of regulatory T cells. PMID:26779417

  6. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation.

    PubMed

    Ali, Niwa; Zirak, Bahar; Rodriguez, Robert Sanchez; Pauli, Mariela L; Truong, Hong-An; Lai, Kevin; Ahn, Richard; Corbin, Kaitlin; Lowe, Margaret M; Scharschmidt, Tiffany C; Taravati, Keyon; Tan, Madeleine R; Ricardo-Gonzalez, Roberto R; Nosbaum, Audrey; Bertolini, Marta; Liao, Wilson; Nestle, Frank O; Paus, Ralf; Cotsarelis, George; Abbas, Abul K; Rosenblum, Michael D

    2017-06-01

    The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatorycells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. T follicular regulatory cells in mice and men.

    PubMed

    Maceiras, Ana Raquel; Fonseca, Valter R; Agua-Doce, Ana; Graca, Luis

    2017-09-01

    It has long been known that CD4 T cells are necessary to provide help to B cells, triggering a germinal centre (GC) reaction where affinity maturation and isotype switching occur. However, the nature of the dedicated CD4 helper T cells, known as T follicular helper (Tfh), was only recently described. Here, we review the biology and function of the recently described T follicular regulatory (Tfr) cells, another CD4 T-cell population also found within GCs but with regulatory function and characteristics. Tfr cells have been identified in mice and humans as simultaneously presenting characteristics of T follicular cells (namely CXCR5 expression) and regulatory T cells (including Foxp3 expression). These Tfr cells have been implicated in the regulation of the magnitude of the GC reaction, as well as in protection from immune-mediated pathology. © 2017 John Wiley & Sons Ltd.

  8. Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis.

    PubMed

    Lapierre, Pascal; Lamarre, Alain

    2015-01-01

    In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4(+) regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4(+) T cells to CD4(+) regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4(+) regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance.  .

  9. Regulatory T Cells and Their Role in Animal Disease.

    PubMed

    Veiga-Parga, T

    2016-07-01

    In humans and mouse models, Foxp3(+) regulatory T cells are known to control all aspects of immune responses. However, only limited information exists on these cells' role in diseases of other animals. In this review, we cover the most important features and different types of regulatory T cells, which include those that are thymus-derived and peripherally induced, the mechanisms by which they control immune responses by targeting effector T cells and antigen-presenting cells, and most important, their role in animal health and diseases including cancer, infections, and other conditions such as hypersensitivities and autoimmunity. Although the literature regarding regulatory T cells in domestic animal species is still limited, multiple articles have recently emerged and are discussed. Moreover, we also discuss the evidence suggesting that regulatory T cells might limit the magnitude of effector responses, which can have either a positive or negative result, depending on the context of animal and human disease. In addition, the issue of plasticity is discussed because plasticity in regulatory T cells can result in the loss of their protective function in some microenvironments during disease. Lastly, the manipulation of regulatory T cells is discussed in assessing the possibility of their use as a treatment in the future. © The Author(s) 2016.

  10. Proceedings: international regulatory considerations on development pathways for cell therapies.

    PubMed

    Feigal, Ellen G; Tsokas, Katherine; Viswanathan, Sowmya; Zhang, Jiwen; Priest, Catherine; Pearce, Jonathan; Mount, Natalie

    2014-08-01

    Regenerative medicine is a rapidly evolving field that faces novel scientific and regulatory challenges. In September 2013, the International Workshop on Regulatory Pathways for Cell Therapies was convened to discuss the nature of these challenges and potential solutions and to highlight opportunities for potential convergence between different regulatory bodies that might assist the field's development. The workshop discussions generated potentially actionable steps in five main areas that could mitigate cell therapy development pathway risk and accelerate moving promising therapies to patients. These included the need for convergence of regulatory guidelines on donor eligibility and suitability of lines for use in clinical trials and subsequent commercialization for cell therapies to move forward on a global basis; the need to challenge and encourage investigators in the regenerative medicine field to share information and provide examples of comparability studies related to master cell banks; the need for convergence of guidelines across regulatory jurisdictions on requirements for tumorigenicity studies, based on particular cell types and on biodistribution studies; the need to increase transparency in sharing clinical trial information more broadly and disseminating results more rapidly; and the need to establish a forum for sharing the experiences of various approaches being developed to expedite regulatory approvals and access for patients to innovative cell and regenerative therapies in the different regulatory jurisdictions and to assess their potential strengths and weaknesses. ©AlphaMed Press.

  11. Proceedings: International Regulatory Considerations on Development Pathways for Cell Therapies

    PubMed Central

    Tsokas, Katherine; Viswanathan, Sowmya; Zhang, Jiwen; Priest, Catherine; Pearce, Jonathan; Mount, Natalie

    2014-01-01

    Regenerative medicine is a rapidly evolving field that faces novel scientific and regulatory challenges. In September 2013, the International Workshop on Regulatory Pathways for Cell Therapies was convened to discuss the nature of these challenges and potential solutions and to highlight opportunities for potential convergence between different regulatory bodies that might assist the field’s development. The workshop discussions generated potentially actionable steps in five main areas that could mitigate cell therapy development pathway risk and accelerate moving promising therapies to patients. These included the need for convergence of regulatory guidelines on donor eligibility and suitability of lines for use in clinical trials and subsequent commercialization for cell therapies to move forward on a global basis; the need to challenge and encourage investigators in the regenerative medicine field to share information and provide examples of comparability studies related to master cell banks; the need for convergence of guidelines across regulatory jurisdictions on requirements for tumorigenicity studies, based on particular cell types and on biodistribution studies; the need to increase transparency in sharing clinical trial information more broadly and disseminating results more rapidly; and the need to establish a forum for sharing the experiences of various approaches being developed to expedite regulatory approvals and access for patients to innovative cell and regenerative therapies in the different regulatory jurisdictions and to assess their potential strengths and weaknesses. PMID:25038248

  12. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  13. Regulatory T cells: present facts and future hopes.

    PubMed

    Becker, Christian; Stoll, Sabine; Bopp, Tobias; Schmitt, Edgar; Jonuleit, Helmut

    2006-09-01

    Naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells and several subsets of induced suppressor T cells are key players of the immune tolerance network and control the induction and effector phase of our immunological defense system. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity and transplant rejection but also influence the immune response to allergens as well as against tumor cells and pathogens. Even though we are far from completely understanding the molecular and cellular mechanisms that manage the different regulatory T cell populations, increasing evidence exists about their functional importance. The knowledge on their induction and activation opens the possibility for their selective manipulation in vivo as an attractive approach for an immunotherapy of unwanted immune responses. This review summarizes this knowledge and discusses the potential of regulatory T cells for novel immunointervention strategies in the future.

  14. The regulatory sciences for stem cell-based medicinal products.

    PubMed

    Yuan, Bao-Zhu; Wang, Junzhi

    2014-06-01

    Over the past few years, several new achievements have been made from stem cell studies, many of which have moved up from preclinical stages to early, or from early to middle or late, stages thanks to relatively safe profile and preliminary evidence of effectiveness. Moreover, some stem cell-based products have been approved for marketing by different national regulatory authorities. However, many critical issues associated mainly with incomplete understanding of stem cell biology and the relevant risk factors, and lack of effective regulations still exist and need to be urgently addressed, especially in countries where establishment of appropriate regulatory system just commenced. More relevantly, the stem cell regulatory sciences need to be established or improved to more effectively evaluate quality, safety and efficacy of stem cell products, and for building up the appropriate regulatory framework. In this review, we summarize some new achievements in stem cell studies, especially the preclinical and clinical studies, the existing regulations, and the associated challenges, and we then propose some considerations for improving stem cell regulatory sciences with a goal of promoting the steadfast growth of the well-regulated stem cell therapies abreast of evolvement of stem cell sciences and technologies.

  15. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  16. Extracellular NAD(+): a danger signal hindering regulatory T cells.

    PubMed

    Adriouch, Sahil; Haag, Friedrich; Boyer, Olivier; Seman, Michel; Koch-Nolte, Friedrich

    2012-11-01

    Endogenous danger signals released during cell damage contribute to alert the immune system. Typically, their release results in the activation and maturation of innate immune cells, and the production of pro-inflammatory cytokines. In addition, extracellular NAD(+) stimulates immune responses by hindering regulatory T cells (Tregs), and could, therefore, represent the prototype of a new category of danger signals.

  17. Regulatory T cells - a brief history and perspective.

    PubMed

    Sakaguchi, Shimon; Wing, Kajsa; Miyara, Makoto

    2007-11-01

    It is now widely accepted that the normal immune system harbors a regulatory T-cell population specialized for immune suppression. It was found initially that some CD4(+) T cells in normal animals were capable of suppressing autoimmunity. Characterization of this autoimmune-suppressive CD4(+) T cell population revealed that they constitutively expressed the CD25 molecule, which made it possible to distinguish them from other T cells, delineate their developmental pathways, in particular their thymic development, and characterize their potent in vivo and in vitro immunosuppressive activity. The marker also helped to identify human regulatory T cells with similar functional and phenotypic characteristics. Recent studies have shown that CD25(+)CD4(+) regulatory T cells specifically express the transcription factor Foxp3. Genetic anomaly of Foxp3 causes autoimmune and inflammatory disease in rodents and humans through affecting the development and function of CD25(+)CD4(+) regulatory T cells. These findings at the cellular and molecular levels altogether provide firm evidence for Foxp3(+)CD25(+)CD4(+) regulatory T cells as an indispensable cellular constituent of the normal immune system and for their crucial roles in establishing and maintaining immunologic self-tolerance and immune homeostasis. They can be exploited for clinical use to treat immunological diseases and control physiological and pathological immune responses.

  18. The role of regulatory B cells in digestive system diseases.

    PubMed

    Zhou, Zhenyu; Gong, Lei; Wang, Xiaoyun; Hu, Zhen; Wu, Gaojue; Tang, Xuejun; Peng, Xiaobin; Tang, Shuan; Meng, Miao; Feng, Hui

    2017-04-01

    The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.

  19. Baicalin, a natural compound, promotes regulatory T cell differentiation.

    PubMed

    Yang, Ji; Yang, Xue; Li, Ming

    2012-05-16

    CD4(+)CD25(+)Foxp3(+) regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. The development of these T(reg) cells is controlled by the regulator protein Foxp3, which can be enhanced by the in vitro activation of Foxp3 in the presence of transforming growth factor-beta. However, little is known about alternative methods, such as the use of natural products, for controlling Foxp3-mediated T(reg) cell differentiation. HEK 293 T cells were transfected with Foxp3 expression plasmid, and then treated with different compounds, Foxp3 mRNA expression was determined by real-time RT-PCR. CD4(+)CD25(-)T cells were stimulated with Baicalin, Foxp3 protein expression were analyzed by flow cytometry and confocal microscopy, the regulatory function of T cells stimulated with Baicalin was detected by the carboxyfluorescien succinimidyl ester. We demonstrated that Baicalin, a compound isolated from the Chinese herb Huangqin, induced Foxp3 protein expression in cultured T cells, promoted T(reg) cell differentiation and regulatory activity. Our data also indicated that Baicalin restored Foxp3 expression following its initial interleukin-6-mediated inhibition and induced Foxp3 expression in vitro. These data suggest that Baicalin may promote T(reg) cell differentiation and regulatory activity and may serve as a promising natural immunosuppressive compound for treating autoimmune inflammatory diseases.

  20. Baicalin, a natural compound, promotes regulatory T cell differentiation

    PubMed Central

    2012-01-01

    Background CD4+CD25+Foxp3+ regulatory T (Treg) cells inhibit autoimmunity and protect against tissue injury. The development of these Treg cells is controlled by the regulator protein Foxp3, which can be enhanced by the in vitro activation of Foxp3 in the presence of transforming growth factor-beta. However, little is known about alternative methods, such as the use of natural products, for controlling Foxp3-mediated Treg cell differentiation. Method HEK 293 T cells were transfected with Foxp3 expression plasmid, and then treated with different compounds, Foxp3 mRNA expression was determined by real-time RT-PCR. CD4+CD25-T cells were stimulated with Baicalin, Foxp3 protein expression were analyzed by flow cytometry and confocal microscopy, the regulatory function of T cells stimulated with Baicalin was detected by the carboxyfluorescien succinimidyl ester. Results We demonstrated that Baicalin, a compound isolated from the Chinese herb Huangqin, induced Foxp3 protein expression in cultured T cells, promoted Treg cell differentiation and regulatory activity. Our data also indicated that Baicalin restored Foxp3 expression following its initial interleukin-6-mediated inhibition and induced Foxp3 expression in vitro. Conclusions These data suggest that Baicalin may promote Treg cell differentiation and regulatory activity and may serve as a promising natural immunosuppressive compound for treating autoimmune inflammatory diseases. PMID:22591709

  1. Regulatory T cells in systemic lupus erythematosus and pregnancy.

    PubMed

    Tower, Clare; Mathen, Stephy; Crocker, Ian; Bruce, Ian N

    2013-06-01

    Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disorder that predominantly affects women of reproductive age. As clinical outcomes improve, pregnancy in these women is becoming more common. Although epidemiological data have documented an improvement in the prognosis of pregnancy in these women over recent years, they are still at significantly increased risk of pregnancy complications, such as miscarriage, stillbirth, pre-eclampsia and impaired foetal growth. The pathogenesis of SLE involves marked immune dysfunction, and in particular, the function of immunosuppressive elements of the immune system is impaired, including regulatory T-cell function. Because regulatory T cells are likely to be the key cell-modulating feto-maternal tolerance, this review overviews the possibility that regulatory T-cell impairments contribute to pregnancy pathology in women with SLE and contribute to the clinical challenge of managing these women during pregnancy.

  2. Regulatory T cells protect from autoimmune arthritis during pregnancy.

    PubMed

    Munoz-Suano, Alba; Kallikourdis, Marinos; Sarris, Milka; Betz, Alexander G

    2012-05-01

    Pregnancy frequently has a beneficial effect on the autoimmune disease Rheumatoid Arthritis, ranging from improvement in clinical symptoms to complete remission. Despite decades of study, a mechanistic explanation remains elusive. Here, we demonstrate that an analogous pregnancy-induced remission can be observed in a mouse model of arthritis. We demonstrate that during pregnancy mice are protected from collagen-induced arthritis, but are still capable of launching normal immune responses to influenza infections. We examine the role of regulatory T (T(R)) cells in this beneficial effect. T(R) cells are essential for many aspects of immune tolerance, including the suppression of autoimmune responses. Remarkably, transfer of regulatory T cells from pregnant 'protected' mice was sufficient to confer protection to non-pregnant mice. These results suggest that regulatory T cells are responsible for the pregnancy-induced amelioration of arthritis.

  3. Introduction: characterization and functions of human T regulatory cells.

    PubMed

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  4. The Role of Regulatory T Cells in Cancer

    PubMed Central

    2009-01-01

    There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA. PMID:20157609

  5. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    PubMed Central

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  6. Critical evaluation of regulatory T cells in autoimmunity: are the most potent regulatory specificities being ignored?

    PubMed

    Vandenbark, Arthur A; Offner, Halina

    2008-09-01

    The identification of CD4+ CD25+ Foxp3+ regulatory T (Treg) cells as natural regulators of immunity in the periphery and tissues has stimulated tremendous interest in developing therapeutic strategies for autoimmune diseases. In this review, the site of origin, antigen specificity, homing markers and cytokine profiles of Treg cells were evaluated in autoimmune colitis and type 1 diabetes, two examples in which Treg cells were effective as therapy. These studies were compared with studies of Treg cells in experimental autoimmune encephalomyelitis and multiple sclerosis, where successful therapy has not yet been achieved. Antigen-specific Treg cells appear to have more potent activity than polyclonal Treg cells and therefore hold more promise as therapeutic agents. However, Treg cells specific for the pathogenic T effector cells themselves have largely been overlooked and deserve consideration in future studies.

  7. Emerging role of regulatory T cells in gene transfer.

    PubMed

    Cao, Ou; Furlan-Freguia, Christian; Arruda, Valder R; Herzog, Roland W

    2007-10-01

    Induction and maintenance of immune tolerance to therapeutic transgene products are key requirements for successful gene replacement therapies. Gene transfer may also be used to specifically induce immune tolerance and thereby augment other types of therapies. Similarly, gene therapies for treatment of autoimmune diseases are being developed in order to restore tolerance to self-antigens. Regulatory T cells have emerged as key players in many aspects of immune tolerance, and a rapidly increasing body of work documents induction and/or activation of regulatory T cells by gene transfer. Regulatory T cells may suppress antibody formation and cytotoxic T cell responses and may be critical for immune tolerance to therapeutic proteins. In this regard, CD4(+)CD25(+) regulatory T cells have been identified as important components of tolerance in several gene transfer protocols, including hepatic in vivo gene transfer. Augmentation of regulatory T cell responses should be a promising new tool to achieve tolerance and avoid immune-mediated rejection of gene therapy. During the past decade, it has become obvious that immune regulation is an important and integral component of tolerance to self-antigens and of many forms of induced tolerance. Gene therapy can only be successful if the immune system does not reject the therapeutic transgene product. Recent studies provide a rapidly growing body of evidence that regulatory T cells (T(reg)) are involved and often play a crucial role in tolerance to proteins expressed by means of gene transfer. This review seeks to provide an overview of these data and their implications for gene therapy.

  8. B cells with regulatory properties in transplantation tolerance

    PubMed Central

    Durand, Justine; Chiffoleau, Elise

    2015-01-01

    Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting. PMID:26722647

  9. B cells with regulatory properties in transplantation tolerance.

    PubMed

    Durand, Justine; Chiffoleau, Elise

    2015-12-24

    Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting.

  10. Movement of regulatory RNA between animal cells

    PubMed Central

    Jose, Antony M.

    2015-01-01

    Summary Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. PMID:26138457

  11. Exploring a regulatory role for mast cells: 'MCregs'?

    PubMed

    Frossi, Barbara; Gri, Giorgia; Tripodo, Claudio; Pucillo, Carlo

    2010-03-01

    Regulatory cells can mould the fate of the immune response by direct suppression of specific subsets of effector cells, or by redirecting effectors against invading pathogens and infected or neoplastic cells. These functions have been classically, although not exclusively, ascribed to different subsets of T cells. Recently, mast cells have been shown to regulate physiological and pathological immune responses, and thus to act at the interface between innate and adaptive immunity assuming different functions and behaviors at discrete stages of the immune response. Here, we focus on these poorly defined, and sometimes apparently conflicting, functions of mast cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Regulatory T Cells in Hepatitis B and C Virus Infections

    PubMed Central

    2016-01-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that establish chronic persistent infection by effectively escaping the host immune response and can cause immune-mediated liver injury. It has recently become apparent that regulatory T (Treg) cells, specifically CD4+CD25+Foxp3+ Treg cells, modulate viral diseases by suppressing antiviral immune responses and regulating inflammatory host injury. The roles of Treg cells in HBV and HCV infections range from suppressing antiviral T cell responses to protecting the liver from immune-mediated damage. This review describes Treg cells and subpopulations and focuses on the roles of these cells in HBV and HCV infections. PMID:28035208

  13. Regulatory insight into the European human pluripotent stem cell registry.

    PubMed

    Kurtz, Andreas; Stacey, Glyn; Kidane, Luam; Seriola, Anna; Stachelscheid, Harald; Veiga, Anna

    2014-12-01

    The European pluripotent stem cell registry aims at listing qualified pluripotent stem cell (PSC) lines that are available globally together with relevant information for each cell line. Specific emphasis is being put on documenting ethical procurement of the cells and providing evidence of pluripotency. The report discusses the tasks and challenges for a global PSC registry as an instrument to develop collaboration, to access cells from diverse resources and banks, and to implement standards, and as a means to follow up usage of cells and support adherence to regulatory and scientific standards and transparency for stakeholders.

  14. Interleukin-35 induces regulatory B cells that suppress autoimmune disease.

    PubMed

    Wang, Ren-Xi; Yu, Cheng-Rong; Dambuza, Ivy M; Mahdi, Rashid M; Dolinska, Monika B; Sergeev, Yuri V; Wingfield, Paul T; Kim, Sung-Hye; Egwuagu, Charles E

    2014-06-01

    Interleukin-10 (IL-10)-producing regulatory B (Breg) cells suppress autoimmune disease, and increased numbers of Breg cells prevent host defense to infection and promote tumor growth and metastasis by converting resting CD4(+) T cells to regulatory T (Treg) cells. The mechanisms mediating the induction and development of Breg cells remain unclear. Here we show that IL-35 induces Breg cells and promotes their conversion to a Breg subset that produces IL-35 as well as IL-10. Treatment of mice with IL-35 conferred protection from experimental autoimmune uveitis (EAU), and mice lacking IL-35 (p35 knockout (KO) mice) or defective in IL-35 signaling (IL-12Rβ2 KO mice) produced less Breg cells endogenously or after treatment with IL-35 and developed severe uveitis. Adoptive transfer of Breg cells induced by recombinant IL-35 suppressed EAU when transferred to mice with established disease, inhibiting pathogenic T helper type 17 (TH17) and TH1 cells while promoting Treg cell expansion. In B cells, IL-35 activates STAT1 and STAT3 through the IL-35 receptor comprising the IL-12Rβ2 and IL-27Rα subunits. As IL-35 also induced the conversion of human B cells into Breg cells, these findings suggest that IL-35 may be used to induce autologous Breg and IL-35(+) Breg cells and treat autoimmune and inflammatory disease.

  15. Controlling the frontier: regulatory T-cells and intestinal homeostasis.

    PubMed

    Bollrath, Julia; Powrie, Fiona M

    2013-11-30

    The intestine represents one of the most challenging sites for the immune system as immune cells must be able to mount an efficient response to invading pathogens while tolerating the large number and diverse array of resident commensal bacteria. Foxp3(+) regulatory T-cells (Tregs) play a non-redundant role at maintaining this balance. At the same time Treg cell differentiation and function can be modulated by the intestinal microbiota. In this review, we will discuss effector mechanisms of Treg cells in the intestine and how these cells can be influenced by the intestinal microbiota. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Immunopathogenesis In Autism: Regulatory T Cells and Autoimmunity In Neurodevelopment

    DTIC Science & Technology

    2011-07-01

    which suggests impacts to regulatory T cells (Tregs). Perfluorooctanoic acid (PFOA) and perfluorooctane sultanate (PFOS) are widespread environmental...The emerging contaminants perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are environmentally pervasive and have been associated...Specific Aim #2: To determine the effects of developmental exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) on

  17. Aryl hydrocarbon receptor controls regulatory CD4+ T cell function.

    PubMed

    Pot, Caroline

    2012-05-31

    The ligand activated transcription factor aryl hydrocarbon receptor (AhR) has been studied for many decades in toxicology as the ligand for the environmental contaminant dioxin. However, AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems, and several AhR ligands with different pharmacological profiles have recently been studied. The current review discusses new insights into the role of AhR signalling and AhR ligands on the regulation of the immune system, with a focus on regulatory T cells which maintain immune tolerance. Notably, AhR is expressed and modulates the development of two induced regulatory CD4+ T cell subsets, the forkhead box P3-positive (Foxp3+) regulatory T cells (iTreg) and the IL-10-secreting type 1 regulatory T (T(R)1) cells, through different signalling pathways. We will finally discuss how AhR ligands could be exploited to alleviate human autoimmune diseases. Clearly, drugs targeted against AhR should promote the development of new strategies to fight against autoimmune diseases.

  18. The expanding universe of regulatory T cell subsets in cancer.

    PubMed

    Gajewski, Thomas F

    2007-08-01

    Evidence has indicated that failed antitumor immunity is dominated by immunosuppressive mechanisms within the tumor microenvironment. In this issue of Immunity, Peng et al. (2007) add to this list by describing tumor-infiltrating gammadelta T cells that have regulatory function.

  19. Finding Balance: T cell Regulatory Receptor Expression during Aging.

    PubMed

    Cavanagh, Mary M; Qi, Qian; Weyand, Cornelia M; Goronzy, Jörg J

    2011-10-01

    Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.

  20. Generation and identification of tumor-evoked regulatory B cells

    PubMed Central

    Biragyn, Arya; Lee-Chang, Catalina; Bodogai, Monica

    2014-01-01

    The involvement of Bregs in cancer remains poorly understood despite their well-documented regulation of responses to the self and protection from harmful autoimmunity. We recently discovered a unique regulatory B cell subset evoked by breast cancer to mediate protection of metastasizing cancer cells. These results together with the wealth of findings of the last 40 years on B cells in tumorigenesis suggest the existence of additional cancer Bregs modulating anticancer responses. To facilitate the search for them, here we provide our detailed protocol for the characterization and generation of tumor-evoked regulatory B cells. Wherever applicable, we also discuss nuances and uniqueness of a Breg study in cancer to warn potential pitfalls. PMID:25015287

  1. The two faces of regulatory T cells in cancer

    PubMed Central

    Blatner, Nichole R; Gounari, Fotini; Khazaie, Khashayarsha

    2013-01-01

    Regulatory T cells (Tregs) that expand in human colon cancer express retinoid-related orphan receptor γt (RORγt) and exert potent T-cell suppressive functions while mediating pro-inflammatory effects. Similar Tregs expand and drive a vicious cycle of inflammation in murine polyposis. Targeting RORγt in Tregs interrupts such a cycle and protects mice against polyposis, suggesting that a similar intervention may provide therapeutic benefits to colon cancer patients. PMID:23762787

  2. [Regulatory T cells in chronic obstructive pulmonary disease].

    PubMed

    Limón-Camacho, Leonardo; Solleiro-Villavicencio, Helena; Pupko-Sissa, Ilana; Lascurain, Ricardo; Vargas-Rojas, María Inés

    2013-01-01

    Exposition to tobacco smoke has been established as the main risk factor to develop chronic obstructive pulmonary disease (COPD), by inducing inflammation of the airways. Several cell populations participate in this inflammatory process. It has been accepted that a maladaptive modulation of inflammatory responses plays a critical role in the development of the disease. Regulatory T cells (Treg) are a subset of T CD4(+) lymphocytes that modulate the immune response through secretion of cytokines. The role of the Treg cells in chronic obstructive pulmonary disease is not clearly known, that is why it is important to focus in understanding their participation in the pathogenesis of the disease. To elaborate a systematic review of original articles in which we could describe Treg cells (their ontogeny, mechanisms of action) and their role in COPD, we made a systematic literature search in some data bases (MEDLINE, AMED, PubMed and Scielo) looking through the next keywords: "COPD and Regulatory T cells/EPOC y células T reguladoras", «Inflammation and COPD/Inflamación y EPOC», «Regulatory T cells/Células T reguladoras». We included basic science articles, controlled and non-controlled clinical trials, meta-analysis and guides. From this search we conclude that Treg cells are a subpopulation of T CD4(+) lymphocytes and their major functions are the suppression of immune responses and the maintenance of tolerance to self-antigens. A disruption in the regulatory mechanisms of the Treg cells leads to the development and perpetuation of inflammation in COPD. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  3. Minocycline promotes the generation of dendritic cells with regulatory properties

    PubMed Central

    Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-01-01

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection. PMID:27463004

  4. Regulatory mechanisms of helper T cell differentiation

    PubMed Central

    Pappu, Bhanu P.; Angkasekwinai, Pornpimon; Dong, Chen

    2008-01-01

    Interleukin 17 (IL-17) family consists of six cytokines in mammals. Among them, IL-17 and IL-17F are expressed by a novel subset of CD4+ helper T (Th) cells and play critical function in inflammation and autoimmunity. On the other hand, IL-17E, also called IL-25, has been associated with allergic responses. Here we summarize recent work by us as well as other investigators in understanding the regulation and function of these three cytokines. From these studies, IL-17 family cytokines may serve as novel targets for pharmaceutical intervention of immune and inflammatory diseases. PMID:18280574

  5. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-03-07

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies.

  6. Direct-to-Consumer Stem Cell Marketing and Regulatory Responses

    PubMed Central

    2013-01-01

    Summary There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets. PMID:23934911

  7. Direct-to-consumer stem cell marketing and regulatory responses.

    PubMed

    Sipp, Douglas

    2013-09-01

    There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets.

  8. T Regulatory Cell Biology in Health and Disease.

    PubMed

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.

  9. Dynamics of gene regulatory networks with cell division cycle

    NASA Astrophysics Data System (ADS)

    Chen, Luonan; Wang, Ruiqi; Kobayashi, Tetsuya J.; Aihara, Kazuyuki

    2004-07-01

    This paper focuses on modeling and analyzing the nonlinear dynamics of gene regulatory networks with the consideration of a cell division cycle with duplication process of DNA , in particular for switches and oscillators of synthetic networks. We derive two models that may correspond to the eukaryotic and prokaryotic cells, respectively. A biologically plausible three-gene model ( lac,tetR , and cI ) and a repressilator as switch and oscillator examples are used to illustrate our theoretical results. We show that the cell cycle may play a significant role in gene regulation due to the nonlinear dynamics of a gene regulatory network although gene expressions are usually tightly controlled by transcriptional factors.

  10. Regulatory Oversight of Cell and Gene Therapy Products in Canada.

    PubMed

    Ridgway, Anthony; Agbanyo, Francisca; Wang, Jian; Rosu-Myles, Michael

    2015-01-01

    Health Canada regulates gene therapy products and many cell therapy products as biological drugs under the Canadian Food and Drugs Act and its attendant regulations. Cellular products that meet certain criteria, including minimal manipulation and homologous use, may be subjected to a standards-based approach under the Safety of Human Cells, Tissues and Organs for Transplantation Regulations. The manufacture and clinical testing of cell and gene therapy products (CGTPs) presents many challenges beyond those for protein biologics. Cells cannot be subjected to pathogen removal or inactivation procedures and must frequently be administered shortly after final formulation. Viral vector design and manufacturing control are critically important to overall product quality and linked to safety and efficacy in patients through concerns such as replication competence, vector integration, and vector shedding. In addition, for many CGTPs, the value of nonclinical studies is largely limited to providing proof of concept, and the first meaningful data relating to appropriate dosing, safety parameters, and validity of surrogate or true determinants of efficacy must come from carefully designed clinical trials in patients. Addressing these numerous challenges requires application of various risk mitigation strategies and meeting regulatory expectations specifically adapted to the product types. Regulatory cooperation and harmonisation at an international level are essential for progress in the development and commercialisation of these products. However, particularly in the area of cell therapy, new regulatory paradigms may be needed to harness the benefits of clinical progress in situations where the resources and motivation to pursue a typical drug product approval pathway may be lacking.

  11. Revealing cell cycle control by combining model-based detection of periodic expression with novel cis-regulatory descriptors

    PubMed Central

    Andersson, Claes R; Hvidsten, Torgeir R; Isaksson, Anders; Gustafsson, Mats G; Komorowski, Jan

    2007-01-01

    Background We address the issue of explaining the presence or absence of phase-specific transcription in budding yeast cultures under different conditions. To this end we use a model-based detector of gene expression periodicity to divide genes into classes depending on their behavior in experiments using different synchronization methods. While computational inference of gene regulatory circuits typically relies on expression similarity (clustering) in order to find classes of potentially co-regulated genes, this method instead takes advantage of known time profile signatures related to the studied process. Results We explain the regulatory mechanisms of the inferred periodic classes with cis-regulatory descriptors that combine upstream sequence motifs with experimentally determined binding of transcription factors. By systematic statistical analysis we show that periodic classes are best explained by combinations of descriptors rather than single descriptors, and that different combinations correspond to periodic expression in different classes. We also find evidence for additive regulation in that the combinations of cis-regulatory descriptors associated with genes periodically expressed in fewer conditions are frequently subsets of combinations associated with genes periodically expression in more conditions. Finally, we demonstrate that our approach retrieves combinations that are more specific towards known cell-cycle related regulators than the frequently used clustering approach. Conclusion The results illustrate how a model-based approach to expression analysis may be particularly well suited to detect biologically relevant mechanisms. Our new approach makes it possible to provide more refined hypotheses about regulatory mechanisms of the cell cycle and it can easily be adjusted to reveal regulation of other, non-periodic, cellular processes. PMID:17939860

  12. Generation and Function of Induced Regulatory T Cells

    PubMed Central

    Schmitt, Erica G.; Williams, Calvin B.

    2013-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are essential to the balance between pro- and anti-inflammatory responses. There are two major subsets of Treg cells, “natural” Treg (nTreg) cells that develop in the thymus, and “induced” Treg (iTreg) cells that arise in the periphery from CD4+ Foxp3− conventional T cells and can be generated in vitro. Previous work has established that both subsets are required for immunological tolerance. Additionally, in vitro-derived iTreg cells can reestablish tolerance in situations where Treg cells are decreased or defective. This review will focus on iTreg cells, drawing comparisons to nTreg cells when possible. We discuss the molecular mechanisms of iTreg cell induction, both in vivo and in vitro, review the Foxp3-dependent and -independent transcriptional landscape of iTreg cells, and examine the proposed suppressive mechanisms utilized by each Treg cell subset. We also compare the T cell receptor repertoire of the Treg cell subsets, discuss inflammatory conditions where iTreg cells are generated or have been used for treatment, and address the issue of iTreg cell stability. PMID:23801990

  13. CD4+ regulatory T cell responses induced by T cell vaccination in patients with multiple sclerosis

    PubMed Central

    Hong, Jian; Zang, Ying C. Q.; Nie, Hong; Zhang, Jingwu Z.

    2006-01-01

    Immunization with irradiated autologous T cells (T cell vaccination) is shown to induce regulatory T cell responses that are poorly understood. In this study, CD4+ regulatory T cell lines were generated from patients with multiple sclerosis that received immunization with irradiated autologous myelin basic protein-reactive T cells. The resulting CD4+ regulatory T cell lines had marked inhibition on autologous myelin basic protein-reactive T cells and displayed two distinctive patterns distinguishable by the expression of transcription factor Foxp3 and cytokine profile. The majority of the T cell lines had high Foxp3 expression and secreted both IFN-γ and IL-10 as compared with the other pattern characteristic of low Foxp3 expression and predominant production of IL-10 but not IFN-γ. CD4+ regulatory T cell lines of both patterns expressed CD25 and reacted with activated autologous T cells but not resting T cells, irrespective of antigen specificity of the target T cells. It was evident that they recognized preferentially a synthetic peptide corresponding to residues 61–73 of the IL-2 receptor α chain. T cell vaccination correlated with increased Foxp3 expression and T cell reactivity to peptide 61–73. The findings have important implications in the understanding of the role of CD4+ regulatory T cell response induced by T cell vaccination. PMID:16547138

  14. Subsets of human natural killer cells and their regulatory effects

    PubMed Central

    Fu, Binqing; Tian, Zhigang; Wei, Haiming

    2014-01-01

    Human natural killer (NK) cells have distinct functions as NKtolerant, NKcytotoxic and NKregulatory cells and can be divided into different subsets based on the relative expression of the surface markers CD27 and CD11b. CD27+ NK cells, which are abundant cytokine producers, are numerically in the minority in human peripheral blood but constitute the large population of NK cells in cord blood, spleen, tonsil and decidua tissues. Recent data suggest that these NK cells may have immunoregulatory properties under certain conditions. In this review, we will focus on these new NK cell subsets and discuss how regulatory NK cells may serve as rheostats or sentinels in controlling inflammation and maintaining immune homeostasis in various organs. PMID:24303897

  15. Gene regulatory networks governing haematopoietic stem cell development and identity.

    PubMed

    Pimanda, John E; Göttgens, Berthold

    2010-01-01

    Development can be viewed as a dynamic progression through regulatory states which characterise the various cell types within a given differentiation cascade. To understand the progression of regulatory states that define the origin and subsequent development of haematopoietic stem cells, the first imperative is to understand the ontogeny of haematopoiesis. We are fortunate that the ontogeny of blood development is one of the best characterized mammalian developmental systems. However, the field is still in its infancy with regard to the reconstruction of gene regulatory networks and their interactions with cell signalling cascades that drive a mesodermal progenitor to adopt the identity of a haematopoietic stem cell and beyond. Nevertheless, a framework to dissect these networks and comprehend the logic of its circuitry does exist and although they may not as yet be available, a sense for the tools that will be required to achieve this aim is also emerging. In this review we cover the fundamentals of network architecture, methods used to reconstruct networks, current knowledge of haematopoietic and related transcriptional networks, current challenges and future outlook.

  16. Regulatory T cells as therapeutic targets in rheumatoid arthritis

    PubMed Central

    Esensten, Jonathan H.; Wofsy, David; Bluestone, Jeffrey A.

    2011-01-01

    Regulatory T cells (TREG) are a subset of CD4+ T cells with a critical role in the prevention of autoimmunity. Whether defects in TREG contribute to the pathogenesis of rheumatoid arthritis (RA) is unclear. However, a variety of approved and experimental drugs for RA may work, in part, by promoting the function or increasing numbers of TREG. Furthermore, animal studies demonstrate that direct injection of TREG ameliorates a wide range of experimental models of inflammatory and autoimmune diseases. Thus, cell-based therapy with TREG has the potential to produce durable disease remission in patients with RA. PMID:19798031

  17. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.

  18. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  19. The companions: regulatory T cells and gene therapy

    PubMed Central

    Eghtesad, Saman; Morel, Penelope A; Clemens, Paula R

    2009-01-01

    Undesired immunological responses to products of therapeutic gene replacement have been obstacles to successful gene therapy. Understanding such responses of the host immune system to achieve immunological tolerance to a transferred gene product is therefore crucial. In this article, we review relevant studies of immunological responses to gene replacement therapy, the role of immunological tolerance mediated by regulatory T cells in down-regulating the unwanted immune responses, and the interrelationship of the two topics. PMID:19368560

  20. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell -Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell -Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...Regulatory T Cell , CTA, Transplant, Biomimetic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  1. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance.

    PubMed

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y

    2010-08-01

    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth.

  2. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  3. Control of experimental inflammatory bowel disease by regulatory T cells.

    PubMed

    Asseman, C; Fowler, S; Powrie, F

    2000-10-01

    A helper T cell type 1-mediated colitis driven by enteric bacteria develops in severe combined immunodeficient mice after transfer of CD45RB(high)CD4(+) T cells. Development of disease can be prevented by cotransfer of the reciprocal CD45RB(low) subset. Analysis of the mechanism of immune suppression transferred by CD45RB(low)CD4(+) cells revealed essential roles for both IL-10 and TGF-beta. These data indicate that a functionally specialized population of regulatory T (Treg) cells exists in normal mice and that these can prevent the development of pathogenic responses toward commensal bacteria. The role of Treg cells in the control of the immune response is discussed.

  4. Transcriptional Regulatory Networks for CD4 T Cell Differentiation

    PubMed Central

    Zhu, Jinfang

    2015-01-01

    CD4+ T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4+ T cells differentiate into at least four subsets, Th1, Th2, Th17, and inducible regulatory T cells, each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factors. In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4+ T cell differentiation. PMID:24839135

  5. Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

    PubMed Central

    Campbell, Pearl A.; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A.; Rudnicki, Michael A.

    2007-01-01

    Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer. PMID:17579724

  6. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  7. Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells.

    PubMed

    Joshi, Powrnima; Kooshki, Mitra; Aldrich, Wayne; Varghai, Daniel; Zborowski, Maciej; Singh, Arun D; Triozzi, Pierre L

    2016-12-01

    Natural killer (NK) cells are implicated in the control of metastasis in uveal melanoma, a process that has been ascribed to its cancer stem cell subpopulation. NK cell activation is regulated by specific microRNA (miR). The NK cell sensitivity and regulatory miR production of uveal melanoma cancer stem cells was examined. Cancer stem cells enriched from aggressively metastatic MUM2B uveal melanoma cells by selecting CD271(+) cells or propagating as non-adherent spheres in stem-cell supportive were more resistant to NK cell cytolysis than cancer stem cells enriched from less aggressively metastatic OCM1 uveal melanoma cells. Both MUM2B and OCM1 cells expressed and secreted NK cell regulatory miRs, including miR 146a, 181a, 20a, and 223. MUM2B cells expressed and secreted miR-155; OCM1 cells did not. Transfecting MUM2B cells with anti-miR-155 increased NK cell sensitivity. CD271(+) cells were identified in the blood of patients with metastatic uveal melanoma and were characterized by low expression of melanocyte differentiation determinants and by the ability to form non-adherent spheres in stem-cell supportive media. These cells also expressed NK cell regulatory miRs, including miR-155. These results indicate that uveal melanoma cancer stem cells can vary in their sensitivity to NK cell lysis and their expression of NK cell regulatory miRs. Circulating CD271(+) cells from patients with metastatic uveal melanoma manifest cancer stem cell features and express miRs associated with NK cell suppression, including miR-155, that may contribute to metastatic progression.

  8. Genomic definition of multiple ex vivo regulatory T cell subphenotypes.

    PubMed

    Feuerer, Markus; Hill, Jonathan A; Kretschmer, Karsten; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe

    2010-03-30

    Regulatory T (Treg) cells that express the Foxp3 transcription factor are essential for lymphoid homeostasis and immune tolerance to self. Other nonimmunological functions of Treg cells, such as controlling metabolic function in adipose tissue, are also emerging. Treg cells originate primarily in the thymus, but can also be elicited from conventional T cells by in vivo exposure to low-dose antigen or homeostatic expansion or by activation in the presence of TGFbeta in vitro. Treg cells are characterized by a distinct transcriptional signature controlled in part, but not solely, by Foxp3. For a better perspective on transcriptional control in Treg cells, we compared gene expression profiles of a broad panel of Treg cells from various origins or anatomical locations. Treg cells generated by different means form different subphenotypes and were identifiable by particular combinations of transcripts, none of which fully encompassed the entire Treg signature. Molecules involved in Treg cell effector function, chemokine receptors, and the transcription factors that control them were differentially represented in these subphenotypes. Treg cells from the gut proved dissimilar to cells elicited by exposure to TGFbeta in vitro, but instead they resembled a CD103(+)Klrg1(+) subphenotype preferentially generated in response to lymphopenia.

  9. Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Suppressive Function.

    PubMed

    Hua, Jing; Davis, Scott P; Hill, Jonathan A; Yamagata, Tetsuya

    2015-10-15

    Regulatory T (Treg) cells have a critical role in the control of immunity, and their diverse subpopulations may allow adaptation to different types of immune responses. In this study, we analyzed human Treg cell subpopulations in the peripheral blood by performing genome-wide expression profiling of 40 Treg cell subsets from healthy donors. We found that the human peripheral blood Treg cell population is comprised of five major genomic subgroups, represented by 16 tractable subsets with a particular cell surface phenotype. These subsets possess a range of suppressive function and cytokine secretion and can exert a genomic footprint on target effector T (Teff) cells. Correlation analysis of variability in gene expression in the subsets identified several cell surface molecules associated with Treg suppressive function, and pharmacological interrogation revealed a set of genes having causative effect. The five genomic subgroups of Treg cells imposed a preserved pattern of gene expression on Teff cells, with a varying degree of genes being suppressed or induced. Notably, there was a cluster of genes induced by Treg cells that bolstered an autoinhibitory effect in Teff cells, and this induction appears to be governed by a different set of genes than ones involved in counteracting Teff activation. Our work shows an example of exploiting the diversity within human Treg cell subpopulations to dissect Treg cell biology.

  10. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  11. The split personality of regulatory T cells in HIV infection.

    PubMed

    Chevalier, Mathieu F; Weiss, Laurence

    2013-01-03

    Natural regulatory T cells (Tregs) participate in responses to various chronic infections including HIV. HIV infection is associated with a progressive CD4 lymphopenia and defective HIV-specific CD8 responses known to play a key role in the control of viral replication. Persistent immune activation is a hallmark of HIV infection and is involved in disease progression independent of viral load. The consequences of Treg expansion, observed in HIV infection, could be either beneficial, by suppressing generalized T-cell activation, or detrimental, by weakening HIV-specific responses and thus contributing to viral persistence. The resulting balance between Tregs contrasting outcomes might have critical implications in pathogenesis. Topics covered in this review include HIV-induced alterations of Tregs, Treg cell dynamics in blood and tissues, Treg-suppressive function, and the relationship between Tregs and immune activation. This review also provides a focus on the role of CD39(+) Tregs and other regulatory cell subsets. All these issues will be explored in different situations including acute and chronic infection, antiretroviral treatment-mediated viral control, and spontaneous viral control. Results must be interpreted with regard to both the Treg definition used in context and to the setting of the disease in an attempt to draw clearer conclusions from the apparently conflicting results.

  12. Hypoxic culture conditions enhance the generation of regulatory T cells

    PubMed Central

    Neildez-Nguyen, Thi My Anh; Bigot, Jérémy; Da Rocha, Sylvie; Corre, Guillaume; Boisgerault, Florence; Paldi, Andràs; Galy, Anne

    2015-01-01

    The generation of large amounts of induced CD4+ CD25+ Foxp3+ regulatory T (iTreg) cells is of great interest for several immunotherapy applications, therefore a better understanding of signals controlling iTreg cell differentiation and expansion is required. There is evidence that oxidative metabolism may regulate several key signalling pathways in T cells. This prompted us to investigate the effects of oxygenation on iTreg cell generation by comparing the effects of atmospheric (21%) or of low (5%) O2 concentrations on the phenotype of bead-stimulated murine splenic CD4+ T cells from Foxp3-KI-GFP T-cell receptor transgenic mice. The production of intracellular reactive oxygen species was shown to play a major role in the generation of iTreg cells, a process characterized by increased levels of Sirt1, PTEN and Glut1 on the committed cells, independently of the level of oxygenation. The suppressive function of iTreg cells generated either in atmospheric or low oxygen levels was equivalent. However, greater yields of iTreg cells were obtained under low oxygenation, resulting from a higher proliferative rate of the committed Treg cells and higher levels of Foxp3, suggesting a better stability of the differentiation process. Higher expression of Glut1 detected on iTreg cells generated under hypoxic culture conditions provides a likely explanation for the enhanced proliferation of these cells as compared to those cultured under ambient oxygen. Such results have important implications for understanding Treg cell homeostasis and developing in vitro protocols for the generation of Treg cells from naive T lymphocytes. PMID:25243909

  13. Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells

    PubMed Central

    Banerjee, Juni; Leung, Chi-Ting; Li, Ang; Peterson-Yantorno, Kim; Ouyang, Huan; Stamer, W. Daniel; Civan, Mortimer M.

    2017-01-01

    Purpose Trabecular meshwork (TM) cell volume is a determinant of aqueous humor outflow resistance, and thereby IOP. Regulation of TM cell volume depends on chloride ion (Cl−) release through swelling-activated channels (ICl,Swell), whose pore is formed by LRRC8 proteins. Chloride ion release through swelling-activated channels has been reported to be regulated by calcium-activated anoctamins, but this finding is controversial. Particularly uncertain has been the effect of anoctamin Ano6, reported as a Ca2+-activated Cl− (CaCC) or cation channel in other cells. The current study tested whether anoctamin activity modifies volume regulation of primary TM cell cultures and cell lines. Methods Gene expression was studied with quantitative PCR, supplemented by reverse-transcriptase PCR and Western immunoblots. Currents were measured by ruptured whole-cell patch clamping and volume by electronic cell sizing. Results Primary TM cell cultures and the TM5 and GTM3 cell lines expressed Ano6 3 to 4 orders of magnitude higher than the other anoctamin CaCCs (Ano1 and Ano2). Ionomycin increased cell Ca2+ and activated macroscopic currents conforming to CaCCs in other cells, but displayed significantly more positive mean reversal potentials (+5 to +12 mV) than those displayed by ICl,Swell (−14 to −21 mV) in the same cells. Nonselective CaCC inhibitors (tannic acid>CaCCinh−A01) and transient Ano6 knockdown strongly inhibited ionomycin-activated currents, ICl,Swell and the regulatory volume response to hyposmotic swelling. Conclusions Ionomycin activates CaCCs associated with net cation movement in TM cells. These currents, ICl,Swell, and cell volume are regulated by Ano6. The findings suggest a novel clinically-relevant approach for altering cell volume, and thereby outflow resistance, by targeting Ano6. PMID:28125837

  14. IL-33 induces both regulatory B cells and regulatory T cells in dextran sulfate sodium-induced colitis.

    PubMed

    Zhu, Junfeng; Xu, Ying; Zhu, Chunyu; Zhao, Jian; Meng, Xinrui; Chen, Siyao; Wang, Tianqi; Li, Xue; Zhang, Li; Lu, Changlong; Liu, Hongsheng; Sun, Xun

    2017-05-01

    Interleukin (IL)-33 is a member of the IL-1 family. Serum levels of IL-33 are increased in inflammatory bowel diseases (IBD), suggesting that IL-33 is involved in the pathogenesis of IBD, although its role is not clear. In this study, we investigated the role of IL-33 in the regulation of T-helper (Th) cell and B cell responses in mesenteric lymph nodes (MLN) in mice with dextran sulfate sodium (DSS)-induced colitis. Here, we showed that IL-33-treated mice were susceptible to DSS-induced colitis as compared with PBS-treated mice. The production of spontaneous inflammatory cytokines production by macrophages or dendritic cells (DC) in MLN significantly increased, and the responses of Th2, regulatory T cells (Treg) and regulatory B cells (Breg) were markedly upregulated, while Th1 responses were significantly downregulated in MLN of IL-33-treated mice with DSS-induced colitis. Our results demonstrate that IL-33 contributes to the pathogenesis of DSS-induced colitis in mice by promoting Th2 responses, but suppressing Th1 responses, in MLN. Moreover, IL-33 treatment increased Breg and Treg responses in MLN in mice with DSS-induced colitis. Therefore, modulation of IL-33/ST2 signaling is implicated as a novel biological therapy for inflammatory diseases associated with Th1 responses.

  15. Memory regulatory T cells reside in human skin

    PubMed Central

    Sanchez Rodriguez, Robert; Pauli, Mariela L.; Neuhaus, Isaac M.; Yu, Siegrid S.; Arron, Sarah T.; Harris, Hobart W.; Yang, Sara Hsin-Yi; Anthony, Bryan A.; Sverdrup, Francis M.; Krow-Lucal, Elisabeth; MacKenzie, Tippi C.; Johnson, David S.; Meyer, Everett H.; Löhr, Andrea; Hsu, Andro; Koo, John; Liao, Wilson; Gupta, Rishu; Debbaneh, Maya G.; Butler, Daniel; Huynh, Monica; Levin, Ethan C.; Leon, Argentina; Hoffman, William Y.; McGrath, Mary H.; Alvarado, Michael D.; Ludwig, Connor H.; Truong, Hong-An; Maurano, Megan M.; Gratz, Iris K.; Abbas, Abul K.; Rosenblum, Michael D.

    2014-01-01

    Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease. PMID:24509084

  16. Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver.

    PubMed

    Mailer, Reiner K W; Gisterå, Anton; Polyzos, Konstantinos A; Ketelhuth, Daniel F J; Hansson, Göran K

    2017-05-26

    The liver is the central organ that responds to dietary cholesterol intake and facilitates the release and clearance of lipoprotein particles. Persistent hypercholesterolemia leads to immune responses against lipoprotein particles that drive atherosclerosis. However, the effect of hypercholesterolemia on hepatic T-cell differentiation remains unknown. To investigate hepatic T-cell subsets upon hypercholesterolemia. We observed that hypercholesterolemia elevated the intrahepatic regulatory T (Treg) cell population and increased the expression of transforming growth factor-β1 in the liver. Adoptive transfer experiments revealed that intrahepatically differentiated Treg cells relocated to the inflamed aorta in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr(-/-)) mice. Moreover, hypercholesterolemia induced the differentiation of intrahepatic, but not intrasplenic, Th17 cells in wild-type mice, whereas the disrupted liver homeostasis in hypercholesterolemic Ldlr(-/-) mice led to intrahepatic Th1 cell differentiation and CD11b(+)CD11c(+) leukocyte accumulation. Our results elucidate a new mechanism that controls intrahepatic T-cell differentiation during atherosclerosis development and indicates that intrahepatically differentiated T cells contribute to the CD4(+) T-cell pool in the atherosclerotic aorta. © 2017 American Heart Association, Inc.

  17. Memory regulatory T cells reside in human skin.

    PubMed

    Sanchez Rodriguez, Robert; Pauli, Mariela L; Neuhaus, Isaac M; Yu, Siegrid S; Arron, Sarah T; Harris, Hobart W; Yang, Sara Hsin-Yi; Anthony, Bryan A; Sverdrup, Francis M; Krow-Lucal, Elisabeth; MacKenzie, Tippi C; Johnson, David S; Meyer, Everett H; Löhr, Andrea; Hsu, Andro; Koo, John; Liao, Wilson; Gupta, Rishu; Debbaneh, Maya G; Butler, Daniel; Huynh, Monica; Levin, Ethan C; Leon, Argentina; Hoffman, William Y; McGrath, Mary H; Alvarado, Michael D; Ludwig, Connor H; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D

    2014-03-01

    Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

  18. Regulatory pathways coordinating cell cycle progression in early Xenopus development.

    PubMed

    Gotoh, Tetsuya; Villa, Linda M; Capelluto, Daniel G S; Finkielstein, Carla V

    2011-01-01

    The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.

  19. Exacerbation of Endometriosis Due To Regulatory T-Cell Dysfunction.

    PubMed

    Tanaka, Yukiko; Mori, Taisuke; Ito, Fumitake; Koshiba, Akemi; Takaoka, Osamu; Kataoka, Hisashi; Maeda, Eiko; Okimura, Hiroyuki; Mori, Takahide; Kitawaki, Jo

    2017-09-01

    Endometriosis is a chronic inflammatory disease associated with altered immune response to endometrial cells facilitating the implantation and proliferation of ectopic endometrial tissues. Although regulatory T (Treg) cells play a key role in T cell-mediated immune response and development of immune disorders, their significance in endometriosis remains to be elucidated. Recently, CD4+CD45RA- forkhead box protein 3 (Foxp3)hi T cells, activated Treg cells, have been identified as a functionally true suppressive population of Treg cells. To investigate the role of Treg cells in endometriosis. Three Treg cell fractions (resting Treg cells, activated Treg cells, and non-Treg cells) were examined using flow cytometry in the endometrioma, endometrium, peritoneal fluid, and peripheral blood obtained from women with (n = 27) and without (n = 28) endometriosis. A mouse model of endometriosis was made in Foxp3tm3Ayr/J (Foxp3DTR) C57BL/6 Treg cell-depleted mice (n = 28). In women with endometrioma, the proportion of activated Treg cells in the endometrioma and the endometrium, but not in the peritoneal fluid or peripheral blood, was significantly decreased compared with that in women without endometriosis. In Foxp3DTR/diphtheria toxin mice, the number and weight of endometriotic lesions, inflammatory cytokine levels and angiogenetic factors were significantly increased compared with those in control mice. Treg cell deficiency exaggerates local inflammation and angiogenesis and simultaneously facilitates the attachment and growth of endometrial implants. The findings provide an insight into dysregulated immune response for the pathogenesis and development.

  20. SHARPIN controls the development of regulatory T cells.

    PubMed

    Redecke, Vanessa; Chaturvedi, Vandana; Kuriakose, Jeeba; Häcker, Hans

    2016-06-01

    SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be

  1. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    PubMed Central

    Zhong, Chao; Zhu, Jinfang

    2015-01-01

    Recent studies on innate lymphoid cells (ILCs) have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK) cells and the “helper” feature of CD4+ T helper (Th) cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs. PMID:26379372

  2. T regulatory cells distinguish two types of primary hypophysitis.

    PubMed

    Mirocha, S; Elagin, R B; Salamat, S; Jaume, J C

    2009-03-01

    Numerous cases of primary hypophysitis have been described over the past 25 years with, however, little insight into the cause(s) of this disease. In order to guide treatment, a better understanding of the pathogenesis is needed. We studied the pathogenesis of primary hypophysitis by analysing systematically the immune response at the pituitary tissue level of consecutive cases of 'lymphocytic' hypophysitis who underwent pituitary biopsy. In order to investigate further the pathogenesis of their diseases we characterized two cases at clinical, cellular and molecular levels. We show here, for the first time, that lymphocytic hypophysitis probably encompasses at least two separate entities. One entity, in agreement with the classical description of lymphocytic hypophysitis, demonstrates an autoimmune process with T helper 17 cell dominance and lack of T regulatory cells. The other entity represents a process in which T regulatory cells seem to control the immune response, which may not be self- but foreign-targeted. Our data suggest that it may be necessary to biopsy suspected primary hypophysitis and to analyse pituitary tissue with immune markers to guide treatment. Based on our results, hypophysitis driven by an immune homeostatic process should not be treated with immunosuppression, while autoimmune-defined hypophysitis may benefit from it. We show here for the first time two different pathogenic processes classified under one disease type and how to distinguish them. Because of our findings, changes in current diagnostic and therapeutic approaches may need to be considered.

  3. Development and function of Foxp3(+) regulatory T cells.

    PubMed

    Wang, Yuan Min; Ghali, Joanna; Zhang, Geoff Yu; Hu, Min; Wang, Ya; Sawyer, Andrew; Zhou, Jimmy Jianheng; Hapudeniya, Dhanushka A; Wang, Yiping; Cao, Qi; Zheng, Guoping; Harris, David C; Alexander, Stephen I

    2016-02-01

    Regulatory T cells (Tregs) have been recognized as having a major role in maintaining peripheral tolerance and preventing and limiting autoimmune and chronic inflammatory diseases. Tregs derive from the thymus and also develop peripherally. In this review, we discuss recent progress in our understanding of the basic mechanisms involved in Treg development and function in protecting against autoimmunity in the periphery, including thymic selection, peripheral induction and the many mechanisms of Treg suppression. Specifically in kidney disease, Tregs have been shown to play a role in limiting injury and may potentially have a therapeutic role.

  4. The Toxoplasma Centrocone Houses Cell Cycle Regulatory Factors.

    PubMed

    Naumov, Anatoli; Kratzer, Stella; Ting, Li-Min; Kim, Kami; Suvorova, Elena S; White, Michael W

    2017-08-22

    Our knowledge of cell cycle regulatory mechanisms in apicomplexan parasites is very limited. In this study, we describe a novel Toxoplasma gondii factor that has a vital role in chromosome replication and the regulation of cytoplasmic and nuclear mitotic structures, and we named this factor ECR1 for essential for chromosome replication 1. ECR1 was discovered by complementation of a temperature-sensitive (ts) mutant that suffers lethal, uncontrolled chromosome replication at 40°C similar to a ts mutant carrying a defect in topoisomerase. ECR1 is a 52-kDa protein containing divergent RING and TRAF-Sina-like zinc binding domains that are dynamically expressed in the tachyzoite cell cycle. ECR1 first appears in the unique spindle compartment of the Apicomplexa (centrocone) of the nuclear envelope in early S phase and then in the nucleus in late S phase where it reaches maximum expression. Following nuclear division, but before daughter parasites separate from the mother parasite, ECR1 is downregulated and is absent in new daughter parasites. The proteomics of ECR1 identified interactions with the ubiquitin-mediated protein degradation machinery and the minichromosome maintenance complex, and the loss of ECR1 led to increased stability of a key member of this complex, MCM2. ECR1 also forms a stable complex with the cyclin-dependent kinase (CDK)-related kinase, Tgondii Crk5 (TgCrk5), which displays a similar cell cycle expression and localization during tachyzoite replication. Importantly, the localization of ECR1/TgCrk5 in the centrocone indicates that this Apicomplexa-specific spindle compartment houses important regulatory factors that control the parasite cell cycle.IMPORTANCE Parasites of the apicomplexan family are important causes of human disease, including malaria, toxoplasmosis, and cryptosporidiosis. Parasite growth is the underlying cause of pathogenesis, yet despite this importance, the molecular basis for parasite replication is poorly understood. Filling

  5. T regulatory cells: an overview and intervention techniques to modulate allergy outcome

    PubMed Central

    Nandakumar, Subhadra; Miller, Christopher WT; Kumaraguru, Uday

    2009-01-01

    Dysregulated immune response results in inflammatory symptoms in the respiratory mucosa leading to asthma and allergy in susceptible individuals. The T helper type 2 (Th2) subsets are primarily involved in this disease process. Nevertheless, there is growing evidence in support of T cells with regulatory potential that operates in non-allergic individuals. These regulatory T cells occur naturally are called natural T regulatory cells (nTregs) and express the transcription factor Foxp3. They are selected in the thymus and move to the periphery. The CD4 Th cells in the periphery can be induced to become regulatory T cells and hence called induced or adaptive T regulatory cells. These cells can make IL-10 or TGF-b or both, by which they attain most of their suppressive activity. This review gives an overview of the regulatory T cells, their role in allergic diseases and explores possible interventionist approaches to manipulate Tregs for achieving therapeutic goals. PMID:19284628

  6. Negative transcriptional regulatory element that functions in embryonal carcinoma cells.

    PubMed Central

    Ariizumi, K; Takahashi, H; Nakamura, M; Ariga, H

    1989-01-01

    We have cloned the polyomavirus mutant fPyF9, which persists in an episomal state in F9 embryonal carcinoma cells (K. Ariizumi and H. Ariga, Mol. Cell. Biol. 6:3920-3927, 1986). fPyF9 carries three copies of exogenous sequences, the prototype of which is a 21-base-pair repeat (box DNA), in the region of the enhancer B domain of wild-type polyomavirus DNA. The consensus sequence, GCATTCCATTGTT, is 13 base pairs long. The box DNA inserted into fPyF9 appeared to come from a cellular sequence and was present in many kinds of DNAs, including F9 chromosomal DNA. The biological function of box DNA was analyzed by chloramphenicol acetyltransferase expression assays, using chimeric plasmids containing box DNA conjugated with simian virus 40 promoter elements. The results showed that box DNA repressed the activities both of the simian virus 40 promoter and enhancer only in transfected undifferentiated F9 cells and not in differentiated LTK- cells. Box DNA functioned independently of orientation and position with respect to the promoter in an enhancerlike manner, although the effect of box DNA was opposite that of the enhancer. The XhoI linker insertion into the consensus sequences of box DNA abolished the repression activity, and the protein(s) recognizing the consensus sequences was identified only in F9 cells, not in L cells. These analyses suggest that box DNA may be a negative regulatory element that functions in undifferentiated cells. Images PMID:2550812

  7. Increased regulatory T cells in acute lymphoblastic leukaemia patients.

    PubMed

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2016-05-01

    Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population, which may be identified by the phenotype, CD3+CD4+CD25+CD127-. The role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukaemias. A review of the literature on Tregs in acute leukaemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukaemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean±SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies, tumour-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumour-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal its mysteries and their impact on clinical significance.

  8. Glioma-Derived ADAM10 Induces Regulatory B Cells to Suppress CD8+ T Cells

    PubMed Central

    Li, Wen-sheng; Luo, Lun; Huang, Zhen-chao; Guo, Ying

    2014-01-01

    CD8+ T cells play an important role in the anti-tumor activities of the body. The dysfunction of CD8+ T cells in glioma is unclear. This study aims to elucidate the glioma cell-derived ADAM10 (A Disintegrin and metalloproteinase domain-containing protein 10) in the suppression of CD8+ effector T cells by the induction of regulatory B cells. In this study, glioma cells were isolated from surgically removed glioma tissue and stimulated by Phorbol myristate acetage (PMA) in the culture. The levels of ADAM10 in the culture were determined by enzyme-linked immunosorbent assay. Immune cells were assessed by flow cytometry. The results showed that the isolated glioma cells express ADAM10, which was markedly up regulated after stimulated with PMA. The glioma-derived ADAM10 induced activated B cells to differentiate into regulatory B cells, the later suppressed CD8+ T cell proliferation as well as the induced regulatory T cells, which also showed the immune suppressor effect on CD8+ effector T cell proliferation. In conclusion, glioma cells produce ADAM10 to induce Bregs; the latter suppresses CD8+ T cells and induces Tregs. PMID:25127032

  9. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  10. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-02-26

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions.

  11. Sex differences in regulatory cells in experimental stroke.

    PubMed

    Seifert, Hilary A; Benedek, Gil; Liang, Jian; Nguyen, Ha; Kent, Gail; Vandenbark, Arthur A; Saugstad, Julie A; Offner, Halina

    2017-08-01

    Stroke is the leading cause of disability in the United States. Sex differences, including smaller infarcts in females and greater involvement of immune-mediated inflammation in males may affect the efficacy of immune-modulating interventions. To address these differences, we sought to identify distinct stroke-modifying mechanisms in female vs. male mice. The current study demonstrated smaller infarcts and increased levels of regulatory CD19(+)CD5(+)CD1d(hi) B10 cells as well as anti-inflammatory CD11b(+)CD206(+) microglia/macrophages in the ipsilateral vs. contralateral hemisphere of female but not male mice undergoing 60min middle cerebral artery occlusion followed by 96h of reperfusion. Moreover, female mice with MCAO had increased total spleen cell numbers but lower B10 levels in spleens. These results elucidate differing sex-dependent regulatory mechanisms that account for diminished stroke severity in females and underscore the need to test immune-modulating therapies for stroke in both males and females. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Statins as Modulators of Regulatory T-Cell Biology

    PubMed Central

    Forero-Peña, David A.; Gutierrez, Fredy R. S.

    2013-01-01

    Statins are pharmacological inhibitors of the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), an enzyme responsible for the synthesis of cholesterol. Some recent experimental studies have shown that besides their effects on the primary and secondary prevention of cardiovascular diseases, statins may also have beneficial anti-inflammatory effects through diverse mechanisms. On the other hand, the induction and activity of regulatory T cells (Treg) are key processes in the prevention of pathology during chronic inflammatory and autoimmune diseases. Hence, strategies oriented towards the therapeutic expansion of Tregs are gaining special attention among biomedical researchers. The potential effects of statins on the biology of Treg are of particular importance because of their eventual application as in vivo inducers of Treg in the treatment of multiple conditions. In this paper we review the experimental evidence pointing out to a potential effect of statins on the role of regulatory T cells in different conditions and discuss its potential clinical significance. PMID:24222935

  13. The Molecular Mechanisms of Regulatory T Cell Immunosuppression

    PubMed Central

    Pandiyan, Pushpa; Zheng, Lixin; Lenardo, Michael J.

    2011-01-01

    CD4+CD25+Foxp3+ T lymphocytes, known as regulatory T cells or Tregs, have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective “helper” and “cytotoxic” lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of Tregs. There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4+ effector T cells are directly inhibited by Tregs, it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that Tregs, similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of Treg behavior, we will recount developing findings that support these new concepts. PMID:22566849

  14. Regulatory T cell-based therapies for autoimmunity.

    PubMed

    Arellano, Benjamine; Graber, David J; Sentman, Charles L

    2016-08-01

    Autoimmune disorders are long-term diseases that adversely affect the quality of life for patients, and they are one of the top ten leading causes of death. While each autoimmune disorder is unique, they all are caused by a breakdown of tolerance against endogenous proteins. This leads to auto-inflammatory events that promote the destruction of organs in a humoral and cellular immune mediated manner. Treatment options for autoimmunity can involve the use of chemical and biologic agents that suppress inflammation. While these treatment options for patients have shown to be beneficial in autoimmunity, they can result in patients being vulnerable to opportunistic infections. Newer therapies aim to identify methods to specifically block auto-inflammatory immune cells while allowing for an intact immune response to other antigens. T regulatory (Treg) cells are a subtype of the adoptive immune cell that is capable of suppressing inflammatory events in an antigen-specific manner, but they are often poorly functioning within autoimmune patients. Treg cells have been well characterized for their immune modulating capabilities and preclinical and early clinical studies support their therapeutic potential for antigen-specific immune suppression. This review will examine the current understanding of Treg cell function and the therapeutic potential of enhancing Treg cells in patients with inflammatory disorders.

  15. Induction of colonic regulatory T cells by indigenous Clostridium species.

    PubMed

    Atarashi, Koji; Tanoue, Takeshi; Shima, Tatsuichiro; Imaoka, Akemi; Kuwahara, Tomomi; Momose, Yoshika; Cheng, Genhong; Yamasaki, Sho; Saito, Takashi; Ohba, Yusuke; Taniguchi, Tadatsugu; Takeda, Kiyoshi; Hori, Shohei; Ivanov, Ivaylo I; Umesaki, Yoshinori; Itoh, Kikuji; Honda, Kenya

    2011-01-21

    CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted T(reg) cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor-β and affected Foxp3(+) T(reg) number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.

  16. Rapid regulatory control of plant cell expansion and wall relaxation

    SciTech Connect

    Cosgrove, D.J.

    1991-08-14

    The aim of this project is to elucidate the biophysical and cellular mechanisms that control plant cell expansion. At present we are attempting to characterize the kinetics of the system(s) responsible for regulatory and compensatory behavior of growing cells and tissues. This work is significantly because it indicates that biochemical loosening and biophysical stress relaxation of the wall are part of a feedback loop controlling growth. This report briefly summarizes the efforts and results of the past 12 months. In large part, we have been trying to analyze the nature of growth rate noise,'' i.e. spontaneous and often erratic variations in growth rate. We are obtaining evidence that such noise'' is not random, but rather reveals an underlying growth mechanism with complex dynamics.

  17. Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics.

    PubMed

    Dwivedi, Mitesh; Kemp, E Helen; Laddha, Naresh C; Mansuri, Mohmmad Shoab; Weetman, Anthony P; Begum, Rasheedunnisa

    2015-01-01

    Vitiligo is a hypomelanotic autoimmune skin disease arising from a breakdown in immunological self-tolerance, which leads to aberrant immune responses against melanocytes. Regulatory T cells (Tregs) are crucial to the development of self-tolerance and so are major foci in the study of autoimmune pathogenesis of vitiligo. This review will summarise recent findings concerning the role of Tregs in the pathogenesis of vitiligo. In addition, as antigen-specific Tregs are a potential route for the reinstatement of immune tolerance, new strategies that expand or induce de novo generation of Tregs and which are currently being investigated as therapies for other autoimmune diseases, will be discussed. These approaches will highlight the opportunities for Treg cell-based therapeutics in vitiligo.

  18. Special regulatory T cell review: The suppression problem!

    PubMed Central

    Waldmann, Herman

    2008-01-01

    The concept of T-cell mediated suppression evolved more than 30 years ago. At that time it spawned many claims that have not stood the test of time. The rediscovery of suppression phenomena and regulatory T cells over the past 15 years created schizophrenic responses amongst immunologists. Some claimed that the new proponents of suppression were, once again, bringing immunology into disrepute, whilst others have embraced the field with great enthusiasm and novel approaches to clarification. Without faithful repetition of the “old” experiments, it is difficult to establish what was right and what was wrong. Nevertheless, immunologists must now accept that a good number of the old claims were overstated, and reflected poor scientific discipline. “I speak not to disprove what Brutus spoke, But here I am to speak what I do know” Shakespeare. Julius Caesar Act 3, Scene 2. PMID:18154612

  19. Special regulatory T cell review: The suppression problem!

    PubMed

    Waldmann, Herman

    2008-01-01

    The concept of T-cell mediated suppression evolved more than 30 years ago. At that time it spawned many claims that have not stood the test of time. The rediscovery of suppression phenomena and regulatory T cells over the past 15 years created schizophrenic responses amongst immunologists. Some claimed that the new proponents of suppression were, once again, bringing immunology into disrepute, whilst others have embraced the field with great enthusiasm and novel approaches to clarification. Without faithful repetition of the "old" experiments, it is difficult to establish what was right and what was wrong. Nevertheless, immunologists must now accept that a good number of the old claims were overstated, and reflected poor scientific discipline. "I speak not to disprove what Brutus spoke, But here I am to speak what I do know" Shakespeare. Julius Caesar Act 3, Scene 2.

  20. Regulatory T cells in patients with Whipple's disease.

    PubMed

    Schinnerling, Katina; Moos, Verena; Geelhaar, Anika; Allers, Kristina; Loddenkemper, Christoph; Friebel, Julian; Conrad, Kristina; Kühl, Anja A; Erben, Ulrike; Schneider, Thomas

    2011-10-15

    Classical Whipple's disease (CWD) is caused by chronic infection with Tropheryma whipplei that seems to be associated with an underlying immune defect. The pathognomonic hallmark of CWD is a massive infiltration of the duodenal mucosa with T. whipplei-infected macrophages that disperse systemically to many other organ systems. An alleviated inflammatory reaction and the absence of T. whipplei-specific Th1 reactivity support persistence and systemic spread of the pathogen. In this article, we hypothesized that regulatory T cells (T(reg)) are involved in immunomodulation in CWD, and we asked for the distribution, activation, and regulatory capacity of T(reg) in CWD patients. Whereas in the lamina propria of CWD patients before treatment numbers of T(reg) were increased, percentages in the peripheral blood were similar in CWD patients and healthy controls. However, peripheral T(reg) of CWD patients were more activated than those of controls. Elevated secretion of IL-10 and TGF-β in the duodenal mucosa of CWD patients indicated locally enhanced T(reg) activity. Enhanced CD95 expression on peripheral memory CD4(+) T cells combined with reduced expression of IFN-γ and IL-17A upon polyclonal stimulation by CD4(+) cells from untreated CWD patients further hinted to T(reg) activity-related exhaustion of effector CD4(+) T cells. In conclusion, increased numbers of T(reg) can be detected within the duodenal mucosa in untreated CWD, where huge numbers of T. whipplei-infected macrophages are present. Thus, T(reg) might contribute to the chronic infection and systemic spread of T. whipplei in CWD but in contrast prevent mucosal barrier defect by reducing local inflammation.

  1. Defect of regulatory T cells in patients with Omenn syndrome.

    PubMed

    Cassani, Barbara; Poliani, Pietro Luigi; Moratto, Daniele; Sobacchi, Cristina; Marrella, Veronica; Imperatori, Laura; Vairo, Donatella; Plebani, Alessandro; Giliani, Silvia; Vezzoni, Paolo; Facchetti, Fabio; Porta, Fulvio; Notarangelo, Luigi D; Villa, Anna; Badolato, Raffaele

    2010-01-01

    Omenn syndrome (OS) is an autosomal-recessive disorder characterized by severe immunodeficiency and T-cell-mediated autoimmunity. The disease is caused by hypomorphic mutations in recombination-activating genes that hamper the process of Variable (V) Diversity (D) Joining (J) recombination, leading to the generation of autoreactive T cells. We have previously shown that in OS the expression of autoimmune regulator, a key factor governing central tolerance, is markedly reduced. Here, we have addressed the role of peripheral tolerance in the disease pathogenesis. We have analyzed forkhead box protein P3 (FOXP3) expression in peripheral blood T cells of 4 patients with OS and in lymphoid organs of 8 patients with OS and have tested the suppressive activity of sorted CD4(+) CD25(high) peripheral blood T cells in 2 of these patients. We have observed that CD4(+)CD25(high)T cells isolated ex vivo from patients with OS failed to suppress proliferation of autologous or allogenic CD4(+) responder T cells. Moreover, despite individual variability in the fraction of circulating FOXP3(+) CD4 cells in patients with OS, the immunohistochemical analysis of FOXP3 expression in lymph nodes and thymus of patients with OS demonstrated a severe reduction of this cell subset compared with control tissues. Overall, these results suggest a defect of regulatory T cells in OS leading to a breakdown of peripheral tolerance, which may actively concur to the development of autoimmune manifestations in the disease. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Intravenous apoptotic spleen cell infusion induces a TGF-beta-dependent regulatory T-cell expansion

    PubMed Central

    Kleinclauss, François M.; Perruche, Sylvain; Masson, Emeline; De Carvalho Bittencourt, Marcelo; Biichle, Sabeha; Remy-Martin, Jean-Paul; Ferrand, Christophe; Martin, Mael; Bittard, Hugues; Chalopin, Jean-Marc; Seilles, Estelle; Tiberghien, Pierre; Saas, Philippe

    2006-01-01

    Apoptotic leukocytes are endowed with immunomodulatory properties that can be used to enhance hematopoietic engraftment and prevent graft-versus-host disease. This apoptotic cell-induced tolerogenic effect is mediated by host macrophages and not recipient dendritic cells or donor phagocytes present in the bone marrow graft as evidenced by selective cell depletion and trafficking experiments. Furthermore, apoptotic cell infusion is associated with TGF-β-dependent donor CD4+CD25+ T cell expansion. Such cells have a regulatory phenotype (CD62Lhigh and intracellular CTLA-4+), express high levels of Foxp3 mRNA and exert ex vivo suppressive activity through a cell-to-cell contact mechanism. In vivo CD25 depletion after apoptotic cell infusion prevents the apoptotic spleen cell-induced beneficial effects on engraftment and graft-versus-host disease occurrence. This highlights the role of regulatory T cells in the tolerogenic effect of apoptotic spleen cell infusion. This novel association between apoptosis and regulatory T cell expansion may also contribute to preventing deleterious auto-immune responses during normal turnover. PMID:15962005

  3. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  4. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  5. Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.

  6. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  7. Type 1 diabetes immunotherapy using polyclonal regulatory T cells

    PubMed Central

    Bluestone, Jeffrey A.; Buckner, Jane H.; Fitch, Mark; Gitelman, Stephen E.; Gupta, Shipra; Hellerstein, Marc K.; Herold, Kevan C.; Lares, Angela; Lee, Michael R.; Li, Kevin; Liu, Weihong; Long, S. Alice; Masiello, Lisa M.; Nguyen, Vinh; Putnam, Amy L.; Rieck, Mary; Sayre, Peter; Tang, Qizhi

    2016-01-01

    Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy. PMID:26606968

  8. Skin-derived TSLP systemically expands regulatory T cells.

    PubMed

    Leichner, Theresa M; Satake, Atsushi; Harrison, Victor Sanoe; Tanaka, Yukinori; Archambault, Angela S; Kim, Brian S; Siracusa, Mark C; Leonard, Warren J; Naji, Ali; Wu, Gregory F; Artis, David; Kambayashi, Taku

    2017-05-01

    Regulatory T cells (Tregs) are a subset of CD4(+) T cells with suppressive function and are critical for limiting inappropriate activation of T cells. Hence, the expansion of Tregs is an attractive strategy for the treatment of autoimmune diseases. Here, we demonstrate that the skin possesses the remarkable capacity to systemically expand Treg numbers by producing thymic stromal lymphopoietin (TSLP) in response to vitamin D receptor stimulation. An ∼2-fold increase in the proportion and absolute number of Tregs was observed in mice treated topically but not systemically with the Vitamin D3 analog MC903. This expansion of Tregs was dependent on TSLP receptor signaling but not on VDR signaling in hematopoietic cells. However, TSLP receptor expression by Tregs was not required for their proliferation. Rather, skin-derived TSLP promoted Treg expansion through dendritic cells. Importantly, treatment of skin with MC903 significantly lowered the incidence of autoimmune diabetes in non-obese diabetic mice and attenuated disease score in experimental autoimmune encephalomyelitis. Together, these data demonstrate that the skin has the remarkable potential to control systemic immune responses and that Vitamin D-mediated stimulation of skin could serve as a novel strategy to therapeutically modulate the systemic immune system for the treatment of autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.

  10. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10.

    PubMed

    Lingblom, Christine; Andersson, Jennie; Andersson, Kerstin; Wennerås, Christine

    2017-06-15

    Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16(hi) subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16(hi) eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16(neg) eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Regulatory issues in cell-based therapy for clinical purposes.

    PubMed

    Casaroli-Marano, Ricardo P; Tabera, Jaime; Vilarrodona, Anna; Trias, Esteve

    2014-01-01

    Rapid development in the fields of cellular and molecular biology, biotechnology, and bioengineering medicine has brought new, highly innovative treatments and medicinal products, some of which contain viable cells and tissues associated with scaffolds and devices. These new cell-based therapy approaches in regenerative medicine have great potential for use in the treatment of a number of diseases that at present cannot be managed effectively. Given the unique challenges associated with the development of human cell-based medicinal products, great care is required in the development of procedures, practices, and regulation. In cell therapy, appropriate methodologies in the areas of production, reproducibility, maintenance, and delivery are essential for accurate definition and reliable assurance of the suitability and quality of the final products. Recently, the official European Community agencies (EMA) and the relevant authority in the USA (FDA) have made significant efforts to establish regulatory guidance for use in the application of the cell-based therapies for human patients. The guidelines surrounding cell-based therapy take into account the current legislation, but focus less on the heterogeneity and requirements of individual human cell-based products, including specific combination products and applications. When considering guidelines and regulation, a risk assessment approach is an effective method of identifying priority areas for the development of human cell-based medicinal products. Additionally, effective design and thorough validation of the manufacturing process in line with existing Good Manufacturing Practices (GMPs) and quality control regimes and a program that ensures the traceability and biovigilance of the final products are also all essential elements to consider. © 2014 S. Karger AG, Basel.

  12. Regulatory T-cell vaccination independent of auto-antigen.

    PubMed

    Pascual, David W; Yang, Xinghong; Holderness, Kathryn; Jun, SangMu; Maddaloni, Massimo; Kochetkova, Irina

    2014-03-14

    To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25(+) Treg cells are stimulated, but for arthritis CD39(+) Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.

  13. Immunoevasive Pericytes From Human Pluripotent Stem Cells Preferentially Modulate Induction of Allogeneic Regulatory T Cells

    PubMed Central

    Domev, Hagit; Milkov, Irina; Dar, Ayelet

    2014-01-01

    Isolated microvessel-residing pericytes and pericytes from human pluripotent stem cells (hPSCs) exhibit mesenchymal stem cell-like characteristics and therapeutic properties. Despite growing interest in pericyte-based stem cell therapy, their immunogenicity and immunomodulatory effects on nonactivated T cells are still poorly defined, in particular those of vasculogenic hPSC pericytes. We found that tissue-embedded and unstimulated cultured hPSC- or tissue-derived pericytes constitutively expressed major histocompatibility complex (MHC) class I and the inhibitory programmed cell death-ligand 1/2 (PD-L1/2) molecules but not MHC class II or CD80/CD86 costimulatory molecules. Pretreatment with inflammatory mediators failed to induce an antigen-presenting cell-like phenotype in stimulated pericytes. CD146+ pericytes from hPSCs did not induce activation and proliferation of allogeneic resting T cells independent of interferon (IFN)-γ prestimulation, similarly to pericytes from human brain or placenta. Instead, pericytes mediated a significant increase in the frequency of allogeneic CD25highFoxP3+ regulatory T cells when cocultured with nonactivated peripheral blood T cells. Furthermore, when peripheral blood CD25high regulatory T cells (Tregs) were depleted from isolated CD3+ T cells, pericytes preferentially induced de novo formation of CD4+CD25highFoxP3+CD127−, suppressive regulatory T cells. Constitutive expression of PD-L1/2 and secretion of transforming growth factor-β by hPSC pericytes directly regulated generation of pericyte-induced Tregs. Pericytes cotransplanted into immunodeficient mice with allogeneic CD25− T cells maintained a nonimmunogenic phenotype and mediated the development of functional regulatory T cells. Together, these findings reveal a novel feature of pericyte-mediated immunomodulation distinguished from immunosuppression, shared by native tissue pericytes and hPSC pericytes, and support the notion that pericytes can be applied for

  14. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    PubMed Central

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  15. Regulatory T Cells in γ Irradiation-Induced Immune Suppression

    PubMed Central

    McFarland, Hugh I.; Puig, Montserrat; Grajkowska, Lucja T.; Tsuji, Kazuhide; Lee, Jay P.; Mason, Karen P.; Verthelyi, Daniela; Rosenberg, Amy S.

    2012-01-01

    Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies. PMID:22723935

  16. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection

    PubMed Central

    Miles, Brodie; Miller, Shannon M.; Folkvord, Joy M.; Kimball, Abigail; Chamanian, Mastooreh; Meditz, Amie L.; Arends, Tessa; McCarter, Martin D.; Levy, David N.; Rakasz, Eva G.; Skinner, Pamela J.; Connick, Elizabeth

    2015-01-01

    Human and simian immunodeficiency viruses (HIV and SIV) exploit follicular lymphoid regions by establishing high levels of viral replication and dysregulating humoral immunity. Follicular regulatory T cells (TFR) are a recently characterized subset of lymphocytes that influence the germinal centre response through interactions with follicular helper T cells (TFH). Here, utilizing both human and rhesus macaque models, we show the impact of HIV and SIV infection on TFR number and function. We find that TFR proportionately and numerically expand during infection through mechanisms involving viral entry and replication, TGF-β signalling, low apoptosis rates and the presence of regulatory dendritic cells. Further, TFR exhibit elevated regulatory phenotypes and impair TFH functions during HIV infection. Thus, TFR contribute to inefficient germinal centre responses and inhibit HIV and SIV clearance. PMID:26482032

  17. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells.

    PubMed

    Hall, Bruce M

    2015-11-06

    Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be

  18. Heterogeneity and Stability in Foxp3+ Regulatory T Cells.

    PubMed

    Min, Booki

    2017-09-01

    Foxp3+ regulatory T cells (Tregs) play an indispensable role in controlling tolerance and immunity against self- and foreign antigens. The failure of Tregs to properly function is the direct cause of systemic and chronic inflammation as well as immune suppression. It is now evident that Tregs are highly heterogeneous populations depending on the surface phenotypes, cytokine profiles, and anatomical locations. Yet, our understanding of the cellular and molecular pathways underlying such heterogeneity is very limited. Furthermore, some Tregs lose the phenotype (and suppressive functions) and instead acquire pathogenicity. Since utilizing Tregs as a tool for immunotherapy is being implemented in many clinical settings, it is of utmost importance to understand the precise mechanisms by which the loss of Treg phenotype (and function) is prevented. In this review, both cellular and molecular factors involved in Treg heterogeneity and stability are discussed.

  19. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Control of Regulatory T Cell Migration, Function, and Homeostasis.

    PubMed

    Campbell, Daniel J

    2015-09-15

    Foxp3(+) regulatory T cells (Tregs) are essential for preventing autoimmunity and uncontrolled inflammation, and they modulate immune responses during infection and the development of cancer. Accomplishing these tasks requires the widespread distribution of Tregs in both lymphoid and nonlymphoid tissues, and the selective recruitment of Tregs to different tissue sites has emerged as a key checkpoint that controls tissue inflammation in autoimmunity, infection, and cancer development, as well as in the context of allograft acceptance or rejection. Additionally, Tregs are functionally diverse, and it has become clear that some of this diversity segregates with Treg localization to particular tissue sites. In this article, I review the progress in understanding the mechanisms of Treg trafficking and discuss factors controlling their homeostatic maintenance and function in distinct tissue sites.

  1. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets.

    PubMed

    Pray, Todd R; Parlati, Francesco; Huang, Jianing; Wong, Brian R; Payan, Donald G; Bennett, Mark K; Issakani, Sarkiz Daniel; Molineaux, Susan; Demo, Susan D

    2002-12-01

    Disregulation of the cell cycle and proliferation play key roles in cellular transformation and tumorigenesis. Such processes are intimately tied to the concentration, localization and activity of enzymes, adapters, receptors, and structural proteins in cells. Ubiquitination of these cellular regulatory proteins, governed by specific enzymes in the ubiquitin (Ub) conjugation cascade, has profound effects on their various functions, most commonly through proteasome targeting and degradation. This review will focus on a variety of E3 Ub ligases as potential oncology drug targets, with particular emphasis on the role of these molecules in the regulation of stability, localization, and activity of key proteins such as tumor suppressors and oncoproteins. E3 ubiquitin ligases that have established roles in cell cycle and apoptosis, such as the anaphase-promoting complex (APC), the Skp-1-Cul1-F-box class, and the murine double minute 2 (MDM2) protein, in addition to more recently discovered E3 ubiquitin ligases which may be similarly important in tumorigenesis, (e.g. Smurf family, CHFR, and Efp), will be discussed. We will present evidence to support E3 ligases as good biological targets in the development of anticancer therapeutics and address challenges in drug discovery for these targets.

  2. Unifying roles for regulatory T cells and inflammation in cancer

    PubMed Central

    Erdman, Susan E.; Rao, Varada P.; Olipitz, Werner; Taylor, Christie L.; Jackson, Erin A.; Levkovich, Tatiana; Lee, Chung-Wei; Horwitz, Bruce H.; Fox, James G.; Ge, Zhongming; Poutahidis, Theofilos

    2014-01-01

    Activities of CD4+ regulatory (TREG) cells restore immune homeostasis during chronic inflammatory disorders. Roles for TREG cells in inflammation-associated cancers, however, are paradoxical. It is widely believed that TREG function in cancer mainly to suppress protective anticancer responses. However, we demonstrate here that TREG cells also function to reduce cancer risk throughout the body by efficiently downregulating inflammation arising from the gastrointestinal (GI) tract. Building on a “hygiene hypothesis” model in which GI infections lead to changes in TREG that reduce immune-mediated diseases, here we show that gut bacteria-triggered TREG may function to inhibit cancer even in extraintestinal sites. Ability of bacteria-stimulated TREG to suppress cancer depends on interleukin (IL)-10, which serves to maintain immune homeostasis within bowel and support a protective antiinflammatory TREG phenotype. However, under proinflammatory conditions, TREG may fail to provide antiinflammatory protection and instead contribute to a T helper (Th)-17-driven procarcinogenic process; a cancer state that is reversible by downregulation of inflammation. Consequently, hygienic individuals with a weakened IL-10 and TREG-mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated IL-6 and IL-17 and show more frequent inflammation-associated cancers. Taken together, these data unify seemingly divergent disease processes such as autoimmunity and cancer and help explain the paradox of TREG and inflammation in cancer. Enhancing protective TREG functions may promote healthful longevity and significantly reduce risk of cancer. PMID:19795459

  3. GITR+ regulatory T cells in the treatment of autoimmune diseases.

    PubMed

    Petrillo, Maria Grazia; Ronchetti, Simona; Ricci, Erika; Alunno, Alessia; Gerli, Roberto; Nocentini, Giuseppe; Riccardi, Carlo

    2015-02-01

    Autoimmune diseases decrease life expectancy and quality of life for millions of women and men. Although treatments can slow disease progression and improve quality of life, all currently available drugs have adverse effects and none of them are curative; therefore, requiring patients to take immunosuppressive drugs for the remainder of their lives. A curative therapy that is safe and effective is urgently needed. We believe that therapies promoting the in vivo expansion of regulatory T cells (Tregs) or injection of in vitro expanded autologous/heterologous Tregs (cellular therapy) can alter the natural history of autoimmune diseases. In this review, we present data from murine and human studies suggesting that 1) glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) plays a crucial role in thymic Treg (tTreg) differentiation and expansion; 2) GITR plays a crucial role in peripheral Treg (pTreg) expansion; 3) in patients with Sjögren syndrome and systemic lupus erythematosus, CD4(+)GITR(+) pTregs are expanded in patients with milder forms of the disease; and 4) GITR is superior to other cell surface markers to differentiate Tregs from other CD4(+) T cells. In this context, we consider two potential new approaches for treating autoimmune diseases consisting of the in vivo expansion of GITR(+) Tregs by GITR-triggering drugs and in vitro expansion of autologous or heterologous GITR(+) Tregs to be infused in patients. Advantages of such an approach, technical problems, and safety issues are discussed.

  4. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation.

    PubMed

    Schmetterer, Klaus G; Neunkirchner, Alina; Pickl, Winfried F

    2012-06-01

    Naturally occurring CD4(+)CD25(high) forkhead box protein 3 (FOXP3)(+) regulatory T cells (nTregs) are key mediators of immunity, which orchestrate and maintain tolerance to self and foreign antigens. In the recent 1.5 decades, a multitude of studies have aimed to define the phenotype and function of nTregs and to assess their therapeutic potential for modulating immune mediated disorders such as autoimmunity, allergy, and episodes of transplant rejection. In this review, we summarize the current knowledge on the biology of nTregs. We address the exact definition of nTregs by specific markers and combinations thereof, which is a prerequisite for the state-of-the-art isolation of defined nTreg populations. Furthermore, we discuss the mechanism by which nTregs mediate immunosuppression and how this knowledge might translate into novel therapeutic modalities. With first clinical studies of nTreg-based therapies being finished, questions concerning the reliable sources of nTregs are becoming more and more eminent. Consequently, approaches allowing conversion of CD4(+) T cells into nTregs by coculture with antigen-presenting cells, cytokines, and/or pharmacological agents are discussed. In addition, genetic engineering approaches for the generation of antigen-specific nTregs are described.

  5. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells.

    PubMed

    Zhang, Zan; Lei, Anhua; Xu, Liyang; Chen, Lu; Chen, Yonglong; Zhang, Xuena; Gao, Yan; Yang, Xiaoli; Zhang, Min; Cao, Ying

    2017-08-04

    Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Treating arthritis by immunomodulation: is there a role for regulatory T cells?

    PubMed Central

    van Wijk, Femke; Roord, Sarah T.; Albani, Salvatore; Prakken, Berent J.

    2010-01-01

    The discovery of regulatory T cells almost 15 years ago initiated a new and exciting research area. The growing evidence for a critical role of these cells in controlling autoimmune responses has raised expectations for therapeutic application of regulatory T cells in patients with autoimmune arthritis. Here, we review recent studies investigating the presence, phenotype and function of these cells in patients with RA and juvenile idiopathic arthritis (JIA) and consider their therapeutic potential. Both direct and indirect methods to target these cells will be discussed. Arguably, a therapeutic approach that combines multiple regulatory T-cell-enhancing strategies could be most successful for clinical application. PMID:20463189

  7. MALT1 is an intrinsic regulator of regulatory T cells.

    PubMed

    Brüstle, A; Brenner, D; Knobbe-Thomsen, C B; Cox, M; Lang, P A; Lang, K S; Mak, T W

    2015-09-25

    Regulatory T cells (Tregs) are crucial for the maintenance of immunological self-tolerance and their absence or dysfunction can lead to autoimmunity. However, the molecular pathways that govern Treg biology remain obscure. In this study, we show that the nuclear factor-κB signalling mediator mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an important novel regulator of both Tregs originating in the thymus ('natural' or nTregs) and Tregs induced to differentiate from naive thymocyte helper (Th) cells in the periphery ('induced' or iTregs). Our examination of mice deficient for MALT1 revealed that these mutants have a reduced number of total Tregs. In young Malt1(-/-) mice, nTregs are totally absent and iTreg are diminished in the periphery. Interestingly, total Treg numbers increase in older Malt1(-/-) mice as well as in Malt1(-/-) mice subjected to experimentally induced inflammation. iTregs isolated from WT and Malt1(-/-) mice were indistinguishable with respect to their ability to suppress the activities of effector T cells, but Malt1(-/-) iTregs expressed higher levels of Toll-like receptor (TLR) 2. Treatment of WT and Malt1(-/-) Th cells in vitro with the TLR2 ligand Pam3Cys strongly enhanced the induction and proliferation of Malt1(-/-) iTregs. Our data suggest that MALT1 supports nTreg development in the thymus but suppresses iTreg induction in the periphery during inflammation. Our data position MALT1 as a key molecule that contributes to immune tolerance at steady-state while facilitating immune reactivity under stress conditions.Cell Death and Differentiation advance online publication, 25 September 2015; doi:10.1038/cdd.2015.104.

  8. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-05

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells.

    PubMed

    Amarnath, Shoba; Mangus, Courtney W; Wang, James C M; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E; Massey, Paul R; Felizardo, Tania C; Riley, James L; Levine, Bruce L; June, Carl H; Medin, Jeffrey A; Fowler, Daniel H

    2011-11-30

    Immune surveillance by T helper type 1 (T(H)1) cells is not only critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GVHD) after transplantation. The inhibitory molecule programmed death ligand 1 (PDL1) has been shown to anergize human T(H)1 cells, but other mechanisms of PDL1-mediated T(H)1 inhibition such as the conversion of T(H)1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause T(H)1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET(+) T(H)1 cells into FOXP3(+) regulatory T (T(reg)) cells in vivo, thereby preventing human-into-mouse xenogeneic GVHD (xGVHD). Either blocking PD1 expression on T(H)1 cells by small interfering RNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized T(H)1 cell differentiation during PDL1 challenge and restored the capacity of T(H)1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human T(H)1 cells to manifest in vivo plasticity, resulting in a T(reg) phenotype that severely impairs cell-mediated immunity. Converting human T(H)1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GVHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection.

  10. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation

    PubMed Central

    Gagliani, Nicola; Vesely, Maria Carolina Amezcua; Iseppon, Andrea; Brockmann, Leonie; Xu, Hao; Palm, Noah W.; de Zoete, Marcel R.; Licona-Limón, Paula; Paiva, Ricardo S.; Ching, Travers; Weaver, Casey; Zi, Xiaoyuan; Pan, Xinghua; Fan, Rong; Garmire, Lana X.; Cotton, Matthew J.; Drier, Yotam; Bernstein, Bradley; Geginat, Jens; Stockinger, Brigitta; Esplugues, Enric; Huber, Samuel; Flavell, Richard A.

    2015-01-01

    Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The TH17 lineage of T helper (TH) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A)1 and plasticity (they can start expressing cytokines typical of other lineages)1,2 upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion TH17 cells ex vivo during immune responses. Thus, it is unknown whether TH17 cell plasticity merely reflects change in expression of a few cytokines, or if TH17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation3,4. Furthermore, although TH17 cell instability/plasticity has been associated with pathogenicity1,2,5, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic TH17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track TH17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of TH17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and postconversion TH17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, TH17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that TH17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases. PMID:25924064

  11. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.

    PubMed

    Gagliani, Nicola; Amezcua Vesely, Maria Carolina; Iseppon, Andrea; Brockmann, Leonie; Xu, Hao; Palm, Noah W; de Zoete, Marcel R; Licona-Limón, Paula; Paiva, Ricardo S; Ching, Travers; Weaver, Casey; Zi, Xiaoyuan; Pan, Xinghua; Fan, Rong; Garmire, Lana X; Cotton, Matthew J; Drier, Yotam; Bernstein, Bradley; Geginat, Jens; Stockinger, Brigitta; Esplugues, Enric; Huber, Samuel; Flavell, Richard A

    2015-07-09

    Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A) and plasticity (they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation. Furthermore, although Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track Th17 cells during immune responses to show that CD4(+) T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.

  12. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.

    PubMed

    Doni Jayavelu, Naresh; Bar, Nadav

    2014-01-01

    Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

  13. Cell volume regulatory ion transport in the regulation of cell migration.

    PubMed

    Jakab, M; Ritter, M

    2006-01-01

    Cell migration is typically accomplished by the generation of protrusive mechanical forces and is achieved by repeated spatially and temporally coordinated cycles including the formation of a leading edge, the formation of new and disruption of older adhesions to the substratum, actomyosin based contractions and retraction of the trailing edge. Beside the well-described roles of the cytoskeleton and cell adhesions during these processes, a growing body of evidence indicates that the precise regulation of the cell volume is an indispensable prerequisite for coordinated cell migration. On the one hand during cell migration cell volume is continuously tormented by mechanical and morphological alterations, which pose changes to the intracellular hydrostatic pressure, metabolic changes and the formation or degradation of macromolecules like actin, which distort the osmotic equilibrium and the action of chemoattractants, hormones and transmitters, which frequently alter the electrical properties of a cell and thus cause cell swelling or shrinkage, respectively. On the other hand, a migrating cell actively has to govern cell volume regulatory ion transport mechanisms in order to create the appropriate micro- or even nanoenvironment in the intra- and/or extracellular space, which is necessary to guarantee the correct polarity and hence direction of movement of a migrating cell. This chapter will focus on the role of the cell volume regulatory ion transport mechanisms as they participate in the regulation of cell migration and special emphasis is given to their interplay with the cytoskeleton, their meaning for substrate adhesion and to the polarized fashion of their subcellular distribution.

  14. Regulatory T-cell cytokines in patients with nonsegmental vitiligo.

    PubMed

    Kidir, Mehtap; Karabulut, Ayse A; Ercin, Mustafa E; Atasoy, Pınar

    2017-05-01

    In the etiopathogenesis of vitiligo, the role of suppressor cytokines, such as transforming growth factor-β (TGF-β) and interleukin-10 (IL-10), associated with regulatory T-cells (Treg) is not completely known. In this study, the role of Treg-cell functions in the skin of patients with nonsegmental vitiligo was investigated. Lesional and nonlesional skin samples from 30 adult volunteers ranging in age from 18 to 36 years with nonsegmental vitiligo were compared with normal skin area excision specimens of 30 benign melanocytic nevus cases as controls. All samples were evaluated staining for forkhead box P3 (Foxp3), TGF-β, and IL-10 using the standardized streptavidin-biotin immunoperoxidase immunohistochemistry method. Foxp3 expression was lower in lesional vitiligo skin specimens compared to controls; it was also lower in lesional vitiligo specimens than nonlesional vitiligo specimens. IL-10 levels were lower in lesional vitiligo specimens compared to the controls, whereas IL-10 expression was significantly lower in lesional specimens compared with nonlesional specimens. TGF-β expression was higher in both lesional and nonlesional skin specimens of patients with vitiligo compared to controls. TGF-β expression was lower in lesional skin specimens than nonlesional skin specimens. In addition, there was no significant correlation between Foxp3 expression with TGF-β and IL-10 expressions in lesional skin specimens in the vitiligo group. In this study, results supporting the contribution of Treg cells and IL-10 deficiency to the autoimmune process were obtained. Therefore, future studies are necessary to demonstrate the definitive role of Treg-cell functions in the etiopathogenesis of vitiligo.

  15. Regulatory T cells (Tregs) monitoring in environmental diseases.

    PubMed

    Mićović, Vladimir; Vojniković, Bozo; Bulog, Aleksandar; Coklo, Miran; Malatestinić, Dulija; Mrakovcić-Sutić, Ines

    2009-09-01

    The prevalence of environmental diseases is increasing worldwide and these diseases are an onerous burden both to the individual and to the public health. Urban air pollution is a grave problem in majority of metropolises, which contain high levels of traffic congestion generating great amounts of genotoxic substances. The contribution of such environmental exposure to increase prevalence of many allergic, environmental diseases and multiple chemical sensitivity or other related syndromes, as a result of an abnormal immune response based on environmental damage of lymphocyte subsets, is marked. Benzene is one of the most important air pollutants that are emitted by oil industry, since they are involved in almost every refinery process. Volatile organic compounds (VOCs) are a major group of air pollutants and play a crucial role in ecological damages, disturbing the ecosystem and human health. The variability of pollutants is an important factor in determining human exposure to these chemicals. The immune system possess a capacity to distinguish between innocuous and harmful foreign antigens and controls this action by mechanisms of central and peripheral tolerance, where crucial role play regulatory T cells (Tregs). We analyzed the characteristics of human Tregs of inhabitants living near gasoline industry which have assessed moderate spyrometric tests and compared them with those situated in rural areas. Our data demonstrate that the chronic inhalation exposure increases the percentage of Tregs cells, but contrary those of inhabitants with decreased spirometry values have shown diminished number of Tregs, which may contribute to the new therapeutic approach of environmental diseases.

  16. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins

    PubMed Central

    Maksimenko, O.; Gasanov, N. B.; Georgiev, P.

    2015-01-01

    To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements. PMID:26483956

  17. Interleukin-2 treatment of tumor patients can expand regulatory T cells.

    PubMed

    Beyer, Marc

    2012-10-01

    Augmented numbers of regulatory T cells contribute to the overall immunosuppression in tumor patients. Interleukin-2 has been widely used in the clinics in anticancer therapy, yet evidence has accumulated that the major drawback, limiting clinical efficacy, is the expansion of regulatory T cells, which aggravates immunosuppression.

  18. The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells

    PubMed Central

    Gregori, Silvia; Goudy, Kevin S.; Roncarolo, Maria Grazia

    2011-01-01

    The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1) cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation. PMID:22566914

  19. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation

    PubMed Central

    Nguyen, Vu H.; Shashidhar, Sumana; Chang, Daisy S.; Ho, Lena; Kambham, Neeraja; Bachmann, Michael; Brown, Janice M.

    2008-01-01

    Regulatory T cells (Tregs) prevent graft-versus-host disease (GvHD) by inhibiting the proliferation and function of conventional T cells (Tcons). However, the impact of Tregs on T-cell development and immunity following hematopoietic cell transplantation (HCT) is unknown. Using a murine GvHD model induced by Tcons, we demonstrate that adoptive transfer of Tregs leads to (1) abrogration of GvHD, (2) preservation of thymic and peripheral lymph node architecture, and (3) an accelerated donor lymphoid reconstitution of a diverse TCR-Vβ repertoire. The resultant enhanced lymphoid reconstitution in Treg recipients protects them from lethal cytomegalovirus (MCMV) infection. By contrast, mice that receive Tcons alone have disrupted lymphoid organs from GvHD and remain lymphopenic with a restricted TCR-Vβ repertoire and rapid death on MCMV challenge. Lymphocytes from previously infected Treg recipients generate secondary response specific to MCMV, indicating long-term protective immunity with transferred Tregs. Thymectomy significantly reduces survival after MCMV challenge in Treg recipients compared with euthymic controls. Our results indicate that Tregs enhance immune reconstitution by preventing GvHD-induced damage of the thymic and secondary lymphoid microenvironment. These findings provide new insights into the role of Tregs in affording protection to lymphoid stromal elements important for T-cell immunity. PMID:17916743

  20. The generation and antigen-specificity of CD4+CD25+ regulatory T cells.

    PubMed

    Taams, Leonie S; Curnow, S John; Vukmanovic-Stejic, M; Akbar, Arne N

    2006-09-01

    CD4+CD25+ regulatory T cells are essential components of the immune system. They help to maintain immune tolerance by exerting suppressive effects on cells of the adaptive and innate immune system. In the last few years there has been an abundance of papers addressing the suppressive effects of CD4+CD25+ regulatory T cells and their putative role in various experimental disease models and human diseases. Despite the enormous amounts of data on these cells a number of controversial issues still exists. CD4+CD25+ regulatory T cells were originally described as thymus-derived anergic/suppressive T cells. Recent papers however indicate that these cells might also be generated in the periphery. Due to the thymic development of CD4+CD25+ regulatory T cells it was thought that these cells were specific for self-antigens. Indeed it was shown that CD4+CD25+ regulatory T cells could be positively selected upon high affinity interaction with self-antigens. However, evidence is accumulating that these cells might also interact with non-self antigens. Finally, in the literature there is conflicting evidence regarding the role of soluble factors versus cell-contact in the mechanism of suppression. The aim of this review is to summarize the evidence supporting these opposing viewpoints and to combine them into a general model for the origin, function and antigen-specificity of CD4+CD25+ regulatory T cells.

  1. Roles for Inflammation and Regulatory T Cells in Colon Cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2014-01-01

    Risk for developing cancer rises substantially as a result of poorly regulated inflammatory responses to pathogenic bacterial infections. Anti-inflammatory CD4+ regulatory cells (TREG) function to restore immune homeostasis during chronic inflammatory disorders. It seems logical that TREG cells would function to reduce risk of inflammation-associated cancer in the bowel by down-regulating inflammation. It is widely believed, however, that TREG function in cancer mainly to suppress protective anticancer inflammatory responses. Thus roles for inflammation, TREG cells, and gut bacteria in cancer are paradoxical and are the subject of controversy. Our accumulated data build upon the “hygiene hypothesis” model in which gastrointestinal (GI) infections lead to changes in TREG that reduce inflammation-associated diseases. Ability of TREG to inhibit or suppress cancer depends upon gut bacteria and IL-10, which serve to maintain immune balance and a protective anti-inflammatory TREG phenotype. However, under poorly regulated pro-inflammatory conditions, TREG fail to inhibit and may instead contribute to a T helper (Th)-17-driven procarcinogenic process, a cancer state that is reversible by down-regulation of inflammation and interleukin (IL)-6. Consequently, hygienic individuals with a weakened IL-10– and TREG–mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated inflammation and show more frequent inflammation-associated cancers. Taken together, these data help explain the paradox of inflammation and TREG in cancer and indicate that targeted stimulation of TREG may promote health and significantly reduce risk of cancer. PMID:20019355

  2. Regulatory T cells require TCR signaling for their suppressive function.

    PubMed

    Schmidt, Amanda M; Lu, Wen; Sindhava, Vishal J; Huang, Yanping; Burkhardt, Janis K; Yang, Enjun; Riese, Matthew J; Maltzman, Jonathan S; Jordan, Martha S; Kambayashi, Taku

    2015-05-01

    Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in Src homology 2 domain containing leukocyte protein of 76 kDa (SLP-76), an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective phospholipase C γ (PLCγ) activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Because SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins adhesion and degranulation promoting adapter protein or CT10 regulator of kinase/CT10 regulator of kinase-like, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wild-type Tregs. Together, these data suggest that TCR-mediated PLCγ activation, but not integrin activation, is required for Tregs to inhibit Tconv proliferation.

  3. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  4. T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow.

    PubMed

    Glatman Zaretsky, Arielle; Konradt, Christoph; Dépis, Fabien; Wing, James B; Goenka, Radhika; Atria, Daniela Gomez; Silver, Jonathan S; Cho, Sunglim; Wolf, Amaya I; Quinn, William J; Engiles, Julie B; Brown, Dorothy C; Beiting, Daniel; Erikson, Jan; Allman, David; Cancro, Michael P; Sakaguchi, Shimon; Lu, Li-Fan; Benoist, Christophe O; Hunter, Christopher A

    2017-02-21

    Long-lived plasma cells (PCs) in the bone marrow (BM) are a critical source of antibodies after infection or vaccination, but questions remain about the factors that control PCs. We found that systemic infection alters the BM, greatly reducing PCs and regulatory T (Treg) cells, a population that contributes to immune privilege in the BM. The use of intravital imaging revealed that BM Treg cells display a distinct behavior characterized by sustained co-localization with PCs and CD11c-YFP(+) cells. Gene expression profiling indicated that BM Treg cells express high levels of Treg effector molecules, and CTLA-4 deletion in these cells resulted in elevated PCs. Furthermore, preservation of Treg cells during systemic infection prevents PC loss, while Treg cell depletion in uninfected mice reduced PC populations. These studies suggest a role for Treg cells in PC biology and provide a potential target for the modulation of PCs during vaccine-induced humoral responses or autoimmunity.

  5. Bovine γδ T Cells Are a Major Regulatory T Cell Subset

    PubMed Central

    Hope, Jayne; Taylor, Geraldine; Smith, Adrian L.; Cubillos-Zapata, Carolina; Charleston, Bryan

    2014-01-01

    In humans and mice, γδ T cells represent <5% of the total circulating lymphocytes. In contrast, the γδ T cell compartment in ruminants accounts for 15–60% of the total circulating mononuclear lymphocytes. Despite the existence of CD4+CD25high Foxp3+ T cells in the bovine system, these are neither anergic nor suppressive. We present evidence showing that bovine γδ T cells are the major regulatory T cell subset in peripheral blood. These γδ T cells spontaneously secrete IL-10 and proliferate in response to IL-10, TGF-β, and contact with APCs. IL-10–expressing γδ T cells inhibit Ag-specific and nonspecific proliferation of CD4+ and CD8+ T cells in vitro. APC subsets expressing IL-10 and TFG-β regulate proliferation of γδ T cells producing IL-10. We propose that γδ T cells are a major regulatory T cell population in the bovine system. PMID:24890724

  6. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; del Pozo, Miguel Angel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo.

  7. Human CD4low CD25high regulatory T cells indiscriminately kill autologous activated T cells

    PubMed Central

    Bryl, Ewa; Daca, Agnieszka; Jóźwik, Agnieszka; Witkowski, Jacek M

    2009-01-01

    The interest of the scientific community in regulatory CD4+ T cells has reached an enormously high level. Common agreement is that they inhibit not only the proliferation of CD4 and CD8 lymphocytes, but also the activities of natural killer cells and macrophages. However, very important issues concerning actual mechanism(s) and specificity of the action of regulatory T cells (Tregs) upon responder cells are still unsolved or vague. The best known marker for Tregs is the expression of transcription factor FoxP3, widely used for their enumeration. It is known that FoxP3 inhibits cytokine production so the most probable action of Tregs is direct. However, FoxP3 expression cannot be used for functional studies in humans. Therefore we identified human peripheral blood Tregs as a distinct, very well-defined population of peripheral blood T cells with reduced CD4 and high CD25 expression (CD4low CD25high), which fulfils the current phenotypic criteria identifying the Tregs by simultaneously expressing high amounts of FoxP3. We conclude that the definition of a CD4low CD25high phenotype is enough to unambiguously detect and study the regulatory function of these cells. On the functional level, the CD4low Tregs are able to non-specifically suppress the proliferation of autologous, previously polyclonally activated CD4+ and CD4− lymphocytes and to kill them by direct contact, probably utilizing intracellular granzyme B and perforin. PMID:19016909

  8. Human CD4low CD25high regulatory T cells indiscriminately kill autologous activated T cells.

    PubMed

    Bryl, Ewa; Daca, Agnieszka; Jóźwik, Agnieszka; Witkowski, Jacek M

    2009-09-01

    The interest of the scientific community in regulatory CD4(+) T cells has reached an enormously high level. Common agreement is that they inhibit not only the proliferation of CD4 and CD8 lymphocytes, but also the activities of natural killer cells and macrophages. However, very important issues concerning actual mechanism(s) and specificity of the action of regulatory T cells (Tregs) upon responder cells are still unsolved or vague. The best known marker for Tregs is the expression of transcription factor FoxP3, widely used for their enumeration. It is known that FoxP3 inhibits cytokine production so the most probable action of Tregs is direct. However, FoxP3 expression cannot be used for functional studies in humans. Therefore we identified human peripheral blood Tregs as a distinct, very well-defined population of peripheral blood T cells with reduced CD4 and high CD25 expression (CD4(low) CD25(high)), which fulfils the current phenotypic criteria identifying the Tregs by simultaneously expressing high amounts of FoxP3. We conclude that the definition of a CD4(low) CD25(high) phenotype is enough to unambiguously detect and study the regulatory function of these cells. On the functional level, the CD4(low) Tregs are able to non-specifically suppress the proliferation of autologous, previously polyclonally activated CD4(+) and CD4(-) lymphocytes and to kill them by direct contact, probably utilizing intracellular granzyme B and perforin.

  9. Bath-PUVA therapy improves impaired resting regulatory T cells and increases activated regulatory T cells in psoriasis.

    PubMed

    Kubo, Ryoji; Muramatsu, Shinnosuke; Sagawa, Yoko; Saito, Chiyo; Kasuya, Saori; Nishioka, Akiko; Nishida, Emi; Yamazaki, Sayuri; Morita, Akimichi

    2017-04-01

    Bath-psoralen plus ultraviolet light A (PUVA) therapy is an effective, safe, and inexpensive treatment for psoriasis. Psoriasis might be due to an unbalanced ratio of Th17 cells and regulatory T cells (Treg). The Treg functional ratio is significantly lower in patients with psoriasis compared with controls and is inversely correlated with the Psoriasis Area and Severity Index score. We previously reported that bath-PUVA therapy significantly increases the number of Treg and restores Treg function to almost normal in most patients with psoriasis. We examined the effects of bath-PUVA therapy on three distinct Foxp3(+) subsets: activated Treg (aTreg), resting Treg (rTreg), and cytokine-secreting non-suppressive T cells. We enrolled 15 patients with psoriasis and 11 healthy controls. We examined aTreg, rTreg, and cytokine-secreting non-suppressive T cells in peripheral blood obtained from the psoriasis patients before and after every fifth bath-PUVA therapy session. Levels of aTreg, which are considered to have the strongest suppressive activity in patients with psoriasis, were significantly increased in the early bath-PUVA therapy sessions, and then diminished. Levels of rTreg were lower in psoriasis patients than in healthy controls, and increased during bath-PUVA therapy. Bath-PUVA therapy induced aTreg and rTreg concomitantly with an improvement in the psoriatic lesions, suggesting a mechanism for the effectiveness of bath-PUVA therapy for psoriasis patients. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  10. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10

    PubMed Central

    Ray, Avijit; Dittel, Bonnie N.

    2017-01-01

    In the past two decades it has become clear that in addition to antigen presentation and antibody production B cells play prominent roles in immune regulation. While B cell-derived IL-10 has garnered much attention, B cells also effectively regulate inflammation by a variety of IL-10-independent mechanisms. B cell regulation has been studied in both autoimmune and inflammatory diseases. While collectively called regulatory B cells (Breg), no definitive phenotype has emerged for B cells with regulatory potential. This has made their study challenging and thus unique B cell regulatory mechanisms have emerged in a disease-dependent manner. Thus to harness the therapeutic potential of Breg, further studies are needed to understand how they emerge and are induced to evoke their regulatory activities. PMID:28124981

  11. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset.

    PubMed

    Sag, Duygu; Krause, Petra; Hedrick, Catherine C; Kronenberg, Mitchell; Wingender, Gerhard

    2014-09-01

    Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.

  12. IL-10–producing NKT10 cells are a distinct regulatory invariant NKT cell subset

    PubMed Central

    Sag, Duygu; Krause, Petra; Hedrick, Catherine C.; Kronenberg, Mitchell; Wingender, Gerhard

    2014-01-01

    Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10–producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset. PMID:25061873

  13. A validated regulatory network for Th17 cell specification

    PubMed Central

    Ciofani, Maria; Madar, Aviv; Galan, Carolina; Sellars, Maclean; Mace, Kieran; Pauli, Florencia; Agarwal, Ashish; Huang, Wendy; Parkhurst, Christopher N.; Muratet, Michael; Newberry, Kim M.; Meadows, Sarah; Greenfield, Alex; Yang, Yi; Jain, Preti; Kirigin, Francis F.; Birchmeier, Carmen; Wagner, Erwin F.; Murphy, Kenneth M.; Myers, Richard M.; Bonneau, Richard; Littman, Dan R.

    2012-01-01

    Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively-bound BATF and IRF4 contribute to initial chromatin accessibility, and with STAT3 initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple datasets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease. PMID:23021777

  14. CD4+ regulatory T cells in solid organ transplantation

    PubMed Central

    Issa, Fadi; Wood, Kathryn J.

    2011-01-01

    Purpose of review: Solid organ transplantation is the most effective treatment for end-stage organ failure, but the long-term outcomes remain suboptimal. CD4+ regulatory T cells (Treg) are emerging as a potential therapy to facilitate long-term allograft survival. This review provides a general overview of the biology of CD4+ Treg and then goes on to discuss the most relevant and recent experimental and clinical evidence for their therapeutic use in solid organ transplantation. Recent findings: There have been major advances in our understanding of Treg, including improvements in methods for their isolation and expansion. Experimental models are providing very important data on the in vitro and in vivo behaviour of Treg in transplantation, while recent clinical trials of Treg cellular therapy in graft-versus-host disease are offering a valuable insight into the efficacy of Treg adoptive cellular therapy. Summary: Data in favour of Treg cellular therapy in transplantation are mounting, and we predict that their use in clinical trials is on the horizon. PMID:20881492

  15. Regulatory T cells in kidney disease and transplantation.

    PubMed

    Hu, Min; Wang, Yuan Min; Wang, Yiping; Zhang, Geoff Y; Zheng, Guoping; Yi, Shounan; O'Connell, Philip J; Harris, David C H; Alexander, Stephen I

    2016-09-01

    Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.

  16. Interleukin 10 and dendritic cells are the main suppression mediators of regulatory T cells in human neurocysticercosis.

    PubMed

    Arce-Sillas, A; Álvarez-Luquín, D D; Cárdenas, G; Casanova-Hernández, D; Fragoso, G; Hernández, M; Proaño Narváez, J V; García-Vázquez, F; Fleury, A; Sciutto, E; Adalid-Peralta, L

    2016-02-01

    Neurocysticercosis is caused by the establishment of Taenia solium cysticerci in the central nervous system. It is considered that, during co-evolution, the parasite developed strategies to modulate the host's immune response. The action mechanisms of regulatory T cells in controlling the immune response in neurocysticercosis are studied in this work. Higher blood levels of regulatory T cells with CD4(+) CD45RO(+) forkhead box protein 3 (FoxP3)(high) and CD4(+) CD25(high) FoxP3(+) CD95(high) phenotype and of non-regulatory CD4(+) CD45RO(+) FoxP3(med) T cells were found in neurocysticercosis patients with respect to controls. Interestingly, regulatory T cells express higher levels of cytotoxic T lymphocyte antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), programmed death 1 (PD-1) and glucocorticoid-induced tumour necrosis factor receptor (GITR), suggesting a cell-to-cell contact mechanism with dendritic cells. Furthermore, higher IL-10 and regulatory T cell type 1 (Tr1) levels were found in neurocysticercosis patients' peripheral blood, suggesting that the action mechanism of regulatory T cells involves the release of immunomodulatory cytokines. No evidence was found of the regulatory T cell role in inhibiting the proliferative response. Suppressive regulatory T cells from neurocysticercosis patients correlated negatively with late activated lymphocytes (CD4(+) CD38(+) ). Our results suggest that, during neurocysticercosis, regulatory T cells could control the immune response, probably by a cell-to-cell contact with dendritic cells and interleukin (IL)-10 release by Tr1, to create an immunomodulatory environment that may favour the development of T. solium cysticerci and their permanence in the central nervous system. © 2015 British Society for Immunology.

  17. Controlling the fire--tissue-specific mechanisms of effector regulatory T-cell homing.

    PubMed

    Chow, Zachary; Banerjee, Ashish; Hickey, Michael J

    2015-04-01

    Regulatory T cells have essential roles in regulating immune responses and limiting inappropriate inflammation. Evidence now indicates that to achieve this function, regulatory T cells must be able to migrate to the most appropriate locations within both lymphoid and non-lymphoid organs. This function is achieved via the spatiotemporally controlled expression of adhesion molecules and chemokine receptors, varying according to the developmental stage of the regulatory T cell and the location and environment where they undergo activation. In this Review, we summarise information on the roles of adhesion molecules and chemokine receptors in mediating regulatory T-cell migration and function throughout the body under homeostatic and inflammatory conditions. In addition, we review recent studies that have used in vivo imaging to examine the actions of regulatory T cells in vivo, in lymph nodes, in the microvasculature and in the interstitium of peripheral organs. These studies reveal that the capacity of regulatory T cells to undergo selective migration serves a critical role in their ability to suppress immune responses. As such, the cellular and molecular requirements of regulatory T-cell migration need to be completely understood to enable the most effective use of these cells in clinical settings.

  18. Suppression of immune regulatory cells with combined therapy of celecoxib and sunitinib in renal cell carcinoma

    PubMed Central

    Zhao, Qi; Guo, Jianming; Wang, Guomin; Chu, Yiwei; Hu, Xiaoyi

    2017-01-01

    Objective To observe the the potential benefit of sunitinib in combination with cyclooxygenase-2(COX-2) inhibitor in renal cell carcinoma therapy. Methods 769-p cell lines were treated with sunitinib, celecoxib, or in combination at different concentrations respectively. We investigated the expression of granulocyte-macrophage colony stimulating factor (GM-CSF) in 769-p and cell proliferation in vitro. BALB/c mice implanted with Renca cells were divided into 4 groups and administered orally by gavage with sunitinib, COX-2 inhibitor (celecoxib) monotherapy or combination, and PBS respectively. Tumor growth and animal survival were observed. The myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in peripheral blood and spleen were determined by flow cytometry. The MDSCs protein was extracted for STAT3 analysis by western blot. Results 769-p cell lines were suppressed in a dose and time-dependent manner. The expression of GM-CSF was substantially inhibited by celecoxib and sunitinib. Combination of sunitinib and celecoxib in vivo could effectively reduce the MDSCs than those in control group. Meanwhile, the CD4+ lymphocytes were strongly increased and the expression of signal transducer and activator of transcription 3 (STAT3) in MDSCs were significantly reduced. Conclusion Combination therapy with sunitinib and celecoxib intensified the curative effects to renal cell carcinoma by suppressing immune regulatory cells. PMID:27926489

  19. Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders

    PubMed Central

    Barnie, Prince Amoah; Zhang, Pan; Lv, Hongxiang; Wang, Dan; Su, Xiaolian; Su, Zhaoliang; Xu, Huaxi

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) were originally described as a heterogeneous population of immature cells derived from myeloid progenitors with immune-suppressive functions in tumor-bearing hosts. In recent years, increasing number of studies have described various populations of myeloid cells with MDSC-like properties in murine models of cancer and autoimmune diseases. These studies have observed that the populations of MDSCs are increased during inflammation and autoimmune conditions. In addition, MDSCs can effectively suppress T cell responses and modulate the activity of natural killer cells and other myeloid cells. MDSCs have also been implicated in the induction of regulatory T cell production. Furthermore, these cells have the potential to suppress the autoimmune response, thereby limiting tissue injury. Myeloid regulatory cells (Mregs) are recently attracting increasing attention, since they function in proinflammatory and immune suppression in autoimmune diseases, as well as in various types of cancer. Currently, research focus is directed from MDSCs to Mregs in cancer and autoimmune diseases. The present study reviewed the suppressive roles of MDSCs in various autoimmune murine models, the immune modulation of MDSCs to T helper 17 lymphocytes, as well as the proinflammatory and immunosuppressive roles of Mregs in various types of cancer and autoimmune diseases. PMID:28352304

  20. MicroRNAs targeting TGFβ signalling underlie the regulatory T cell defect in multiple sclerosis.

    PubMed

    Severin, Mary E; Lee, Priscilla W; Liu, Yue; Selhorst, Amanda J; Gormley, Matthew G; Pei, Wei; Yang, Yuhong; Guerau-de-Arellano, Mireia; Racke, Michael K; Lovett-Racke, Amy E

    2016-06-01

    Transforming growth factor beta (TGFβ) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFβ signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFβ signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFβ pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFβ-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFβ signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFβ-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFβ signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage

    PubMed Central

    Malchow, Sven; Leventhal, Daniel S.; Lee, Victoria; Nishi, Saki; Socci, Nicholas D.; Savage, Peter A.

    2016-01-01

    SUMMARY The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by Autoimmune Regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3+ regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire−/− mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3+ Treg cells in Aire+/+ mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells. PMID:27130899

  2. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage.

    PubMed

    Malchow, Sven; Leventhal, Daniel S; Lee, Victoria; Nishi, Saki; Socci, Nicholas D; Savage, Peter A

    2016-05-17

    The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by autoimmune regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3(+) regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire(-/-) mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3(+) Treg cells in Aire(+/+) mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The relative merits of cord blood as a cell source for autologous T regulatory cell therapy in type 1 diabetes.

    PubMed

    Theil, A; Wilhelm, C; Guhr, E; Reinhardt, J; Bonifacio, E

    2015-01-01

    Cord blood has been used as a cell source for therapeutic purposes in children with type 1 diabetes and other disorders. Here, we explore the benefits of cord blood as an autologous source of T regulatory cells for immune cell therapy in patients. CD4(+)CD25(+) T regulatory cells were isolated from cord blood and adult peripheral blood of healthy donors and compared during and after expansion in a 14-day protocol incorporating anti-CD3/anti-CD28 beads, and IL-2 with or without rapamycin. Cord blood T regulatory cells were largely naïve (89±7 vs. 31±10% in young adults, p<0.0001), and had higher expansion yields (median 5,968-fold) than adult T regulatory cells (median 516-fold, p=0.001) and adult naïve T regulatory cells (median 820-fold, p=0.003). Rapamycin reduced expansion yields, but was not necessary to obtain pure expanded cord blood T regulatory cells as judged by FOXP3 staining (94±3%), methylation status of FOXP3 (97%), and intracellular effector cytokine staining (< 6%). Expanded adult T regulatory cells were much less pure in the absence of rapamycin (72±19% FOXP3; 76% by methylation status, <13% INF-γ, <16% IL-4, <5% IL-17 positive), but purity was achieved by inclusion of rapamycin during expansion. Despite differences in purity, all preparations of expanded T regulatory from all sources were able to strongly suppress proliferation of T effector cells in vitro. Our findings suggest that cord blood is an excellent source of T regulatory cells for expansion and autologous cell therapy that may be considered as a strategy to prevent immune-mediated destruction of beta cells in type 1 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  4. MicroRNA-Containing T-Regulatory-Cell-Derived Exosomes Suppress Pathogenic T Helper 1 Cells

    PubMed Central

    Okoye, Isobel S.; Coomes, Stephanie M.; Pelly, Victoria S.; Czieso, Stephanie; Papayannopoulos, Venizelos; Tolmachova, Tanya; Seabra, Miguel C.; Wilson, Mark S.

    2014-01-01

    Summary Foxp3+ T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes. PMID:25035954

  5. B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases.

    PubMed

    Lin, Mei; Wang, Zuomin; Han, Xiaozhe

    2015-03-01

    Although the identification of B cell subsets with negative regulatory functions and the definition of their mechanisms of action are recent events, the important negative regulatory roles of B cells in immune responses are now broadly recognized. There is an emerging appreciation for the pivotal role played by B cells in several areas of human diseases including autoimmune diseases and non-autoimmune diseases such as parasite infections and cancer. The recent research advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of research on the bridging of innate and adaptive immune system. Current study and our continued research may provide better understanding of the mechanisms that promote regulatory B10 cell function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune conditions. This review is focused on the current knowledge of BREG functions studied in animal models of autoimmune and non-autoimmune diseases.

  6. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells

    PubMed Central

    Getnet, Derese; Grosso, Joseph F.; Goldberg, Monica V.; Harris, Timothy J.; Yen, Hung-Rong; Bruno, Tullia C.; Durham, Nicholas M.; Hipkiss, Edward L.; Pyle, Kristin J.; Wada, Satoshi; Pan, Fan; Pardoll, Drew M.; Drake, Charles G.

    2010-01-01

    Relative up-regulation of the Ikaros family transcription factor Helios in natural regulatory T cells (Tregs) has been reported by several groups. However, a role for Helios in regulatory T cells has not yet been described. Here, we show that Helios is upregulated in CD4+CD25+ regulatory T cells. Chromatin Immunoprecipitation (ChIP) experiments indicated that Helios binds to the FoxP3 promoter. These data were further corroborated by experiments showing that knocking-down Helios with siRNA oligonucleotides results in down-regulation of FoxP3. Functionally, we found that suppression of Helios message in CD4+CD25+ T cells significantly attenuates their suppressive function. Taken together, these data suggest that Helios may play an important role in regulatory T cell function and support the concept that Helios may be a novel target to manipulate Treg activity in a clinical setting. PMID:20226531

  7. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction*

    PubMed Central

    Hayakawa, Morisada; Hayakawa, Hiroko; Petrova, Tsvetana; Ritprajak, Patcharee; Sutavani, Ruhcha V.; Jiménez-Andrade, Guillermina Yanek; Sano, Yasuyo; Choo, Min-Kyung; Seavitt, John; Venigalla, Ram K. C.; Otsu, Kinya; Georgopoulos, Katia; Arthur, J. Simon C.; Park, Jin Mo

    2017-01-01

    The evolutionarily conserved protein kinase p38 mediates innate resistance to environmental stress and microbial infection. Four p38 isoforms exist in mammals and may have been co-opted for new roles in adaptive immunity. Murine T cells deficient in p38α, the ubiquitously expressed p38 isoform, showed no readily apparent cell-autonomous defects while expressing elevated amounts of another isoform, p38β. Mice with T cells simultaneously lacking p38α and p38β displayed lymphoid atrophy and elevated Foxp3+ regulatory T cell frequencies. Double deficiency of p38α and p38β in naïve CD4+ T cells resulted in an attenuation of MAPK-activated protein kinase (MK)-dependent mTOR signaling after T cell receptor engagement, and enhanced their differentiation into regulatory T cells under appropriate inducing conditions. Pharmacological inhibition of the p38-MK-mTOR signaling module produced similar effects, revealing potential for therapeutic applications. PMID:28011639

  8. The role of dendritic cells and regulatory T cells in the pathogenesis of morphea

    PubMed Central

    Teresiak-Mikołajczak, Ewa; Dańczak-Pazdrowska, Aleksandra; Kowalczyk, Michał; Żaba, Ryszard; Adamski, Zygmunt

    2015-01-01

    Morphea is one of diseases characterised by fibrosis of the skin and subcutaneous tissue. It is a chronic disease that does not shorten the life of the patient, yet significantly affects its quality. The group of factors responsible for its pathogenesis is thought to include disturbed functioning of endothelial cells as well as immune disturbances leading to chronic inflammatory conditions, accompanied by increased production of collagen and of other extracellular matrix components. Dendritic cells (DC) are a type of professional antigen-presenting cells and can be found in almost all body tissues. Individual investigations have demonstrated high numbers of plasmacytoid DC (pDC) in morphoeic skin lesions, within deeper dermal layers, around blood vessels, and around collagen fibres in subcutaneous tissue. It appears that DC has a more pronounced role in the development of inflammation and T cell activation in morphea, as compared to systemic sclerosis (SSc). Regulatory T (Treg) cells represent a subpopulation of T cells with immunosuppressive properties. Recent studies have drawn attention to the important role played by Treg in the process of autoimmunisation. Just a few studies have demonstrated a decrease in the number and activity of Treg in patients with SSc, and only such studies involve morphea. This article reviews recent studies on the role of DC and regulatory T cells in the pathogenesis of morphea. Moreover, mechanisms of phototherapy and potential therapeutic targets in the treatment of morphea are discussed in this context. PMID:26155191

  9. Regulatory T Cells Suppress Natural Killer Cell Immunity in Patients With Human Cervical Carcinoma.

    PubMed

    Chang, Wen-Chun; Li, Chao-Hsu; Chu, Ling-Hui; Huang, Pei-Shen; Sheu, Bor-Ching; Huang, Su-Cheng

    2016-01-01

    To determine the functional attributes of CD4 CD25 regulatory T (Treg) cells by suppressing natural killer (NK) cell activity in human cervical cancer (CC). Triple-color flow cytometry was used to study the phenotypic expression of CD4 CD25 Treg cells and NK cells in the peripheral blood lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs). In vitro coculture assays were performed to illustrate the cytokine immunoregulations between Treg cells and NK cells. Significantly lower expression ratio of NK cells and higher expression ratio of Treg cells in TILs than PBLs were found. The NK cells displayed significantly higher expression ratio of inhibitory NK receptors (CD158a, CD158b, and NKG2A) and lower expression ratio of activating NK receptors (NKG2D, NKp46, and NKp30) as well as perforin in TILs than PBLs, suggesting the suppressed cytotoxicity of the NK cells in the CC tumor milieu. The expression ratio of transforming growth factor-β1 (TGF-β1) on Treg cells as well as TGF-βRII on Treg cells and NK cells was significantly higher in TILs than PBLs. Further functional in vitro assays demonstrated that NK cell function was suppressed by Treg cells, mimicking the inhibition of TGF-β on NK cells, and interleukin-2/interleukin-15 stimulation was able to restore the NK cell activity. These findings indicate that Treg cells in TILs may abrogate NK cell cytotoxicity through TGF-β pathway, and therefore, Treg cell elimination may enhance NK cell activity and be a novel therapeutic strategy for CC.

  10. THE INITIAL PHASE OF AN IMMUNE RESPONSE FUNCTIONS TO ACTIVATE REGULATORY T CELLS

    PubMed Central

    O’Gorman, William E.; Dooms, Hans; Thorne, Steve H.; Kuswanto, Wilson F.; Simonds, Erin F.; Krutzik, Peter O.; Nolan, Garry P.; Abbas, Abul K.

    2009-01-01

    An early reaction of CD4+ T lymphocytes to antigen is the production of cytokines, notably IL-2. In order to detect cytokine dependent responses, naive antigen-specific T cells were stimulated in vivo and the presence of phosphorylated STAT5 molecules was used to identify the cell populations responding to IL-2. Within hours of T-cell priming, IL-2-dependent STAT5 phosphorylation occurred primarily in Foxp3+ regulatory T cells. In contrast, the antigen-specific T cells received STAT5 signals only after repeated antigen exposure or memory differentiation. Regulatory T cells receiving IL-2 signals proliferated and developed enhanced suppressive activity. These results indicate that one of the earliest events in a T cell response is the activation of endogenous regulatory cells, potentially to prevent autoimmunity. PMID:19542444

  11. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells

    PubMed Central

    Kinnunen, Tuure; Chamberlain, Nicolas; Morbach, Henner; Choi, Jinyoung; Kim, Sangtaek; Craft, Joseph; Mayer, Lloyd; Cancrini, Caterina; Passerini, Laura; Bacchetta, Rosa; Ochs, Hans D.; Torgerson, Troy R.

    2013-01-01

    Regulatory T cells (Tregs) play an essential role in preventing autoimmunity. Mutations in the forkhead box protein 3 (FOXP3) gene, which encodes a transcription factor critical for Treg function, result in a severe autoimmune disorder and the production of various autoantibodies in mice and in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) patients. However, it is unknown whether Tregs normally suppress autoreactive B cells. To investigate a role for Tregs in maintaining human B-cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells isolated from IPEX patients. Characteristics and reactivity of antibodies expressed by new emigrant/transitional B cells from IPEX patients were similar to those from healthy donors, demonstrating that defective Treg function does not impact central B-cell tolerance. In contrast, mature naive B cells from IPEX patients often expressed autoreactive antibodies, suggesting an important role for Tregs in maintaining peripheral B-cell tolerance. T cells displayed an activated phenotype in IPEX patients, including their Treg-like cells, and showed up-regulation of CD40L, PD-1, and inducibl T-cell costimulator (ICOS), which may favor the accumulation of autoreactive mature naive B cells in these patients. Hence, our data demonstrate an essential role for Tregs in the establishment and the maintenance of peripheral B-cell tolerance in humans. PMID:23223361

  12. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy.

    PubMed

    Chen, Jiahuan; Ganguly, Anutosh; Mucsi, Ashley D; Meng, Junchen; Yan, Jiacong; Detampel, Pascal; Munro, Fay; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W; Qi, Hai; Shi, Yan

    2017-02-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1-dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin-cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1-dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell-mediated DC suppression in a contact-dependent manner. © 2017 Chen et al.

  13. Cutting Edge: Human Latency-Associated Peptide+ T Cells: A Novel Regulatory T Cell Subset

    PubMed Central

    Gandhi, Roopali; Farez, Mauricio F.; Wang, Yue; Kozoriz, Deneen; Quintana, Francisco J.; Weiner, Howard L.

    2010-01-01

    Regulatory T cells (Tregs) play an important role in the maintenance of peripheral tolerance. Several molecules including TGF-β have been linked to the function and differentiation of Tregs. In this study, we describe a unique population of T cells expressing a membrane bound form of TGF-β, the latency-associated peptide (LAP), and having regulatory properties in human peripheral blood. These CD4+LAP+ T cells lack Foxp3 but express TGF-βR type II and the activation marker CD69. CD4+LAP+ T cells are hypoproliferative compared with CD4+LAP− T cells, secrete IL-8, IL-9, IL-10, IFN-γ, and TGF-β upon activation, and exhibit TGF-β– and IL-10–dependent suppressive activity in vitro. The in vitro activation of CD4+LAP− T cells results in the generation of LAP+ Tregs, which is further amplified by IL-8. In conclusion, we have characterized a novel population of human LAP+ Tregs that is different from classic CD4+Foxp3+CD25high natural Tregs. PMID:20368276

  14. Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.

    PubMed

    Tsurudome, M; Ito, Y

    2000-01-01

    Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.

  15. Tr1-Like T Cells – An Enigmatic Regulatory T Cell Lineage

    PubMed Central

    White, Anna Malgorzata; Wraith, David C.

    2016-01-01

    The immune system evolved to respond to foreign invaders and prevent autoimmunity to self-antigens. Several types of regulatory T cells facilitate the latter process. These include a subset of Foxp3− CD4+ T cells able to secrete IL-10 in an antigen-specific manner, type 1 regulatory (Tr1) T cells. Although their suppressive function has been confirmed both in vitro and in vivo, their phenotype remains poorly defined. It has been suggested that the surface markers LAG-3 and CD49b are biomarkers for murine and human Tr1 cells. Here, we discuss these findings in the context of our data regarding the expression pattern of inhibitory receptors (IRs) CD49b, TIM-3, PD-1, TIGIT, LAG-3, and ICOS on Tr1-like human T cells generated in vitro from CD4+ memory T cells stimulated with αCD3 and αCD28 antibodies. We found that there were no differences in IR expression between IL-10+ and IL-10− T cells. However, CD4+IL-10+ T cells isolated ex vivo, following a short stimulation and cytokine secretion assay, contained significantly higher proportions of TIM-3+ and PD-1+ cells. They also expressed significantly higher TIGIT mRNA and showed a trend toward increased TIM-3 mRNA levels. These data led us to conclude that large pools of IRs may be stored intracellularly; hence, they may not represent ideal candidates as cell surface biomarkers for Tr1-like T cells. PMID:27683580

  16. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci

    PubMed Central

    Coetzee, Simon G.; Shen, Howard C.; Hazelett, Dennis J.; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K.; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J.; Couch, Fergus J.; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N.A.; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A.; Pharoah, Paul D.P.; Noushmehr, Houtan; Gayther, Simon A.

    2015-01-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10−30), OSECs (P = 2.4 × 10−23) and HMECs (P = 6.7 × 10−15) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. PMID:25804953

  17. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Thymic B cells promote thymus-derived regulatory T cell development and proliferation.

    PubMed

    Lu, Fang-Ting; Yang, Wei; Wang, Yin-Hu; Ma, Hong-Di; Tang, Wei; Yang, Jing-Bo; Li, Liang; Ansari, Aftab A; Lian, Zhe-Xiong

    2015-07-01

    Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.

  19. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma

    PubMed Central

    Ganesan, Anusha-Preethi; Johansson, Magnus; Ruffell, Brian; Beltran, Adam; Lau, Jonathan; Jablons, David M.; Coussens, Lisa M.

    2013-01-01

    Immune cells comprise a substantial proportion of the tumor mass in human non-small cell lung cancers (NSCLC), but the precise composition and significance of this infiltration is unclear. Herein we examined immune complexity of human NSCLC as well as NSCLC developing in CC10-TAg transgenic mice, and revealed that CD4+ T lymphocytes represent the dominant population of CD45+ immune cells, and relative to normal lung tissue, CD4+FoxP3+ regulatory T cells (Tregs) were significantly increased as a proportion of total CD4+ cells. To assess the functional significance of increased Treg cells, we evaluated CD8+ T cell-deficient/CC10-TAg mice and revealed that CD8+ T cells significantly controlled tumor growth with anti-tumor activity that was partially repressed by Treg cells. However, while treatment with anti-CD25 depleting mAb as monotherapy preferentially depleted Tregs and improved CD8+ T cell-mediated control of tumor progression during early tumor development, similar monotherapy was ineffective at later stages. Since mice bearing early NSCLC treated with anti-CD25 mAb exhibited increased tumor cell death associated with infiltration by CD8+ T cells expressing elevated levels of granzyme A, granzyme B, perforin and interferon-γ, we therefore evaluated carboplatin combination therapy resulting in a significantly extended survival beyond that observed with chemotherapy alone, indicating that Treg depletion in combination with cytotoxic therapy may be beneficial as a treatment strategy for advanced NSCLC. PMID:23851682

  20. Enhancing human regulatory T cells in vitro for cell therapy applications.

    PubMed

    Milward, Kate F; Wood, Kathryn J; Hester, Joanna

    2017-08-18

    Adoptive cellular therapies are gaining popularity as a means to treat clinical conditions, with potentially fewer risks and greater efficacy than traditional pharmacological strategies. Regulatory T cells (Tregs) are currently undergoing clinical trials in various immune-mediated pathologies, including transplant rejection and autoimmune conditions. In general, cell therapy relies upon ex vivo expansion of the cell product, in order to administer more cells than can be isolated from one person. In vitro manipulation of cell therapy products, prior to administration to patients, offers the opportunity to enhance the efficacy of the final cell therapy product in other ways. For example, cells can be exposed to reagents that enhance their longevity or functional potency after transfer into the patient. Genetic modification strategies can even permit the design of cells with bespoke functionality. Crucially, in vitro manipulation of therapeutic cells in isolation can exert these influences upon the biology of the therapeutic cells, without systemic exposure of the patient to the reagents being used. Quality control assessments can be integrated into the procedure prior to administration, to protect the patient from the risk of adverse events, should the procedure produce undesirable results. With a particular focus on Tregs, this review surveys the diverse strategies that are being employed to enhance the efficacy of cell therapy via in vitro manipulation of cells, and highlights some emerging technologies that may propel this endeavour in the future. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke.

    PubMed

    Mao, Leilei; Li, Peiying; Zhu, Wen; Cai, Wei; Liu, Zongjian; Wang, Yanling; Luo, Wenli; Stetler, Ruth A; Leak, Rehana K; Yu, Weifeng; Gao, Yanqin; Chen, Jun; Chen, Gang; Hu, Xiaoming

    2017-07-01

    Delayed thrombolytic treatment with recombinant tissue plasminogen activator (tPA) may exacerbate blood-brain barrier breakdown after ischaemic stroke and lead to lethal haemorrhagic transformation. The immune system is a dynamic modulator of stroke response, and excessive immune cell accumulation in the cerebral vasculature is associated with compromised integrity of the blood-brain barrier. We previously reported that regulatory T cells, which function to suppress excessive immune responses, ameliorated blood-brain barrier damage after cerebral ischaemia. This study assessed the impact of regulatory T cells in the context of tPA-induced brain haemorrhage and investigated the underlying mechanisms of action. The number of circulating regulatory T cells in stroke patients was dramatically reduced soon after stroke onset (84 acute ischaemic stroke patients with or without intravenous tPA treatment, compared to 115 age and gender-matched healthy controls). Although stroke patients without tPA treatment gradually repopulated the numbers of circulating regulatory T cells within the first 7 days after stroke, post-ischaemic tPA treatment led to sustained suppression of regulatory T cells in the blood. We then used the murine suture and embolic middle cerebral artery occlusion models of stroke to investigate the therapeutic potential of adoptive regulatory T cell transfer against tPA-induced haemorrhagic transformation. Delayed administration of tPA (10 mg/kg) resulted in haemorrhagic transformation in the ischaemic territory 1 day after ischaemia. When regulatory T cells (2 × 106/mouse) were intravenously administered immediately after delayed tPA treatment in ischaemic mice, haemorrhagic transformation was significantly decreased, and this was associated with improved sensorimotor functions. Blood-brain barrier disruption and tight junction damages were observed in the presence of delayed tPA after stroke, but were mitigated by regulatory T cell transfer. Mechanistic

  2. Cutting edge: regulatory T cells do not mediate suppression via programmed cell death pathways.

    PubMed

    Szymczak-Workman, Andrea L; Delgoffe, Greg M; Green, Douglas R; Vignali, Dario A A

    2011-11-01

    Regulatory T cells (Tregs) play a critical role in the immune system to regulate peripheral tolerance and prevent autoimmunity. However, the relative importance of different mechanisms of Treg function remains obscure. In this article, we reveal a limited role for programmed cell death pathways in mediating Treg suppression of conventional T cells. We show that Tregs are able to suppress the proliferation of conventional T cells that are resistant to apoptosis (Bim(-/-), Bim(-/-)Puma(-/-), Bcl-2 transgenic) or receptor-interacting serine-threonine kinase-dependent necrosis (also referred to as regulated necrosis or necroptosis) (Ripk3(-/-)) in several in vitro and in vivo assays. These data suggest that programmed cell death pathways, such as apoptosis and receptor-interacting serine-threonine kinase-dependent necrosis, are not required for Treg-mediated suppression.

  3. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells.

    PubMed

    Chen, Ji; Kim, Seol-Min; Kwon, Jae Young

    2016-04-30

    The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.

  4. T follicular helper and T follicular regulatory cells have different TCR specificity

    PubMed Central

    Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis

    2017-01-01

    Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709

  5. Immunopathogenesis in Autism: Regulatory T-Cells and Autoimmunity in Neurodevelopment

    DTIC Science & Technology

    2011-12-01

    developmental exposure to PFOA of PFOS. However, autism risk cannot be determined from these data alone. Regulatory T cells, immunophenotyping...autoantibodies, CD3+, myelin basic protein, autism 1 JUL 2010 - 30 NOV 2011Final01-12-2011 W81XWH-10-1-0484 Immunopathogenesis in Autism : Regulatory T-Cells...etiology of autism and related neurodevelopmental disorders is largely unknown. Myriad hypotheses have suggested that exogenous agents, such as

  6. STATE-OF-THE-ART OF REGULATORY DENDRITIC CELLS IN CANCER

    PubMed Central

    Conejo-Garcia, Jose R.; Rutkowski, Melanie R.; Cubillos-Ruiz, Juan R.

    2016-01-01

    Dendritic Cells (DCs) with robust immunosuppressive activity are commonly found in the microenvironment of advanced solid tumors. These innate immune cells are generically termed regulatory DCs and include various subsets such as plasmacytoid, conventional and monocyte-derived/inflammatory populations whose normal function is subverted by tumor-derived signals. This review summarizes recent findings on the nature and function of regulatory DCs, their relationship with other myeloid subsets and unique therapeutic opportunities to abrogate malignant progression through their targeting. PMID:27118338

  7. Prevention, Evaluation, and Rehabilitation of Cycling-Related Injury.

    PubMed

    Kotler, Dana H; Babu, Ashwin N; Robidoux, Greg

    2016-01-01

    The unique quality of the bicycle is its ability to accommodate a wide variety of injuries and disabilities. Cycling for recreation, transportation, and competition is growing nationwide, and has proven health and societal benefits. The demands of each type of cycling dictate the necessary equipment, as well as potential for injury. Prevention of cycling-related injury in both the athlete and the recreational cyclist involves understanding the common mechanisms for both traumatic and overuse injury, and early correction of strength and flexibility imbalances, technique errors, and bicycle fit.

  8. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    PubMed

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  9. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy

    PubMed Central

    Mucsi, Ashley D.; Meng, Junchen; Yan, Jiacong; Zhang, Zongde; Wu, Mei; Hari, Aswin; Stenner, Melanie D.; Zheng, Wencheng; Kubes, Paul; Xia, Tie; Amrein, Matthias W.

    2017-01-01

    Dendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell–DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells. We show that this unusually strong LFA-1–dependent adhesiveness of T reg cells is caused in part by their low calpain activities, which normally release integrin–cytoskeleton linkage, and thereby reduce adhesion. Super resolution imaging reveals that such T reg cell adhesion causes sequestration of Fascin-1, an actin-bundling protein essential for immunological synapse formation, and skews Fascin-1–dependent actin polarization in DCs toward the T reg cell adhesion zone. Although it is reversible upon T reg cell disengagement, this sequestration of essential cytoskeletal components causes a lethargic state of DCs, leading to reduced T cell priming. Our results reveal a dynamic cytoskeletal component underlying T reg cell–mediated DC suppression in a contact-dependent manner. PMID:28082358

  10. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  11. Identification and clinical relevance of naturally occurring human CD8+HLA-DR+ regulatory T cells.

    PubMed

    Arruvito, Lourdes; Payaslián, Florencia; Baz, Plácida; Podhorzer, Ariel; Billordo, Ariel; Pandolfi, Julieta; Semeniuk, Guillermo; Arribalzaga, Eduardo; Fainboim, Leonardo

    2014-11-01

    The lack of responsiveness to self and non-self Ags is normally maintained by multiple mechanisms, including the suppressive activities of several T cell subsets. In this study, we show that CD8(+) T cells from both adult peripheral blood and umbilical cord blood mononuclear cells constitutively expressing HLA-DR represent a natural human CD8(+) regulatory T cell subset. Their suppressive effect appears to be cell-to-cell contact dependent and may involve CTLA-4 signaling between neighboring T cells. These regulatory T cells can be expanded in vitro and exhibit a suppressive capacity similar to that observed in ex vivo CD8(+)HLA-DR(+) T cells. The high frequency of CD8(+)HLA-DR(+) T cells that we detected in patients with non-small cell lung cancer deserves further work to confirm their putative suppressor effect within the tumor.

  12. CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis

    PubMed Central

    Turner, Jan-Eric; Paust, Hans-Joachim; Steinmetz, Oliver M.; Peters, Anett; Riedel, Jan-Hendrik; Erhardt, Annette; Wegscheid, Claudia; Velden, Joachim; Fehr, Susanne; Mittrücker, Hans-Willi; Tiegs, Gisa; Stahl, Rolf A.K.

    2010-01-01

    T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17–producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNγ-producing Th1 cells are CCR6−. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6−/− mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis. PMID:20299360

  13. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    SciTech Connect

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  14. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and Its Disruption by Dioxin (S)

    EPA Science Inventory

    The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...

  15. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and Its Disruption by Dioxin (S)

    EPA Science Inventory

    The terminal differentiation of B cells in lymphoid organs into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The architecture of the B-cell transcriptional regulatory network consists of coupled mutually-repressive fee...

  16. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells.

    PubMed

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-03-23

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.

  17. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects.

    PubMed

    Rosenkranz, Eva; Hilgers, Ralf-Dieter; Uciechowski, Peter; Petersen, Arnd; Plümäkers, Birgit; Rink, Lothar

    2017-03-01

    The trace element zinc is essential for immune function and its regulation. Since zinc deficiency and allergic hyperresponsive reactions are often accompanied, the influence of zinc on allergen-induced cell growth, CD4+ regulatory T (Treg) cell numbers and cytokine expression during allergic immune reactions was investigated. Peripheral blood mononuclear cells (PBMCs) from non-atopic and atopic subjects were treated with timothy grass allergen pre-incubated with or without zinc. Proliferation was determined by analyzing the incorporation of (3)H-thymidine. Intracellular zinc and Foxp3 levels and cell surface antigens were measured by FACS, cytokine expression by ELISA and real-time PCR. Incubation with 50 μM zinc sulfate (Zn50) enhances cytosolic zinc concentrations in CD3+ T cells. The data also reveal that the combination of Zn50 plus allergen significantly reduces PBMC proliferation of atopic subjects. Additionally, Zn50 plus allergen enhances Th1 cytokine responses shown by increased interferon (IFN)-γ/interleukin (IL)-10 ratios as well as enhanced tumor necrosis factor-α release. In response to allergen, zinc increases Treg cells and upregulates the mRNA expression of cytotoxic T-lymphocyte antigen-4 in atopic subjects. Interestingly, Zn50 alone leads to an increase of CD4+CD25high(hi)+ cells in atopic and non-atopic subjects. Zinc may regulate unwanted hyperresponsive immune reactions by suppressing proliferation through a significant shift from IL-10 to the Th1 cytokine IFN-γ, and enhanced regulatory T cell numbers. Therefore, zinc supplementation may be a promising tool for the therapy of allergies, without negatively affecting the immune system.

  18. Evaluation of menstrual cycle-related changes in 85 clinical laboratory analytes.

    PubMed

    Masuda, Shiori; Ichihara, Kiyoshi; Yamanishi, Hachiro; Hirano, Yutaka; Tanaka, Yuji; Kamisako, Toshinori

    2016-05-01

    The menstrual cycle-related changes in clinical laboratory values were analysed by use of data obtained in the Asian multicentre study aimed at derivation of common reference intervals for 85 major clinical laboratory tests. Among 1876 healthy female volunteers, 893 had regular menstruation. They were classified into five groups according to dates between sample collection and the start of the last menstrual cycle: early follicular phase (1-6 days), late follicular phase (7-12 days), ovulatory phase (13-16 days), early luteal phase (17-22 days), and late luteal phase (23-31 days). Multiple linear regression analysis was performed to evaluate the menstrual cycle-related changes in test results. The magnitude was expressed as a standard deviation ratio of between-phase standard deviation to between-individual standard deviation based on nested ANOVA. Aside from obvious changes for four sex hormones (oestradiol, progesterone, follicle-stimulating hormone, and luteinizing hormone), we observed statistically significant menstrual cycle-related changes in the following tests (standard deviation ratio >0.15): Na, Cl, creatine kinase, C-reactive protein, serum amyloid A, carbohydrate antigen 125, and parathyroid hormone were higher during the early follicular phase, while insulin, total cholesterol, and white blood cell were higher during the luteal phase. Significant associations of those test items with the four sex hormones were revealed. The menstrual cycle-related changes in laboratory test results were revealed in some commonly tested items other than sex hormones. The findings are of interest in understanding female physiology in relation to hormonal changes, but the magnitude of changes is rather small and not very relevant in interpreting test results. © The Author(s) 2016.

  19. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N

    2012-04-01

    B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.

  20. Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice.

    PubMed

    Benedek, Gil; Zhang, Jun; Nguyen, Ha; Kent, Gail; Seifert, Hilary; Vandenbark, Arthur A; Offner, Halina

    2017-04-15

    Immunoregulatory sex hormones, including estrogen and estriol, may prevent relapses in multiple sclerosis during pregnancy. Our previous studies have demonstrated that regulatory B cells are crucial for estrogen-mediated protection against experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of alternatively activated (M2) macrophages/microglia that results in an increased frequency of regulatory B cells in the spinal cord of estrogen treated mice with EAE. We further demonstrate that cultured M2-polarized microglia promote the induction of regulatory B cells. Our study suggests that estrogen neuroprotection induces a regulatory feedback loop between M2 macrophages/microglia and regulatory B cells.

  1. Arecoline suppresses HaCaT cell proliferation through cell cycle regulatory molecules.

    PubMed

    Zhou, Zhong-Su; Li, Ming; Gao, Feng; Peng, Jie-Ying; Xiao, Hai-Bo; Dai, Li-Xia; Lin, Shi-Rong; Zhang, Rui; Jin, Long-Yu

    2013-06-01

    Betel nut chewing is the most common cause of oral submucous fibrosis (OSF). Arecoline is the main component of the betel nut, and is associated with the occurrence and development of OSF through cytotoxicity, genotoxicity and DNA damage. Similar types of stimuli elicit differential responses in different cells. In the present study, we investigated the effects of arecoline on the HaCaT epithelial and Hel fibroblast cell lines. The data showed that arecoline affected HaCaT cell morphology. MTT assay revealed that arecoline suppressed HaCaT cell proliferation. Furthermore, we found that arecoline induced the cell cycle arrest of HaCaT cells. In comparison with the untreated control cells, following treatment with ≥75 µg/ml arecoline an increased percentage of HaCaT cells remained at the G0/G1 phase of the cell cycle, accompanied by a reduced percentage of cells in the S phase. However, arecoline treatment did not significantly alter Hel cell cycle distribution. In the HaCaT epithelial cells, arecoline downregulated expression of the G1/S phase regulatory proteins cyclin D1, CDK4, CDK2, E2F1 as determined by reverse transcription-PCR analysis and western blotting. In summary, arecoline inhibits HaCaT epithelial cell proliferation and survival, in a dose-dependent manner, and cell cycle arrest in the G1/S phase, while this is not obvious in the Hel fibroblast cells. Potentially, our findings may aid in the prevention of arecoline-associated human OSF.

  2. Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium.

    PubMed

    Zhou, Yifu; Singh, Avneesh K; Hoyt, Robert F; Wang, Suna; Yu, Zuxi; Hunt, Timothy; Kindzelski, Bogdan; Corcoran, Philip C; Mohiuddin, Muhammad M; Horvath, Keith A

    2014-09-01

    We sought to investigate if autologous freshly isolated regulatory T cells (Tregs) provide a protective and supportive role when cotransplanted with mesenchymal stem cells (MSCs). In a porcine model of chronic ischemia, autologous MSCs were isolated and expanded ex vivo for 4 weeks. Autologous Treg cells were freshly isolated from 100 mL peripheral blood and purified by fluorescence-activated cell sorting. MSCs and Treg cells were then cotransplanted into the chronic ischemic myocardium of Yorkshire pigs by direct intramyocardial injection (1.2 × 10(8) MSCs plus an average of 1.5 million Treg cells in 25 injection sites). Animals were killed 6 weeks postinjection to study the fate of the cells and compare the effect of combined MSCs + Treg cells transplantation versus MSCs alone. The coinjection of MSCs along with Tregs was safe and no deleterious side effects were observed. Six weeks after injection of the cell combination, spherical MSCs clusters with thin layer capsules were found in the injected areas. In animals treated with MSCs only, the MSC clusters were less organized and not encapsulated. Immunofluorescent staining showed CD25+ cells among the CD90+ (MSC marker) cells, suggesting that the injected Treg cells remained present locally, and survived. Factor VIII+ cells were also prevalent suggesting new angiogenesis. We found no evidence that coinjections were associated with the generation of cardiac myocytes. The cotransplantation of Treg cells with MSCs dramatically increased the MSC survival rate, proliferation, and augmented their role in angiogenesis, which suggests a new way for future clinical application of cell-based therapy. Published by Mosby, Inc.

  3. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production.

    PubMed

    Gorosito Serrán, Melisa; Fiocca Vernengo, Facundo; Beccaria, Cristian G; Acosta Rodriguez, Eva V; Montes, Carolina L; Gruppi, Adriana

    2015-11-14

    The term regulatory B cells (B regs) is ascribed to a heterogeneous population of B cells with the function of suppressing inflammatory responses. They have been described mainly during the last decade in the context of different immune-mediated diseases. Most of the work on B regs has been focused on IL-10-producing B cells. However, B cells can exert regulatory functions independently of IL-10 production. Here we discuss the phenotypes, development and effector mechanisms of B regs and advances in their role in autoimmunity, infections and cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells.

    PubMed

    Lim, Hyung W; Lee, Jeeho; Hillsamer, Peter; Kim, Chang H

    2008-01-01

    It is a question of interest whether Th17 cells express trafficking receptors unique to this Th cell lineage and migrate specifically to certain tissue sites. We found several Th17 cell subsets at different developing stages in a human secondary lymphoid organ (tonsils) and adult, but not in neonatal, blood. These Th17 cell subsets include a novel in vivo-stimulated tonsil IL17+ T cell subset detected without any artificial stimulation in vitro. We investigated in depth the trafficking receptor phenotype of the Th17 cell subsets in tonsils and adult blood. The developing Th17 cells in tonsils highly expressed both Th1- (CCR2, CXCR3, CCR5, and CXCR6) and Th2-associated (CCR4) trafficking receptors. Moreover, Th17 cells share major non-lymphoid tissue trafficking receptors, such as CCR4, CCR5, CCR6, CXCR3, and CXCR6, with FOXP3+ T regulatory cells. In addition, many Th17 cells express homeostatic chemokine receptors (CD62L, CCR6, CCR7, CXCR4, and CXCR5) implicated in T cell migration to and within lymphoid tissues. Expression of CCR6 and CCR4 by some Th17 cells is not a feature unique to Th17 cells but shared with FOXP3+ T cells. Interestingly, the IL17+IFN-gamma+ Th17 cells have the features of both IL17-IFN-gamma+ Th1 and IL17+IFN-gamma- Th17 cells in expression of trafficking receptors. Taken together, our results revealed that Th17 cells are highly heterogeneous, in terms of trafficking receptors, and programmed to share major trafficking receptors with other T cell lineages. These findings have important implications in their distribution in the human body in relation to other regulatory T cell subsets.

  5. Toward a complete in silico, multi-layered embryonic stem cell regulatory network

    PubMed Central

    Xu, Huilei; Schaniel, Christoph; Lemischka, Ihor R.; Ma’ayan, Avi

    2010-01-01

    Recent efforts in systematically profiling embryonic stem (ES) cells have yielded a wealth of high-throughput data. Complementarily, emerging databases and computational tools facilitate ES cell studies and further pave the way toward the in silico reconstruction of regulatory networks encompassing multiple molecular layers. Here, we briefly survey databases, algorithms, and software tools used to organize and analyze high-throughput experimental data collected to study mammalian cellular systems with a focus on ES cells. The vision of using heterogeneous data to reconstruct a complete multilayered ES cell regulatory network is discussed. This review also provides an accompanying manually extracted dataset of different types of regulatory interactions from low-throughput experimental ES cell studies available at http://amp.pharm.mssm.edu/iscmid/literature. PMID:20890967

  6. Genetic and epigenetic variation in the lineage specification of regulatory T cells

    PubMed Central

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-01-01

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014

  7. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy.

    PubMed

    Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar

    2016-01-01

    T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells

  8. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy

    PubMed Central

    Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar

    2016-01-01

    T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells

  9. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice

    PubMed Central

    Tang, Qizhi; Adams, Jason Y; Tooley, Aaron J; Bi, Mingying; Fife, Brian T; Serra, Pau; Santamaria, Pere; Locksley, Richard M; Krummel, Matthew F; Bluestone, Jeffrey A

    2011-01-01

    The in vivo mechanism of regulatory T cell (Treg cell) function in controlling autoimmunity remains controversial. Here we have used two-photon laser-scanning microscopy to analyze lymph node priming of diabetogenic T cells and to delineate the mechanisms of Treg cell control of autoimmunity in vivo. Islet antigen–specific CD4+CD25− T helper cells (TH cells) and Treg cells swarmed and arrested in the presence of autoantigens. These TH cell activities were progressively inhibited in the presence of increasing numbers of Treg cells. There were no detectable stable associations between Treg and TH cells during active suppression. In contrast, Treg cells directly interacted with dendritic cells bearing islet antigen. Such persistent Treg cell–dendritic cell contacts preceded the inhibition of TH cell activation by dendritic cells, supporting the idea that dendritic cells are central to Treg cell function in vivo. PMID:16311599

  10. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex

    PubMed Central

    Park, Yoon; Jin, Hyung-seung; Lopez, Justine; Lee, Jeeho; Liao, Lujian; Elly, Chris; Liu, Yun-Cai

    2016-01-01

    SHARPIN forms a linear-ubiquitin-chain-assembly complex that promotes signaling via the transcription factor NF-κB. SHARPIN deficiency leads to progressive multi-organ inflammation and immune system malfunction, but how SHARPIN regulates T cell responses is unclear. Here we found that SHARPIN deficiency resulted in a substantial reduction in the number of and defective function of regulatory T cells (Treg cells). Transfer of SHARPIN-sufficient Treg cells into SHARPIN-deficient mice considerably alleviated their systemic inflammation. SHARPIN-deficient T cells displayed enhanced proximal signaling via the T cell antigen receptor (TCR) without an effect on the activation of NF-κB. SHARPIN conjugated with Lys63 (K63)-linked ubiquitin chains, which led to inhibition of the association of TCRζ with the signaling kinase Zap70; this affected the generation of Treg cells. Our study therefore identifies a role for SHARPIN in TCR signaling whereby it maintains immunological homeostasis and tolerance by regulating Treg cells. PMID:26829767

  11. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid

    PubMed Central

    Dunham, Richard M.; Thapa, Manoj; Velazquez, Victoria M.; Elrod, Elizabeth J.; Denning, Timothy L.; Pulendran, Bali

    2013-01-01

    The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)–polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3+ Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4+ T cells. We found that HSCs alone do not present Ag to naive CD4+ T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3+ Tregs and, therefore, may play a role in the tolerogenic nature of the liver. PMID:23359509

  12. Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells.

    PubMed

    Bouma, Gerben; Carter, Natalie A; Recher, Mike; Malinova, Dessislava; Adriani, Marsilio; Notarangelo, Luigi D; Burns, Siobhan O; Mauri, Claudia; Thrasher, Adrian J

    2014-09-01

    Patients deficient in the cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASp) are predisposed to varied autoimmunity, suggesting it has an important controlling role in participating cells. IL-10-producing regulatory B (Breg) cells are emerging as important mediators of immunosuppressive activity. In experimental, antigen-induced arthritis WASp-deficient (WASp knockout [WAS KO]) mice developed exacerbated disease associated with decreased Breg cells and regulatory T (Treg) cells, but increased Th17 cells in knee-draining LNs. Arthritic WAS KO mice showed increased serum levels of B-cell-activating factor, while their B cells were unresponsive in terms of B-cell-activating factor induced survival and IL-10 production. Adoptive transfer of WT Breg cells ameliorated arthritis in WAS KO recipients and restored a normal balance of Treg and Th17 cells. Mice with B-cell-restricted WASp deficiency, however, did not develop exacerbated arthritis, despite exhibiting reduced Breg- and Treg-cell numbers during active disease, and Th17 cells were not increased over equivalent WT levels. These findings support a contributory role for defective Breg cells in the development of WAS-related autoimmunity, but demonstrate that functional competence in other regulatory populations can be compensatory. A properly regulated cytoskeleton is therefore important for normal Breg-cell activity and complementation of defects in this lineage is likely to have important therapeutic benefits. © 2014 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A steganalysis-based approach to comprehensive identification and characterization of functional regulatory elements

    PubMed Central

    Wang, Guandong; Zhang, Weixiong

    2006-01-01

    The comprehensive identification of cis-regulatory elements on a genome scale is a challenging problem. We develop a novel, steganalysis-based approach for genome-wide motif finding, called WordSpy, by viewing regulatory regions as a stegoscript with cis-elements embedded in 'background' sequences. We apply WordSpy to the promoters of cell-cycle-related genes of Saccharomyces cerevisiae and Arabidopsis thaliana, identifying all known cell-cycle motifs with high ranking. WordSpy can discover a complete set of cis-elements and facilitate the systematic study of regulatory networks. PMID:16787547

  14. Multiple sclerosis associated genetic variants of CD226 impair regulatory T cell function.

    PubMed

    Piédavent-Salomon, Melanie; Willing, Anne; Engler, Jan Broder; Steinbach, Karin; Bauer, Simone; Eggert, Britta; Ufer, Friederike; Kursawe, Nina; Wehrmann, Sabine; Jäger, Jan; Reinhardt, Stefanie; Friese, Manuel A

    2015-11-01

    Recent association studies have linked numerous genetic variants with an increased risk for multiple sclerosis, although their functional relevance remains largely unknown. Here we investigated phenotypical and functional consequences of a genetic variant in the CD226 gene that, among other autoimmune diseases, predisposes to multiple sclerosis. Phenotypically, effector and regulatory CD4(+) memory T cells of healthy individuals carrying the predisposing CD226 genetic variant showed, in comparison to carriers of the protective variant, reduced surface expression of CD226 and an impaired induction of CD226 after stimulation. This haplotype-dependent reduction in CD226 expression on memory T cells was abrogated in patients with multiple sclerosis, as CD226 expression was comparable to healthy risk haplotype carriers irrespective of genetic variant. Functionally, FOXP3-positive regulatory T cells from healthy carriers of the genetic protective variant showed superior suppressive capacity, which was again abrogated in multiple sclerosis patients. Mimicking the phenotype of human CD226 genetic risk variant carriers, regulatory T cells derived from Cd226-deficient mice showed similarly reduced inhibitory activity, eventually resulting in an exacerbated disease course of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Therefore, by combining human and mouse analyses we show that CD226 exhibits an important role in the activation of regulatory T cells, with its genetically imposed dysregulation impairing regulatory T cell function. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Postnatal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia

    PubMed Central

    Miethke, Alexander G.; Saxena, Vijay; Shivakumar, Pranavkumar; Sabla, Gregg E.; Simmons, Julia; Chougnet, Claire A.

    2010-01-01

    Background & Aims Although recent studies have identified important roles for T and NK cells in the pathogenesis of biliary atresia (BA), the mechanisms by which susceptibility to bile duct injury is restricted to the neonatal period are unknown. Methods We characterised hepatic regulatory T cells (Tregs) by flow cytometry in two groups of neonatal mice challenged with rhesus rotavirus (RRV) at day 7 (no ductal injury) or day 1 of life (resulting in BA), determined the functional interaction with effector cells in co-culture assays, and examined the effect of adoptive transfer of CD4+ cells on the BA phenotype. Results While day 7 RRV infection increased hepatic Tregs (Foxp3+ CD4+ CD25+) by 10-fold within 3 days, no increase in Tregs occurred at this time point following infection on day 1. In vitro, Tregs effectively suppressed NK cell activation by hepatic dendritic cells and decreased the production of pro-inflammatory cytokines, including TNFα and IL-15, following RRV infection. In vivo, adoptive transfer of CD4+ cells prior to RRV inoculation led to increased survival, improved weight gain, decreased population of hepatic NK cells, and persistence of donor Tregs in the liver. Conclusions 1) The liver is devoid of Tregs early after perinatal RRV infection; 2) Tregs suppress DC-dependent activation of naive NK cells in vitro, and Treg-containing CD4+ cells inhibit hepatic NK cell expansion in vivo. Thus, the postnatal absence of Tregs may be a key factor that allows hepatic DCs to act unopposed in NK cell activation during the initiation of neonatal bile duct injury. PMID:20347178

  16. Daily subcutaneous injections of peptide induce CD4+ CD25+ T regulatory cells

    PubMed Central

    Dahlberg, P E; Schartner, J M; Timmel, A; Seroogy, C M

    2007-01-01

    Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4+ CD25+ T regulatory cells. DO11·10 T cell receptor (TCR) transgenic mice on a Rag 2–/– background were injected subcutaneously with varied doses of purified ovalbumin (OVA323−339) peptide daily for 16 days. While these mice have no CD4+ CD25+ T regulatory cells, following this injection schedule up to 30% of the CD4+ cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4+ CD25+ T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4+ CD25+ T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4+ CD25+ T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4+ T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA323−339 peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4+ CD25+ FoxP3+ T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4+ CD25+ Foxp3+ T regulatory cells. PMID:17490400

  17. Daily subcutaneous injections of peptide induce CD4+ CD25+ T regulatory cells.

    PubMed

    Dahlberg, P E; Schartner, J M; Timmel, A; Seroogy, C M

    2007-08-01

    Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4(+) CD25(+) T regulatory cells. DO11.10 T cell receptor (TCR) transgenic mice on a Rag 2(-/-) background were injected subcutaneously with varied doses of purified ovalbumin (OVA(323-339)) peptide daily for 16 days. While these mice have no CD4(+) CD25(+) T regulatory cells, following this injection schedule up to 30% of the CD4(+) cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4(+) CD25(+) T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4(+) CD25(+) T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4(+) CD25(+) T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4(+) T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA(323-339) peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4(+) CD25(+) FoxP3(+) T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4(+) CD25(+) Foxp3(+) T regulatory cells.

  18. Chromium supplementation for menstrual cycle-related mood symptoms.

    PubMed

    Brownley, Kimberly A; Girdler, Susan S; Stout, Anna L; McLeod, Malcolm N

    2013-12-01

    Premenstrual dysphoric disorder (PMDD) afflicts ~7% of reproductive-age women resulting in impaired relationships, diminished overall quality of life, and disability-adjusted life years lost on par with other major psychiatric disorders. Response to pharmacological treatment is inadequate in ~50% of women with PMDD. The goal of the present study is to evaluate the effects of a novel approach-short-term chromium supplementation-on menstrual cycle-related mood and physical symptoms. Five women were studied under single-blind conditions in a private clinical setting (2 of them were referred specifically for treatment-resistant menstrual-related symptoms); 6 women completed a double-blind crossover study of chromium plus placebo versus chromium plus sertraline in a university clinical research setting. Treatments were administered from mid-cycle to onset of menses in 1-month intervals. Symptom ratings were obtained by self-report, using daily symptom checklists, and by clinical assessment, using the Hamilton Psychiatric Rating Scale for Depression (HAM-D) and the Clinical Global Impressions (CGI) scale. Overall, chromium treatment was associated with reduced mood symptoms and improved overall health satisfaction in most participants. In some cases, chromium alone was associated with marked clinical improvement; in others, chromium plus an antidepressant resulted in greater improvement than either chromium alone or an antidepressant alone. These preliminary observations suggest that chromium may be a useful monotherapy or adjunctive therapy for women suffering from significant menstrual cycle-related symptoms. Larger, controlled studies are needed to evaluate the efficacy of chromium treatment in this patient population.

  19. Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases.

    PubMed

    Wahl, Sharon M; Chen, Wanjun

    2005-01-01

    Naturally occurring CD4+CD25+ regulatory T cells mediate immune suppression to limit immunopathogenesis associated with chronic inflammation, persistent infections and autoimmune diseases. Their mode of suppression is contact-dependent, antigen-nonspecific and involves a nonredundant contribution from the cytokine transforming growth factor (TGF)-beta. Not only can TGF-beta mediate cell-cell suppression between the regulatory T cells and CD4+CD25- or CD8+ T cells, but new evidence also reveals its role in the conversion of CD4+CD25- T cells, together with TCR antigen stimulation, into the regulatory phenotype. Elemental to this conversion process is induction of expression of the forkhead transcription factor, Foxp3. This context-dependent coercion of naive CD4+ T cells into a powerful subset of regulatory cells provides a window into potential manipulation of these cells to orchestrate therapeutic intervention in diseases characterized by inadequate suppression, as well as a promising means of controlling pathologic situations in which excessive suppression dominates.

  20. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance.

    PubMed

    Zeng, Hanyu; Zhang, Rong; Jin, Boquan; Chen, Lihua

    2015-09-01

    The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells.

  1. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells.

    PubMed

    Theil, A; Wilhelm, C; Kuhn, M; Petzold, A; Tuve, S; Oelschlägel, U; Dahl, A; Bornhäuser, M; Bonifacio, E; Eugster, A

    2017-02-01

    Regulatory T cell (Treg ) therapy has been exploited in autoimmune disease, solid organ transplantation and in efforts to prevent or treat graft-versus-host disease (GVHD). However, our knowledge on the in-vivo persistence of transfused Treg is limited. Whether Treg transfusion leads to notable changes in the overall Treg repertoire or whether longevity of Treg in the periphery is restricted to certain clones is unknown. Here we use T cell receptor alpha chain sequencing (TCR-α-NGS) to monitor changes in the repertoire of Treg upon polyclonal expansion and after subsequent adoptive transfer. We applied TCR-α-NGS to samples from two patients with chronic GVHD who received comparable doses of stem cell donor derived expanded Treg . We found that in-vitro polyclonal expansion led to notable repertoire changes in vitro and that Treg cell therapy altered the peripheral Treg repertoire considerably towards that of the infused cell product, to different degrees, in each patient. Clonal changes in the peripheral blood were transient and correlated well with the clinical parameters. We suggest that T cell clonotype analyses using TCR sequencing should be considered as a means to monitor longevity and fate of adoptively transferred T cells.

  2. Regulatory T cell effects in antitumor laser immunotherapy: a mathematical model and analysis

    NASA Astrophysics Data System (ADS)

    Dawkins, Bryan A.; Laverty, Sean M.

    2016-03-01

    Regulatory T cells (Tregs) have tremendous influence on treatment outcomes in patients receiving immunotherapy for cancerous tumors. We present a mathematical model incorporating the primary cellular and molecular components of antitumor laser immunotherapy. We explicitly model developmental classes of dendritic cells (DCs), cytotoxic T cells (CTLs), primary and metastatic tumor cells, and tumor antigen. Regulatory T cells have been shown to kill antigen presenting cells, to influence dendritic cell maturation and migration, to kill activated killer CTLs in the tumor microenvironment, and to influence CTL proliferation. Since Tregs affect explicitly modeled cells, but we do not explicitly model dynamics of Treg themselves, we use model parameters to analyze effects of Treg immunosuppressive activity. We will outline a systematic method for assigning clinical outcomes to model simulations and use this condition to associate simulated patient treatment outcome with Treg activity.

  3. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice.

    PubMed

    Lepault, F; Gagnerault, M C

    2000-01-01

    The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabetes transfer in immunodeficient NOD recipients. We now demonstrate that regulatory splenocytes belong to the CD4+ CD62Lhigh T cell subset that comprises a vast majority of naive cells producing low levels of IL-2 and IFN-gamma and no IL-4 and IL-10 upon in vitro stimulation. Consistently, the inhibition of diabetes transfer was not mediated by IL-4 and IL-10. Regulatory cells homed to the pancreas and modified the migration of diabetogenic to the islets, which resulted in a decreased insulitis severity. The efficiency of CD62L+ T cells was dose dependent, independent of sex and disease prevalence. Protection mechanisms did not involve the CD62L molecule, an observation that may relate to the fact that CD4+ CD62Lhigh lymph node cells were less potent than their splenic counterparts. Regulatory T cells were detectable after weaning and persist until disease onset, sustaining the notion that diabetes is a late and abrupt event. Thus, the CD62L molecule appears as a unique marker that can discriminate diabetogenic (previously shown to be CD62L-) from regulatory T cells. The phenotypic and functional characteristics of protective CD4+ CD62L+ cells suggest they are different from Th2-, Tr1-, and NK T-type cells, reported to be implicated in the control of diabetes in NOD mice, and may represent a new immunoregulatory population.

  4. Affinity for self antigen selects regulatory T cells with distinct functional properties

    PubMed Central

    Wyss, Lena; Stadinski, Brian D.; King, Carolyn G.; Schallenberg, Sonja; McCarthy, Nicholas I.; Lee, Jun Young; Kretschmer, Karsten; Terracciano, Luigi M.; Anderson, Graham; Surh, Charles D.; Huseby, Eric S.; Palmer, Ed

    2016-01-01

    How regulatory T cells (Treg cell) control lymphocyte homeostasis is not fully understood. Here we identify two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. Triplehi (GITRhiPD-1hiCD25hi) Treg cell are highly self-reactive and control lympho-proliferation in peripheral lymph nodes. Triplelo (GITRloPD-1loCD25lo) Treg cells are less self-reactive and limit development of colitis by promoting conversion of CD4+ Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (scurfy) mice lack Treg cells, they contain Triplehi-like and Triplelo-like CD4+ T cells with distinct pathological properties. Scurfy TriplehiCD4+T cells infiltrate the skin whereas scurfy TripleloCD4+T cells induce colitis and wasting disease. These findings indicate that T cell receptor affinity for self-antigens drives the differentiation of Tregs into distinct subsets with non-overlapping regulatory activities. PMID:27478940

  5. Cell-type specific cis-regulatory networks: insights from Hox transcription factors.

    PubMed

    Polychronidou, Maria; Lohmann, Ingrid

    2013-01-01

    Hox proteins are a prominent class of transcription factors that specify cell and tissue identities in animal embryos. In sharp contrast to tissue-specifically expressed transcription factors, which coordinate regulatory pathways leading to the differentiation of a selected tissue, Hox proteins are active in many different cell types but are nonetheless able to differentially regulate gene expression in a context-dependent manner. This particular feature makes Hox proteins ideal candidates for elucidating the mechanisms employed by transcription factors to achieve tissue-specific functions in multi-cellular organisms. Here we discuss how the recent genome-wide identification and characterization of Hox cis-regulatory elements has provided insight concerning the molecular mechanisms underlying the high spatiotemporal specificity of Hox proteins. In particular, it was shown that Hox transcriptional outputs depend on the cell-type specific interplay of the different Hox proteins with co-regulatory factors as well as with epigenetic modifiers. Based on these observations it becomes clear that cell-type specific approaches are required for dissecting the tissue-specific Hox regulatory code. Identification and comparative analysis of Hox cis-regulatory elements driving target gene expression in different cell types in combination with analyses on how cofactors, epigenetic modifiers and protein-protein interactions mediate context-dependent Hox function will elucidate the mechanistic basis of tissue-specific gene regulation.

  6. Regulatory T cells delay disease progression in Alzheimer-like pathology.

    PubMed

    Dansokho, Cira; Ait Ahmed, Dylla; Aid, Saba; Toly-Ndour, Cécile; Chaigneau, Thomas; Calle, Vanessa; Cagnard, Nicolas; Holzenberger, Martin; Piaggio, Eliane; Aucouturier, Pierre; Dorothée, Guillaume

    2016-04-01

    Recent studies highlight the implication of innate and adaptive immunity in the pathophysiology of Alzheimer's disease, and foster immunotherapy as a promising strategy for its treatment. Vaccines targeting amyloid-β peptide provided encouraging results in mouse models, but severe side effects attributed to T cell responses in the first clinical trial AN1792 underlined the need for better understanding adaptive immunity in Alzheimer's disease. We previously showed that regulatory T cells critically control amyloid-β-specific CD4(+) T cell responses in both physiological and pathological settings. Here, we analysed the impact of regulatory T cells on spontaneous disease progression in a murine model of Alzheimer's disease. Early transient depletion of regulatory T cells accelerated the onset of cognitive deficits in APPPS1 mice, without altering amyloid-β deposition. Earlier cognitive impairment correlated with reduced recruitment of microglia towards amyloid deposits and altered disease-related gene expression profile. Conversely, amplification of regulatory T cells through peripheral low-dose IL-2 treatment increased numbers of plaque-associated microglia, and restored cognitive functions in APPPS1 mice. These data suggest that regulatory T cells play a beneficial role in the pathophysiology of Alzheimer's disease, by slowing disease progression and modulating microglial response to amyloid-β deposition. Our study highlights the therapeutic potential of repurposed IL-2 for innovative immunotherapy based on modulation of regulatory T cells in Alzheimer's disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Overcoming the hurdles of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells.

    PubMed

    Zwirner, Norberto W; Croci, Diego O; Domaica, Carolina I; Rabinovich, Gabriel A

    2010-01-01

    The improved understanding of the biochemical nature of tumor antigens and the identification of cellular and molecular mechanisms leading to activation of innate and adaptive immune cells have been of paramount importance in the progress of tumor immunology. Studies on the intricate network of interactions between tumor and immune cells have revealed novel regulatory signals, including cell surface inhibitory receptors and costimulatory molecules, intracellular regulatory pathways, immunosuppressive cytokines and proapoptotic mediators, which may operate in concert to orchestrate tumor-immune escape. This emerging portfolio of inhibitory checkpoints can influence the physiology of innate immune cells including dendritic cells, macrophages and natural killer (NK) cells, as well as different subsets of T cells to fine tune their effector function. The synergistic combination of strategies aimed at overcoming regulatory signals and/or stimulating effector pathways, may offer therapeutic advantage as adjuvants of conventional anticancer therapies. Based on this premise, we will discuss here how the control of the effector functions of innate and adaptive immune cells and the manipulation of regulatory pathways, either alone or in combination, could be exploited for therapeutic purposes in cancer patients.

  8. Loss of B cell regulatory function is associated with delayed healing in patients with tibia fracture.

    PubMed

    Yang, Shufeng; Ding, Wei; Feng, Dapeng; Gong, Haiyang; Zhu, Dongmei; Chen, Bin; Chen, Jianmin

    2015-11-01

    The process of bone regeneration after fracture is a complex and well-orchestrated process usually requiring 3-12 weeks. A subset of patients, however, exhibit delayed healing time and even incomplete restoration of the normal bone structure. Although the precise mechanism is unknown, studies have shown that smurf1 may play a role during the process. Here, we sought to determine the involvement of the immune system in impaired bone healing. We found that immediately after fracture, the B-cell composition was shifted toward increased frequency of plasmablasts and decreased frequency of naïve B cells, reflecting higher inflammatory status. The percentage of CD19(+) CD24(+) CD38(+) regulatory B cells was also upregulated in response to bone fracture. The production of IL-10, a pivotal cytokine in regulatory B-cell function, was upregulated in all patients. Interestingly, the increase in IL-10 production was only sustained throughout the healing course in normal healing patients but not in delayed healing patients. Rather, delayed healing patients downregulated B-cell IL-10 secretion early and had reduced level of regulatory B-cell activity. Together, these data revealed a role of regulatory B cells in the endogenous bone regeneration process and an alternation in B-cell-mediated regulation in delayed healing patients.

  9. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and its Disruption by Dioxin

    EPA Science Inventory

    The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...

  10. A Transcriptional Regulatory Switch Underlying B-Cell Terminal Differentiation and its Disruption by Dioxin

    EPA Science Inventory

    The terminal differentiation of B lymphocytes into antibody-secreting plasma cells upon antigen stimulation is a crucial step in the humoral immune response. The mutually-repressive interactions among three key regulatory transcription factors underlying B to plasma cell differe...

  11. Depletion of T regulatory cells through selection of CD127-positive cells results in a population enriched in memory T cells: implications for anti-tumor cell therapy

    PubMed Central

    Touil, Soumia; Rosenzwajg, Michelle; Landau, Dan Avi; Le Corvoisier, Philippe; Frédéric, Charlotte; Klatzmann, David; Maury, Sébastien; Cohen, José L.

    2012-01-01

    Background Donor lymphocyte infusions can induce remissions in patients with relapse after allogeneic hematopoietic stem cell transplantation. Nevertheless, some grafted patients never display any signs of alloreactivity, either following allogeneic hematopoietic stem cell transplantation or after donor lymphocyte infusions. Consequently, they do not develop graft-versus-host disease and frequently do not respond to donor lymphocyte infusions. In a recently published clinical trial, we observed that elimination of CD4+CD25+Foxp3+ natural regulatory T cells from the donor lymphocyte product could improve alloreactivity and the associated anti-tumor effect in a small proportion of patients with relapsed hematologic malignancies. Here, we aimed to improve the effect of donor lymphocyte infusion by modifying the procedure for depletion of T regulatory cells. Design and Methods We directly compared depletion of regulatory T cells from human peripheral blood mononuclear cells achieved by selection of CD127-positive cells or by selection of CD25-negative cells. We tested the manipulated products (i) in vitro in mixed lymphocyte reactions and against pathogen-derived recall antigens and (ii) in vivo in experimental graft-versus-host disease. Results In vitro, we found that depletion of regulatory T cells through CD127 positive selection improved both alloreactive and pathogen-specific immune responses. In vivo, we observed accelerated donor T-cell division and enhanced graft-versus-host disease due to efficient regulatory T-cell depletion accompanied by enrichment in memory T cells. Conclusions Our results show that the strategy of CD127 positive selection is an efficient way of eliminating regulatory T cells from donor lymphocyte infusions and improves alloreactivity. This supports the investigation of CD127 positive selection in place of elimination of CD25-positive cells for clinical applications. PMID:22581007

  12. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  13. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression

    PubMed Central

    Mercadante, Emily R.; Lorenz, Ulrike M.

    2016-01-01

    Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype. PMID:27242798

  14. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis

    PubMed Central

    Wang, L; Ray, A; Jiang, X; Wang, J-y; Basu, S; Liu, X; Qian, T; He, R; Dittel, B N; Chu, Y

    2015-01-01

    Regulatory T cells (Tregs) and B cells present in gut-associated lymphoid tissues (GALT) are both implicated in the resolution of colitis. However, how the functions of these cells are coordinated remains elusive. We used the dextran sulfate sodium (DSS)-induced colitis model combined with gene-modified mice to monitor the progression of colitis, and simultaneously examine the number of Tregs and B cells, and the production of IgA antibodies. We found that DSS-treated mice exhibited more severe colitis in the absence of B cells, and that the adoptive transfer of B cells attenuated the disease. Moreover, the transfer of IL-10−/− B cells also attenuated colitis, suggesting that B cells inhibited colitis through an interleukin-10 (IL-10)-independent pathway. Furthermore, antibody depletion of Tregs resulted in exacerbated colitis. Intriguingly, the number of GALT Tregs in B cell-deficient mice was significantly decreased during colitis and the adoptive transfer of B cells into these mice restored the Treg numbers, indicating that B cells contribute to Treg homeostasis. We also found that B cells induced the proliferation of Tregs that in turn promoted B-cell differentiation into IgA-producing plasma cells. These results demonstrate that B cells and Tregs interact and cooperate to prevent excessive immune responses that can lead to colitis. PMID:25807185

  15. Regulatory B cells preferentially accumulate in tumor-draining lymph nodes and promote tumor growth.

    PubMed

    Ganti, Sheila N; Albershardt, Tina C; Iritani, Brian M; Ruddell, Alanna

    2015-07-20

    Our previous studies found that B16-F10 melanoma growth in the rear footpad of immunocompetent mice induces marked B cell accumulation within tumor-draining popliteal lymph nodes (TDLN). This B cell accumulation drives TDLN remodeling that precedes and promotes metastasis, indicating a tumor-promoting role for TDLN B cells. Here we show that phenotypic characterization of lymphocytes in mice bearing B16-F10 melanomas identifies preferential accumulation of T2-MZP B cells in the TDLN. Comparison of non-draining LNs and spleens of tumor-bearing mice with LNs and spleens from naïve mice determined that this pattern of B cell accumulation was restricted to the TDLN. B cell-deficient and immunocompetent mice reconstituted with T2-MZP B cells but not with other B cell subsets displayed accelerated tumor growth, demonstrating that T2-MZP B cells possess regulatory activity in tumor-bearing mice. Unlike splenic regulatory B cells, however, these TDLN B cells did not exhibit increased IL-10 production, nor did they promote Treg generation in the TDLN. These findings demonstrate that tumors initially signal via the lymphatic drainage to stimulate the preferential accumulation of T2-MZP regulatory B cells. This local response may be an early and critical step in generating an immunosuppressive environment to permit tumor growth and metastasis.

  16. Regulatory B cells present in lymph nodes draining a murine tumor.

    PubMed

    Maglioco, Andrea; Machuca, Damián G; Camerano, Gabriela; Costa, Héctor A; Ruggiero, Raúl; Dran, Graciela I

    2014-01-01

    In cancer, B cells have been classically associated with antibody secretion, antigen presentation and T cell activation. However, a possible role for B lymphocytes in impairing antitumor response and collaborating with tumor growth has been brought into focus. Recent reports have described the capacity of B cells to negatively affect immune responses in autoimmune diseases. The highly immunogenic mouse tumor MCC loses its immunogenicity and induces systemic immune suppression and tolerance as it grows. We have previously demonstrated that MCC growth induces a distinct and progressive increase in B cell number and proportion in the tumor draining lymph nodes (TDLN), as well as a less prominent increase in T regulatory cells. The aim of this research was to study B cell characteristics and function in the lymph node draining MCC tumor and to analyze whether these cells may be playing a role in suppressing antitumor response and favoring tumor progression. Results indicate that B cells from TDLN expressed increased CD86 and MHCII co-stimulatory molecules indicating activated phenotype, as well as intracellular IL-10, FASL and Granzyme B, molecules with regulatory immunosuppressive properties. Additionally, B cells showed high inhibitory upon T cell proliferation ex vivo, and a mild capacity to secrete antibodies. Our conclusion is that even when evidence of B cell-mediated activity of the immune response is present, B cells from TDLN exhibit regulatory phenotype and inhibitory activity, probably contributing to the state of immunological tolerance characteristic of the advanced tumor condition.

  17. An arabidopsis gene regulatory network for secondary cell wall synthesis

    USDA-ARS?s Scientific Manuscript database

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  18. Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues.

    PubMed

    Harris, David T

    2016-01-01

    Stem cells are found in all multicellular organisms and are defined as cells that can differentiate into specialized mature cells as well as divide to produce more stem cells. Mesenchymal stem cells (MSC) were among the first stem cell types to be utilized for regenerative medicine. Although initially isolated from bone marrow, based on ease and costs of procurement, MSC derived from adipose tissue (AT-MSC) and umbilical cord tissue (CT-MSC) are now preferred stem cell sources for these applications. Both adipose tissues and cord tissue present unique problems for biobanking however, in that these are whole tissues, not cellular suspensions. Although the tissues could be processed to facilitate the biobanking process, by doing so additional regulatory issues arise that must be addressed. This review will discuss the technical issues associated with biobanking of these tissues, as well as regulatory concerns when banking of utilizing MSC derived from these sources in the clinic.

  19. Abnormality of regulatory T cells in common variable immunodeficiency.

    PubMed

    Azizi, Gholamreza; Hafezi, Nasim; Mohammadi, Hamed; Yazdani, Reza; Alinia, Tina; Tavakol, Marzieh; Aghamohammadi, Asghar; Mirshafiey, Abbas

    2017-05-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary antibody deficiencies (PAD) which is defined by recurrent infections, hypogammaglobulinemia and defects in B-cell differentiation into plasma cells and memory B cells. T cell abnormalities have also been described in CVID patients. Several studies reported that Treg frequencies and their functional characteristics are disturbed and might account for the aberrant immune responses observed in CVID patients. The aim of this review is to describe phenotypic and functional characteristics of Treg cells, and to review the literature with respect to the reported Treg defects and its association with the clinical manifestation in CVID. Copyright © 2016. Published by Elsevier Inc.

  20. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle.

    PubMed

    Bushel, Pierre R; Heard, Nicholas A; Gutman, Roee; Liu, Liwen; Peddada, Shyamal D; Pyne, Saumyadipta

    2009-09-16

    Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1) which constitute regulatory modules from different phases of the cell cycle, 2) whose phase order is coherent across the 10 time course experiments, and 3) which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle. Based on this comprehensive gene regulatory network, we

  1. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  2. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection.

    PubMed

    Das, Abhishek; Ellis, Gidon; Pallant, Celeste; Lopes, A Ross; Khanna, Pooja; Peppa, Dimitra; Chen, Antony; Blair, Paul; Dusheiko, Geoffrey; Gill, Upkar; Kennedy, Patrick T; Brunetto, Maurizia; Lampertico, Pietro; Mauri, Claudia; Maini, Mala K

    2012-10-15

    A regulatory subset of B cells has been found to modulate immune responses in autoimmunity, infection, and cancer, but it has not been investigated in the setting of human persistent viral infection. IL-10 is elevated in patients with chronic hepatitis B virus infection (CHB), but its cellular sources and impact on antiviral T cells have not been addressed. We investigated the role of IL-10 and regulatory B cells in the pathogenesis of CHB. Serum IL-10 levels were studied longitudinally in patients with CHB undergoing spontaneous disease flares. There was a close temporal correlation between IL-10 levels and fluctuations in viral load or liver inflammation. Blockade of IL-10 in vitro rescued polyfunctional virus-specific CD8 T cell responses. To investigate the potential contribution of regulatory B cells, their frequency was measured directly ex vivo and after exposure to stimuli relevant to hepatitis B virus (HBV) (CpG or HBV Ags). IL-10-producing B cells were enriched in patients, and their frequency correlated temporally with hepatic flares, both after stimulation and directly ex vivo. Phenotypically, these cells were predominantly immature (CD19(+)CD24(hi)CD38(hi)) ex vivo; sorted CD19(+)CD24(hi)CD38(hi) cells suppressed HBV-specific CD8 T cell responses in an IL-10-dependent manner. In summary, these data reveal a novel IL-10-producing subset of B cells able to regulate T cell immunity in CHB.

  3. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits.

  4. Immunosuppressive Environment in Basal Cell Carcinoma: The Role of Regulatory T Cells.

    PubMed

    Omland, Silje H; Nielsen, Patricia S; Gjerdrum, Lise M R; Gniadecki, Robert

    2016-11-02

    Interaction between tumour survival tactics and anti-tumour immune response is a major determinant for cancer growth. Regulatory T cells (T-regs) contribute to tumour immune escape, but their role in basal cell carcinoma (BCC) is not understood. The fraction of T-regs among T cells was analysed by immunohistochemistry followed by automated image analysis in facial BCC, peritumoural skin and normal, buttock skin. Quantitative real-time PCR (qRT-PCR) was performed for FOXP3 and cytokines involved in T-reg attraction and T-cell activation. T-regs comprised 45% of CD4-cells surrounding BCC. FOXP3 was highly expressed in BCC, but absent in buttock skin. Unexpectedly, expression of FOXP3 was increased in peritumoural skin, with the FOXP3/CD3 fractions exceeding those of BCC (p?=?0.0065). Transforming growth factor (TGF)-? and T-reg chemokine expression was increased in BCC and peritumoural skin, but not in buttock skin, with expression levels correlating with FOXP3. T-regs are abundantly present both in BCC and in peritumoural skin, mediating an immunosuppressed microenvironment permissive for skin cancer.

  5. The nature and mechanisms of DN regulatory T-cell mediated suppression.

    PubMed

    Young, Kevin J; Zhang, Li

    2002-10-01

    Regulatory T cells have been reported to enhance survival of transplanted allografts. We have recently identified and cloned a novel CD3(+)CD4(-)CD8(-) (double negative, DN) regulatory T cell from mice that were given a single class I mismatched donor lymphocyte infusion and permanently accepted donor-specific skin allografts. When infused into naïve syngeneic mice, these DN T cells prolonged the survival of class I mismatched donor skin allografts. Here we further characterize the nature and mechanism of DN T-cell mediated suppression. This present study reveals that DN T cells are able to specifically eliminate activated syngeneic CD8(+) T cells that share the same T cell receptor (TCR) specificity as DN T cells in vitro. Similarly, we found that, along with an increase of recipient DN T cells in the peripheral blood, anti-donor CD8(+) T cells were also eliminated in vivo following a donor lymphocyte infusion. We further demonstrate that DN T regulatory cells do not mediate suppression by competition for growth factors or antigen presenting cells (APC) nor by modulation of APC, but require cell contact with the activated target CD8(+) T cells. This contact can be mediated either by the TCR on CD8(+) T cells that recognize constitutively expressed or acquired MHC molecules on DN T cells, or by the TCR on DN T cells that recognize constitutively expressed MHC molecules on CD8(+) T cells. Together, these data extend our previous findings, and expand the conditions in which DN T cells can potentially be used to specifically suppress allogeneic immune responses.

  6. Thymic Versus Induced Regulatory T Cells – Who Regulates the Regulators?

    PubMed Central

    Povoleri, Giovanni Antonio Maria; Scottà, Cristiano; Nova-Lamperti, Estefania Andrea; John, Susan; Lombardi, Giovanna; Afzali, Behdad

    2013-01-01

    Physiological health must balance immunological responsiveness against foreign pathogens with tolerance toward self-components and commensals. Disruption of this balance causes autoimmune diseases/chronic inflammation, in case of excessive immune responses, and persistent infection/immunodeficiency if regulatory components are overactive. This homeostasis occurs at two different levels: at a resting state to prevent autoimmune disease, as autoreactive effector T-cells (Teffs) are only partially deleted in the thymus, and during inflammation to prevent excessive tissue injury, contract the immune response, and enable tissue repair. Adaptive immune cells with regulatory function (“regulatory T-cells”) are essential to control Teffs. Two sets of regulatory T cell are required to achieve the desired control: those emerging de novo from embryonic/neonatal thymus (“thymic” or tTregs), whose function is to control autoreactive Teffs to prevent autoimmune diseases, and those induced in the periphery (“peripheral” or pTregs) to acquire regulatory phenotype in response to pathogens/inflammation. The differentiation mechanisms of these cells determine their commitment to lineage and plasticity toward other phenotypes. tTregs, expressing high levels of IL-2 receptor alpha chain (CD25), and the transcription factor Foxp3, are the most important, since mutations or deletions in these genes cause fatal autoimmune diseases in both mice and men. In the periphery, instead, Foxp3+ pTregs can be induced from naïve precursors in response to environmental signals. Here, we discuss molecular signatures and induction processes, mechanisms and sites of action, lineage stability, and differentiating characteristics of both Foxp3+ and Foxp3− populations of regulatory T cells, derived from the thymus or induced peripherally. We relate these predicates to programs of cell-based therapy for the treatment of autoimmune diseases and induction of tolerance to transplants. PMID

  7. Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function.

    PubMed

    Suki, Béla; Parameswaran, Harikrishnan; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet

    2016-09-01

    Cells in the body are exposed to irregular mechanical stimuli. Here, we review the so-called fluctuation-driven mechanotransduction in which stresses stretching cells vary on a cycle-by-cycle basis. We argue that such mechanotransduction is an emergent network phenomenon and offer several potential mechanisms of how it regulates cell function. Several examples from the vasculature, the lung, and tissue engineering are discussed. We conclude with a list of important open questions.

  8. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells.

    PubMed

    Gautron, Anne-Sophie; Dominguez-Villar, Margarita; de Marcken, Marine; Hafler, David A

    2014-09-01

    T-cell immunoglobulin and mucin domain 3 (TIM-3) is an Ig-superfamily member expressed on IFN-γ-secreting Th1 and Tc1 cells and was identified as a negative regulator of immune tolerance. TIM-3 is expressed by a subset of activated CD4(+) T cells, and anti-CD3/anti-CD28 stimulation increases both the level of expression and the number of TIM-3(+) T cells. In mice, TIM-3 is constitutively expressed on natural regulatory T (Treg) cells and has been identified as a regulatory molecule of alloimmunity through its ability to modulate CD4(+) T-cell differentiation. Here, we examined TIM-3 expression on human Treg cells to determine its role in T-cell suppression. In contrast to mice, TIM-3 is not expressed on Treg cells ex vivo but is upregulated after activation. While TIM-3(+) Treg cells with increased gene expression of LAG3, CTLA4, and FOXP3 are highly efficient suppressors of effector T (Teff) cells, TIM-3(-) Treg cells poorly suppressed Th17 cells as compared with their suppression of Th1 cells; this decreased suppression ability was associated with decreased STAT-3 expression and phosphorylation and reduced gene expression of IL10, EBI3, GZMB, PRF1, IL1Rα, and CCR6. Thus, our results suggest that TIM-3 expression on Treg cells identifies a population highly effective in inhibiting pathogenic Th1- and Th17-cell responses.

  9. Fingolimod Increases CD39-Expressing Regulatory T Cells in Multiple Sclerosis Patients

    PubMed Central

    Muls, Nathalie; Dang, Hong Anh; Sindic, Christian J. M.; van Pesch, Vincent

    2014-01-01

    Background Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs. Conclusions In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod. PMID:25411844

  10. Characterization of Regulatory B Cells in Graves’ Disease and Hashimoto’s Thyroiditis

    PubMed Central

    Kristensen, Birte; Hegedüs, Laszlo; Lundy, Steven K.; Brimnes, Marie K.; Smith, Terry J.; Nielsen, Claus H.

    2015-01-01

    A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves’ disease (GD), Hashimoto’s thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed. PMID:26016954

  11. Characterization of Regulatory B Cells in Graves' Disease and Hashimoto's Thyroiditis.

    PubMed

    Kristensen, Birte; Hegedüs, Laszlo; Lundy, Steven K; Brimnes, Marie K; Smith, Terry J; Nielsen, Claus H

    2015-01-01

    A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves' disease (GD), Hashimoto's thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed.

  12. Regulatory T cells and their prognostic value in hepatopancreatobiliary tumours.

    PubMed

    Ozgur, Halil Hakan; Ercetin, Ayse Pinar; Eliyatkin, Nuket; Seren, Asli; Kupelioglu, Ali; Ortac, Ragip; Diniz, Gulden; Aktas, Safiye

    2014-10-01

    The aim of this study was to determine the prognostic values of Foxp3+ Treg cells, CD4+ Tcells and CD8+ T cells in cancer cases of gallbladder, pancreas and liver. This study included 20 patients with gallbladder cancer, 25 patients with pancreatic cancer and 8 patients with liver cancer. Foxp3, CD4 and CD8 were immunohistochemically evaluated and compared with histopathological and clinical prognostic parameters. Foxp3, CD4 and CD8 expression levels were significantly higher in peritumoral areas than in intratumoral areas in patients with gallbladder, pancreas, liver cancers (p<0,05). Positivity of Foxp3, CD4 and CD8 was correlated with advanced stage (p<0,05), poor differentiation, lymphovascular invasion, perineural invasion, advanced age. Patients with high positivity of Foxp3 had a shorter disease free survival (p<0,05). Our results indicate that the ratio of Tregs/T helper cells (Foxp3+/CD4+) cells was higher in intratumoral area in hepatopancreatobiliary tumors. We conclude that intratumoral inlamatory cells might work for cancer cells, besides peritumoral cells work against cancer cells.

  13. Complex regulatory pathways coordinate cell cycle progression and development in Caulobacter crescentus

    PubMed Central

    Brown, Pamela J.B.; Hardy, Gail G.; Trimble, Michael J.; Brun, Yves V.

    2008-01-01

    Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell cycle progression. Stage specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell cycle progression. PMID:18929067

  14. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes.

    PubMed

    Le Texier, Laetitia; Lineburg, Katie E; MacDonald, Kelli P A

    2017-02-01

    Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.

  15. Differential sensitivity of regulatory and effector T cells to cell death: a prerequisite for transplant tolerance.

    PubMed

    You, Sylvaine

    2015-01-01

    Despite significant progress achieved in transplantation, immunosuppressive therapies currently used to prevent graft rejection are still endowed with severe side effects impairing their efficiency over the long term. Thus, the development of graft-specific, non-toxic innovative therapeutic strategies has become a major challenge, the goal being to selectively target alloreactive effector T cells while sparing CD4(+)Foxp3(+) regulatory T cells (Tregs) to promote operational tolerance. Various approaches, notably the one based on monoclonal antibodies or fusion proteins directed against the TCR/CD3 complex, TCR coreceptors, or costimulatory molecules, have been proposed to reduce the alloreactive T cell pool, which is an essential prerequisite to create a therapeutic window allowing Tregs to induce and maintain allograft tolerance. In this mini review, we focus on the differential sensitivity of Tregs and effector T cells to the depleting and inhibitory effect of these immunotherapies, with a particular emphasis on CD3-specific antibodies that beyond their immunosuppressive effect, also express potent tolerogenic capacities.

  16. Zinc Induces Dendritic Cell Tolerogenic Phenotype and Skews Regulatory T Cell-Th17 Balance.

    PubMed

    George, Mariam Mathew; Subramanian Vignesh, Kavitha; Landero Figueroa, Julio A; Caruso, Joseph A; Deepe, George S

    2016-09-01

    Zinc (Zn) is an essential metal for development and maintenance of both the innate and adaptive compartments of the immune system. Zn homeostasis impacts maturation of dendritic cells (DCs) that are important in shaping T cell responses. The mechanisms by which Zn regulates the tolerogenic phenotype of DCs remain largely unknown. In this study, we investigated the effect of Zn on DC phenotype and the generation of Foxp3(+) regulatory T cells (Tregs) using a model of Histoplasma capsulatum fungal infection. Exposure of bone marrow-derived DCs to Zn in vitro induced a tolerogenic phenotype by diminishing surface MHC class II (MHCII) and promoting the tolerogenic markers, programmed death-ligand (PD-L)1, PD-L2, and the tryptophan degrading enzyme, IDO. Zn triggered tryptophan degradation by IDO and kynurenine production by DCs and strongly suppressed the proinflammatory response to stimulation by TLR ligands. In vivo, Zn supplementation and subsequent H. capsulatum infection supressed MHCII on DCs, enhanced PD-L1 and PD-L2 expression on MHCII(lo) DCs, and skewed the Treg-Th17 balance in favor of Foxp3(+) Tregs while decreasing Th17 cells. Thus, Zn shapes the tolerogenic potential of DCs in vitro and in vivo and promotes Tregs during fungal infection.

  17. Zinc Induces Dendritic Cell Tolerogenic Phenotype and Skews Regulatory T cell – Th17 Balance

    PubMed Central

    George, Mariam Mathew; Vignesh, Kavitha Subramanian; Landero Figueroa, Julio A.; Caruso, Joseph A.; Deepe, George S.

    2016-01-01

    Zn is an essential metal for development and maintenance of both the innate and adaptive compartments of the immune system. Zn homeostasis impacts maturation of dendritic cells (DCs) that are important in shaping T cell responses. The mechanism by which Zn regulates the tolerogenic phenotype of DCs remains largely unknown. In this study, we investigated the effect of Zn on DC phenotype and the generation of forkhead box P3 (FoxP3+) regulatory T cells (Tregs) using a model of Histoplasma capsulatum fungal infection. Exposure of bone marrow derived DCs to Zn in vitro induced a tolerogenic phenotype by diminishing surface major histocompatibility complex (MHC)II and promoting the tolerogenic markers, programmed death-ligand (PD-L)1, PD-L2 and the tryptophan degrading enzyme, indoleamine 2,3 dioxygenase (IDO). Zn triggered tryptophan degradation by IDO and kynurenine production by DCs and strongly suppressed the proinflammatory response to stimulation by toll like receptor (TLR) ligands. In vivo, Zn supplementation and subsequent H. capsulatum infection supressed MHCII on DCs, enhanced PD-L1 and PD-L2 expression on MHCIIlo DCs and skewed the Treg - Th17 balance in favour of FoxP3+ Tregs while decreasing Th17 cells. Thus, Zn shapes the tolerogenic potential of DCs in vitro and in vivo and promotes Tregs during fungal infection. PMID:27465530

  18. Immunomodulation of mesenchymal stromal cells on regulatory T cells and its possible mechanism.

    PubMed

    Yan, Zhidong; Zhuansun, Yongxun; Chen, Rui; Li, Jianguo; Ran, Pixin

    2014-05-15

    Mesenchymal stromal cells (MSCs) and regulatory T cells (Tregs) have both garnered abundant interests from immunologists worldwide, as both MSCs and Tregs can be considered immunosuppressive in their own right. But a little attention has been paid to the impacts of MSCs on Tregs. To clarify the effects of MSCs on Tregs, we performed the coculture systems within MSCs and Tregs. We confirmed that MSC-exposed Tregs are capable of more immunosuppressive than Tregs without coculturing with MSCs. And this augmenting suppressive capacity was accompanied with an upregulation of programmed cell death 1 receptor (PD-1) on Tregs. Importantly, we found that cell viability of Tregs was excluded from the influences of MSCs. Finally, we showed that PD-1/B7-H1 interactions and IL-10 might be responsible for the enhanced suppressive capability of MSC-exposed Tregs. Further analysis revealed that PD-1/B7-H1 interactions were not responsible for the productions of IL-10 and TGF-β1 in the MSC-Treg coculture systems; in contrast, IL-10 rather than TGF-β1 played a role in the upregualtion of PD-1. Furthermore, this is the first explorative study to evaluate the immunomodulation of MSCs on the suppressive capacity of Tregs in MSC-Treg in vitro coculture setting.

  19. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity

    PubMed Central

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Sandhu, Praneet; Song, Xinmeng; Lei, Fengyang; Zheng, Songguo; Ni, Bing; Fang, Deyu; Song, Jianxun

    2016-01-01

    Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders. PMID:26846186

  20. A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers.

    PubMed

    Wing, James Badger; Kitagawa, Yohko; Locci, Michela; Hume, Hannah; Tay, Christopher; Morita, Takayoshi; Kidani, Yujiro; Matsuda, Kyoko; Inoue, Takeshi; Kurosaki, Tomohiro; Crotty, Shane; Coban, Cevayir; Ohkura, Naganari; Sakaguchi, Shimon

    2017-08-01

    T-follicular helper (Tfh) cells differentiate through a multistep process, culminating in germinal center (GC) localized GC-Tfh cells that provide support to GC-B cells. T-follicular regulatory (Tfr) cells have critical roles in the control of Tfh cells and GC formation. Although Tfh-cell differentiation is inhibited by IL-2, regulatory T (Treg) cell differentiation and survival depend on it. Here, we describe a CD25(-) subpopulation within both murine and human PD1(+)CXCR5(+)Foxp3(+) Tfr cells. It is preferentially located in the GC and can be clearly differentiated from CD25(+) non-GC-Tfr, Tfh, and effector Treg (eTreg) cells by the expression of a wide range of molecules. In comparison to CD25(+) Tfr and eTreg cells, CD25(-) Tfr cells partially down-regulate IL-2-dependent canonical Treg features, but retain suppressive function, while simultaneously up-regulating genes associated with Tfh and GC-Tfh cells. We suggest that, similar to Tfh cells, Tfr cells follow a differentiation pathway generating a mature GC-localized subpopulation, CD25(-) Tfr cells.

  1. Interleukin-35 Induces Regulatory B Cells that Suppress CNS Autoimmune Disease

    PubMed Central

    Wang, Ren-Xi; Yu, Cheng-Rong; Dambuza, Ivy M.; Mahdi, Rashid M.; Dolinska, Monika; Sergeey, Yuri V.; Wingfield, Paul T.; Kim, Sung-Hye; Egwuagu, Charles E.

    2014-01-01

    Interleukin 10-producing regulatory B-cells (Breg-cells) suppress autoimmune diseases while aberrant elevation of Breg-cells prevents sterilizing immunity, promotes carcinogenesis and cancer metastasis by converting resting CD4+ T-cells to regulatory T-cells (Tregs). It is therefore of interest to discover factors that induce Breg-cells. Here we show that IL-35 induces Breg-cells in-vivo and promotes their conversion to a unique Breg subset that produces IL-35 (IL-35+Breg). Treatment of mice with IL-35 conferred protection from uveitis and mice lacking IL-35 or defective in IL-35-signaling produced less Breg-cells and developed severe uveitis. Ex-vivo generated Breg-cells also suppressed uveitis by inhibiting pathogenic Th17/Th1 while promoting Tregs expansion. We further show that IL-35 induced the conversion of human B-cells into Breg-cells and suppressed uveitis by activating STAT1/STAT3 through IL-35-Receptor comprising IL-12Rβ2/IL-27Rα subunits. Discovery that IL-35 converts human B-cells into Breg-cells, allows ex-vivo production of autologous Breg-cells for immunotherapy and investigating Breg/IL-35+Breg cells roles in autoimmune diseases and cancer. PMID:24743305

  2. Identification of regulatory factors for mesenchymal stem cell-derived salivary epithelial cells in a co-culture system.

    PubMed

    Park, Yun-Jong; Koh, Jin; Gauna, Adrienne E; Chen, Sixue; Cha, Seunghee

    2014-01-01

    Patients with Sjögren's syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia) due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05) that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia.

  3. Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System

    PubMed Central

    Park, Yun-Jong; Koh, Jin; Gauna, Adrienne E.; Chen, Sixue; Cha, Seunghee

    2014-01-01

    Patients with Sjögren’s syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia) due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05) that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia. PMID:25402494

  4. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    PubMed Central

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence of specialized DC subsets that act to expand Natural T-regs or induce Foxp3+ T-regs from Foxp3− CD4+ T cells. For example, two major subsets of DCs in lymphoid organs act differentially in inducing Foxp3+ T-regs from Foxp3− cells or expanding Natural T-regs with model-antigen delivery by anti-DC subset monoclonal antibodies in vivo. Furthermore, DCs expressing CD103 in the intestine induce Foxp3+ T-regs from Foxp3− CD4+ T cells with endogenous TGF-β and retinoic acid. In addition, antigen-presenting DCs have a capacity to generate Foxp3+ T-regs in the oral cavity where many antigens and commensals exist, similar to intestine and skin. In skin and skin-draining lymph nodes, at least six DC subsets have been identified, suggesting a complex DC-T-reg network. Here, we will review the specific activity of DCs in expanding Natural T-regs and inducing Foxp3+ T-regs from Foxp3− precursors, and further discuss the critical function of DCs in maintaining tolerance at various locations including skin and oral cavity. PMID:23801989

  5. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells.

    PubMed Central

    Brooks, P; Fuertes, G; Murray, R Z; Bose, S; Knecht, E; Rechsteiner, M C; Hendil, K B; Tanaka, K; Dyson, J; Rivett, J

    2000-01-01

    Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable gamma-interferon-inducible catalytic beta-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit specific antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core alpha-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some significant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immunofluorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following gamma-interferon treatment of cultured cells but gamma-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes. PMID:10657252

  6. NK Cell and CD4+FoxP3+ Regulatory T Cell Based Therapies for Hematopoietic Stem Cell Engraftment

    PubMed Central

    Pierini, Antonio; Alvarez, Maite; Negrin, Robert S.

    2016-01-01

    Allogeneic hematopoietic cell transplantation (HCT) is a powerful therapy to treat multiple hematological diseases. The intensive conditioning regimens used to allow for donor hematopoietic stem cell (HSC) engraftment are often associated with severe toxicity, delayed immune reconstitution, life-threatening infections, and thus higher relapse rates. Additionally, due to the high incidence of graft versus host disease (GvHD), HCT protocols have evolved to prevent such disease that has a detrimental impact on antitumor and antiviral responses. Here, we analyzed the role of host T and natural killer (NK) cells in the rejection of donor HSC engraftment as well as the impact of donor regulatory T cells (Treg) and NK cells on HSC engraftment. We review some of the current strategies that utilize NK or Treg to improve allogeneic HCT therapy in order to accomplish better HSC engraftment and immune reconstitution and achieve a lower incidence of cancer relapse, opportunistic infections, and GvHD. PMID:26880996

  7. TIGIT predominantly regulates the immune response via regulatory T cells.

    PubMed

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J; Teng, Michele W L; Smyth, Mark J; Kuchroo, Vijay K; Anderson, Ana C

    2015-11-02

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.

  8. TIGIT predominantly regulates the immune response via regulatory T cells

    PubMed Central

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J.; Teng, Michele W.L.; Smyth, Mark J.; Kuchroo, Vijay K.; Anderson, Ana C.

    2015-01-01

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings. PMID:26413872

  9. [The Role of Regulatory T-cells in Antitumor Immune Response].

    PubMed

    Klabusay, M

    2015-01-01

    Regulatory T-lymphocytes (Treg) are essential for regulation of immune homeostasis and prevention of autoimmune disease development. Regulatory T-cells prevent the onset of autoimmune diseases; they keep immune homeostasis and modulate immune response during infection. Their activity is precisely controlled. Regulatory T-cells belong to one group of immune cells, which can support tumor survival and growth. They realize their function through inhibition of effector T-cells and by regulation of tumor microenvironment through production of various soluble factors. Many publications have proven that the amount of Treg cells is elevated in both solid tumors and in hematologic malignancies. Nevertheless, little is known about mechanisms, which allow increase and maintenance of elevated Treg cells in cancer patients. In this review, we will focus, among others, on the description of function and phenotype of Treg cells, their modulation of humoral immune response and interaction with cancer stem cells. Current development of modern tumor immunotherapy allows new possibilities of influencing Treg cells function.

  10. Regulatory considerations for the development of autologous induced pluripotent stem cell therapies.

    PubMed

    Carpenter, Melissa K; Couture, Larry A

    2010-07-01

    Induced pluripotent stem (iPS) cells offer tremendous opportunity for the creation of autologous cellular therapies, in which gene correction or the avoidance of immune response issues are desirable. In addition, iPS cells avoid the ethical concerns raised by the sourcing of human embryonic stem cells (hESCs) from embryos. iPS cells share many characteristics with hESCs and it is anticipated that existing experience with hESCs will translate to rapid progress in moving iPS cell-derived products toward clinical trials. While the potential clinical value for these products is considerable, the nature of current manufacturing paradigms for autologous iPS cell products raises considerable regulatory concerns. Here, the regulatory challenges posed by autologous iPS cell-derived products are examined. We conclude that there will be considerable regulatory concerns primarily relating to reproducibility of the manufacturing process and safety testing within clinically limited time constraints. Demonstrating safety of the final cell product in an autologous setting will be the single greatest obstacle to progressing autologous iPS cell-based therapies into the clinic.

  11. Superior Cervical Ganglia Neurons Induce Foxp3+ Regulatory T Cells via Calcitonin Gene-Related Peptide.

    PubMed

    Szklany, Kirsten; Ruiter, Evelyn; Mian, Firoz; Kunze, Wolfgang; Bienenstock, John; Forsythe, Paul; Karimi, Khalil

    2016-01-01

    The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-β and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.

  12. Biomechanical cell regulatory networks as complex adaptive systems in relation to cancer.

    PubMed

    Feller, Liviu; Khammissa, Razia Abdool Gafaar; Lemmer, Johan

    2017-01-01

    Physiological structure and function of cells are maintained by ongoing complex dynamic adaptive processes in the intracellular molecular pathways controlling the overall profile of gene expression, and by genes in cellular gene regulatory circuits. Cytogenetic mutations and non-genetic factors such as chronic inflammation or repetitive trauma, intrinsic mechanical stresses within extracellular matrix may induce redirection of gene regulatory circuits with abnormal reactivation of embryonic developmental programmes which can now drive cell transformation and cancer initiation, and later cancer progression and metastasis. Some of the non-genetic factors that may also favour cancerization are dysregulation in epithelial-mesenchymal interactions, in cell-to-cell communication, in extracellular matrix turnover, in extracellular matrix-to-cell interactions and in mechanotransduction pathways. Persistent increase in extracellular matrix stiffness, for whatever reason, has been shown to play an important role in cell transformation, and later in cancer cell invasion. In this article we review certain cell regulatory networks driving carcinogenesis, focussing on the role of mechanical stresses modulating structure and function of cells and their extracellular matrices.

  13. Peripheral blood regulatory T cell counts as a predictive biomarker for the outcome of kidney transplant: A systematic review.

    PubMed

    Herrera-Gómez, Francisco; Vásquez-Seoane, Mónica; Del Aguila, Waldo; Martín-García, Débora; Maurtua-Briseño Meiggs, Álvaro; González-López, Anunciación; Andrés-Martín, Beatriz; Nava-Rebollo, Álvaro; Casquero-Fernández, Fernando; Pascual-Núñez, Pilar; Grande-Villoria, Jesús; Bustamante-Bustamante, Jesús; Ochoa-Sangrador, Carlos; Lambert, Claude; Mendiluce-Herrero, Alicia

    2017-06-19

    Circulating regulatory T cells could become a suitable biomarker for kidney recipients. The objective of this study was to evaluate the effect of mammalian target of rapamycin (mTOR) inhibitors on regulatory T cell numbers, and the clinical interest of this effect. Systematic review of published and unpublished studies. Worldwide databases or repositories. Randomised controlled trials and cohort studies comparing regulatory T cell counts and rejection episodes between patients with and without mTOR inhibitors were searched. Correlation of regulatory T cells-glomerular filtration rate might be supplied. Co-dependency regulatory T cells-mTOR inhibitors efficacy was evaluated. Five trials and 9 studies were included. Clinical differences made it difficult to obtain quantitative estimates of the effect of immunosuppression on regulatory T cell numbers. Nevertheless, we found that there are higher regulatory T cell numbers under treatment with sirolimus or everolimus. Rejection episodes were similar under calcineurin inhibitors and mTOR inhibitors despite different regulatory T cell numbers. Pooled correlation regulatory T cells-glomerular filtration rate was, prospectively 0.114 (95% confidence interval [95% CI] 0.062-0.406), and retrospectively 0.13 (95% CI 0.0-0.361). There is direct evidence although of low level (biomarker-stratified randomisation) on the co-dependency regulatory T cells-mTOR inhibitors efficacy. Regulatory T cells counts may be associated with better outcomes under treatment with mTOR inhibitors (anti-rejection efficacy), considering that there is a relationship between these cells and kidney graft function. PROSPERO (CRD42016046285). Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. (Rapid regulatory control of plant cell expansion and wall relaxation)

    SciTech Connect

    Cosgrove, D.J.

    1990-01-01

    This section presents a brief overview of accomplishments related to this project in the past 3-year period. Our work has focused on the basic mechanisms of plant cell expansion, particularly on the interrelations of water and solute transport with cell wall relaxation and expansion. To study these processes, we have developed new methods and used these methods to analyze the dynamic behavior of growth processes and to examine how various agents (GA, drought, light, genetic lesions) alter the growth machinery of the cell.

  15. Cell type-selective disease-association of genes under high regulatory load.

    PubMed

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-10-15

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3' UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner.

  16. A predictive modeling approach for cell line-specific long-range regulatory interactions

    PubMed Central

    Roy, Sushmita; Siahpirani, Alireza Fotuhi; Chasman, Deborah; Knaack, Sara; Ay, Ferhat; Stewart, Ron; Wilson, Michael; Sridharan, Rupa

    2015-01-01

    Long range regulatory interactions among distal enhancers and target genes are important for tissue-specific gene expression. Genome-scale identification of these interactions in a cell line-specific manner, especially using the fewest possible datasets, is a significant challenge. We develop a novel computational approach, Regulatory Interaction Prediction for Promoters and Long-range Enhancers (RIPPLE), that integrates published Chromosome Conformation Capture (3C) data sets with a minimal set of regulatory genomic data sets to predict enhancer-promoter interactions in a cell line-specific manner. Our results suggest that CTCF, RAD21, a general transcription factor (TBP) and activating chromatin marks are important determinants of enhancer-promoter interactions. To predict interactions in a new cell line and to generate genome-wide interaction maps, we develop an ensemble version of RIPPLE and apply it to generate interactions in five human cell lines. Computational validation of these predictions using existing ChIA-PET and Hi-C data sets showed that RIPPLE accurately predicts interactions among enhancers and promoters. Enhancer-promoter interactions tend to be organized into subnetworks representing coordinately regulated sets of genes that are enriched for specific biological processes and cis-regulatory elements. Overall, our work provides a systematic approach to predict and interpret enhancer-promoter interactions in a genome-wide cell-type specific manner using a few experimentally tractable measurements. PMID:26338778

  17. Cell type-selective disease-association of genes under high regulatory load

    PubMed Central

    Galhardo, Mafalda; Berninger, Philipp; Nguyen, Thanh-Phuong; Sauter, Thomas; Sinkkonen, Lasse

    2015-01-01

    We previously showed that disease-linked metabolic genes are often under combinatorial regulation. Using the genome-wide ChIP-Seq binding profiles for 93 transcription factors in nine different cell lines, we show that genes under high regulatory load are significantly enriched for disease-association across cell types. We find that transcription factor load correlates with the enhancer load of the genes and thereby allows the identification of genes under high regulatory load by epigenomic mapping of active enhancers. Identification of the high enhancer load genes across 139 samples from 96 different cell and tissue types reveals a consistent enrichment for disease-associated genes in a cell type-selective manner. The underlying genes are not limited to super-enhancer genes and show several types of disease-association evidence beyond genetic variation (such as biomarkers). Interestingly, the high regulatory load genes are involved in more KEGG pathways than expected by chance, exhibit increased betweenness centrality in the interaction network of liver disease genes, and carry longer 3′ UTRs with more microRNA (miRNA) binding sites than genes on average, suggesting a role as hubs integrating signals within regulatory networks. In summary, epigenetic mapping of active enhancers presents a promising and unbiased approach for identification of novel disease genes in a cell type-selective manner. PMID:26338775

  18. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex.

    PubMed

    Luo, Chongyuan; Keown, Christopher L; Kurihara, Laurie; Zhou, Jingtian; He, Yupeng; Li, Junhao; Castanon, Rosa; Lucero, Jacinta; Nery, Joseph R; Sandoval, Justin P; Bui, Brian; Sejnowski, Terrence J; Harkins, Timothy T; Mukamel, Eran A; Behrens, M Margarita; Ecker, Joseph R

    2017-08-11

    The mammalian brain contains diverse neuronal types, yet we lack single-cell epigenomic assays that are able to identify and characterize them. DNA methylation is a stable epigenetic mark that distinguishes cell types and marks regulatory elements. We generated >6000 methylomes from single neuronal nuclei and used them to identify 16 mouse and 21 human neuronal subpopulations in the frontal cortex. CG and non-CG methylation exhibited cell type-specific distributions, and we identified regulatory elements with differential methylation across neuron types. Methylation signatures identified a layer 6 excitatory neuron subtype and a unique human parvalbumin-expressing inhibitory neuron subtype. We observed stronger cross-species conservation of regulatory elements in inhibitory neurons than in excitatory neurons. Single-nucleus methylomes expand the atlas of brain cell types and identify regulatory elements that drive conserved brain cell diversity. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Super-enhancers delineate disease-associated regulatory nodes in T cells.

    PubMed

    Vahedi, Golnaz; Kanno, Yuka; Furumoto, Yasuko; Jiang, Kan; Parker, Stephen C J; Erdos, Michael R; Davis, Sean R; Roychoudhuri, Rahul; Restifo, Nicholas P; Gadina, Massimo; Tang, Zhonghui; Ruan, Yijun; Collins, Francis S; Sartorelli, Vittorio; O'Shea, John J

    2015-04-23

    Enhancers regulate spatiotemporal gene expression and impart cell-specific transcriptional outputs that drive cell identity. Super-enhancers (SEs), also known as stretch-enhancers, are a subset of enhancers especially important for genes associated with cell identity and genetic risk of disease. CD4(+) T cells are critical for host defence and autoimmunity. Here we analysed maps of mouse T-cell SEs as a non-biased means of identifying key regulatory nodes involved in cell specification. We found that cytokines and cytokine receptors were the dominant class of genes exhibiting SE architecture in T cells. Nonetheless, the locus encoding Bach2, a key negative regulator of effector differentiation, emerged as the most prominent T-cell SE, revealing a network in which SE-associated genes critical for T-cell biology are repressed by BACH2. Disease-associated single-nucleotide polymorphisms for immune-mediated disorders, including rheumatoid arthritis, were highly enriched for T-cell SEs versus typical enhancers or SEs in other cell lineages. Intriguingly, treatment of T cells with the Janus kinase (JAK) inhibitor tofacitinib disproportionately altered the expression of rheumatoid arthritis risk genes with SE structures. Together, these results indicate that genes with SE architecture in T cells encompass a variety of cytokines and cytokine receptors but are controlled by a 'guardian' transcription factor, itself endowed with an SE. Thus, enumeration of SEs allows the unbiased determination of key regulatory nodes in T cells, which are preferentially modulated by pharmacological intervention.

  20. Gene regulatory networks in embryonic stem cells and brain development

    PubMed Central

    Ghosh, Dhimankrishna; Yan, Xiaowei; Tian, Qiang

    2011-01-01

    Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carries great therapeutic potentials in regenerative medicines. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here we discuss how the finite ESC components mediate the intriguing task of brain development and exhibits biomedical potentials to cure diverse neurological disorders. PMID:19530135

  1. The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells

    PubMed Central

    Koh, Bong Ihn; Kang, Yibin

    2012-01-01

    Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease. PMID:22473297

  2. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood.

    PubMed

    Hanley, Patrick J; Bollard, Catherine M; Brunstein, Claudio G

    2015-06-01

    Cord blood transplantation, an alternative to traditional stem cell transplants (bone marrow or peripheral blood stem cell transplantation), is an attractive option for patients lacking suitable stem cell transplant donors. Cord blood units have also proven to be a valuable donor source for the development of cellular therapeutics. Virus-specific T cells and regulatory T cells are two cord blood-derived products that have shown promise in early-phase clinical trials to prevent and/or treat viral infections and graft-versus-host disease, respectively. We describe how current strategies that use cord blood-derived regulatory T cells and virus-specific T cells have been developed to improve outcomes for cord blood transplant recipients.

  3. Interleukin-35-mediated induction of a novel regulatory T cell population

    PubMed Central

    Collison, Lauren W.; Chaturvedi, Vandana; Henderson, Abigail L.; Giacomin, Paul R.; Guy, Cliff; Bankoti, Jaishree; Finkelstein, David; Forbes, Karen; Workman, Creg J.; Brown, Scott A.; Rehg, Jerold E.; Jones, Michael L.; Ni, Hsiao-Tzu; Artis, David; Turk, Mary Jo; Vignali, Dario A. A.

    2010-01-01

    Regulatory T cells (Tregs) play a critical role in the maintenance of immunological self-tolerance. Naïve human or murine T cell treatment with the inhibitory cytokine IL-35 induces a regulatory population, termed iTR35, that mediates suppression via IL-35, but not IL-10 or TGFβ, neither express nor require Foxp3, are strongly suppressive in five in vivo models, and exhibit in vivo stability. Treg-mediated suppression induces iTR35 generation in an IL-35- and IL-10-dependent manner in vitro, and in inflammatory conditions in vivo in Trichuris-infected intestines and within the tumor microenvironment, where they appear to contribute to the regulatory milieu. iTR35 may constitute a key mediator of infectious tolerance, may contribute to Treg-mediated tumor progression, and ex vivo generated iTR35 may possess therapeutic utility. PMID:20953201

  4. The Role of Regulatory T Cells in the Biology of Graft Versus Host Disease

    PubMed Central

    Beres, Amy J.; Drobyski, William R.

    2013-01-01

    Graft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. GVHD is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Moreover, there is a persistent reduction in the number of regulatory T (Treg) cells which limits the ability of the immune system to re-calibrate this proinflammatory environment. Treg cells are comprised of both natural and induced populations which have unique ontological and developmental characteristics that impact how they function within the context of immune regulation. In this review, we summarize pre-clinical data derived from experimental murine models that have examined the role of both natural and induced Treg cells in the biology of GVHD. We also review the clinical studies which have begun to employ Treg cells as a form of adoptive cellular therapy for the prevention of GVHD in human transplant recipients. PMID:23805140

  5. Trafficking of FoxP3+ regulatory T cells: myths and facts.

    PubMed

    Kim, Chang H

    2007-01-01

    Fork head box P3 (FoxP3(+)) regulatory T cells (Tregs) are specialized T cells for prevention of hyperimmune responses and autoimmunity. Tumors and pathogens can hijack FoxP3(+) Tregs to evade host immune responses. There is an increasing body of evidence that trafficking of FoxP3(+) Tregs is important for their effective suppression of target cells. Because of their distinctive functions and gene expression phenotype, the migratory behavior of FoxP3(+) Tregs has been somewhat mystified. The myths are that they have unique trafficking receptors and migratory behaviors that are different from those of conventional T cells. Another related myth is that FoxP3(+) regulatory T cell subsets have a fixed trafficking behavior from the time they are generated in the thymus. The recent progress in trafficking receptors and migratory behavior of FoxP3(+) Tregs is reviewed here and the validity of these myths is examined.

  6. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  7. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  8. Respiratory cycle-related EEG changes: response to CPAP.

    PubMed

    Chervin, Ronald D; Shelgikar, Anita Valanju; Burns, Joseph W

    2012-02-01

    Respiratory cycle-related EEG changes (RCREC) quantify statistically significant synchrony between respiratory cycles and EEG spectral power, vary to some extent with work of breathing, and may help to predict sleepiness in patients with obstructive sleep apnea. This study was designed to assess the acute response of RCREC to relief of upper airway obstruction by positive airway pressure (PAP). Comparison of RCREC between baseline diagnostic polysomnograms and PAP titration studies. Accredited academic sleep disorders center. Fifty adults referred for suspected sleep disordered breathing. For each recording, the RCREC in specific physiologic EEG frequency ranges were computed as previously described for the last 3 h of sleep not occupied by apneic events. The sample included 27 women; mean age was 47 ± 11 (SD) years; and median respiratory disturbance index at baseline was 24 (inter-quartile range 15-43). Decrements in RCREC, from baseline to PAP titration, reached 43%, 24%, 14%, 22%, and 31% for delta (P = 0.0004), theta (P = 0.01), alpha (P = 0.10), sigma (P = 0.08), and beta (P = 0.01) EEG frequency ranges, respectively. Within each specific sleep stage, these reductions from baseline to PAP studies in synchrony between EEG power and respiratory cycles still reached significance (P < 0.05) for one or more EEG frequency ranges and for all frequency ranges during REM sleep. RCREC tends to diminish acutely with alleviation of upper airway obstruction by PAP. These data in combination with previous observations support the hypothesis that RCREC reflect numerous, subtle, brief, but consequential inspiratory microarousals.

  9. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.

    PubMed

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R

    2015-09-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.

  10. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins.

    PubMed

    Lee, Kwan-Yong; Kim, Bong Cho; Han, Na-Kyung; Lee, Yun-Sil; Kim, Taehong; Yun, Jae-Hoon; Kim, Nam; Pack, Jeong-Ki; Lee, Jae-Seon

    2011-04-01

    The aim of this study was to investigate whether single or combined radio frequency (RF) radiation exposure has effects on the cell cycle and its regulatory proteins. Exposure of MCF7 cells to either single (837 MHz) or combined (837 and 1950 MHz) RF radiation was conducted at specific absorption rate values of 4 W/kg for 1 h. During the exposure period, the chamber was made isothermal by circulating water through the cavity. After RF radiation exposure, DNA synthesis rate and cell cycle distribution were assessed. The levels of cell cycle regulatory proteins, p53, p21, cyclins, and cyclin-dependent kinases were also examined. The positive control group was exposed to 0.5 and 4 Gy doses of ionizing radiation (IR) and showed changes in DNA synthesis and cell cycle distribution. The levels of p53, p21, cyclin A, cyclin B1, and cyclin D1 were also affected by IR exposure. In contrast to the IR-exposed group, neither the single RF radiation- nor the combined RF radiation-exposed group elicited alterations in DNA synthesis, cell cycle distribution, and levels of cell cycle regulatory proteins. These results indicate that neither single nor combined RF radiation affect cell cycle progression.

  11. The regulatory role of invariant NKT cells in tumor immunity

    PubMed Central

    McEwen-Smith, Rosanna M; Salio, Mariolina; Cerundolo, Vincenzo

    2015-01-01

    Invariant natural killer T (iNKT) cells are a unique population of T lymphocytes, which lie at the interface between the innate and adaptive immune systems, and are important mediators of immune responses and tumor-surveillance. iNKT cells recognize lipid antigens in a CD1d-dependent manner; their subsequent activation results in a rapid and specific downstream response, which enhances both innate and adaptive immunity. The capacity of iNKT cells to modify the immune-microenvironment influences the ability of the host to control tumor growth, making them an important population to be harnessed in the clinic for the development of anti-cancer therapeutics. Indeed, the identification of strong iNKT cell agonists, such as α-galactosylceramide (α-GalCer) and its analogues, has led to the development of synthetic lipids which have shown potential in vaccination and treatment against cancers. In this Masters of Immunology article we discuss these latest findings, and summarise the major discoveries in iNKT cell biology, which have enabled the design of potent strategies for immune-mediated tumor destruction. PMID:25941354

  12. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells.

    PubMed

    Audo, Rachel; Hua, Charlotte; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells.

  13. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  14. IL-2 coordinates IL-2-producing and regulatory T cell interplay.

    PubMed

    Amado, Inês F; Berges, Julien; Luther, Rita J; Mailhé, Marie-Pierre; Garcia, Sylvie; Bandeira, Antonio; Weaver, Casey; Liston, Adrian; Freitas, Antonio A

    2013-11-18

    Many species of bacteria use quorum sensing to sense the amount of secreted metabolites and to adapt their growth according to their population density. We asked whether similar mechanisms would operate in lymphocyte homeostasis. We investigated the regulation of the size of interleukin-2 (IL-2)-producing CD4(+) T cell (IL-2p) pool using different IL-2 reporter mice. We found that in the absence of either IL-2 or regulatory CD4(+) T (T reg) cells, the number of IL-2p cells increases. Administration of IL-2 decreases the number of cells of the IL-2p cell subset and, pertinently, abrogates their ability to produce IL-2 upon in vivo cognate stimulation, while increasing T reg cell numbers. We propose that control of the IL-2p cell numbers occurs via a quorum sensing-like feedback loop where the produced IL-2 is sensed by both the activated CD4(+) T cell pool and by T reg cells, which reciprocally regulate cells of the IL-2p cell subset. In conclusion, IL-2 acts as a self-regulatory circuit integrating the homeostasis of activated and T reg cells as CD4(+) T cells restrain their growth by monitoring IL-2 levels, thereby preventing uncontrolled responses and autoimmunity.

  15. IL-2 coordinates IL-2–producing and regulatory T cell interplay

    PubMed Central

    Amado, Inês F.; Berges, Julien; Luther, Rita J.; Mailhé, Marie-Pierre; Garcia, Sylvie; Bandeira, Antonio; Weaver, Casey; Liston, Adrian

    2013-01-01

    Many species of bacteria use quorum sensing to sense the amount of secreted metabolites and to adapt their growth according to their population density. We asked whether similar mechanisms would operate in lymphocyte homeostasis. We investigated the regulation of the size of interleukin-2 (IL-2)–producing CD4+ T cell (IL-2p) pool using different IL-2 reporter mice. We found that in the absence of either IL-2 or regulatory CD4+ T (T reg) cells, the number of IL-2p cells increases. Administration of IL-2 decreases the number of cells of the IL-2p cell subset and, pertinently, abrogates their ability to produce IL-2 upon in vivo cognate stimulation, while increasing T reg cell numbers. We propose that control of the IL-2p cell numbers occurs via a quorum sensing–like feedback loop where the produced IL-2 is sensed by both the activated CD4+ T cell pool and by T reg cells, which reciprocally regulate cells of the IL-2p cell subset. In conclusion, IL-2 acts as a self-regulatory circuit integrating the homeostasis of activated and T reg cells as CD4+ T cells restrain their growth by monitoring IL-2 levels, thereby preventing uncontrolled responses and autoimmunity. PMID:24249704

  16. Autocrine IFNγ Controls the Regulatory Function of Lymphoproliferative Double Negative T Cells

    PubMed Central

    Juvet, Stephen C.; Han, Mei; Vanama, Ramesh; Joe, Betty; Kim, Edward Y.; Zhao, Fei Linda; Jeon, Caroline; Adeyi, Oyedele; Zhang, Li

    2012-01-01

    TCRαβ+ CD4−CD8−NK− double negative T cells (DN T cells) can act as regulatory T cells to inhibit allograft rejection and autoimmunity. Their role in graft-versus-host disease and mechanisms of suppression remain elusive. In this study, we demonstrate that DN T cells can inhibit CD4+ T cell-mediated GVHD in a semi-allogeneic model of bone marrow transplantation. Furthermore, we present evidence of a novel autocrine IFNγ signaling pathway in Fas-deficient C57BL/6.lpr (B6.lpr) DN T cells. B6.lpr DN T cells lacking IFNγ or its receptor were impaired in their ability to suppress syngeneic CD4+ T cells responding to alloantigen stimulation both in vitro and in vivo. Autocrine IFNγ signaling was required for sustained B6.lpr DN T cell IFNγ secretion in vivo and for upregulation of surface Fas ligand expression during TCR stimulation. Fas ligand (FasL) expression by B6.lpr DN T cells permitted lysis of activated CD4+ T cells and was required for suppression of GVHD. Collectively, our data indicate that DN T cells can inhibit GVHD and that IFNγ plays a critical autocrine role in controlling the regulatory function of B6.lpr DN T cells. PMID:23077665

  17. Inducible CD4+LAP+ Foxp3 negative Regulatory T cells Suppress Allergic Inflammation

    PubMed Central

    Duan, Wei; So, Takanori; Mehta, Amit K.; Choi, Heonsik; Croft, Michael

    2011-01-01

    Regulatory T cells (Treg cells) play a critical role in the maintenance of airway tolerance. We report here that inhaled soluble antigen induces not only adaptive Foxp3+ Treg but also a regulatory population of CD4+ T cells in the lungs and lung-draining lymph nodes that express latency-associated peptide (LAP) on their cell surface but do not express Foxp3. Blocking the cytokines IL-10 or transforming growth factor-β (TGF-β) prevented the generation of the LAP+ Treg and Foxp3+ Treg cells in vivo, and the LAP+ Treg could also be generated concomitantly with Foxp3+ Treg in vitro by culturing naïve CD4+ T cells with antigen and exogenous TGF-β. The LAP+ Treg cells strongly suppressed naïve CD4+ T cell proliferation, and transfer of sorted OVA-specific LAP+ Treg cells in vivo inhibited allergic eosinophilia and Th2 cytokine expression in the lung, either when present at the time of Th2 sensitization or when injected after Th2 cells were formed. Furthermore, inflammatory innate stimuli from house dust mite (HDM) extract, nucleotide-binding oligomerization domain containing 2 (Nod2) ligand, and lipopolysacchride (LPS), that are sufficient for blocking airway tolerance, strongly decreased the induction of LAP+ Treg cells. Taken together, we conclude that inducible antigen-specific LAP+ Treg cells can suppress asthmatic lung inflammation and constitute a mediator of airway tolerance together with Foxp3+ Treg cells. PMID:22079987

  18. Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells.

    PubMed

    Diao, Jun; Mikhailova, Anastassia; Tang, Michael; Gu, Hongtao; Zhao, Jun; Cattral, Mark S

    2012-05-24

    Dendritic cell (DC) homeostasis in peripheral tissues reflect a balance between DC generation, migration, and death. The current model of DC ontogeny indicates that pre-cDCs are committed to become terminal conventional DCs (cDCs). Here, we report the unexpected finding that proliferating immunostimulatory CD11c(+) MHC class II(+) cDCs derived from pre-cDCs can lose their DC identity and generate progeny that exhibit morphologic, phenotypic, and functional characteristics of regulatory macrophages. DC-derived-macrophages (DC-d-Ms) potently suppress T-cell responses through the production of immunosuppressive molecules including nitric oxide, arginase, and IL-10. Relative deficiency of granulocyte-macrophage colony stimulating factor (GM-CSF) provided a permissive signal for DC-d-M generation. Using a transgenic mouse model that allows tracking of CD11c(+) cells in vivo, we found that DC-d-M development occurs commonly in cancer, but not in lymphoid or nonlymphoid tissues under steady-state conditions. We propose that this developmental pathway serves as an alternative mechanism of regulating DC homeostasis during inflammatory processes.

  19. Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells

    PubMed Central

    Tu, Lei; Chen, Jie; Zhang, Hongwei; Duan, Lihua

    2017-01-01

    CD103+ dendritic cells (DCs) have been shown to play a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs) through educating regulatory T (Treg) cells differentiation. However, the mechanism of CD103+ DCs subsets differentiation remains elusive. Interleukin (IL)-4 is a pleiotropic cytokine that is upregulated in certain types of inflammation, including IBDs and especially ulcerative colitis. However, the precise role of IL-4 in the differentiation of CD103+ DCs subpopulation remains unknown. In this study, we observed a repressive role of IL-4 on the CD103+ DCs differentiation in both mouse and human. High-dose IL-4 inhibited the CD103+ DC differentiation. In comparison to CD103− DCs, CD103+ DCs expressed high levels of the co-stimulatory molecules and indoleamine 2,3-dioxygenase (IDO). Interestingly, IL-4 diminished IDO expression on DCs in a dose-dependent manner. Besides, high-dose IL-4-induced bone marrow-derived DCs, and monocyte-derived DCs revealed mature DCs profiles, characterized by increased co-stimulatory molecules and decreased pinocytotic function. Furthermore, DCs generated under low concentrations of IL-4 favored Treg cells differentiation, which depend on IDO produced by CD103+ DCs. Consistently, IL-4 also reduced the frequency of CD103+ DC in vivo. Thus, we here demonstrated that the cytokine IL-4 involved in certain types of inflammatory diseases by orchestrating the functional phenotype of CD103+ DCs subsets. PMID:28316599

  20. Stem cell transplantation in genetically linked regulatory T-cell disorders.

    PubMed

    Shenoy, Shalini

    2008-01-01

    T-regulatory disorders are a heterogenous group characterized by autoimmune and allergic manifestations of varying onset, severity, and progression. The advent of sophisticated molecular and immunologic diagnostic techniques has resulted in accurate elucidation of etiopathogenesis of many immunoregulatory disorders previously clubbed under the autoimmune umbrella. The severity of presentation and progression, early morbidity and mortality, poor quality of life, and frequent refractoriness to immunosuppressive therapy has prompted studies of stem cell transplantation in many immunoregulatory disorders. The benefits of autologous or allogeneic transplantation are related to either suppression and reprogramming of the immune system (autologous transplant) or replacement of missing elements of immune regulation (allogeneic transplants). Transplant methods have steadily improved through a series of studies and trials to have the benefits of this approach outweigh the risks of procedure-related toxicities. This article summarizes the current status and the future goals of stem cell transplantation for T-cell immunoregulatory disorders and reviews advances in disease detection, targeted transplant strategies and novel approaches, and the pros and cons of transplant in this field.

  1. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports. PMID:26900284

  2. Regulatory mechanism of Toona sinensis on mouse leydig cell steroidogenesis.

    PubMed

    Poon, Song Ling; Leu, Sew-Fen; Hsu, Hseng-Kuang; Liu, Ming-Yie; Huang, Bu-Miin

    2005-02-11

    Toona sinensis (TS), a kind of arbor, widely distributes nowadays in Asia. The leaves of TS have been used as an effective nutritious food in Chinese society for a long time. It was reported that Toona sinensis can induce apoptosis of cancer cells, reduce plasma glucose in diabetic rats, and improve lipolysis of differentiated 3T3-L1 adipocyte and its uptake of glucose. It has also been shown that TS may increase dynamic activity of human sperm. Thus, we are interested to investigate whether Toona sinensis has any effect on mouse Leydig cell testosterone production, which correlates to sperm activity. Primary mouse Leydig cells were purified to conduct the in vitro experiments. Different concentrations of crude Toona sinensis were added to primary mouse Leydig cells and the testosterone production was determined. The results showed that crude TS significantly inhibited both basal and human chorionic gonadotropin (hCG)-stimulated testosterone productions in dose dependent manner, respectively (P<0.05). Crude TS also reduced the forskolin- and dibutyryl-cAMP (dbcAMP)-stimulated testosterone production (P<0.05), which indicated that crude TS might affect protein kinase A (PKA) signal transduction pathway at the site after the formation of cyclic AMP. Moreover, TS inhibited Leydig cell steroidogenesis by suppressing the activity of steroidogenic enzymes including P450 side chain cleavage enzyme, 3 beta-hydroxysteroid dehydrogenase, 17 alpha-hydroxylase, 20 alpha-hydroxylase and 17 beta-hydroxysteroid dehydrogenase (P<0.05). In summary, these results suggested that TS inhibited steroidogenesis by suppressing the cAMP-PKA signaling pathway and the activities of steroidogenic enzymes in normal mouse Leydig cells.

  3. From bench to FDA to bedside: US regulatory trends for new stem cell therapies.

    PubMed

    Knoepfler, Paul S

    2015-03-01

    The phrase "bench-to-bedside" is commonly used to describe the translation of basic discoveries such as those on stem cells to the clinic for therapeutic use in human patients. However, there is a key intermediate step in between the bench and the bedside involving governmental regulatory oversight such as by the Food and Drug Administration (FDA) in the United States (US). Thus, it might be more accurate in most cases to describe the stem cell biological drug development process in this way: from bench to FDA to bedside. The intermediate development and regulatory stage for stem cell-based biological drugs is a multifactorial, continually evolving part of the process of developing a biological drug such as a stem cell-based regenerative medicine product. In some situations, stem cell-related products may not be classified as biological drugs in which case the FDA plays a relatively minor role. However, this middle stage is generally a major element of the process and is often colloquially referred to in an ominous way as "The Valley of Death". This moniker seems appropriate because it is at this point, and in particular in the work that ensues after Phase 1, clinical trials that most drug product development is terminated, often due to lack of funding, diseases being refractory to treatment, or regulatory issues. Not surprisingly, workarounds to deal with or entirely avoid this difficult stage of the process are evolving both inside and outside the domains of official regulatory authorities. In some cases these efforts involve the FDA invoking new mechanisms of accelerating the bench to beside process, but in other cases these new pathways bypass the FDA in part or entirely. Together these rapidly changing stem cell product development and regulatory pathways raise many scientific, ethical, and medical questions. These emerging trends and their potential consequences are reviewed here.

  4. From Bench to FDA to Bedside: US Regulatory Trends for New Stem Cell Therapies

    PubMed Central

    Knoepfler, Paul S.

    2015-01-01

    The phrase “bench to bedside” is commonly used to describe the translation of basic discoveries such as those on stem cells to the clinic for therapeutic use in human patients. However, there is a key intermediate step in between the bench and the bedside involving governmental regulatory oversight such as by the Food and Drug Administration (FDA) in the United States (US). Thus, it might be more accurate in most cases to describe the stem cell biological drug development process in this way: from bench to FDA to bedside. The intermediate development and regulatory stage for stem cell-based biological drugs is a multifactorial, continually evolving part of the process of developing a biological drug such as a stem cell-based regenerative medicine product. In some situations, stem cell-related products may not be classified as biological drugs in which case the FDA plays a relatively minor role. However, this middle stage is generally a major element of the process and is often colloquially referred to in an ominous way as “The Valley of Death”. This moniker seems appropriate because it is at this point and in particular in the work that ensues after Phase 1 clinical trials that most drug product development is terminated, often due to lack of funding, diseases being refractory to treatment, or regulatory issues. Not surprisingly, workarounds to deal with or entirely avoid this difficult stage of the process are evolving both inside and outside the domains of official regulatory authorities. In some cases these efforts involve the FDA invoking new mechanisms of accelerating the bench to beside process, but in other cases these new pathways bypass the FDA in part or entirely. Together these rapidly changing stem cell product development and regulatory pathways raise many scientific, ethical, and medical questions. These emerging trends and their potential consequences are reviewed here. PMID:25489841

  5. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro.

    PubMed

    Havari, Evis; Turner, Michael J; Campos-Rivera, Juanita; Shankara, Srinivas; Nguyen, Tri-Hung; Roberts, Bruce; Siders, William; Kaplan, Johanne M

    2014-01-01

    Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon-β in relapsing-remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement-dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab-exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25(hi) T-cell population was necessary for the suppressive activity of alemtuzumab-exposed T cells. The mechanism of this suppression was found to be dependent on both cell-cell contact and interleukin-2 consumption. These findings suggest that an alemtuzumab-mediated increase in the proportion of Treg cells may play a role in promoting the long-term efficacy of alemtuzumab in patients with multiple sclerosis. © 2013 John Wiley & Sons Ltd.

  6. Interleukin 35 Rescues Regulatory B Cell Function, but the Effect Is Dysregulated in Ulcerative Colitis.

    PubMed

    Wang, Shaoxuan; Qin, Chengyong

    2017-05-01

    Ulcerative colitis (UC) is a long-time inflammatory condition arising from aberrant immune activation in the colon and the rectum. Interleukin (IL)-35 plays critical roles in autoimmune disorders. In this study, we explored the pathways of IL-35 in affecting UC. First, peripheral blood mononuclear cells (PBMCs) from UC patients were obtained. Pretreating PBMCs with IL-35 resulted in significantly elevated IL-10 production from whole PBMCs as well as B cells, whereas pretreating PBMCs with IL-12 or IL-27 did not demonstrate a similar effect. IL-35 suppressed the proliferation of CD4(+)CD25(-) conventional T cells, CD4(+)CD25(+) regulatory T (Treg) cells, and CD8(+) T cells, but did not inhibit the proliferation of B cells. IL-35-mediated IL-10 secretion in B cells did not require the presence of Treg cells. After treatment with IL-35, B cells from UC patients presented significantly enhanced regulatory function, characterized by inhibiting cell proliferation and interferon (IFN)-γ, IL-17, and tumor necrosis factor (TNF)-α secretion from autologous CD4(+)CD25(-) T cells and CD8(+) T cells, which was dependent on IL-10 signaling. However, IL-35-treatment did not demonstrate an effect on regulating IL-5 and IL-13 responses. These discoveries identified a Th1, Th17, and CD8(+) T cell-targeting role of IL-35 in UC patients. Next, we examined the IL-35 expression in the intestinal mucosal in UC patients. Data showed that both noninflamed and inflamed tissues from UC patients presented significantly lower IL-35 secretion compared to healthy control tissues, which was associated with suppressed p35 transcription. UC patients with higher IL-35 also presented higher IL-10 secretion in gut mucosa. Together, our study identified that IL-35 could mediate anti-inflammatory function through promoting regulatory B cell functions, but this effect was suppressed in UC patients.

  7. Flow cytometric analysis of regulatory T cells during hyposensitization of acquired allergic contact dermatitis.

    PubMed

    Fraser, Kathleen; Abbas, Mariam; Hull, Peter R

    2014-01-01

    We previously demonstrated that repeated intradermal steroid injections administered at weekly intervals into positive patch-test sites induce hyposensitization and desensitization. To examine changes in CD4CD25CD127lo/ regulatory T cells during the attenuation of the patch-test response. Ten patients with known allergic contact dermatitis were patch tested weekly for 10 weeks. The patch-test site was injected intradermally with 2 mg triamcinolone. At weeks 1 and 7, a biopsy was performed on the patch-test site in 6 patients, and flow cytometry was performed assessing CD4CD25CD127lo/ regulatory T cells. Secondary outcomes were clinical score, reaction size, erythema, and temperature. Statistical analysis included regression, correlation, and repeated-measures analysis of variance. The percentage of CD4CD25CD127lo/ regulatory T cells, measured by flow cytometry, increased from week 1 to week 7 by an average of 19.2%. The average grade of patch-test reaction decreased from +++ (vesicular reaction) to ++ (palpable erythema). The mean drop in temperature following treatment was 0.28°C per week. The mean area decreased 8.6 mm/wk over 10 weeks. Intradermal steroid injections of weekly patch-test reactions resulted in hyposensitization of the allergic contact dermatitis reaction. CD4CD25CD127lo/ regulatory T cells showed a tendency to increase; however, further studies are needed to determine if this is significant.

  8. Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to study Regulatory T cell (Treg) properties post-Salmonella infection in broiler birds. Four-day-old broiler chicks were orally infected with 5x106 CFU/ml Salmonella enteritidis or sterile PBS (control). Samples were collected at 4, 7, 10, and 14 d post-infection. ...

  9. Effect of radiologic contrast media on cell volume regulatory mechanisms in human red blood cells.

    PubMed

    Galtung, Hilde Kanli; Sørlundsengen, Vibeke; Sakariassen, Kjell S; Benestad, Haakon B

    2002-08-01

    The authors performed this study to evaluate cell volume regulation in human red blood cells (RBCs) after incubation in solutions of three contrast media: iohexol (830 mOsm), ioxaglate (520 mOsm), and iodixanol (300 mOsm). Whole blood sampled from six healthy subjects was exposed to Ringer solutions containing 25% or 5% vol/vol iohexol (final osmolality, 440 or 340 mOsm, respectively), ioxaglate (final osmolality, 395 or 335 mOsm, respectively), iodixanol (final osmolality, 330 or 315 mOsm, respectively), or NaCl (control solutions with the same osmolality as that of the contrast media). In some experiments, control RBCs were subjected to a hyposmotic solution (100 mOsm). RBC volumes were obtained with a Coulter counter. The RBCs showed normal regulatory cell shrinkage after hyposmotically induced swelling. All 25% vol/vol contrast material solutions and their control solutions induced RBC shrinkage (range, 6% +/- 1 [standard error] to 22% +/- 3). The same was true for cells exposed to 5% vol/vol contrast material (range, 4% +/- 1 to 7% +/- 1). The shrinkage phase was followed by cell swelling (10% +/- 2 to 20% +/- 2 for 25% contrast material and their control solutions and 8% +/- 1 to 15% +/- 2 for 5% contrast material and their control solutions). No contrast material-exposed RBCs increased their volumes to the level reached with their control solutions. RBCs exposed to hyperosmotic iohexol, ioxaglate, or iodixanol solutions shrank and then swelled. The degree of shrinkage and subsequent swelling could not be explained simply with the osmolality of the test solutions. Physicochemical properties of the contrast media must be involved, putatively affecting electrolyte fluxes over the RBC membrane. Possible targets of these effects are the K+/Cl- symporter, K+ channels, and the Na+/K+/Cl- symporter.

  10. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions

    PubMed Central

    Juvet, Stephen C.; Zhang, Li

    2012-01-01

    T lymphocytes bearing the αβ T cell receptor (TCR) but lacking CD4, CD8, and markers of natural killer (NK) cell differentiation are known as ‘double-negative’ (DN) T cells and have been described in both humans and rodent models. We and others have shown that DN T cells can act as regulatory T cells (Tregs) that are able to prevent allograft rejection, graft-versus-host disease, and autoimmune diabetes. In the last few years, new data have revealed evidence of DN Treg function in vivo in rodents and humans. Moreover, significant advances have been made in the mechanisms by which DN Tregs target antigen-specific T cells. One major limitation of the field is the lack of a specific marker that can be used to distinguish truly regulatory DN T cells (DN Tregs) from non-regulatory ones, and this is the central challenge in the coming years. Here, we review recent progress on the role of DN Tregs in transplantation and autoimmunity, and their mechanisms of action. We also provide some perspectives on how DN Tregs compare with Foxp3+ Tregs. PMID:22294241

  11. Distinct regulatory elements mediate similar expression patterns in the excretory cell of Caenorhabditis elegans.

    PubMed

    Zhao, Zhongying; Fang, Li; Chen, Nansheng; Johnsen, Robert C; Stein, Lincoln; Baillie, David L

    2005-11-18

    Identification of cis-regulatory elements and their binding proteins constitutes an important part of understanding gene function and regulation. It is well accepted that co-expressed genes tend to share transcriptional elements. However, recent findings indicate that co-expression data show poor correlation with co-regulation data even in unicellular yeast. This motivates us to experimentally explore whether it is possible that co-expressed genes are subject to differential regulatory control using the excretory cell of Caenorhabditis elegans as an example. Excretory cell is a functional equivalent of human kidney. Transcriptional regulation of gene expression in the cell is largely unknown. We isolated a 10-bp excretory cell-specific cis-element, Ex-1, from a pgp-12 promoter. The significance of the element has been demonstrated by its capacity of converting an intestine-specific promoter into an excretory cell-specific one. We also isolated a cDNA encoding an Ex-1 binding transcription factor, DCP-66, using a yeast one-hybrid screen. Role of the factor in regulation of pgp-12 expression has been demonstrated both in vitro and in vivo. Search for occurrence of Ex-1 reveals that only a small portion of excretory cell-specific promoters contain Ex-1. Two other distinct cis-elements isolated from two different promoters can also dictate the excretory cell-specific expression but are independent of regulation by DCP-66. The results indicate that distinct regulatory elements are able to mediate the similar expression patterns.

  12. Immune modulation of inflammatory conditions: regulatory T cells for treatment of GvHD.

    PubMed

    Haase, Doreen; Starke, Mireille; Puan, Kia Joo; Lai, Tuck Siong; Rotzschke, Olaf

    2012-09-01

    The immune system is a highly balanced network of different cell types. This balance is disturbed in the setting of organ or stem cell transplantation, which can lead to graft rejection or "Graft versus host disease" (GvHD). Conventional pharmacological treatment by broad immune suppression is restricted by dose-limiting side effects. A novel strategy for prevention and control is cell therapy. This applies particularly to GvHD. A number of phase I trials have already been launched. The most appropriate cell type appears to be the regulatory T (Treg) cell as it is a natural "suppressor" of the immune system. Treg cells are able to inhibit various effector cells including CD4+ and CD8+ T cells, the main drivers of GvHD. Like other T cells, also Treg cells can be divided into naïve and memory-type cells. We have previously identified effector/memory Treg cells (T(REM)), the regulatory counterparts of CD4+ effector/memory T cells (T(EM)). T(REM) may be particularly suited to inhibit proinflammatory reactions in peripheral tissues as they express the chemokine receptor CCR6, a feature they share with proinflammatory Th17 cells. As specific marker, they also express CD39 but lack the expression of CD49d and CD127. We could show that a simple depletion of CD49d and CD127 expressing cells yields a population of "untouched" Treg cells that is highly pure and largely consist of highly suppressive T(REM) cells. Mouse models have confirmed the efficacy of Treg cells in controlling GvHD but the translation has been lagging. First clinical trials suggesting safety of adoptive Treg transfer increase the need for methods that allow obtaining clinical-grade Treg cells in sufficient amounts. The new approach may therefore provide a promising new alternative to facilitate a simple access to these cells.

  13. Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    PubMed Central

    Teixeira-Carvalho, Andréa; Renato Zuquim Antas, Paulo; Assis Silva Gomes, Juliana; Sathler-Avelar, Renato; Otávio Costa Rocha, Manoel; Elói-Santos, Silvana Maria; Pinho, Rosa Teixeira; Correa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis

    2011-01-01

    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite

  14. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro

    PubMed Central

    Havari, Evis; Turner, Michael J; Campos-Rivera, Juanita; Shankara, Srinivas; Nguyen, Tri-Hung; Roberts, Bruce; Siders, William; Kaplan, Johanne M

    2014-01-01

    Alemtuzumab is a humanized monoclonal antibody specific for the CD52 protein present at high levels on the surface of B and T lymphocytes. In clinical trials, alemtuzumab has shown a clinical benefit superior to that of interferon-β in relapsing–remitting multiple sclerosis patients. Treatment with alemtuzumab leads to the depletion of circulating lymphocytes followed by a repopulation process characterized by alterations in the number, proportions and properties of lymphocyte subsets. Of particular interest, an increase in the percentage of T cells with a regulatory phenotype (Treg cells) has been observed in multiple sclerosis patients after alemtuzumab. Since Treg cells play an important role in the control of autoimmune responses, the effect of alemtuzumab on Treg cells was further studied in vitro. Alemtuzumab effectively mediated complement-dependent cytolysis of human T lymphocytes and the remaining population was enriched in T cells with a regulatory phenotype. The alemtuzumab-exposed T cells displayed functional regulatory characteristics including anergy to stimulation with allogeneic dendritic cells and ability to suppress the allogeneic response of autologous T cells. Consistent with the observed increase in Treg cell frequency, the CD25hi T-cell population was necessary for the suppressive activity of alemtuzumab-exposed T cells. The mechanism of this suppression was found to be dependent on both cell–cell contact and interleukin-2 consumption. These findings suggest that an alemtuzumab-mediated increase in the proportion of Treg cells may play a role in promoting the long-term efficacy of alemtuzumab in patients with multiple sclerosis. PMID:24116901

  15. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  16. Contribution of Mesenteric Lymph Nodes and GALT to the Intestinal Foxp3+ Regulatory T-Cell Compartment.

    PubMed

    Geem, Duke; Ngo, Vu; Harusato, Akihito; Chassaing, Benoit; Gewirtz, Andrew T; Newberry, Rodney D; Denning, Timothy L

    2016-05-01

    This study showed that the absence of CCR7 or mesenteric lymph nodes/gut-associated lymphoid tissue did not appreciably impact total intestinal Foxp3+ regulatory T cell representation in the steady-state. However, mesenteric lymph nodes/GALT are required for normal peripherally induced Foxp3+ regulatory T cell differentiation in the small intestine, but not in the large intestine.

  17. Principal cell types of sleep-wake regulatory circuits.

    PubMed

    Jones, Barbara E

    2017-06-01

    Electrophysiological recordings indicate that neurons which discharge maximally in association with distinct sleep-wake states are distributed through the brain, albeit in differing proportions. As studied using juxtacellular recording and labeling within the basal forebrain, four functional principal cell types are distinguished as: wake/paradoxical sleep (W/PS)-, slow wave sleep (SWS)-, W- and PS-max active. They are each comprised by both GABA and glutamate neurons, in addition to acetylcholine neurons belonging to the W/PS group. By their discharge profiles and interactions, the GABA and glutamate neurons of different groups are proposed to have the capacity to generate sleep-wake states with associated EEG and EMG activities, though to also be importantly regulated by neuromodulatory systems, each of which belong to one functional cell group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Model-based control of fuel cells:. (1) Regulatory control

    NASA Astrophysics Data System (ADS)

    Golbert, Joshua; Lewin, Daniel R.

    This paper describes a model-based controller for the regulation of a proton exchange membrane (PEM) fuel cell. The model accounts for spatial dependencies of voltage, current, material flows, and temperatures in the fuel channel. Analysis of the process model shows that the effective gain of the process undergoes a sign change in the normal operating range of the fuel cell, indicating that it cannot be stabilized using a linear controller with integral action. Consequently, a nonlinear model-predictive-controller based on a simplified model has been developed, enabling the use of optimal control to satisfy power demands robustly. The models and controller have been realized in the MATLAB and SIMULINK environment. Initial results indicate improved performance and robustness when using model-based control in comparison with that obtained using an adaptive controller.

  19. Phenotypic and functional characteristics of CD39(high) human regulatory B cells (Breg).

    PubMed

    Figueiró, F; Muller, L; Funk, S; Jackson, E K; Battastini, A M O; Whiteside, T L

    2016-02-01

    CD39 and CD73 are key enzymes in the adenosine (ADO) pathway. ADO modulates pathophysiological responses of immune cells, including B cells. It has recently emerged that a subpopulation of ADO-producing CD39(+)CD73(+) B cells has regulatory properties. Here, we define the CD39(high) subset of these cells as the major contributor to the regulatory network operated by human B lymphocytes. Peripheral blood B cells were sorted into CD39(neg), CD39(inter) and CD39(high) subsets. The phenotype, proliferation and IL-10 secretion by these B cells were studied by flow cytometry. 5'-AMP and ADO levels were measured by mass spectrometry. Agonists or antagonists of A1R, A2AR and A3R were used to study ADO-receptor signaling in B cells. Inhibition of effector T-cell (Teff) activation/proliferation by B cells was assessed in co-cultures. Cytokine production was measured by Luminex. Upon in vitro activation and culture of B cells, the subset of CD39(high) B cells increased in frequency (p < 0.001). CD39(high) B cells upregulated CD73 expression, proliferated (approximately 40% of CD39(high) B cells were Ki-67(+) and secreted fold-2 higher IL-10 and ADO levels than CD39(neg) or CD39(inter) B cells. CD39(high) B cells co-cultured with autologous Teff suppressed T-cell activation/proliferation and secreted elevated levels of IL-6 and IL-10. The A1R and A2AR agonists promoted expansion and functions of CD39(high) B cells. CD39 ectonucleotidase is upregulated in a subset of in vitro-activated B cells which utilize ADO and IL-10 to suppress Teff functions. Proliferation and functions of these CD39(high) B cells are regulated by A1R- and A2AR-mediated autocrine signaling.

  20. Treatment of Uveitis by In Situ Administration of Ex Vivo-Activated Polyclonal Regulatory T Cells.

    PubMed

    Grégoire, Sylvie; Terrada, Céline; Martin, Gaelle H; Fourcade, Gwladys; Baeyens, Audrey; Marodon, Gilles; Fisson, Sylvain; Billiard, Fabienne; Lucas, Bruno; Tadayoni, Ramin; Béhar-Cohen, Francine; Levacher, Béatrice; Galy, Anne; LeHoang, Phuc; Klatzmann, David; Bodaghi, Bahram; Salomon, Benoît L

    2016-03-01

    CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell therapy is a promising approach for the treatment of autoimmune diseases. To be effective, Treg cells should be in an activated state in the target tissue. This can be achieved by systemic administration of Ag-specific Treg cells, which are difficult to produce in conditions that can be translated to the clinic. In this paper, we propose an alternative approach consisting of in situ injection of preactivated polyclonal Treg cells that would exert bystander suppression in the target tissue. We show that polyclonal Treg cells suppressed uveitis in mice as efficiently as Ag-specific Treg cells but only when preactivated and administered in the vitreous. Uveitis control was correlated with an increase of IL-10 and a decrease of reactive oxygen species produced by immune cell infiltrates in the eye. Thus, our results reveal a new mechanism of Treg cell-mediated suppression and a new Treg cell therapy approach.

  1. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression.

    PubMed

    Vaeth, Martin; Müller, Gerd; Stauss, Dennis; Dietz, Lena; Klein-Hessling, Stefan; Serfling, Edgar; Lipp, Martin; Berberich, Ingolf; Berberich-Siebelt, Friederike

    2014-03-10

    Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4(+)CXCR5(+) follicular helper T cells (TFH) and inhibited by CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.

  2. Dynamic expression of T-bet and GATA3 by regulatory T cells maintains immune tolerance

    PubMed Central

    Yu, Fang; Sharma, Suveena; Edwards, Julie; Feigenbaum, Lionel; Zhu, Jinfang

    2014-01-01

    Regulatory T (Treg) cells can express the transcription factors T-bet and GATA3 but the function of this expression and whether such cells represent stable subsets is still unknown. By using multiple reporter tools, we show that the expression of T-bet and GATA3 in Treg cells is dynamically influenced by the cytokine environment. Treg cell-specific deletion of either Tbx21 or Gata3 genes singly did not result in loss of Treg cell functions; however, mice with combined deficiency of both genes in Treg cells developed severe autoimmune-like diseases. Loss of Treg cell function was correlated with RORγt transcription factor upregulation and reduced Foxp3 expression. Thus, in the steady state, activated Treg cells transiently upregulate either T-bet or GATA3 to maintain T cell homeostasis. PMID:25501630

  3. Regulatory T cells play a role in T-cell receptor CDR2 peptide regulation of experimental autoimmune encephalomyelitis

    PubMed Central

    Buenafe, Abigail C; Andrew, Shayne; Offner, Halina; Vandenbark, Arthur A

    2012-01-01

    Eliciting T-cell receptor (TCR) -specific responsiveness has been known to provide an effective autoregulatory mechanism for limiting inflammation mediated by T effector cells. Our previous use of TCR peptides derived from the CDR3 regions of a pathogenic TCR effectively reversed ongoing experimental autoimmune encephalomyelitis (EAE) in a humanized TCR transgenic model. In this study, we use the TCR BV8S2 CDR2 peptide in the non-transgenic C57BL/6 EAE model to down-regulate the heterogeneous TCR BV8S2+ MOG-35-55-specific pathogenic T-cell population and demonstrate successful treatment of EAE after disease onset. Suppression of disease was associated with reduced MOG-35-55-specific and non-specific T-cell production of interleukin-17a and interferon-γ in the central nervous system, as well as reduced numbers of CD4+ and Foxp3+ T cells in the central nervous system. With the use of Foxp3-GFP and Foxp3 conditional knockout mice, we demonstrate that the TCR CDR2 peptide treatment effect is dependent on the presence of Foxp3+ regulatory T cells and that regulatory T cell numbers are significantly expanded in the periphery of treated mice. Hence, TCR CDR2 peptide therapy is effective in regulating heterogeneous, pathogenic T-cell populations through the activity of the Foxp3+ regulatory T cell population. PMID:22044096

  4. Regulatory T cells play a role in T-cell receptor CDR2 peptide regulation of experimental autoimmune encephalomyelitis.

    PubMed

    Buenafe, Abigail C; Andrew, Shayne; Offner, Halina; Vandenbark, Arthur A

    2012-02-01

    Eliciting T-cell receptor (TCR) -specific responsiveness has been known to provide an effective autoregulatory mechanism for limiting inflammation mediated by T effector cells. Our previous use of TCR peptides derived from the CDR3 regions of a pathogenic TCR effectively reversed ongoing experimental autoimmune encephalomyelitis (EAE) in a humanized TCR transgenic model. In this study, we use the TCR BV8S2 CDR2 peptide in the non-transgenic C57BL/6 EAE model to down-regulate the heterogeneous TCR BV8S2(+)  MOG-35-55-specific pathogenic T-cell population and demonstrate successful treatment of EAE after disease onset. Suppression of disease was associated with reduced MOG-35-55-specific and non-specific T-cell production of interleukin-17a and interferon-γ in the central nervous system, as well as reduced numbers of CD4(+) and Foxp3(+) T cells in the central nervous system. With the use of Foxp3-GFP and Foxp3 conditional knockout mice, we demonstrate that the TCR CDR2 peptide treatment effect is dependent on the presence of Foxp3(+) regulatory T cells and that regulatory T cell numbers are significantly expanded in the periphery of treated mice. Hence, TCR CDR2 peptide therapy is effective in regulating heterogeneous, pathogenic T-cell populations through the activity of the Foxp3(+) regulatory T cell population.

  5. Blood B Cell and Regulatory Subset Content in Multiple Sclerosis Patients

    PubMed Central

    Habib, Jakob; Deng, Jiusheng; Lava, Neil; Tyor, William; Galipeau, Jacques

    2015-01-01

    Objective B cell targeted therapies have been effective in slowing multiple sclerosis (MS) disease progression suggesting a direct causal link for this lymphoid subset. A small subset of B cells with regulative properties (Bregs) exists in peripheral blood, and induction of Bregs ameliorates experimental autoimmune encephalomyelitis (EAE), the murine model for MS. Therefore the frequency of B cell subsets and regulatory B cells in particular in peripheral blood of MS patients is of interest. Methods The phenotype and frequency of B cell subsets in peripheral blood from 32 MS patients and 34 healthy controls (HC) were examined using flow cytometry. Results We found that there is an increase in CD19+ cell number in MS 1347 ± 159 cells/μL, (average ± SEM) compared to HC, 935 ± 129 cells/μL and no apparent deficiency in B-cells with a regulatory phenotype. In addition, we observed a loss of correlation between CD19+ B cells and total lymphocyte count in MS. Conclusion These findings suggest altered blood B-cell homeostasis in MS patients. PMID:26137596

  6. FoxP3+ regulatory T cells are not important for rotavirus clearance or the early antibody response to rotavirus.

    PubMed

    Miller, Amber D; Blutt, Sarah E; Conner, Margaret E

    2014-01-01

    Regulatory T cells produce TGF-β that contributes to IgA induction by intestinal commensal bacteria but their importance in IgA responses to pathogens has not been determined. Immunity against the enteropathogen, rotavirus, is dependent on intestinal IgA, but whether FoxP3(+) regulatory T cells contribute to this IgA is unknown. Infection with rotavirus increased the numbers of intestinal FoxP3(+) regulatory T cells. Depletion of FoxP3(+) regulatory T cells altered leukocyte activation but did not significantly alter rotavirus clearance or specific antibody levels. These data suggest FoxP3(+) regulatory T cells are not critical for the early antibody response to rotavirus infection.

  7. Adoptive transfer of hepatic stellate cells ameliorates liver ischemia reperfusion injury through enriching regulatory T cells.

    PubMed

    Feng, Min; Wang, Quanrongzi; Wang, Hao; Wang, Meng; Guan, Wenxian; Lu, Ling

    2014-04-01

    Our previous study indicated that adoptive transferred regulatory T cells (Tregs) attenuated liver ischemia reperfusion injury (IRI). Recent studies demonstrated that hepatic stellate cells (HSCs) were producers of induced Tregs (iTregs) via retinoic acid. This study aimed to investigate the role of adoptive transferred HSCs in liver IRI. Mice were treated with gradient doses of HSCs before surgery at 24h or 72h. The levels of serum aminotransferases and hepatic cytokines were evaluated after reperfusion. Meanwhile, hepatic Tregs and their subsets were analyzed by flow cytometry. We found that adoptive transferred HSCs attenuated liver IRI. Administration of HSCs expanded the number of hepatic iTregs and natural Tregs (nTregs) after reperfusion. In addition, we found that the increased Tregs were almost Helios-Tregs before surgery. These Helios-Tregs were considered as iTregs and protected liver from IRI partially. Furthermore, adoptive transferred HSCs stabilized nTregs and prevented nTregs from reducing after reperfusion. These nTregs also attenuated liver IRI partially. Depletion of Tregs abolished the protective effect of HSCs. Thus, we conclude that adoptive transferred HSCs ameliorate liver IRI in Tregs-dependent manner.

  8. Azacytidine Treatment Inhibits the Progression of Herpes Stromal Keratitis by Enhancing Regulatory T Cell Function.

    PubMed

    Varanasi, Siva Karthik; Reddy, Pradeep B J; Bhela, Siddheshvar; Jaggi, Ujjaldeep; Gimenez, Fernanda; Rouse, Barry T

    2017-04-01

    Ocular infection with herpes simplex virus 1 (HSV-1) sets off an inflammatory reaction in the cornea which leads to both virus clearance and chronic lesions that are orchestrated by CD4 T cells. Approaches that enhance the function of regulatory T cells (Treg) and dampen effector T cells can be effective to limit stromal keratitis (SK) lesion severity. In this report, we explore the novel approach of inhibiting DNA methyltransferase activity using 5-azacytidine (Aza; a cytosine analog) to limit HSV-1-induced ocular lesions. We show that therapy begun after infection when virus was no longer actively replicating resulted in a pronounced reduction in lesion severity, with markedly diminished numbers of T cells and nonlymphoid inflammatory cells, along with reduced cytokine mediators. The remaining inflammatory reactions had a change in the ratio of CD4 Foxp3(+) Treg to effector Th1 CD4 T cells in ocular lesions and lymphoid tissues, with Treg becoming predominant over the effectors. In addition, compared to those from control mice, Treg from Aza-treated mice showed more suppressor activity in vitro and expressed higher levels of activation molecules. Additionally, cells induced in vitro in the presence of Aza showed epigenetic differences in the Treg-specific demethylated region (TSDR) of Foxp3 and were more stable when exposed to inflammatory cytokines. Our results show that therapy with Aza is an effective means of controlling a virus-induced inflammatory reaction and may act mainly by the effects on Treg.IMPORTANCE HSV-1 infection has been shown to initiate an inflammatory reaction in the cornea that leads to tissue damage and loss of vision. The inflammatory reaction is orchestrated by gamma interferon (IFN-γ)-secreting Th1 cells, and regulatory T cells play a protective role. Hence, novel therapeutics that can rebalance the ratio of regulatory T cells to effectors are a relevant issue. This study opens up a new avenue in treating HSV-induced SK lesions by

  9. Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones.

    PubMed

    Wolf, Kyle J; Emerson, Ryan O; Pingel, Jeanette; Buller, R Mark; DiPaolo, Richard J

    2016-01-01

    Results from studies comparing the diversity and specificity of the TCR repertoires expressed by conventional (Tconv) and regulatory (Treg) CD4+ T cell have varied depending on the experimental system employed. We developed a new model in which T cells express a single fixed TCRα chain, randomly rearranged endogenous TCRβ chains, and a Foxp3-GFP reporter. We purified CD4+Foxp3- and CD4+Foxp3+ cells, then performed biased controlled multiplex PCR and high throughput sequencing of endogenous TCRβ chains. We identified >7,000 different TCRβ sequences in the periphery of 5 individual mice. On average, ~12% of TCR sequences were expressed by both conventional and regulatory populations within individual mice. The CD4+ T cells that expressed shared TCR sequences were present at higher frequencies compared to T cells expressing non-shared TCRs. Furthermore, nearly all (>90%) of the TCR sequences that were shared within mice were identical at the DNA sequence level, indicating that conventional and regulatory T cells that express shared TCRs are derived from common clones. Analysis of TCR repertoire overlap in the thymus reveals that a large proportion of Tconv and Treg sharing observed in the periphery is due to clonal expansion in the thymus. Together these data show that there are a limited number of TCR sequences shared between Tconv and Tregs. Also, Tconv and Tregs sharing identical TCRs are found at relatively high frequencies and are derived from common progenitors, of which a large portion are generated in the thymus.

  10. PROGRESSION OF REGULATORY GENE EXPRESSION STATES IN FETAL AND ADULT PRO-T CELL DEVELOPMENT

    PubMed Central

    David-Fung, Elizabeth-Sharon; Yui, Mary A.; Morales, Marissa; Wang, Hua; Taghon, Tom; Diamond, Rochelle A.; Rothenberg, Ellen V.

    2014-01-01

    Precursors entering the T-cell developmental pathway traverse a progression of states characterized by distinctive patterns of gene expression. Of particular interest are regulatory genes, which ultimately control the dwell time of cells in each state and establish the mechanisms that propel them forward to subsequent states. Under particular genetic and developmental circumstances, the transitions between these states occur with different timing, and environmental feedbacks may shift the steady-state accumulations of cells in each state. The fetal transit through pro-T cell stages is faster than in the adult, and subject to somewhat different genetic requirements. To explore causes of such variation, this review presents previously unpublished data on differentiation gene activation in pro-T cells of pre-TCR deficient mutant mice, and a quantitative comparison of the profiles of transcription factor gene expression in pro-T cell subsets of fetal and adult wildtype mice. Against a background of consistent gene expression, several regulatory genes show marked differences between fetal and adult expression profiles, including those encoding two bHLH antagonist Id factors, the Ets family factor SpiB, and the Notch target gene Deltex1. The results also reveal global differences in regulatory alterations triggered by the first TCR-dependent selection events in fetal and adult thymopoiesis. PMID:16448545

  11. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.

    PubMed

    Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian Kui; Ince, Jon; Alexander, Stephen I; Harris, David C H

    2010-06-01

    IL-10/TGF-beta-modified macrophages, a subset of activated macrophages, produce anti-inflammatory cytokines, suggesting that they may protect against inflammation-mediated injury. Here, macrophages modified ex vivo by IL-10/TGF-beta (IL-10/TGF-beta Mu2) significantly attenuated renal inflammation, structural injury, and functional decline in murine adriamycin nephrosis (AN). These cells deactivated effector macrophages and inhibited CD4+ T cell proliferation. IL-10/TGF-beta Mu2 expressed high levels of the regulatory co-stimulatory molecule B7-H4, induced regulatory T cells from CD4+CD25- T cells in vitro, and increased the number of regulatory T cells in lymph nodes draining the kidneys in AN. The phenotype of IL-10/TGF-beta Mu2 did not switch to that of effector macrophages in the inflamed kidney, and these cells did not promote fibrosis. Taken together, these data demonstrate that IL-10/TGF-beta-modified macrophages effectively protect against renal injury in AN and may become part of a therapeutic strategy for chronic inflammatory disease.

  12. T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    PubMed Central

    Neill, Daniel R.; Fernandes, Vitor E.; Wisby, Laura; Haynes, Andrew R.; Ferreira, Daniela M.; Laher, Ameera; Strickland, Natalie; Gordon, Stephen B.; Denny, Paul; Kadioglu, Aras; Andrew, Peter W.

    2012-01-01

    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design. PMID:22563306

  13. The Regulatory Effects of Long Noncoding RNA-ANCR on Dental Tissue-Derived Stem Cells

    PubMed Central

    Jia, Qian; Chen, Xiaolin; Jiang, Wenkai; Wang, Wei

    2016-01-01

    Long noncoding RNAs (lncRNA) have been recognized as important regulators in diverse biological processes, such as transcriptional regulation, stem cell proliferation, and differentiation. Previous study has demonstrated that lncRNA-ANCR (antidifferentiation ncRNA) plays a key role in regulating the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). However, little is known about the role of ANCR in regulating other types of dental tissue-derived stem cells (DTSCs) behaviours (including proliferation and multiple-potential of differentiation). In this study, we investigated the regulatory effects of lncRNA-ANCR on the proliferation and differentiation (including osteogenic, adipogenic, and neurogenic differentiation) of DTSCs, including dental pulp stem cells (DPSCs), PDLSCs, and stem cells from the apical papilla (SCAP) by downregulation of lncRNA-ANCR. We found that downregulation of ANCR exerted little effect on proliferation of DPSCs and SCAP but promoted the osteogenic, adipogenic, and neurogenic differentiation of DTSCs. These data provide an insight into the regulatory effects of long noncoding RNA-ANCR on DTSCs and indicate that ANCR is a very important regulatory factor in stem cell differentiation. PMID:27648074

  14. A Lactobacillus rhamnosus Strain Induces a Heme Oxygenase Dependent Increase in Foxp3+ Regulatory T Cells

    PubMed Central

    Karimi, Khalil; Kandiah, Nalaayini; Chau, Jessie; Bienenstock, John; Forsythe, Paul

    2012-01-01

    We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells. PMID:23077634

  15. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28− regulatory T cells

    PubMed Central

    Liu, Qiuli; Zheng, Haiqing; Chen, Xiaoyong; Peng, Yanwen; Huang, Weijun; Li, Xiaobo; Li, Gang; Xia, Wenjie; Sun, Qiquan; Xiang, Andy Peng

    2015-01-01

    One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8+CD28− Treg cells and found that the MSCs could not only increase the proportion of CD8+CD28− T cells, but also enhance CD8+CD28−T cells' ability of hampering naive CD4+ T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4+ T cells and inducing the apoptosis of activated CD4+ T cells. Mechanistically, the MSCs affected the functions of the CD8+CD28− T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8+CD28+ T cells to CD8+CD28− T cells, but did increase the proportion of CD8+CD28− T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8+CD28− Treg cells, shedding new light on MSCs-mediated immune regulation. PMID:25482073

  16. Disorders of regulatory T cell function in patients with the Wiskott-Aldrich syndrome.

    PubMed Central

    Zabay, J M; Fontán, G; Campos, A; García-Rodriguez, M C; Pascual-Salcedo, D; Bootello, A; de la Concha, E G

    1984-01-01

    Three patients with the Wiskott-Aldrich syndrome were studied. One of them had no past history of relevant infections. The other two presented different degrees of humoral and cellular immunodeficiency and their T cells in vitro showed a defect in regulatory activity of Ig production in PWM stimulated cultures. This defect was not observed in the third patient. All three had normal numbers of B cells, producing normal amounts of Ig in vitro when co-cultured with normal T cells. It is suggested that the immunoregulatory T cell abnormality might play an important role in the pathogenesis of the humoral immunodeficiency. PMID:6609033

  17. Cis-regulatory mechanisms governing stem and progenitor cell transitions

    PubMed Central

    Johnson, Kirby D.; Kong, Guangyao; Gao, Xin; Chang, Yuan-I; Hewitt, Kyle J.; Sanalkumar, Rajendran; Prathibha, Rajalekshmi; Ranheim, Erik A.; Dewey, Colin N.; Zhang, Jing; Bresnick, Emery H.

    2015-01-01

    Cis-element encyclopedias provide information on phenotypic diversity and disease mechanisms. Although cis-element polymorphisms and mutations are instructive, deciphering function remains challenging. Mutation of an intronic GATA motif (+9.5) in GATA2, encoding a master regulator of hematopoiesis, underlies an immunodeficiency associated with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Whereas an inversion relocalizes another GATA2 cis-element (−77) to the proto-oncogene EVI1, inducing EVI1 expression and AML, whether this reflects ectopic or physiological activity is unknown. We describe a mouse strain that decouples −77 function from proto-oncogene deregulation. The −77−/− mice exhibited a novel phenotypic constellation including late embryonic lethality and anemia. The −77 established a vital sector of the myeloid progenitor transcriptome, conferring multipotentiality. Unlike the +9.5−/− embryos, hematopoietic stem cell genesis was unaffected in −77−/− embryos. These results illustrate a paradigm in which cis-elements in a locus differentially control stem and progenitor cell transitions, and therefore the individual cis-element alterations cause unique and overlapping disease phenotypes. PMID:26601269

  18. Assessment of Regulatory T Cells in Childhood Immune Thrombocytopenic Purpura

    PubMed Central

    Mazzucco, Karina L. M.; Junior, Lauro M.; Lemos, Natália E.; Wieck, Andréa; Pezzi, Annelise; Laureano, Alvaro M.; Amorin, Bruna; Valim, Vanessa; Silla, Lucia; Daudt, Liane E.; Marostica, Paulo J. C.

    2013-01-01

    This study had the objective to assess the frequency of Tregs in children newly diagnosed with ITP and ascertain whether an association exists between Tregs and platelet counts, by means of a comparison with healthy controls. This case-control study included 19 patients newly diagnosed with ITP—whose blood samples were collected at four points in time: before any therapy and 1, 3, and 6 months after diagnosis—and 19 healthy controls. Tregs (CD4+ CD25+Foxp3 T cells) were evaluated by flow cytometry. There was a statistically significant difference in platelet count between the case and control groups. There were no significant differences in Treg counts between cases and controls at any point during the course of the study and no difference in Treg counts between the chronic and nonchronic groups and no significant correlation between Tregs and platelet counts in the case and control groups. The findings of this study did not show any statistically significant correlation between Tregs and number of platelets in the case and control groups. Treg cells did not play a role in the regulation of autoimmunity in children with ITP. PMID:24298390

  19. PD-1 marks dysfunctional regulatory T cells in malignant gliomas

    PubMed Central

    Lowther, Daniel E.; Goods, Brittany A.; Lucca, Liliana E.; Lerner, Benjamin A.; Raddassi, Khadir; van Dijk, David; Hernandez, Amanda L.; Duan, Xiangguo; Gunel, Murat; Coric, Vlad; Krishnaswamy, Smita; Hafler, David A.

    2016-01-01

    Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing, and cytometry by time of flight (CyTOF). In both patients with GBM and healthy subjects, circulating PD-1hi Tregs displayed reduced suppression of CD4+ effector T cells, production of IFN-γ, and molecular signatures of exhaustion. Transcriptional profiling of tumor-resident Tregs revealed that several genes coexpressed with PD-1 and associated with IFN-γ production and exhaustion as well as enrichment in exhaustion signatures compared with circulating PD-1hi Tregs. CyTOF analysis of circulating and tumor-infiltrating Tregs from patients with GBM treated with PD-1-blocking antibodies revealed that treatment shifts the profile of circulating Tregs toward a more exhausted phenotype reminiscent of that of tumor-infiltrating Tregs, further increasing IFN-γ production. Thus, high PD-1 expression on human Tregs identifies dysfunctional, exhausted Tregs secreting IFN-γ that exist in healthy individuals and are enriched in tumor infiltrates, possibly losing function as they attempt to modulate the antitumoral immune responses. PMID:27182555

  20. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    SciTech Connect

    Bartley, Laura; Wu, Y.; Zhu, L.; Brummer, E. C.; Saha, M.

    2016-05-31

    markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other

  1. Harnessing Regulatory T Cells for the Treatment of Inflammatory Bowel Disease

    PubMed Central

    Geem, Duke; Harusato, Akihito; Flannigan, Kyle

    2015-01-01

    Abstract: Regulatory CD4+ T (Treg) cells are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. The immunoregulatory function of Treg cells is especially important in the intestine where the mucosa is exposed to a diverse array of foreign antigens—including those derived from food and commensal bacteria. Treg cells are enriched in the intestinal lamina propria and provide a crucial function in promoting tolerance to enteric antigens while modulating tissue inflammation. Correspondingly, Treg cell dysfunction is associated with a breakdown in intestinal tolerance and the induction of aberrant immune responses that may contribute to the pathogenesis of inflammatory bowel disease. This review will provide a brief overview of Treg cell biology with a focus on Foxp3+ Treg and type 1 regulatory (Tr1) cells and summarize the evidence for defective Treg cells in experimental and human inflammatory bowel disease. The potential application of Treg cells as a treatment for inflammatory bowel disease will also be discussed in the context of Treg infusion therapy and the in vivo induction/expansion of intestinal Treg cells. PMID:25793328

  2. Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells

    PubMed Central

    2012-01-01

    Background Current experimental evidence indicates that functionally related genes show coordinated expression in order to perform their cellular functions. In this way, the cell transcriptional machinery can respond optimally to internal or external stimuli. This provides a research opportunity to identify and study co-expressed gene modules whose transcription is controlled by shared gene regulatory networks. Results We developed and integrated a set of computational methods of differential gene expression analysis, gene clustering, gene network inference, gene function prediction, and DNA motif identification to automatically identify differentially co-expressed gene modules, reconstruct their regulatory networks, and validate their correctness. We tested the methods using microarray data derived from soybean cells grown under various stress conditions. Our methods were able to identify 42 coherent gene modules within which average gene expression correlation coefficients are greater than 0.8 and reconstruct their putative regulatory networks. A total of 32 modules and their regulatory networks were further validated by the coherence of predicted gene functions and the consistency of putative transcription factor binding motifs. Approximately half of the 32 modules were partially supported by the literature, which demonstrates that the bioinformatic methods used can help elucidate the molecular responses of soybean cells upon various environmental stresses. Conclusions The bioinformatics methods and genome-wide data sources for gene expression, clustering, regulation, and function analysis were integrated seamlessly into one modular protocol to systematically analyze and infer modules and networks from only differential expression genes in soybean cells grown under stress conditions. Our approach appears to effectively reduce the complexity of the problem, and is sufficiently robust and accurate to generate a rather complete and detailed view of putative soybean

  3. Putative cis-regulatory elements in genes highly expressed in rice sperm cells

    PubMed Central

    2011-01-01

    Background The male germ line in flowering plants is initiated within developing pollen grains via asymmetric division. The smaller cell then becomes totally encased within a much larger vegetative cell, forming a unique "cell within a cell structure". The generative cell subsequently divides to give rise to two non-motile diminutive sperm cells, which take part in double fertilization and lead to the seed set. Sperm cells are difficult to investigate because of their presence within the confines of the larger vegetative cell. However, recently developed techniques for the isolation of rice sperm cells and the fully annotated rice genome sequence have allowed for the characterization of the transcriptional repertoire of sperm cells. Microarray gene expression data has identified a subset of rice genes that show unique or highly preferential expression in sperm cells. This information has led to the identification of cis-regulatory elements (CREs), which are conserved in sperm-expressed genes and are putatively associated with the control of cell-specific expression. Findings We aimed to identify the CREs associated with rice sperm cell-specific gene expression data using in silico prediction tools. We analyzed 1-kb upstream regions of the top 40 sperm cell co-expressed genes for over-represented conserved and novel motifs. Analysis of upstream regions with the SIGNALSCAN program with the PLACE database, MEME and the Mclip tool helped to find combinatorial sets of known transcriptional factor-binding sites along with two novel motifs putatively associated with the co-expression of sperm cell-specific genes. Conclusions Our data shows the occurrence of novel motifs, which are putative CREs and are likely targets of transcriptional factors regulating sperm cell gene expression. These motifs can be used to design the experimental verification of regulatory elements and the identification of transcriptional factors that regulate sperm cell-specific gene expression. PMID

  4. Adaptive human regulatory T cells: myth or reality?

    PubMed Central

    Chatenoud, Lucienne; Bach, Jean-François

    2006-01-01

    It is now well established that a distinct subset of T lymphocytes is essential for downregulating immune responses to both endogenous (self) and exogenous antigens. These Tregs are CD4+ and express high levels of CD25 (the α chain of the IL-2 receptor) and the transcription factor Foxp3. The mechanisms determining the lifespan, homeostasis, and in vivo generation of these Tregs are still ill defined. A study by Vukmanovic-Stejic et al. in this issue of the JCI shows that in humans, Tregs are present throughout life but that despite their high throughput, they are short lived (see the related article beginning on page 2423). It is thus unlikely that all CD4+CD25hiFoxp3+ Tregs are generated as a separate lineage in the thymus. The authors propose that during adulthood, Tregs essentially emerge at the periphery from the memory T cell pool. PMID:16955134

  5. Molecular Determinants of Regulatory T Cell Development: The Essential Roles of Epigenetic Changes

    PubMed Central

    Kitagawa, Yohko; Ohkura, Naganari; Sakaguchi, Shimon

    2013-01-01

    Regulatory T (Treg) cells constitute a distinct T cell subset, which plays a key role in immune tolerance and homeostasis. The transcription factor Foxp3 controls a substantial part of Treg cell development and function. Yet its expression alone is insufficient for conferring developmental and functional characteristics of Treg cells. There is accumulating evidence that concurrent induction of Treg-specific epigenetic changes and Foxp3 expression is crucial for lineage specification and functional stability of Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, in particular, the molecular basis of how a population of developing T cells is driven to the Treg cell lineage and how its function is stably maintained. PMID:23675373

  6. Molecular determinants of regulatory T cell development: the essential roles of epigenetic changes.

    PubMed

    Kitagawa, Yohko; Ohkura, Naganari; Sakaguchi, Shimon

    2013-01-01

    Regulatory T (Treg) cells constitute a distinct T cell subset, which plays a key role in immune tolerance and homeostasis. The transcription factor Foxp3 controls a substantial part of Treg cell development and function. Yet its expression alone is insufficient for conferring developmental and functional characteristics of Treg cells. There is accumulating evidence that concurrent induction of Treg-specific epigenetic changes and Foxp3 expression is crucial for lineage specification and functional stability of Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, in particular, the molecular basis of how a population of developing T cells is driven to the Treg cell lineage and how its function is stably maintained.

  7. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  8. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state.

    PubMed

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-04-09

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.

  9. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  10. Global regulatory developments for clinical stem cell research: diversification and challenges to collaborations.

    PubMed

    Rosemann, Achim; Bortz, Gabriela; Vasen, Federico; Sleeboom-Faulkner, Margaret

    2016-10-01

    In this article, we explore regulatory developments in stem cell medicine in seven jurisdictions: Japan, China, India, Argentina, Brazil, the USA and the EU. We will show that the research methods, ethical standards and approval procedures for the market use of clinical stem cell interventions are undergoing an important process of global diversification. We will discuss the implications of this process for international harmonization and the conduct of multicountry clinical research collaborations. It will become clear that the increasing heterogeneity of research standards and regulations in the stem cell field presents a significant challenge to international clinical trial partnerships, especially with countries that diverge from the regulatory models that have been developed in the USA and the EU.

  11. Bone marrow-resident NK cells prime monocytes for regulatory function during infection

    PubMed Central

    Askenase, Michael H.; Han, Seong-Ji; Byrd, Allyson L.; da Fonseca, Denise Morais; Bouladoux, Nicolas; Wilhelm, Christoph; Konkel, Joanne E.; Hand, Timothy W.; Lacerda-Queiroz, Norinne; Su, Xin-Zhuan; Trinchieri, Giorgio; Grainger, John R.; Belkaid, Yasmine

    2015-01-01

    SUMMARY Tissue-infiltrating Ly6Chi monocytes play diverse roles in immunity, ranging from pathogen killing to immune regulation. How and where this diversity of function is imposed remains poorly understood. Here we show that during acute gastrointestinal infection, priming of monocytes for regulatory function preceded systemic inflammation and was initiated prior to bone marrow egress. Notably, natural killer (NK) cell-derived IFN-γ promoted a regulatory program in monocyte progenitors during development. Early bone marrow NK cell activation was controlled by systemic interleukin-12 (IL-12) produced by Batf3-dependent dendritic cells (DC) in the mucosal-associated lymphoid tissue (MALT). This work challenges the paradigm that monocyte function is dominantly imposed by local signals following tissue recruitment, and instead proposes a sequential model of differentiation in which monocytes are pre-emptively educated during development in the bone marrow to promote their tissue-specific function. PMID:26070484

  12. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics.

    PubMed

    Alahgholi-Hajibehzad, Mahdi; Kasapoglu, Pinar; Jafari, Reza; Rezaei, Nima

    2015-01-01

    T regulatory cells (Tregs) are crucial for the development of self-tolerance and are the major focus in many studies interpreting the pathogenesis of myasthenia gravis (MG), an autoimmune-based disease. In normal conditions, Tregs regulate the immune responses, while impaired regulatory function of these cells can lead to autoimmunity. Recent studies have confirmed that the thymic and peripheral blood CD4(+)CD25(+) Tregs of MG are defective in functions and/or in numbers, which are associated with disease severity; approaches to correct the defects of these Tregs may be promising in the treatment of MG. This review discusses recent studies on characteristics, quantitative and qualitative changes of Tregs and possible mechanisms that are involved in the impairment of these cells in MG pathogenesis. In addition, new approaches inducing Treg generation that are currently being investigated as therapies for MG, will be discussed as well as proposed approaches for future therapies.

  13. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    PubMed

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  14. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer.

    PubMed

    Guzman-Genuino, Ruth Marian; Diener, Kerrilyn R

    2017-01-01

    The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.

  15. Effects of royal jelly supplementation on regulatory T cells in children with SLE

    PubMed Central

    Zahran, Asmaa M.; Elsayh, Khalid I.; Saad, Khaled; Eloseily, Esraa M.A.; Osman, Naglaa S.; Alblihed, Mohamd A.; Badr, Gamal; Mahmoud, Mohamed H.

    2016-01-01

    Background and objective To our knowledge, no previous studies have focused on the immunomodulatory effects of fresh royal jelly (RJ) administration on systemic lupus erythematosus (SLE) in humans. Our aim was to study the effect of fresh RJ administration on the disease course in children with SLE with some immunological markers (CD4+ and CD8+ regulatory T cells and T lymphocytes apoptosis). Methods This was an open-label study in which 20 SLE children received 2 g of freshly prepared RJ daily, for 12 weeks. Results The percentages of CD4+ CD25+high FOXP3+cells (CD4+ regulatory T cells) and CD8+CD25+high FOXP3+cells (CD8+ regulatory T cells) were significantly increased after RJ treatment when compared with baseline values. Apoptotic CD4 T lymphocytes were significantly decreased after RJ therapy when compared with baseline values and the control group. Conclusion This is the first human study on the effect of RJ supplementation in children with SLE. Our results showed improvements with 3-month RJ treatment with regard to the clinical severity score and laboratory markers for the disease. At this stage, it is a single study with a small number of patients, and a great deal of additional wide-scale randomized controlled studies are needed to critically validate the efficacy of RJ in SLE. PMID:27887663

  16. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer

    PubMed Central

    Guzman-Genuino, Ruth Marian; Diener, Kerrilyn R.

    2017-01-01

    The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields—mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg–Treg–tolerogenic DC interface essential for the induction of maternal immune tolerance. PMID:28261223

  17. Increased expression of regulatory Tr1 cells in recurrent hepatitis C after liver transplantation.

    PubMed

    Carpentier, A; Conti, F; Stenard, F; Aoudjehane, L; Miroux, C; Podevin, P; Morales, O; Chouzenoux, S; Scatton, O; Groux, H; Auriault, C; Calmus, Y; Pancre, V; Delhem, N

    2009-09-01

    Immune response failure during HCV infection has been associated with the activity of regulatory T cells. Hepatitis C-related cirrhosis is the main reason for liver transplantation. However, 80% of transplanted patients present an accelerated recurrence of the disease. This study assessed the involvement of regulatory T-cell subsets (CD4+CD25+ cells: 'Treg' and CD49b+CD18+ cells: 'T regulatory-1' cells), in the recurrence of HCV after liver transplantation, using transcriptomic analysis, ELISA assays on serum samples and immunohistochemistry on liver biopsies from liver recipients 1 and 5 years after transplantation. Three groups of patients were included: stable HCV-negative recipients and those with mild and severe hepatitis C recurrence. At 5 years, Treg markers were overexpressed in all HCV+ recipients. By contrast, Tr1 markers were only overexpressed in patients with severe recurrence. At 1 year, a trend toward the overexpression of Tr1 was noted in patients evolving toward severe recurrence. IL-10 production, a characteristic of the Tr1 subset, was enhanced in severe recurrence at both 1 and 5 years. These results suggest that Tr1 are enhanced during severe HCV recurrence after liver transplantation and could be predictive of HCV recurrence. High levels of IL-10 at 1 year could be predictive of severe recurrence, and high IL-10 producers might warrant more intensive management.

  18. KLRG1 impairs regulatory T-cell competitive fitness in the gut.

    PubMed

    Meinicke, Holger; Bremser, Anna; Brack, Maria; Schrenk, Klaudia; Pircher, Hanspeter; Izcue, Ana

    2017-09-01

    Immune homeostasis requires the tight, tissue-specific control of the different CD4(+) Foxp3(+) regulatory T (Treg) cell populations. The cadherin-binding inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) is expressed by a subpopulation of Treg cells with GATA3(+) effector phenotype. Although such Treg cells are important for the immune balance, especially in the gut, the role of KLRG1 in Treg cells has not been assessed. Using KLRG1 knockout mice, we found that KLRG1 deficiency does not affect Treg cell frequencies in spleen, mesenteric lymph nodes or intestine, or frequencies of GATA3(+) Treg cells in the gut. KLRG1-deficient Treg cells were also protective in a T-cell transfer model of colitis. Hence, KLRG1 is not essential for the development or activity of the general Treg cell population. We then checked the effects of KLRG1 on Treg cell activation. In line with KLRG1's reported inhibitory activity, in vitro KLRG1 cross-linking dampened the Treg cell T-cell receptor response. Consistently, lack of KLRG1 on Treg cells conferred on them a competitive advantage in the gut, but not in lymphoid organs. Hence, although absence of KLRG1 is not enough to increase intestinal Treg cells in KLRG1 knockout mice, KLRG1 ligation reduces T-cell receptor signals and the competitive fitness of individual Treg cells in the intestine. © 2017 John Wiley & Sons Ltd.

  19. FK506 BINDING PROTEIN 12 DEFICIENCY IN ENDOTHELIAL AND HEMATOPOIETIC CELLS DECREASES REGULATORY T CELLS AND CAUSES HYPERTENSION

    PubMed Central

    Chiasson, Valorie L.; Talreja, Deepa; Young, Kristina J.; Chatterjee, Piyali; Banes-Berceli, Amy K.; Mitchell, Brett M.

    2011-01-01

    Patients treated with the immunosuppressive drug tacrolimus (FK506), which binds FK506 Binding Protein 12 (FKBP12) then inhibits the calcium-dependent phosphatase calcineurin, exhibit decreased regulatory T cells, endothelial dysfunction, and hypertension; however the mechanisms and whether altered T cell polarization play a role are unknown. Tacrolimus treatment of mice for 1 week dose-dependently decreased CD4+/FoxP3+ (regulatory T cells) and increased CD4+/IL-17+ (T helper 17) cells in the spleen, and caused endothelial dysfunction and hypertension. To determine the mechanisms, we crossed floxed FKBP12 mice with Tie2-Cre mice to generate offspring lacking FKBP12 in endothelial and hematopoietic cells only (FKBP12EC KO). Given FKBP12’s role in inhibiting TGF-β receptor activation, Tie2-Cre-mediated deletion of FKBP12 increased TGF-β receptor activation and SMAD2/3 signaling. FKBP12EC KO mice exhibited increased vascular expression of genes and proteins related to endothelial cell activation and inflammation. Serum levels of the pro-inflammatory cytokines IL-2, IL-6, IFNγ, IL-17a, IL-21, and IL-23 were increased significantly suggesting a Th17 cell-mediated inflammatory state. Flow cytometry studies confirmed this as splenocyte levels of CD4+/IL-17+ cells were increased significantly while CD4+/FoxP3+ cells were decreased in FKBP12EC KO mice. Furthermore, spleens from FKBP12EC KO mice showed increased STAT3 activation, involved in Th17 cell induction, and decreased STAT5 activation, involved in regulatory T cell induction. FKBP12EC KO mice also exhibited endothelial dysfunction and hypertension. These data suggest that tacrolimus, through its activation of TGF-β receptors in endothelial and hematopoietic cells, may cause endothelial dysfunction and hypertension by activating endothelial cells, reducing Tregs, and increasing Th17 cell polarization and inflammation. PMID:21518963

  20. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses

    PubMed Central

    Joshi, Nikhil S.; Akama-Garren, Elliot H.; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P.; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R.; Farago, Anna F.; Robbins, Rebecca; Crowley, Denise M.; Bronson, Roderick T.; Jacks, Tyler

    2016-01-01

    SUMMARY Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically-engineered mouse lung adenocarcinoma model and found Treg cells suppress anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLS). TA-TLS have been described in human lung cancers, but their function remains to be determined. TLS in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLS upon Treg cell depletion, leading to tumor destruction. Thus, we propose Treg cells in TA-TLS can inhibit endogenous immune responses against tumors, and targeting these cells may provide therapeutic benefit for cancer patients. PMID:26341400

  1. Regulatory T Cells Ameliorate Intrauterine Growth Retardation in a Transgenic Rat Model for Preeclampsia

    PubMed Central

    Przybyl, Lukasz; Ibrahim, Tarek; Haase, Nadine; Golic, Michaela; Rugor, Julianna; Luft, Friedrich C.; Bendix, Ivo; Serdar, Meray; Wallukat, Gerd; Staff, Anne Cathrine; Müller, Dominik N.; Hünig, Thomas; Felderhoff-Müser, Ursula; Herse, Florian; LaMarca, Babette; Dechend, Ralf

    2016-01-01

    Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49±2.09% of CD4-positive T cells to 23.50±3.05% and from 3.85±1.45% to 23.27±7.64%, respectively. Blood pressure and albuminuria (30.6±15.1 versus 14.6±5.5 mg/d) were similar in the superagonist or control antibody–treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66±0.03 versus 2.37±0.05 g) and in the treatment protocol (3.04±0.04 versus 2.54±0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation. PMID:25847949

  2. Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia.

    PubMed

    Przybyl, Lukasz; Ibrahim, Tarek; Haase, Nadine; Golic, Michaela; Rugor, Julianna; Luft, Friedrich C; Bendix, Ivo; Serdar, Meray; Wallukat, Gerd; Staff, Anne Cathrine; Müller, Dominik N; Hünig, Thomas; Felderhoff-Müser, Ursula; Herse, Florian; LaMarca, Babette; Dechend, Ralf

    2015-06-01

    Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49±2.09% of CD4-positive T cells to 23.50±3.05% and from 3.85±1.45% to 23.27±7.64%, respectively. Blood pressure and albuminuria (30.6±15.1 versus 14.6±5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66±0.03 versus 2.37±0.05 g) and in the treatment protocol (3.04±0.04 versus 2.54±0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation. © 2015 American Heart Association, Inc.

  3. Arthritis protective regulatory potential of self–heat shock protein cross-reactive T cells

    PubMed Central

    van Eden, Willem; Wendling, Uwe; Paul, Liesbeth; Prakken, Berent; van Kooten, Peter; van der Zee, Ruurd

    2000-01-01

    Immunization with heat shock proteins has protective effects in models of induced arthritis. Analysis has shown a reduced synovial inflammation in such protected animals. Adoptive transfer and immunization with selected T cell epitopes (synthetic peptides) have indicated the protection to be mediated by T cells directed to conserved hsp epitopes. This was shown first for mycobacterial hsp60 and later for mycobacterial hsp70. Fine specificity analysis showed that such T cells were cross-reactive with the homologous self hsp. Therefore protection by microbial hsp reactive T cells can be by cross-recognition of self hsp overexpressed in the inflamed tissue. Preimmunization with hsp leads to a relative expansion of such self hsp cross-responsive T cells. The regulatory nature of such T cells may originate from mucosal tolerance maintained by commensal flora derived hsp or from partial activation through recognition of self hsp as a partial agonist (Altered Peptide Ligand) or in the absence of proper costimulation. Recently, we reported the selective upregulation of B7.2 on microbial hsp60 specific T cells in response to self hsp60. Through a preferred interaction with CTLA-4 on proinflammatory T cells this may constitute an effector mechanism of regulation. Also, regulatory T cells produced IL10. PMID:11189451

  4. Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease

    PubMed Central

    Mayne, Christopher G.; Williams, Calvin B.

    2013-01-01

    The mucosal immune system mediates contact between the host, and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this “extended self” can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3+ regulatory T (Treg) cells. Treg cells can be divided into two primary subsets: “natural” Treg (nTreg) cells, and “adaptive” or “induced” Treg (iTreg). Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review we summarize the development and function of Treg cells, and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of IBD patients suggesting Treg cell involvement in IBD, and consider how Treg cells may be used in future therapies. PMID:23656897

  5. Immune Regulatory Cells in Umbilical Cord Blood and Their Potential Roles in Transplantation Tolerance

    PubMed Central

    Kim, Young-June; Broxmeyer, Hal E.

    2010-01-01

    Umbilical cord blood (UCB) is a source of primitive hematopoietic stem (HSC) and progenitor cells, that served as an alternative to bone marrow (BM) for effective transplantation therapy. Success of HSC transplantation (HSCT) is limited in part by graft-versus-host disease (GVHD), graft rejection and delayed immune reconstitution, which all relate to immunological complications. GVHD after UCB transplantation is lower compared to that of BM HSCT. This may relate to the tolerogenic nature of T cells, mononuclear cells (MNCs) and especially immune regulatory cells existing in UCB. UCB contains limiting numbers of HSC or CD34+ cell dose for adult patients resulting in delayed engraftment after UCB transplantation (UCBT). This needs to be improved for optimal transplantation outcomes. Approaches have been undertaken to promote HSC engraftment, including co-infusion of multiple units of UCB cells. These new methods however added additional immunological complications. Herein, we describe current knowledge on features of UCB immune cells, including regulatory T cells (Tregs) and mesenchymal stem/stromal cells (MSCs) and their potential future usage to reduce GVHD. PMID:20727784

  6. Mesenteric lymph node CD11b(-) CD103(+) PD-L1(High) dendritic cells highly induce regulatory T cells.

    PubMed

    Shiokawa, Aya; Kotaki, Ryutaro; Takano, Tomohiro; Nakajima-Adachi, Haruyo; Hachimura, Satoshi

    2017-09-01

    Dendritic cells (DCs) in mesenteric lymph nodes (MLNs) induce Foxp3(+) regulatory T cells to regulate immune responses to beneficial or non-harmful agents in the intestine, such as commensal bacteria and foods. Several studies in MLN DCs have revealed that the CD103(+) DC subset highly induces regulatory T cells, and another study has reported that MLN DCs from programmed death ligand 1 (PD-L1) -deficient mice could not induce regulatory T cells. Hence, the present study investigated the expression of these molecules on MLN CD11c(+) cells. Four distinct subsets expressing CD103 and/or PD-L1 were identified, namely CD11b(+) CD103(+) PD-L1(High) , CD11b(-) CD103(+) PD-L1(High) , CD11b(-) CD103(+) PD-L1(Low) and CD11b(+) CD103(-) PD-L1(Int) . Among them, the CD11b(-) CD103(+) PD-L1(High) DC subset highly induced Foxp3(+) T cells. This subset expressed Aldh1a2 and Itgb8 genes, which are involved in retinoic acid metabolism and transforming growth factor-β (TGF-β) activation, respectively. Exogenous TGF-β supplementation equalized the level of Foxp3(+) T-cell induction by the four subsets whereas retinoic acid did not, which suggests that high ability to activate TGF-β is determinant for the high Foxp3(+) T-cell induction by CD11b(-) CD103(+) PD-L1(High) DC subset. Finally, this subset exhibited a migratory DC phenotype and could take up and present orally administered antigens. Collectively, the MLN CD11b(-) CD103(+) PD-L1(High) DC subset probably takes up luminal antigens in the intestine, migrates to MLNs, and highly induces regulatory T cells through TGF-β activation. © 2017 John Wiley & Sons Ltd.

  7. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity

    PubMed Central

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H. S.; Linkous, Amanda; Storaska, Andrew J.; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A.

    2017-01-01

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify. PMID:28256619

  8. A Core Regulatory Circuit in Glioblastoma Stem Cells Links MAPK Activation to a Transcriptional Program of Neural Stem Cell Identity.

    PubMed

    Riddick, Gregory; Kotliarova, Svetlana; Rodriguez, Virginia; Kim, H S; Linkous, Amanda; Storaska, Andrew J; Ahn, Susie; Walling, Jennifer; Belova, Galina; Fine, Howard A

    2017-03-03

    Glioblastoma, the most common primary malignant brain tumor, harbors a small population of tumor initiating cells (glioblastoma stem cells) that have many properties similar to neural stem cells. To investigate common regulatory networks in both neural and glioblastoma stem cells, we subjected both cell types to in-vitro differentiation conditions and measured global gene-expression changes using gene expression microarrays. Analysis of enriched transcription factor DNA-binding sites in the promoters of differentially expressed genes was used to reconstruct regulatory networks involved in differentiation. Computational predictions, which were biochemically validated, show an extensive overlap of regulatory circuitry between cell types including a network centered on the transcription factor KLF4. We further demonstrate that EGR1, a transcription factor previously shown to be downstream of the MAPK pathway, regulates KLF4 expression and that KLF4 in turn transcriptionally activates NOTCH as well as SOX2. These results demonstrate how known genomic alterations in glioma that induce constitutive activation of MAPK are transcriptionally linked to master regulators essential for neural stem cell identify.

  9. T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells.

    PubMed

    Broos, Caroline E; Hendriks, Rudi W; Kool, Mirjam

    2016-09-01

    Although the aetiology of sarcoidosis is not yet completely understood, immunological changes within the T-cell compartment are characteristic for an exaggerated antigen-driven immune response. In this review, we describe the most recent findings on T-cell subset responses and regulation in sarcoidosis. We discuss how future immunological research can advance the field to unravel pathobiological mechanisms of this intriguingly complex disease. Research into the field of T-cell plasticity has recently challenged the long-held T helper type 1 (Th1) paradigm in sarcoidosis and striking parallels with autoimmune disorders and common variable immunodeficiency were recognized. For instance, it was demonstrated that Th17.1-cells rather than Th1-cells are responsible for the exaggerated IFN-γ production in pulmonary sarcoidosis. Furthermore, impaired regulatory T-cell function and alterations within the expression of co-inhibitory receptors that control T-cell responses, such as PD-1, CTLA-4 and BTNL2, raise new questions regarding T-cell regulation in pulmonary sarcoidosis. It becomes increasingly clear that Th17(.1)-cells and regulatory T-cells are key players in sarcoidosis T-cell immunology. New findings on plasticity and co-inhibitory receptor expression by these subsets help build a more comprehensive model for T-cell regulation in sarcoidosis and will finally shed light on the potential of new treatment modalities.

  10. Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction?

    PubMed Central

    Wesch, Daniela; Peters, Christian; Siegers, Gabrielle Melanie

    2014-01-01

    While gamma delta T cell (γδTc) anticancer immunotherapies are being developed, recent reports suggest a regulatory role for γδTc tumor-infiltrating lymphocytes. This mini-review surveys available evidence, determines strengths and weaknesses thereof and suggest directions for further exploration. We focus on human γδTc, as mouse and human γδTc repertoires differ. Regulatory γδTc are defined and compared to conventional Tregs and their roles in health and disease (focusing in on cancer) are discussed. We contrast the suggested regulatory roles for γδTc in breast and colorectal cancer with their cytotoxic capabilities in other malignancies, emphasizing the context dependence of γδTc functional plasticity. Since γδTc can be induced to exhibit regulatory properties (in some cases reversible), we carefully scrutinize experimental procedures in published reports. As γδTc garner increasing interest for their therapeutic potential, it is critical that we appreciate the full extent of their role(s) and interactions with other cell types in both the circulation and the tumor microenvironment. A comprehensive understanding will enable manipulation of γδTc to improve anti-tumor efficacy and patient outcomes. PMID:25477885

  11. Report of the International Regulatory Forum on Human Cell Therapy and Gene Therapy Products.

    PubMed

    Hayakawa, Takao; Harris, Ian; Joung, Jeewon; Kanai, Nobuo; Kawamata, Shin; Kellathur, Srinivasan; Koga, Junichi; Lin, Yi-Chu; Maruyama, Yoshiaki; McBlane, James; Nishimura, Takuya; Renner, Matthias; Ridgway, Anthony; Salmikangas, Paula; Sakamoto, Norihisa; Sato, Daisaku; Sato, Yoji; Toda, Yuzo; Umezawa, Akihiro; Werner, Michael; Wicks, Stephen

    2016-09-01

    The development of human cell therapy and gene therapy products has progressed internationally. Efforts have been made to address regulatory challenges in the evaluation of quality, efficacy, and safety of the products. In this forum, updates on the specific challenges in quality, efficacy, and safety of products in the view of international development were shared through the exchange of information and opinions among experts from regulatory authorities, academic institutions, and industry practitioners. Sessions identified specific/critical points to consider for the evaluation of human cell therapy and gene therapy products that are different from conventional biological products; common approaches and practices among regulatory regions were also shared. Certain elements of current international guidelines might not be appropriate to be applied to these products. Further, international discussion on the concept of potency and in vivo tumorigenicity studies, among others, is needed. This forum concluded that the continued collective actions are expected to promote international convergence of regulatory approaches of the products. The Pharmaceuticals and Medical Devices Agency and Japanese Society for Regenerative Medicine jointly convened the forum with support from the National Institutes of Biomedical Innovation, Health and Nutrition. Participants at the forum include 300 experts in and outside of Japan. Copyright © 2016.

  12. Human immunodeficiency virus type-1 induces a regulatory B cell-like phenotype in vitro.

    PubMed

    Lopez-Abente, Jacobo; Prieto-Sanchez, Adrián; Muñoz-Fernandez, Maria-Ángeles; Correa-Rocha, Rafael; Pion, Marjorie

    2017-07-17

    Individuals infected with human immunodeficiency virus type-1 (HIV-1) usually show a general dysregulation and hyper-activation of the immune system. A direct influence of HIV-1 particles on B-cell phenotypes and functions has been previously described. However, the consequences of B-cell dysregulation are still poorly understood. We evaluated the phenotypic changes in primary B cells after direct contact with HIV-1 particles in comparison with different types of stimuli. The functionality of treated B cells was challenged in co-culture experiments with autologous CD4+ and CD8+ T cells. We demonstrated that HIV-1 induces a phenotypic change in B cells towards a regulatory B-cell phenotype, showing a higher level of IL-10, TGF-β1, EBI3 or IL-12(p35) mRNA expression and acquiring an immunosuppressive profile. The acquisition of a Breg phenotype was confirmed by co-culture experiments where HIV-treated B cells reduced the proliferation and the TNFα production of CD4+ or CD8+ T cells. This suppressive ability of HIV-treated B cells was dependent on cell-to-cell contact between these B cells and effector cells. To our knowledge, these data provide the first evidence that HIV-1 can directly induce a regulatory B cell-like immunosuppressive phenotype, which could have the ability to impair specific immune responses. This dysregulation could constitute one of the mechanisms underlying unsuccessful efforts to develop an efficient vaccine against HIV-1.Cellular &Molecular Immunology advance online publication, 17 July 2017; doi:10.1038/cmi.2017.48.

  13. The Ets-1 transcription factor controls the development and function of natural regulatory T cells

    PubMed Central

    Mouly, Enguerran; Chemin, Karine; Nguyen, Hai Vu; Chopin, Martine; Mesnard, Laurent; Leite-de-Moraes, Maria; Burlen-defranoux, Odile; Bandeira, Antonio

    2010-01-01

    Regulatory T cells (T reg cells) constitute a population of CD4+ T cells that limits immune responses. The transcription factor Foxp3 is important for determining the development and function of T reg cells; however, the molecular mechanisms that trigger and maintain its expression remain incompletely understood. In this study, we show that mice deficient for the Ets-1 transcription factor (Ets-1−/−) developed T cell–mediated splenomegaly and systemic autoimmunity that can be blocked by functional wild-type T reg cells. Spleens of Ets-1−/− mice contained mostly activated T cells, including Th2-polarized CD4+ cells and had reduced percentages of T reg cells. Splenic and thymic Ets-1−/− T reg cells expressed low levels of Foxp3 and displayed the CD103 marker that characterizes antigen-experienced T reg cells. Thymic development of Ets-1−/− T reg cells appeared intrinsically altered as Foxp3-expressing cells differentiate poorly in mixed fetal liver reconstituted chimera and fetal thymic organ culture. Ets-1−/− T reg cells showed decreased in vitro suppression activity and did not protect Rag2−/− hosts from naive T cell–induced inflammatory bowel disease. Furthermore, in T reg cells, Ets-1 interacted with the Foxp3 intronic enhancer and was required for demethylation of this regulatory sequence. These data demonstrate that Ets-1 is required for the development of natural T reg cells and suggest a role for this transcription factor in the regulation of Foxp3 expression. PMID:20855499

  14. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  15. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses

    PubMed Central

    Chang, Jae-Hoon; Hu, Hongbo; Jin, Jin; Puebla-Osorio, Nahum; Xiao, Yichuan; Gilbert, Brian E.; Brink, Robert; Ullrich, Stephen E.

    2014-01-01

    Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor–associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell–specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells. PMID:24378539

  16. The CD4+ T cell regulatory network mediates inflammatory responses during acute hyperinsulinemia: a simulation study.

    PubMed

    Martinez-Sanchez, Mariana E; Hiriart, Marcia; Alvarez-Buylla, Elena R

    2017-06-26

    Obesity is frequently linked to insulin resistance, high insulin levels, chronic inflammation, and alterations in the behaviour of CD4+ T cells. Despite the biomedical importance of this condition, the system-level mechanisms that alter CD4+ T cell differentiation and plasticity are not well understood. We model how hyperinsulinemia alters the dynamics of the CD4+ T regulatory network, and this, in turn, modulates cell differentiation and plasticity. Different polarizing microenvironments are simulated under basal and high levels of insulin to assess impacts on cell-fate attainment and robustness in response to transient perturbations. In the presence of high levels of insulin Th1 and Th17 become more stable to transient perturbations, and their basin sizes are augmented, Tr1 cells become less stable or disappear, while TGFβ producing cells remain unaltered. Hence, the model provides a dynamic system-level framework and explanation to further understand the documented and apparently paradoxical role of TGFβ in both inflammation and regulation of immune responses, as well as the emergence of the adipose Treg phenotype. Furthermore, our simulations provide new predictions on the impact of the microenvironment in the coexistence of the different cell types, suggesting that in pro-Th1, pro-Th2 and pro-Th17 environments effector and regulatory cells can coexist, but that high levels of insulin severely diminish regulatory cells, especially in a pro-Th17 environment. This work provides a first step towards a system-level formal and dynamic framework to integrate further experimental data in the study of complex inflammatory diseases.

  17. LFA-1 is critical for regulatory T cell homeostasis and function.

    PubMed

    Wohler, Jillian; Bullard, Dan; Schoeb, Trent; Barnum, Scott

    2009-07-01

    Cellular adhesion molecules involved in cell-to-cell mediated suppression by Tregs are not well characterized. We found that the majority of Tregs expressed LFA-1 but most strikingly that the frequency of Tregs in LFA-1(-/-) mice was significantly lower (approximately 50%) in the spleen, lymph nodes, and Peyer's patches compared to wild type controls. The reduction in LFA-1(-/-) Treg cells appears due in part to a reduced capacity of LFA-1(-/-) CD4(+)CD25(-) cells to be induced to become Tregs in the lymph nodes. Importantly, we found that LFA-1(-/-) Tregs fail to suppress T cell responses in vitro and have reduced function in vivo. Treg-mediated suppression does not depend on LFA-1 interactions with ICAM-1 on the surface of responder cells. Our data demonstrate that LFA-1 plays a critical role in regulatory T cell homeostasis and function.

  18. PD-1 controls Lymph Node and Blood T Follicular Regulatory Cells

    PubMed Central

    Sage, Peter T.; Francisco, Loise M.; Carman, Christopher V.; Sharpe, Arlene H.

    2013-01-01

    Newly defined CD4+CXCR5+FoxP3+ T Follicular Regulatory (TFR) cells inhibit CD4+CXCR5+FoxP3− T Follicular Helper (TFH)-mediated humoral immunity. Although PD-1 is expressed by both cell types, the role of this inhibitory receptor on TFR differentiation is unknown. Here we show that PD-1/PD-L1 deficient mice have increased lymph node TFR cells, which have enhanced suppressive capacity. We also find substantial populations of TFR cells in mouse blood, and demonstrate that blood TFR cells home to lymph nodes and potently inhibit TFH cells in vivo. Blood TFR cells require CD28 and ICOS signaling, but are inhibited by PD-1/PD-L1. These findings reveal novel mechanisms by which the PD-1 pathway regulates antibody production and helps to reconcile inconsistencies surrounding the role of this pathway in humoral immunity. PMID:23242415

  19. Correlation between the cord vitamin D levels and regulatory T cells in newborn infants.

    PubMed

    Güven, Ayşegül; Ecevit, Ayşe; Sözer, Oktay; Tarcan, Aytül; Tarcan, Aylin; Ozbek, Namık

    2012-08-01

    Vitamin D is important for calcium homeostasis, muscle, and bone health. It has also immunomodulatory capacities in vivo and in vitro. Regulatory T cells (Treg) have been found to suppress a number of T cell-mediated immune disorders, including allergic responses and autoimmune diseases. This study aimed to investigate the correlation between 25-hydroxyvitamin D (25(OH)D) levels and the regulatory T cells in cord blood. The study group is comprised of 101 full-term newborn infants. Umbilical cord 25(OH)D levels and number and percentage of T lymphocyte, T helper, and Treg cells were measured. Infants were grouped according to 25-hydroxyvitamin D levels (25(OH)D <12 ng/ml and 25(OH)D >12 ng/ml) (converting factor of 25OHD level into SI unit, 2.6). Severe vitamin D deficiency (25(OH)D <12 ng/ml) was observed in 32% of the infants. There was no significant correlation between 25-hydroxyvitamin D levels and T cell number and percentages. There were also no significant differences in white blood cell, total lymphocyte count, T helper, and Treg cell percentage and number between groups. These results suggest that the serum level of 25-hydroxyvitamin D is not crucially involved in the correlation between vitamin D status and T cell regulation in cord blood.

  20. Regulatory T cell number in multiple sclerosis patients: A meta-analysis.

    PubMed

    Noori-Zadeh, Ali; Mesbah-Namin, Seyed Alireza; Bistoon-Beigloo, Sara; Bakhtiyari, Salar; Abbaszadeh, Hojjat-Allah; Darabi, Shahram; Rajabibazl, Masoumeh; Abdanipour, Alireza

    2016-01-01

    Regulatory T cells (Treg cells), defined as CD4(+) CD25(+) FoxP3(+) T cells by expression of CD4, high-affinity IL-2 receptor and the transcription factor, forkhead box P3 (FoxP3). They play a pivotal role in protecting individuals from autoimmunity and a growing body of evidence suggests their role in the prevention of multiple sclerosis development. However, there are discrepancies about the type of defect in the Treg cells of multiple sclerosis patients and especially whether the Treg number alteration could be contributed to multiple sclerosis pathogenesis. Indeed, whether low number of Treg