Redefining Myeloid Cell Subsets in Murine Spleen
Hey, Ying-Ying; Tan, Jonathan K. H.; O’Neill, Helen C.
2016-01-01
Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed “L-DC” in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII−Ly6C−Ly6G− subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII−Ly6CloLy6G− cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII−Ly6C−Ly6G− cells, which are CD43+, Siglec-F− and CD115−. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types. PMID:26793192
Hepatic dendritic cell subsets in the mouse.
Jomantaite, Ieva; Dikopoulos, Nektarios; Kröger, Andrea; Leithäuser, Frank; Hauser, Hansjörg; Schirmbeck, Reinhold; Reimann, Jörg
2004-02-01
The CD11c(+) cell population in the non-parenchymal cell population of the mouse liver contains dendritic cells (DC), NK cells, B cells and T cells. In the hepatic CD11c(+) DC population from immunocompetent or immunodeficient [recombinase-activating gene-1 (RAG1)(-/-)] C57BL/6 mice (rigorously depleted of T cells, B cells and NK cells), we identified a B220(+) CD11c(int) subset of 'plasmacytoid' DC, and a B220(-) CD11c(+) DC subset. The latter DC population could be subdivided into a major, immature (CD40(lo) CD80(lo) CD86(lo) MHC class II(lo)) CD11c(int) subset, and a minor, mature (CD40(hi) CD80(hi) CD86(hi) MHC class II(hi)) CD11c(hi) subset. Stimulated B220(+) but not B220(-) DC produced type I interferon. NKT cell activation in vivo increased the number of liver B220(-) DC three- to fourfold within 18 h post-injection, and up-regulated their surface expression of activation marker, while it contracted the B220(+) DC population. Early in virus infection, the hepatic B220(+) DC subset expanded, and both, the B220(+) as well as B220(-) DC populations in the liver matured. In vitro, B220(-) but not B220(+) DC primed CD4(+) or CD8(+)T cells. Expression of distinct marker profiles and functions, and distinct early reaction to activation signals hence identify two distinct B220(+) and B220(-) subsets in CD11c(+) DC populations freshly isolated from the mouse liver.
Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara
2014-01-01
Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...
Antigen presenting capacity of murine splenic myeloid cells.
Hey, Ying-Ying; Quah, Benjamin; O'Neill, Helen C
2017-01-11
The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named 'L-DC' was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8 + T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII - cells and unable to activate CD4 + T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4 + T cells or CD8 + T cells. The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8 + T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4 + T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell.
Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.
Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila
2016-01-01
Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
van de Ven, Rieneke; Thon, Maria; Gibbs, Susan; de Gruijl, Tanja D.
2017-01-01
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies. PMID:28704477
TCF4-Targeting miR-124 is Differentially Expressed amongst Dendritic Cell Subsets
Han, Sun Murray; Na, Hye Young; Ham, Onju; Choi, Wanho; Sohn, Moah; Ryu, Seul Hye; In, Hyunju; Hwang, Ki-Chul
2016-01-01
Dendritic cells (DCs) are professional antigen-presenting cells that sample their environment and present antigens to naïve T lymphocytes for the subsequent antigen-specific immune responses. DCs exist in a range of distinct subpopulations including plasmacytoid DCs (pDCs) and classical DCs (cDCs), with the latter consisting of the cDC1 and cDC2 lineages. Although the roles of DC-specific transcription factors across the DC subsets have become understood, the posttranscriptional mechanisms that regulate DC development are yet to be elucidated. MicroRNAs (miRNAs) are pivotal posttranscriptional regulators of gene expression in a myriad of biological processes, but their contribution to the immune system is just beginning to surface. In this study, our in-house probe collection was screened to identify miRNAs possibly involved in DC development and function by targeting the transcripts of relevant mouse transcription factors. Examination of DC subsets from the culture of mouse bone marrow with Flt3 ligand identified high expression of miR-124 which was able to target the transcript of TCF4, a transcription factor critical for the development and homeostasis of pDCs. Further expression profiling of mouse DC subsets isolated from in vitro culture as well as via ex vivo purification demonstrated that miR-124 was outstandingly expressed in CD24+ cDC1 cells compared to in pDCs and CD172α+ cDC2 cells. These results imply that miR-124 is likely involved in the processes of DC subset development by posttranscriptional regulation of a transcription factor(s). PMID:26937233
Profiling dendritic cell subsets in head and neck squamous cell tonsillar cancer and benign tonsils.
Abolhalaj, Milad; Askmyr, David; Sakellariou, Christina Alexandra; Lundberg, Kristina; Greiff, Lennart; Lindstedt, Malin
2018-05-23
Dendritic cells (DCs) have a key role in orchestrating immune responses and are considered important targets for immunotherapy against cancer. In order to develop effective cancer vaccines, detailed knowledge of the micromilieu in cancer lesions is warranted. In this study, flow cytometry and human transcriptome arrays were used to characterize subsets of DCs in head and neck squamous cell tonsillar cancer and compare them to their counterparts in benign tonsils to evaluate subset-selective biomarkers associated with tonsillar cancer. We describe, for the first time, four subsets of DCs in tonsillar cancer: CD123 + plasmacytoid DCs (pDC), CD1c + , CD141 + , and CD1c - CD141 - myeloid DCs (mDC). An increased frequency of DCs and an elevated mDC/pDC ratio were shown in malignant compared to benign tonsillar tissue. The microarray data demonstrates characteristics specific for tonsil cancer DC subsets, including expression of immunosuppressive molecules and lower expression levels of genes involved in development of effector immune responses in DCs in malignant tonsillar tissue, compared to their counterparts in benign tonsillar tissue. Finally, we present target candidates selectively expressed by different DC subsets in malignant tonsils and confirm expression of CD206/MRC1 and CD207/Langerin on CD1c + DCs at protein level. This study descibes DC characteristics in the context of head and neck cancer and add valuable steps towards future DC-based therapies against tonsillar cancer.
Vremec, David
2016-01-01
Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.
'Dressed for success' C-type lectin receptors for the delivery of glyco-vaccines to dendritic cells.
Unger, Wendy W J; van Kooyk, Yvette
2011-02-01
Current strategies in immunotherapy for the treatment of tumors or autoimmunity focus on direct in vivo targeting of antigens to dendritic cells (DC), as these cells are the key regulators of immune responses. Multiple DC subsets can be distinguished in both humans and mice, based on phenotype and location. Moreover, recent data show that these subsets have distinct functions. All these features have implications for the design of DC-targeting vaccines. In this review we integrate recent knowledge on the different DC subsets in human and mice and how DC-expressed C-type lectin receptors (CLR) can be exploited for the induction of either antigen-specific immunity or tolerance. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bernardo, David; Durant, Lydia; Mann, Elizabeth R; Bassity, Elizabeth; Montalvillo, Enrique; Man, Ripple; Vora, Rakesh; Reddi, Durga; Bayiroglu, Fahri; Fernández-Salazar, Luis; English, Nick R; Peake, Simon T C; Landy, Jon; Lee, Gui H; Malietzis, George; Siaw, Yi Harn; Murugananthan, Aravinth U; Hendy, Phil; Sánchez-Recio, Eva; Phillips, Robin K S; Garrote, Jose A; Scott, Paul; Parkhill, Julian; Paulsen, Malte; Hart, Ailsa L; Al-Hassi, Hafid O; Arranz, Eduardo; Walker, Alan W; Carding, Simon R; Knight, Stella C
2016-01-01
Most knowledge about gastrointestinal (GI)-tract dendritic cells (DC) relies on murine studies where CD103 + DC specialize in generating immune tolerance with the functionality of CD11b +/- subsets being unclear. Information about human GI-DC is scarce, especially regarding regional specifications. Here, we characterized human DC properties throughout the human colon. Paired proximal (right/ascending) and distal (left/descending) human colonic biopsies from 95 healthy subjects were taken; DC were assessed by flow cytometry and microbiota composition assessed by 16S rRNA gene sequencing. Colonic DC identified were myeloid (mDC, CD11c + CD123 - ) and further divided based on CD103 and SIRPα (human analog of murine CD11b) expression. CD103 - SIRPα + DC were the major population and with CD103 + SIRPα + DC were CD1c + ILT3 + CCR2 + (although CCR2 was not expressed on all CD103 + SIRPα + DC). CD103 + SIRPα - DC constituted a minor subset that were CD141 + ILT3 - CCR2 - . Proximal colon samples had higher total DC counts and fewer CD103 + SIRPα + cells. Proximal colon DC were more mature than distal DC with higher stimulatory capacity for CD4 + CD45RA + T-cells. However, DC and DC-invoked T-cell expression of mucosal homing markers (β7, CCR9) was lower for proximal DC. CCR2 was expressed on circulating CD1c + , but not CD141 + mDC, and mediated DC recruitment by colonic culture supernatants in transwell assays. Proximal colon DC produced higher levels of cytokines. Mucosal microbiota profiling showed a lower microbiota load in the proximal colon, but with no differences in microbiota composition between compartments. Proximal colonic DC subsets differ from those in distal colon and are more mature. Targeted immunotherapy using DC in T-cell mediated GI tract inflammation may therefore need to reflect this immune compartmentalization.
Impact of Toxoplasma gondii on Dendritic Cell Subset Function in the Intestinal Mucosa.
Cohen, Sara B; Denkers, Eric Y
2015-09-15
The function of mucosal dendritic cell (DC) subsets in immunity and inflammation is not well understood. In this study, we define four DC subsets present within the lamina propria and mesenteric lymph node compartments based on expression of CD103 and CD11b. Using IL-12p40 YFP (Yet40) reporter mice, we show that CD103(+)CD11b(-) mucosal DCs are primary in vivo sources of IL-12p40; we also identified CD103(-)CD11b(-) mucosal DCs as a novel population producing this cytokine. Infection was preferentially found in CD11b(+) DCs that were negative for CD103. Lamina propria DCs containing parasites were negative for IL-12p40. Instead, production of the cytokine was strictly a property of noninfected cells. We also show that vitamin A metabolism, as measured by ALDH activity, was preferentially found in CD103(+)CD11b(+) DC and was strongly downregulated in all mucosal DC subsets during infection. Finally, overall apoptosis of lamina propria DC subsets was increased during infection. Combined, these results highlight the ability of intestinal Toxoplasma infection to alter mucosal DC activity at both the whole population level and at the level of individual subsets. Copyright © 2015 by The American Association of Immunologists, Inc.
Regulation of Dendritic Cell Function in Inflammation.
Said, André; Weindl, Günther
2015-01-01
Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy.
De Trez, Carl; Ware, Carl F.
2008-01-01
Dendritic cells (DC) constitute the most potent antigen presenting cells of the immune system, playing a key role bridging innate and adaptive immune responses. Specialized DC subsets differ depending on their origin, tissue location and the influence of trophic factors, the latter remain to be fully understood. Stromal cell and myeloid-associated Lymphotoxin-β receptor (LTβR) signaling is required for the local proliferation of lymphoid tissue DC. This review focuses the LTβR signaling cascade as a crucial positive trophic signal in the homeostasis of DC subsets. The noncanonical coreceptor pathway comprised of the Immunoglobulin (Ig) superfamily member, B and T lymphocyte attenuator (BTLA) and TNFR superfamily member, Herpesvirus entry mediator (HVEM) counter regulates the trophic signaling by LTβR. Together both pathways form an integrated signaling circuit achieving homeostasis of DC subsets. PMID:18511331
Stoecklinger, Angelika; Eticha, Tekalign D; Mesdaghi, Mehrnaz; Kissenpfennig, Adrien; Malissen, Bernard; Thalhamer, Josef; Hammerl, Peter
2011-02-01
The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-γ-producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation.
Jiang, Bo; Grage-Griebenow, Evelin; Csernok, Elena; Butherus, Kristine; Ehlers, Stefan; Gross, Wolfgang L; Holle, Julia U
2010-01-01
The aim of the study was to assess PAR-2 expression on dendritic cell (DC) subsets and other immune cells of Wegener's granulomatosis (WG) patients and healthy controls (HC) and to investigate whether Proteinase 3 (PR3, a serine protease which can activate PAR2) induces maturation of human DC-like monocytes and murine Flt-3 ligand- and GM-CSF-generated DC. Human peripheral blood cells including DC subsets and Flt-3l- and GM-CSF-generated mouse DC were analysed for expression of PAR-2 and DC maturation markers by flow cytometry before and after stimulation with PR3, trypsin, PAR-2 agonist or LPS for 24 h. There was no difference of PAR-2 expression on PMNs, monocytes, lymphocytes and DC between all WG samples and HC. However, in inactive WG, expression of PAR-2 was downregulated on the cell surface of PMNs, monocytes, lymphocytes, and CD11c+DC compared to active WG and HC. PR3 and PAR2-agonists did not induce upregulation of PAR-2 or maturation markers of human DC-like monocytes in WG and HC. Likewise, murine PR3 did not induce upregulation of PAR-2 or maturation markers in murine DC. PAR-2 expression is downregulated on human peripheral blood cells including CD11c+ DC in inactive WG compared to active WG and HC, possibly reflecting a non-activated status of these cells in inactive disease. PR3 and PAR-2- agonists did not induce maturation of human ex vivo DC-like monocytes in WG and HC and of murine DC, suggesting this pathway is not singularly involved in the maturation of these cell subsets.
Deressa, Tekalign; Strandt, Helen; Florindo Pinheiro, Douglas; Mittermair, Roberta; Pizarro Pesado, Jennifer; Thalhamer, Josef; Hammerl, Peter; Stoecklinger, Angelika
2015-01-01
The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation. PMID:26030383
Kaminsky, Lauren W; Sei, Janet J; Parekh, Nikhil J; Davies, Michael L; Reider, Irene E; Krouse, Tracy E; Norbury, Christopher C
2015-10-01
Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic orthopoxvirus infections for which there are no effective treatments. Moreover, the safety of the smallpox vaccine is of great concern, as complications may arise, resulting in morbidity. Like many viruses that cause significant human diseases, orthopoxviruses spread from a peripheral site of infection to become systemic. This study elucidates the early requirement for innate immune cells in controlling a peripheral infection with ECTV, the causative agent of mousepox. We report that there is redundancy in the function of two innate immune cell subsets in controlling virus spread early during infection. The viral control mediated by these cell subsets presents a potential target for therapies and rational vaccine design. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
De Trez, Carl; Schneider, Kirsten; Potter, Karen; Droin, Nathalie; Fulton, James; Norris, Paula S; Ha, Suk-won; Fu, Yang-Xin; Murphy, Theresa; Murphy, Kenneth M; Pfeffer, Klaus; Benedict, Chris A; Ware, Carl F
2008-01-01
Proliferation of dendritic cells (DC) in the spleen is regulated by positive growth signals through the lymphotoxin (LT)-beta receptor; however, the countering inhibitory signals that achieve homeostatic control are unresolved. Mice deficient in LTalpha, LTbeta, LTbetaR, and the NFkappaB inducing kinase show a specific loss of CD8- DC subsets. In contrast, the CD8alpha- DC subsets were overpopulated in mice deficient in the herpesvirus entry mediator (HVEM) or B and T lymphocyte attenuator (BTLA). HVEM- and BTLA-deficient DC subsets displayed a specific growth advantage in repopulating the spleen in competitive replacement bone marrow chimeric mice. Expression of HVEM and BTLA were required in DC and in the surrounding microenvironment, although DC expression of LTbetaR was necessary to maintain homeostasis. Moreover, enforced activation of the LTbetaR with an agonist Ab drove expansion of CD8alpha- DC subsets, overriding regulation by the HVEM-BTLA pathway. These results indicate the HVEM-BTLA pathway provides an inhibitory checkpoint for DC homeostasis in lymphoid tissue. Together, the LTbetaR and HVEM-BTLA pathways form an integrated signaling network regulating DC homeostasis.
Selective accumulation of langerhans-type dendritic cells in small airways of patients with COPD
2010-01-01
Background Dendritic cells (DC) linking innate and adaptive immune responses are present in human lungs, but the characterization of different subsets and their role in COPD pathogenesis remain to be elucidated. The aim of this study is to characterize and quantify pulmonary myeloid DC subsets in small airways of current and ex-smokers with or without COPD. Methods Myeloid DC were characterized using flowcytometry on single cell suspensions of digested human lung tissue. Immunohistochemical staining for langerin, BDCA-1, CD1a and DC-SIGN was performed on surgical resection specimens from 85 patients. Expression of factors inducing Langerhans-type DC (LDC) differentiation was evaluated by RT-PCR on total lung RNA. Results Two segregated subsets of tissue resident pulmonary myeloid DC were identified in single cell suspensions by flowcytometry: the langerin+ LDC and the DC-SIGN+ interstitial-type DC (intDC). LDC partially expressed the markers CD1a and BDCA-1, which are also present on their known blood precursors. In contrast, intDC did not express langerin, CD1a or BDCA-1, but were more closely related to monocytes. Quantification of DC in the small airways by immunohistochemistry revealed a higher number of LDC in current smokers without COPD and in COPD patients compared to never smokers and ex-smokers without COPD. Importantly, there was no difference in the number of LDC between current and ex-smoking COPD patients. In contrast, the number of intDC did not differ between study groups. Interestingly, the number of BDCA-1+ DC was significantly lower in COPD patients compared to never smokers and further decreased with the severity of the disease. In addition, the accumulation of LDC in the small airways significantly correlated with the expression of the LDC inducing differentiation factor activin-A. Conclusions Myeloid DC differentiation is altered in small airways of current smokers and COPD patients resulting in a selective accumulation of the LDC subset which correlates with the pulmonary expression of the LDC-inducing differentiation factor activin-A. This study identified the LDC subset as an interesting focus for future research in COPD pathogenesis. PMID:20307269
Dendritic cells: key to fetal tolerance?
Blois, Sandra M; Kammerer, Ulrike; Alba Soto, Catalina; Tometten, Mareike C; Shaikly, Valerie; Barrientos, Gabriela; Jurd, Richard; Rukavina, Daniel; Thomson, Angus W; Klapp, Burghard F; Fernández, Nelson; Arck, Petra C
2007-10-01
Pregnancy is a unique event in which a fetus, despite being genetically and immunologically different from the mother (a hemi-allograft), develops in the uterus. Successful pregnancy implies avoidance of rejection by the maternal immune system. Fetal and maternal immune cells come into direct contact at the decidua, which is a highly specialized mucous membrane that plays a key role in fetal tolerance. Uterine dendritic cells (DC) within the decidua have been implicated in pregnancy maintenance. DC serve as antigen-presenting cells with the unique ability to induce primary immune responses. Just as lymphocytes comprise different subsets, DC subsets have been identified that differentially control lymphocyte function. DC may also act to induce immunologic tolerance and regulation of T cell-mediated immunity. Current understanding of DC immunobiology within the context of mammalian fetal-maternal tolerance is reviewed and discussed herein.
van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M.
2014-01-01
Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy. PMID:24795724
Dendritic cell subsets in type 1 diabetes: friend or foe?
Morel, Penelope A
2013-12-06
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model
Marquet, Florian; Bonneau, Michel; Pascale, Florentina; Urien, Celine; Kang, Chantal; Schwartz-Cornil, Isabelle; Bertho, Nicolas
2011-01-01
Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC) and dermal DC (DDC) that could be divided in 3 subsets according to their phenotypes: (1) the CD163neg/CD172aneg, (2) the CD163highCD172apos and (3) the CD163lowCD172apos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163negCD172low DDC share properties with the CD8+ T cell response-inducing murine skin CD103pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC. PMID:21298011
Kho, Steven; Marfurt, Jutta; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2015-08-01
Clinical illness with Plasmodium falciparum or Plasmodium vivax compromises the function of dendritic cells (DC) and expands regulatory T (Treg) cells. Individuals with asymptomatic parasitemia have clinical immunity, restricting parasite expansion and preventing clinical disease. The role of DC and Treg cells during asymptomatic Plasmodium infection is unclear. During a cross-sectional household survey in Papua, Indonesia, we examined the number and activation of blood plasmacytoid DC (pDC), CD141(+), and CD1c(+) myeloid DC (mDC) subsets and Treg cells using flow cytometry in 168 afebrile children (of whom 15 had P. falciparum and 36 had P. vivax infections) and 162 afebrile adults (of whom 20 had P. falciparum and 20 had P. vivax infections), alongside samples from 16 patients hospitalized with uncomplicated malaria. Unlike DC from malaria patients, DC from children and adults with asymptomatic, microscopy-positive P. vivax or P. falciparum infection increased or retained HLA-DR expression. Treg cells in asymptomatic adults and children exhibited reduced activation, suggesting increased immune responsiveness. The pDC and mDC subsets varied according to clinical immunity (asymptomatic or symptomatic Plasmodium infection) and, in asymptomatic infection, according to host age and parasite species. In conclusion, active control of asymptomatic infection was associated with and likely contingent upon functional DC and reduced Treg cell activation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
In vitro haematopoiesis of a novel dendritic-like cell present in murine spleen.
Tan, Jonathan K H; O'Neill, Helen C
2010-12-01
Dendritic cells (DC) are important antigen presenting cells (APC) which induce and control the adaptive immune response. In spleen alone, multiple DC subsets can be distinguished by cell surface marker phenotype. Most of these have been shown to develop from progenitors in bone marrow and to seed lymphoid and tissue sites during development. This study advances in vitro methodology for haematopoiesis of dendritic-like cells from progenitors in spleen. Since spleen progenitors undergo differentiation in vitro to produce these cells, the possibility exists that spleen represents a specific niche for differentiation of this subset. The fact that an equivalent cell subset has been shown to exist in spleen also supports that hypothesis. Studies have been directed at investigating the specific functional role of this novel subset as an APC accessible to blood-borne antigen, as well as the conditions under which haematopoiesis is initiated in spleen, and the type of progenitor involved.
Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A
1999-01-01
Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in their immunophenotype but also in their functionality, as regards cytokine production. PMID:10594557
Contreras, Vanessa; Urien, Céline; Guiton, Rachel; Alexandre, Yannick; Vu Manh, Thien-Phong; Andrieu, Thibault; Crozat, Karine; Jouneau, Luc; Bertho, Nicolas; Epardaud, Mathieu; Hope, Jayne; Savina, Ariel; Amigorena, Sebastian; Bonneau, Michel; Dalod, Marc; Schwartz-Cornil, Isabelle
2010-09-15
The mouse lymphoid organ-resident CD8alpha(+) dendritic cell (DC) subset is specialized in Ag presentation to CD8(+) T cells. Recent evidence shows that mouse nonlymphoid tissue CD103(+) DCs and human blood DC Ag 3(+) DCs share similarities with CD8alpha(+) DCs. We address here whether the organization of DC subsets is conserved across mammals in terms of gene expression signatures, phenotypic characteristics, and functional specialization, independently of the tissue of origin. We study the DC subsets that migrate from the skin in the ovine species that, like all domestic animals, belongs to the Laurasiatheria, a distinct phylogenetic clade from the supraprimates (human/mouse). We demonstrate that the minor sheep CD26(+) skin lymph DC subset shares significant transcriptomic similarities with mouse CD8alpha(+) and human blood DC Ag 3(+) DCs. This allowed the identification of a common set of phenotypic characteristics for CD8alpha-like DCs in the three mammalian species (i.e., SIRP(lo), CADM1(hi), CLEC9A(hi), CD205(hi), XCR1(hi)). Compared to CD26(-) DCs, the sheep CD26(+) DCs show 1) potent stimulation of allogeneic naive CD8(+) T cells with high selective induction of the Ifngamma and Il22 genes; 2) dominant efficacy in activating specific CD8(+) T cells against exogenous soluble Ag; and 3) selective expression of functional pathways associated with high capacity for Ag cross-presentation. Our results unravel a unifying definition of the CD8alpha(+)-like DCs across mammalian species and identify molecular candidates that could be used for the design of vaccines applying to mammals in general.
Human skin dendritic cells in health and disease.
Haniffa, Muzlifah; Gunawan, Merry; Jardine, Laura
2015-02-01
Dendritic cells (DCs) are specialized antigen presenting cells abundant in peripheral tissues such as skin where they function as immune sentinels. Skin DCs migrate to draining lymph node where they interact with naïve T cells to induce immune responses to microorganisms, vaccines, tumours and self-antigens. In this review, we present the key historical developments and recent advances in human skin DC research. We also integrate the current understanding on the origin and functional specializations of DC subsets in healthy skin with findings in inflammatory skin diseases focusing on psoriasis and atopic eczema. A comprehensive understanding of the dynamic changes in DC subsets in health and disease will form a strong foundation to facilitate the clinical translation of DC-based therapeutic and vaccination strategies. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Harnessing dendritic cells in inflammatory skin diseases
Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O.
2011-01-01
The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. PMID:21295490
Kumar, Nathella Pavan; Moideen, Kadar; Sivakumar, Shanmugam; Menon, Pradeep A; Viswanathan, Vijay; Kornfeld, Hardy; Babu, Subash
2016-01-01
Type 2 diabetes mellitus (DM) is a major risk factor for the development of active pulmonary tuberculosis (PTB), with development of DM pandemic in countries where tuberculosis (TB) is also endemic. However, the effect of anti-TB treatment on the changes in dentritic cell (DC) and monocyte subset phenotype in TB-DM co-morbidity is not well understood. In this study, we characterized the frequency of DC and monocyte subsets in individuals with PTB with (PTB-DM) or without coincident diabetes mellitus (PTB-NDM) before, during and after completion of anti-TB treatment. PTB-DM is characterized by diminished frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes at baseline and 2 months of anti-TB treatment but not following 6 months of treatment completion in comparison to PTB-NDM. DC and monocyte subsets exhibit significant but borderline correlation with fasting blood glucose and glycated hemoglobin levels. Finally, while minor changes in the DC and monocyte compartment were observed at 2 months of treatment, significantly increased frequencies of plasmacytoid and myeloid DCs and classical and intermediate monocytes were observed at the successful completion of anti-TB treatment. Our data show that coincident diabetes alters the frequencies of innate subset distribution of DC and monocytes in TB-DM co-morbidity and suggests that most of these changes are reversible following anti-TB therapy. PMID:27865391
Alexandre, Yannick O.; Cocita, Clément D.; Ghilas, Sonia; Dalod, Marc
2014-01-01
Infection of mice with murine cytomegalovirus (MCMV) recapitulates many physiopathological characteristics of human CMV infection and enables studying the interactions between a virus and its natural host. Dendritic cells (DC) are mononuclear phagocytes linking innate and adaptive immunity which are both necessary for MCMV control. DC are critical for the induction of cellular immunity because they are uniquely efficient for the activation of naïve T cells during their first encounter with a pathogen. DC are equipped with a variety of innate immune recognition receptors (I2R2) allowing them to detect pathogens or infections and to engulf molecules, microorganisms or cellular debris. The combinatorial engagement of I2R2 during infections controls DC maturation and shapes their response in terms of cytokine production, activation of natural killer (NK) cells and functional polarization of T cells. Several DC subsets exist which express different arrays of I2R2 and are specialized in distinct functions. The study of MCMV infection helped deciphering the physiological roles of DC subsets and their molecular regulation. It allowed the identification and first in vivo studies of mouse plasmacytoid DC which produce high level of interferons-α/β early after infection. Despite its ability to infect DC and dampen their functions, MCMV induces very robust, efficient and long-lasting CD8 T cell responses. Their priming may rely on the unique ability of uninfected XCR1+ DC to cross-present engulfed viral antigens and thus to counter MCMV interference with antigen presentation. A balance appears to have been reached during co-evolution, allowing controlled replication of the virus for horizontal spread without pathological consequences for the immunocompetent host. We will discuss the role of the interplay between the virus and DC in setting this balance, and how advancing this knowledge further could help develop better vaccines against other intracellular infectious agents. PMID:25120535
Harnessing dendritic cells in inflammatory skin diseases.
Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O
2011-02-01
The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fernandez-Ruiz, Daniel; Lau, Lei Shong; Ghazanfari, Nazanin; Jones, Claerwen M; Ng, Wei Yi; Davey, Gayle M; Berthold, Dorothee; Holz, Lauren; Kato, Yu; Enders, Matthias H; Bayarsaikhan, Ganchimeg; Hendriks, Sanne H; Lansink, Lianne I M; Engel, Jessica A; Soon, Megan S F; James, Kylie R; Cozijnsen, Anton; Mollard, Vanessa; Uboldi, Alessandro D; Tonkin, Christopher J; de Koning-Ward, Tania F; Gilson, Paul R; Kaisho, Tsuneyasu; Haque, Ashraful; Crabb, Brendan S; Carbone, Francis R; McFadden, Geoffrey I; Heath, William R
2017-12-15
We describe an MHC class II (I-A b )-restricted TCR transgenic mouse line that produces CD4 + T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4 + T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human ( Plasmodium falciparum ) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8 + T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4 + T cells and the previously described PbT-I CD8 + T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8 + DC (a subset of XCR1 + DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4 + T cell responses. Depletion of CD8 + DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4 + T cell immunity during malaria and provides evidence that CD4 + T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8 + DC. Copyright © 2017 by The American Association of Immunologists, Inc.
Leleux, Jardin; Atalis, Alexandra; Roy, Krishnendu
2017-01-01
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses. PMID:26489733
Deciphering the message broadcast by tumor-infiltrating dendritic cells.
Karthaus, Nina; Torensma, Ruurd; Tel, Jurjen
2012-09-01
Human dendritic cells (DCs) infiltrate solid tumors, but this infiltration occurs in favorable and unfavorable disease prognoses. The statistical inference is that tumor-infiltrating DCs (TIDCs) play no conclusive role in predicting disease progression. This is remarkable because DCs are highly specialized antigen-presenting cells linking innate and adaptive immunity. DCs either boost the immune system (enhancing immunity) or dampen it (leading to tolerance). This dual effect explains the dual outcomes of cancer progression. The reverse functional characteristics of DCs depend on their maturation status. This review elaborates on the markers used to detect DCs in tumors. In many cases, the identification of DCs in human cancers relies on staining for S-100 and CD1a. These two markers are mainly expressed by Langerhans cells, which are one of several functionally different DC subsets. The activation status of DCs is based on the expression of CD83, DC-SIGN, and DC-LAMP, which are nonspecific markers of DC maturation. The detection of TIDCs has not kept pace with the increased knowledge about the identification of DC subsets and their maturation status. Therefore, it is difficult to draw a conclusion about the performance of DCs in tumors. We suggest a novel selection of markers to distinguish human DC subsets and maturation states. The use of these biomarkers will be of pivotal importance to scrutinize the prognostic significance of TIDCs. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.
Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus
2013-01-01
Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965
Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas
2017-11-01
In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Targeting dendritic cells--why bother?
Kreutz, Martin; Tacken, Paul J; Figdor, Carl G
2013-04-11
Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell-mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism
Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.
2013-01-01
Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552
Briseño, Carlos G.; Gargaro, Marco; Durai, Vivek; Davidson, Jesse T.; Theisen, Derek J.; Anderson, David A.; Novack, Deborah V.; Murphy, Theresa L.; Murphy, Kenneth M.
2017-01-01
RelB is an NF-κB family transcription factor activated in the noncanonical pathway downstream of NF-κB–inducing kinase (NIK) and TNF receptor family members including lymphotoxin-β receptor (LTβR) and CD40. Early analysis suggested that RelB is required for classical dendritic cell (cDC) development based on a severe reduction of cDCs in Relb−/− mice associated with profound myeloid expansion and perturbations in B and T cells. Subsequent analysis of radiation chimeras generated from wild-type and Relb−/− bone marrow showed that RelB exerts cell-extrinsic actions on some lineages, but it has remained unclear whether the impact of RelB on cDC development is cell-intrinsic or -extrinsic. Here, we reevaluated the role of RelB in cDC and myeloid development using a series of radiation chimeras. We found that there was no cell-intrinsic requirement for RelB for development of most cDC subsets, except for the Notch2- and LTβR-dependent subset of splenic CD4+ cDC2s. These results identify a relatively restricted role of RelB in DC development. Moreover, the myeloid expansion in Relb−/− mice resulted from hematopoietic-extrinsic actions of RelB. This result suggests that there is an unrecognized but critical role for RelB within the nonhematopoietic niche that controls normal myelopoiesis. PMID:28348230
Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells1
Yin, Zhiwei; Dai, Jihong; Deng, Jing; Sheikh, Faruk; Natalia, Mahwish; Shih, Tiffany; Lewis-Antes, Anita; Amrute, Sheela B.; Garrigues, Ursula; Doyle, Sean; Donnelly, Raymond P; Kotenko, Sergei V; Fitzgerald-Bocarsly, Patricia
2012-01-01
Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and lymphoid tissues. pDC are considered to be “professional” type I interferon (IFN) producing cells and produce 10–100-fold more IFN-α than other cell types in response to enveloped viruses or synthetic TLR-7 and -9 agonists. In this study, purified pDC were found to express high levels of IFN-λ receptor mRNA as well as cell-surface IFN-λ receptor. We have developed intracellular flow cytometry assays using antibodies to IFN-λ1/3 or -λ2 to assess the expression of IFN-λ proteins by pDC. We observed that a subset of human pDC expresses only intracellular IFN-α while another subset produces both IFN-α and IFN-λ after stimulation with virus or the TLR9 agonist, CpGA; the cells that co-expressed IFN-α and IFN-λ were the cells with the highest levels of IFN-α expression. Antibody cross-linking of CD4 or BDCA-2 molecules on pDC inhibited both HSV-induced IFN-λ and IFN-α production. Like the production of IFN-α, the HSV-induced IFN-λ production in pDC was mediated through TLR9 and independent of virus replication. Exogenous IFN-λ treatment of pDC resulted in increased virus-induced expression of both IFN-α and IFN-λ. In addition, both exogenous IFN-λ and –α inhibited dexamethasone-induced apoptosis of pDC. We conclude that pDC are major producers of IFN-λ1 and –λ2 in response to viral stimulation and also express functional receptors for this cytokine. Thus, IFN-λ can serve as an autocrine signal to strengthen the antiviral response of pDC by increasing IFN-α and IFN-λ production, resulting in prolonged pDC survival. PMID:22891284
Mulligan, Jennifer K; O'Connell, Brendan P; Pasquini, Whitney; Mulligan, Ryan M; Smith, Sarah; Soler, Zachary M; Atkinson, Carl; Schlosser, Rodney J
2017-08-01
In these studies we examined the impact of environmental tobacco smoke (ETS) and active smoking on sinonasal dendritic cell (DC) subsets in controls or patients with chronic rhinosinusitis with nasal polyps (CRSwNP). In subsequent in-vitro investigations, we examined the influence of cigarette smoke extract (CSE) on human sinonasal epithelial cells' (HSNECs) ability to regulate DC functions. Sinonasal tissue, blood, and hair were collected from patients undergoing sinus surgery. Smoking status and ETS exposure were determined by hair nicotine. DC subsets were examined by flow cytometric analysis. Monocyte-derived dendritic cells (moDCs) were treated with conditioned medium from non-smoked-exposed HSNECs (NS-HSNECs) or cigarette-smoke-extract-exposed HSNECs (CSE-HSNECs) to assess the impact of CSE exposure on HSNEC regulation of moDC functions. Control subjects who were active smokers displayed increased sinonasal moDC and myeloid dendritic 1 (mDC1) cells and reduced mDC2 cells, whereas, in CRSwNP patients, only moDC and mDC2 cells were altered. ETS was found to increase only moDCs in the CRSwNP patients. In vitro, CSE stimulated HSNEC secretion of the moDC regulatory products chemokine (C-C motif) ligand 20, prostaglandin E 2 , and granulocyte-macrophage colony-stimulating factor. CSE exposure also promoted HSNECs to stimulate monocyte and moDC migration. moDCs treated with CSE-HSNEC media stimulated an increase in antigen uptake and expression of CD80 and CD86. Last, CSE-HSNEC-treated moDCs secreted increased levels of interleukin-10, interferon-γ, and thymic stromal lymphopoietin. Active smoking, and to a lesser degree ETS, alters the sinonasal composition of DCs. A potential mechanism to account for this is that cigarette smoke stimulates HSNECs to induce moDC migration, maturation, and activation. © 2017 ARS-AAOA, LLC.
Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions
Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc
2015-01-01
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species. PMID:26082777
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P.; Grassi, Maria Fernanda R.; Carvalho, Edgar M.
2016-01-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4+ T cells expressing IFN-γ, TNF and IL-10 in response to TT were lower in the (HC) than in the controls. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it’s necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4+ T cell immune responses after vaccination. PMID:27282836
Morse, Kaitlyn; Kimizuka, Yoshifumi; Chan, Megan P K; Shibata, Mai; Shimaoka, Yusuke; Takeuchi, Shu; Forbes, Benjamin; Nirschl, Christopher; Li, Binghao; Zeng, Yang; Bronson, Roderick T; Katagiri, Wataru; Shigeta, Ayako; Sîrbulescu, Ruxandra F; Chen, Huabiao; Tan, Rhea Y Y; Tsukada, Kosuke; Brauns, Timothy; Gelfand, Jeffrey; Sluder, Ann; Locascio, Joseph J; Poznansky, Mark C; Anandasabapathy, Niroshana; Kashiwagi, Satoshi
2017-08-15
Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang + and CD11b - Lang - subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine. Copyright © 2017 by The American Association of Immunologists, Inc.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
Ciaramella, Antonio; Salani, Francesca; Bizzoni, Federica; Pontieri, Francesco E; Stefani, Alessandro; Pierantozzi, Mariangela; Assogna, Francesca; Caltagirone, Carlo; Spalletta, Gianfranco; Bossù, Paola
2013-01-01
The role of inflammation in Parkinson's Disease (PD) is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC), a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1) the level of circulating DC (mainly the myeloid subset) was significantly reduced in PD patients in comparison with healthy controls; 2) after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3) the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.
Lehmann, Christian H. K.; Heger, Lukas; Heidkamp, Gordon F.; Baranska, Anna; Lühr, Jennifer J.; Hoffmann, Alana; Dudziak, Diana
2016-01-01
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques. PMID:27043640
Tumor microenvironment is multifaceted.
Sautès-Fridman, Catherine; Cherfils-Vicini, Julien; Damotte, Diane; Fisson, Sylvain; Fridman, Wolf Hervé; Cremer, Isabelle; Dieu-Nosjean, Marie-Caroline
2011-03-01
Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the hosts and sites where tumors develop. Tumors arising in mucosal tissues may progress in an inflammatory context linked to local viral and/or bacterial infections. At the opposite, tumors developing in immunoprivileged sites are protected from microorganisms and grow in an immunosuppressive environment. In the present review, we summarize and present our recent data on the influence of infectious context and immune cell infiltration organization in human Non-Small Cell Lung Cancers (NSCLC) progression. We show that stimulation of tumor cells by TLR for viral ssRNA, such as TLR7/8, or bacteria, such as TLR4, promotes cell survival and induces chemoresistance. On the opposite, stimulation by TLR3, receptor for double-stranded viral RNA, decreases tumor cell viability and induces chemosensitivity in some lung tumor cell lines. Since fresh lung tumor cells exhibit a gene expression profile characteristic of TLR-stimulated lung tumor cell lines, we suspect that viral and bacterial influence may not only act on the host immune system but also directly on tumor growth and sensitivity to chemotherapy. The stroma of NSCLC contains tertiary lymphoid structures (or Tumor-induced Bronchus-Associated Lymphoid Tissues (Ti-BALT)) with mature DC, follicular DC, and T and B cells. Two subsets of immature DC, Langerhans cells (LC) and interstitial DC (intDC), were detected in the tumor nests and the stroma, respectively. Here, we show that the densities of the three DC subsets, mature DC, LC, and intDC, are highly predictive of disease-specific survival in a series of 74 early-stage NSCLC patients. We hypothesize that the mature DC may derive from local activation and migration of the immature DC--and especially LC which contact the tumor cells--to the tertiary lymphoid structures, after sampling and processing of the tumor antigens. In view of the prominent role of DC in the immune response, we suggest that the microenvironment of early-stage NSCLC may allow the in situ activation of the adaptive response. Finally, we find that the eyes or brain of mice with growing B cell lymphoma are infiltrated with T cells and that the cytokines produced ex vivo by the tumoral tissues have an impaired Th1 cytokine profile. Our work illustrates that the host and external tumor microenvironments are multifaceted and strongly influence tumor progression and anti-tumor immune responses.
Identification of a dendritic cell receptor that couples sensing of necrosis to immunity
Sancho, David; Joffre, Olivier P.; Keller, Anna M.; Rogers, Neil C.; Martinez, Dolores; Hernanz-Falcón, Patricia; Rosewell, Ian; Reis e Sousa, Caetano
2009-01-01
Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair1. In addition, antigens present within necrotic cells can sometimes provoke a specific immune response2-4 and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection5, 6. In the mouse, the CD8α+ subset of dendritic cells (DC) phagocytoses dead cell remnants and crossprimes CD8+ T cells against cell-associated antigens7. Here, we show that CD8α+ DC utilise CLEC9A (DNGR-1), a recently-characterised C-type lectin8-10, to recognise a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair uptake of necrotic cell material by CD8α+ DC but specifically reduces crosspresentation of dead cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue within its intracellular tail that allows recruitment and activation of the tyrosine kinase Syk, which is also essential for crosspresentation of dead cell-associated antigens. Thus, CLEC9A functions as a Syk-coupled C-type lectin receptor to mediate sensing of necrosis by the principal DC subset involved in regulating crosspriming to cell-associated antigens. PMID:19219027
miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1
Su, Xiaoping; Qian, Cheng; Zhang, Qian; Hou, Jin; Gu, Yan; Han, Yanmei; Chen, Yongjian; Jiang, Minghong; Cao, Xuetao
2013-01-01
Dendritic cells (DCs) are critical to initiate the immune response and maintain tolerance, depending on different status and subsets. The expression profiles of microRNAs (miRNAs) in various DC subsets and haematopoietic stem cells (HSCs), which generate DCs, remain to be fully identified. Here we examine miRNomes of mouse bone marrow HSCs, immature DCs, mature DCs and IL-10/NO-producing regulatory DCs by deep sequencing. We identify numerous stage-specific miRNAs and histone modification in HSCs and DCs at different differentiation stages. miR-30b, significantly upregulated via a TGF-beta/Smad3-mediated epigenetic pathway in regulatory DCs, can target Notch1 to promote IL-10 and NO production, suggesting that miR-30b is a negative regulator of immune response. We also identify miRNomes of in vivo counterparts of mature DCs and regulatory DCs and systematically compare them with DCs cultured in vitro. These results provide a resource for studying roles of miRNAs in stem cell biology, development and functional regulation of DC subsets. PMID:24309499
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P; Grassi, Maria Fernanda R; Carvalho, Edgar M
2016-08-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Cox, Karina; North, Margaret; Burke, Michael; Singhal, Hemant; Renton, Sophie; Aqel, Nayef; Islam, Sabita; Knight, Stella C
2005-11-01
Plasmacytoid dendritic cells (PDC) constitute a distinct subset of DC found in human peripheral lymph nodes (LN), but little is known about their function. Cell suspensions were prepared from tumor draining LN (n=20) and control LN (n=11) of women undergoing surgical resection for primary breast cancer and elective surgery for benign conditions, respectively. Using four-color flow cytometry, human leukocyte antigen-DR+ DC subsets were identified phenotypically. The proportions and numbers of cells innately producing interleukin (IL)-4, IL-10, IL-12, and interferon-gamma (IFN-gamma) were also measured from intracellular accumulation of cytokine after blocking with monensin. All flow cytometry data were collected without compensation and were compensated off-line using the Winlist algorithm (Verity software). This package also provided the subtraction program to calculate percentage positive cells and intensity of staining. PDC (CD11c-, CD123+) expressed more cytokines than did myeloid DC (CD11c+) or CD1a+ putative "migratory" DC (P<0.001). LN PDC from patients with a good prognosis (px; n=11) demonstrated a relative increase in IL-12 and IFN-gamma expression (median IL-10:IL-12 ratio=0.78 and median IL-4:IFN-gamma ratio=0.7), and PDC from LN draining poor px cancer (n=9) showed a relative increase in IL-10 and IL-4 expression (median IL-10:IL-12 ratio=1.31 and median IL-4:IFN-gamma ratio=2.6). The difference in IL-4:IFN-gamma expression between good and poor px cancer groups was significant (P<0.05). Thus, PDC innately producing cytokines were identified in cell suspensions from human LN, and the character of PDC cytokine secretion may differ between two breast cancer prognostic groups. We speculate that a shift towards PDC IL-10 and IL-4 expression could promote tumor tolerance in LN draining poor px breast cancer.
Prolactin, dendritic cells, and systemic lupus erythematosus.
Jara, Luis J; Benitez, Gamaliel; Medina, Gabriela
2008-01-01
Dendritic cells (DC) play a central role in the induction of autoimmunity in T and B cells. DC express a high level of the major histocompatibility complex that interact with the receptors on T cells. Immature DC present antigens efficiently. Prolactin (PRL) participates in DC maturation. Systemic lupus erythematosus (SLE) is characterized by a loss of tolerance to self-antigens and persistent production of autoantibodies. Serum from SLE patients induces normal monocytes to differentiate into DC in correlation with disease activity depending on the actions of interferon-alpha, immune complexes, PRL, etc. High serum PRL levels have been found in a subset of SLE patients associated with active disease and organ involvement. It is possible that PRL interacts with DC, skewing its function from antigen presentation to a proinflammatory phenotype with high interferon-alpha production. Therefore, SLE is characterized by deficiency of DC functions and abnormal PRL secretion. The relationships between PRL and DC may have a role in the pathogenesis of SLE.
Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR3 and TLR7/8 ligation.
Pearson, Frances E; Chang, Karshing; Minoda, Yoshihito; Rojas, Ingrid M Leal; Haigh, Oscar L; Daraj, Ghazal; Tullett, Kirsteen M; Radford, Kristen J
2018-04-01
Mice reconstituted with human hematopoietic stem cells are valuable models to study aspects of the human immune system in vivo. We describe a humanized mouse model (hu mice) in which fully functional human CD141 + and CD1c + myeloid and CD123 + plasmacytoid dendritic cells (DC) develop from human cord blood CD34 + cells in immunodeficient mice. CD141 + DC are the human equivalents of murine CD8 + /CD103 + DC which are essential for the induction of tumor-inhibitory cytotoxic T lymphocyte responses, making them attractive targets to exploit for the development of new cancer immunotherapies. We used CD34 + -engrafted NSG-A2 mice to investigate activation of DC subsets by synthetic dsRNA or ssRNA analogs polyinosinic-polycytidylic acid/poly I:C and Resiquimod/R848, agonists for TLR3 and TLR8, respectively, both of which are expressed by CD141 + DC. Injection of hu mice with these agonists resulted in upregulation of costimulatory molecules CD80, CD83 and CD86 by CD141 + and CD1c + DC alike, and their combination further enhanced expression of these molecules by both subsets. When combined, poly I:C and R848 enhanced serum levels of key cytokines associated with cross-presentation and the induction of cytotoxic T lymphocyte responses including IFN-α, IFN-β, IL-12 and CXCL10. These data advocate a combination of poly I:C and R848 TLR agonists as means of activating human DC for immunotherapy. © 2018 Australasian Society for Immunology Inc.
Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph
2017-01-01
While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.
Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang
2016-08-01
NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. © The Author(s) 2016.
Wu, Xianzhu; Gowda, Nagaraj M; Kawasawa, Yuka I; Gowda, D Channe
2018-04-17
Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce Th1-promoting cytokine, IL-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11c hi MHCII hi CD3ε - CD49b - CD19 - FcεRI - DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo , favoring Th2, and il-4 deficient DC were unable to induce IL-4 expression by T cell. Interestingly, lethal parasites, Plasmodium falciparum and P. berghei ANKA, induced IL-4 response primarily by CD8a - DC, whereas nonlethal P. yoelii induced IL-4 by both CD8α + and CD8α - DC. In both P. berghei ANKA- and P. yoelii -infected mice, IL-4-expressing CD8α - DC did not express IL-12, but a distinct CD8α - DC subset expressed IL-12. In P. berghei ANKA infection, CD8α + DC expressed IL-12 but not IL-4, whereas in P. yoelii infection CD8α + DC expressed IL-4 but not IL-12. This differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone
2005-02-15
In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection.
Satpathy, Ansuman T.; Briseño, Carlos G.; Cai, Xiongwei; Michael, Drew G.; Chou, Chun; Hsiung, Sunnie; Bhattacharya, Deepta; Speck, Nancy A.
2014-01-01
Runx1 and Cbfβ are critical for the establishment of definitive hematopoiesis and are implicated in leukemic transformation. Despite the absolute requirements for these factors in the development of hematopoietic stem cells and lymphocytes, their roles in the development of bone marrow progenitor subsets have not been defined. Here, we demonstrate that Cbfβ is essential for the development of Flt3+ macrophage-dendritic cell (DC) progenitors in the bone marrow and all DC subsets in the periphery. Besides the loss of DC progenitors, pan-hematopoietic Cbfb-deficient mice also lack CD105+ erythroid progenitors, leading to severe anemia at 3 to 4 months of age. Instead, Cbfb deficiency results in aberrant progenitor differentiation toward granulocyte-macrophage progenitors (GMPs), resulting in a myeloproliferative phenotype with accumulation of GMPs in the periphery and cellular infiltration of the liver. Expression of the transcription factor Irf8 is severely reduced in Cbfb-deficient progenitors, and overexpression of Irf8 restors DC differentiation. These results demonstrate that Runx proteins and Cbfβ restrict granulocyte lineage commitment to facilitate multilineage hematopoietic differentiation and thus identify their novel tumor suppressor function in myeloid leukemia. PMID:24677539
GM-CSF Inhibits c-Kit and SCF Expression by Bone Marrow-Derived Dendritic Cells
Barroeta Seijas, Amairelys Belen; Simonetti, Sonia; Vitale, Sara; Runci, Daniele; Quinci, Angela Caterina; Soriani, Alessandra; Criscuoli, Mattia; Filippi, Irene; Naldini, Antonella; Sacchetti, Federico Maria; Tarantino, Umberto; Oliva, Francesco; Piccirilli, Eleonora; Santoni, Angela; Di Rosa, Francesca
2017-01-01
Stem cell factor (SCF), the ligand of c-kit, is a key cytokine for hematopoiesis. Hematopoietic precursors express c-kit, whereas differentiated cells of hematopoietic lineage are negative for this receptor, with the exception of NK cells, mast cells, and a few others. While it has long been recognized that dendritic cells (DCs) can express c-kit, several questions remain concerning the SCF/c-kit axis in DCs. This is particularly relevant for DCs found in those organs wherein SCF is highly expressed, including the bone marrow (BM). We characterized c-kit expression by conventional DCs (cDCs) from BM and demonstrated a higher proportion of c-kit+ cells among type 1 cDC subsets (cDC1s) than type 2 cDC subsets (cDC2s) in both humans and mice, whereas similar levels of c-kit expression were observed in cDC1s and cDC2s from mouse spleen. To further study c-kit regulation, DCs were generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) from mouse BM, a widely used protocol. CD11c+ cells were purified from pooled non-adherent and slightly adherent cells collected after 7 days of culture, thus obtaining highly purified BM-derived DCs (BMdDCs). BMdDCs contained a small fraction of c-kit+ cells, and by replating them for 2 days with GM-CSF, we obtained a homogeneous population of c-kit+ CD40hi MHCIIhi cells. Not only did BMdDCs express c-kit but they also produced SCF, and both were striking upregulated if GM-CSF was omitted after replating. Furthermore, a small but significant reduction in BMdDC survival was observed upon SCF silencing. Incubation of BMdDCs with SCF did not modulate antigen presentation ability of these cells, nor it did regulate their membrane expression of the chemokine receptor CXCR4. We conclude that the SCF/c-kit-mediated prosurvival circuit may have been overlooked because of the prominent use of GM-CSF in DC cultures in vitro, including those human DC cultures destined for the clinics. We speculate that DCs more prominently rely on SCF in vivo in some microenvironments, with potential implications for graft-versus-host disease and antitumor immunity. PMID:28261209
Gelderblom, Mathias; Gallizioli, Mattia; Ludewig, Peter; Thom, Vivien; Arunachalam, Priyadharshini; Rissiek, Björn; Bernreuther, Christian; Glatzel, Markus; Korn, Thomas; Arumugam, Thiruma Valavan; Sedlacik, Jan; Gerloff, Christian; Tolosa, Eva; Planas, Anna M; Magnus, Tim
2018-01-01
Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αβ and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. We show that the ischemic brain was rapidly infiltrated by IRF4 + /CD172a + conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c + cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke. © 2017 American Heart Association, Inc.
Dendritic Cell Subset Distributions in the Aorta in Healthy and Atherosclerotic Mice
Lutz, Manfred B.; Zernecke, Alma
2014-01-01
Dendritic cells (DCs) can be sub-divided into various subsets that play specialized roles in priming of adaptive immune responses. Atherosclerosis is regarded as a chronic inflammatory disease of the vessel wall and DCs can be found in non-inflamed and diseased arteries. We here performed a systematic analyses of DCs subsets during atherogenesis. Our data indicate that distinct DC subsets can be localized in the vessel wall. In C57BL/6 and low density lipoprotein receptor-deficient (Ldlr −/−) mice, CD11c+ MHCII+ DCs could be discriminated into CD103− CD11b+F4/80+, CD11b+F4/80− and CD11b−F4/80− DCs and CD103+ CD11b−F4/80− DCs. Except for CD103− CD11b− F4/80− DCs, these subsets expanded in high fat diet-fed Ldlr −/− mice. Signal-regulatory protein (Sirp)-α was detected on aortic macrophages, CD11b+ DCs, and partially on CD103− CD11b− F4/80− but not on CD103+ DCs. Notably, in FMS-like tyrosine kinase 3-ligand-deficient (Flt3l −/−) mice, a specific loss of CD103+ DCs but also CD103− CD11b+ F4/80− DCs was evidenced. Aortic CD103+ and CD11b+ F4/80− CD103− DCs may thus belong to conventional rather than monocyte-derived DCs, given their dependence on Flt3L-signalling. CD64, postulated to distinguish macrophages from DCs, could not be detected on DC subsets under physiological conditions, but appeared in a fraction of CD103− CD11b+ F4/80− and CD11b+ F4/80+ cells in atherosclerotic Ldlr −/− mice. The emergence of CD64 expression in atherosclerosis may indicate that CD11b+ F4/80− DCs similar to CD11b+ F4/80+ DCs are at least in part derived from immigrated monocytes during atherosclerotic lesion formation. Our data advance our knowledge about the presence of distinct DC subsets and their accumulation characteristics in atherosclerosis, and may help to assist in future studies aiming at specific DC-based therapeutic strategies for the treatment of chronic vascular inflammation. PMID:24551105
de Brito, Christelle; Tomkowiak, Martine; Ghittoni, Raffaella; Caux, Christophe; Leverrier, Yann; Marvel, Jacqueline
2011-02-01
Cross-presentation of cell-associated Ags by dendritic cells (DC) plays an important role in immunity. DC in lymphoid tissues are short lived, being continuously replaced by precursors that proliferate and differentiate locally. Paradoxically, although TLR ligands promote immune responses and stimulate DC replenishment, they impair the cross-priming capacity of terminally differentiated splenic CD8α(+) DC, the major subset involved in cross-priming. In this study, we have investigated the cross-presentation capacity of newly generated murine DC and especially immediate precursors of CD8α(+) DC. We show that these DC do not cross-present Ag from dead cells unless stimulated by TLR ligands before Ag capture. TLR ligand CpG induced the expression of costimulatory molecules required for CD8 T cell activation but also regulated the intracellular mechanisms of cross-presentation such as Ag degradation rates without regulating Ag uptake. GM-CSF, an inflammatory cytokine associated with infections, also promoted cross-presentation acquisition by pre-CD8α(+) DC and synergized with TLR9 ligand. The concept that TLR ligands as well as inflammatory cytokines promote the acquisition of cross-presenting properties by pre-CD8α(+) DC has important implications during immune responses and when considering the use of these cells for vaccination.
Effect of sialic acid loss on dendritic cell maturation
Crespo, Hélio J; Guadalupe Cabral, M; Teixeira, Alexandra V; Lau, Joseph T Y; Trindade, Hélder; Videira, Paula A
2009-01-01
Sialic acids are key structural determinants and contribute to the functionality of a number of immune cell receptors. Previously, we demonstrated that differentiation of human dendritic cells (DCs) is accompanied by an increased expression of sialylated cell surface structures, putatively through the activity of the ST3Gal.I and ST6Gal.I sialyltransferases. Furthermore, DC endocytosis was reduced upon removal of the cell surface sialic acid residues by neuraminidase. In the present work, we evaluate the contribution of the sialic acid modifications in DC maturation. We demonstrate that neuraminidase-treated human DCs have increased expression of major histocompatibility complex (MHC) and costimulatory molecules, increased gene expression of specific cytokines and induce a higher proliferative response of T lymphocytes. Together, the data suggest that clearance of cell surface sialic acids contributes to the development of a T helper type 1 proinflammatory response. This postulate is supported by mouse models, where elevated MHC class II and increased maturation of specific DC subsets were observed in DCs harvested from ST3Gal.I−/− and ST6Gal.I−/− mice. Moreover, important qualitative differences, particularly in the extent of reduced endocytosis and in the peripheral distribution of DC subsets, existed between the ST3Gal.I−/− and ST6Gal.I−/− strains. Together, the data strongly suggest not only a role of cell surface sialic acid modifications in maturation and functionality of DCs, but also that the sialic acid linkages created by different sialyltransferases are functionally distinct. Consequently, with particular relevance to DC-based therapies, cell surface sialylation, mediated by individual sialyltransferases, can influence the immunogenicity of DCs upon antigen loading. PMID:19740323
Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.
Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre
2016-01-01
Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.
BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance.
Audiger, Cindy; Lesage, Sylvie
2018-05-13
In contrast to conventional dendritic cells (cDC), when merocytic dendritic cells (mcDC) present antigens derived from apoptotic bodies, T-cell anergy is reversed rather than induced, a process that promotes autoimmunity. Interestingly, mcDC are present in higher proportion in type 1 diabetes-prone NOD mice than in autoimmune-resistant B6 and BALB/c mice, and the Insulin-dependent diabetes (Idd)13 locus is linked to mcDC proportion. Therefore, mcDC are notably associated with susceptibility to autoimmune diabetes. To identify which gene determines the proportion and absolute number of mcDC, we undertook a candidate gene approach by selecting relevant candidates within the Idd13 locus. We find that neither β2m nor Sirpa appear to influence the proportion of mcDC. Instead, we show that Bim effectively modulates mcDC number in a hematopoietic-intrinsic manner. We also demonstrate that Bim-deficiency does not impact other cDC subsets and appears to play a specific role in determining the proportion and absolute number of mcDC by promoting their survival. Together, these data demonstrate that Bim specifically modulates the number of mcDC. Identifying factors that facilitate apoptosis of mcDC by increasing BIM activity in a cell type-specific manner may help prevent autoimmunity. © 2018 Australasian Society for Immunology Inc.
Plasmacytoid dendritic cells: no longer an enigma and now key to transplant tolerance?
Rogers, NM; Isenberg, JS; Thomson, AW
2014-01-01
Plasmacytoid (p) dendritic cells (DC) are a specialized subset of DC whose primary role was initially defined by the production of type I interferons in response to viral infection. They are now known to also possess a repertoire of functions capable of determining T cell fate and activation. Under homeostatic conditions, non-lymphoid tissue-resident pDC play a critical role in the regulation of mucosal immunity, as well as the development of central and peripheral tolerance. Although these cells display a number of characteristics that differ from conventional DC, particularly altered costimulatory molecule expression and poor allostimulatory capacity when interacting with T cells, this phenotype favors the generation of alloantigen-specific regulatory CD4+ or CD8+ T cells critical to the development of graft tolerance. In this minireview we discuss pDC ontogeny, functional biology and the emerging data that demonstrate the importance of pDC in the induction of tolerance, as well as recent studies that define mechanisms underlying pDC-mediated tolerance to both solid organ and hematopoietic stem cell transplantats. We also highlight their use in clinical settings and the potential of pDC both as targets and cellular therapeutic agents to improve the outcome of organ transplantation. PMID:23617754
Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne
2012-01-01
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Lother, Jasmin; Breitschopf, Tanja; Krappmann, Sven; Morton, C Oliver; Bouzani, Maria; Kurzai, Oliver; Gunzer, Matthias; Hasenberg, Mike; Einsele, Hermann; Loeffler, Juergen
2014-11-01
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo. Copyright © 2014 Elsevier GmbH. All rights reserved.
Frenz, Theresa; Graalmann, Lukas; Detje, Claudia N; Döring, Marius; Grabski, Elena; Scheu, Stefanie; Kalinke, Ulrich
2014-09-01
Upon treatment with vesicular stomatitis virus (VSV) particles, plasmacytoid dendritic cells (pDC) are triggered to mount substantial type I IFN responses, whereas myeloid DC (mDC) are only minor producers. Interestingly, bone marrow-derived (BM-)mDC were more vulnerable to infection with enhanced GFP (eGFP)-expressing VSV (VSVeGFP) than BM-pDC. BM-pDC stimulated with wild-type VSV mounted TLR-dependent IFN responses that were independent of RIG-I-like helicase (RLH) signaling. In contrast, in BM-pDC the VSV variant M2 induced particularly high IFN responses triggered in a TLR- and RLH-dependent manner, whereas BM-mDC stimulation was solely RLH-dependent. Importantly, VSVeGFP treatment of BM-pDC derived from IFN-β yellow fluorescent protein (YFP) reporter mice (messenger of IFN-β) resulted in YFP(+) and eGFP(+) single-positive cells, whereas among messenger of IFN-β-BM-mDC most YFP(+) cells were also eGFP(+). This observation indicated that unlike mDC, direct virus infection was not required to trigger IFN responses of pDC. VSV-infected BM-mDC triggered BM-pDC to mount significantly higher IFN responses than free virus particles. Stimulation with infected cells enhanced the percentages of pDC subsets expressing either IFN-β(+) or IFN-α6(+) plus IFN-β(+). Irrespective of whether stimulated with free virus or infected cells, IFN induction was dependent on autophagy of pDC, whereas autophagy of the infected mDC was dispensable. Collectively, these results indicated that productive VSV infection was needed to trigger IFN responses of mDC, but not of pDC, and that IFN responses were primarily induced by virus-infected cells that stimulated pDC in a TLR-dependent manner. Copyright © 2014 by The American Association of Immunologists, Inc.
Brewitz, Anna; Eickhoff, Sarah; Dähling, Sabrina; Quast, Thomas; Bedoui, Sammy; Kroczek, Richard A; Kurts, Christian; Garbi, Natalio; Barchet, Winfried; Iannacone, Matteo; Klauschen, Frederick; Kolanus, Waldemar; Kaisho, Tsuneyasu; Colonna, Marco; Germain, Ronald N; Kastenmüller, Wolfgang
2017-02-21
Adaptive cellular immunity is initiated by antigen-specific interactions between T lymphocytes and dendritic cells (DCs). Plasmacytoid DCs (pDCs) support antiviral immunity by linking innate and adaptive immune responses. Here we examined pDC spatiotemporal dynamics during viral infection to uncover when, where, and how they exert their functions. We found that pDCs accumulated at sites of CD8 + T cell antigen-driven activation in a CCR5-dependent fashion. Furthermore, activated CD8 + T cells orchestrated the local recruitment of lymph node-resident XCR1 chemokine receptor-expressing DCs via secretion of the XCL1 chemokine. Functionally, this CD8 + T cell-mediated reorganization of the local DC network allowed for the interaction and cooperation of pDCs and XCR1 + DCs, thereby optimizing XCR1 + DC maturation and cross-presentation. These data support a model in which CD8 + T cells upon activation create their own optimal priming microenvironment by recruiting additional DC subsets to the site of initial antigen recognition. Published by Elsevier Inc.
Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.
Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel
2009-12-01
Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.
Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M
2014-01-01
Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331
Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe
2007-10-30
Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.
Cai, Li; Zhang, Chenxing; Wu, Jing; Zhou, Wei; Chen, Tongxin
2018-03-30
Programmed cell death-1 (PD-1) and its ligand (PD-L1) mediate negative signal in autoimmune diseases. While little is known about its role in juvenile idiopathic arthritis (JIA). The study aimed to reveal the circulating cell profile and the relative PD-1/PD-L1 expression of JIA subsets, elucidating their underlying immunomodulatory mechanisms. We detected the circulating cells and the relative PD-1/PD-L1 signaling in 101 JIA patients and 50 controls by flow cytometry and analyzed their association with disease activity and clinical manifestations. Different from other JIA types, active systemic JIA (sJIA) patients had lower percentage and count of CD4 + T cells and lower PD-1 expression on them compared with healthy controls (P<0.05), active polyarthritis (P<0.05) and enthesitis-related arthritis (ERA) patients (P<0.05). Also, they had higher percentage and count of myeloid dendritic cell (mDC) and lower PD-L1 expression on mDC compared with healthy controls (P<0.05). Both PD-1 on CD4 + T cell and PD-L1 on mDC were negatively correlated with JADAS-27 in sJIA patients (P<0.05). In addition, PD-1 expression on CD4 + T cell was negatively associated with the number of involved joints (P<0.05) and PD-L1 on mDC was lower in patients with fever (P<0.01), which could further divide patients into two groups of different manifestations. Our finding displayed decreased CD4 + T cell, increased mDC and reduced PD-1/PD-L1 signal in sJIA PBMC comparing with other JIA subsets, which might be helpful in JIA differential diagnosis and responsible for distinct clinical manifestations via different mechanisms. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response.
Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia
2013-12-25
Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8(+) T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8(+) T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.
Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis.
Chakraborty, Kaustav; Chatterjee, Soumya; Bhattacharyya, Arindam
2017-09-01
Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF. © 2017 International Federation for Cell Biology.
HIV-derived vectors for gene therapy targeting dendritic cells.
Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella
2013-01-01
Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.
Guermonprez, Pierre; Helft, Julie; Claser, Carla; Deroubaix, Stephanie; Karanje, Henry; Gazumyan, Anna; Darrasse-Jeze, Guillaume; Telerman, Stephanie B.; Breton, Gaëlle; Schreiber, Heidi A.; Frias-Staheli, Natalia; Billerbeck, Eva; Dorner, Marcus; Rice, Charles M.; Ploss, Alexander; Klein, Florian; Swiecki, Melissa; Colonna, Marco; Kamphorst, Alice O.; Meredith, Matthew; Niec, Rachel; Takacs, Constantin; Mikhail, Fadi; Hari, Aswin; Bosque, David; Eisenreich, Tom; Merad, Miriam; Shi, Yan; Ginhoux, Florent; Rénia, Laurent; Urban, Britta C.; Nussenzweig, Michel C.
2014-01-01
Summary Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell (DC) homeostasis and adaptive immunity via Flt3L release. Plasmodium-induced Flt3L release requires toll-like receptor activation and type I interferon production. We find that type I interferon supports the up-regulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3L from a pre-synthesized membrane-associated precursor. During infection Flt3L preferentially stimulates expansion of the CD8α+/CD103+ DC subset or its BDCA3+ human DC equivalent and has a significant impact on the magnitude of T cell activation, mostly in the CD8+ compartment. Our findings highlight a new mechanism that regulates DC homeostasis and T cell responses to infection. PMID:23685841
Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus
Bekeredjian-Ding, Isabelle; Greil, Johann; Ammann, Sandra; Parcina, Marijo
2014-01-01
Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination. PMID:24904586
Distinct DC subsets regulate adaptive Th1 and 2 responses during Trichuris muris infection.
Demiri, M; Müller-Luda, K; Agace, W W; Svensson-Frej, M
2017-10-01
Low- and high-dose infections with the murine large intestinal nematode Trichuris muris are associated with induction of adaptive Th1 and Th2 responses, respectively, in mesenteric lymph nodes (MLN). Classical dendritic cells (cDC) accumulate in the large intestinal mucosa and MLN upon T. muris infection, yet their role in driving adaptive responses to infection remains largely unknown. We performed low- and high-dose T. muris infections of mice deficient in defined cDC subsets to investigate their role in induction of adaptive immune responses. Mice lacking IRF4-dependent cDC failed to clear a high-dose infection and displayed impaired Th2 responses. Conversely, mice lacking IRF8-dependent cDC cleared a low-dose infection and displayed an impaired Th1 response while increased production of Th2 cytokines. Finally, mice lacking both IRF4- and IRF8-dependent cDC were able to generate a Th2 response and clear a low-dose infection. Collectively, these results suggest that IRF4- and IRF8-dependent cDC act antagonistically during T. muris infection, and demonstrate that intestinal Th2 responses can be generated towards T. muris in the absence of IRF4-dependent cDC. © 2017 John Wiley & Sons Ltd.
Kho, Steven; Marfurt, Jutta; Handayuni, Irene; Pava, Zuleima; Noviyanti, Rintis; Kusuma, Andreas; Piera, Kim A; Burdam, Faustina H; Kenangalem, Enny; Lampah, Daniel A; Engwerda, Christian R; Poespoprodjo, Jeanne R; Price, Ric N; Anstey, Nicholas M; Minigo, Gabriela; Woodberry, Tonia
2016-06-21
Plasmodium falciparum and Plasmodium vivax infections compromise dendritic cell (DC) function and expand regulatory T (Treg) cells in both clinical disease (malaria) and experimental human sub-microscopic infection. Conversely, in asymptomatic microscopy-positive (patent) P. falciparum or P. vivax infection in endemic areas, blood DC increase or retain HLA-DR expression and Treg cells exhibit reduced activation, suggesting that DC and Treg cells contribute to the control of patent asymptomatic infection. The effect of sub-microscopic (sub-patent) asymptomatic Plasmodium infection on DC and Treg cells in malaria-endemic area residents remains unclear. In a cross-sectional household survey conducted in Papua, Indonesia, 162 asymptomatic adults were prospectively evaluated for DC and Treg cells using field-based flow cytometry. Of these, 161 individuals (99 %) were assessed retrospectively by polymerase chain reaction (PCR), 19 of whom had sub-microscopic infection with P. falciparum and 15 with sub-microscopic P. vivax infection. Flow cytometric data were re-analysed after re-grouping asymptomatic individuals according to PCR results into negative controls, sub-microscopic and microscopic parasitaemia to examine DC and Treg cell phenotype in sub-microscopic infection. Asymptomatic adults with sub-microscopic P. falciparum or P. vivax infection had DC HLA-DR expression and Treg cell activation comparable to PCR-negative controls. Sub-microscopic P. falciparum infection was associated with lower peripheral CD4(+) T cells and lymphocytes, however sub-microscopic Plasmodium infection had no apparent effect on DC sub-set number or Treg cell frequency. In contrast to the impairment of DC maturation/function and the activation of Treg cells seen with sub-microscopic parasitaemia in primary experimental human Plasmodium infection, no phenotypic evidence of dysregulation of DC and Treg cells was observed in asymptomatic sub-microscopic Plasmodium infection in Indonesian adults. This is consistent with DC and Treg cells retaining their functional capacity in sub-microscopic asymptomatic infection with P. falciparum or P. vivax in malaria-endemic areas.
Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response
Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia
2013-01-01
Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses. PMID:24400008
Moss, Nicholas J; Magaret, Amalia; Laing, Kerry J; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E; Schiffer, Joshua T; Wald, Anna; Koelle, David M
2012-09-01
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.
Moss, Nicholas J.; Magaret, Amalia; Laing, Kerry J.; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E.; Schiffer, Joshua T.; Wald, Anna
2012-01-01
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals. PMID:22761381
Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao
2008-10-01
The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.
Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C
2016-02-01
Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Copin, Richard; Vitry, Marie-Alice; Hanot Mambres, Delphine; Machelart, Arnaud; De Trez, Carl; Vanderwinden, Jean-Marie; Magez, Stefan; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric
2012-01-01
Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis. PMID:22479178
Radiation-Induce Immune Modulation in Prostate Cancer
2005-01-01
Prostate-specific antigen Prostate carcinoma Mammoglobin-A Breast carcinoma Overexpressed Alpha - fetoprotein Hepatocellular carcinoma and yolk-sac tumors...Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor...additional subsets, e.g. Langerhans cells of the epidermis, and dermal or interstitial DC. PDC are the major interferon- alpha (IFNca) producing cells
Soulas, Caroline; Autissier, Patrick J.; Burdo, Tricia H.; Lifson, Jeffrey D.; Williams, Kenneth C.
2015-01-01
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs. PMID:25915601
The multifaceted biology of plasmacytoid dendritic cells
Swiecki, Melissa; Colonna, Marco
2015-01-01
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613
Zahorchak, Alan F; Macedo, Camila; Hamm, David E; Butterfield, Lisa H; Metes, Diana M; Thomson, Angus W
2018-01-01
Human regulatory dendritic cells (DCreg) were generated from CD14 immunobead-purified or elutriated monocytes in the presence of vitamin D3 and IL-10. They exhibited similar, low levels of costimulatory CD80 and CD86, but comparatively high levels of co-inhibitory programed death ligand-1 (PD-L1) and IL-10 production compared to control immature DC (iDC). Following Toll-like receptor 4 ligation, unlike control iDC, DCreg resisted phenotypic and functional maturation and further upregulated PD-L1:CD86 expression. Whereas LPS-stimulated control iDC (mature DC; matDC) secreted pro-inflammatory tumor necrosis factor but no IL-10, the converse was observed for LPS-stimulated DCreg. DCreg weakly stimulated naïve and memory allogeneic CD4 + and CD8 + T cell proliferation and IFNγ, IL-17A and perforin/granzyme B production in MLR. Their stimulatory function was enhanced however, by blocking PD-1 ligation. High-throughput T cell receptor (TCR) sequencing revealed that, among circulating T cell subsets, memory CD8 + T cells contained the most alloreactive TCR clonotypes and that, while matDC expanded these alloreactive memory CD8 TCR clonotypes, DCreg induced more attenuated responses. These findings demonstrate the feasibility of generating highly-purified GMP-grade DCreg for systemic infusion, their influence on the alloreactive T cell response, and a key mechanistic role of the PD1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Jie; Liu, Lidong; Yang, Yiming; Kong, Ning; Jiang, Xueyu; Sun, Juan; Xie, Rufeng
2017-01-01
Tolerogenic dendritic cells (tDCs) can expand TGF- β -induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTreg mtDC ) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mouse model. After induction by TGF- β and expansion by mature tDCs (mtDCs), the phenotype and proliferation of iTreg mtDC were assessed by flow cytometry. The ability of iTregs and iTreg mtDC to inhibit CD4 + T cell proliferation and suppress Th17 cell differentiation was compared. Following adoptive transfer of iTregs and iTreg mtDC to mice with CIA, the clinical and histopathologic scores, serum levels of IFN- γ , TNF- α , IL-17, IL-6, IL-10, TGF- β and anti-CII antibodies, and the distribution of the CD4 + Th subset were assessed. Compared with iTregs, iTreg mtDC expressed higher levels of Foxp3 and suppressed CD4 + T cell proliferation and Th17 cell differentiation to a greater extent. In vivo, iTreg mtDC reduced the severity and progression of CIA more significantly than iTregs, which was associated with a modulated inflammatory cytokine profile, reduced anti-CII IgG levels, and polarized Treg/Th17 balance. This study highlights the potential therapeutic utility of iTreg mtDC in autoimmune arthritis and should facilitate the future design of iTreg immunotherapeutic strategies.
Liu, Lidong; Kong, Ning; Jiang, Xueyu; Sun, Juan; Xie, Rufeng
2017-01-01
Objective Tolerogenic dendritic cells (tDCs) can expand TGF-β-induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTregmtDC) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mouse model. Methods After induction by TGF-β and expansion by mature tDCs (mtDCs), the phenotype and proliferation of iTregmtDC were assessed by flow cytometry. The ability of iTregs and iTregmtDC to inhibit CD4+ T cell proliferation and suppress Th17 cell differentiation was compared. Following adoptive transfer of iTregs and iTregmtDC to mice with CIA, the clinical and histopathologic scores, serum levels of IFN-γ, TNF-α, IL-17, IL-6, IL-10, TGF-β and anti-CII antibodies, and the distribution of the CD4+ Th subset were assessed. Results Compared with iTregs, iTregmtDC expressed higher levels of Foxp3 and suppressed CD4+ T cell proliferation and Th17 cell differentiation to a greater extent. In vivo, iTregmtDC reduced the severity and progression of CIA more significantly than iTregs, which was associated with a modulated inflammatory cytokine profile, reduced anti-CII IgG levels, and polarized Treg/Th17 balance. Conclusion This study highlights the potential therapeutic utility of iTregmtDC in autoimmune arthritis and should facilitate the future design of iTreg immunotherapeutic strategies. PMID:28702462
He, Wei; Racine, Jeremy J; Johnston, Heather F; Li, Xiaofan; Li, Nainong; Cassady, Kaniel; Liu, Can; Deng, Ruishu; Martin, Paul; Forman, Stephen; Zeng, Defu
2014-07-01
We reported previously that anti-CD3 mAb treatment before hematopoietic cell transplantation (HCT) prevented graft-versus-host disease (GVHD) and preserved graft-versus-leukemia (GVL) effects in mice. These effects were associated with downregulated donor T cell expression of tissue-specific homing and chemokine receptors, marked reduction of donor T cell migration into GVHD target tissues, and deletion of CD103(+) dendritic cells (DCs) in mesenteric lymph nodes (MLN). MLN CD103(+) DCs and peripheral lymph node (PLN) DCs include CCR7(+) and CCR7(-) subsets, but the role of these DC subsets in regulating donor T cell expression of homing and chemokine receptors remain unclear. Here, we show that recipient CCR7(+), but not CCR7(-), DCs in MLN induced donor T cell expression of gut-specific homing and chemokine receptors in a retinoid acid-dependent manner. CCR7 regulated activated DC migration from tissue to draining lymph node, but it was not required for the ability of DCs to induce donor T cell expression of tissue-specific homing and chemokine receptors. Finally, anti-CD3 treatment depleted CCR7(+) but not CCR7(-) DCs by inducing sequential expansion and apoptosis of CCR7(+) DCs in MLN and PLN. Apoptosis of CCR7(+) DCs was associated with DC upregulation of Fas expression and natural killer cell but not T, B, or dendritic cell upregulation of FasL expression in the lymph nodes. These results suggest that depletion of CCR7(+) host-type DCs, with subsequent inhibition of donor T cell migration into GVHD target tissues, can be an effective approach in prevention of acute GVHD and preservation of GVL effects. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Sivakumar, Ramya; Abboud, Georges; Mathews, Clayton E; Atkinson, Mark A; Morel, Laurence
2018-01-01
The genetic analysis of the lupus-prone NZM2410 mouse has identified a suppressor locus, Sle2c2 , which confers resistance to spontaneous lupus in combination with NZM2410 susceptibility loci, or in the chronic graft-versus-host disease (cGVHD) induced model of lupus in the B6. Sle2c2 congenic strain. The candidate gene for Sle2c2 , the Csf3r gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R/CD114), was validated when cGVHD was restored in B6. Sle2c2 mice after treatment with G-CSF. The goal of the project reported herein was to investigate the myeloid cells that confer resistance to cGVHD and to ascertain if the mechanism behind their suppression involves the G-CSF pathway. We showed that despite expressing the highest levels of G-CSF-R, neutrophils play only a modest role in the autoimmune activation induced by cGVHD. We also found reduced expression levels of G-CSF-R on the surface of dendritic cells (DCs) and a differential distribution of DC subsets in response to cGVHD in B6. Sle2c2 versus B6 mice. The CD8α + DC subset, known for its tolerogenic phenotype, was expanded upon induction of cGVHD in B6. Sle2c2 mice. In addition, the deficiency of CD8α + DC subset enhanced the severity of cGVHD in B6. Batf3 -/- and B6 .Sle2c2 mice, confirming their role in suppression of cGVHD. B6. Sle2c2 DCs presented lowered activation and antigen presentation abilities and expressed lower levels of genes associated with DC activation and maturation. Exposure to exogenous G-CSF reversed the majority of these phenotypes, suggesting that tolerogenic DCs maintained through a defective G-CSF-R pathway mediated the resistance to cGVHD in B6. Sle2c2 mice.
Crozat, Karine; Guiton, Rachel; Contreras, Vanessa; Feuillet, Vincent; Dutertre, Charles-Antoine; Ventre, Erwan; Vu Manh, Thien-Phong; Baranek, Thomas; Storset, Anne K.; Marvel, Jacqueline; Boudinot, Pierre; Hosmalin, Anne; Schwartz-Cornil, Isabelle
2010-01-01
Human BDCA3+ dendritic cells (DCs) were suggested to be homologous to mouse CD8α+ DCs. We demonstrate that human BDCA3+ DCs are more efficient than their BDCA1+ counterparts or plasmacytoid DCs (pDCs) in cross-presenting antigen and activating CD8+ T cells, which is similar to mouse CD8α+ DCs as compared with CD11b+ DCs or pDCs, although with more moderate differences between human DC subsets. Yet, no specific marker was known to be shared between homologous DC subsets across species. We found that XC chemokine receptor 1 (XCR1) is specifically expressed and active in mouse CD8α+, human BDCA3+, and sheep CD26+ DCs and is conserved across species. The mRNA encoding the XCR1 ligand chemokine (C motif) ligand 1 (XCL1) is selectively expressed in natural killer (NK) and CD8+ T lymphocytes at steady-state and is enhanced upon activation. Moreover, the Xcl1 mRNA is selectively expressed at high levels in central memory compared with naive CD8+ T lymphocytes. Finally, XCR1−/− mice have decreased early CD8+ T cell responses to Listeria monocytogenes infection, which is associated with higher bacterial loads early in infection. Therefore, XCR1 constitutes the first conserved specific marker for cell subsets homologous to mouse CD8α+ DCs in higher vertebrates and promotes their ability to activate early CD8+ T cell defenses against an intracellular pathogenic bacteria. PMID:20479118
Naumov, Yuri N.; Bahjat, Keith S.; Gausling, Rudolph; Abraham, Roshini; Exley, Mark A.; Koezuka, Yasuhiko; Balk, Steven B.; Strominger, Jack L.; Clare-Salzer, Michael; Wilson, S. Brian
2001-01-01
CD1d-restricted invariant NKT (iNKT) cells are immunoregulatory cells whose loss exacerbates diabetes in nonobese diabetic (NOD) female mice. Here, we show that the relative numbers of iNKT cells from the pancreatic islets of NOD mice decrease at the time of conversion from peri-insulitis to invasive insulitis and diabetes. Conversely, NOD male mice who have a low incidence of diabetes showed an increased frequency of iNKT cells. Moreover, administration of α-galactosylceramide, a potent activating ligand presented by CD1d, ameliorated the development of diabetes in NOD female mice and resulted in the accumulation of iNKT cells and myeloid dendritic cells (DC) in pancreatic lymph nodes (PLN), but not in inguinal lymph nodes. Strikingly, injection of NOD female mice with myeloid DC isolated from the PLN, but not those from the inguinal lymph nodes, completely prevented diabetes. Thus, the immunoregulatory role of iNKT cells is manifested by the recruitment of tolerogenic myeloid DC to the PLN and the inhibition of ongoing autoimmune inflammation. PMID:11707602
Identification and Characterization of a Dendritic Cell Precursor in Parenchymal Lung Tissue.
von Garnier, Christophe; Blank, Fabian; Rothen-Rutishauser, Barbara; Goethert, Joachim R; Holt, Patrick G; Stumbles, Philip A; Strickland, Deborah H
2017-03-01
The pulmonary parenchymal and mucosal microenvironments are constantly exposed to the external environment and thus require continuous surveillance to maintain steady-state immunological homeostasis. This is achieved by a mobile network of pulmonary dendritic cells (DC) and macrophages (mø) that constantly sample and process microenvironmental antigens into signals that can initiate or dampen inflammation, either locally or after onward migration to draining lymph nodes. The constant steady-state turnover of pulmonary DC and mø requires replenishment from bone marrow precursors; however, the nature of the pulmonary precursor cell (PC) remains unclear, although recent studies suggest that subsets of pulmonary DC may derive from circulating monocytic precursors. In the current study, we describe a population of cells in steady-state mouse lung tissue that has the surface phenotypic and ultrastructural characteristics of a common DC progenitor. Irradiation and reconstitution studies confirmed the bone marrow origins of this PC and showed that it had rapid depletion and reconstitution kinetics that were similar to those of DC, with a 50% repopulation by donor-derived cells by Days 7-9 after reconstitution. This was significantly faster than the rates observed for mø, which showed 50% repopulation by donor-derived cells beyond Days 16-21 after reconstitution. Purified PC gained antigen-presenting function and a cell surface phenotype similar to that of pulmonary DC after maturation in vitro, with light and electron microscopy confirming a myeloid DC morphology. To the best of our knowledge, this is the first study to describe a PC for DC in lung tissue; the findings have implications for the restoration of pulmonary immunological homeostasis after bone marrow transplant.
Pan, Jian-ping; Weng, Yue-song; Wu, Qian-qian
2006-09-01
To investigate the anti-metastatic effect of vascular endothelial growth factor receptor 2 extracellular domain gene-modified dendritic cell (DC-sVEGFR-2) vaccination. Dendritic cells (DC) were electroporated with pcDNA3. 1/sVEGFR-2 plasmid DNA. Expression of sVEGFR-2 was determined by ELISA. For immunization, C57BL/6 mice were intravenously injected three times with 1 x 10(5) cells per mouse of DC, pcDNA3. 1-transfected DC (DC-vector) , DC-sVEGFR-2, or 100 microl of PBS at 7-day intervals. At 10 days after the last immunization, the immunized mice were subjected to assessment of cytotoxic T lymphocyte ( CTL) response to VEGFR-2, alginate bead analysis of tumor cell-induced angiogenesis, and observation of the anti-metastatic effect in B16 melanoma metastasis model. CTL activity was determined by a standard 4-h 51Cr release assay against VEGFR-2 + vascular endothelial cell line H5V, 3LL cells stably transfected with pcDNA3. 1/sVEGFR-2 (3LL,-sVEGFR-2), and VEGFR-2- cell lines EL-4 and 3LL. Monoclonal antibodies GK1.5 anti-CD4 and 2.43 anti-CD8 were used to deplete in vivo CD4 + T cells and CD8' T cells, respectively. DC-sVEGFR-2 could effectively express sVEGFR-2, whereas DC-vector and DC could not. Immunization of mice with DC-sVEGFR-2 significantly induce CTL activity against VEGFR-2 + cell lines H5V and 3LL-sVEGFR-2, however, no significant CTL activity was observed when VEGFR-2- syngeneic cell lines EL-4 and 3LL. were used as target cells, implying this CTL activity was VEGFR-2 specific. Alginate bead analysis of in vivo neoangiogenesis showed that the inhibition reached 50% in mice vaccinated with DC-sVEGFR-2 compared with mice vaccinated with DC, DC-vector or PBS. Anti-metastatic experiment showed that profound reduction in pulmonary metastases was found in mice immunized with DC-sVEGFR-2, while mice immunized with PBS, DC, DC-vector developed extensive pulmonary metastases. The number of tumor nodules on lung surface decreased by 81.9% in mice immunized with DC-sVEGFR-2 when compared with mice immunized with DC-vector (49.7+/-12.7 vs. 9.0+/-3.2). In vivo T cell subset depletion experiments showed that the anti-metastatic effect of DC-sVEGFR-2 vaccination was abrogated in CD8 + T cell-depleted but not in CD4+ T cell-depleted mice. Immunization of mice with DC-sVEGFR-2 could break self-tolerance and induce a significant CTL response to VEGFR-2, leading to profound inhibition of tumor-cell induced angiogenesis and metastasis. This anti-metastatic effect is mainly mediated by CD8+ T cells.
Karlsen, M; Hovden, A-O; Vogelsang, P; Tysnes, B B; Appel, S
2011-08-01
Immunotherapy using dendritic cells (DC) has shown promising results. However, the use of an appropriate DC population is critical for the outcome of this treatment, and the search for an optimal DC subset is still ongoing. The DC used in immunotherapy today are usually matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE(2). These cells have deficits in their cytokine production, particularly IL-12p70, mainly because of the presence of PGE(2). Bromelain is a pineapple stem extract containing a mixture of proteases that has been used clinically in adjuvant cancer treatment. In this study, we analysed the effect of bromelain on human monocyte-derived DC. We added bromelain to the cytokine cocktail and modified cytokine cocktails with either no PGE(2) or reduced amounts of PGE(2), respectively. Combining bromelain with the cytokine cocktails containing PGE(2) resulted in an increased surface expression of CD83, CD80 and CD86. The chemokine receptor CCR7 was also considerably upregulated in these DC populations compared with DC treated with the cytokine cocktail alone. Removal or reduction of PGE(2) from the cytokine cocktail did not increase the IL-12p70 secretion from stimulated DC, and addition of bromelain to the different cytokine cocktails resulted in only a minor increase in IL-12p70 production. Moreover, combining bromelain with the cytokine cocktails did not improve the T cell stimulatory capacity of the generated DC populations. In conclusion, bromelain treatment of monocyte-derived DC does not improve the functional quality compared with the standard cytokine cocktail. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.
Sava, Florentina; Toldi, Gergely; Treszl, András; Hajdú, Júlia; Harmath, Ágnes; Rigó, János; Tulassay, Tivadar; Vásárhelyi, Barna
2017-06-01
To address the hypothesis that pre-eclampsia (PE) impacts the fetal immune system, we investigated the prevalence of distinct immune cell subsets along with plasma cortisol and cytokine levels in pre-term newborns of PE mothers. Cord blood and peripheral blood samples on the 1st, 3rd and 7th postnatal days of life were collected from 14 pre-term infants affected by PE and 14 non-PE pregnancies. We measured plasma cortisol and cytokine levels with immunoassays and assessed the prevalence of T, NK and DC subsets using flow cytometry. The prevalence of CD4+ cells was lower in PE infants, while that of memory T cells was higher. Myeloid DCs had a lower prevalence in PE neonates. Cytokine and cortisol levels were lower in PE neonates. Our observations show that PE pregnancies are associated with altered newborn immune status during the first week of life. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell
2009-01-01
A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N=26) or non-allergens (N=22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2-5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (≥ 1.5 fold) for 25 of 26 allergens (sensitivity = 96%) but did not increase for 19 of 22 non-allergens (specificity = 86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity. PMID:19665512
Effector and regulatory dendritic cells display distinct patterns of miRNA expression.
Lombardi, Vincent; Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet-Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron-Bodo, Véronique; Moingeon, Philippe
2017-09-01
MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Using specific culture conditions, we differentiated immature human monocyte-derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of T H 1, T H 2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non-allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR-132 and miR-155), was down-regulated compared to non-allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow-up AIT efficacy. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.
Effector and regulatory dendritic cells display distinct patterns of miRNA expression
Luce, Sonia; Moussu, Hélène; Morizur, Lise; Gueguen, Claire; Neukirch, Catherine; Chollet‐Martin, Sylvie; Mascarell, Laurent; Aubier, Michel; Baron‐Bodo, Véronique; Moingeon, Philippe
2017-01-01
Abstract Introduction MicroRNAs (miRNAs) contribute to the regulation of dendritic cell (DC) polarization, thereby influencing the balance of adaptive immune responses. Herein, we studied the expression of miRNAs in polarized DCs and analyzed whether expression of these miRNAs could be associated with allergic rhinitis and allergen immunotherapy (AIT) outcome. Method Using specific culture conditions, we differentiated immature human monocyte‐derived DCs into DC1, DC2, and DCreg subsets (supporting the differentiation of TH1, TH2 or regulatory T cells, respectively). Profiling of miRNA expression was performed in these DC subpopulations using microarrays. Levels of miRNAs specific for polarized DCs were then evaluated in a cohort of 58 patients with allergic rhinitis and 25 non‐allergic controls, as well as in samples from 30 subjects treated with sublingual grass pollen tablets or placebo for four months. Results We successfully identified 16 miRNAs differentially regulated between immature DCs, DC1, DC2, and DCreg cells. In allergic rhinoconjunctivitis patients, the expression of two of those miRNAs (miR‐132 and miR‐155), was down‐regulated compared to non‐allergic individuals. However, the levels of these miRNAs were not significantly modified following four months of grass pollen immunotherapy. Conclusions Studying polarized DCs and clinical samples from subjects with or without allergic rhinoconjunctivitis, we demonstrated that the expression of two miRNAs linked to effector DCs (i.e., DC1 and/or DC2 cells), was reduced in the blood of patients with allergic rhinoconjunctivitis. Nevertheless, these miRNAs did not represent relevant biomarkers to predict or follow‐up AIT efficacy. PMID:28497578
Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state.
Swiecki, M; Miller, H L; Sesti-Costa, R; Cella, M; Gilfillan, S; Colonna, M
2017-07-01
Plasmacytoid dendritic cells (pDCs) detect viruses initiating antiviral type I interferon responses. The microbiota is known to shape immune responses, but whether it influences pDC homeostasis and/or function is poorly understood. By comparing pDCs in germ-free and specific pathogen-free mice, we found that the microbiota supports homeostatic trafficking by eliciting constitutive levels of the chemokine CCL2 that engages CCR2. Mononuclear phagocytes were required for tonic CCL2 levels. CCL2 was particularly important for trafficking of a CCR2 hi subset of pDCs that produced proinflammatory cytokines and was prone to apoptosis. We further demonstrated that CCR2 was also essential for pDC migration during inflammation. Wild-type (WT):Ccr2 -/- mixed bone marrow chimeras revealed that CCR2 promotes pDC migration in a cell-intrinsic manner. Overall, we identify a novel role for the microbiota in shaping immunity, which includes induction of CCL2 levels that control homeostatic trafficking of pDCs.
Sekar, Divya; Brüne, Bernhard; Weigert, Andreas
2010-08-01
The division of labor between DC subsets is evolutionarily well-defined. mDC are efficient in antigen presentation, whereas pDC act as rheostats of the immune system. They activate NK cells, cause bystander activation of mDC, and interact with T cells to induce tolerance. This ambiguity positions pDC at the center of inflammatory diseases, such as cancer, arthritis, and autoimmune diseases. The ability to generate human mDC ex vivo made it possible to engineer them to suit therapy needs. Unfortunately, a similar, easily accessible system to generate human pDC is not available. We describe a method to generate human pDC equivalents ex vivo, termed mo-pDC from peripheral blood monocytes using Flt3-L. mo-pDC showed a characteristic pDC profile, such as high CD123 and BDCA4, but low CD86 and TLR4 surface expression and a low capacity to induce autologous lymphocyte proliferation and to phagocytose apoptotic debris in comparison with mDC. Interestingly, mo-pDC up-regulated the pDC lineage-determining transcription factor E2-2 as well as expression of BDCA2, which is under the transcriptional control of E2-2 but not its inhibitor ID2, during differentiation. mo-pDC produced high levels of IFN-alpha when pretreated overnight with TNF-alpha. Under hypoxia, E2-2 was down-regulated, and ID2 was induced in mo-pDC, whereas surface expression of MHCI, CD86, and BDCA2 was decreased. Furthermore, mo-pDC produced high levels of inflammatory cytokines when differentiated under hypoxia compared with normoxia. Hence, mo-pDC can be used to study differentiation and functions of human pDC under microenvironmental stimuli.
Wei, Hai-Lei; Collmer, Alan
2017-12-25
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Ontogeny and function of murine epidermal Langerhans cells.
Kaplan, Daniel H
2017-09-19
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Reynolds, G; Gibbon, J R; Pratt, A G; Wood, M J; Coady, D; Raftery, G; Lorenzi, A R; Gray, A; Filer, A; Buckley, C D; Haniffa, M A; Isaacs, J D; Hilkens, C M U
2016-01-01
Objective A population of synovial inflammatory dendritic cells (infDCs) has recently been identified in rheumatoid arthritis (RA) and is thought to be monocyte-derived. Here, we investigated the role and source of granulocyte macrophage-colony-stimulating factor (GM-CSF) in the differentiation of synovial infDC in RA. Methods Production of GM-CSF by peripheral blood (PB) and synovial fluid (SF) CD4+ T cells was assessed by ELISA and flow cytometry. In vitro CD4+ T-cell polarisation experiments were performed with T-cell activating CD2/CD3/CD28-coated beads in the absence or presence of pro-Th1 or pro-Th17 cytokines. CD1c+ DC and CD16+ macrophage subsets were flow-sorted and analysed morphologically and functionally (T-cell stimulatory/polarising capacity). Results RA-SF CD4+ T cells produced abundant GM-CSF upon stimulation and significantly more than RA-SF mononuclear cells depleted of CD4+ T cells. GM-CSF-producing T cells were significantly increased in RA-SF compared with non-RA inflammatory arthritis SF, active RA PB and healthy donor PB. GM-CSF-producing CD4+ T cells were expanded by Th1-promoting but not Th17-promoting conditions. Following coculture with RA-SF CD4+ T cells, but not healthy donor PB CD4+ T cells, a subpopulation of monocytes differentiated into CD1c+ infDC; a process dependent on GM-CSF. These infDC displayed potent alloproliferative capacity and enhanced GM-CSF, interleukin-17 and interferon-γ production by CD4+ T cells. InfDC with an identical phenotype to in vitro generated cells were significantly enriched in RA-SF compared with non-RA-SF/tissue/PB. Conclusions We demonstrate a therapeutically tractable feedback loop of GM-CSF secreted by RA synovial CD4+ T cells promoting the differentiation of infDC with potent capacity to induce GM-CSF-producing CD4+ T cells. PMID:25923217
CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.
Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M
2013-04-01
Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.
Th17 Cells and Activated Dendritic Cells Are Increased in Vitiligo Lesions
Fuentes-Duculan, Judilyn; Moussai, Dariush; Gulati, Nicholas; Sullivan-Whalen, Mary; Gilleaudeau, Patricia; Cohen, Jules A.; Krueger, James G.
2011-01-01
Background Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis. Methodology/Principal Findings In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo. Conclusions/Significance These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses. PMID:21541348
Chan, Vera S. F.; Chung, Nancy P. Y.; Wang, Shu-Rong; Li, Zhongye; Ma, Jing; Lin, Chia-Wei; Hsieh, Ya-Ju; Chang, Kao-Ping; Kung, Sui-Sum; Wu, Yi-Chia; Chu, Cheng-Wei; Tai, Hsiao-Ting; Gao, George F.; Zheng, Bojian; Yokoyama, Kazunari K.; Austyn, Jonathan M.; Lin, Chen-Lung S.
2013-01-01
During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC depletion in chronic HIV infection. PMID:23382671
Amin, Rada; Mourcin, Frédéric; Uhel, Fabrice; Pangault, Céline; Ruminy, Philippe; Dupré, Loic; Guirriec, Marion; Marchand, Tony; Fest, Thierry; Lamy, Thierry
2015-01-01
Follicular lymphoma (FL) results from the accumulation of malignant germinal center (GC) B cells leading to the development of an indolent and largely incurable disease. FL cells remain highly dependent on B-cell receptor (BCR) signaling and on a specific cell microenvironment, including T cells, macrophages, and stromal cells. Importantly, FL BCR is characterized by a selective pressure to retain surface immunoglobulin M (IgM) BCR despite an active class-switch recombination process, and by the introduction, in BCR variable regions, of N-glycosylation acceptor sites harboring unusual high-mannose oligosaccharides. However, the relevance of these 2 FL BCR features for lymphomagenesis remains unclear. In this study, we demonstrated that IgM+ FL B cells activated a stronger BCR signaling network than IgG+ FL B cells and normal GC B cells. BCR expression level and phosphatase activity could both contribute to such heterogeneity. Moreover, we underlined that a subset of IgM+ FL samples, displaying highly mannosylated BCR, efficiently bound dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), which could in turn trigger delayed but long-lasting BCR aggregation and activation. Interestingly, DC-SIGN was found within the FL cell niche in situ. Finally, M2 macrophages induced a DC-SIGN–dependent adhesion of highly mannosylated IgM+ FL B cells and triggered BCR-associated kinase activation. Interestingly, pharmacologic BCR inhibitors abolished such crosstalk between macrophages and FL B cells. Altogether, our data support an important role for DC-SIGN–expressing infiltrating cells in the biology of FL and suggest that they could represent interesting therapeutic targets. PMID:26272216
Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma
2018-03-15
Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic heterogeneity of aortic macrophages and MoDCs in atherosclerotic and identified previously unrecognized macrophage populations and their gene expression signature, suggesting specialized functions. Our findings will open up novel opportunities to explore distinct myeloid cell populations and their functions in atherosclerosis.
Cotton, R N; McDonald-Fleming, R; Boyd, A; Spates, K; Nutman, T B; Tolouei Semnani, R
2015-02-01
Filarial infection in humans is initiated when a mosquito deposits third-stage parasite larvae (L3) in the skin. Langerhans cells (LCs) and dermal dendritic cells (DDCs) are the first cells that the parasite encounters, and L3s must evade these highly effective antigen-presenting cells to establish infection. To assess LC and DDC responses to L3 in human skin, we employed three models of increasing physiologic relevance: in vitro-generated LCs, epidermal blister explants and full-thickness human skin sections. In vitro-generated LCs expressed TLR1-10 and robustly produced IL-6 and TNF-α in response to PolyI:C, but pre-exposure to L3s did not alter inflammatory cytokine production or TLR expression. L3s did not modulate expression of LC markers CDH1, CD207, or CD1a, or the regulatory products TSLP or IDO in epidermal explants or in vitro-generated LC. LC, CD14+ DDC, CD1c+ DC and CD141+ DC from human skin sections were analysed by flow cytometry. While PolyI:C potently induced CCL22 production in LC, CD1c+ DC, and CD141+ DC, and IL-10 production in LC, L3s did not modulate the numbers of or cytokine production by any skin DC subset. L3s broadly failed to activate or modulate LCs or DDCs, suggesting filarial larvae expertly evade APC detection in human skin. © 2014 John Wiley & Sons Ltd.
Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn
2013-01-01
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS. PMID:23469245
Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer
Fehres, Cynthia M.; Unger, Wendy W. J.; Garcia-Vallejo, Juan J.; van Kooyk, Yvette
2014-01-01
Antigen cross-presentation, the process in which exogenous antigens are presented on MHC class I molecules, is crucial for the generation of effector CD8+ T cell responses. Although multiple cell types are being described to be able to cross-present antigens, in vivo this task is mainly carried out by certain subsets of dendritic cells (DCs). Aspects such as the internalization route, the pathway of endocytic trafficking, and the simultaneous activation through pattern-recognition receptors have a determining influence in how antigens are handled for cross-presentation by DCs. In this review, we will summarize new insights in factors that affect antigen cross-presentation of human DC subsets, and we will discuss the possibilities to exploit antigen cross-presentation for immunotherapy against cancer. PMID:24782858
Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan; Cao, Hui
Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effectivemore » than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.« less
Identification and characterization of polyclonal αβ T cells with dendritic cell properties
Kuka, Mirela; Munitic, Ivana; Ashwell, Jonathan D.
2012-01-01
An efficient immune response requires coordination between innate and adaptive immunity, which act through cells different in origin and function. Here we report the identification of thymus-derived αβ TCR+ cells that express CD11c and MHC class II, and require FLT3L for development (TDC). TDC express genes heretofore found uniquely in T cells or DC, as well as a distinctive signature of cytotoxicity-related genes. Unlike other innate T cell subsets, TDC have a polyclonal TCR repertoire andrespond to cognate antigens. However, they differ from conventional T cells in that they do not require help from antigen-presenting cells, respond to TLR-mediated stimulation by producing IL-12 and process and present antigen. The physiologic relevance of TDC, found in mice and humans, is still under investigation, but the fact that they combine key features of T and DC cells suggests that they provide a bridge between the innate and adaptive immune systems. PMID:23187623
Koh, Vanessa Hui Qi; Ng, See Liang; Ang, Michelle Lay Teng; Lin, Wenwei; Ruedl, Christiane; Alonso, Sylvie
2017-01-01
Despite international control programmes, the global burden of tuberculosis remains enormous. Efforts to discover novel drugs have largely focused on targeting the bacterium directly. Alternatively, manipulating the host immune response may represent a valuable approach to enhance immunological clearance of the bacilli, but necessitates a deeper understanding of the immune mechanisms associated with protection against Mycobacterium tuberculosis infection. Here, we examined the various dendritic cells (DC) subsets present in the lung and draining lymph nodes (LN) from mice intra-tracheally infected with M. tuberculosis. We showed that although limited in number, pulmonary CD103 + DCs appeared to be involved in the initial transport of mycobacteria to the draining mediastinal LN and subsequent activation of T cells. Using CLEC9A-DTR transgenic mice enabling the inducible depletion of CD103 + DCs, we established that this DC subset contributes to the control of mycobacterial burden and plays a role in the early activation of T cells, in particular CD8 + T cells. Our findings thus support a previously unidentified role for pulmonary CD103 + DCs in the rapid mobilization of mycobacteria from the lungs to the draining LN soon after exposure to M. tuberculosis, which is a critical step for the development of the host adaptive immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jochems, Simon P.; Jacquelin, Beatrice; Chauveau, Lise; Huot, Nicolas; Petitjean, Gaël; Lepelley, Alice; Liovat, Anne-Sophie; Ploquin, Mickaël J.; Cartwright, Emily K.; Bosinger, Steven E.; Silvestri, Guido; Barré-Sinoussi, Françoise; Lebon, Pierre; Schwartz, Olivier
2015-01-01
ABSTRACT Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4+ T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing. PMID:25903334
Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.
2014-01-01
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis
Parlato, Stefania; Chiacchio, Teresa; Salerno, Debora; Petrone, Linda; Castiello, Luciano; Romagnoli, Giulia; Canini, Irene; Goletti, Delia; Gabriele, Lucia
2018-01-01
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity. PMID:29320502
The immunology of the porcine skin and its value as a model for human skin.
Summerfield, Artur; Meurens, François; Ricklin, Meret E
2015-07-01
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kokolus, Kathleen M.; Spangler, Haley M.; Povinelli, Benjamin J.; Farren, Matthew R.; Lee, Kelvin P.; Repasky, Elizabeth A.
2013-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8+ T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8+ T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function. PMID:24575090
Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A
2014-01-01
The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.
Obleukhova, Irina; Kiryishina, Nataliya; Falaleeva, Svetlana; Lopatnikova, Julia; Kurilin, Vasiliy; Kozlov, Vadim; Vitsin, Aleksander; Cherkasov, Andrey; Kulikova, Ekaterina; Sennikov, Sergey
2018-01-01
Cancer is associated with a reduction in immature and mature circulating dendritic cells (DCs), and with an impaired migratory capacity, compared with healthy donors. Therefore, modern approaches to the in vitro generation of DCs loaded with tumor antigens and their use for inducing antitumor immune responses in vivo are being investigated. The purpose of the present study was to investigate the phenotypic and functional characteristics of peripheral blood DC subsets in patients with non-small cell lung cancer (NSCLC), and the development of an antitumor cytotoxic response by mononuclear cells (MNCs) from patients using in vitro generated antigen-primed DCs. Heparinized peripheral venous blood samples were obtained from 10 healthy donors and 20 patients with a histologically verified diagnosis of NSCLC. The ability of antigen-activated DCs to stimulate the activity of MNCs against autologous tumor cells was evaluated using a cytotoxic test. Peripheral blood DC subsets from patients with NSCLC were identified to be decreased and to exhibit an impaired ability to mature, compared with healthy donors. Furthermore, DCs generated from MNCs from patients with NSCLC were able to stimulate a specific cytotoxic response when loaded with autologous tumor lysates or RNA and matured, in vitro. A perforin and granzyme B-dependent mode of cytotoxicity was primarily induced. The ability of DCs loaded with tumor antigens to increase the cytotoxic activity of MNCs against NSCLC cells in vitro indicates the effective induction and co-stimulation of T lymphocytes by the generated DCs. PMID:29399182
Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen.
Ali, Niwa; Zirak, Bahar; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D
2018-05-01
Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 + dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103 + DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response. Copyright © 2018 by The American Association of Immunologists, Inc.
Jardine, Laura; Barge, Dawn; Ames-Draycott, Ashley; Pagan, Sarah; Cookson, Sharon; Spickett, Gavin; Haniffa, Muzlifah; Collin, Matthew; Bigley, Venetia
2013-01-01
Dendritic cells (DCs) and monocytes are critical regulators and effectors of innate and adaptive immune responses. Monocyte expansion has been described in many pathological states while monocyte and DC deficiency syndromes are relatively recent additions to the catalog of human primary immunodeficiency disorders. Clinically applicable screening tests to diagnose and monitor these conditions are lacking. Conventional strategies for identifying human DCs and monocytes have been based on the use of a lineage gate to exclude lymphocytes, thus preventing simultaneous detection of DCs, monocytes, and lymphocyte subsets. Here we demonstrate that CD4 is a reliable lineage marker for the human peripheral blood antigen-presenting cell compartment that can be used to identify DCs and monocytes in parallel with lymphocytes. Based on this principle, simple modification of a standard lymphocyte phenotyping assay permits simultaneous enumeration of four lymphocyte and five DC/monocyte populations from a single sample. This approach is applicable to clinical samples and facilitates the diagnosis of DC and monocyte disorders in a wide range of clinical settings, including genetic deficiency, neoplasia, and inflammation. PMID:24416034
Kirchner, Florian R.; Becattini, Simone; Rülicke, Thomas; Sallusto, Federica; LeibundGut-Landmann, Salomé
2015-01-01
Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC) we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs) present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity. PMID:26431538
Becker, Amy M.; Michael, Drew G.; Satpathy, Ansuman T.; Sciammas, Roger; Singh, Harinder
2012-01-01
While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8−/− BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8−/− common myeloid progenitors and, unexpectedly, Irf8−/− ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. PMID:22238324
Neuberger, A; Ring, S; Silva-Vilches, C; Schrader, J; Enk, A; Mahnke, K
2017-09-01
Application of haptens to the skin induces release of immune stimulatory ATP into the extracellular space. This "danger" signal can be converted to immunosuppressive adenosine (ADO) by the action of the ectonucleotidases CD39 and CD73, expressed by skin and immune cells. Thus, the expression and regulation of CD73 by skin derived cells may have crucial influence on the outcome of contact hypersensitivity (CHS) reactions. To investigate the role of CD73 expression during 2,4,6-trinitrochlorobenzene (TNCB) induced CHS reactions. Wild type (wt) and CD73 deficient mice were subjected to TNCB induced CHS. In the different mouse strains the resulting ear swelling reaction was recorded along with a detailed phenotypic analysis of the skin migrating subsets of dendritic cells (DC). In CD73 deficient animals the motility of DC was higher as compared to wt animals and in particular after sensitization we found increased migration of Langerin + DC from skin to draining lymph nodes (LN). In the TNCB model this led to a stronger sensitization as indicated by increased frequency of interferon-γ producing T cells in the LN and an increased ear thickness after challenge. CD73 derived ADO production slows down migration of Langerin + DC from skin to LN. This may be a crucial mechanism to avoid over boarding immune reactions against haptens. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
The Role of Dendritic Cell Maturation in the Induction of Insulin-Dependent Diabetes Mellitus.
Mbongue, Jacques C; Nieves, Hector A; Torrez, Timothy W; Langridge, William H R
2017-01-01
Dendritic cells (DCs) are the dominant class of antigen-presenting cells in humans and are largely responsible for the initiation and guidance of innate and adaptive immune responses involved in maintenance of immunological homeostasis. Immature dendritic cells (iDCs) phagocytize pathogens and toxic proteins and in endosomal vesicles degrade them into small fragments for presentation on major histocompatibility complex (MHC) II receptor molecules to naïve cognate T cells (Th0). In addition to their role in stimulation of immunity, DCs are involved in the induction and maintenance of immune tolerance toward self-antigens. During activation, the iDCs become mature. Maturation begins when the DCs cease taking up antigens and begin to migrate from their location in peripheral tissues to adjacent lymph nodes or the spleen where during their continued maturation the DCs present stored antigens on surface MHCII receptor molecules to naive Th0 cells. During antigen presentation, the DCs upregulate the biosynthesis of costimulatory receptor molecules CD86, CD80, CD83, and CD40 on their plasma membrane. These activated DC receptor molecules bind cognate CD28 receptors presented on the Th0 cell membrane, which triggers DC secretion of IL-12 or IL-10 cytokines resulting in T cell differentiation into pro- or anti-inflammatory T cell subsets. Although basic concepts involved in the process of iDC activation and guidance of Th0 cell differentiation have been previously documented, they are poorly defined. In this review, we detail what is known about the process of DC maturation and its role in the induction of insulin-dependent diabetes mellitus autoimmunity.
Dendritic Cells in the Gut: Interaction with Intestinal Helminths
Mendlovic, Fela; Flisser, Ana
2010-01-01
The mucosal environment in mammals is highly tolerogenic; however, after exposure to pathogens or danger signals, it is able to shift towards an inflammatory response. Dendritic cells (DCs) orchestrate immune responses and are highly responsible, through the secretion of cytokines and expression of surface markers, for the outcome of such immune response. In particular, the DC subsets found in the intestine have specialized functions and interact with different immune as well as nonimmune cells. Intestinal helminths primarily induce Th2 responses where DCs have an important yet not completely understood role. In addition, this cross-talk results in the induction of regulatory T cells (T regs) as a result of the homeostatic mucosal environment. This review highlights the importance of studying the particular relation “helminth-DC-milieu” in view of the significance that each of these factors plays. Elucidating the mechanisms that trigger Th2 responses may provide the understanding of how we might modulate inflammatory processes. PMID:20224759
Sato, Katsuaki; Uto, Tomofumi; Fukaya, Tomohiro; Takagi, Hideaki
2017-01-01
Dendritic cells (DCs) comprise heterogeneous subsets, functionally classified into conventional DCs (cDCs) and plasmacytoid DCs (pDCs). DCs are considered to be essential antigen (Ag)-presenting cells (APCs) that play crucial roles in activation and fine-tuning of innate and adaptive immunity under inflammatory conditions, as well as induction of immune tolerance to maintain immune homeostasis under steady-state conditions. Furthermore, DC functions can be modified and influenced by stimulation with various extrinsic factors, such as ligands for pattern-recognition receptors (PRRs) and cytokines. On the other hand, treatment of DCs with certain immunosuppressive drugs and molecules leads to the generation of tolerogenic DCs that show downregulation of both the major histocompatibility complex (MHC) and costimulatory molecules, and not only show defective T-cell activation, but also possess tolerogenic properties including the induction of anergic T-cells and regulatory T (T reg ) cells. To develop an effective strategy for Ag-specific intervention of T-cell-mediated immune disorders, we have previously established the modified DCs with moderately high levels of MHC molecules that are defective in the expression of costimulatory molecules that had a greater immunoregulatory property than classical tolerogenic DCs, which we therefore designated as regulatory DCs (DC reg ). Herein, we integrate the current understanding of the role of DCs in the control of immune responses, and further provide new information of the characteristics of tolerogenic DCs and DC reg , as well as their regulation of immune responses and disorders.
Naarding, Marloes A.; Dirac, Annette M.; Ludwig, Irene S.; Speijer, Dave; Lindquist, Susanne; Vestman, Eva-Lotta; Stax, Martijn J.; Geijtenbeek, Teunis B. H.; Pollakis, Georgios; Hernell, Olle; Paxton, William A.
2006-01-01
A wide range of pathogens, including human immunodeficiency virus type 1 (HIV-1), hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, Mycobacterium, Leishmania, and Helicobacter pylori, can interact with dendritic cell (DC)-specific ICAM3-grabbing nonintegrin (DC-SIGN), expressed on DCs and a subset of B cells. More specifically, the interaction of the gp120 envelope protein of HIV-1 with DC-SIGN can facilitate the transfer of virus to CD4+ T lymphocytes in trans and enhance infection. We have previously demonstrated that a multimeric LeX component in human milk binds to DC-SIGN, preventing HIV-1 from interacting with this receptor. Biochemical analysis reveals that the compound is heat resistant, trypsin sensitive, and larger than 100 kDa, indicating a specific glycoprotein as the inhibitory compound. By testing human milk from three different mothers, we found the levels of DC-SIGN binding and viral inhibition to vary between samples. Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and matrix-assisted laser desorption ionization analysis, we identified bile salt-stimulated lipase (BSSL), a Lewis X (LeX)-containing glycoprotein found in human milk, to be the major variant protein between the samples. BSSL isolated from human milk bound to DC-SIGN and inhibited the transfer of HIV-1 to CD4+ T lymphocytes. Two BSSL isoforms isolated from the same human milk sample showed differences in DC-SIGN binding, illustrating that alterations in the BSSL forms explain the differences observed. These results indicate that variations in BSSL lead to alterations in LeX expression by the protein, which subsequently alters the DC-SIGN binding capacity and the inhibitory effect on HIV-1 transfer. Identifying the specific molecular interaction between the different forms may aid in the future design of antimicrobial agents. PMID:17005819
Malietzis, George; Lee, Gui H; Jenkins, John T; Bernardo, David; Moorghen, Morgan; Knight, Stella C; Al-Hassi, Hafid O
2015-01-01
Dendritic cells (DCs) either boost the immune system (enhancing immunity) or dampen it (leading to tolerance). This dual effect explains their vital role in cancer development and progression. DCs have been tested as a predictor of outcomes for cancer progression. Eight studies evaluated tumour-infiltrating DCs (TIDCs) as a predictor for colorectal cancer (CRC) outcomes. The detection of TIDCs has not kept pace with the increased knowledge about the identification of DC subsets and their maturation status. For that reason, it is difficult to draw a conclusion about the performance of DCs as a predictor of outcome for CRC. In this review, we comprehensively examine the evidence for the in situ immune response due to DC infiltration, in predicting outcome in primary CRC and how such information may be incorporated into routine clinical assessment.
Bai, Yan; Zheng, Jin-e; Wang, Nan; Cai, He-hua; Zhai, Li-na; Wu, Yao-hui; Wang, Fang; Jin, Run-ming; Zhou, Dong-feng
2015-10-01
The efficiency of dendritic cell-activated and cytokine-induced killer cell (DC-CIK) therapy on children with acute myeloid leukemia (AML) after chemotherapy was investigated. Mononuclear cells were collected from children achieving complete remission after chemotherapy, cultured in vitro and transfused back into the same patient. Interleukin-2 (IL-2) was injected subcutaneously every other day 10 times at the dose of 1 × 10(6) units. Peripheral blood lymphocyte subsets and minimal residual disease (MRD) were detected by flow cytometry. Function of bone marrow was monitored by methods of morphology, immunology, cytogenetics and molecular biology. The side effects were also observed during the treatment. The average follow-up period for all the 22 patients was 71 months and relapse occurred in two AML patients (9.1%). The percentage of CD3(+)/CD8(+) cells in peripheral blood of 15 patients at the 3rd month after DC-CIK treatment (36.73% ± 12.51%) was dramatically higher than that before treatment (29.20% ± 8.34%, P < 0.05). The MRD rate was >0.1% in 5 patients before the treatment, and became lower than 0.1% 3 months after the treatment. During the transfusion of DC-CIK, side effects including fever, chills and hives appeared in 7 out of 22 (31.82%) cases but disappeared quickly after symptomatic treatments. There were no changes in electrocardiography and liver-renal functions after the treatment. MRD in children with AML can be eliminated by DC-CIK therapy which is safe and has fewer side effects.
Montoya, Carlos J; Jie, Hyun-Bae; Al-Harthi, Lena; Mulder, Candice; Patiño, Pablo J; Rugeles, María T; Krieg, Arthur M; Landay, Alan L; Wilson, S Brian
2006-07-15
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.
Behler, Friederike; Maus, Regina; Bohling, Jennifer; Knippenberg, Sarah; Kirchhof, Gabriele; Nagata, Masahiro; Jonigk, Danny; Izykowski, Nicole; Mägel, Lavinia; Welte, Tobias; Yamasaki, Sho
2014-01-01
The macrophage-inducible C-type lectin Mincle has recently been identified to be a pattern recognition receptor sensing mycobacterial infection via recognition of the mycobacterial cell wall component trehalose-6′,6-dimycolate (TDM). However, its role in systemic mycobacterial infections has not been examined so far. Mincle-knockout (KO) mice were infected intravenously with Mycobacterium bovis BCG to mimic the systemic spread of mycobacteria under defined experimental conditions. After intravenous infection with M. bovis BCG, Mincle-KO mice responded with significantly higher numbers of mycobacterial CFU in spleen and liver, while reduced granuloma formation was observed only in the spleen. At the same time, reduced Th1 cytokine production and decreased numbers of gamma interferon-producing T cells were observed in the spleens of Mincle-KO mice relative to the numbers in the spleens of wild-type (WT) mice. The effect of adoptive transfer of defined WT leukocyte subsets generated from bone marrow cells of zDC+/DTR mice (which bear the human diphtheria toxin receptor [DTR] under the control of the classical dendritic cell-specific zinc finger transcription factor zDC) to specifically deplete Mincle-expressing classical dendritic cells (cDCs) but not macrophages after diphtheria toxin application on the numbers of splenic and hepatic CFU and T cell subsets was then determined. Adoptive transfer experiments revealed that Mincle-expressing splenic cDCs rather than Mincle-expressing macrophages contributed to the reconstitution of attenuated splenic antimycobacterial immune responses in Mincle-KO mice after intravenous challenge with BCG. Collectively, we show that expression of Mincle, particularly by cDCs, contributes to the control of splenic M. bovis BCG infection in mice. PMID:25332121
Dey, Mahua; Chang, Alan L; Miska, Jason; Wainwright, Derek A; Ahmed, Atique U; Balyasnikova, Irina V; Pytel, Peter; Han, Yu; Tobias, Alex; Zhang, Lingjiao; Qiao, Jian; Lesniak, Maciej S
2015-07-01
Dendritic cells (DCs) are professional APCs that are traditionally divided into two distinct subsets, myeloid DC (mDCs) and plasmacytoid DC (pDCs). pDCs are known for their ability to secrete large amounts of IFN-α. Apart from IFN-α production, pDCs can also process Ag and induce T cell immunity or tolerance. In several solid tumors, pDCs have been shown to play a critical role in promoting tumor immunosuppression. We investigated the role of pDCs in the process of glioma progression in the syngeneic murine model of glioma. We show that glioma-infiltrating pDCs are the major APC in glioma and are deficient in IFN-α secretion (p < 0.05). pDC depletion leads to increased survival of the mice bearing intracranial tumor by decreasing the number of regulatory T cells (Tregs) and by decreasing the suppressive capabilities of Tregs. We subsequently compared the ability of mDCs and pDCs to generate effective antiglioma immunity in a GL261-OVA mouse model of glioma. Our data suggest that mature pDCs and mDCs isolated from naive mice can be effectively activated and loaded with SIINFEKL Ag in vitro. Upon intradermal injection in the hindleg, a fraction of both types of DCs migrate to the brain and lymph nodes. Compared to mice vaccinated with pDC or control mice, mice vaccinated with mDCs generate a robust Th1 type immune response, characterized by high frequency of CD4(+)T-bet(+) T cells and CD8(+)SIINFEKEL(+) T cells. This robust antitumor T cell response results in tumor eradication and long-term survival in 60% of the animals (p < 0.001). Copyright © 2015 by The American Association of Immunologists, Inc.
Fehres, Cynthia M; Bruijns, Sven C M; Sotthewes, Brigit N; Kalay, Hakan; Schaffer, Lana; Head, Steven R; de Gruijl, Tanja D; Garcia-Vallejo, Juan J; van Kooyk, Yvette
2015-01-01
Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses.
Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.
Heier, Eva-Carina; Meier, Anna; Julich-Haertel, Henrike; Djudjaj, Sonja; Rau, Monica; Tschernig, Thomas; Geier, Andreas; Boor, Peter; Lammert, Frank; Lukacs-Kornek, Veronika
2017-06-01
Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103 + DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103 + DCs (classical type-1 DC, cDC1s). Metabolic challenge of Batf3 -/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103 + cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. Here, we have identified the murine CD103 + cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Beikzadeh, Babak; Delirezh, Nowruz
2016-01-01
Dendritic cells (DCs) are professional antigen-presenting cells with the ability to induce primary T-cell responses. They are commonly produced by culturing monocytes in the presence of IL-4 and GM-CSF (cells produced in this manner are called conventional DCs). Here we report the generation of two functionally distinct subsets of DCs derived from programmable cells of monocytic origin (PCMOs) in the presence of IL-3 or tumor necrosis factor alpha (TNF-α). Monocytes were treated with macrophage colony-stimulating factor (M-CSF) and IL-3 for 6 days and then incubated with IL-4 and IL-3 (for IL-3 DCs) or with IL-4, GM-CSF and TNF-α (for TNF-α DCs) for 7 days. Monocytes were then loaded with tumor lysate (used as antigen), and poly (I∶C) was added. The maturation factors TNF-α and monocyte conditioned medium (MCM) were added on days 4 and 5, respectively. The phenotypes of the DCs generated were characterized by flow cytometry, and the cells' phagocytic activities were measured using FITC-conjugated latex bead uptake. T-cell proliferation and cytokine release were assayed using MTT and commercially available ELISA kits, respectively. We found that either IL-3DCs or TNF-α DCs induce T-cell proliferation and cytokine secretion; the cytokine release pattern showed reduced IL-12/IL-10 and IFN-γ/IL-4 ratios in both types of DCs and in DC-primed T-cell supernatant, respectively, which confirmed that the primed T cells were polarized toward aTh2-type immune response. We concluded that PCMOs are a new cell source that can develop into two functionally distinct DCs that both induce a Th2-type response in vitro. This modality can be used as a DC-based immunotherapy for autoimmune diseases. PMID:25661728
Schaeffer, Evelyne; Flacher, Vincent; Papageorgiou, Vasiliki; Decossas, Marion; Fauny, Jean-Daniel; Krämer, Melanie; Mueller, Christopher G
2015-07-01
Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever.
GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family
Lutz, Manfred B.; Strobl, Herbert; Schuler, Gerold; Romani, Nikolaus
2017-01-01
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function. PMID:29109731
van Panhuys, Nicholas
2016-01-01
The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two-photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T–DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation. PMID:26834747
Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.
Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang
2017-01-01
Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.
Designing vaccines based on biology of human dendritic cell subsets
Palucka, Karolina; Banchereau, Jacques; Mellman, Ira
2010-01-01
The effective vaccines developed against a variety of infectious agents, including polio, measles and Hepatitis B, represent major achievements in medicine. These vaccines, usually composed of microbial antigens, are often associated with an adjuvant that activates dendritic cells (DCs). Many infectious diseases are still in need of an effective vaccine including HIV, malaria, hepatitis C and tuberculosis. In some cases, the induction of cellular rather than humoral responses may be more important as the goal is to control and eliminate the existing infection rather than to prevent it. Our increased understanding of the mechanisms of antigen presentation, particularly with the description of DC subsets with distinct functions, as well as their plasticity in responding to extrinsic signals, represent opportunities to develop novel vaccines. In addition, we foresee that this increased knowledge will permit us to design vaccines that will reprogram the immune system to intervene therapeutically in cancer, allergy and autoimmunity. PMID:21029958
Schadendorf, D; Ugurel, S; Schuler-Thurner, B; Nestle, F O; Enk, A; Bröcker, E-B; Grabbe, S; Rittgen, W; Edler, L; Sucker, A; Zimpfer-Rechner, C; Berger, T; Kamarashev, J; Burg, G; Jonuleit, H; Tüttenberg, A; Becker, J C; Keikavoussi, P; Kämpgen, E; Schuler, G
2006-04-01
This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44- haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccines.
Venturini, James; Cavalcante, Ricardo Souza; Moris, Daniela Vanessa; Golim, Márjorie de Assis; Levorato, Adriele Dandara; Reis, Karoline Hagatha Dos; Arruda, Maria Sueli Parreira de; Mendes, Rinaldo Poncio
2017-09-01
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi from the genus Paracoccidioides in Latin America. PCM-patients (PCM-p) are classified as having acute/subacute or chronic (CF) clinical forms. CF is responsible for 75%-90% of all cases, affects mainly adults over 30 years old and the clinical manifestation are associated mainly with lungs and mucosa of upper airdigestive tract. In addition, the CF patients exhibit fibrosis of the lungs, oral mucous membranes and adrenals, and pulmonary emphysema. Consequently, CF PCM-p with active disease, as well as those that have been apparently cured, seem to be an interesting model for studies aiming to understand the long-term host-fungi relationship and hypoxia. Dendritic cells (DCs) constitute a system that serve as a major link between innate and adaptive immunity composed of several subpopulations of cells including two main subsets: myeloid (mDCs) and plasmacytoid (pDCs). The present study aimed to access the distribution of PBDC subsets of CF PCM-p who were not treated (NT) or treated (apparently cured - AC). CF PCM-p were categorized into two groups, consisting of 9 NTs and 9 ACs. Twenty-one healthy individuals were used as the control group. The determination of the PBDC subsets was performed by FACS (fluorescence-activated cell sorting) and the dosage of serum TNF-α, IL1β, IL-18, CCL3, IL-10 and basic fibroblast growth factor (bFGF) by ELISA (enzyme-linked immunosorbent assay). A high count and percentage of mDCs was observed before treatment, along with a low count of pDCs in treated patients. Furthermore, the mDC:pDC ratio and serum levels of TNF-α was higher in both of the PCM-p groups than in the control group. In conclusion, our findings demonstrated that active PCM influences the distribution of mDCs and pDCs, and after treatment, PCM-p retained a lower count of pDCs associated with pro-inflammatory profile. Therefore, we identified new evidences of persistent immunological abnormalities in PCM-p after treatment. Even these patients showing fungal clearance after successful antifungal treatment; the hypoxia, triggered by the persistent pulmonary sequelae, possibly continues to interfere in the immune response. Copyright © 2017 Elsevier B.V. All rights reserved.
Dige, Anders; Magnusson, Maria K; Öhman, Lena; Hvas, Christian Lodberg; Kelsen, Jens; Wick, Mary Jo; Agnholt, Jørgen
2016-01-01
Anti-TNF-α treatment constitutes a mainstay in the treatment of Crohn's disease (CD), but its mechanisms of action are not fully understood. We aimed to investigate the effects of adalimumab, a human monoclonal TNF-α antibody, on macrophage (MQ) and dendritic cell (DC) subsets in mucosal biopsies and peripheral blood. Intestinal biopsies and blood samples were obtained from 12 different CD patients both before and 4 weeks after the initiation of the induction of adalimumab treatment. Endoscopic disease activity was estimated by the Simple Endoscopic Score for Crohn's Disease. Biopsies were obtained from inflamed and non-inflamed areas. The numbers of lamina propria CD14 (+) DR(int) and CD14 (+) DR(hi) MQs, CD141(+), CD141(-) and CD103(+) DCs subsets, and circulating monocytes and DCs were analyzed using flow cytometry. At baseline, we observed higher numbers of DR(int) MQs and lower numbers of CD103(+) DCs in inflamed versus non-inflamed mucosa [843 vs. 391/10(5) lamina propria mononuclear cells (LPMCs) (p < 0.05) and 9 vs. 19 × 10(5) LPMCs (p = 0.01), respectively]. After four weeks of adalimumab treatment, the numbers of DR(int) MQs decreased [843 to 379/10(5) LPMCs (p = 0.03)], whereas the numbers of CD103(+) DCs increased [9-20 × 10(5) LPMCs (p = 0.003)] compared with baseline. In peripheral blood, no alterations were observed in monocyte or DC numbers between baseline and week 4. In CD, mucosal inflammation is associated with high numbers of DR(int) MQs and low numbers of CD103(+) DCs. This composition of intestinal myeloid subsets is reversed by anti-TNF-α treatment. These results suggest that DR(int) MQs play a pivotal role in CD inflammation.
Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy.
Sachamitr, Patty; Hackett, Simon; Fairchild, Paul Jonathan
2014-01-01
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8(+) T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141(+)XCR1(+) DC, capable of cross presenting TAA to naïve CD8(+) T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Caielli, Simone; Conforti-Andreoni, Cristina; Di Pietro, Caterina; Usuelli, Vera; Badami, Ester; Malosio, Maria Luisa; Falcone, Marika
2010-12-15
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.
Clements, Sarah J; Maijo, Monica; Ivory, Kamal; Nicoletti, Claudio; Carding, Simon R
2017-01-01
Aging is accompanied by increased susceptibility to infection and age-associated chronic diseases. It is also associated with reduced vaccine responses, which is often attributed to immunosenescence and the functional decline of the immune system. Immunosenescence is characterized by a chronic, low-grade, inflammatory state termed inflammaging. Habitants of Mediterranean (MED) regions maintain good health into old age; often attributed to MED diets. Adoption of a MED-diet by elderly subjects, in Norfolk (UK), may improve immune responses of these individuals and in particular, dendritic cell (DC) function. A total of 120 elderly subjects (65-79 years old) recruited onto the Nu-AGE study, a multicenter European dietary study specifically addressing the needs of the elderly, across five countries, and were randomized to the control or MED-diet groups, for one year. Blood samples were taken pre- and post-intervention for DC analysis and were compared with each other, and to samples obtained from 45 young (18-40 years old) subjects. MED-diet compliance was assessed using high performance liquid chromatography-with tandem mass spectrometry analysis of urine samples. Immune cell and DC subset numbers and concentrations of secreted proteins were determined by flow cytometric analysis. As expected, reduced myeloid DC numbers were observed in blood samples from elderly subjects compared with young. The elevated secretion of the adipokine, resistin, after ex vivo stimulation of peripheral blood mononuclear cells from elderly subjects, was significantly reduced after MED-diet intervention. This study provides further evidence of numerical and functional effects of aging on DCs. The MED-diet showed potential to impact on the aging immune cells investigated and could provide an economical approach to address problems associated with our aging population.
Dasari, Vijayendra; Smith, Corey; Schuessler, Andrea; Zhong, Jie; Khanna, Rajiv
2014-01-01
Recent studies have suggested that a successful subunit human cytomegalovirus (CMV) vaccine requires improved formulation to generate broad-based anti-viral immunity following immunization. Here we report the development of a non-live protein-based vaccine strategy for CMV based on a polyepitope protein and CMV glycoprotein B (gB) adjuvanted with TLR4 and/or TLR9 agonists. The polyepitope protein includes contiguous multiple MHC class I-restricted epitopes with an aim to induce CD8+ T cell immunity, while gB is an important target for CD4+ T cell immunity and neutralizing antibodies. Optimal immunogenicity of this bivalent non-live protein vaccine formulation was dependent upon the co-administration of both the TLR4 and TLR9 agonist, which was associated with the activation of innate immune signatures and the influx of different DC subsets including plasmacytoid DCs and migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs into the draining lymph nodes. Furthermore these professional antigen presenting cells also expressed IL-6, IL-12p70, TNFα, and IFNα which play a crucial role in the activation of adaptive immunity. In summary, this study provides a novel platform technology in which broad-based anti-CMV immune responses upon vaccination can be maximized by co-delivery of viral antigens and TLR4 and 9 agonists which induce activation of innate immune signatures and promote potent antigen acquisition and cross-presentation by multiple DC subsets. PMID:24463331
Primary analysis for clinical efficacy of immunotherapy in patients with pancreatic cancer.
Chen, Linghua; Zhang, Xiaoyan
2016-02-01
Immunotherapy is an important treatment for pancreatic cancer (PC) patients. To evaluate the therapeutic efficacy of immunotherapy in the treatment of PC, we performed a systemic review and meta-analysis of the relevant published clinical trials, collectively referred to as DC, DC-CIK, LAK, NK and GM-CSF secreting PC cell lines. A total of 413 patients in 11 eligible trials with PC were selected for the present meta-analysis. The estimated pooled overall survival showed a significant improvement for PC patients who received immunotherapy compared with nonimmunotherapy. The lymphocyte subsets, immune cytokine levels and serum cancer markers in the peripheral blood of PC patients were significantly improved after immunotherapy. The results showed that immunotherapy can improve the efficacy of the treatment of PC patients.
Phenotype and function of nasal dendritic cells
Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh
2015-01-01
Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151
Marks, Ellen; Tam, Miguel A.; Lycke, Nils Y.
2010-01-01
While a primary genital tract infection with C. trachomatis stimulates partial-protection against re-infection, it may also result in severe inflammation and tissue destruction. Here we have dissected whether functional compartments exist in the genital tract that restrict Th1-mediated protective immunity. Apart from the Th1-subset, little is known about the role of other CD4+ T cell subsets in response to a genital tract chlamydial infection. Therefore, we investigated CD4+ T cell subset differentiation in the genital tract using RT-PCR for expression of critical transcription factors and cytokines in the upper (UGT) and lower genital tract (LGT) of female C57BL/6 mice in response to C. trachomatis serovar D infection. We found that the Th1 subset dominated the UGT, as IFN-γ and T-bet mRNA expression were high, while GATA-3 was low following genital infection with C. trachomatis serovar D. By contrast, IL-10 and GATA-3 mRNA dominated the LGT, suggesting the presence of Th2 cells. These functional compartments also attracted regulatory T cells (Tregs) differently as increased FoxP3 mRNA expression was seen primarily in the UGT. Although IL-17A mRNA was somewhat up-regulated in the LGT, no significant change in RORγ-t mRNA expression was observed, suggesting no involvement of Th17 cells. The dichotomy between the LGT and UGT was maintained during infection by IL-10 because in IL-10-deficient mice the distinction between the two compartments was completely lost and a dramatic shift to the predominance of Th1 cells in the LGT occurred. Unexpectedly, the major source of IL-10 was CD11c+ CD11b+ DC, probably creating an anti-inflammatory privileged site in the LGT. PMID:21079691
Mediators involved in the immunomodulatory effects of apoptotic cells
Saas, Philippe; Bonnefoy, Francis; Kury-Paulin, Stephanie; Kleinclauss, François M.; Perruche, Sylvain
2007-01-01
Immunomodulatory properties are attributed to apoptotic cells. These properties have been used to modulate allogeneic immune responses in experimental transplantation settings. In independent studies, apoptotic cell infusion has been shown to favor hematopoietic cell engraftment, to increase heart graft survival and to delay the lethal onset of graft-versus-host disease (GVHD). The goal of this review was to discuss how apoptotic cell infusion interferes with graft rejection or host rejection (i.e., GVHD) and to focus on the potential mediators or “perpetuators” involved in apoptotic cell-induced immunomodulation. Particular emphasis on apoptotic cell phagocytosis, TGF-β secretion and regulatory T cell induction was performed. Stimulating “naturally” immunosuppressive molecules (i.e., TGF-β) or immunomodulatory cells (“alternatively-activated” macrophages, certain DC subsets or regulatory T cells) in a physiological manner by using apoptotic cell infusion can be a promising way to induce tolerance. PMID:17632410
Performance and Accuracy of LAPACK's Symmetric TridiagonalEigensolvers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, Jim W.; Marques, Osni A.; Parlett, Beresford N.
2007-04-19
We compare four algorithms from the latest LAPACK 3.1 release for computing eigenpairs of a symmetric tridiagonal matrix. These include QR iteration, bisection and inverse iteration (BI), the Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust Representations (MR). Our evaluation considers speed and accuracy when computing all eigenpairs, and additionally subset computations. Using a variety of carefully selected test problems, our study includes a variety of today's computer architectures. Our conclusions can be summarized as follows. (1) DC and MR are generally much faster than QR and BI on large matrices. (2) MR almost always does the fewestmore » floating point operations, but at a lower MFlop rate than all the other algorithms. (3) The exact performance of MR and DC strongly depends on the matrix at hand. (4) DC and QR are the most accurate algorithms with observed accuracy O({radical}ne). The accuracy of BI and MR is generally O(ne). (5) MR is preferable to BI for subset computations.« less
Elderly dendritic cells respond to LPS/IFN-γ and CD40L stimulation despite incomplete maturation
Musk, Arthur W.; Alvarez, John; Mamotte, Cyril D. S.; Jackaman, Connie; Nowak, Anna K.; Nelson, Delia J.
2018-01-01
There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated. We examined responses of blood myeloid (m)DC1s, mDC2s, plasmacytoid (p)DCs, and monocyte-derived DCs (MoDCs) from young (21–40 years) and elderly (60–84 years) healthy human volunteers to LPS/IFN-γ or CD40L stimulation. All elderly DC subsets demonstrated comparable up-regulation of co-stimulatory molecules (CD40, CD80 and/or CD86), intracellular pro-inflammatory cytokine levels (IFN-γ, tumour necrosis factor (TNF)-α, IL-6 and/or IL-12), and/or secreted cytokine levels (IFN-α, IFN-γ, TNF-α, and IL-12) to their younger counterparts. Furthermore, elderly-derived LPS/IFN-γ or CD40L-activated MoDCs induced similar or increased levels of CD8+ and CD4+ T cell proliferation, and similar T cell functional phenotypes, to their younger counterparts. However, elderly LPS/IFN-γ-activated MoDCs were unreliable in their ability to up-regulate chemokine (IL-8 and monocyte chemoattractant protein (MCP)-1) and IL-6 secretion, implying an inability to dependably induce an inflammatory response. A key age-related difference was that, unlike young-derived MoDCs that completely lost their ability to process antigen, elderly-derived MoDCs maintained their antigen processing ability after LPS/IFN-γ maturation, measured using the DQ-ovalbumin assay; this response implies incomplete maturation that may enable elderly DCs to continuously present antigen. These differences may impact on the efficacy of anti-pathogen and anti-tumour immune responses in the elderly. PMID:29652910
Scolnik, M; Lancioni, E; Saucedo, C; Marin, J; Sabelli, M; Bedran, Z; Soriano, E R; Catoggio, L J
2014-01-01
Prevalence of systemic sclerosis (SSc) and different clinical subsets varies across the world. Few data have been published on SSc patients in Latin America. Our objective was to describe a SSc cohort in Argentina and to compare clinical findings, disease subsets and antibodies with other international SSc populations. Patients with SSc (n=234) seen at the Rheumatology section of the Hospital Italiano de Buenos Aires between 2000-2011 were retrospectively analysed. Data on clinical manifestations, disease subsets and antibodies were obtained. Patients were classified into diffuse cutaneous (dc) and limited cutaneous (lc) subsets. Comparison with other cohorts (France, United States, Germany, Italy, Mexico, EUSTAR and Brazil) was made based on published information. A higher female:male ratio (12:1) and a higher limited subset prevalence (76.1%) was found in this Argentine cohort comparing with others. We also found a lower prevalence of diffuse disease, anti Scl-70 (antitopoisomerase) and nucleolar pattern antinuclear antibodies. Within each subset, clinical findings were similar with other SSc populations except for a very low prevalence in renal crisis (0.02% of dc SS). With slight variations perhaps due to genetic, environmental or referral factors, SSc in this cohort appears to be similar to that described in other parts of the world.
Alvarenga, Débora M; Perez, Denise A; Gomes-Santos, Ana C; Miyoshi, Anderson; Azevedo, Vasco; Coelho-Dos-Reis, Jordana G A; Martins-Filho, Olindo A; Faria, Ana Maria C; Cara, Denise C; Andrade, Marileia C
2015-08-01
Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract. Copyright © 2015 by the Research Society on Alcoholism.
Antigen Cross-Presentation of Immune Complexes
Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda
2014-01-01
The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α+ DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8+ T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8− DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets. PMID:24744762
Fast, accurate semiempirical molecular orbital calculations for macromolecules
NASA Astrophysics Data System (ADS)
Dixon, Steven L.; Merz, Kenneth M., Jr.
1997-07-01
A detailed review of the semiempirical divide-and-conquer (D&C) method is given, including a new approach to subsetting, which involves dual buffer regions. Comparisons are drawn between this method and other semiempirical macromolecular schemes. D&C calculations are carried out using a basic 32 Mbyte memory workstation on a variety of peptide systems, including proteins containing up to 1960 atoms. Aspects of storage and SCF convergence are addressed, and parallelization of the D&C algorithm is discussed.
den Brok, Martijn H.; Büll, Christian; Wassink, Melissa; de Graaf, Annemarie M.; Wagenaars, Jori A.; Minderman, Marthe; Thakur, Mayank; Amigorena, Sebastian; Rijke, Eric O.; Schrier, Carla C.; Adema, Gosse J.
2016-01-01
Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin-dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity. PMID:27819292
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines
Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia
2014-01-01
The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753
2013-01-01
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8+ T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage. PMID:23373658
Galluzzi, Lorenzo; Senovilla, Laura; Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido
2012-01-01
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy. PMID:23170259
Lu, Shanhong; Concha-Benavente, Fernando; Shayan, Gulidanna; Srivastava, Raghvendra M; Gibson, Sandra P; Wang, Lin; Gooding, William E; Ferris, Robert L
2018-03-01
The intracellular DNA sensor stimulator of interferon genes (STING) has recently been shown to play a vital role in anti-viral and anti-tumor immune responses stimulating cytokine production. While human papillomavirus (HPV) is a causative agent for a subset of head and neck squamous cell carcinoma (HNSCC) with unique etiology and clinical outcome, how the STING pathway is regulated in a virus-induced tumor microenvironment is not well understood. Since STING inactivation likely reflects immunoescape via innate immunity, we hypothesized that its restoration would improve efficacy of the immune modulatory monoclonal antibody (mAb), cetuximab. We correlated STING protein expression with clinical parameters by immunohistochemistry (n = 106) and its mRNA expression from The Cancer Genome Atlas (TCGA) in HNSCC tissue specimens. STING protein expression was tested for association with cancer-specific survival (CSS). We further examined the impact of STING activation on cetuximab-mediated immunity using an in vitro NK:DC:tumor cells co-culture system. In this study, we found that expression of STING both at the protein and mRNA level was higher in HPV positive (HPV + ) specimens but unrelated to TNM stage or cancer-specific survival. Our in vitro studies verified that STING activation enhanced cetuximab mediated NK cell activation and DC maturation. Our findings suggest a novel role of STING in HPV-related carcinogenesis, in which activation of the STING signaling pathway may facilitate anti-tumor response in HNSCC patients, particularly in combination with therapeutic monoclonal antibodies (mAbs) such as cetuximab, an epidermal growth factor receptor (EGFR) inhibitor. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cipriani, Paola; Franca Milia, Anna; Liakouli, Vasiliki; Pacini, Alessandra; Manetti, Mirko; Marrelli, Alessandra; Toscano, Annarita; Pingiotti, Elisa; Fulminis, Antonietta; Guiducci, Serena; Perricone, Roberto; Kahaleh, Bashar; Matucci-Cerinic, Marco; Ibba-Manneschi, Lidia; Giacomelli, Roberto
2006-09-01
Systemic sclerosis (SSc) is characterized by early endothelial damage evolving to vascular desertification. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 regulate specific steps in new vessel formation. We undertook this study to determine whether an alteration of the SDF-1/CXCR4 axis might be involved in the pathogenetic mechanisms following ischemic damage during SSc. We enrolled 36 SSc patients and 15 controls. Skin biopsy samples were obtained from each subject, and the expression of SDF-1 and CXCR4 was assessed by immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. Furthermore, isolated microvascular endothelial cells (MVECs) from 4 patients with diffuse cutaneous SSc (dcSSc) and 3 controls were analyzed for SDF-1 and CXCR4 by confocal laser scanning microscopy, RT-PCR, and Western blotting. SDF-1 and CXCR4 were up-regulated in the skin of patients with early (edematous) SSc, both in the diffuse and limited cutaneous forms, and progressively decreased, with the lowest expression in the latest phases of both SSc subsets. MVECs from patients with dcSSc expressed significantly higher amounts of both isoforms of SDF-1 in the early stage of disease, with a progressive reduction of SDF-1 and CXCR4 in later stages. On the surface of cultured MVECs from patients with dcSSc, SDF-1 and CXCR4 colocalized in polarized areas, suggesting that they are activated in vivo and that they are under strict genetic control to retain capping function. Due to its transient expression, SDF-1 could be considered a future therapeutic target to induce new vessel formation in SSc.
Human spleen contains different subsets of dendritic cells and regulatory T lymphocytes
Velásquez-Lopera, M M; Correa, L A; García, L F
2008-01-01
Most knowledge about dendritic cells (DCs) and regulatory T cells in humans has been gathered from circulating cells but little is known about their frequency and distribution in lymphoid organs. This report shows the frequency, phenotype and location of DCs and regulatory T cells in deceased organ donors' spleens. As determined by flow cytometry, conventional/myeloid DCs (cDCs) CD11chighHLA-DR+CD123−/low were 2·3 ± 0·9% and LIN- HLA-DR+CD11chigh 2·1 ± 0·3% of total spleen cells. Mature CD11chighHLA-DR+CD83+ were 1·5 ± 0·8% and 1·0 ± 1·6% immature CD11chighHLA-DR+CD83- cDC. There were 0·3 ± 0·3% plasmacytoid DCs (pDC) CD11c−/lowHLA-DR+CD123high and 0·3 ± 0·1% LIN-HLA-DR+CD123high. Cells expressing cDCs markers, BDCA-1 and BDCA-3, and pDCs markers BDCA-2 and BDCA-4 were observed in higher frequencies than DCs with other phenotypes evaluated. CD11c+, CD123+ and CD83+ cells were located in subcapsular zone, T cells areas and B-cell follicles. CD4+CD25high Tregs were 0·2 ± 0·2% and CD8+CD28- comprised 11·5 ± 8·1% of spleen lymphocytes. FOXP3+ cells were found in T- and B-cell areas. The improvement in cell separation, manipulation and expansion techniques, will facilitate the manipulation of donor spleen cells as a part of protocols for induction and maintenance of allograft tolerance or treatment of autoimmune diseases. PMID:18727627
Automated flow cytometric analysis across large numbers of samples and cell types.
Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno
2015-04-01
Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.
Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali
2006-02-20
The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.
Laperchia, Claudia; Allegra Mascaro, Anna L.; Sacconi, Leonardo; Andrioli, Anna; Mattè, Alessandro; De Franceschi, Lucia; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Buffelli, Mario; Pavone, Francesco S.
2013-01-01
Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF) microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP) in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype. With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity) of dendritic cells (DCs), and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions. PMID:23409142
Shah, Nishel Mohan; Herasimtschuk, Anna A.; Boasso, Adriano; Benlahrech, Adel; Fuchs, Dietmar; Imami, Nesrina; Johnson, Mark R.
2017-01-01
During pregnancy, the mother allows the immunologically distinct fetoplacental unit to develop and grow. Opinions are divided as to whether this represents a state of fetal-specific tolerance or of a generalized suppression of the maternal immune system. We hypothesized that antigen-specific T cell responses are modulated by an inhibitory T cell phenotype and modified dendritic cell (DC) phenotype in a gestation-dependent manner. We analyzed changes in surface markers of peripheral blood T cells, ex vivo antigen-specific T cell responses, indoleamine 2,3-dioxygenase (IDO) activity (kynurenine/tryptophan ratio, KTR), plasma neopterin concentration, and the in vitro expression of progesterone-induced blocking factor (PIBF) in response to peripheral blood mononuclear cell culture with progesterone. We found that mid gestation is characterized by reduced antigen-specific T cell responses associated with (1) predominance of effector memory over other T cell subsets; (2) upregulation of inhibitory markers (programmed death ligand 1); (3) heightened response to progesterone (PIBF); and (4) reduced proportions of myeloid DC and concurrent IDO activity (KTR). Conversely, antigen-specific T cell responses normalized in late pregnancy and were associated with increased markers of T cell activation (CD38, neopterin). However, these changes occur with a simultaneous upregulation of immune suppressive mechanisms including apoptosis (CD95), coinhibition (TIM-3), and immune regulation (IL-10) through the course of pregnancy. Together, our data suggest that immune tolerance dominates in the second trimester and that it is gradually reversed in the third trimester in association with immune activation as the end of pregnancy approaches. PMID:28966619
Stephen-Victor, Emmanuel; Karnam, Anupama; Fontaine, Thierry; Beauvais, Anne; Das, Mrinmoy; Hegde, Pushpa; Prakhar, Praveen; Holla, Sahana; Balaji, Kithiganahalli N; Kaveri, Srini V; Latgé, Jean-Paul; Aimanianda, Vishukumar; Bayry, Jagadeesh
2017-12-05
Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Jeffries, G. R.; Cohn, A.
2016-12-01
Soy-corn double cropping (DC) has been widely adopted in Central Brazil alongside single cropped (SC) soybean production. DC involves different cropping calendars, soy varieties, and may be associated with different crop yield patterns and volatility than SC. Study of the performance of the region's agriculture in a changing climate depends on tracking differences in the productivity of SC vs. DC, but has been limited by crop yield data that conflate the two systems. We predicted SC and DC yields across Central Brazil, drawing on field observations and remotely sensed data. We first modeled field yield estimates as a function of remotely sensed DC status and vegetation index (VI) metrics, and other management and biophysical factors. We then used the statistical model estimated to predict SC and DC soybean yields at each 500 m2 grid cell of Central Brazil for harvest years 2001 - 2015. The yield estimation model was constructed using 1) a repeated cross-sectional survey of soybean yields and management factors for years 2007-2015, 2) a custom agricultural land cover classification dataset which assimilates earlier datasets for the region, and 3) 500m 8-day MODIS image composites used to calculate the wide dynamic range vegetation index (WDRVI) and derivative metrics such as area under the curve for WDRVI values in critical crop development periods. A statistical yield estimation model which primarily entails WDRVI metrics, DC status, and spatial fixed effects was developed on a subset of the yield dataset. Model validation was conducted by predicting previously withheld yield records, and then assessing error and goodness-of-fit for predicted values with metrics including root mean squared error (RMSE), mean squared error (MSE), and R2. We found a statistical yield estimation model which incorporates WDRVI and DC status to be way to estimate crop yields over the region. Statistical properties of the resulting gridded yield dataset may be valuable for understanding linkages between crop yields, farm management factors, and climate.
Karuppuchamy, Thangaraj; Behrens, En-hui; González-Cabrera, Pedro; Sarkisyan, Gor; Gima, Lauren; Boyer, Joshua D.; Bamias, Giorgos; Jedlicka, Paul; Veny, Marisol; Clark, David; Peach, Robert; Scott, Fiona; Rosen, Hugh; Rivera-Nieves, Jesús
2016-01-01
The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of DSS, after colitis induced by transfer of CD4+CD45RBhi cells and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with IBD were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T cell velocity and induced S1P1 degradation and retention of naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function. PMID:27049060
Lüdtke, Anja; Ruibal, Paula; Wozniak, David M.; Pallasch, Elisa; Wurr, Stephanie; Bockholt, Sabrina; Gómez-Medina, Sergio; Qiu, Xiangguo; Kobinger, Gary P.; Rodríguez, Estefanía; Günther, Stephan; Krasemann, Susanne; Idoyaga, Juliana; Oestereich, Lisa; Muñoz-Fontela, César
2017-01-01
Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome. PMID:28256637
CXCR4 engagement promotes dendritic cell survival and maturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabashima, Kenji; Sugita, Kazunari; Shiraishi, Noriko
2007-10-05
It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important formore » not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.« less
Yu, Chun I; Becker, Christian; Wang, Yuanyuan; Marches, Florentina; Helft, Julie; Leboeuf, Marylene; Anguiano, Esperanza; Pourpe, Stephane; Goller, Kristina; Pascual, Virginia; Banchereau, Jacques; Merad, Miriam; Palucka, Karolina
2013-01-01
Summary In comparison to murine dendritic cells (DCs), less is known about the function of human DCs in tissues. Here, we analyzed, using lung tissues from humans and humanized mice, the role of human CD1c+ and CD141+ DCs in determining the type of CD8+ T cell immunity generated to live-attenuated influenza virus (LAIV) vaccine. We found that both lung DC subsets acquired influenza antigens in vivo and expanded specific cytotoxic CD8+ T cells in vitro. However, lung-tissue-resident CD1c+ DCs but not CD141+ DCs were able to drive CD103 expression on CD8+ T cells and promoted CD8+ T cell accumulation in lung epithelia in vitro and in vivo. CD1c+ DCs induction of CD103 expression was dependent on membrane-bound cytokine TGF-β1. Thus, CD1c+ and CD141+ DCs generate CD8+ T cells with different properties, and CD1c+ DCs specialize in the regulation of mucosal CD8+ T cells. PMID:23562160
Švajger, Urban
2017-04-01
Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.
Nabatov, Alexey A; Raginov, Ivan S
2015-01-01
This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells
Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre
2012-01-01
Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489
Suzuki, T; Sadakata, Y; Kashiwagi, K; Hoshino, K; Kakinuma, Y; Shirahata, A; Igarashi, K
1993-07-15
A variant cell line, termed SAM-1, which overproduced S-adenosylmethionine decarboxylase (AdoMetDC), was isolated by treatment of mouse FM3A cells with N-methyl-N'-nitro-N-nitrosoguanidine and subsequent incubation with ethylglyoxal bis(guanylhydrazone), an inhibitor of the enzyme. The cells were resistant to ethylglyoxal bis(guanylhydrazone), and showed AdoMetDC activity approximately five-times higher than control cells. The rate of AdoMetDC synthesis and the amount of AdoMetDC existing in SAM-1 cells were about five-times those in control cells. The amount of AdoMetDC mRNA existing in SAM-1 cells was five-times more than that in control cells. The amount of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, an irreversible inhibitor of AdoMetDC, necessary to inhibit cell growth was also five-times more in SAM-1 cells than in control cells. However, the following were the same in both SAM-1 and control cells; the amount of genomic DNA for AdoMetDC, the size and nucleotide sequence of 5' untranslated region of AdoMetDC mRNA, the deduced amino acid sequence (334 residues) from the nucleotide sequence of AdoMetDC cDNA and the degradation rate (t1/2 = about 4 h) of AdoMetDC. In addition, AdoMetDC mRNA in control cells was slightly more stable than that in SAM-1 cells. The results indicate that the overproduction of AdoMetDC in SAM-1 cells was caused by the increase of AdoMetDC mRNA. The variant cell line is convenient for studying the regulation of AdoMetDC and the physiological function of polyamines.
Cook, Peter C; Owen, Heather; Deaton, Aimée M; Borger, Jessica G; Brown, Sheila L; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H; Lundie, Rachel J; Marley, Angela K; Morrison, Vicky L; Phythian-Adams, Alexander T; Wachter, Elisabeth; Webb, Lauren M; Sutherland, Tara E; Thomas, Graham D; Grainger, John R; Selfridge, Jim; McKenzie, Andrew N J; Allen, Judith E; Fagerholm, Susanna C; Maizels, Rick M; Ivens, Alasdair C; Bird, Adrian; MacDonald, Andrew S
2015-04-24
Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.
Edelson, Brian T.; KC, Wumesh; Juang, Richard; Kohyama, Masako; Benoit, Loralyn A.; Klekotka, Paul A.; Moon, Clara; Albring, Jörn C.; Ise, Wataru; Michael, Drew G.; Bhattacharya, Deepta; Stappenbeck, Thaddeus S.; Holtzman, Michael J.; Sung, Sun-Sang J.; Murphy, Theresa L.; Hildner, Kai
2010-01-01
Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α+ conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3−/− mice also lack CD103+CD11b− DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3−/− mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103+CD11b− DCs, with the population of CD103+CD11b+ DCs remaining intact. Batf3−/− mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103+ DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α+ cDCs and nonlymphoid CD103+ DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α+ cDCs and nonlymphoid CD103+ DCs. PMID:20351058
Krueger, James; Clark, James D; Suárez-Fariñas, Mayte; Fuentes-Duculan, Judilyn; Cueto, Inna; Wang, Claire Q; Tan, Huaming; Wolk, Robert; Rottinghaus, Scott T; Whitley, Maryann Z; Valdez, Hernan; von Schack, David; O'Neil, Shawn P; Reddy, Padmalatha S; Tatulych, Svitlana
2016-04-01
Tofacitinib is an oral Janus kinase inhibitor being investigated for psoriasis. We sought to elucidate the molecular mechanisms underlying the clinical efficacy of tofacitinib in patients with psoriasis. Twelve patients with plaque psoriasis were randomized (3:1) to receive 10 mg of tofacitinib or placebo twice daily for 12 weeks. Biopsy specimens were taken from nonlesional (baseline) and lesional (baseline, days 1 and 3, and weeks 1, 2, 4, and 12) skin. Biopsy specimens were examined for psoriatic epidermal features (thickness, Ki67(+) keratinocytes and keratin 16 [KRT16] mRNA expression, and phosphorylated signal transducer and activator of transcription [pSTAT](+) nuclei) and T-cell and dendritic cell (DC) subsets by using immunohistochemistry, and mRNA transcripts were quantified by using a microarray. In lesional skin keratinocyte pSTAT1 and pSTAT3 staining was increased at baseline but reduced after 1 day of tofacitinib (baseline, median of 1290 pSTAT1(+) cells/μm(2); day 1, median of 332 pSTAT1(+) cells/μm(2); and nonlesional, median of 155 pSTAT1(+) cells/μm(2)). Epidermal thickness and KRT16 mRNA expression were significantly and progressively reduced after days 1 and 3 of tofacitinib administration, respectively (eg, KRT16 decreased 2.74-fold, day 3 vs baseline, P = .016). Decreases in DC and T-cell numbers were observed after weeks 1 and 2, respectively. At week 4, significant decreases in IL-23/TH17 pathways were observed that persisted through week 12. Improvements in clinical and histologic features were strongly associated with changes in expression of psoriasis-related genes and reduction in IL-17 gene expression. Tofacitinib has a multitiered response in patients with psoriasis: (1) rapid attenuation of keratinocyte Janus kinase/STAT signaling; (2) removal of keratinocyte-induced cytokine signaling, leading to reductions in pathologic DC and T-cell numbers to nonlesional levels; and (3) inhibition of the IL-23/TH17 pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis
LeBlanc, Dana M.; Barousse, Melissa M.; Fidel, Paul L.
2006-01-01
Vulvovaginal candidiasis (VVC) caused by the commensal organism Candida albicans remains a significant problem among women of childbearing age, with protection against and susceptibility to infection still poorly understood. While cell-mediated immunity by CD4+ Th1-type cells is protective against most forms of mucosal candidiasis, no protective role for adaptive immunity has been identified against VVC. This is postulated to be due to immunoregulation that prohibits a more profound Candida-specific CD4+ T-cell response against infection. The purpose of this study was to examine the role of dendritic cells (DCs) in the induction phase of the immune response as a means to understand the initiation of the immunoregulatory events. Immunostaining of DCs in sectioned murine lymph nodes draining the vagina revealed a profound cellular reorganization with DCs becoming concentrated in the T-cell zone throughout the course of experimental vaginal Candida infection consistent with cell-mediated immune responsiveness. However, analysis of draining lymph node DC subsets revealed a predominance of immunoregulation-associated CD11c+ B220+ plasmacytoid DCs (pDCs) under both uninfected and infected conditions. Staining of vaginal DCs showed the presence of both DEC-205+ and pDCs, with extension of dendrites into the vaginal lumen of infected mice in close contact with Candida. Flow cytometric analysis of draining lymph node DC costimulatory molecules and activation markers from infected mice indicated a lack of upregulation of major histocompatibility complex class II, CD80, CD86, and CD40 during infection, consistent with a tolerizing condition. Together, the results suggest that DCs are involved in the immunoregulatory events manifested during a vaginal Candida infection and potentially through the action of pDCs. PMID:16714548
Karuppuchamy, T; Behrens, E-H; González-Cabrera, P; Sarkisyan, G; Gima, L; Boyer, J D; Bamias, G; Jedlicka, P; Veny, M; Clark, D; Peach, R; Scott, F; Rosen, H; Rivera-Nieves, J
2017-01-01
The sphingosine-1-phosphate receptor-1 (S1P 1 ) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P 1 in intestine using S1P 1 -eGFP mice, the regulation of S1P 1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4 + CD45RB hi cells, and by crossing a mouse with TNF-driven ileitis with S1P 1 -eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P 1 expression. We found that not only T and B cells express S1P 1 , but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P 1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P 1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P 1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function.
Phenotypic differences in leucocyte populations among healthy preterm and full-term newborns.
Quinello, C; Silveira-Lessa, A L; Ceccon, M E J R; Cianciarullo, M A; Carneiro-Sampaio, M; Palmeira, P
2014-07-01
The immune system of neonates has been considered functionally immature, and due to their high susceptibility to infections, the aim of this study was to analyse the phenotypic differences in leucocyte populations in healthy preterm and full-term newborns. We evaluated the absolute numbers and frequencies of dendritic cells (DCs) and DC subsets, monocytes and T and B lymphocytes and subsets in the cord blood of healthy moderate and very preterm (Group 1), late preterm (Group 2) and full-term (Group 3) newborns and in healthy adults, as controls, by flow cytometry. The analyses revealed statistically higher absolute cell numbers in neonates compared with adults due to the characteristic leucocytosis of neonates. We observed a lower frequency of CD80(+) myeloid and plasmacytoid DCs in Group 1 and reduced expression of TLR-4 on myeloid DCs in all neonates compared with adults. TLR-2(+) monocytes were reduced in Group 1 compared with Groups 2 and 3, and TLR-4(+) monocytes were reduced in Groups 1 and 2 compared with Group 3. The frequencies and numbers of naïve CD4(+) T and CD19(+) B cells were higher in the three groups of neonates compared with adults, while CD4(+) effector and effector memory T cells and CD19(+) memory B cells were elevated in adults compared with neonates, as expected. Our study provides reference values for leucocytes in cord blood from term and preterm newborns, which may facilitate the identification of immunological deficiencies in protection against extracellular pathogens. © 2014 John Wiley & Sons Ltd.
Moret, Frederique M; van der Wurff-Jacobs, Kim M G; Bijlsma, Johannes W J; Lafeber, Floris P J G; van Roon, Joel A G
2014-11-30
The aim of this study was to investigate PD-1/PD-L1 involvement in the hyporesponsiveness of rheumatoid arthritis (RA) synovial fluid (SF) CD4 T cells upon stimulation by thymic stromal lymphopoietin (TSLP)-primed CD1c myeloid dendritic cells (mDCs). Expression of PD-1 on naïve (Tn), central memory (Tcm) and effector memory (Tem) CD4 T cell subsets was assessed by flow cytometry. PD-L1 expression and its regulation upon TSLP stimulation of mDCs from peripheral blood (PB) and SF of RA patients were investigated by quantitative RT-PCR and flow cytometry. The involvement of PD-1/PD-L1 interactions in SF T cell hyporesponsiveness upon (TSLP-primed) mDC activation was determined by cell culture in the presence of PD-1 blocking antibodies, with or without interleukin 7 (IL-7) as a recognized suppressor of PD-1 expression. PD-1 expression was increased on CD4 T cells derived from SF compared with PB of RA patients. TSLP increased PD-L1 mRNA expression in both PB and SF mDCs. PD-L1 protein expression was increased on SF mDCs compared with PB mDCs and was associated with T cell hyporesponsiveness. Blockade of PD-1, as well as IL-7 stimulation, during cocultures of memory T cells and (TSLP-primed) mDCs from RA patients significantly recovered T cell proliferation. SF T cell hyporesponsiveness upon (TSLP-primed) mDC stimulation in RA joints is partially dependent on PD-1/PD-L1 interactions, as PD-1 and PD-L1 are both highly expressed on SF T cells and mDCs, respectively, and inhibiting PD-1 availability restores T cell proliferation. The potential of IL-7 to robustly reverse this hyporesponsiveness suggests that such proinflammatory cytokines in RA joints strongly contribute to memory T cell activation.
Suchman, Nancy E; McMahon, Thomas J; Luthar, Suniya S
2004-09-01
In previous work, Luthar and Suchman (2000, Development & Psychopathology, 12, 235) reported results of a randomized clinical trial testing the efficacy of the Relational Psychotherapy Mothers' Group (RPMG) for methadone-maintained mothers. In this extension, we examined maternal interpersonal maladjustment as a predictor of differential response to RPMG versus standard drug counseling (DC). We predicted that RPMG mothers with high levels of interpersonal maladjustment would improve on parent-child relationship indices, whereas DC mothers with high levels of interpersonal maladjustment would show no improvement. Fifty-two mothers enrolled in the study completed baseline, post-treatment and 6-month followup assessments and a subset of 24 "target" children between the ages of 7 and 16 completed measures on mothers' parenting. As predicted, results of hierarchical regression analyses indicated moderate interpersonal maladjustment x treatment interaction effects for all parenting outcomes at post-treatment and for a subset of outcomes at followup. Plotted interactions confirmed predictions that, as maternal interpersonal maladjustment increased, parenting problems improved for RPMG mothers and remained the same or worsened for DC mothers. Results indicate the potential value of interpersonally oriented interventions for substance-abusing mothers and their children.
Gigley, Jason P.; Khan, Imtiaz A.
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169
Gigley, Jason P; Khan, Imtiaz A
2011-01-01
Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.
NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface.
Blois, Sandra M; Freitag, Nancy; Tirado-González, Irene; Cheng, Shi-Bin; Heimesaat, Markus M; Bereswill, Stefan; Rose, Matthias; Conrad, Melanie L; Barrientos, Gabriela; Sharma, Surendra
2017-05-19
DC-NK cell interactions are thought to influence the development of maternal tolerance and de novo angiogenesis during early gestation. However, it is unclear which mechanism ensures the cooperative dialogue between DC and NK cells at the feto-maternal interface. In this article, we show that uterine NK cells are the key source of IL-10 that is required to regulate DC phenotype and pregnancy success. Upon in vivo expansion of DC during early gestation, NK cells expressed increased levels of IL-10. Exogenous administration of IL-10 was sufficient to overcome early pregnancy failure in dams treated to achieve simultaneous DC expansion and NK cell depletion. Remarkably, DC expansion in IL-10 -/- dams provoked pregnancy loss, which could be abrogated by the adoptive transfer of IL-10 +/+ NK cells and not by IL-10 -/- NK cells. Furthermore, the IL-10 expressing NK cells markedly enhanced angiogenic responses and placental development in DC expanded IL-10 -/- dams. Thus, the capacity of NK cells to secrete IL-10 plays a unique role facilitating the DC-NK cell dialogue during the establishment of a healthy gestation.
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek
2013-09-15
Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.
Soilleux, Elizabeth J; Morris, Lesley S; Rushbrook, Simon; Lee, Benhur; Coleman, Nicholas
2002-06-01
DC-SIGNR is a human immunodeficiency virus (HIV)-binding C-type lectin that is expressed on endothelium in the hepatic sinusoids, lymph node sinuses and placenta. Like closely related DC-SIGN, DC-SIGNR can bind both ICAM-3 and HIV and can potentiate HIV infection of T lymphocytes in trans. In the present study we have investigated reasons underlying the restricted distribution of DC-SIGNR and have examined DC-SIGNR expression in relation to HIV entry receptors. We show that DC-SIGNR expression does not depend on endothelial cell specialization or on activation state. DC-SIGNR-positive endothelium continues to express DC-SIGNR in conditions of hyperplasia, whereas the molecule is lost after neoplastic transformation, most likely as a result of changes in the microenvironment of the endothelial cells. We have further shown that CCR5, but not CD4, is coexpressed with DC-SIGNR on hepatic sinusoidal and placental capillary endothelial cells. However, CD4-positive CCR5-positive cells, such as hepatic Kupffer cells, placental Hofbauer cells, and CD4-positive T lymphocytes in lymph nodes, can be found adjacent to DC-SIGNR-positive endothelium. Therefore, DC-SIGNR may be able to mediate HIV infection of these cells in trans. Finally, we demonstrate that DC-SIGN and DC-SIGNR can be coexpressed on lymph node sinus endothelial cells, which may lead to modulation of the function of both molecules. Copyright 2002, Elsevier Science (USA). All rights reserved.
Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Wang, Yu; Jiang, Wen G
2011-01-01
Death Decoy Receptor-3 (DcR3), otherwise known as tumour necrosis factor receptor superfamily member 6b, is suggested to be involved in the progression and immune evasion of malignant tumours. Its ligands include FASL and LIGHT (Tumour necrosis factor ligand superfamily member 14). DcR3 has been found to be amplified in certain solid tumours. However, its role in breast tumours remains unclear. In the present study, we examined the role played by DcR3 in MCF7 and MDA-MB-231 cell lines. The expression of DcR3 was examined in MCF7 and MDA-MB-231 cell lines using immunocytochemical staining and RT-PCR. Anti-DcR3 hammerhead ribozyme transgenes were constructed and transfected into cells to create DcR3 knock-down cell sublines. The biological impact of modifying DcR3 expression in breast cancer cells was evaluated using a variety of in vitro assays, including growth, adhesion, migration and invasion models. MCF7 and MDA-MB-231 cells, usually expressing DcR3, were transfected with the anti-DcR3 ribozyme transgene. Stable transfectants containing the DcR3 ribozyme transgene (MCF7DcR3KO, MDA-MB-231DcR3KO) displayed a reduction of DcR3 expression at mRNA and protein levels. DcR3 knockdown in MCF7 cells was found to significantly reduce invasive capacity compared to pEF6 control cell lines (30.78 +/- 6.40 vs.151.67 +/- 17.67 P < 0.001). The rate of migration in MCF7DcR3KO was significantly lower than MCF7pEF6 (P < 0.001). In contrast, no such significant differences was seen between MDA-MB-231DcR3KO and MDA-MB-231pEF6. Suppressing DcR3 expression was found to have an inhibitory effect on cellular invasion and migration in MCF7 breast cancer cells. This suggests that the invasion and migration capacity of this breast cancer cell line may, at least partly, depend on DcR3. DcR3 may be regarded as a negative regulator for aggressiveness during the development and progression of certain types of breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takei, Masao; Nakagawa, Hideyuki
The sea urchin Toxopneustes pileolus belonging to the family Toxopneustidae, they have well-developed globiferous pedicellariae with pharmacologically active substances. We have purified a novel sea urchin lectin-1 (SUL-1) from the large globiferous pedicellariae of T. pileolus. Dendritic cells (DC) are professional APC and play a pivotal role in controlling immune responses. This study investigated whether SUL-1 can drive DC maturation from human immature monocyte-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days followed by another 1 day in the presence of SUL-1 or LPS. DC harvested on day 7 were examined using functional assays.more » The expression levels of CD1a, CD80, CD83, CD86 and HLA-DR as expressed by mean fluorescence intensity (MFI) on DC differentiated from immature DC after culture with 1.0 {mu}g/ml of SUL-1 for 1 day were enhanced and decreased endocytic activity. SUL-1-treated DC also displayed enhanced T cell stimulatory capacity in an MLR, as measured by T cell proliferation. Cell surface expression of CD80, CD83 and CD86 on SUL-1-treated DC was inhibited by anti-DC-SIGN mAb, while anti-DC-SIGN mAb had no influence on allogeneic T cell proliferation by SUL-1-treated DC. DC differentiated with SUL-1 induced the differentiation of naive T cell towards a helper T cell type 1 (Th1) response at DC/T (1:5) cells ratio depending on IL-12 secretion. In CTL assay, the production of IFN-{gamma} and {sup 51}Cr release on SUL-1-treated DC were more augmented than of immature DC or LPS-treated DC. SUL-1-treated DC expressed CCR7 and had a high migration to MIP-3{beta}. Intracellular Ca{sup 2+} mobilization in SUL-1-treated DC was also induced by MIP-3{beta}. These results suggest that SUL-1 bindings to DC-SIGN on surface of immature DC may lead to differentiate DC from immature DC. Moreover, it suggests that SUL-1 may be used on DC-based vaccines for cancer immunotherapy.« less
Sontag, Stephanie; Förster, Malrun; Qin, Jie; Wanek, Paul; Mitzka, Saskia; Schüler, Herdit M; Koschmieder, Steffen; Rose-John, Stefan; Seré, Kristin; Zenke, Martin
2017-04-01
Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.
Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko
2013-10-17
Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.
Functional heterogeneity of human effector CD8+ T cells.
Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi
2012-02-09
Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takei, Masao; Umeyama, Akemi; Arihara, Shigenobu
2005-11-18
Epicubenol and 19-hydroxyferruginol (Ferruginol) are sesquiterpenes isolated from the black heartwood of Cryptomeria japonica. Dendritic cells (DC) are specialized antigen-presenting cells that monitor the antigenic environment and activate naive T cells. The role of DC is not only to sense danger but also to tolerize the immune system to antigens encountered in the absence of maturation/inflammatory stimuli. In this study, we attempted to investigate the effects of Epicubenol and Ferruginol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days under standard conditions, followed by another 2more » days with Epicubenol or Ferruginol. The expression levels of CD1a, CD83, and HLA-DR as expressed by mean fluorescence intensity (MFI) on Epicubenol-primed DC or Ferruginol-primed DC were enhanced. Allogeneic Epicubenol-primed DC or Ferruginol-primed DC co-cultured with naive T cells at 1:5 ratio, secreted IL-10 and TGF-{beta}, but little IL-4. Moreover, T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells at 1:5 ratio suppressed the proliferation of autologous T cells at Treg cells: Ttarget cells and this suppression of proliferation was inhibited by anti-IL-10 mAb. The expression of FoxP3 mRNA on T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells was lower. From these results, Epicubenol and Ferruginol may induce IL-10-producing Treg 1 cells from naive T cells by modulating DC function. It seems that Epicubenol and Ferruginol appear to be a target for tolerance after transplantation and in autoimmune diseases.« less
ALA-PDT mediated DC vaccine for skin squamous cell carcinoma
NASA Astrophysics Data System (ADS)
Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Wang, Xiuli; Chen, Wei R.
2015-03-01
Dendritic cell (DC) based vaccine has emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have only achieved limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secret INF-Υ and IL-12). ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumor in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing DC-based cancer vaccine, which could improve the clinical application of PDT- DC vaccines.
Yilmaz, Atilla; Dietel, Barbara; Cicha, Iwona; Schubert, Katja; Hausmann, Roland; Daniel, Werner G; Garlichs, Christoph D; Stumpf, Christian
2010-03-01
Dendritic cells (DC) are crucial for T cell mediated immune responses. Recently, we observed a significant decrease in circulating myeloid DC precursors in patients with acute myocardial infarction (AMI). The aim of the present study was to investigate whether myeloid DC are present in infarcted myocardium. Myocardial specimens of 10 patients with AMI and 7 accident victims (controls) were collected after autopsy. In immunostainings the presence of DC (CD209(+), fascin(+)), T cells (CD3(+)), macrophages (CD68(+)), and HLA-DR expression was analyzed. Significantly higher numbers of CD209(+)-DC (97 vs. 44 cells/0.25 mm(2), p=0.03), fascin(+)-DC (54 vs. 8 cells/0.25 mm(2), p=0.02), T cells (27 vs. 6 cells/0.25 mm(2), p=0.02), and macrophages (44 vs. 6 cells/0.25 mm(2), p=0.01) associated with high HLA-DR expression were detected in infarcted myocardium. Frequent colocalizations of DC and T cells were observed. In occluded coronary arteries numerous DC, T cells, macrophages and high HLA-DR expression were found. We show that DC are present in infarcted myocardium after AMI. High HLA-DR expression and the colocalization with T cells suggest that they might trigger an immune response leading to further myocardial damage.
Jiao, Yanmei; Hua, Wei; Zhang, Tong; Zhang, Yonghong; Ji, Yunxia; Zhang, Hongwei; Wu, Hao
2011-03-25
CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART.
2011-01-01
Background CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Methods Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. Results The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. Conclusion The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART. PMID:21435275
2012-01-01
Background Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. Methods We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. Results High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Conclusions Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of HSPGs available on the cells surface to interact with. Although the mechanism behind this is not completely known alterations in DNA repair pathways including the expression of BRCA1 appear to be involved. PMID:22583667
Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2018-06-01
The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6 DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.
[Inhibitive effect of LAK cells induced by dendritic cells on implanted lung cancer in nude mice].
Gao, Qiu; Li, Jintian; Wang, Siyu; Chen, Shiping; Liu, Wei; Wu, Yilong
2004-10-20
To study the inhibitive effect of LAK cells induced by dendritic cells (DCs) on implanted lung adenocarcinoma in nude mice. The lung adenocarcinoma model was constructed in nude mice using the resected samples of lung cancer patient. The lung cancer cell lysate was obtained by free-zing and thrawing cycles. Peripheral blood mononuclear cells (PBMNC) were obtained from venous blood of the same patient, in which the adherent PBMNC fraction was cultured with DCGF, and the non-adherent PBMNC fraction was cultured with rhIL-2. DCs were pulsed with lung cancer cell lysates. And then mature DCs were incubated with LAK cells and the mixed cells were named DC-LAK cells. DC-LAK cells were injected into lung cancer-bearing nude mice to observe the inhibitive effect. The lung adenocarcinoma mo-del was successfully constructed. The average tumor weights of DC-LAK, LAK, DC and saline control groups were 0.47, 1.05, 1.30 and 1.58 g respectively, and the inhibitive rates of DC-LAK, LAK and DC were 70.3%, 33.5% and 17.9% respectively. The antitumor activity of DC-LAK cells was significantly stronger than that of LAK cells (P < 0.05). The results of in vivo experiment show that the antitumor activity of DC-LAK cells is stronger than that of LAK cells, so DC-LAK cells treatment may be a more efficient approach of lung cancer biological therapy. This experiment may provide a foundation for clinical application of DC vaccine.
van der Voort, Robbert; Verweij, Viviènne; de Witte, Theo M; Lasonder, Edwin; Adema, Gosse J; Dolstra, Harry
2010-06-01
DC are professional APCs that initiate and regulate adaptive immune responses by interacting with naïve and memory T cells. Chemokines released by DC play an essential role in T cell recruitment and in the maintenance of antigen-specific T cell-DC conjugates. Here, we characterized the expression of the T cell-attracting chemokine CXCL16 by murine DC. We demonstrate that through alternative RNA splicing, DC not only express the previously characterized transmembrane CXCL16 isoform, which can be cleaved from the cell surface, but also a novel isoform lacking the transmembrane and cytoplasmic domains. Transfection of HEK293 cells shows that this novel isoform, termed CXCL16v, is not expressed on the cell membrane but is secreted as a protein of approximately 10 kDa. Quantitative PCR demonstrates that CXCL16v is broadly expressed in lymphoid and nonlymphoid tissues resembling the tissue distribution of DC. Indeed, CXCL16v mRNA is expressed significantly by spleen DC and BM-DC. Moreover, we show that mature DC have increased CXCL16v mRNA levels and express transmembrane and soluble CXCL16 proteins. Finally, we show that CXCL16v specifically attracts cells expressing the chemokine receptor CXCR6. Our data demonstrate that mature DC express secreted, transmembrane, and cleaved CXCL16 isoforms to recruit and communicate efficiently with CXCR6(+) lymphoid cells.
Botting, Rachel A; Bertram, Kirstie M; Baharlou, Heeva; Sandgren, Kerrie J; Fletcher, James; Rhodes, Jake W; Rana, Hafsa; Plasto, Toby M; Wang, Xin Maggie; Lim, Jake J K; Barnouti, Laith; Kohout, Mark P; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L; Haniffa, Muzlifah; Harman, Andrew N
2017-06-01
Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. © The Author(s).
Botting, Rachel A.; Bertram, Kirstie M.; Baharlou, Heeva; Sandgren, Kerrie J.; Fletcher, James; Rhodes, Jake W.; Rana, Hafsa; Plasto, Toby M.; Wang, Xin Maggie; Lim, Jake J. K.; Barnouti, Laith; Kohout, Mark P.; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L.; Haniffa, Muzlifah; Harman, Andrew N.
2017-01-01
Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. PMID:28270408
Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D; Murphy, Kenneth M; Storkus, Walter J; Falo, Louis D; You, Zhaoyang
2015-06-15
The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8(+) T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X box-binding protein 1 (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present Ags to CD8(+) T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes and the cross-priming of Ag-specific CD8(+) T cell responses associated with therapeutic benefit. Antitumor protection was dependent on cross-presenting Batf3(+) DC, pDC, and CD8(+) T cells. CD103(+) DC from the skin/tumor draining lymph nodes of the immunized mice appeared responsible for activation of Ag-specific naive CD8(+) T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3(+) DC-pDC interactions, thereby enabling effective vaccine induction of protective antitumor immunity. Copyright © 2015 by The American Association of Immunologists, Inc.
Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O
2012-05-07
Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.
Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N.; Peakman, Mark; Lombardi, Giovanna
2012-01-01
Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141+ DDCs). CD141+ DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D3 (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141+ DDCs from human blood DCs. These CD141+ DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141+ DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141+ DDC-like cells have potential clinical use for their capacity to induce immune tolerance. PMID:22547651
Ma, Yanna; Dawicki, Wojciech; Zhang, Xiaobei
2018-01-01
IL-10-differentiated dendritic cells (DC10) can reverse the asthma phenotype in mice, but how they suppress the asthmatic B cell response is unclear. Herein we assessed the mechanism(s) by which DC10 and DC10-induced Treg affect IgG1 production in asthma. We observed a rapid decline in lung-resident OVA-specific IgG1-secreting B cells on cessation of airway allergen challenge, and intraperitoneal DC10 therapy did not amplify that (p>0.05). It did however increase the loss of IgG1-B cells from the bone marrow (by 45+/-7.2%; p≤0.01) and spleen (by 65+/-17.8%; p≤0.05) over 2 wk. Delivery of OVA-loaded DC10 directly into the airways of asthmatic mice decreased the lung IgG1 B cell response assessed 2 dy later by 33+/-9.7% (p≤0.01), while their co-culture with asthmatic lung cell suspensions reduced the numbers of IgG1-secreting cells by 56.5+/-9.7% (p≤0.01). This effect was dependent on the DC10 carrying intact allergen on their cell surface; DC10 that had phagocytosed and fully processed their allergen were unable to suppress B cell responses, although they did suppress asthmatic Th2 cell responses. We had shown that therapeutic delivery of DC10-induced Treg can effectively suppress asthmatic T and B cell (IgE and IgG1) responses; herein CD4+ cells or Treg from the lungs of DC10-treated OVA-asthmatic mice suppressed in vitro B cell IgG1 production by 52.2+/-8.7% (p≤0.001) or 44.6+/-12.2% (p≤0.05), respectively, but delivery of DC10-induced Treg directly into the airways of asthmatic mice had no discernible impact over 2 dy on the numbers of lung IgG1-secreting cells (p≥0.05). In summary, DC10 treatment down-regulates OVA-specific B cell responses of asthmatic mice. While DC10 that carry intact allergen on their cell surface can dampen this response, DC10-induced Treg are critical for full realization of this outcome. This suggests that infectious tolerance is an essential element in regulatory DC control of the B cell response in allergic asthma. PMID:29293622
Alais, Sandrine; Tanaka, Yuetsu; Journo, Chloé; Mahieux, Renaud; Dutartre, Hélène
2017-01-01
Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-β DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type–I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection. PMID:28426803
Chen-Woan, M.; Delaney, C.P.; Fournier, V.; Wakizaka, Y.; Murase, N.; Fung, J.; Starzl, T.E.; Demetris, A.J.
2010-01-01
Bone marrow (BM)-derived dendritic cells (DC) are the most potent known antigen (Ag) presenting cell in vivo and in vitro. Detailed analysis of their properties and mechanisms of action requires an ability to produce large numbers of DC. Although DC have been isolated from several rat tissues, including BM, the yield is uniformly low. We describe a simple method for the propagation of large numbers of DC from rat BM and document cell yield with the rat DC marker, OX-62. After depletion of plastic-adherent and Fc+ cells by panning on dishes coated with normal serum, residual BM cells were cultured in gelatin coated flasks using murine rGM-CSF supplemented medium. Prior to analysis, non-adherent cells were re-depleted of contaminating Fc+ cells. Propagation of DC was monitored by double staining for FACS analysis (major histocompatibility complex (MHC) class II+/OX-62+, OX-19−). Functional assay, morphological analysis and evaluation of homing patterns of cultured cells revealed typical DC characteristics. MHC class II and OX-62 antigen expression increased with time in culture and correlated with allostimulatory ability. DC yield increased until day 7, when 3.3 × 106 DC were obtained from an initial 3 × 108 unfractionated BM cells. Significant numbers of DC can be generated from rat BM using these simple methods. This should permit analysis and manipulation of rat DC functions in vivo and in vitro. PMID:7836778
Chang, Emery; Sigal, Alex
2018-01-01
Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy. PMID:29293546
Jiao, Zhijun; Bedoui, Sammy; Brady, Jamie L.; Walter, Anne; Chopin, Michael; Carrington, Emma M.; Sutherland, Robyn M.; Nutt, Stephen L.; Zhang, Yuxia; Ko, Hyun-Ja; Wu, Li
2014-01-01
Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs) share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs. PMID:24637385
Buhl, Timo; Legler, Tobias J; Rosenberger, Albert; Schardt, Anke; Schön, Michael P; Haenssle, Holger A
2012-11-01
Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.
Charbonnier, Anne-Sophie; Hammad, Hamida; Gosset, Philippe; Stewart, Geoffrey A; Alkan, Sefik; Tonnel, André-Bernard; Pestel, Joël
2003-01-01
Although reports suggest that dendritic cells (DC) are involved in the allergic reaction characterized by a T helper cell type 2 (Th2) profile, the role of myeloid (M-DC) and plasmacytoid DC (P-DC), controlling the balance Th1/Th2, remains unknown. Here, we showed that in Dermatophagoides pteronyssinus (Dpt)-sensitized allergic patients and in healthy donors, M-DC displayed a higher capacity to capture Der p 1, a major allergen of Dpt, than did P-DC. However, Der p 1-pulsed M-DC from healthy subjects overexpressed CD80 and secreted interleukin (IL)-10, whereas M-DC from allergic patients did not. In contrast, with Der p 1-pulsed P-DC from both groups, no increase in human leukocyte antigen-DR, CD80, and CD86 and no IL-10 secretion were detected. When cocultured with allogeneic naive CD4(+) T cells from healthy donors, Der p 1-pulsed M-DC from allergic patients favored a Th1 profile [interferon (IFN)-gamma(high)/IL-4(low)] and Der p 1-pulsed P-DC, a Th2 profile (IFN-gamma(low)/IL-4(high)). In healthy donors, no T cell polarization (IFN-gamma(low)/IL-4(low)) was induced by Der p 1-pulsed M-DC or P-DC, but in response to Der p 1-pulsed M-DC, T cells secreted IL-10. The neutralization of IL-10 produced by Der p 1-pulsed M-DC from healthy donors led to an inhibition of IL-10 production by T cells and a polarization toward a type 1. Thus, IL-10 produced by M-DC might be an essential mediator controlling the balance between tolerance and allergic status. In addition, P-DC could contribute to the steady state in healthy donors or to the development of a Th2 response in allergic donors.
Kim, K D; Choi, S C; Kim, A; Choe, Y K; Choe, I S; Lim, J S
2001-11-01
Immunization of dendritic cells (DC) pulsed with tumor antigen can activate tumor-specific cytotoxic T lymphocytes (CTL) that are responsible for protection and regression. We show here that immunization with bone marrow-derived DC cocultured with tumor cells can induce a protective immunity against challenges to viable tumor cells. In this study, we further investigated the mechanism by which the antitumor activity was induced. Immunization of mice with DC cocultured with murine colon carcinoma. CT-26 cells, augmented CTL activity against the tumor cells. Concomitantly, an increase in natural killer (NK) cell activity was also detected in the same mice. When DC were fixed with paraformaldehyde prior to coculturing with tumor cells, most of the CTL and NK cell activity diminished, indicating that DC are involved in the process of presenting the tumor antigen(s) to CTL. NK cell depletion in vivo produced markedly low tumor-specific CTL activity responsible for tumor prevention. In addition, RT-PCR analysis confirmed the high expression of INF-gamma mRNA in splenocytes after vaccination with DC cocultured with tumors, but low expression in splenocytes from NK-depleted mice. Most importantly, the tumor protective effect rendered to DC by the coculturing with CT-26 cells was not observed in NK-depleted mice, which suggests that DC can induce an antitumor immune response by enhancing NK cell-dependent CTL activation. Collectively, our results indicate that NK cells are required during the priming of cytotoxic T-cell response by DC-based tumor vaccine and seem to delineate a mechanism by which DC vaccine can provide the desired immunity.
Trial watch: Dendritic cell-based anticancer immunotherapy.
Garg, Abhishek D; Vara Perez, Monica; Schaaf, Marco; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo
2017-01-01
Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called "maturation cocktail" (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape.
Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1
Xu, Ying-Chen; Cui, Jing; Zhang, Li-Jun; Zhang, Dong-Xin; Xing, Bing-Chen; Huang, Xiong-Wei-Ye; Wu, Ji-Xiang; Liang, Chao-Jie; Li, Guang-Ming
2018-01-01
Background: Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Methods: Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. Results: The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1 increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. Conclusions: The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy. Further studies should focus on exploring the binding ligand of DcR3, the signaling pathway involved, and the molecular mechanism for the regulation of DcR3 expression in cholangiocarcinoma. PMID:29271385
Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1.
Xu, Ying-Chen; Cui, Jing; Zhang, Li-Jun; Zhang, Dong-Xin; Xing, Bing-Chen; Huang, Xiong-Wei-Ye; Wu, Ji-Xiang; Liang, Chao-Jie; Li, Guang-Ming
2018-01-05
Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy. Further studies should focus on exploring the binding ligand of DcR3, the signaling pathway involved, and the molecular mechanism for the regulation of DcR3 expression in cholangiocarcinoma.
Transcriptional and functional defects of dendritic cells derived from the MUTZ-3 leukaemia line
Rasaiyaah, Jane; Noursadeghi, Mahdad; Kellam, Paul; Chain, Benjamin
2009-01-01
Dendritic cells (DC) generated from MUTZ-3, an immortalized acute myeloid leukaemia-derived cell line, have potential application as a model for the study of human DC, and as a tool with which to stimulate immunotherapeutic responses to cancer. However, the relationship of MUTZ-3 DC to their non-transformed counterparts remains incompletely understood. Immunoselected CD14+ MUTZ-3 cells were used to generate a homogeneous population of DC (M3DC). These cells had a cell surface phentoype and morphology characteristic of conventional monocyte-derived DC (MDDC). Whole genome transcriptome comparison of M3DC and MDDC however, revealed extensive differences between these two cell types. Functional ontology-based data analysis revealed three enriched clusters of genes downregulated in M3DC, with functions in pathogen recognition, DC maturation and cytokine/chemokine signalling. Downregulation of protein expression was confirmed for several of these genes. The molecular differences were accompanied by a profoundly impaired phenotypic and functional response of M3DC to microbial stimulation. The immortalized phenotype of MUTZ-3 therefore reflects not only deregulated proliferative capacity, but substantial perturbation of normal antigen-presenting cell function. These results have important implications for studies using MUTZ-3 as a model of MDDC or for cancer immunotherapy. PMID:19538250
Bai, L; Feuerer, M; Beckhove, P; Umansky, V; Schirrmacher, V
2002-02-01
Dendritic cells (DCs) currently used for vaccination in clinical studies to induce immunity against malignant cells are normally generated from peripheral blood-derived monocytes. Here we studied conditions for the generation of DCs from unseparated human bone marrow (BM) mononuclear cells and compared them functionally with DCs from blood. The two types of DCs, from bone marrow (BM-DC) and peripheral blood (BL-DC), were generated in parallel from the same normal healthy donors by culturing in serum-free X-VIVO 20 medium containing GM-CSF and IL-4, and then the phenotypes and functions were compared. BM-DC generation occurred in 14 days and involved proliferative expansion from CD34 stem cells and differentiation while BL-DC generation occurred in 7 days from CD14 monocytes and involved only differentiation. A 7- to 25-fold higher number of DCs could be obtained from BM than from blood. BM-DC had similar phenotypes as BL-DC. The capacity to stimulate MLR reactivity in allogeneic T lymphocytes was higher with BM-DC than that with BL-DC. Also, the capacity to stimulate autologous memory T cell responses to tetanus toxoid (TT) or tuberculin (PPD) was higher with BM-DC than with BL-DC. These results suggest that BM-DC as produced here may be a very economic and useful source of professional antigen-presenting cells for anti-tumor immunotherapeutic protocols.
Dendritic cells provide a potential link between smoking and inflammation in rheumatoid arthritis
2012-01-01
Introduction Smoking increases the risk of developing rheumatoid arthritis (RA) and affects the severity of established RA. Smoking can impact on Th17 lymphocyte differentiation and function through activation of the aryl hydrocarbon receptor (AHR), a process with implications for the pathogenic mechanisms in RA that involve the cytokine, interleukin (IL)-17A. The objective of this study was to establish any effect of smoking on the inflammatory tissue lesions of rheumatoid arthritis via the AHR and IL-17A. Methods Twenty synovial and eighteen subcutaneous nodule tissue samples from 31 patients with RA were studied. Patient smoking status at the time of tissue collection was established. Expression of AHR, CYP1A1, AHRR, IL6, IL17A, IL17F, IL22, IL23, IL23R, IFNG, TBX21, IDO1 and FOXP3 genes were assessed in tissues and cultured cells using real-time PCR. Two-colour immunofluorescence was used to co-localise AHR and CYP1A1 protein in synovial tissues. The response of monocytes and monocyte-derived dendritic cells (mo-DCs) to the AHR agonist, benzo(a)pyrene (BaP) was compared in vitro. Results AHR gene expression was demonstrated in rheumatoid synovial tissues and nodules with significantly greater expression in synovia. Expression was not influenced by smoking in either tissue. Evidence of AHR activation, indicated by CYP1A1 and AHRR gene expression, was found only in synovia from patients who smoked. However, IL17A gene expression was lower in synovia from smokers. TBX21 and FOXP3 expression was not affected by smoking. Within the synovial tissues of smokers the principal cell type with evidence of AHR activation was a subset of synovial DCs. This observation was consistent with the sensitivity of human mo-DCs to BaP stimulation demonstrated in vitro. Exposure to BaP affected mo-DC function as demonstrated by decreased IL6 expression induced by PolyI:C, without affecting indoleamine 2,3 dioxygenase (IDO)1 expression. Conclusion Our findings show that one effect of smoking on inflamed rheumatoid synovial tissue involves activation of the AHR pathway. A subset of synovial DCs is important in the response to cigarette smoke. The potential for smoking to affect DC behaviour in joint tissues has relevance to both early and late phases of RA pathogenesis and warrants further investigation. PMID:23036591
Computer simulations for lab experiences in secondary physics
NASA Astrophysics Data System (ADS)
Murphy, David Shannon
Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain circumstances, have been found to allow students to gain insight into the operation of the systems they model. This study compared the use of a DC circuit simulation, a modified simulation, static graphics, and traditional bulbs and wires to compare gains in DC circuit knowledge as measured by the DIRECT instrument, a multiple choice instrument previously developed to assess DC circuit knowledge. Gender, prior DC circuit knowledge and subsets of DC circuit knowledge of students were also compared. The population (n=166) was comprised of high school freshmen students from an eastern Kentucky public school with a population of 1100 students and followed a quantitative quasi experimental research design. Differences between treatment groups were not statistically significant. Keywords: Simulations, Static Images, Science Education, DC Circuit Instruction, Phet.
Abuknesha, Ram; Uematsu, Satoshi; Akira, Shizuo; Nestle, Frank O.; Diebold, Sandra S.
2012-01-01
Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses. PMID:22808118
Hang, Long; Blum, Arthur M; Kumar, Sangeeta; Urban, Joseph F.; Mitreva, Makedonka; Geary, Timothy G.; Jardim, Armando; Stevenson, Mary M; Lowell, Clifford A.; Weinstock, Joel V.
2016-01-01
Helminthic infections modulate host immunity and may protect people in less developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri (Hpb) prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from Hp- infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk −/− mice were powerful inhibitors of murine colitis suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for CLEC7A, 9A, 12A and 4N. Hpb infection down modulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that Hpb decreases dectin-1 display on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, down-modulation of Syk expression and phosphorylation in intestinal DCs could be an important mechanism through which helminths induce regulatory DCs that limit colitis. PMID:27559049
Shey, Muki S; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S
2016-01-01
HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.
Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle
2016-01-01
Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system.
Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe
2003-01-01
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086
Freitag, Nancy; Otto, Teresa; Thijssen, Victor L. J. L.; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F.; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M.
2012-01-01
Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression. PMID:23056436
Tirado-González, Irene; González, Irene Tirado; Barrientos, Gabriela; Freitag, Nancy; Otto, Teresa; Thijssen, Victor L J L; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M
2012-01-01
Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.
Paula, Carine; Motta, Adriana; Schmitz, Carla; Nunes, Claudia P; Souza, Ana Paula; Bonorino, Cristina
2009-02-01
It is known that immune system functions decrease with age, and that adaptive immune responses, especially CD4+ T cell function, seem to be the main affected point in immunity with aging. Dendritic cells (DC) are the major antigen presenting cell (APC), and at least part of the defects observed in adaptive immunity of aged individuals could be due to diminished potential of bone marrow to generate new DC, or defects in DC function. In this study, we investigated if the ability of aged bone marrow (BM) to generate new DC in vitro, as well as aged BM-derived DC responses to lypopolysaccharide (LPS). Because DC are important tools in newly developing anti-tumor therapies, we also studied the ability of aged DC to phagocytose and present antigen from necrotic tumor cells. We found that aged BM generated fewer DC in vitro compared to young BM. While LPS-induced DC maturation is reduced in DC of aged mice, a high TNF-alpha production is observed in aged DC even without LPS stimulation. While phagocytosis of tumor cells is not affected by age, and DC derived from aged BM show a higher TNF-alpha production in response to phagocytosis, presentation of tumor antigens was decreased in aged DC. Because class II upregulation in response to phagocytosis was similar between aged and young DC, this could indicate an age associated processing defect in the exogenous pathway. These findings suggest that age of BM used to generate DC does not impair their phagocytic ability or TNF-alpha production, however leads to a decreased yield in mature DC, reduced response to LPS, and diminished antigen processing/presentation potential. Our results are relevant to optimization DC-based vaccine design for aged populations.
Zhou, Jian; Song, Shiduo; He, Songbin; Wang, Zhenxin; Zhang, Bing; Li, Dechun; Zhu, Dongming
2013-09-01
Decoy receptor 3 (DcR3) is abundantly expressed in human tumors and protects cells from a wide range of apoptotic stimuli. In this study, we demonstrate that DcR3 is overexpressed in pancreatic carcinoma cells, and that the pancreatic carcinoma cell lines, Panc-1 and SW1990, are resistant to Fas ligand (FasL)-mediated apoptosis. To further define the function of DcR3 in cell growth and apoptosis, we used small interfering RNA (siRNA) to knockdown the expression of the DcR3 gene in Panc-1 and SW1990 cells. Our results revealed that the silencing of DcR3 expression enhanced the inhibitory effects of FasL and reduced the capabiltiy of the cells for proliferation and colony formation in vitro. In addition, the downregulation of DcR3 modulated the cell apoptotic regulators, Fas-associated death domain (FADD), caspase‑3 and caspase‑8, thus triggering cell apoptosis. Furthermore, the knockdown of DcR3 inhibited the growth of Panc-1 tumor xenografts. Taken together, our findings indicate that DcR3 is important in cancer progression and may be a used as a potential therapeutic target for the gene therapy of pancreatic carcinoma.
Decoy receptor 3 suppresses TLR2-mediated B cell activation by targeting NF-κB.
Huang, Zi-Ming; Kang, Jhi-Kai; Chen, Chih-Yu; Tseng, Tz-Hau; Chang, Chien-Wen; Chang, Yung-Chi; Tai, Shyh-Kuan; Hsieh, Shie-Liang; Leu, Chuen-Miin
2012-06-15
Decoy receptor 3 (DcR3) is a soluble protein in the TNFR superfamily. Its known ligands include Fas ligand, homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes, TNF-like molecule 1A, and heparan sulfate proteoglycans. DcR3 has been reported to modulate the functions of T cells, dendritic cells, and macrophages; however, its role in regulating B cell activation is largely unknown. In this study, we found that the DcR3.Fc fusion protein bound to human and mouse B cells and suppressed the activation of B cells. DcR3.Fc attenuated Staphylococcus aureus, IgM-, Pam(3)CSK(4)-, and LPS-mediated B cell proliferation but did not affect cytokine-induced B cell growth. In the presence of these mitogens, DcR3.Fc did not induce B cell apoptosis, suggesting that DcR3 may inhibit the signal(s) important for B cell activation. Because the combination of Fas.Fc, LT-βR.Fc (homologous to lymphotoxin, showing inducible expression, and competing with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes receptor), and DR3.Fc (TNF-like molecule 1A receptor) did not suppress B cell proliferation and because the biological effect of DcR3.Fc on B cells was not blocked by heparin, we hypothesize that a novel ligand(s) of DcR3 mediates its inhibitory activity on B cells. Moreover, we found that TLR2-stimulated NF-κB p65 activation and NF-κB-driven luciferase activity were attenuated by DcR3.Fc. The TLR2-induced cytokine production by B cells was consistently reduced by DcR3. These results imply that DcR3 may regulate B cell activation by suppressing the activation of NF-κB.
Satish, Latha; O'Gorman, David B; Johnson, Sandra; Raykha, Christina; Gan, Bing Siang; Wang, James H-C; Kathju, Sandeep
2013-07-01
Dupuytren's contracture (DC) is a fibroproliferative disorder of unknown etiology characterized by a scar-like contracture that develops in the palm and/or digits. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is increased in fibrotic wound healing, and is essential for the accumulation of α-smooth muscle actin (α-SMA) in fibroblasts. The purpose of this study was to determine if CCT-eta is similarly implicated in the aberrant fibrosis seen in DC and to investigate the role of CCT-eta in the behavior of myo/fibroblasts in DC. Fibroblasts were obtained from DC-affected palmar fascia, from adjacent phenotypically normal palmar fascia in the same DC patients (PF), and from non-DC palmar fascial tissues in patients undergoing carpal tunnel (CT) release. Inherent contractility in these three populations was examined using fibroblast-populated collagen lattices (FPCLs) and by cell traction force microscopy. Expression of CCT-eta and α-SMA protein was determined by Western blot. The effect of CCT-eta inhibition on the contractility of DC cells was determined by deploying an siRNA versus CCT-eta. DC cells were significantly more contractile than both matching palmar fascial (PF) cells and CT cells in both assays, with PF cells demonstrating an intermediate contractility in the FPCL assay. Whereas α-SMA protein was significantly increased only in DC cells compared to PF and CT cells, CCT-eta protein was significantly increased in both PF and DC cells compared to CT cells. siRNA-mediated depletion of CCT-eta inhibited the accumulation of both CCT-eta and α-SMA protein in DC cells, and also significantly decreased the contractility of treated DC cells. These observations suggest that increased expression of CCT-eta appears to be a marker for latent and active disease in these patients and to be essential for the increased contractility exhibited by these fibroblasts.
DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption
Wisitrasameewong, W.; Kajiya, M.; Movila, A.; Rittling, S.; Ishii, T.; Suzuki, M.; Matsuda, S.; Mazda, Y.; Torruella, M.R.; Azuma, M.M.; Egashira, K.; Freire, M.O.; Sasaki, H.; Wang, C.Y.; Han, X.; Taubman, M.A.; Kawai, T.
2017-01-01
Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP–monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis (n = 6–7/group) where Pasteurella pneumotropica (Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase–positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor–α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature (P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti-Pp IgG antibody nor in vitro anti-Pp T-cell response and resultant production of RANKL was affected by anti-DC-STAMP-mAb. This study illustrated the roles of DC-STAMP in promoting local OC cell fusion without affecting adaptive immune responses to oral bacteria. Therefore, it is plausible that a novel therapeutic regimen targeting DC-STAMP could suppress periodontal bone loss. PMID:28199142
Tomescu, Costin; Liu, Qin; Ross, Brian N; Yin, Xiangfan; Lynn, Kenneth; Mounzer, Karam C; Kostman, Jay R; Montaner, Luis J
2014-01-01
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.
1976-07-01
PURDUE UNIVERSITY DEPARTMENT OF STATISTICS DIVISION OF MATHEMATICAL SCIENCES ON SUBSET SELECTION PROCEDURES FOR POISSON PROCESSES AND SOME...Mathematical Sciences Mimeograph Series #457, July 1976 This research was supported by the Office of Naval Research under Contract NOOO14-75-C-0455 at Purdue...11 CON PC-111 riFIC-F ,A.F ANO ADDPFS Office of INaval ResearchJu#07 Washington, DC07 36AE 14~~~ rjCr; NF A ’ , A FAA D F 6 - I S it 9 i 1, - ,1 I
Modeling and Synthesis Support for the North American Carbon Program
NASA Astrophysics Data System (ADS)
Baskaran, L.; Cook, R. B.; Thornton, P. E.; Post, W. M.; Wilson, B. E.; Dadi, U.
2007-12-01
The Modeling and Synthesis Thematic Data Center (MAST-DC) supports the North American Carbon Program by providing data products and data management services needed for modeling and synthesis activities. The overall objective of MAST-DC is to provide advanced data management support to NACP investigators doing modeling and synthesis, thereby freeing those investigators from having to perform data management functions. MAST-DC has compiled a number of data products for North America, including sub-pixel land-water content, daily meteorological data, and soil, land cover, and elevation data. In addition, we have developed an internet-based WebGIS system that enables users to browse, query, display, subset, and download spatial data using a standard web browser. For the mid-continent intensive, MAST-DC is working with a group of data assimilation modelers to generate a consistent set of meteorological data to drive bottom-up models.
Tokita, Daisuke; Sumpter, Tina L.; Raimondi, Giorgio; Zahorchak, Alan F.; Wang, Zhiliang; Nakao, Atsunori; Mazariegos, George V.; Abe, Masanori; Thomson, Angus W.
2008-01-01
Background/Aims The liver is comparatively rich in plasmacytoid (p) dendritic cells (DC),- innate immune effector cells that are also thought to play key roles in the induction and regulation of adaptive immunity. Methods Liver and spleen pDC were purified from fms-like tyrosine kinase ligand-reated control or lipopolysaccharide-injected C57BL/10 mice. Flow cytometric and molecular biologic assays were used to characterize their function and interaction with naturally-occurring regulatory T cells (Treg). Results While IL-10 production was greater for freshly-isolated liver compared with splenic pDC, the former produced less bioactive IL-12p70. Moreover, liver pDC expressed a low Delta4/Jagged1 Notch ligand ratio, skewed towards T helper 2 cell differentiation/cytokine production, and promoted allogeneic CD4+ T cell apoptosis. T cell proliferation in response to liver pDC was, however, enhanced by blocking IL-10 function at the initiation of cultures. In the absence of naturally occurring CD4+CD25+ regulatory T cells, similar levels of T cell proliferation were induced by liver and spleen pDC and the pro-apoptotic activity of liver pDC was reversed. Conclusion The inferior T cell allostimulatory activity of in vivo-stimulated liver pDC may depend on the presence and function of Treg, a property that may contribute to inherent liver tolerogenicity. PMID:18926588
Shiokawa, Aya; Tanabe, Kosuke; Tsuji, Noriko M; Sato, Ryuichiro; Hachimura, Satoshi
2009-06-30
Oral tolerance is a key feature of intestinal immunity, generating systemic tolerance to ingested antigens (Ag). Dendritic cells (DC) have been revealed as important immune regulators, however, the precise role of DC in oral tolerance induction remains unclear. We investigated the characteristics of DC in spleen, mesenteric lymph node (MLN), and Peyer's patch (PP) after oral Ag administration in a TCR-transgenic mouse model. DC from PP and MLN of tolerized mice induced IL-10 production but not Foxp3 expression in cocultured T cells. IL-10 production was markedly increased after 5-7-day Ag administration especially in PP DC. On the other hand, IL-27 production was increased after 2-5-day Ag administration. CD11b(+) DC, which increased after ingestion of Ag, prominently expressed IL-10 and IL-27 compared with CD11b(-) DC. These results suggest that IL-10 and IL-27 producing DC are increased by interaction with antigen specific T cells in PP, and these DC act as an inducer of IL-10 producing T cells in oral tolerance.
Trial watch: Dendritic cell-based anticancer immunotherapy
Vara Perez, Monica; Schaaf, Marco; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido
2017-01-01
ABSTRACT Dendritic cell (DC)-based vaccines against cancer have been extensively developed over the past two decades. Typically DC-based cancer immunotherapy entails loading patient-derived DCs with an appropriate source of tumor-associated antigens (TAAs) and efficient DC stimulation through a so-called “maturation cocktail” (typically a combination of pro-inflammatory cytokines and Toll-like receptor agonists), followed by DC reintroduction into patients. DC vaccines have been documented to (re)activate tumor-specific T cells in both preclinical and clinical settings. There is considerable clinical interest in combining DC-based anticancer vaccines with T cell-targeting immunotherapies. This reflects the established capacity of DC-based vaccines to generate a pool of TAA-specific effector T cells and facilitate their infiltration into the tumor bed. In this Trial Watch, we survey the latest trends in the preclinical and clinical development of DC-based anticancer therapeutics. We also highlight how the emergence of immune checkpoint blockers and adoptive T-cell transfer-based approaches has modified the clinical niche for DC-based vaccines within the wide cancer immunotherapy landscape. PMID:28811970
Dendritic cells exposed in vitro to TGF-β1 ameliorate experimental autoimmune myasthenia gravis
YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G
2002-01-01
Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF-β1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF-β1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF-β1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF-β1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF-β1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742
Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.
Mora, J Rodrigo; von Andrian, Ulrich H
2004-10-01
T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.
Dendritic Cells Limit Fibro-Inflammatory Injury in NASH
Henning, Justin R.; Graffeo, Christopher S.; Rehman, Adeel; Fallon, Nina C.; Zambirinis, Constantinos P.; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Saeed, Usama Bin; Rao, Raghavendra S.; Badar, Sana; Quesada, Juan P.; Acehan, Devrim; Miller, George
2013-01-01
Non-alcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation. We postulated that DC are important in the progression of NASH. We found that intrahepatic DC expand and mature in NASH liver and assume an activated immune-phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibro-inflammation. Our mechanistic studies support a regulatory role for DC in NASH by limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic debris. We found that DC limit CD8+ T cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Conclusion Our findings support a role for DC in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. PMID:23322710
Lambert, Henrik; Hitziger, Niclas; Dellacasa, Isabel; Svensson, Mattias; Barragan, Antonio
2006-10-01
The processes leading to systemic dissemination of the obligate intracellular parasite Toxoplasma gondii remain unelucidated. In vitro studies on human and murine dendritic cells (DC) revealed that active invasion of DC by Toxoplasma induces a state of hypermotility in DC, enabling transmigration of infected DC across endothelial cell monolayers in the absence of chemotactic stimuli. Infected DC exhibited upregulation of maturation markers and co-stimulatory molecules. While modulation of cell adhesion molecules CD11/CD18 was similar for Toxoplasma-infected DC and lipopolysaccharide (LPS)-matured DC, Toxoplasma-infected DC did not exhibit upregulation of CD54/ICAM-1. Induction of host cell migration in vitro required live intracellular parasite(s) and was inhibited by uncoupling the Gi-protein signalling pathway with pertussis toxin, but did not depend on CCR5, CCR7 or Toll/interleukin-1 receptor signalling. When migration of Toxoplasma-infected DC was compared with migration of LPS-stimulated DC in vivo, similar or higher numbers of Toxoplasma-infected DC reached the mesenteric lymph nodes and spleen respectively. Adoptive transfer of Toxoplasma-infected DC resulted in more rapid dissemination of parasites to distant organs and in exacerbation of infection compared with inoculation with free parasites. Altogether, these findings show that Toxoplasma is able to subvert the regulation of host cell motility and likely exploits the host's natural pathways of cellular migration for parasite dissemination.
Role of Dendritic Cells in the Pathogenesis of Whipple's Disease
Schinnerling, Katina; Geelhaar-Karsch, Anika; Allers, Kristina; Friebel, Julian; Conrad, Kristina; Loddenkemper, Christoph; Kühl, Anja A.; Erben, Ulrike; Ignatius, Ralf; Schneider, Thomas
2014-01-01
Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11chigh myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN+ DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium. PMID:25385798
Wang, Xiaodong; Tong, Jingzhi; Li, Keqiu; Jing, Yaqing
2016-01-01
Recently, regulatory dendritic cells (DCregs), a newly described dendritic cell subset with potent immunomodulatory function, have attracted increased attention for their utility in treating immune response-related diseases, such as graft-versus-host disease, hypersensitivity, and autoimmune diseases. Danchaiheji (DCHJ) is a traditional Chinese formula that has been used for many years in the clinic. However, whether DCHJ can program dendritic cells towards a regulatory phenotype and the underlying mechanism behind this process remain unknown. Herein, we investigate the effects of traditional Chinese DCHJ on DCregs differentiation and a mouse model of skin transplantation. The current study demonstrates that DCHJ can induce dendritic cells to differentiate into DCregs, which are represented by high CD11b and low CD86 and HLA-DR expression as well as the secretion of IL-10 and TGF-β. In addition, DCHJ inhibited DC migration and T cell proliferation, which correlated with increased IDO expression. Furthermore, DCHJ significantly prolonged skin graft survival time in a mouse model of skin transplantation without any liver or kidney toxicity. The traditional Chinese formula DCHJ has the potential to be a potent immunosuppressive agent with high efficiency and nontoxicity. PMID:27525028
RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis
Kukita, Toshio; Wada, Naohisa; Kukita, Akiko; Kakimoto, Takashi; Sandra, Ferry; Toh, Kazuko; Nagata, Kengo; Iijima, Tadahiko; Horiuchi, Madoka; Matsusaki, Hiromi; Hieshima, Kunio; Yoshie, Osamu; Nomiyama, Hisayuki
2004-01-01
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor–κB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis. PMID:15452179
Kremser, Andreas; Dressig, Julia; Grabrucker, Christine; Liepert, Anja; Kroell, Tanja; Scholl, Nina; Schmid, Christoph; Tischer, Johanna; Kufner, Stefanie; Salih, Helmut; Kolb, Hans Jochem; Schmetzer, Helga
2010-01-01
Myeloid-leukemic cells (AML, MDS, CML) can be differentiated to leukemia-derived dendritic cell [DC (DCleu)] potentially presenting the whole leukemic antigen repertoire without knowledge of distinct leukemia antigens and are regarded as promising candidates for a vaccination strategy. We studied the capability of 6 serum-free DC culture methods, chosen according to different mechanisms, to induce DC differentiation in 137 cases of AML and 52 cases of MDS. DC-stimulating substances were cytokines ("standard-medium", "MCM-Mimic", "cytokine-method"), bacterial lysates ("Picibanil"), double-stranded RNA ["Poly (I:C)"] or a cytokine bypass method ("Ca-ionophore"). The quality/quantity of DC generated was estimated by flow cytometry studying (co) expressions of "DC"antigens, costimulatory, maturation, and blast-antigens. Comparing these methods on average 15% to 32% DC, depending on methods used, could be obtained from blast-containing mononuclear cells (MNC) in AML/MDS cases with a DC viability of more than 60%. In all, 39% to 64% of these DC were mature; 31% to 52% of leukemic blasts could be converted to DCleu and DCleu-proportions in the suspension were 2% to 70% (13%). Average results of all culture methods tested were comparable, however not every given case of AML could be differentiated to DC with 1 selected method. However performing a pre-analysis with 3 DC-generating methods (MCM-Mimic, Picibanil, Ca-ionophore) we could generate DC in any given case. Functional analyses provided proof, that DC primed T cells to antileukemia-directed cytotoxic cells, although an anti-leukemic reaction was not achieved in every case. In summary our data show that a successful, quantitative DC/DCleu generation is possible with the best of 3 previously tested methods in any given case. Reasons for different functional behaviors of DC-primed T cells must be evaluated to design a practicable DC-based vaccination strategy.
Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association.
Alculumbre, Solana; Raieli, Salvatore; Hoffmann, Caroline; Chelbi, Rabie; Danlos, François-Xavier; Soumelis, Vassili
2018-02-19
Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Felix, Kumar
2012-01-01
After stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin−/−DC-Fas−/−), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas−/− DCs induced over-activation and IFN-γ production in perforin−/− CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin−/−DC-Fas−/− mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade. PMID:22042696
A High Voltage Ratio and Low Ripple Interleaved DC-DC Converter for Fuel Cell Applications
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters. PMID:23365536
A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.
Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K
2013-01-01
Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.
Hunzeker, John T.; Elftman, Michael D.; Mellinger, Jennifer C.; Princiotta, Michael F.; Bonneau, Robert H.; Truckenmiller, Mary E.; Norbury, Christopher C.
2013-01-01
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8+ T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8+ T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA257–264-specific T cells. Using a murine model of psychological stress and OVA-loaded β2-microglobulin knockout “donor” cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b−CD24+CD8α+ DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b−CD24+CD8α− DC precursors were increased, suggesting a block in development of CD8α+ DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice. PMID:21098225
Ruwhof, Cindy; Canning, Martha O; Grotenhuis, Kristel; de Wit, Harm J; Florencia, Zenovia Z; de Haan-Meulman, Meeny; Drexhage, Hemmo A
2002-07-01
Veiled cells (VC) present in afferent lymph transport antigen from the periphery to the draining lymph nodes. Although VC in lymph form a heterogeneous population, some of the cells clearly belong on morphological grounds to the Langerhans cell (LC)/ dendritic cell (DC) series. Here we show that culturing monocytes for 24 hrs while avoiding plastic adherence (polypropylene tubes) and avoiding the activation of NADPH oxidase (blocking agents) results in the generation of a population of veiled accessory cells. The generated VC were actively moving cells like lymph-borne VC in vivo. The monocyte (mo)-derived VC population existed of CD14(dim/-) and CD14(brighT) cells. Of these the CD14(dim/-) VC were as good in stimulating allogeneic T cell proliferation as immature DC (iDC) obtained after one week of adherent culture of monocytes in granulocyte-macrophage-colony stimulating factor (GM-CSF)/interleukin (IL)-4. This underscores the accessory cell function of the mo-derived CD14(dim/-) VC. Although the CD14(dim/-)VC had a modest expression of the DC-specific marker CD83 and were positive for S100, expression of the DC-specific markers CD1a, Langerin, DC-SIGN, and DC-LAMP were absent. This indicates that the here generated CD14(dim/-) VC can not be considered as classical LC/DC. It was also impossible to turn the CD14(dim/-) mo-derived VC population into typical DC by culture for one week in GM-CSF/IL-4 or LPS. In fact the cells died tinder such circumstances, gaining some macrophage characteristics before dying. The IL-12 production from mo-derived CD14(dim/-) VC was lower, whereas the production of IL-10 was higher as compared to iDC. Consequently the T cells that were stimulated by these mo-derived VC produced less IFN-gamma as compared with T cells stimulated by iDC. Our data indicate that it is possible to rapidly generate a population of CD14(dim/-) veiled accessory cells from monocytes. The marker pattern and cytokine production of these VC indicate that this population is not a classical DC population. The cells might earlier be related to the veiled macrophage-like cells also earlier described in afferent lymph.
Cougoule, Céline; Lastrucci, Claire; Guiet, Romain; Mascarau, Rémi; Meunier, Etienne; Lugo-Villarino, Geanncarlo; Neyrolles, Olivier; Poincloux, Renaud; Maridonneau-Parini, Isabelle
2018-01-01
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo , or in collagen matrices in vitro . However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam 3 CSK 4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE 2 , known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro
2005-08-01
When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.
Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro
2005-01-01
When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-γ. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8+ T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-γ produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells. PMID:16011514
Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.
2016-01-01
Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700
Ramadan, Gamal
2008-01-01
To overcome the cytotoxic T-lymphocytes (CTL) expansion limitations imposed by the lack of sufficient dendritic cells (DC) alternative sources of autologous antigen presenting cells (APC) such as Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cell lines (BLCL), which are easy to establish in vitro, have been considered and studied in the present work. Non-adherent peripheral blood mononuclear cells of three healthy donors were repeatedly primed with autologous Aspergillus fumigatus commercial culture-filtrate antigen-pulsed fast monocyte-derived DC (Aspf-CFA-DC) alone, Aspf-CFA-pulsed BLCL (Aspf-CFA-BLCL) alone or Aspf-CFA-BLCL after one, two, or three primings with Aspf-CFA-DC (1DC/BLCL, 2DC/BLCL or 3DCIBLCL; respectively). After 5th priming, lines generated by Aspf-CFA-BLCL only showed strong/weak lytic activity for EBV/Aspf; respectively. Aspf-specific lytic activity in all donors was increased by increasing the number of primings with Aspf-CFA-DC before switching to Aspf-CFA-BLCL (18.20 +/- 1.65% versus 35.67 +/- 1.02% and 40.03 +/- 1.41% in bulk cultures generated by 1DC/BLCL versus 2DC/BLCL and 3DC/BLCL, respectively). Bulk cultures generated by Aspf-CFA-BLCL after at least two primings with Aspf-CFA-DC showed approximately the same Aspf-specific lytic activity, effector cell phenotype, expansion level and percentage expression of IFN-gamma, CD69 and CD107a without any significant differences (p > 0.05) as standard bulk cultures generated by only Aspf-CFA-DC. Thus, this study explored the use of a combined DC/BLCL protocol to establish/propagate Aspf-specific CTL for adoptive immunotherapy to prevent or treat invasive pulmonary aspergillosis.
Tolosa-Vilella, Carles; Morera-Morales, Maria Lluisa; Simeón-Aznar, Carmen Pilar; Marí-Alfonso, Begoña; Colunga-Arguelles, Dolores; Callejas Rubio, José Luis; Rubio-Rivas, Manuel; Freire-Dapena, Maika; Guillén-Del Castillo, Alfredo; Iniesta-Arandia, Nerea; Castillo-Palma, Maria Jesús; Egurbide-Arberas, Marivi; Trapiellla-Martínez, Luis; Vargas-Hitos, José A; Todolí-Parra, José Antonio; Rodriguez-Carballeira, Mónica; Marin-Ballvé, Adela; Pla-Salas, Xavier; Rios-Blanco, Juan José; Fonollosa-Pla, Vicent
2016-10-01
Digital ulcers (DU) are the most common vascular complication of systemic sclerosis (SSc). We compared the characteristics between patients with prior or current DU with those never affected and evaluated whether a history of DU may be a predictor of vascular, organ involvement, and/or death in patients with SSc. Data from SSc patients with or without prior or current DU were collected by 19 referral centers in an ongoing registry of Spanish SSc patients, named Registro de ESCLErodermia (RESCLE). Demographics, organ involvement, autoimmunity features, nailfold capillary pattern, survival time, and causes of death were analyzed to identify DU related characteristics and survival of the entire series and according to the following cutaneous subsets-diffuse cutaneous SSc (dcSSc), limited cutaneous SSc (lcSSc), and SSc sine scleroderma (ssSSc). Out of 1326, 552 patients enrolled in the RESCLE registry had prior or current DU, 88% were women, the mean age was 50 ± 16 years, and the mean disease duration from first SSc symptom was 7.6 ± 9.6 years. Many significant differences were observed in the univariate analysis between patients with and without prior/current DU. Multivariate analysis identified that history of prior/current DU in patients with SSc was independently associated to younger age at SSc diagnosis, diffuse cutaneous SSc, peripheral vascular manifestations such Raynaud's phenomenon, telangiectasia, and acro-osteolysis but no other vascular features such as pulmonary arterial hypertension or scleroderma renal crisis. DU was also associated to calcinosis cutis, interstitial lung disease, as well as worse survival. Multivariate analysis performed in the cutaneous subsets showed that prior/current DU were independently associated: (1) in dcSSc, to younger age at SSc diagnosis, presence of telangiectasia and calcinosis and rarely a non-SSc pattern on nailfold capillaroscopy; (2) in lcSSc, to younger age at SSc diagnosis, presence of Raynaud's phenomenon as well as calcinosis cutis, interstitial lung disease, and higher incidence of death from all causes; and (3) in ssSSc, to younger age at first SSc symptom and greater incidence of death from all causes. Digital ulcers develop in patients with SSc younger at diagnosis, mainly in patients with dcSSc and lcSSc, and they are associated to other peripheral vascular manifestations such as Raynaud's phenomenon, telangiectasia, and acro-osteolysis but also to calcinosis, and interstitial lung disease. History of DU in SSc leads to worse survival, also noticeable for lcSSc and ssSSc subsets but not for dcSSc patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion1
Turner, Michael S.; Kane, Lawrence P.; Morel, Penelope A.
2009-01-01
The definitions of tolerogenic vs. immunogenic dendritic cells (DC) remain controversial. Immature DC have been shown to induce T regulatory cells (Treg) specific for foreign and allo-antigens. However, we have previously reported that mature DC (G4DC) prevented the onset of autoimmune diabetes whereas immature DC (GMDC) were therapeutically ineffective. In this study, islet-specific CD4+ T cells from BDC2.5 TCR Tg mice were stimulated, in the absence of exogenous cytokine, with GMDC or G4DC pulsed with high- or low-affinity antigenic peptides and examined for Treg induction. Both GMDC and G4DC presenting low peptide doses induced weak TCR signaling via the Akt/mTOR pathway, resulting in significant expansion of Foxp3+ Treg. Furthermore, unpulsed G4DC, but not GMDC, also induced Treg. High peptide doses induced strong Akt/mTOR signaling and favored the expansion of Foxp3neg Th cells. The inverse correlation of Foxp3 and Akt/mTOR signaling was also observed in DO11.10 and OT-II TCR-Tg T cells and was recapitulated with anti-CD3/CD28 stimulation in the absence of DC. IL-6 production in these cultures correlated positively with antigen dose and inversely with Treg expansion. Studies with T cells or DC from IL-6−/− mice revealed that IL-6 production by T cells was more important in the inhibition of Treg induction at low antigen doses. These studies indicate that strength of Akt/mTOR signaling, a critical T cell intrinsic determinant for Treg vs Th induction, can be controlled by adjusting the dose of antigenic peptide. Furthermore, this operates in a dominant fashion over DC phenotype and cytokine production. PMID:19801514
The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice.
Barberi, Theresa J; Dunkle, Alexis; He, You-Wen; Racioppi, Luigi; Means, Anthony R
2012-01-01
Pin1 has previously been described to regulate cells that participate in both innate and adaptive immunity. Thus far, however, no role for Pin1 has been described in modulating conventional dendritic cells, innate antigen presenting cells that potently activate naïve T cells, thereby bridging innate and adaptive immune responses. When challenged with LPS, Pin1-null mice failed to accumulate spleen conventional dendritic cells (cDC). Analysis of steady-state spleen DC populations revealed that Pin1-null mice had fewer CD8+ cDC. This defect was recapitulated by culturing Pin1-null bone marrow with the DC-instructive cytokine Flt3 Ligand. Additionally, injection of Flt3 Ligand for 9 days failed to induce robust expansion of CD8+ cDC in Pin1-null mice. Upon infection with Listeria monocytogenes, Pin1-null mice were defective in stimulating proliferation of adoptively transferred WT CD8+ T cells, suggesting that decreases in Pin1 null CD8+ cDC may affect T cell responses to infection in vivo. Finally, upon analyzing expression of proteins involved in DC development, elevated expression of PU.1 was detected in Pin1-null cells, which resulted from an increase in PU.1 protein half-life. We have identified a novel role for Pin1 as a modulator of CD8+ cDC development. Consistent with reduced numbers of CD8+ cDC in Pin1-null mice, we find that the absence of Pin1 impairs CD8+ T cell proliferation in response to infection with Listeria monocytogenes. These data suggest that, via regulation of CD8+ cDC production, Pin1 may serve as an important modulator of adaptive immunity.
Yamaguchi, Y
1998-01-01
Dendritic cells (DC) are specialized antigen-presenting cells involved in T cell-mediated immune responses. Differentiation and functional maturation of the DC are now known to be regulated by various cytokines, including TGF-beta1. The experiments of this study examined the effect of other cytokines, such as IL-4, IL-10 and IL-6, on the differentiation and maturation of bone marrow (BM)-derived DC (BM-DC) and epidermal Langerhans cells (LC). When IL-6 or IL-10 was added to cultures of BM cells in the presence of GM-CSF, both cytokines, as in the case of TGF-beta1, suppressed the maturation of DC in terms of the expression of adhesion and costimulatory molecules and T cell-stimulating activity. In contrast, IL-4 was not suppressive but rather supportive for the differentiation of DC. However, these suppressive cytokines hardly counteracted the maturation-inducing activity of TNF-alpha when added to cultures of immature DC. In addition, they appeared to block the overmaturation of DC, which is characterized by a loss of MHC class II molecules. Regarding LC maturation in epidermal cell cultures, IL-6 and IL-10 were inhibitory for the expression of CD86 and CD80 in a dose-dependent fashion. Unlike BM-DC, LC maturation was slightly enhanced by TGF-beta1. The protein antigen-presentation by LC to Th1 clone was not affected by IL-6, but slightly reduced by IL-10. These results suggest that each cytokine contributes to regulate the differentiation and maturation of DC at a different developmental stage.
Barinov, Aleksandr; Galgano, Alessia; Krenn, Gerald; Tanchot, Corinne; Vasseur, Florence
2017-01-01
CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation. PMID:28686740
Changyong, C; Sun, M; Li, H; Brockmeyer, N; Wu, Nan Ping
2010-09-24
Dendritic cells (DC) are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40) is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4) and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN)(+) DC were analyzed by flow cytometry (FCM) and mixed lymphocyte reaction (MLR). Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.
Suppressive role of hepatic dendritic cells in concanavalin A-induced hepatitis
Tomiyama, C; Watanabe, H; Izutsu, Y; Watanabe, M; Abo, T
2011-01-01
Concanavalin A (Con A)-induced hepatitis is a mouse model of acute autoimmune hepatitis. The aim of this study was to investigate the role of hepatic dendritic cells (DC) in the immune modulation of tissue damage. Almost all hepatic DC were plasmacytoid DC (CD11c+ I-Alow B220+); however, conventional DC were CD11c+ I-Ahigh B220–. At an early stage (3–6 h) after Con A administration, the number of DC in both the liver and spleen decreased, increasing thereafter (12–24 h) in parallel with hepatic failure. The hepatic CD11c+ DC population contained many CD11b- cells, while the majority of splenic CD11c+ DC were CD11b+. After Con A administration, the proportion of I-A+ and CD11b+ cells within the CD11c+ DC population tended to increase in the liver, but not in the spleen. Similarly, expression of the activation markers CD80, CD86 and CD40 by CD11c+ DC increased in the liver, but not in the spleen. Next, adoptive transfer of DC isolated from the liver and spleen was performed 3 h after Con A administration to examine the immunomodulatory function of DC. Only hepatic DC had the ability to suppress hepatic failure. Analysis of cytokine production and subsequent identification of the effector cells showed that hepatic DC achieved this by suppressing the production of interleukin (IL)-12 and IL-2, rather than modulating effector cell function. PMID:21985372
Dimethyl fumarate–induced lymphopenia in MS due to differential T-cell subset apoptosis
Ghadiri, Mahtab; Rezk, Ayman; Li, Rui; Evans, Ashley; Luessi, Felix; Zipp, Frauke; Giacomini, Paul S.; Antel, Jack
2017-01-01
Objective: To examine the mechanism underlying the preferential CD8+ vs CD4+ T-cell lymphopenia induced by dimethyl fumarate (DMF) treatment of MS. Methods: Total lymphocyte counts and comprehensive T-cell subset analyses were performed in high-quality samples obtained from patients with MS prior to and serially following DMF treatment initiation. Random coefficient mixed-effects analysis was used to model the trajectory of T-cell subset losses in vivo. Survival and apoptosis of distinct T-cell subsets were assessed following in vitro exposure to DMF. Results: Best-fit modeling indicated that the DMF-induced preferential reductions in CD8+ vs CD4+ T-cell counts nonetheless followed similar depletion kinetics, suggesting a similar rather than distinct mechanism involved in losses of both the CD8+ and CD4+ T cells. In vitro, DMF exposure resulted in dose-dependent reductions in T-cell survival, which were found to reflect apoptotic cell death. This DMF-induced apoptosis was greater for CD8+ vs CD4+, as well as for memory vs naive, and conventional vs regulatory T-cell subsets, a pattern which mirrored preferential T-cell subset losses that we observed during in vivo treatment of patients. Conclusions: Differential apoptosis mediated by DMF may underlie the preferential lymphopenia of distinct T-cell subsets, including CD8+ and memory T-cell subsets, seen in treated patients with MS. This differential susceptibility of distinct T-cell subsets to DMF-induced apoptosis may contribute to both the safety and efficacy profiles of DMF in patients with MS. PMID:28377940
Mossu, Adrien; Daoui, Anna; Bonnefoy, Francis; Aubergeon, Lucie; Saas, Philippe; Perruche, Sylvain
2016-09-01
Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis. Copyright © 2016 by The American Association of Immunologists, Inc.
Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin
2009-01-01
Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030
Equine infectious anemia virus-infected dendritic cells retain antigen presentation capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, Julie A.; McGuire, Travis C.
2005-05-10
To determine if equine monocyte-derived dendritic cells (DC) were susceptible to equine infectious anemia virus (EIAV) infection, ex vivo-generated DC were infected with virus in vitro. EIAV antigen was detected by immunofluorescence 3 days post-infection with maximum antigen being detected on day 4, whereas there was no antigen detected in DC incubated with the same amount of heat-inactivated EIAV. No cytolytic activity was observed after EIAV{sub WSU5} infection of DC. These monocyte-derived DC were more effective than macrophages and B cells in stimulating allogenic T lymphocytes. Both infected macrophages and DC stimulated similar levels of memory CTL responses in mixturesmore » of CD8+ and CD4+ cells as detected with {sup 51}Cr-release assays indicating that EIAV infection of DC did not alter antigen presentation. However, EIAV-infected DC were more effective than infected macrophages when used to stimulate memory CTL in isolated CD8+ cells. The maintenance of antigen processing and presenting function by EIAV-infected DC in vitro suggests that this function is maintained during in vivo infection.« less
DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.-F.; Huang, Jason C.; AIDS Prevention and Research Center, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
2008-09-05
DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing {alpha}-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capablemore » of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.« less
Dendritic Cells: A Spot on Sialic Acid
Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.
2013-01-01
Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183
Wiedemuth, Ralf; Binner, Aline; Navratiel, Katrin; Anastassiadis, Konstantinos; Brenner, Sebastian
2018-01-01
Plasmacytoid dendritic cells (pDC) constitute a very rare blood cell population and play a significant role in immune response and immune-mediated disorders. Investigations on primary pDCs are hindered not only due to their rarity but also because they represent a heterogeneous cell population which is difficult to culture ex vivo. We generated a conditionally immortalized pDC line (Dox-pDC) from mice with Doxycycline-inducible SV40 Large T Antigen with a comparable immune profile to primary pDCs. The Dox-pDC secrete pro- and anti-inflammatory cytokines upon Toll-like receptor 9 stimulation and upregulate their MHCI, MHCII and costimulatory molecules. Further, the Dox-pDC activate and polarize naïve T cells in vivo and in vitro in response to the model antigen Ovalbumin. Due to their long-term culture stability and their robust proliferation Dox-pDC represent a reliable alternative to primary mouse pDC. PMID:29489861
Thieme, Sebastian; Holzbaur, Alexander; Wiedemuth, Ralf; Binner, Aline; Navratiel, Katrin; Anastassiadis, Konstantinos; Brenner, Sebastian; Richter, Cornelia
2018-01-01
Plasmacytoid dendritic cells (pDC) constitute a very rare blood cell population and play a significant role in immune response and immune-mediated disorders. Investigations on primary pDCs are hindered not only due to their rarity but also because they represent a heterogeneous cell population which is difficult to culture ex vivo. We generated a conditionally immortalized pDC line (Dox-pDC) from mice with Doxycycline-inducible SV40 Large T Antigen with a comparable immune profile to primary pDCs. The Dox-pDC secrete pro- and anti-inflammatory cytokines upon Toll-like receptor 9 stimulation and upregulate their MHCI, MHCII and costimulatory molecules. Further, the Dox-pDC activate and polarize naïve T cells in vivo and in vitro in response to the model antigen Ovalbumin. Due to their long-term culture stability and their robust proliferation Dox-pDC represent a reliable alternative to primary mouse pDC.
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-01-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257–264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand–tumour necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses. PMID:12100718
Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao
2002-07-01
Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.
Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study
Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene
2014-01-01
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current definition of a probiotic. PMID:24816850
Cabillic, F; Bouet-Toussaint, F; Toutirais, O; Rioux-Leclercq, N; Fergelot, P; de la Pintière, C Thomas; Genetet, N; Patard, J-J; Catros-Quemener, V
2006-12-01
Anti-tumour T cell response requires antigen presentation via efficient immunological synapse between antigen presenting cells, e.g. dendritic cells (DC), and specific T cells in an adapted Th1 cytokine context. Nine renal cell carcinoma (RCC) primary culture cells were used as sources of tumour antigens which were loaded on DC (DC-Tu) for autologous T cell activation assays. Cytotoxic activity of lymphocytes stimulated with DC-Tu was evaluated against autologous tumour cells. Assays were performed with 75 grays irradiated tumour cells (Tu irr) and with hydrogen peroxide +/- heat shock (Tu H(2)O(2) +/- HS) treated cells. DC-Tu irr failed to enhance cytotoxic activity of autologous lymphocytes in seven of 13 assays. In all these defective assays, irradiated tumour cells displayed high interleukin (IL)-6 and vascular endothelial growth factor (VEGF) release. Conversely, when tumour cells released low IL-6 levels (n = 4), DC-Tu irr efficiently enhanced CTL activity. When assays were performed with the same RCC cells treated with H(2)O(2) + HS, DC-Tu stimulation resulted in improved CTL activity. H(2)O(2) + HS treatment induced post-apoptotic cell necrosis of tumour cells, totally abrogated their cytokine release [IL-6, VEGF, transforming growth factor (TGF)-beta1] and induced HSP70 expression. Taken together, data show that reduction in IL-6 and VEGF release in the environment of the tumour concomitantly to tumour cell HSP expression favours induction of a stronger anti-tumour CTL response.
Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M
2017-07-01
The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.
The varieties of immunological experience: of pathogens, stress, and dendritic cells.
Pulendran, Bali
2015-01-01
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Tan, Dino Bee Aik; Yong, Yean Kong; Lim, Andrew; Tan, Hong Yien; Kamarulzaman, Adeeba; French, Martyn; Price, Patricia
2011-05-01
Amongst HIV patients with successful virological responses to antiretroviral therapy (ART), poor CD4(+) T-cell recovery is associated with low nadir CD4(+) T-cell counts and persistent immune activation. These factors might be influenced by dendritic cell (DC) function. Interferon-α-producing plasmacytoid DC and IL-12-producing myeloid DC were quantified by flow cytometry after stimulation with agonists to TLR7/8 (CL075) or TLR9 (CpG-ODN). These were compared between patients who achieved CD4(+) T-cell counts above or below 200 cells/μL after 6 months on ART (High vs. Low groups). High Group patients had more DC producing interferon-α or IL-12 at Weeks 6 and 12 on ART than Low Group patients. The frequencies of cytokine-producing DC at Week 12 were directly correlated with CD4(+) T-cell counts at baseline and at Week 12. Patients with good recovery of CD4(+) T-cells had robust TLR-mediated interferon-α responses by plasmacytoid DC and IL-12 responses by myeloid DC during early ART (1-3 months). Copyright © 2011 Elsevier Inc. All rights reserved.
Hemann, Emily A.; Sjaastad, Louisa E.; Langlois, Ryan A.
2015-01-01
ABSTRACT Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α+ DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. PMID:26719269
CD94 Defines Phenotypically and Functionally Distinct Mouse NK Cell Subsets1
Yu, Jianhua; Wei, Min; Mao, Hsiaoyin; Zhang, Jianying; Hughes, Tiffany; Mitsui, Takeki; Park, Il-kyoo; Hwang, Christine; Liu, Shujun; Marcucci, Guido; Trotta, Rossana; Benson, Don M.; Caligiuri, Michael A.
2010-01-01
Understanding of heterogeneous NK subsets is important for the study of NK cell biology and development, and for the application of NK cell-based therapies in the treatment of disease. Here we demonstrate that the surface expression of CD94 can distinctively divide mouse NK cells into two approximately even CD94low and CD94high subsets in all tested organs and tissues. The CD94high NK subset has significantly greater capacity to proliferate, produce IFN-γ, and lyse target cells than does the CD94low subset. The CD94high subset has exclusive expression of NKG2A/C/E, higher expression of CD117 and CD69, and lower expression of Ly49D (activating) and Ly49G2 (inhibitory). In vivo, purified mouse CD94low NK cells become CD94high NK cells, but not vice versa. Collectively, our data suggest that CD94 is an Ag that can be used to identify functionally distinct NK cell subsets in mice and could also be relevant to late-stage mouse NK cell development. PMID:19801519
Cao, X; Zhao, Y; Yu, Y; Wang, Y; Zhang, M; Zhang, W; Wang, J
1998-01-01
Dendritic cells (DC) are professional antigen-presenting cells (APC) within the immune system and antigen-pulsed DC can be used as an effective vaccine for active immunotherapy of cancer. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the generation of DC. We previously showed that GM-CSF can induce murine erythroleukaemia cells (FBL-3) to differentiate into monocyte-like cells. To develop a new vaccinating method to stimulate the host immune response to leukaemia, we further investigate whether FBL-3 cells induced by GM-CSF can differentiate into DC in the present study. After being treated with GM-CSF, FBL-3 cells expressed high levels of 33D1 and NLDC-145, which are the specific markers of DC. The expression of MHC-II, B7-1, B7-2 and vascular cell adhesion molecule-1 (VCAM-1) was up-regulated markedly; the typical morphology of DC were also observed by electron microscopy. Functionally, the GM-CSF-induced FBL-3 cells could apparently stimulate the proliferation of naive allogeneic and autologous T lymphocytes and induce the generation of specific CTL more efficiently than the wild-type FBL-3 cells. Mice immunized with GM-CSF-induced FBL-3 cells could resist the subsequent challenge with the wild-type FBL-3 cells. Collectively, these data indicate that GM-CSF differentiates murine erythroleukaemia cells into DC phenotypically, morphologically and functionally. FBL-3-derived DC can be used as a new type of vaccine. Our results may have important implications for the immunotherapy of leukaemia. Images Figure 3 Figure 4 PMID:9767469
Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells.
Brunasso, Alexandra Maria Giovanna; Massone, Cesare
2016-01-01
In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 (+) cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 (+), CD45 (+), and CD34 (+)), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 (+), CD45 (+), CD34 (+), Col I (+), CD11b (+), CD68 (+), CD105 (+), and VEGFR1 (+)), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 (+), CD45 (+), CD34 (low/-), VEGFR2 (+/-), CXCR4 (+), c-kit (+), and DC117 (+)), late EPCs (CD14 (-), CD133 (+), VEGFR2 (+), CD144 (+) [VE-cadherin (+)], and CD146 (+)), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 (+), CD45 (+), CD34 (+/-), and Col I (+)), and fibrocytes (CD14 (-), CD45 (+), CD34 (+), Col I (+), and CXCR4 (+)). It has been demonstrated that circulating CD14 (+) monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 (+), CD34 (+), and Col I (+) spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future.
Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells
Ramirez, Oscar
2014-01-01
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lepob) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lepob sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lepob sDC was similar to controls. However, Lepob sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lepob sDC activation of T cells in vivo, Lepob and control mice were infected systemically with Mycobacterium avium. Lepob mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lepob mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting. PMID:24966213
2011-01-01
Background Design of tumour specific immunotherapies using the patients' own dendritic cells (DC) is a fast advancing scientific field. The functional qualities of the DC generated in vitro are critical, and today's gold standard for maturation is a cytokine cocktail consisting of IL-1β, IL-6, TNF-α and PGE2 generating cells lacking IL-12p70 production. OK432 is an immunotherapeutic agent derived from killed Streptococcus pyogenes that has been used clinically to treat malignant and benign neoplasms for decades. Methods In this study, we analysed the effects of OK432 on DC maturation, DC migration, cytokine and chemokine secretion as well as T-cell stimulatory capacity, and compared it to the cytokine cocktail alone and combinations of OK432 with the cytokine cocktail. Results OK432 induced a marked up-regulation of CD40 on the cell surface as well as a strong inflammatory response from the DC with significantly more secretion of 19 different cytokines and chemokines compared to the cytokine cocktail. Interestingly, secretion of IL-15 and IL-12p70 was detected at high concentrations after maturation of DC with OK432. However, the OK432 treated DC did not migrate as well as DC treated with cytokine cocktail in a transwell migration assay. During allogeneic T-cell stimulation OK432 treated DC induced proliferation of over 50 percent of CD4 and 30 percent of CD8 T-cells for more than two cell divisions, whereas cytokine cocktail treated DC induced proliferation of 12 and 11 percent of CD4 and CD8 T-cells, respectively. Conclusions The clinically approved compound OK432 has interesting properties that warrants its use in DC immunotherapy and should be considered as a potential immunomodulating agent in cancer immunotherapy. PMID:21208424
Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru
2008-11-01
A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.
Sosinowski, Tomasz; White, Jason T.; Cross, Eric; Haluszczak, Catherine; Marrack, Philippa; Gapin, Laurent; Kedl, Ross M.
2013-01-01
Various populations of memory phenotype CD8+ T cells have been described over the last 15–20 years, all of which possess elevated effector functions relative to naïve phenotype cells. Using a technique for isolating antigen specific cells from unprimed hosts, we recently identified a new subset of cells, specific for nominal antigen, but phenotypically and functionally similar to memory cells arising as a result of homeostatic proliferation (HP). We show here that these “Virtual Memory” cells are independent of previously identified “innate memory” cells, arising as a result of their response to IL-15 trans-presentation by lymphoid tissue-resident CD8α+ DCs in the periphery. The absence of IL-15, CD8+ T cell expression of either CD122 or Eomes, or of CD8a+ DCs all lead to the loss of Virtual Memory cells in the host. Our results show that CD8+ T cell homeostatic expansion is an active process within the non-lymphopenic environment, is mediated by IL-15, and produces antigen inexperienced memory cells which retain the capacity to respond to nominal antigen with memory-like function. Preferential engagement of these “Virtual Memory” T cells into a vaccine response could dramatically enhance the rate by which immune protection develops. PMID:23355737
van den Ancker, Willemijn; van Luijn, Marvin M; Ruben, Jurjen M; Westers, Theresia M; Bontkes, Hetty J; Ossenkoppele, Gert J; de Gruijl, Tanja D; van de Loosdrecht, Arjan A
2011-01-01
Therapeutic vaccination with dendritic cells (DC) is an emerging investigational therapy for eradication of minimal residual disease in acute myeloid leukemia. Various strategies are being explored in manufacturing DC vaccines ex vivo, e.g., monocyte-derived DC (MoDC) loaded with leukemia-associated antigens (LAA). However, the optimal source of LAA and the choice of DC-activating stimuli are still not well defined. Here, loading with leukemic cell preparations (harboring both unknown and known LAA) was explored in combination with a DC maturation-inducing cytokine cocktail (CC; IL-1β, IL-6, TNF-α, and PGE(2)) and Toll-like receptor ligands (TLR-L) to optimize uptake. Since heat shock induced apoptotic blasts were more efficiently taken up than lysates, we focused on uptake of apoptotic leukemic cells. Uptake of apoptotic blast was further enhanced by the TLR7/8-L R848 (20-30%); in contrast, CC-induced maturation inhibited uptake. CC, and to a lesser extent R848, enhanced the ability of MoDC to migrate and stimulate T cells. Furthermore, class II-associated invariant chain peptide expression was down-modulated after R848- or CC-induced maturation, indicating enhanced processing and presentation of antigenic peptides. To improve both uptake and maturation, leukemic cells and MoDC were co-incubated with R848 for 24 h followed by addition of CC. However, this approach interfered with CC-mediated MoDC maturation as indicated by diminished migratory and T cell stimulatory capacity, and the absence of IL-12 production. Taken together, our data demonstrate that even though R848 improved uptake of apoptotic leukemic cells, the sequential use of R848 and CC is counter-indicated due to its adverse effects on MoDC maturation.
Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo.
Connor, Lisa M; Tang, Shiau-Choot; Camberis, Mali; Le Gros, Graham; Ronchese, Franca
2014-09-15
Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.
Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa
2017-01-01
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis. PMID:28436457
Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa
2017-04-24
Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis.
Dunham, Richard M; Cervasi, Barbara; Brenchley, Jason M; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R; Frank, Ian; Sodora, Donald L; Douek, Daniel C; Paiardini, Mirko; Silvestri, Guido
2008-04-15
Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.
Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2011-01-01
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and 51Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy. PMID:21499439
Kim, Kyu Sik; Pham, Thanh Nhan Nguyen; Jin, Chun-Ji; Umeyama, Akemi; Shoji, Noboru; Hashimoto, Toshihiro; Lee, Je-Jung; Takei, Masao
2011-02-28
Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC. We demonstrate that URC activates human DC as documented by phenotypic and functional maturation, and altered cytokine production. The expression of CD1a, CD38, CD40, CD54, CD80, CD83, CD86, HLA-DR and CCR7 on URC-primed DC was enhanced. The production of IL-12p70 by URC-primed DC was higher than that of lipopolysaccharide (LPS)-primed DC. The production of IL-12p70 by URC-primed DC was inhibited by the anti-Toll-like receptor 4 (TLR4) monoclonal antibody (mAb), but partially abolished by anti-TLR2 mAb. mRNA coding for TLR2 and TLR4 was expressed in URC-primed DC. URC-primed DC induced the NF-κB transcription factor. Naïve T cells co-cultured with URC-primed DC turned into typical Th1 cells that produced large quantities of IFN-γ depending on IL-12 secretion. URC enhanced the T cell stimulatory capacity in an allo MLR. In the cytotoxic T-lymphocyte assay (CTL) assay, DNA fragmentation assay and (51)Cr release on URC-primed DC were more augmented than that of TNF-α-primed DC. DC matured with URC had an intermediate migratory capacity towards CCL19 and CCL21. These results suggest that URC modulates DC function in a fashion that favors Th1 polarization via the activation of IL-12p70 dependent on TLR4 signaling, and may be used on DC-based vaccine for cancer immunotherapy.
Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung
2015-10-20
Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response.
Zhao, Jun; Lu, Jing; Liu, Ya-qin; Yang, Hong-yan; Huang, You-tian; Zhao, Ji-min; Li, Shan; Zhai, Jing-ming; Zhao, Ming-yao; Zhang, Xi; Dong, Zi-ming
2011-01-01
To explore the specific cellular and humoral immunity induced by dendritic cells (DC) vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell of mice. Mouse brain microvascular endothelial cell bEnd.3 was cultured and identified for preparation endothelial cell bEnd.3 antigen. The level of mRNA expression of vascular endothelial growth factor receptor 2 (VEGF-R₂) and integrin αV was detected by reverse transcription (RT)-PCR. The BALB/c mice were immuned with DC loading bEnd.3 antigen 4 times in 4 weeks (bEnd.3-DC group), while the mice only were immuned with DC or injected with phosphate buffer saline (PBS group) as control group. One week after last vaccination, U14 cervical cancer cells were injected subcutaneously into the mice. The tumor size, cytotoxic T lymphocyte (CTL) response of spleen lymphocytes in vitro, the percentage of CD₃+CD₈+ surface markers of spleen lymphocytes, and the titer of serum antibody were detected. The specific immunity was examined by immunocytochemistry and western blot. The expression of VEGF-R₂ and integrin αV gene in bEnd.3 cells were expressed highly. After the vaccine was injected, the tumors of mice in PBS group grew faster than those in other groups, while the tumors in bEnd.3-DC group grew slowly and disappeared after 2 weeks. The volume of tumors in DC group grew slower than those in PBS group [(0.11 ± 0.13) cm³ versus (3.38 ± 0.34) cm³]. The CTL response of spleen lymphocytes in vitro showed that bEnd.3-DC cells could kill bEnd.3 cells, the special lysis rate was more than 60%. The percentage of CD₃+CD₈+ spleen lymphocytes in bEnd.3-DC group [(38.6 ± 0.7)%] was higher than those in other groups (P < 0.05). The titer of serum antibody of bEnd.3-DC group was 1:3200, while it was 1:800 in DC group and there were not any in PBS group. Immunocytochemistry analysis indicated there were specific antigen-antibody reaction to bEnd.3 cell in bEnd.3-DC group. Western blot analysis revealed that there were specific bands at 220,000 (VEGF-R₂). bEnd.3-DC vaccine can inhibit the tumor growth of U14 cervical cancer cell of mice, which indicates that the special cellular and humoral immunity are induced by bEnd.3-DC antigen which maybe have some antigens in bEnd.3 cells that reacts with endothelial cell proliferation-related antigens.
Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei
2017-02-28
Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.
Svensson, F; Kockum, I; Persson, L
1993-07-21
The polyamines are cell constituents essential for growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the polyamine biosynthetic pathway. Methylglyoxal bis(guanylhydrazone) (MGBG) is an anti-leukemic agent with a strong inhibitory effect against AdoMetDC. However, the lack of specificity limits the usefulness of MGBG. In the present report we have used an analog of MGBG, diethylglyoxal bis(guanylhydrazone) (DEGBG), with a much greater specificity and potency against AdoMetDC, to investigate the effects of AdoMetDC inhibition on cell proliferation and polyamine metabolism in mouse L1210 leukemia cells. DEGBG was shown to effectively inhibit AdoMetDC activity in exponentially growing L1210 cells. The inhibition of AdoMetDC was reflected in a marked decrease in the cellular concentrations of spermidine and spermine. The concentration of putrescine, on the other hand, was greatly increased. Treatment with DEGBG resulted in a compensatory increase in the synthesis of AdoMetDC demonstrating an efficient feedback control. Cells seeded in the presence of DEGBG ceased to grow after a lag period of 1-2 days, indicating that the cells contained an excess of polyamines which were sufficient for one or two cell cycles in the absence of polyamine synthesis. The present results indicate that analogs of MGBG, having a greater specificity against AdoMetDC, might be valuable for studies concerning polyamines and cell proliferation.
Hammad, Hamida; Smits, Hermelijn H; Ratajczak, Céline; Nithiananthan, Asokananthan; Wierenga, Eddy A; Stewart, Geoffrey A; Jacquet, Alain; Tonnel, Andre-Bernard; Pestel, Joël
2003-01-01
Dendritic cells (DC) are potent antigen - presenting cells that can orientate the immune response towards a Th1 or a Th2 type. DC produce chemokines that are involved in the recruitment of either Th1 cells, such as IP10 (CXCL10), Th2 cells such as TARC (CCL17) and MDC (CCL22), or non-polarized T cells such as RANTES (CCL5) and MIP-lalpha (CCL3). We investigated whether monocyte-derived DC (MD-DC) generated from healthy donors or from patients sensitive to Dermatophagoides pteronyssinus (Dpt) and exposed to the cysteine-protease Der p 1(allergen of Dpt), could upregulate the expression of chemokines involved in type 1 or type 2 T cell recruitment. MD-DC were pulsed with either Der p 1 or with LPS as the control and the chemokines produced were evaluated using ELISA and chemotaxis assays. Der p 1-pulsed DC from allergic patients showed increased TARC (CCL17) and MDC (CCL22) production without modifying IP-10 (CXCL10) release. Der p 1-pulsed DC from healthy donors showed only increased IP-10 (CXCL10) secretion. RANTES (CCL5) and MIP-lalpha (CCL3) production were similarly increased when DC were from healthy or allergic donors. The selective Th2 clone recruitment activity of supernatants from Der p 1-pulsed DC of allergic patients was inhibited by anti-TARC (CCL17) and anti-MDC (CCL22) neutralizing Abs. By using anti-IP10 (CXCL10) blocking Abs, supernatants of Der p 1-pulsed DC from healthy donors were shown to be involved in the recruitment of Th1 cells. These results suggest that in allergic patients exposed to house dust mites, DC may favour the exacerbation of the Th2 response via the increase in type 2 chemokine production. Copyright John Libbey Eurotext 2003.
Chhabra, Arvind; Chakraborty, Nityo G.; Mukherji, Bijay
2008-01-01
Dendritic cells (DC) present antigenic epitopes to and activate T cells. They also polarize the ensuing T cell response to Th1 or Th2 type response, depending on their cytokine production profile. For example, IL-12 producing DC generate Th1 type T cell response whereas IL-10 producing DC is usually tolerogenic. Different strategies -- such as the use of cytokines and anti-cytokine antibodies, dominant negative forms of protein, anti-sense RNA etc. -- have been employed to influence the cytokine synthetic profile of DC as well as to make DC more immunogenic. Utilizing GFP expressing recombinant adenoviruses in association with lipid-mediated transfection of siRNA, we have silenced the endogenous IL-10 gene in DC. We show that IL-10 gene silenced DC produce more IL-12 and also generates a better cytolytic T cell response against the human melanoma associated epitope, MART-127−35, in-vitro. We also show that the GFP expressing adenoviral vector can be used to optimize the parameters for siRNA delivery in primary cells and show that RNA interference methodology can efficiently knock-down virus encoded genes transcribed at very high multiplicity of infection in DC. PMID:18249038
Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena
2017-01-01
High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172
Interaction between dendritic cells and natural killer cells during pregnancy in mice.
Blois, Sandra M; Barrientos, Gabriela; Garcia, Mariana G; Orsal, Arif S; Tometten, Mareike; Cordo-Russo, Rosalia I; Klapp, Burghard F; Santoni, Angela; Fernández, Nelson; Terness, Peter; Arck, Petra C
2008-07-01
A complex regulation of innate and adaptive immune responses at the maternal fetal interface promotes tolerance of trophoblast cells carrying paternally derived antigens. Such regulatory functions involve uterine dendritic cells (uDC) and natural killer (uNK) cells. The existence of a NK and DC "cross talk" has been revealed in various experimental settings; its biological significance ranging from cooperative stimulation to cell lysis. Little is known about the presence or role of NK and DC cross talk at the maternal fetal interface. The present study shows that mouse NK and DC interactions are subject to modulation by trophoblast cells in vitro. This interaction promotes a tolerogenic microenvironment characterized by downregulation of the expression of activation markers on uNK cells and uDC and dominance of Th2 cytokines. NK and DC interactions would also influence uterine cell proliferation and this process would be strongly modulated by trophoblast-derived signals. Indeed; while low proliferation rates were observed upon regular coculture allowing direct contact between uterine cells and trophoblasts, incubation in a transwell culture system markedly increased uterine cell proliferation suggesting that soluble factors are key mediators in the molecular "dialog" between the mother and the conceptus during the establishment of mouse pregnancy. Our data further reveal that the regulatory functions of trophoblast cells associated with tolerance induction are impaired in high abortion murine matings. Interestingly, we observed that secretion of interleukin-12p70 by uDC is dramatically abrogated in the presence of uNK cells. Taken together, our results provide the first evidence that a delicate balance of interactions involving NK cells, DC, and trophoblasts at the mouse maternal fetal interface supports a successful pregnancy outcome.
λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine.
Li, Jinyao; Aipire, Adila; Li, Jinyu; Zhu, Hongge; Wang, Yanping; Guo, Wenjia; Li, Xiaoqin; Yang, Jia; Liu, Chunling
2017-05-02
In this study, we investigated the effect of λ-carrageenan on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We found that λ-carrageenan dose-dependently decreased the endocytosis of DCs, promoted DC maturation and increased cytokine production through TLR4 mediated signaling pathway. λ-carrageenan treatment also enhanced the ability of DCs in the stimulating allogenic splenocyte proliferation. In TC-1 tumor mouse model, HPV peptides pulsed λ-carrageenan-DC (HPV-CGN-DC) significantly inhibited tumor growth compared with control group. The frequencies of CD4+ and CD8+ T cells in spleens of tumor mice and their activation status were significantly increased in HPV-CGN-DC group, but the frequencies of natural regulatory T cells and CD11b+Gr-1+ cells were significantly decreased. Further, HPV-CGN-DC induced strong CD8+ T cell responses, which are negatively correlated with tumor volumes. The results suggested that λ-carrageenan promoted DC maturation through TLR4 signaling pathway and could be used as the adjuvant in DC-based vaccines.
Bartolomé, M C; Cortés, A A; Sánchez-Fortún, A; Garnica-Romo, M G; Sánchez-Carrillo, S; Sánchez-Fortún, Sebastián
2016-12-01
Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd.
Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina
2014-01-01
Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361
Almeida, Maria; Cordero, Miguel; Almeida, Julia; Orfao, Alberto
2007-05-01
HIV-1 infection is associated with dysregulation of cytokine production by peripheral blood (PB) monocytes and dendritic cells (DC), but controversial results have been reported. We aimed to analyze the effect of antiretroviral therapy (ART) on the in vitro production of inflammatory cytokines by PB-stimulated monocytes and DC of myeloid origin -CD33(high+ ) myeloid DC (mDC) and CD33(+)/CD14(-/dim+)/CD16(high+) DC- from HIV-1+ patients and its relationship with CD4+ T-cell recovery and co-infection with hepatitis C virus (HCV). In vitro cytokine production was analyzed at the single cell level in 32 HIV-1+ patients, grouped according to the number of CD4+ T-cells/microl in PB (<200 CD4 versus >200 CD4). Patients were tested prior to therapy and at weeks +2, +4, +8, +12 and +52 after ART. Prior to ART, production of IL-6, TNF-alpha and IL-12 by mDC and of IL-8 and IL-12 by CD16+ DC was significantly increased among >200 CD4 patients. After one year of ART, increased production of IL-8 by monocytes, of TNF-alpha by mDC and of IL-1beta, IL-6 and TNF-alpha by CD16+ DC was specifically observed among <200 CD4 HIV-1+ individuals showing a high recovery of PB CD4+ T-cell counts. In turn, we found that the significantly reduced percentage of IL-1beta, IL-6, IL-8 and TNF-alpha-producing monocytes and of IL-6 and IL-8-producing mDC and CD16+ DC, as well as the significantly diminished mean amount of IL-6 produced per monocyte, mDC and CD16+ DC and of IL-12 produced per CD16+ DC observed at week +52 for the >200 CD4 patients, were related to the presence of co-infection with HCV. In summary, HIV-1+ individuals show abnormal production of inflammatory cytokines by PB-stimulated monocytes and DC of myeloid origin even after one year of ART, such abnormalities being associated with the degree of recovery of PB CD4+ T-cell counts in more immunocompromised patients and HCV co-infection in more immunocompetent HIV-1+ individuals.
Jain, Pooja; Ahuja, Jaya; Khan, Zafar K.; Shimizu, Saori; Meucci, Olimpia; Jennings, Stephen R.; Wigdahl, Brian
2009-01-01
Human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by the generation of an intense CTL cell response directed against the viral transactivator protein Tax. In addition, patients diagnosed with HAM/TSP exhibit rapid activation and maturation of dendritic cells (DC), likely contributing to the robust, Tax-specific CTL response. In this study, extracellular Tax has been shown to induce maturation and functional alterations in human monocyte-derived DC, critical observations being confirmed in freshly isolated myeloid DC. Tax was shown to promote the production of proinflammatory cytokines and chemokines involved in the DC activation process in a dose- and time-dependent manner. Furthermore, Tax induced the expression of DC activation (CD40, CD80, and CD86) and maturation (CD83) markers and enhanced the T cell proliferation capability of DC. Heat inactivation of Tax resulted in abrogation of these effects, indicating a requirement for the native structure of Tax, which was found to bind efficiently to the DC membrane and was internalized within a few hours, suggesting that extracellular Tax may possess an intracellular mechanism of action subsequent to entry. Finally, inhibitors of cellular signaling pathways, NF-κB, protein kinase, tyrosine kinase, and phospholipase C, were shown to inhibit Tax-mediated DC activation. This is the first study reporting the immunomodulatory effects of extracellular Tax in the DC compartment. These results suggest that DC, once exposed to Tax by uptake from the extracellular environment, can undergo activation, providing constant antigen presentation and costimulation to T cells, leading to the intense T cell proliferation and inflammatory responses underlying HAM/TSP. PMID:17442856
NASA Astrophysics Data System (ADS)
Hunt, David W. C.; King, Diane E.; Levy, Julia G.
1997-05-01
The impact of bensoporphyrin derivative monoacid ring A, and visible light was determined for mouse splenic dendritic cells (DC), potent antigen-presenting cells (APC) of the immune system. It was discovered that sub-lethal doses of BPD-MA and light significantly altered the surface receptor pattern of DC as well as diminishing the capacity of these cells to activate allogeneic T cells. Treatment of highly purified DC with BPD-MA and 690 nm wavelength light decreased DC expression of major histocompatibility (MHC) Class I and II antigens, leukocyte common antigen CD45, intercellular adhesion molecule-1 (ICAM-1, CD54), the co- stimulatory molecules CD80 and CD86, CD95 as well as integrin CD11c. In contrast, DC expression of leukocyte function-associated-1 (LFA-1, CD11a), CD11b, CD18, CD40, and the DC DEC-205 receptor increased after the treatment. Changes in receptor levels occurred rapidly. DC MHC Class I and ICAM-1 expression declined to 40 percent of control levels by 2 hours post-PDT. DC treated with BPD-MA and light were poor stimulators of allogeneic T cells in the mixed leukocyte reaction. BPD-MA, in the absence of light, had no effect on the immunostimulatory properties of these cells. The changes in DC receptor expression pattern produced by BPD-MA and light were comparable to those produced by ultraviolet B light, a treatment known to alter the immunostimulatory characteristics of DC. Photodynamic therapy with BPD-MA represents an innovative approach for the modification of immune reactivity.
Li, Tian-Cheng; Zhou, Xianfeng; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Nakamura, Tomofumi; Takeda, Naokazu; Wakita, Takaji
2016-12-01
The pathogenicity, epidemiology and replication mechanism of dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus (HEV), has been unclear. Here we used a reverse genetic system to produce DcHEV and examined the possibility of zoonotic infection. Capped genomic RNA derived from a synthetic DcHEV cDNA was transfected into human hepatocarcinoma cells PLC/PRF/5. The DcHEV capsid protein and RNA were detected by an enzyme-linked immunosorbent assay (ELISA) or RT-qPCR. A neutralization test for DcHEV was carried out by using antisera against HEV-like particles. DcHEV was used to inoculate two cynomolgus monkeys to examine the potential for cross-species infection. The transfection of PLC/PRF/5 cells with capped DcHEV RNA resulted in the production of infectious DcHEV. The genome sequence analysis demonstrated that both nucleotide and amino acid changes accumulated during the passages in PLC/PRF/5 cells. The cynomolgus monkeys showed serological signs of infection when DcHEV was intravenously inoculated. DcHEV was neutralized by not only anti-DcHEV-LPs antibody, but also anti-genotype 1 (G1), G3 and G4 HEV-LPs antibodies. Moreover, the monkeys immunized with DcHEV escaped the G3 HEV challenge, indicating that the serotype of DcHEV is similar to those of other human HEVs. Infectious DcHEV was produced using a reverse genetic system and propagated in PLC/PRF/5 cells. The antigenicity and immunogenicity of DcHEV are similar to those of G1, G3 and G4 HEV. DcHEV was experimentally transmitted to primates, demonstrating the possibility of a zoonotic infection by DcHEV. Dromedary camel hepatitis E virus (DcHEV) was produced by a reverse genetic system and grows well in PLC/PRF/5 cells. Cynomolgus monkeys experimentally infected with DcHEV indicated serological signs of infection, suggesting that DcHEV has the potential to cause zoonotic HEV infection. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke
2011-01-01
Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679
Toda, Mitsunori; Kawamoto, Teruya; Ueha, Takeshi; Kishimoto, Kenta; Hara, Hitomi; Fukase, Naomasa; Onishi, Yasuo; Harada, Risa; Minoda, Masaya; Kurosaka, Masahiro; Akisue, Toshihiro
2013-09-01
Decoy receptor 3 (DcR3) is a soluble secreted protein that belongs to the tumor necrosis factor receptor (TNFR) superfamily. DcR3 inhibits the Fas ligand (FasL)/Fas apoptotic pathway by binding to FasL, competitively with Fas receptor. Previous studies have reported that overexpression of DcR3 has been detected in various human malignancies and that DcR3 functions as a 'decoy' for FasL to inhibit FasL-induced apoptosis. In addition, recent studies have revealed that DcR3 has 'non-decoy' functions to promote tumor cell migration and invasion, suggesting that DcR3 may play important roles in tumor progression by decoy and non-decoy functions. We have previously reported that overexpression of DcR3 was observed in human malignant fibrous histiocytoma (MFH), however, the roles of DcR3 in MFH have not been studied. In the present study, to elucidate the roles of DcR3 in tumor progression of MFH, we examined the effects of DcR3 inhibition on cell apoptosis, migration and invasion in human MFH cells. siRNA knockdown of DcR3 enhanced the FasL-induced apoptotic activity and significantly decreased cell migration and invasion with a decrease in the activation of phosphatidylinositol 3 kinase (PI3K)/Akt and matrix metalloproteinase (MMP)-2. The findings in this study strongly suggest that DcR3 plays important roles in tumor progression of human MFH by decoy as well as non-decoy functions and that DcR3 may serve as a potent therapeutic target for human MFH.
Mehrotra, Shikhar; Chhabra, Arvind; Chakraborty, Abolokita; Chattopadhyay, Subhasis; Slowik, Mark; Stevens, Robert; Zengou, Ryan; Mathias, Clinton; Butterfield, Lisa H; Dorsky, David I; Economou, James S; Mukherji, Bijay; Chakraborty, Nitya G
2004-01-01
Dendritic cells (DC) play critical roles in generating an immune response and in inducing tolerance. Diverse microenvironmental factors can ‘polarize’ DC toward an immunogenic or non-immunogenic phenotype. Among the various microenvironmental factors, interleukin-10 (IL-10) exhibits a potent immunosuppressive effect on antigen-presenting cells (APC). Here, we show that monocyte-derived DC generated in the presence of IL-10 exhibit a profound down-regulation of many genes that are associated with immune activation and show that the IL-10-grown DC are poor stimulators of CD8+ T cells in a strictly autologous and major histocompatibility complex (MHC) class I-restricted melanoma antigen recognized by T cells (MART-1) epitope presentation system. However, these IL-10-grown DC can efficiently activate the epitope-specific CD8+ T cells when they are made to present the epitope following transduction with an adenoviral vector expressing the MART-1 antigen. In addition, we show that the MART-1 protein colocalizes with the MHC class I protein, equally well, in the iDC and in the DC cultured in presence of IL-10 when both DC types are infected with the viral vector. We also show that the vector transduced DC present the MART-127–35 epitope for a sustained period compared to the peptide pulsed DC. These data suggest that although DCs generated in the presence of IL-10 tend to be non-immunogenic, they are capable of processing and presenting an antigen when the antigen is synthesized within the DC. PMID:15554925
Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K
2015-10-01
Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.
Weissinger, Daniel; Tagscherer, Katrin E; Macher-Göppinger, Stephan; Haferkamp, Axel; Wagener, Nina; Roth, Wilfried
2013-10-10
Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.
Hemann, Emily A; Sjaastad, Louisa E; Langlois, Ryan A; Legge, Kevin L
2015-12-30
Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.
Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A
2004-12-01
No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.
Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.
Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil
2015-07-24
Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.
Norm- and hypo-fractionated radiotherapy is capable of activating human dendritic cells.
Kulzer, Lorenz; Rubner, Yvonne; Deloch, Lisa; Allgäuer, Andrea; Frey, Benjamin; Fietkau, Rainer; Dörrie, Jan; Schaft, Niels; Gaipl, Udo S
2014-10-01
Despite the transient immunosuppressive properties of local radiotherapy (RT), this classical treatment modality of solid tumors is capable of inducing immunostimulatory forms of tumor-cell death. The resulting 'immunotoxicity' in the tumor, but not in healthy tissues, may finally lead to immune-mediated destruction of the tumor. However, little is known about the best irradiation scheme in this setting. This study examines the immunological effects of differently irradiated human colorectal tumor cells on human monocyte-derived dendritic cells (DC). Human SW480 tumor cells were irradiated with a norm-fractionation scheme (5 × 2 Gy), a hypo-fractionated protocol (3 × 5 Gy), and with a high single irradiation dose (radiosurgery; 1 × 15 Gy). Subsequently, human immature DC (iDC) were co-incubated with supernatants (SN) of these differently treated tumor cells. Afterwards, DC were analyzed regarding the expression of maturation markers, the release of cytokines, and the potential to stimulate CD4(+) T-cells. The co-incubation of iDC with SN of tumor cells exposed to norm- or hypo-fractionated RT resulted in a significantly increased secretion of the immune activating cytokines IL-12p70, IL-8, IL-6, and TNFα, compared to iDC co-incubated with SN of tumor cells that received a high single irradiation dose or were not irradiated. In addition, DC-maturation markers CD80, CD83, and CD25 were also exclusively elevated after co-incubation with the SN of fractionated irradiated tumor cells. Furthermore, the SN of tumor cells that were irradiated with norm- or hypo-fractionated RT triggered iDC to stimulate CD4(+) T-cells not only in an allogenic, but also in an antigen-specific manner like mature DC. Collectively, these results demonstrate that norm- and hypo-fractionated RT induces a fast human colorectal tumor-cell death with immunogenic potential that can trigger DC maturation and activation in vitro. Such findings may contribute to the improvement of irradiation protocols for the most beneficial induction of anti-tumor immunity.
Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells
Roider, Tobias; Katzfuß, Michael; Matos, Carina; Singer, Katrin; Renner, Kathrin; Oefner, Peter J.; Dettmer-Wilde, Katja; Herr, Wolfgang; Holler, Ernst; Kreutz, Marina; Peter, Katrin
2016-01-01
Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo. PMID:27973435
Jin, Changzhong; Wu, Lijuan; Li, Jie; Fang, Meixin; Cheng, Linfang; Wu, Nanping
2012-01-01
Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) is an important pattern recognition receptor on dendritic cells (DCs), and its expression shows significant cytological and histological specificity, being interleukine-4 (IL-4) dependent. The signaling pathways through which IL-4 regulates expression of DC-SIGN are still unclear. We used phorbol 12-myristate 13-acetate- (PMA-) differentiated THP-1 cells as the in vitro model of monocyte/macrophage cells to study the signaling pathways involved in IL-4-regulated expression of DC-SIGN. We found that a high expression of DC-SIGN could be induced by IL-4 at the levels of mRNA and cell surface protein. Upregulated expression of DC-SIGN was almost completely blocked by the specific inhibitor of ERK pathway, and partly reduced by the specific inhibitors of JAK-STAT and NF-κB pathways. The activation of the three signaling pathways was directly confirmed by testing the phosphorylation of protein kinase within the cytoplasm and nucleus over time. The analysis of cis-acting elements of DC-SIGN promoter showed that the activity of DC-SIGN promoter without Ets-1 transcription factors binding site almost completely disappeared. Our results demonstrated that multiple signaling pathways are involved in IL-4 induced high expression of DC-SIGN on THP-1 cells, in which ERK pathway is the main signaling pathway and mediated by the Ets-1 transcription factors binding site. PMID:22675249
Phase I dendritic cell p53 peptide vaccine for head and neck cancer.
Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L
2014-05-01
p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.
2012-05-16
each successive loading interval. Subset analysis was performed on the basis of amputation type (bone bridging or non bone bridging) and suspension...fitting, patient care. Washington, DC: US Government Printing Office; 1969. 2. Ertl J. Uber amputationsstumpfe. Chirurg. 1949;20:218 24. 3. Pinto MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Li, Dechun; Zhao, Xin
Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level ofmore » DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ{sup 2} = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26 ± 2.67%) was significantly higher than that of DcR3 negative specimens (43.58 ± 7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. - Highlights: • We investigated the role of DcR3 in FasL resistance in pancreatic cancer. • Knockdown of DcR3 in SW1990 cells reduced resistance to FasL-induced apoptosis. • DcR3 knockdown also elevated caspase expression, and reduced ERK1/2 phosphorylation. • Tumor and non-tumor tissues were collected from 66 pancreatic carcinoma patients. • 47 tumor tissue specimens, but only 15 matched non-tumor specimens contained DcR3.« less
Duan, Xue-Zhang; Wang, Min; Li, Han-Wei; Zhuang, Hui; Xu, Dongping; Wang, Fu-Sheng
2004-11-01
The Type 2 precursor plasmacytoid dendritic cells (pDC) represent the most important cell type in antiviral innate immunity. To understand the function of pDC during hepatitis B virus infection, the frequency and function of circulating pDC were analyzed by flow cytometric analysis, and IFN-alpha secretion of total PBMCs was determined by ELISA assay in 25 healthy subjects and 116 patients at various stages of chronic hepatitis B virus infection (CHB). The number of circulating pDC was found to be significantly lower in patients with CHB and associated liver cirrhosis (LC). The ability of PBMCs to secrete IFN-alpha also decreased significantly. There was a corresponding decrease of circulating NK cells and CD8+ T cells. We observed that lamuvidine antiviral therapy restored the number of circulating pDC and there was a reversal of pDC frequency with the control of HBV replication in chronic HBV patients, indicating these subjects are unlikely to be totally immunocompromised. The decrease of pDC was found to be related to nosocomial infections in LC patients. Our results suggest that CHB patients probably have a quantitative and qualitative impairment of circulating pDC or NK cells, which may be associated with HBV persistent infection as well as the nosocomial infections that arise in LC patients.
Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.
2017-11-01
Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.
Kunicki, Matthew A; Amaya Hernandez, Laura C; Davis, Kara L; Bacchetta, Rosa; Roncarolo, Maria-Grazia
2018-01-01
Human CD3 + CD4 + Th cells, FOXP3 + T regulatory (Treg) cells, and T regulatory type 1 (Tr1) cells are essential for ensuring peripheral immune response and tolerance, but the diversity of Th, Treg, and Tr1 cell subsets has not been fully characterized. Independent functional characterization of human Th1, Th2, Th17, T follicular helper (Tfh), Treg, and Tr1 cells has helped to define unique surface molecules, transcription factors, and signaling profiles for each subset. However, the adequacy of these markers to recapitulate the whole CD3 + CD4 + T cell compartment remains questionable. In this study, we examined CD3 + CD4 + T cell populations by single-cell mass cytometry. We characterize the CD3 + CD4 + Th, Treg, and Tr1 cell populations simultaneously across 23 memory T cell-associated surface and intracellular molecules. High-dimensional analysis identified several new subsets, in addition to the already defined CD3 + CD4 + Th, Treg, and Tr1 cell populations, for a total of 11 Th cell, 4 Treg, and 1 Tr1 cell subsets. Some of these subsets share markers previously thought to be selective for Treg, Th1, Th2, Th17, and Tfh cells, including CD194 (CCR4) + FOXP3 + Treg and CD183 (CXCR3) + T-bet + Th17 cell subsets. Unsupervised clustering displayed a phenotypic organization of CD3 + CD4 + T cells that confirmed their diversity but showed interrelation between the different subsets, including similarity between Th1-Th2-Tfh cell populations and Th17 cells, as well as similarity of Th2 cells with Treg cells. In conclusion, the use of single-cell mass cytometry provides a systems-level characterization of CD3 + CD4 + T cells in healthy human blood, which represents an important baseline reference to investigate abnormalities of different subsets in immune-mediated pathologies. Copyright © 2017 by The American Association of Immunologists, Inc.
Patel, Vineet I.; Booth, J. Leland; Duggan, Elizabeth S.; Cate, Steven; White, Vicky L.; Hutchings, David; Kovats, Susan; Burian, Dennis M.; Dozmorov, Mikhail; Metcalf, Jordan P.
2016-01-01
The respiratory system is a complex network of many cell types, including subsets of macrophages and dendritic cells that work together to maintain steady-state respiration. Due to limitations in acquiring cells from healthy human lung, these subsets remain poorly characterized transcriptionally and phenotypically. We set out to systematically identify these subsets in human airways by developing a schema of isolating large numbers of cells by whole lung bronchoalveolar lavage. Six subsets of phagocytic antigen presenting (HLA-DR+) cells were consistently observed. Aside from alveolar macrophages, subsets of Langerin+, BDCA1− CD14+, BDCA1+ CD14+, BDCA1+ CD14−, and BDCA1− CD14− cells were identified. These subsets varied in their ability to internalize Escherichia coli, Staphylococcus aureus, and Bacillus anthracis particles. All subsets were more efficient at internalizing S. aureus and B. anthracis compared to E. coli. Alveolar macrophages and CD14+ cells were overall more efficient at particle internalization compared to the four other populations. Subsets were further separated into two groups based on their inherent capacities to upregulate surface CD83, CD86, and CCR7 expression levels. Whole genome transcriptional profiling revealed a clade of “true dendritic cells” consisting of Langerin+, BDCA1+ CD14+, and BDCA1+ CD14− cells. The dendritic cell clade was distinct from a macrophage/monocyte clade, as supported by higher mRNA expression levels of several dendritic cell-associated genes, including CD1, FLT3, CX3CR1, and CCR6. Each clade, and each member of both clades, were discerned by specific upregulated genes, which can serve as markers for future studies in healthy and diseased states. PMID:28031342
Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells.
Zhang, Yi; Li, Dechun; Zhao, Xin; Song, Shiduo; Zhang, Lifeng; Zhu, Dongming; Wang, Zhenxin; Chen, Xiaochen; Zhou, Jian
2015-08-07
Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ(2) = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26 ± 2.67%) was significantly higher than that of DcR3 negative specimens (43.58 ± 7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.
MODIS Interactive Subsetting Tool (MIST)
NASA Astrophysics Data System (ADS)
McAllister, M.; Duerr, R.; Haran, T.; Khalsa, S. S.; Miller, D.
2008-12-01
In response to requests from the user community, NSIDC has teamed with the Oak Ridge National Laboratory Distributive Active Archive Center (ORNL DAAC) and the Moderate Resolution Data Center (MrDC) to provide time series subsets of satellite data covering stations in the Greenland Climate Network (GC-NET) and the International Arctic Systems for Observing the Atmosphere (IASOA) network. To serve these data NSIDC created the MODIS Interactive Subsetting Tool (MIST). MIST works with 7 km by 7 km subset time series of certain Version 5 (V005) MODIS products over GC-Net and IASOA stations. User- selected data are delivered in a text Comma Separated Value (CSV) file format. MIST also provides online analysis capabilities that include generating time series and scatter plots. Currently, MIST is a Beta prototype and NSIDC intends that user requests will drive future development of the tool. The intent of this poster is to introduce MIST to the MODIS data user audience and illustrate some of the online analysis capabilities.
Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim
2015-05-01
Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.
Liu, Yan-Ping; Zhu, Hui-Fang; Liu, Ding-Li; Hu, Zhi-Yan; Li, Sheng-Nan; Kan, He-Ping; Wang, Xiao-Yan; Li, Zu-Guo
2016-11-22
Decoy receptor 3 (DcR3), a novel member of the tumor necrosis factor receptor (TNFR) family, was recently reported to be associated with tumorigenesis and metastasis. However, the role of DcR3 in human colorectal cancer (CRC) has not been fully elucidated. In this study, we found that DcR3 expression was significantly higher in human colorectal cancer tissues than in paired normal tissues, and that DcR3 expression was strongly correlated with tumor invasion, lymph node metastases and poor prognoses. Moreover, DcR3 overexpression significantly enhanced CRC cell proliferation and migration in vitro and tumorigenesis in vivo. Conversely, DcR3 knockdown significantly repressed CRC cell proliferation and migration in vitro, and DcR3 deficiency also attenuated CRC tumorigenesis and metastasis in vivo. Functionally, DcR3 was essential for TGF-β3/SMAD-mediated epithelial-mesenchymal transition (EMT) of CRC cells. Importantly, cooperation between DcR3 and TGF-β3/SMAD-EMT signaling-related protein expression was correlated with survival and survival time in CRC patients. In conclusion, our results demonstrate that DcR3 may be a prognostic biomarker for CRC and that this receptor facilitates CRC development and metastasis by participating in TGF-β3/SMAD-mediated EMT of CRC cells.
Biggins, Julia E.; Biesinger, Tasha; Yu Kimata, Monica T.; Arora, Reetakshi; Kimata, Jason T.
2007-01-01
We investigated the role of ICAM-3 in DC-SIGN-mediated human immunodeficiency virus (HIV) infection of CD4+ T cells. Our results demonstrate that ICAM-3 does not appear to play a role in DC-SIGN-mediated infection of CD4+ T cells as virus is transmitted equally to ICAM-3+ or ICAM-3− Jurkat T cells. However, HIV-1 replication is enhanced in ICAM-3− cells, suggesting that ICAM-3 may limit HIV-1 replication. Similar results were obtained when SIV replication was examined in ICAM-3+ and ICAM-3− CEMx174 cells. Furthermore, while ICAM-3 has been proposed to play a co-stimulatory role in T cell activation, DC-SIGN expression on antigen presenting cells did not enhance antigen-dependent activation of T cells. Together, these data indicate that while ICAM-3 may influence HIV-1 replication, it does so independent of DC-SIGN mediated virus transmission or activation of CD4+ T cells. PMID:17434553
Stefanovic-Racic, Maja; Yang, Xiao; Turner, Michael S.; Mantell, Benjamin S.; Stolz, Donna B.; Sumpter, Tina L.; Sipula, Ian J.; Dedousis, Nikolaos; Scott, Donald K.; Morel, Penelope A.; Thomson, Angus W.; O’Doherty, Robert M.
2012-01-01
Obesity-associated increases in adipose tissue (AT) CD11c+ cells suggest that dendritic cells (DC), which are involved in the tissue recruitment and activation of macrophages, may play a role in determining AT and liver immunophenotype in obesity. This study addressed this hypothesis. With the use of flow cytometry, electron microscopy, and loss-and-gain of function approaches, the contribution of DC to the pattern of immune cell alterations and recruitment in obesity was assessed. In AT and liver there was a substantial, high-fat diet (HFD)–induced increase in DC. In AT, these increases were associated with crown-like structures, whereas in liver the increase in DC constituted an early and reversible response to diet. Notably, mice lacking DC had reduced AT and liver macrophages, whereas DC replacement in DC-null mice increased liver and AT macrophage populations. Furthermore, delivery of bone marrow–derived DC to lean wild-type mice increased AT and liver macrophage infiltration. Finally, mice lacking DC were resistant to the weight gain and metabolic abnormalities of an HFD. Together, these data demonstrate that DC are elevated in obesity, promote macrophage infiltration of AT and liver, contribute to the determination of tissue immunophenotype, and play a role in systemic metabolic responses to an HFD. PMID:22851575
Gröbner, Sabine; Schulz, Sebastian; Soldanova, Irena; Gunst, Dani S J; Waibel, Michaela; Wesselborg, Sebastian; Borgmann, Stefan; Autenrieth, Ingo B
2007-01-01
In an initial period (< or =4 h) Toll-like receptor 4 (TLR4) signaling is required for Yersinia enterocolitica YopP-induced dendritic cell (DC) death. Later (>4 h), DC die independent of TLR4 signaling. In TLR4-deficient DC caspase 8 cleavage is delayed, indicating that TLR4 signaling accelerates caspase 8 activation, leading to DC death.
Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells
Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen
2016-01-01
We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251
Dunham, Richard M.; Cervasi, Barbara; Brenchley, Jason M.; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R.; Frank, Ian; Sodora, Donald L.; Douek, Daniel C.; Paiardini, Mirko; Silvestri, Guido
2009-01-01
Decreased CD4+ T cell counts are the best marker of disease progression during HIV infection. However, CD4+ T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4+ T cell subsets influences disease severity. CD4+ T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127+CD25low/− subset includes IL-2-producing naive and central memory T cells; the CD127−CD25− subset includes mainly effector T cells expressing perforin and IFN-γ; and the CD127lowCD25high subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4+CD127−CD25− T cells that is related to an absolute decline of CD4+CD127+CD25low/− T cells. Interestingly, this expansion of CD4+CD127− T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4+CD127−CD25− T cells correlated directly with the levels of total CD4+ T cell depletion and immune activation. CD4+CD127−CD25− T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4+ T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4+ T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4+ T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals. PMID:18390743
Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko
2009-11-15
Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation.
Breckpot, Karine; Escors, David
2009-12-01
Tumour immunotherapy has become a treatment modality for cancer, harnessing the immune system to recognize and eradicate tumour cells specifically. It is based on the expression of tumour associated antigens (TAA) by the tumour cells and aims at the induction of TAA-specific effector T cell responses, whilst overruling various mechanisms that can hamper the anti-tumour immune response, e.g. regulatory T cells (Treg). (Re-) activation of effector T cells requires the completion of a carefully orchestrated series of specific steps. Particularly important is the provision of TAA presentation and strong stimulatory signals, delivered by co-stimulatory surface molecules and cytokines. These can only be delivered by professional antigen-presenting cells, in particular dendritic cells (DC). Therefore, DC need to be loaded with TAA and appropriately activated. It is not surprising that an extensive part of DC research has focused on the delivery of both TAA and activation signals to DC, developing a one step approach to obtain potent stimulatory DC. The simultaneous delivery of TAA and activation signals is therefore the topic of this review, emphasizing the role of DC in mediating T cell activation and how we can manipulate DC for the pill-pose of enhancing tumour immunotherapy. As we gain a better understanding of the molecular and cellular mechanisms that mediate induction of TAA-specific T cells, rational approaches for the activation of T cell responses can be developed for the treatment of cancer.
Decoy receptor 3: an endogenous immunomodulator in cancer growth and inflammatory reactions.
Hsieh, Shie-Liang; Lin, Wan-Wan
2017-06-19
Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor (TNFR) superfamily member 6b (TNFRSF6B), is a soluble decoy receptor which can neutralize the biological functions of three members of tumor necrosis factor superfamily (TNFSF): Fas ligand (FasL), LIGHT, and TL1A. In addition to 'decoy' function, recombinant DcR3.Fc is able to modulate the activation and differentiation of dendritic cells (DCs) and macrophages via 'non-decoy' action. DcR3-treated DCs skew T cell differentiation into Th2 phenotype, while DcR3-treated macrophages behave M2 phenotype. DcR3 is upregulated in various cancer cells and several inflammatory tissues, and is regarded as a potential biomarker to predict inflammatory disease progression and cancer metastasis. However, whether DcR3 is a pathogenic factor or a suppressor to attenuate inflammatory reactions, has not been discussed comprehensively yet. Because mouse genome does not have DcR3, it is not feasible to investigate its physiological functions by gene-knockout approach. However, DcR3-mediated effects in vitro are determined via overexpressing DcR3 or addition of recombinant DcR3.Fc fusion protein. Moreover, CD68-driven DcR3 transgenic mice are used to investigate DcR3-mediated systemic effects in vivo. Upregulation of DcR3 during inflammatory reactions exerts negative-feedback to suppress inflammation, while tumor cells hijack DcR3 to prevent apoptosis and promote tumor growth and invasion. Thus, 'switch-on' of DcR3 expression may be feasible for the treatment of inflammatory diseases and enhance tissue repairing, while 'switch-off' of DcR3 expression can enhance tumor apoptosis and suppress tumor growth in vivo.
Wells, James W; Cowled, Chris J; Darling, David; Guinn, Barbara-Ann; Farzaneh, Farzin; Noble, Alistair; Galea-Lauri, Joanna
2007-12-01
Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses. To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC. Semi-allogeneic DC were generated from the F(1) progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8(+) and CD4(+) T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo. In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8(+) OT-I transgenic T-cells, primed naïve CD4(+) OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4(+) response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival. Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.
de Kivit, Sander; Kostadinova, Atanaska I; Kerperien, JoAnn; Ayechu Muruzabal, Veronica; Morgan, Mary E; Knippels, Leon M J; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M
2017-01-01
Intestinal epithelial cells (IEC) drive regulatory T cell (Treg) responses by promoting the differentiation of aldehyde dehydrogenase (ALDH)-expressing CD103+ dendritic cells (DC). Apical stimulation of TLR9 by CpG DNA on IEC supports galectin-9 expression by IEC, which is promoted by short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (GF). While galectin-9 can induce the maturation of monocyte-derived DC (moDC), the contribution of galectin-9 on the induction of ALDH activity in DC is not known. To this end, DC were stimulated with galectin-9, and ALDH activity and the expression of CD103 were assessed. ALDH activity was increased by moDC exposed to galectin-9, while the expression of CD103 remained unaltered. Galectin-9 secreted by IEC apically exposed to CpG DNA and GF enhanced ALDH activity, but not CD103 expression by moDC, which was abrogated upon galectin-9 neutralization. Similar observations were found in murine GM-CSF-cultured bone marrow-derived DC (BMDC). Using Flt3L-cultured BMDC and ex vivo murine splenic DC, it was observed that galectin-9 only enhanced ALDH activity in the presence of GM-CSF in CD103- cells. The induction of ALDH activity in BMDC was dependent on p38 and PI3K signaling. These data indicate a novel role for galectin-9 in modulating innate immunity by inducing ALDH activity in DC. © 2017 S. Karger AG, Basel.
Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.
Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B
2012-06-21
The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.
Moyo, Nathifa A; Marchi, Emanuele; Steinbach, Falko
2013-01-01
Dendritic cells (DC) are the main immune mediators inducing primary immune responses. DC generated from monocytes (MoDC) are a model system to study the biology of DC in vitro, as they represent inflammatory DC in vivo. Previous studies on the generation of MoDC in horses indicated that there was no distinct difference between immature and mature DC and that the expression profile was distinctly different from humans, where CD206 is expressed on immature MoDC whereas CD83 is expressed on mature MoDC. Here we describe the kinetics of equine MoDC differentiation and activation, analysing both phenotypic and functional characteristics. Blood monocytes were first differentiated with equine granulocyte–macrophage colony-stimulating factor and interleukin-4 generating immature DC (iMoDC). These cells were further activated with a cocktail of cytokines including interferon-γ) but not CD40 ligand to obtain mature DC (mMoDC). To determine the expression of a broad range of markers for which no monoclonal antibodies were available to analyse the protein expression, microarray and quantitative PCR analysis were performed to carry out gene expression analysis. This study demonstrates that equine iMoDC and mMoDC can be distinguished both phenotypically and functionally but the expression pattern of some markers including CD206 and CD83 is dissimilar to the human system. PMID:23461413
Gualde, N; Goodwin, J S
1984-04-01
Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualde, N.; Goodwin, J.S.
1984-04-01
Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less
Chen, Ming-Han; Liu, Po-Chun; Chang, Chien-Wen; Chen, Yi-Ann; Chen, Ming-Huang; Liu, Chun-Yu; Leu, Chuen-Miin; Lin, Hsiao-Yi
2014-01-01
The decoy receptor 3 (DcR3) is a member of the tumour necrosis factor (TNF) receptor superfamily and may regulate inflammation. The aim of this study was to investigate the role of DcR3 in B cell functions and its correlation to disease activity in patients with rheumatoid arthritis (RA). The concentrations of DcR3 and TNF-α were measured by ELISA. B cell proliferation was assessed by quantification of 3H-thymidine uptake. Staphylococcus aureus Cowan (SAC) strain were used to stimulate B cell proliferation and TNF-α production. Compared to the osteoarthritis (OA) patients, the RA group had higher synovial DcR3 levels (3273.6±1623.2 vs. 1594.8±1190.0 pg/ml, p=0.003), which were negatively correlated with the serum erythrocyte sedimentation rate and Disease Activity Score using 28 joint counts (DAS28) scores (r=-0.560, p=0.002; r=-0.579, p<0.001, respectively). Although the RA B cells have more active characteristics, B cell proliferation induced by SAC was successfully suppressed by recombinant DcR3.Fc fusion protein with an average inhibition of 44.8%. Moreover, DcR3.Fc fusion protein was found to suppress SAC-induced TNF-α production by B cells in 8 RA patients (average inhibition 47.0%). The results of our study indicated that the inhibition of B cell functions by DcR3 may partially explain the negative correlation between DcR3 level and disease activity in RA patients. Our findings imply that DcR3 may be used as a biomarker for disease activity and a potential therapeutic agent in the treatment of RA.
Singh, Harmohan N.
2012-06-05
A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.
Previously we found that dendritic cells (DC) were sensitive functional bioindicators of ambient PM (APM) exposure mediating Th2-allergic inflammation in the draining lymph nodes. Here, the ability of bone-marrow-derived DC (DC) and putative BM-derived basophils (Ba) to present a...
Kitagaki, Hiroshi; Ito, Kiyoshi; Shimoi, Hitoshi
2004-10-01
Dcw1p and Dfg5p in Saccharomyces cerevisiae are homologous proteins that were previously shown to be involved in cell wall biogenesis and to be essential for growth. Dcw1p was found to be a glycosylphosphatidylinositol-anchored membrane protein. To investigate the roles of these proteins in cell wall biogenesis and cell growth, we constructed mutant alleles of DCW1 by random mutagenesis, introduced them into a Deltadcw1 Deltadfg5 background, and isolated a temperature-sensitive mutant, DC61 (dcw1-3 Deltadfg5). When DC61 cells were incubated at 37 degrees C, most cells had small buds, with areas less than 20% of those of the mother cells. This result indicates that DC61 cells arrest growth with small buds at 37 degrees C. At 37 degrees C, fewer DC61 cells had 1N DNA content and most of them still had a single nucleus located apart from the bud neck. In addition, in DC61 cells incubated at 37 degrees C, bipolar spindles were not formed. These results indicate that DC61 cells, when incubated at 37 degrees C, are cell cycle arrested after DNA replication and prior to the separation of spindle pole bodies. The small buds of DC61 accumulated chitin in the bud cortex, and some of them were lysed, which indicates that they had aberrant cell walls. A temperature-sensitive dfg5 mutant, DF66 (Deltadcw1 dfg5-29), showed similar phenotypes. DCW1 and DFG5 mRNA levels peaked in the G1 and S phases, respectively. These results indicate that Dcw1p and Dfg5p are involved in bud formation through their involvement in biogenesis of the bud cell wall.
Daneshmandi, Saeed; Dibazar, Shaghayegh Pishkhan; Fateh, Shirin
2016-01-01
In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24 h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-β production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro.
Bruel, Timothée; Dupuy, Stéphanie; Démoulins, Thomas; Rogez-Kreuz, Christine; Dutrieux, Jacques; Corneau, Aurélien; Cosma, Antonio; Cheynier, Rémi; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Vaslin, Bruno
2014-01-01
IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα− production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors. PMID:24497833
EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation.
Yanagihara, S; Komura, E; Nagafune, J; Watarai, H; Yamaguchi, Y
1998-09-15
Dendritic cells (DC) that are stimulated with inflammatory mediators can maturate and migrate from nonlymphoid tissues to lymphoid organs to initiate T cell-mediated immune responses. This migratory step is closely related to the maturation of the DC. In an attempt to identify chemokine receptors that might influence migration and are selectively expressed in mature DC, we have discovered that the chemokine receptor, EBI1/CCR7, is strikingly up-regulated upon maturation in three distinct culture systems: 1) mouse bone marrow-derived DC, 2) mouse epidermal Langerhans cells, and 3) human monocyte-derived DC. The EBI1/CCR7 expressed in mature DC is functional because ELC/MIP-3beta, recently identified as a ligand of EBI1/CCR7, induces a rise in intracellular free calcium concentrations and directional migration of human monocyte-derived mature DC (HLA-DRhigh, CD1a(low), CD14-, CD25+, CD83+, and CD86high) in a dose-dependent manner, but not of immature DC (HLA-DRlow, CD1a(high), CD14-, CD25-, CD83-, and CD86-). In contrast, macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-3 (MCP-3), and RANTES are active on immature DC but not on mature DC. Thus, it seems likely that MIP-1alpha, MCP-3, and RANTES can mediate the migration of immature DC located in peripheral sites, whereas ELC/MIP-3beta can direct the migration of Ag-carrying DC from peripheral inflammatory sites, where DC are stimulated to up-regulate the expression of EBI1/CCR7, to lymphoid organs. It is postulated that different chemokines and chemokine receptors are involved in DC migration in vivo, depending on the maturation state of DC.
Type I interferon regulates pDC maturation and Ly49Q expression.
Toma-Hirano, Makiko; Namiki, Sahori; Miyatake, Shoichiro; Arai, Ken-Ichi; Kamogawa-Schifter, Yumiko
2007-10-01
Ly49Q is expressed on peripheral mouse plasmacytoid dendritic cells (pDC). Immature Ly49Q-negative pDC precursors acquire Ly49Q in the bone marrow and then migrate into the periphery. While searching for molecules that regulate pDC maturation, we found that type I interferon (IFN) inhibited Ly49Q acquisition in vitro. Infections that induce type I IFN production by cells other than pDC (a condition mimicked by poly(I:C) injection in vivo) increase the prevalence of Ly49Q(-) pDC in the bone marrow and peripheral lymphoid organs in wild-type but not IFN-alpha/beta receptor knockout BALB/c mice. Moreover, in vivo exposure to type I IFN causes some Ly49Q(-), but not Ly49Q(+), pDC to convert to conventional DC, defined as B220(-) CD11c(+) CD11b(+) cells. These data suggest that type I IFN regulates pDC development and affects their distribution in the body.
Characterization of colonic dendritic cells in normal and colitic mice.
Cruickshank, Sheena M; English, Nicholas R; Felsburg, Peter J; Carding, Simon R
2005-10-28
Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC. Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2(-/-)) mice that develop colitis. In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c(+), CD11b(+), B220(-), CD8alpha(-)) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40, and had high endocytic activity consistent with an immature phenotype. In colitic IL2(-/-) mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN). The majority (>85%) of DC in the colon and MLN of IL2(-/-) mice were type 1 myeloid, and expressed high levels of MHC class II, CD80, CD86, CD40, DEC 205, and CCR5 molecules and were of low endocytic activity consistent with mature DC. These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon.
Characterization of colonic dendritic cells in normal and colitic mice
Cruickshank, Sheena M; English, Nicholas R; Felsburg, Peter J; Carding, Simon R
2005-01-01
AIM: Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC. METHODS: Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2-/-) mice that develop colitis. RESULTS: In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c+, CD11b+, B220-, CD8α-) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40, and had high endocytic activity consistent with an immature phenotype. In colitic IL2-/- mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN). The majority (>85%) of DC in the colon and MLN of IL2-/- mice were type 1 myeloid, and expressed high levels of MHC class II, CD80, CD86, CD40, DEC 205, and CCR5 molecules and were of low endocytic activity consistent with mature DC. CONCLUSION: These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon. PMID:16419163
Hu, Zhi-Yan; Li, Sheng-Nan; Kan, He-Ping; Wang, Xiao-Yan; Li, Zu-Guo
2016-01-01
Decoy receptor 3 (DcR3), a novel member of the tumor necrosis factor receptor (TNFR) family, was recently reported to be associated with tumorigenesis and metastasis. However, the role of DcR3 in human colorectal cancer (CRC) has not been fully elucidated. In this study, we found that DcR3 expression was significantly higher in human colorectal cancer tissues than in paired normal tissues, and that DcR3 expression was strongly correlated with tumor invasion, lymph node metastases and poor prognoses. Moreover, DcR3 overexpression significantly enhanced CRC cell proliferation and migration in vitro and tumorigenesis in vivo. Conversely, DcR3 knockdown significantly repressed CRC cell proliferation and migration in vitro, and DcR3 deficiency also attenuated CRC tumorigenesis and metastasis in vivo. Functionally, DcR3 was essential for TGF-β3/SMAD-mediated epithelial-mesenchymal transition (EMT) of CRC cells. Importantly, cooperation between DcR3 and TGF-β3/SMAD-EMT signaling-related protein expression was correlated with survival and survival time in CRC patients. In conclusion, our results demonstrate that DcR3 may be a prognostic biomarker for CRC and that this receptor facilitates CRC development and metastasis by participating in TGF-β3/SMAD-mediated EMT of CRC cells. PMID:27764793
Romano, Emanuela; Rossi, Marco; Ratzinger, Gudrun; de Cos, Maria-Angeles; Chung, David J.; Panageas, Katherine S.; Wolchok, Jedd D.; Houghton, Alan N.; Chapman, Paul B.; Heller, Glenn; Yuan, Jianda; Young, James W.
2013-01-01
Purpose We compared the efficacy of human Langerhans cells (LCs) as tumor immunogens in vivo with monocyte-derived DCs (moDCs) and investigated how IL15 supports optimal DC-stimulated antitumor immunity. Experimental Design AJCC stage III/IV melanoma patients participated in this first clinical trial comparing melanoma peptide-pulsed LC with moDC vaccines (NCT00700167,www.ClinicalTrials.gov). Correlative studies evaluated mechanisms mediating IL15 support of DC-stimulated antitumor immunity. Results Both DC vaccines were safe and immunogenic for melanoma antigens. LC-based vaccines stimulated significantly greater tyrosinase-HLA-A*0201 tetramer reactivity than did moDC-based vaccines. The two DC subtypes were otherwise statistically comparable, in contrast to extensive prior data in vitro demonstrating LC superiority. LCs synthesize much more IL15 than moDCs and stimulate significantly more antigen-specific lymphocytes with a cytolytic IFN-gamma profile even without exogenous IL15. When supplemented by low dose IL15, instead of IL2, moDCs stimulate 5-6 logs more tumor antigen-specific effector memory T-cells (TEMRA) over 3-4 weeks in vitro. IL2 and IL15 can be synergistic in moDC stimulation of cytolytic T-cells. IL15 promotes T-cell expression of the antiapoptotic bcl-2 and inhibits candidate regulatory T-cell (Treg) expansion after DC stimulation, countering two effects of IL2 that do not foster tumor immunity. Conclusions MoDC-based vaccines will require exogenous IL15 to achieve clinical efficacy. Alternatively, LCs can couple the endogenous production of IL15 with potent T-cell stimulatory activity. Optimization of full length tumor antigen expression for processing into multiple immunogenic peptides for presentation by both class I and II MHC therefore merits emphasis to support more effective antitumor immunity stimulated by LCs. PMID:21355077
Zeng, Xi-Lei; Thumati, Naresh R.; Fleisig, Helen B.; Hukezalie, Kyle R.; Savage, Sharon A.; Giri, Neelam; Alter, Blanche P.; Wong, Judy M.Y.
2012-01-01
X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that retroviral expression of recombinant TER, together with expression of recombinant telomerase reverse transcriptase, restored telomere maintenance and proliferative capacity in X-DC patient cells. Using rare X-DC isoforms (▵L37 and A386T dyskerin), we showed that telomere maintenance defects observed in X-DC are solely due to decreased steady-state levels of TER. Disease-associated reductions in steady-state TER levels cause deficiencies in telomere maintenance. Here, we confirm these findings in other primary X-DC patient cell lines coding for the most common (A353V dyskerin) and more clinically severe (K314R and A353V dyskerin) X-DC isoforms. Using cell lines derived from these patients, we also examined the steady-state levels of other hinge-ACA motif RNAs and did not find differences in their in vivo accumulations. We show, for the first time, that purified telomerase holoenzyme complexes from different X-DC cells have normal catalytic activity. Our data confirm that dyskerin promotes TER stability in vivo, endorsing the development of TER supplementation strategies for the treatment of X-DC. PMID:22058290
Avettand-Fenoël, Véronique; Nembot, Georges; Mélard, Adeline; Blanc, Catherine; Lascoux-Combe, Caroline; Slama, Laurence; Allegre, Thierry; Allavena, Clotilde; Yazdanpanah, Yazdan; Duvivier, Claudine; Katlama, Christine; Goujard, Cécile; Seksik, Bao Chau Phung; Leplatois, Anne; Molina, Jean-Michel; Meyer, Laurence; Autran, Brigitte; Rouzioux, Christine
2013-01-01
Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that subset activation and skewed immune homeostasis determine the conditions of viral dissemination and early establishment of the HIV reservoir. PMID:23691172
Immunostimulatory activities of dendritic cells loaded with adenovirus vector carrying HBcAg/HBsAg
Jia, Hongyu; Li, Chunling; Zhang, Yimin; Yu, Liang; Xiang, Dairong; Liu, Jun; Chen, Fengzhe; Han, Xiaochun
2015-01-01
Objective: This study is to investigate the immunostimulatory activities of dendritic cells (DCs) transfected with HBcAg and/or HBsAg recombinant adenovirus (rAd). Methods: DCs were transfected with rAd (DC/Ad-C+Ad-S, DC/Ad-C, and DC/Ad-S), or pulsed with HBcAg antigen (DC/HBcAg). Flow cytometry was used to detect the phenotype of DCs and the cytokine production of T lymphocytes. Mice were vaccinated with DCs transfected with rAd or pulsed with antigen, and DNA vaccine. Mixed lymphocyte reaction (MLR) was used to evaluate the T-cell stimulatory capacity, and HBcAg-specific cytotoxic T lymphocyte (CTL) activity was assessed. Results: Phenotypic analysis showed that DCs transfected with rAd or pulsed with HBcAg antigen exhibited mature phenotypes. MLR indicated no significant differences in stimulating T-cell proliferation between the DC/rAd and DC/HBcAg groups. When mixed with DCs, Th and Tc cells mainly secreted IFN-γ, indicating type I immune responses. In vaccinated mice, DCs transduced with rAd and pulsed with HBcAg induced significantly more IFN-γ secretion from Th cells, compared with DNA vaccine, indicating stronger Th1 response. Moreover, DCs transduced with rAd stimulated Tc cells to produce more IFN-γ, indicating stronger Tc1 response. In vaccinated mice, HBcAg-specific CTL activities were decreased in the following order: the DC/Ad-C+Ad-S, DC/Ad-C, DC/Ad-S, DC/HBcAg, and DNA vaccine groups. Conclusion: DCs transfected with rAd induce stronger Th1/Tc1 (type I) cell immune responses and specific CTL response than HBcAg-pulsed DCs or DNA vaccine. Our findings suggest that DCs transfected with rAd-C/rAd-S might provide an effective approach in the treatment of persistent hepatitis B virus infection. PMID:26064236
Wang, Yucai; Liu, Yunyan; Zheng, Lianhe
2014-01-01
Background Strong evidence supports the DC-tumor fusion hybrid vaccination strategy, but the best fusion product components to use remains controversial. Fusion products contain DC-tumor fusion hybrids, unfused DCs and unfused tumor cells. Various fractions have been used in previous studies, including purified hybrids, the adherent cell fraction or the whole fusion mixture. The extent to which the hybrids themselves or other components are responsible for antitumor immunity or which components should be used to maximize the antitumor immunity remains unknown. Methods Patient-derived breast tumor cells and DCs were electro-fused and purified. The antitumor immune responses induced by the purified hybrids and the other components were compared. Results Except for DC-tumor hybrids, the non-adherent cell fraction containing mainly unfused DCs also contributed a lot in antitumor immunity. Purified hybrids supplemented with the non-adherent cell population elicited the most powerful antitumor immune response. After irradiation and electro-fusion, tumor cells underwent necrosis, and the unfused DCs phagocytosed the necrotic tumor cells or tumor debris, which resulted in significant DC maturation. This may be the immunogenicity mechanism of the non-adherent unfused DCs fraction. Conclusions The non-adherent cell fraction (containing mainly unfused DCs) from total DC/tumor fusion products had enhanced immunogenicity that resulted from apoptotic/necrotic tumor cell phagocytosis and increased DC maturation. Purified fusion hybrids supplemented with the non-adherent cell population enhanced the antitumor immune responses, avoiding unnecessary use of the tumor cell fraction, which has many drawbacks. Purified hybrids supplemented with the non-adherent cell fraction may represent a better approach to the DC-tumor fusion hybrid vaccination strategy. PMID:24466232
Expression of Vascular Notch Ligand Delta-Like 4 and Inflammatory Markers in Breast Cancer
Jubb, Adrian M.; Soilleux, Elizabeth J.; Turley, Helen; Steers, Graham; Parker, Andrew; Low, Irene; Blades, Jennifer; Li, Ji-Liang; Allen, Paul; Leek, Russell; Noguera-Troise, Irene; Gatter, Kevin C.; Thurston, Gavin; Harris, Adrian L.
2010-01-01
Delta-like ligand 4 (Dll4) is a Notch ligand that is predominantly expressed in the endothelium. Evidence from xenografts suggests that inhibiting Dll4 may overcome resistance to antivascular endothelial growth factor therapy. The aims of this study were to characterize the expression of Dll4 in breast cancer and assess whether it is associated with inflammatory markers and prognosis. We examined 296 breast adenocarcinomas and 38 ductal carcinoma in situ tissues that were represented in tissue microarrays. Additional whole sections representing 10 breast adenocarcinomas, 10 normal breast tissues, and 16 angiosarcomas were included. Immunohistochemistry was then performed by using validated antibodies against Dll4, CD68, CD14, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), CD123, neutrophil elastase, CD31, and carbonic anhydrase 9. Dll4 was selectively expressed by intratumoral endothelial cells in 73% to 100% of breast adenocarcinomas, 18% of in situ ductal carcinomas, and all lactating breast cases, but not normal nonlactating breast. High intensity of endothelial Dll4 expression was a statistically significant adverse prognostic factor in univariate (P = 0.002 and P = 0.01) and multivariate analyses (P = 0.03 and P = 0.04) of overall survival and relapse-free survival, respectively. Among the inflammatory markers, only CD68 and DC-SIGN were significant prognostic factors in univariate (but not multivariate) analyses of overall survival (P = 0.01 and 0.002, respectively). In summary, Dll4 was expressed by endothelium associated with breast cancer cells. In these retrospective subset analyses, endothelial Dll4 expression was a statistically significant multivariate prognostic factor. PMID:20167860
Newton, Darren J; Andrew, Elizabeth M; Dalton, Jane E; Mears, Rainy; Carding, Simon R
2006-02-01
Although gammadelta T cells are a common feature of many pathogen-induced immune responses, the factors that influence, promote, or regulate the response of individual gammadelta T-cell subsets to infection is unknown. Here we show that in the absence of Vgamma1+ T cells, novel subsets of gammadelta T cells, expressing T-cell receptor (TCR)-Vgamma chains that normally define TCRgammadelta+ dendritic epidermal T cells (DETCs) (Vgamma5+), intestinal intraepithelial lymphocytes (iIELs) (Vgamma7+), and lymphocytes associated with the vaginal epithelia (Vgamma6+), are recruited to the spleen in response to bacterial infection in TCR-Vgamma1-/- mice. By comparison of phenotype and structure of TCR-Vgamma chains and/or -Vdelta chains expressed by these novel subsets with those of their epithelium-associated counterparts, the Vgamma6+ T cells elicited in infected Vgamma1-/- mice were shown to be identical to those found in the reproductive tract, from where they are presumably recruited in the absence of Vgamma1+ T cells. By contrast, Vgamma5+ and Vgamma7+ T cells found in infected Vgamma1-/- mice were distinct from Vgamma5+ DETCs and Vgamma7+ iIELs. Functional analyses of the novel gammadelta T-cell subsets identified for infected Vgamma1-/- mice showed that whereas the Vgamma5+ and Vgamma7+ subsets may compensate for the absence of Vgamma1+ T cells by producing similar cytokines, they do not possess cytocidal activity and they cannot replace the macrophage homeostasis function of Vgamma1+ T cells. Collectively, these findings identify novel subsets of gammadelta T cells, the recruitment and activity of which is under the control of Vgamma1+ T cells.
NASA Astrophysics Data System (ADS)
Muhd Suberi, Anis Azwani; Wan Zakaria, Wan Nurshazwani; Tomari, Razali; Lau, Mei Xia
2016-07-01
Identification of Dendritic Cell (DC) particularly in the cancer microenvironment is a unique disclosure since fighting tumor from the harnessing immune system has been a novel treatment under investigation. Nowadays, the staining procedure in sorting DC can affect their viability. In this paper, a computer aided system is proposed for automatic classification of DC in peripheral blood mononuclear cell (PBMC) images. Initially, the images undergo a few steps in preprocessing to remove uneven illumination and artifacts around the cells. In segmentation, morphological operators and Canny edge are implemented to isolate the cell shapes and extract the contours. Following that, information from the contours are extracted based on Fourier descriptors, derived from one dimensional (1D) shape signatures. Eventually, cells are classified as DC by comparing template matching (TM) of established template and target images. The results show that the proposed scheme is reliable and effective to recognize DC.
Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.
2010-01-01
Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
2015-05-01
Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.
Kim, Yun-Mi; Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Bong-Joo; Suh, Guk-Hyun
2016-06-01
There are no accurate reference ranges for hematology parameters and lymphocyte subsets in Korean native beef cattle (Hanwoo). This study was performed to establish reliable reference ranges of hematology and lymphocyte subsets using a large number of Hanwoo cattle (n = 350) and to compare differences between Hanwoo and Holstein dairy cattle (n = 334). Additionally, age-related changes in lymphocyte subsets were studied. Bovine leukocyte subpopulation analysis was performed using mono or dual color flow cytometry. The leukocyte subpopulations investigated in healthy cattle included: CD2(+) cells, sIgM(+) cells, MHC class II(+) cells, CD3(+) CD4(+) cells, CD3(+) CD8(+) cells, and WC1(+) cells. Although Hanwoo and Holstein cattle are the same species, results showed several differences in hematology and lymphocyte subsets between Hanwoo and Holstein cattle. This study is the first report to establish reference ranges of hematology and lymphocyte subsets in adult Hanwoo cattle. © 2015 Japanese Society of Animal Science.
Use of solar cell in electrokinetic remediation of cadmium-contaminated soil.
Yuan, Songhu; Zheng, Zhonghua; Chen, Jing; Lu, Xiaohua
2009-03-15
This preliminary study used a solar cell, instead of direct current (DC) power supply, to generate electric field for electrokinetic (EK) remediation of cadmium-contaminated soil. Three EK tests were conducted and compared; one was conducted on a cloudy and rainy day with solar cell, one was conducted on a sunny day with solar cell and another was conducted periodically with DC power supply. It was found that the output potential of solar cell depended on daytime and was influenced by weather conditions; the applied potential in soil was affected by the output potential and weather conditions, and the current achieved by solar cell was comparable with that achieved by DC power supply. Solar cell could be used to drive the electromigration of cadmium in contaminated soil, and removal efficiency achieved by solar cell was comparable with that achieved by DC power supply. Compared with traditional DC power supply, using solar cell as power supply for EK remediation can greatly reduce energy expenditure. This study provided an alternative to improve the EK soil remediation and expanded the use of solar cell in environmental remediation.
Viral antigen mediated NKp46 activation of NK cells results in tumor rejection via NK-DC crosstalk
Chinnery, Fay; King, Catherine A.; Elliott, Tim; Bateman, Andrew R.; James, Edward
2012-01-01
Natural killer (NK) cells play a critical role in antitumor immunity, their activation being regulated through NK cell receptors. Although the endogenous ligands for these receptors are largely unknown, viral ligands have been identified. We investigated the ability of an activating NK receptor ligand derived from the mumps virus, haemagglutinin-neuraminidase (HN) to enhance NK activation against tumor cells. HN-expressing B16.OVA tumor cells induced stronger activation of NK cells compared with B16.OVA cells and also promoted dendritic cell (DC) activation toward a DC1 phenotype, in vitro. Moreover, incubation of DCs, NK cells and HN-expressing B16-OVA cells further enhanced NK cell activation through the NK-DC crosstalk, in a cell-to-cell contact- and IL-12-dependent fashion. Immunization of mice with HN-expressing B16-OVA cells resulted in > 85% survival rate after subsequent challenge with parental B16 or B16.OVA tumor cells. Tumor rejection was dependent on both NK and CD8+ T cells but not on CD4+ T cells, demonstrating induction of an effective adaptive immune response through innate immune cell activation. Our data indicate the potential of using robust NK cell activation, which through the NK-DC crosstalk stimulates effective antitumor responses, providing an alternate vaccine strategy. PMID:23162755
Dou, Yingying; van Montfoort, Nadine; van den Bosch, Aniek; de Man, Robert A; Zom, Gijs G; Krebber, Willem-Jan; Melief, Cornelis J M; Buschow, Sonja I; Woltman, Andrea M
2018-01-01
Abstract Background Vaccination with synthetic long peptides (SLP) is a promising new treatment strategy for chronic hepatitis B virus (CHB). SLP can induce broad T-cell responses for all HLA types. Here we investigated the ability of a prototype HBV-core (HBc)-sequence-derived SLP to boost HBV-specific T cells in CHB patients ex vivo. Methods HBc-SLP was used to assess cross-presentation by monocyte-derived dendritic cells (moDC) and BDCA1+ blood myeloid DC (mDC) to engineered HBV-specific CD8+ T cells. Autologous SLP-loaded and toll-like receptor (TLR)-stimulated DC were used to activate patient HBc-specific CD8+ and CD4+ T cells. Results HBV-SLP was cross-presented by moDC, which was further enhanced by adjuvants. Patient-derived SLP-loaded moDC significantly increased autologous HBcAg18-27-specific CD8+ T cells and CD4+ T cells ex vivo. HBV-specific T cells were functional as they synthesized tumor necrosis factor-alpha and interferon-gamma. In 6/7 of patients blockade of PD-L1 further increased SLP effects. Also, importantly, patient-derived BDCA1+ mDC cross-presented and activated autologous T-cell responses ex vivo. Conclusions As a proof of concept, we showed a prototype HBc-SLP can boost T-cell responses in patients ex vivo. These results pave the way for the development of a therapeutic SLP-based vaccine to induce effective HBV-specific adaptive immune responses in CHB patients. PMID:29220492
CD21 -/low B cells: A Snapshot of a Unique B Cell Subset in Health and Disease.
Thorarinsdottir, K; Camponeschi, A; Gjertsson, I; Mårtensson, I-L
2015-09-01
B cells represent one of the cellular components of the immune system that protects the individual from invading pathogens. In response to the invader, these cells differentiate into plasma cells and produce large amounts of antibodies that bind to and eliminate the pathogen. A hallmark of autoimmune diseases is the production of autoantibodies i.e. antibodies that recognize self. Those that are considered pathogenic can damage tissues and organs, either by direct binding or when deposited as immune complexes. For decades, B cells have been considered to play a major role in autoimmune diseases by antibody production. However, as pathogenic autoantibodies appear to derive mainly from T cell dependent responses, T cells have been the focus for many years. The successful treatment of patients with autoimmune diseases with either B cell depletion therapy (rituximab) or inhibition of B cell survival (belimumab), suggested that not only the autoantibodies but also other B cell features are important. This has caused a surge of interest in B cells and their biology resulting in the identification of various subsets e.g. regulatory B cells, several memory B cell subsets etc. Also, in other conditions such as chronic viral infections and primary immunodeficiency, several B cell subsets with unique characteristics have been identified. In this review, we will discuss one of these subsets, a subset that is expanded in conditions characterized by chronic immune stimulation. This B cell subset lacks, or expresses low, surface levels of the complement receptor 2 (CD21) and has therefore been termed CD21(-/low) B cells. © 2015 The Foundation for the Scandinavian Journal of Immunology.
Brown, Frankie F; Campbell, John P; Wadley, Alex J; Fisher, James P; Aldred, Sarah; Turner, James E
2018-05-31
Dendritic cells (DCs) are important sentinel cells of the immune system responsible for presenting antigen to T cells. Exercise is known to cause an acute and transient increase in the frequency of DCs in the bloodstream in humans, yet there are contradictory findings in the literature regarding the phenotypic composition of DCs mobilised during exercise, which may have implications for immune regulation and health. Accordingly, we sought to investigate the composition of DC sub-populations mobilised in response to acute aerobic exercise. Nine healthy males (age, 21.9 ± 3.6 years; height, 177.8 ± 5.4 cm; body mass, 78.9 ± 10.8 kg; body mass index, 24.9 ± 3.3 kg·m 2 ; V̇O 2 MAX , 41.5 ± 5.1 mL·kg·min -1 ) cycled for 20 min at 80% V̇O 2 MAX . Blood was sampled at baseline, during the final minute of exercise and 30 min later. Using flow cytometry, total DCs were defined as Lineage- (CD3, CD19, CD20, CD14, CD56) HLA-DR+ and subsequently identified as plasmacytoid DCs (CD303+) and myeloid DCs (CD303-). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four sub-populations; CD1c-CD141+; CD1c+CD141+; CD1c+CD141- and CD1c-CD141-. Expression of CD205 was also analysed on all DC sub-populations to identify DCs capable of recognising apoptotic and necrotic cells. Total DCs increased by 150% during exercise (F (1,10) = 60; p < 0.05, η 2 = 0.9). Plasmacytoid DCs mobilised to a greater magnitude than myeloid DCs (195 ± 131% vs. 131 ± 100%; p < 0.05). Among myeloid DCs, CD1c-CD141- cells showed the largest exercise-induced mobilisation (167 ± 122%), with a stepwise pattern observed among the remaining sub-populations: CD1c+CD141- (79 ± 50%), followed by CD1c+CD141+ (44 ± 41%), with the smallest response shown by CD1c-CD141+ cells (23 ± 54%) (p < 0.05). Among myeloid DCs, CD205- cells were the most exercise responsive. All DC subsets returned to resting levels within 30 min of exercise cessation. These results show that there is a preferential mobilisation of plasmacytoid DCs during exercise. Given the functional repertoire of plasmacytoid DCs, which includes the production of interferons against viral and bacterial pathogens, these findings indicate that exercise may augment immune-surveillance by preferentially mobilising effector cells; these findings have general implications for the promotion of exercise for health, and specifically for the optimisation of DC harvest for cancer immunotherapy. Copyright © 2018 Elsevier Inc. All rights reserved.
Update on the pathogenesis of Scleroderma: focus on circulating progenitor cells
Brunasso, Alexandra Maria Giovanna; Massone, Cesare
2016-01-01
In systemic sclerosis (SSc), the development of fibrosis seems to be a consequence of the initial ischemic process related to an endothelial injury. The initial trigger event in SSc is still unknown, but circulating progenitor cells (CPCs) might play a key role. Such cells have the ability to traffic into injury sites, exhibiting inflammatory features of macrophages, tissue remodeling properties of fibroblasts, and vasculogenesis functions of endothelial cells. The different subsets of CPCs described thus far in SSc arise from a pool of circulating monocyte precursors (CD14 + cells) and probably correspond to a different degree of differentiation of a single cell of origin. Several subsets of CPCs have been described in patients with SSc, all have a monocytic origin but may or may not express CD14, and all of these cells have the ability to give origin to endothelial cells, or collagen (Col)-producing cells, or both. We were able to identify six subsets of CPCs: pluripotent stem cells (CD14 +, CD45 +, and CD34 +), monocyte-derived multipotential cells (MOMCs) or monocyte-derived mesenchymal progenitors (CD14 +, CD45 +, CD34 +, Col I +, CD11b +, CD68 +, CD105 +, and VEGFR1 +), early endothelial progenitor cells (EPCs) or monocytic pro-angiogenic hematopoietic cells or circulating hematopoietic cells (CD14 +, CD45 +, CD34 low/−, VEGFR2 +/−, CXCR4 +, c-kit +, and DC117 +), late EPCs (CD14 −, CD133 +, VEGFR2 +, CD144 + [VE-cadherin +], and CD146 +), fibroblast-like cells (FLCs)/circulating Col-producing monocytes (CD14 +, CD45 +, CD34 +/−, and Col I +), and fibrocytes (CD14 −, CD45 +, CD34 +, Col I +, and CXCR4 +). It has been demonstrated that circulating CD14 + monocytes with an activated phenotype are increased in patients with SSc when compared with normal subjects. CD14 +, CD34 +, and Col I + spindle-shaped cells have been found in increased numbers in lungs of SSc patients with interstitial lung disease. Elevated blood amounts of early EPCs have been found in patients with SSc by different groups of researchers and such levels correlate directly with the interstitial lung involvement. The prevalence of hematopoietic markers expressed by CPCs that migrate from blood into injury sites in SSc differs and changes according to the degree of differentiation. CXCR4 is the most commonly expressed marker, followed by CD34 and CD45 at an end stage of differentiation. Such difference also indicates a continuous process of cell differentiation that might relate to the SSc clinical phenotype (degree of fibrosis and vascular involvement). A deeper understanding of the role of each subtype of CPCs in the development of the disease will help us to better classify patients in order to offer them targeted approaches in the future. PMID:27158466
Morton, Charles Oliver; Fliesser, Mirjam; Dittrich, Marcus; Mueller, Tobias; Bauer, Ruth; Kneitz, Susanne; Hope, William; Rogers, Thomas Richard; Einsele, Hermann; Loeffler, Juergen
2014-01-01
The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA. PMID:24870357
Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells
Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee
2014-01-01
Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587
Li, Rong; Zhang, Yujuan; Zheng, Xiufen; Peng, Shanshan; Yuan, Keng; Zhang, Xusheng; Min, Weiping
2017-01-01
Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC. PMID:28230210
Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence
2017-01-01
Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus.
Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence
2017-01-01
Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus. PMID:28348557
Súkeníková, Lenka; Černý, Viktor; Novotná, Olga; Petrásková, Petra; Boráková, Kristýna; Kolářová, Libuše; Prokešová, Ludmila; Hrdý, Jiří
2017-09-01
Allergic diseases belong to one of the most common diseases with steadily increasing incidence even among young children. There is an urgent need to identify a prognostic marker pointing to increased risk of allergy development enabling early preventive measures introduction. It has been shown that administration of selected probiotic strains or mixtures could prevent allergy development. In our study, we have tested the capacity of probiotic strain Escherichia coli O83:K24:H31 (E. coli O83) to promote dendritic cell (DC) maturation and polarisation of immune responses. Increased presence of activation marker CD83 was observed on DC stimulated by E. coli O83 and DC of newborns of allergic mothers have significantly more increased cell surface presence of CD83 in comparison to children of healthy mothers. Increased gene expression and secretion of IL-10 was detected in DC stimulated with E. coli O83 being higher in DC of newborns of healthy mothers in comparison to allergic ones. Generally, increased presence of intracellular cytokines (IL-4, IL-13, IFN-gamma, IL-17A, IL-22, IL-10) was detected in CD4+ T cells cocultured with DC of children of allergic mothers in comparison to healthy ones. E. coli O83 primed DC significantly increased IL-10 and IL-17A in CD4 T cells of newborns of healthy mothers in comparison to the levels detected in CD4 T cells cocultured with control non-stimulated DC. We can conclude E. coli O83 induces dendritic cell maturation and IL-10 production in DC. Newborns of allergic mothers have generally increased reactivity of both DC and CD4 T cells which together with decreased capacity of DC of newborns of allergic mothers to produce IL-10 could support inappropriate immune responses development after allergen encounter. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Tailored immune responses: novel effector helper T cell subsets in protective immunity.
Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R
2014-02-01
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Tsutsui, Shigeyuki; Yoshino, Yuko; Matsui, Saho; Nakamura, Osamu; Muramoto, Koji; Watanabe, Tasuku
2008-03-01
By using EDTA and a trypsin solution, we established a method for isolating the epidermal cells of the conger eel, Conger myriaster. We then identified TNF decoy receptor (DcR) cDNA in the species from a suppression subtractive hybridization library prepared from the epidermal cells stimulated with LPS. The full-length cDNA of conger TNF DcR (conDcR) consisted of 1479 base pairs, and the protein comprised 286 amino acid residues. Phylogenetic analysis indicated that conDcR was clustered into a DcR3 branch. ConDcR is likely to act as an important immune-regulating factor in inhibiting the apoptosis-inducing effect of TNF in the skin of conger eel.
Steeghs, Liana; van Vliet, Sandra J; Uronen-Hansson, Heli; van Mourik, Andries; Engering, Anneke; Sanchez-Hernandez, Martha; Klein, Nigel; Callard, Robin; van Putten, Jos P M; van der Ley, Peter; van Kooyk, Yvette; van de Winkel, Jan G J
2006-02-01
Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.
Harizi, H; Juzan, M; Grosset, C; Rashedi, M; Gualde, N
2001-04-10
Given that preliminary work has indicated that prostaglandins can play a role in modulating dendritic cell (DC) functions, we addressed the prostaglandin E(2) (PGE(2)) biosynthetic capacity of mouse DC produced in vitro from bone marrow cells. We observed production of significant amounts of PGE(2), which was reduced by at least 80% when cells were incubated in the presence of indomethacin, a COX-1 preferential inhibitor. Indeed, when tested by Western blot analysis with specific COX-1 and COX-2 antibodies, only COX-1 expression could be detected in the bone marrow (BM)-DC. For lipopolysaccharide (LPS)-treated BM-DC, inhibition of PGE(2) production by indomethacin or by NS-398 (a COX-2-selective inhibitor) used alone was less potent. After LPS treatment of BM-DC, COX-1 and COX-2 expression was potent, and inhibition of PGE(2) synthesis needed the presence of both indomethacin and NS-398. We also observed that exogenous PGE(2) diminished the expression of MHC class II molecules by BM-DC and that prostaglandin and indomethacin had antagonistic effects on cell proliferation during the mixed lymphocyte reaction using BM-DC as stimulatory cells. This assessment of PGE(2) suggests that endogenous PGE(2) produced by DC might play a role as an immunomodulating factor during the immune response. This hypothesis is sustained by the fact that IL-12 production by BM-DC is modulated by exogenous PGE(2) as well as endogenous prostaglandin, since either the addition of exogenous PGE(2) or the presence of LPS (which increases endogenous PGE(2) synthesis) decreases IL-12 production, while NS-398 (which decreases LPS-induced PGE(2) synthesis) increases IL-12 synthesis. Copyright 2001 Academic Press.
O'Leary, L; van der Sloot, A M; Reis, C R; Deegan, S; Ryan, A E; Dhami, S P S; Murillo, L S; Cool, R H; Correa de Sampaio, P; Thompson, K; Murphy, G; Quax, W J; Serrano, L; Samali, A; Szegezdi, E
2016-03-10
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand cytokine known for its cytotoxic activity against malignantly transformed cells. TRAIL induces cell death through binding to death receptors DR4 and DR5. The inhibitory decoy receptors (DcR1 and DcR2) co-expressed with death receptor 4 (DR4)/DR5 on the same cell can block the transmission of the apoptotic signal. Here, we show that DcRs also regulate TRAIL sensitivity at a supracellular level and thus represent a mechanism by which the microenvironment can diminish tumour TRAIL sensitivity. Mathematical modelling and layered or spheroid stroma-extracellular matrix-tumour cultures were used to model the tumour microenvironment. By engineering TRAIL to escape binding by DcRs, we found that DcRs do not only act in a cell-autonomous or cis-regulatory manner, but also exert trans-cellular regulation originating from stromal cells and affect tumour cells, highlighting the potent inhibitory effect of DcRs in the tumour tissue and the necessity of selective targeting of the two death-inducing TRAIL receptors to maximise efficacy.
Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.
Yamaguchi, Y
1998-01-01
Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.
Rapid, directed transport of DC-SIGN clusters in the plasma membrane
Liu, Ping; Weinreb, Violetta; Ridilla, Marc; Betts, Laurie; Patel, Pratik; de Silva, Aravinda M.; Thompson, Nancy L.; Jacobson, Ken
2017-01-01
C-type lectins, including dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN), are all-purpose pathogen receptors that exist in nanoclusters in plasma membranes of dendritic cells. A small fraction of these clusters, obvious from the videos, can undergo rapid, directed transport in the plane of the plasma membrane at average speeds of more than 1 μm/s in both dendritic cells and MX DC-SIGN murine fibroblasts ectopically expressing DC-SIGN. Surprisingly, instantaneous speeds can be considerably greater. In MX DC-SIGN cells, many cluster trajectories are colinear with microtubules that reside close to the ventral membrane, and the microtubule-depolymerizing drug, nocodazole, markedly reduced the areal density of directed movement trajectories, suggesting a microtubule motor–driven transport mechanism; by contrast, latrunculin A, which affects the actin network, did not depress this movement. Rapid, retrograde movement of DC-SIGN may be an efficient mechanism for bringing bound pathogen on the leading edge and projections of dendritic cells to the perinuclear region for internalization and processing. Dengue virus bound to DC-SIGN on dendritic projections was rapidly transported toward the cell center. The existence of this movement within the plasma membrane points to an unexpected lateral transport mechanism in mammalian cells and challenges our current concepts of cortex-membrane interactions. PMID:29134199
Coulon, V; Ravaud, A; Gaston, R; Delaunay, M; Pariente, J L; Verdier, D; Scrivante, V; Gualde, N
2000-12-01
Presentation of cell-associated antigen to T cells is a critical event in the initiation of an anti-tumor immune response but it appears to often be deficient or limiting. Here we report an experimental system for stimulation of human T lymphocytes using autologous antigen presenting cells (APCs) and autologous tumor cells. Two types of APCs were prepared from human bone marrow: MC and DC. MC were produced by using GM-CSF and SCF. DC were obtained with the same cytokines plus IL-4. DC and MC were generated in parallel from the same patients and their phenotypes and capacities to prime T lymphocytes were analyzed and compared. MC were CD14+, CD1a-, CD33+ and HLA-DR+. Two populations of DC were defined: immature DC were uniformly CD1a-; mature DC expressed CD1a, CD80, CD86, HLA-DR, CD54 and CD58 but lacked surface CD14. Stimulation of autologous T lymphocytes was studied by measuring their proliferation and cytotoxic function. In more than 80% of our experiments the proliferation of autologous T lymphocytes cocultured with APC pulsed or not with tumor cell lysates was higher than that of T cells cultured alone. DC were more effective than MC in stimulating proliferation of lymphocytes. The capacity of a patient's autologous bone marrow-derived APC to stimulate T cells when exposed to autologous tumor cell lysates suggest that such antigen-exposed APC may be useful in specific anti-tumor immunotherapy protocols. Copyright 2000 Wiley-Liss, Inc.
Zhou, Xiao-Na; Li, Guang-Ming; Xu, Ying-Chen; Zhao, Tuan-Jie; Wu, Ji-Xiang
2016-11-05
Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis. The receptor is overexpressed in hepatocellular carcinoma (HCC), and it is associated with the growth and metastatic spread of tumors. DcR3 holds promises as a new target for the treatment of HCC, but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3. The present work, therefore, examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2. HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3. After the knockdown of DcR3 was confirmed, cell proliferation, clone formation, ability of migrating across transwell membrane, and wound healing were assessed in vitro. Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied. Comparisons between multiple groups were done using one-way analysis of variance (ANOVA), while pairwise comparisons were performed using Student's t test. P< 0.05 was regarded statistically significant. DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2. Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05). The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05). In addition, the messenger RNA levels of MMP 9, VEGF-C, and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05). Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2. Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC.
Zhou, Xiao-Na; Li, Guang-Ming; Xu, Ying-Chen; Zhao, Tuan-Jie; Wu, Ji-Xiang
2016-01-01
Background: Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis. The receptor is overexpressed in hepatocellular carcinoma (HCC), and it is associated with the growth and metastatic spread of tumors. DcR3 holds promises as a new target for the treatment of HCC, but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3. The present work, therefore, examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2. Methods: HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3. After the knockdown of DcR3 was confirmed, cell proliferation, clone formation, ability of migrating across transwell membrane, and wound healing were assessed in vitro. Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied. Comparisons between multiple groups were done using one-way analysis of variance (ANOVA), while pairwise comparisons were performed using Student's t test. P < 0.05 was regarded statistically significant. Results: DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2. Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05). The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05). In addition, the messenger RNA levels of MMP 9, VEGF-C, and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05). Conclusions: Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2. Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC. PMID:27779171
Schuler, Patrick J; Schilling, Bastian; Harasymczuk, Malgorzata; Hoffmann, Thomas K; Johnson, Jonas; Lang, Stephan; Whiteside, Theresa L
2012-07-01
Human CD4(+) CD39(+) regulatory T (Treg) cells hydrolyze exogenous adenosine triphosphate (ATP) and participate in immunosuppressive adenosine production. They contain two T-cell subsets whose role in mediating suppression is not understood. Frequencies of both CD4(+) CD39(+) subsets were evaluated in peripheral blood lymphocytes of 57 cancer patients and in tumor infiltrating lymphocytes (TILs) of 6 patients. CD4(+) CD39(+) and CD4(+) CD39(neg) T cells isolated using immunobeads and cell sorting were cultured under various conditions. Their conversion into CD39(+) FOXP3(+) CD25(+) or CD39(+) FOX(neg) CD25(neg) cells was monitored by multiparameter flow cytometry. Hydrolysis of exogenous ATP was measured in luminescence assays. Two CD4(+) CD39(+) cell subsets differing in expression of CD25, FOXP3, CTLA-4, CD121a, PD-1, latency associated peptide (LAP), glycoprotein A repetitions predominant (GARP), and the cytokine profile accumulated with equal frequencies in the blood and tumor tissues of cancer patients. The frequency of both subsets was significantly increased in cancer. CD39 expression levels correlated with the subsets' ability to hydrolyze ATP. Conventional CD4(+) CD39(neg) T cells incubated with IL-2 + TGF-β expanded to generate CD4(+) CD39(+) FOXP3(+) Treg cells, while CD4(+) CD39(+) FOXP3(neg) CD25(neg) subset cells stimulated via the TCR and IL-2 converted to FOXP3(+) CTLA4(+) CD25(+) TGF-β-expressing Treg cells. Among CD4(+) CD39(+) Treg cells, the CD4(+) CD39(+) FOXP3(neg) CD25(neg) subset serves as a reservoir of cells able to convert to Treg cells upon activation by environmental signals. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway
Jin, Changzhong; Li, Jie; Cheng, Linfang; Liu, Fumin; Wu, Nanping
2016-01-01
The reactivation mechanism of latent human immunodeficiency virus type 1 (HIV-1) infection is unclear, especially in dendritic cells (DC). DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds with HIV-1 and other pathogens to activate the extracellular regulated protein kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways and regulate cytokine expression. We hypothesized that DC-SIGN-induced signaling pathways may activate HIV-1 provirus. To investigate this hypothesis, we generated a model by transfecting 293T cells with a DC-SIGN expression plasmid and an HIV-1 5′ long terminal repeat (LTR) reporter plasmid, and then stimulated the 293T cells with HIV-1 gp120 protein, wild-type HIV-1 or VSV-G-pNL4.3 pseudotype virus (without gp120 protein). It was found that the HIV-1 5′LTR was reactivated by HIV-1 gp120 in DC-SIGN-expressing 293T cells. Then the HIV-1 chronically infected CEM-Bru cells were transfected with DC-SIGN expression plasmid and stimulated by HIV-1 gp120 protein. It was found that early and late HIV-1 provirus replication was reactivated by the HIV-1 gp120/DC-SIGN stimulation. We then investigated the involvement of the ERK, p38 mitogen-activated protein kinases and NF-κB signaling pathways in HIV-1 gp120/DC-SIGN-induced activation of HIV-1 provirus by inhibiting the pathways specifically. Our results indicated that HIV-1 gp120/DC-SIGN stimulation reactivates latent HIV-1 provirus via the NF-κB signal pathway. PMID:26837416
Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.
2017-01-01
Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754
Smith, Nikaïa; Vidalain, Pierre-Olivier; Nisole, Sébastien; Herbeuval, Jean-Philippe
2016-01-01
Plasmacytoid dendritic cells (pDC) are specialized immune cells that produce massive levels of type I interferon in response to pathogens. Unfortunately, pDC are fragile and extremely rare, rendering their functional study a tough challenge. However, because of their central role in numerous pathologies, there is a considerable need for an efficient and reproducible protocol for gene silencing in these cells. In this report, we tested six different methods for siRNA delivery into primary human pDC including viral-based, lipid-based, electroporation, and poly-ethylenimine (PEI) technologies. We show that lipid-based reagent DOTAP was extremely efficient for siRNA delivery into pDC, and did not induce cell death or pDC activation. We successfully silenced Toll-Like Receptor 7 (TLR7), CXCR4 and IFN regulatory factor 7 (IRF-7) gene expression in pDC as assessed by RT-qPCR or cytometry. Finally, we showed that TLR7 or IRF-7 silencing in pDC specifically suppressed IFN-α production upon stimulation, providing a functional validation of our transfection protocol. PMID:27412723
Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A
2015-12-01
Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.
Matta, Benjamin M.; Raimondi, Giorgio; Rosborough, Brian R.; Sumpter, Tina L.; Thomson, Angus W.
2012-01-01
Plasmacytoid (p) dendritic cells (DC) are highly-specialized APC that, in addition to their well-recognized role in anti-viral immunity, also regulate immune responses. Liver-resident pDC are considerably less immunostimulatory than those from secondary lymphoid tissues and are equipped to promote immune tolerance/regulation through various mechanisms. IL-27 is an IL-12-family cytokine that regulates the function of both APC and T cells, although little is known about its role in pDC immunobiology. In this study, we show that mouse liver pDC express higher levels of IL-27p28 and EBV-induced protein (Ebi)3 compared to splenic pDC. Both populations of pDC express the IL-27Rα/WSX-1; however, only liver pDC significantly upregulate expression of the co-regulatory molecule B7 homolog-1 (B7-H1) in response to IL-27. Inhibition of STAT3 activation completely abrogates IL-27-induced upregulation of B7-H1 expression on liver pDC. Liver pDC treated with IL-27 increase the percentage of CD4+Foxp3+ T cells in MLR, which is dependent upon expression of B7-H1. pDC from Ebi3-deficient mice lacking functional IL-27, show increased capacity to stimulate allogeneic T cell proliferation and IFN-γ production in MLR. Liver but not spleen pDC suppress delayed-type hypersensitivity responses to OVA, an effect that is lost with Ebi3−/− and B7-H1−/− liver pDC compared to wild-type (WT) liver pDC. These data suggest that IL-27 signaling in pDC promotes their immunoregulatory function and that IL-27 produced by pDC contributes to their capacity to regulate immuneresponses in vitro and in vivo. PMID:22508931
NASA Astrophysics Data System (ADS)
Luo, Meijie; Zhang, Zhihong
2014-03-01
Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.
Tian, Shenghe; Liu, Zuqiang; Donahue, Cara; Falo, Louis D; You, Zhaoyang
2012-02-01
In vivo dendritic cells (DC) targeting is an attractive approach with potential advantages in vaccine efficacy, cost, and availability. Identification of molecular adjuvants to in vivo "modulate " DC to coordinately render improved Th1 and CD8 T cell immunity, and attenuated deleterious Treg effects, is a critical challenge. Here, we report that in vivo genetic targeting of the active transcription factor XBP1s to DC (XBP1s/DC) potentiated vaccine-induced prophylactic and therapeutic antitumor immunity in multiple tumor models. This immunization strategy is based on a genetic vaccine encoding both cytomegalovirus (CMV)-driven vaccine Aghsp70 and DC-specific CD11c-driven XBP1s. The novel targeted vaccine induced durable Th1 and CD8 T cell responses to poorly immunogenic self/tumor antigen (Ag) and attenuated tumor-associated Treg suppressive function. Bone marrow (BM)-derived DC genetically modified to simultaneously overexpress XBP1s and express Aghsp70 upregulated CD40, CD70, CD86, interleukin (IL)-15, IL-15Rα, and CCR7 expression, and increased IL-6, IL-12, and tumor necrosis factor (TNF)-α production in vitro. XBP1s/DC elevated functional DEC205(+)CD8α(+)DC in the draining lymph nodes (DLN). The data suggest a novel role for XBP1s in modulating DC to potentiate tumor vaccine efficacy via overcoming two major obstacles to tumor vaccines (i.e., T cell hyporesponsiveness against poorly immunologic self/tumor Ag and tumor-associated Treg-mediated suppression) and improving DEC205(+)CD8α(+)DC.
Cisco, Robin M; Abdel-Wahab, Zeinab; Dannull, Jens; Nair, Smita; Tyler, Douglas S; Gilboa, Eli; Vieweg, Johannes; Daaka, Yehia; Pruitt, Scott K
2004-06-01
Maturation of dendritic cells (DC) is critical for the induction of Ag-specific immunity. Ag-loaded DC matured with LPS, which mediates its effects by binding to Toll-like receptor 4 (TLR4), induce Ag-specific CTL in vitro and in vivo in animal models. However, clinical use of LPS is limited due to potential toxicity. Therefore, we sought to mimic the maturation-inducing effects of LPS on DC by stimulating TLR4-mediated signaling in the absence of exogenous LPS. We developed a constitutively active TLR4 (caTLR4) and demonstrated that transfection of human DC with RNA encoding caTLR4 led to IL-12 and TNF-alpha secretion. Transfection with caTLR4 RNA also induced a mature DC phenotype. Functionally, transfection of DC with caTLR4 RNA enhanced allostimulation of CD4(+) T cells. DC transfected with RNA encoding the MART (Melan-A/MART-1) melanoma Ag were then used to stimulate T cells in vitro. Cotransfection of these DC with caTLR4 RNA enhanced the generation of MART-specific CTL. This CTL activity was superior to that seen when DC maturation was induced using either LPS or a standard mixture of cytokines (TNF-alpha, IL-6, IL-1beta, and PGE(2)). We conclude that transfection of DC with RNA encoding a functional signaling protein, such as caTLR4, may provide a new tool for studying TLR signaling in DC and may be a promising approach for the induction of DC maturation for tumor immunotherapy.
Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K
1997-01-01
Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.
Role of Dendritic Cells in Immune Dysfunction
NASA Technical Reports Server (NTRS)
Savary, Cherylyn A.
1997-01-01
Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.
Torres-Aguilar, Honorio; Blank, Miri; Kivity, Shaye; Misgav, Mudi; Luboshitz, Jacob; Pierangeli, Silvia S; Shoenfeld, Yehuda
2012-01-01
The importance of β(2)-glycoprotein I (β(2)GPI)-specific CD4(+) T cells in the development of pathogenic processes in patients with antiphospholipid syndrome (APS) and APS mouse models is well established. Therefore, our objective is to manipulate the β2GPI specific CD4(+) T cells using tolerogenic dendritic cells (tDCs) to induce tolerance. We aim to evaluate the capability of tDCs to induce antigen-specific tolerance in effector/memory T cells from patients with APS and to elucidate the involved mechanism. DCs and tDCs were produced from patients with APS peripheral-blood-monocytes, using specific cytokines. β(2)GPI-specific tolerance induction was investigated by coculturing control DC (cDC) or tDC, β(2)GPI-loaded, with autologous effector/memory T cells, evaluating the proliferative response, phenotype, cytokines secretion, viability and regulatory T cells. Human monocyte-derived DCs treated with interleukin (IL)-10 and transforming growth factor β-1 (10/TGF-DC) induced β(2)GPI-specific-unresponsiveness in effector/memory CD4(+) T cells (46.5% ± 26.0 less proliferation) in 16 of 20 analysed patients with APS, without affecting the proliferative response to an unrelated candidin. In five analysed patients, 10/TGF-DC-stimulated T cells acquired an IL-2(low)interferon γ(low)IL-10(high) cytokine profile, with just a propensity to express higher numbers of Foxp3(+)CTLA-4(+) cells, but with an evident suppressive ability. In four of 10 analysed patients, 10/TGF-DC-stimulated T cell hyporesponsiveness could not be reverted and showed higher percentages of late apoptosis, p<0.02. The inherent tolerance induction resistance of activated T cells present during the development of autoimmune diseases has delayed the application of tDC as an alternative therapy. This study highlights the 10/TGF-DC feasibility to induce antigen-specific unresponsiveness in autoreactive T cells generated in patients with APS by inducing apoptosis or T cells with regulatory abilities.
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Cubbage, M. L.; Sams, C. F.
2000-01-01
In this study, flow cytometry was used to positively identify the specific lymphocyte subsets exhibiting space flight-induced alterations in cytokine production. Whole blood samples were collected from 27 astronauts at three points (one preflight, two postflight) surrounding four space shuttle missions. Assays performed included serum/urine stress hormones, white blood cell (WBC) phenotyping, and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following space flight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated a decreased percentage of T cells, whereas percentages of B cells and natural killer (NK) cells remained unchanged after flight. Nearly all the astronauts exhibited an increased CD4/CD8 T cell ratio. Assessment of naive (CD45RA+) vs. memory (CD45RO+) CD4+ T cell subsets was ambiguous, and subjects tended to group within specific missions. Although no significant trend was seen in absolute monocyte levels, a significant decrease in the percentage of the CD14+ CD16+ monocytes was seen following space flight in all subjects tested. T cell (CD3+) production of interleukin-2 (IL-2) was significantly decreased after space flight, as was IL-2 production by both CD4+ and CD8+ T cell subsets. Production of interferon-gamma (IFN-gamma) was not altered by space flight for the CD8+ cell subset, but there was a significant decrease in IFN-gamma production for the CD4+ T cell subset. Serum and urine stress hormone analysis indicated significant physiologic stresses in astronauts following space flight. Altered peripheral leukocyte subsets, altered serum and urine stress hormone levels, and altered T cell cytokine secretion profiles were all observed postflight. In addition, there appeared to be differential susceptibility to space flight regarding cytokine secretion by T cell subsets. These alterations may be the result of either microgravity exposure or the physiologic stresses of landing and readaptation to unit gravity. Future studies, including in-flight analysis or sampling, will be necessary to determine the cause of these alterations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P., E-mail: ciavarrp@evms.ed
2009-04-25
Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{supmore » +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.« less
The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.
Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad
2009-06-01
Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.
Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors.
Chen, Chang-Long; Pan, Qiu-Zhong; Weng, De-Sheng; Xie, Chuan-Miao; Zhao, Jing-Jing; Chen, Min-Shan; Peng, Rui-Qing; Li, Dan-Dan; Wang, Ying; Tang, Yan; Wang, Qi-Jing; Zhang, Zhi-Ling; Zhang, Xiao-Fei; Jiang, Li-Juan; Zhou, Zi-Qi; Zhu, Qian; He, Jia; Liu, Yuan; Zhou, Fang-Jian; Xia, Jian-Chuan
2018-01-01
Cytokine-induced killer (CIK) cells that are stimulated using mature dendritic cells (DCs), referred to as (DC-CIK cells) exhibit superior anti-tumor potency. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. This phase I study aimed to assess the safety and clinical activity of immunotherapy with PD-1 blockade (pembrolizumab)-activated autologous DC-CIK cells in patients with advanced solid tumors. Patients with selected types of advanced solid tumors received a single intravenous infusion of activated autologous DC-CIK cells weekly for the first month and every 2 weeks thereafter. The primary end points were safety and adverse event (AE) profiles. Antitumor responses, overall survival (OS), progression-free survival (PFS) and cytolytic activity were secondary end points. Treatment-related AEs occurred in 20/31 patients. Grade 3 or 4 toxicities, including fever and chills, were observed in two patients. All treatment-related AEs were reversible or controllable. The cytotoxicity of DC-CIK cells induced up-regulation of PD-L1 expression on autologous tumor cells. When activated using pembrolizumab ex vivo , DC-CIK cells exerted superior antitumor properties and elevated IFN-γ secretion. Objective responses (complete or partial responses) were observed in 7 of the 31patients.These responses were durable, with 6 of 7 responses lasting more than 5 months. The overall disease control rate in the patients was 64.5%. At the time of this report, the median OS and PFS were 270 and 162 days, respectively. In conclusions, treatment with pembrolizumab-activated autologous DC-CIK cells was safe and exerted encouraging antitumor activity in advanced solid tumors. A larger phase II trial is warranted.
Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard
2015-01-01
T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.
Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella
2015-01-01
Introduction During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). Materials and Methods To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Results Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. Conclusions In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI. PMID:26474181
Pogliaghi, Manuela; Ripa, Marco; Pensieroso, Simone; Tolazzi, Monica; Chiappetta, Stefania; Nozza, Silvia; Lazzarin, Adriano; Tambussi, Giuseppe; Scarlatti, Gabriella
2015-01-01
During HIV-1 infection the B-cell compartment undergoes profound changes towards terminal differentiation, which are only partially restored by antiretroviral therapy (cART). To investigate the impact of infection as early as during primary HIV-1 infection (PHI) we assessed distribution of B-cell subsets in 19 PHI and 25 chronic HIV-1-infected (CHI) individuals before and during 48 weeks of cART as compared to healthy controls (n = 23). We also analysed Immunoglobulin-expression of memory B-cell subsets to identify alterations in Immunoglobulin-maturation. Determination of B-cell subsets at baseline showed that total and Naive B-cells were decreased whereas Activated Memory (AM), Tissue-like Memory (TLM) B-cells and Plasma cells were increased in both PHI and CHI patients. After 4 weeks of cART total B-cells increased, while AM, TLM B-cells and Plasma cells decreased, although without reaching normal levels in either group of individuals. This trend was maintained until week 48, though only total B-cells normalized in both PHI and CHI. Resting Memory (RM) B-cells were preserved since baseline. This subset remained stable in CHI, while was expanded by an early initiation of cART during PHI. Untreated CHI patients showed IgM-overexpression at the expenses of switched (IgM-IgD-) phenotypes of the memory subsets. Interestingly, in PHI patients a significant alteration of Immunoglobulin-expression was evident at BL in TLM cells, and after 4 weeks, despite treatment, in AM and RM subsets. After 48 weeks of therapy, Immunoglobulin-expression of AM and RM almost normalized, but remained perturbed in TLM cells in both groups. In conclusion, aberrant activated and exhausted B-cell phenotypes rose already during PHI, while most of the alterations in Ig-expression seen in CHI appeared later, despite 4 weeks of effective cART. After 48 weeks of cART B-cell subsets distribution improved although without full normalization, while Immunoglobulin-expression normalized among AM and RM, remaining perturbed in TLM B-cells of PHI and CHI.
Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells
Reihl, Alec M.
2016-01-01
Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations. PMID:27034965
Mycobacterium avium subspecies impair dendritic cell maturation.
Basler, Tina; Brumshagen, Christina; Beineke, Andreas; Goethe, Ralph; Bäumer, Wolfgang
2013-10-01
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease, a chronic, granulomatous enteritis of ruminants. Dendritic cells (DC) of the gut are ideally placed to combat invading mycobacteria; however, little is known about their interaction with MAP. Here, we investigated the interaction of MAP and the closely related M. avium ssp. avium (MAA) with murine DC and the effect of infected macrophages on DC maturation. The infection of DC with MAP or MAA induced DC maturation, which differed to that of LPS as maturation was accompanied by higher production of IL-10 and lower production of IL-12. Treatment of maturing DC with supernatants from mycobacteria-infected macrophages resulted in impaired DC maturation, leading to a semi-mature, tolerogenic DC phenotype expressing low levels of MHCII, CD86 and TNF-α after LPS stimulation. Though the cells were not completely differentiated they responded with an increased IL-10 and a decreased IL-12 production. Using recombinant cytokines we provide evidence that the semi-mature DC phenotype results from a combination of secreted cytokines and released antigenic mycobacterial components of the infected macrophage. Our results indicate that MAP and MAA are able to subvert DC function directly by infecting and indirectly via the milieu created by infected macrophages.
Pustylnikov, Sergey; Dave, Rajnish S; Khan, Zafar K; Porkolab, Vanessa; Rashad, Adel A; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin; Jain, Pooja
2016-01-01
The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus-cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor.
Pustylnikov, Sergey; Dave, Rajnish S.; Khan, Zafar K.; Porkolab, Vanessa; Rashad, Adel A.; Hutchinson, Matthew; Fieschi, Frank; Chaiken, Irwin
2016-01-01
Abstract The DC-SIGN receptor on human dendritic cells interacts with HIV gp120 to promote both infection of antigen-presenting cells and transinfection of T cells. We hypothesized that in DC-SIGN-expressing cells, both DC-SIGN ligands such as dextrans and gp120 antagonists such as peptide triazoles would inhibit HIV infection with potential complementary antagonist effects. To test this hypothesis, we evaluated the effects of dextran (D66), isomaltooligosaccharides (D06), and several peptide triazoles (HNG156, K13, and UM15) on HIV infection of B-THP-1/DC-SIGN cells. In surface plasmon resonance competition assays, D66 (IC50 = 35.4 μM) and D06 (IC50 = 3.4 mM) prevented binding of soluble DC-SIGN to immobilized mannosylated bovine serum albumin (BSA). An efficacious dose-dependent inhibition of DC-SIGN-mediated HIV infection in both pretreatment and posttreatment settings was observed, as indicated by inhibitory potentials (EC50) [D66 (8 μM), D06 (48 mM), HNG156 (40 μM), UM15 (100 nM), and K13 (25 nM)]. Importantly, both dextrans and peptide triazoles significantly decreased HIV gag RNA levels [D66 (7-fold), D06 (13-fold), HNG156 (7-fold), K-13 (3-fold), and UM15 (6-fold)]. Interestingly, D06 at the highest effective concentration showed a 14-fold decrease of infection, while its combination with 50 μM HNG156 showed a 26-fold decrease. Hence, these compounds can combine to inactivate the viruses and suppress DC-SIGN-mediated virus–cell interaction that as shown earlier leads to dendritic cell HIV infection and transinfection dependent on the DC-SIGN receptor. PMID:26383762
Eicosanoids: an emerging role in dendritic cell biology.
Harizi, Hedi; Gualde, Norbert
2004-01-01
The arachidonic acid (AA)-derived metabolites, termed eicosanoids, are potent lipid mediators with a key role in immune and inflammatory responses. In the immune system, eicosanoids such as prostaglandins (PGs) and leukotrienes (LTs) are produced predominately by antigen-presenting cells (APC), including macrophages and dendritic cells (DC). DC constitute a family of bone marrow-derived professional APC that play a critical role in the induction and modulation of both innate and adaptive immunity. For many years, macrophages were considered as major producers of eicosanoids that are thought to drastically affect their function. Studies concerning the modulation of DC biology by eicosanoids show that PGs and LTs have the potential to affect the maturation, cytokine-producing capacity, Th cell-polarizing ability, and migration of DC. In addition, the development of DC from bone marrow progenitors appears to be under the control of some eicosanoids. Understanding the actions of eicosanoids and their receptors on APC functions is crucial for the generation of efficient DC for therapeutic purposes in patients. In this review, we summarize the current understanding of how DC functions are modulated by eicosanoids.
Frischmeyer-Guerrerio, Pamela A.; Keet, Corinne A.; Guerrerio, Anthony L.; Chichester, Kristin L.; Bieneman, Anja P.; Hamilton, Robert G.; Wood, Robert A.; Schroeder, John T.
2014-01-01
Sublingual (SLIT) and oral immunotherapy (OIT) are promising treatments for food allergy, but underlying mechanisms are poorly understood. Dendritic cells (DC) induce and maintain Th2-type allergen-specific T cells, and also regulate innate immunity through their expression of Toll-like receptors (TLRs). We examined how SLIT and OIT influenced DC innate and adaptive immune responses in children with IgE-mediated cow's milk (CM) allergy. SLIT, but not OIT, decreased TLR-induced IL-6 secretion by myeloid DCs (mDCs). SLIT and OIT altered mDC IL-10 secretion, a potent inhibitor of FcεRI-dependent pro-inflammatory responses. OIT uniquely augmented IFN-α and decreased IL-6 secretion by plasmacytoid DCs (pDCs), which was associated with reduced TLR-induced IL-13 release in pDC-T cell co-cultures. Both SLIT and OIT decreased Th2 cytokine secretion to CM in pDC-T, but not mDC-T, co-cultures. Therefore, SLIT and OIT exert unique effects on DC-driven innate and adaptive immune responses, which may inhibit allergic inflammation and promote tolerance. PMID:25173802
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro
2015-03-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro
2015-01-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922
Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells.
Blois, Sandra M; Klapp, Burghard F; Barrientos, Gabriela
2011-03-01
Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Kim, Jin-A; Jo, In-Hwa; Han, Yeon Soo; Jo, Yong Hun; Kim, Kwang-Youn; Seo, Young-Kyo; Moon, Jae-Hak; Jung, Chang Hwa; Jeon, Tae-Il
2017-01-01
The natural, phenolic lipid urushiol exhibits both antioxidant and anticancer activities; however, its biological activity on hepatocellular carcinoma (HCC) has not been previously investigated. Here, we demonstrate that an urushiol derivative, 3-decylcatechol (DC), induces human HCC Huh7 cell death by induction of autophagy. DC initiates the autophagic process by activation of the mammalian target of rapamycin signaling pathway via Unc-51-like autophagy activating kinase 1, leading to autophagosome formation. The autophagy inhibitor, chloroquine, suppressed autolysosome formation and cell death induction by DC, indicating an autophagic cell death. Interestingly, DC also activated the endoplasmic reticulum (ER) stress response that promotes autophagy via p62 transcriptional activation involving the inositol-requiring enzyme 1α/c-Jun N-terminal kinase/c-jun pathway. We also show that cytosolic calcium mobilization is necessary for the ER stress response and autophagy induction by DC. These findings reveal a novel mechanism by which this urushiol derivative induces autophagic cell death in HCC. PMID:28938597
NASA Astrophysics Data System (ADS)
Patterson, Maxx
Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.
Reduction of Decoy Receptor 3 Enhances TRAIL-Mediated Apoptosis in Pancreatic Cancer
Wang, Wei; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong
2013-01-01
Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy. PMID:24204567
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction. PMID:17497025
Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël
2007-01-01
Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.
Reduction of decoy receptor 3 enhances TRAIL-mediated apoptosis in pancreatic cancer.
Wang, Wei; Zhang, Mei; Sun, Weimin; Yang, Shanmin; Su, Ying; Zhang, Hengshan; Liu, Chaomei; Li, Xinfeng; Lin, Ling; Kim, Sunghee; Okunieff, Paul; Zhang, Zhenhuan; Zhang, Lurong
2013-01-01
Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy.
Dendritic cell reprogramming by endogenously produced lactic acid.
Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence
2013-09-15
The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.
Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena
2017-07-01
High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Role of Fatty-acid Synthesis in Dendritic Cell Generation and Function
Rehman, Adeel; Hemmert, Keith C.; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R.; Barilla, Rocky; Quesada, Juan P.; Zambirinis, Constantinos P.; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S.; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H. Leon; Graffeo, Christopher S.; Acehan, Devrim; Miller, George
2013-01-01
Dendritic cells (DC) are professional antigen presenting cells that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of Cleaved Caspase 3 and BCL-xL, and down-regulation of Cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHCII, ICAM-1, B7-1, B7-2 but increased their production of selected pro-inflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacityto activate allogeneic as well as antigen-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune-phenotype and IFN-γ production. Since endoplasmic reticular (ER)-stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAP kinase and Akt signaling. Further, lowering ER-stress by 4-phenylbutyrate mitigated the enhanced immune-stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy. PMID:23536633
Yagi, Yukie; Watanabe, Eri; Watari, Eiji; Shinya, Eiji; Satomi, Misao; Takeshita, Toshiyuki; Takahashi, Hidemi
2010-08-01
The majority of cells in early/colostrum milk are breast milk macrophages (BrMMø) expressing dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3) grabbing nonintegrin (DC-SIGN), and the expression level of DC-SIGN on BrMMø will determine cell-to-cell human immunodeficiency virus type 1 (HIV-1) transmissibility. Thus, one of the strategies to prevent vertical transmission of HIV-1 through breast-feeding is to find a way to suppress DC-SIGN expression on BrMMø. As for the expression of Toll-like receptors (TLRs) in BrMMø, TLR3 was always seen in BrMMø but not in peripheral blood monocytes (PBMo). Also, the expression of TLR3 was slightly enhanced in BrMMø when the cells were treated with interleukin (IL)-4. Moreover, when TLR3 was stimulated with its specific ligand, the double-stranded RNA (dsRNA) poly(I:C), DC-SIGN expression on BrMMø was reduced even in the IL-4-mediated enhanced state. Some reduction may be caused by type I interferons (IFNs), such as IFN-alpha/beta, secreted from BrMMø. Indeed, both IFNs, particularly IFN-beta, showed a strong capacity to suppress the enhancement of DC-SIGN expression on IL-4-treated BrMMø and such TLR3-mediated DC-SIGN suppression was partially abrogated by the addition of anti-IFN-alpha/beta-receptor-specific antibodies. As expected, DC-SIGN-mediated HIV-1 transmission to CD4-positive cells by BrMMø was inhibited by either poly(I:C) stimulation or by treatment with type I IFNs. These findings suggest a possible strategy for preventing mother-to-child transmission (MTCT) of HIV-1 via breast-feeding through TLR3 signalling.
Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells
Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.
2007-01-01
Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318
Ontogeny of surface markers on functionally distinct T cell subsets in the chicken.
Traill, K N; Böck, G; Boyd, R L; Ratheiser, K; Wick, G
1984-01-01
Three subsets of chicken peripheral T cells (T1, T2 and T3) have been identified in peripheral blood of adult chickens on the basis of fluorescence intensity after staining with certain xenogeneic anti-thymus cell sera (from turkeys and rabbits). They differentiate between 3-10 weeks of age in parallel with development of responsiveness to the mitogens concanavalin A (Con A), phytohemagglutinin (PHA) and pokeweed mitogen (PWM). Functional tests on the T subsets, sorted with a fluorescence-activated cell sorter, have shown that T2, 3 cells respond to Con A, PHA and PWM and are capable of eliciting a graft-vs.-host reaction (GvHR). In contrast, although T1 cells respond to Con A, they respond poorly to PHA and not at all to PWM or in GvHR. There was some indication of cooperation between T1 and T2,3 cells for the PHA response. Parallels between these chicken subsets and helper and suppressor/cytotoxic subsets in mammalian systems are discussed.
Sharma, Madhav D.; Huang, Lei; Choi, Jeong-Hyeon; Lee, Eun-Joon; Wilson, James M.; Lemos, Henrique; Pan, Fan; Blazar, Bruce R.; Pardoll, Drew M.; Mellor, Andrew L; Shi, Huidong; Munn, David H.
2013-01-01
SUMMARY At sites of inflammation, certain regulatory T cells (Treg cells) can undergo rapid reprogramming into helper-like cells, without loss of the transcription factor Foxp3. We show that reprogramming is controlled by down-regulation of the transcription factor Eos (Ikzf4), an obligate co-repressor for Foxp3. Reprogramming was restricted to a specific subset of “Eoslabile” Treg cells which were present in the thymus and identifiable by characteristic surface markers and DNA methylation. Mice made deficient in this subset became impaired in their ability to provide help for presentation of new antigens to naive T cells. Down-regulation of Eos required the pro-inflammatory cytokine IL-6, and mice lacking IL-6 had impaired development and function of the Eos-labile subset. Conversely, the immunoregulatory enzyme IDO blocked loss of Eos, and prevented the Eos-labile Treg cells from reprogramming. Thus, the Foxp3+ lineage contains a committed subset of Treg cells capable of rapid conversion into biologically important helper cells. PMID:23684987
Srivastava, Raghvendra M.; Lee, Steve C.; Filho, Pedro A. Andrade; Lord, Christopher A.; Jie, Hyun-bae; Davidson, H. Carter; López-Albaitero, Andrés; Gibson, Sandra P.; Gooding, William E.; Ferrone, Soldano; Ferris, Robert L.
2013-01-01
Purpose Tumor antigen (TA)-specific monoclonal antibodies (mAb) block oncogenic signaling and induce Fcγ receptor (FcγR)-mediated cytotoxicity. However, the role of CD8+ cytotoxic T lymphocyte (CTL) and FcγR in initiating innate and adaptive immune responses in mAb-treated human cancer patients is still emerging. Experimental Design FcγRIIIa codon 158 polymorphism was correlated with survival in 107 cetuximab-treated head and neck cancer (HNC) patients. Flow cytometry was performed to quantify EGFR-specific T cells in cetuximab-treated HNC patients. The effect of cetuximab on NK cell, dendritic cell (DC), and T cell activation was measured using IFN-γ release assays and flow cytometry. Results FcγR IIIa polymorphism did not predict clinical outcome in cetuximab-treated HNC patients, however elevated circulating EGFR -specific CD8+ 853-861 T cells were found in cetuximab-treated HNC patients (p<0.005). Cetuximab promoted EGFR-specific cellular immunity through the interaction of EGFR+ tumor cells and FcγRIIIa on NK cells, but not on the polymorphism per se. Cetuximab-activated NK cells induced IFN-γ dependent expression of DC maturation markers, antigen presentation machinery (APM) components such as TAP-1/2, and Th1 chemokines through NKG2D/MICA binding. Cetuximab initiated adaptive immune responses via NK-cell induced DC maturation, which enhanced cross-presentation to CTL specific for EGFR as well as another TA, MAGE-3. Conclusion Cetuximab-activated NK cells promote DC maturation and CD8+ T cell priming, leading to TA spreading and Th1 cytokine release through ‘NK-DC cross-talk.’ FcγRIIIa polymorphism did not predict clinical response to cetuximab, but was necessary for NK-DC interaction and mAb induced cross-presentation. EGFR-specific T cells in cetuximab treated HNC patients may contribute to clinical response. PMID:23444227
Dendritic cell fate is determined by BCL11A
Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.
2014-01-01
The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644
Gillrie, Mark R.; Avril, Marion; Brazier, Andrew J.; Davis, Shevaun P.; Stins, Monique F.; Smith, Joseph D.; Ho, May
2015-01-01
Summary P. falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand PfEMP1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung, and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on the different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 CIDRα1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, while IT4var07 CIDRα1.4- inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion. PMID:26119044
Campos, M. Doroteia; Nogales, Amaia; Cardoso, Hélia G.; Kumar, Sarma R.; Nobre, Tânia; Sathishkumar, Ramalingam; Arnholdt-Schmitt, Birgit
2016-01-01
Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes’ were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1. PMID:26858746
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
Eradication of melanomas by targeted elimination of a minor subset of tumor cells
Schmidt, Patrick; Kopecky, Caroline; Hombach, Andreas; Zigrino, Paola; Mauch, Cornelia; Abken, Hinrich
2011-01-01
Proceeding on the assumption that all cancer cells have equal malignant capacities, current regimens in cancer therapy attempt to eradicate all malignant cells of a tumor lesion. Using in vivo targeting of tumor cell subsets, we demonstrate that selective elimination of a definite, minor tumor cell subpopulation is particularly effective in eradicating established melanoma lesions irrespective of the bulk of cancer cells. Tumor cell subsets were specifically eliminated in a tumor lesion by adoptive transfer of engineered cytotoxic T cells redirected in an antigen-restricted manner via a chimeric antigen receptor. Targeted elimination of less than 2% of the tumor cells that coexpress high molecular weight melanoma-associated antigen (HMW-MAA) (melanoma-associated chondroitin sulfate proteoglycan, MCSP) and CD20 lastingly eradicated melanoma lesions, whereas targeting of any random 10% tumor cell subset was not effective. Our data challenge the biological therapy and current drug development paradigms in the treatment of cancer. PMID:21282657
Ovarian phagocyte subsets and their distinct tissue distribution patterns.
Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan
2013-01-01
Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.
Characteristics of human dendritic cells generated in a microgravity analog culture system
NASA Technical Reports Server (NTRS)
Savary, C. A.; Grazziuti, M. L.; Przepiorka, D.; Tomasovic, S. P.; McIntyre, B. W.; Woodside, D. G.; Pellis, N. R.; Pierson, D. L.; Rex, J. H.; McIntire, L. V. (Principal Investigator)
2001-01-01
Generation of an effective immune response requires that antigens be processed and presented to T lymphocytes by antigen-presenting cells, the most efficient of which are dendritic cells (DC). Because of their influence on both the innate and the acquired arms of immunity, a defect in DC would be expected to result in a broad impairment of immune function, not unlike that observed in astronauts during or after space flight. In the study reported here, we investigated whether DC generation and function are altered in a culture environment that models microgravity, i.e., the rotary-cell culture system (RCCS). We observed that RCCS supported the generation of DC identified by morphology, phenotype (HLA-DR+ and lacking lineage-associated markers), and function (high allostimulatory activity). However, the yield of DC from RCCS was significantly lower than that from static cultures. RCCS-generated DC were less able to phagocytose Aspergillus fumigatus conidia and expressed a lower density of surface HLA-DR. The proportion of DC expressing CD80 was also significantly reduced in RCCS compared to static cultures. When exposed to fungal antigens, RCCS-generated DC produced lower levels of interleukin-12 and failed to upregulate some costimulatory/adhesion molecules involved in antigen presentation. These data suggest that DC generation, and some functions needed to mount an effective immune response to pathogens, may be disturbed in the microgravity environment of space.
Clinical relevance and suppressive capacity of human MDSC subsets.
Lang, Stephan; Bruderek, Kirsten; Kaspar, Cordelia; Höing, Benedikt; Kanaan, Oliver; Dominas, Nina; Hussain, Timon; Droege, Freya; Eyth, Christian Peter; Hadaschik, Boris; Brandau, Sven
2018-06-18
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of pathologically expanded myeloid cells with immunosuppressive activity. In human disease three major MDSC subpopulations can be defined as monocytic M-MDSC, granulocytic PMN-MDSC and early stage e-MDSC, which lack myeloid lineage markers of the former two subsets. It was the purpose of this study to determine and compare the immunosuppressive capacity and clinical relevance of each of these subsets in patients with solid cancer. The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in a cohort of 49 patients with advanced head and neck cancer (HNC) and 22 patients with urological cancers. Sorted and purified MDSC subsets were tested in vitro for their T cell suppressive capacity. Frequency of circulating MDSC was correlated with overall survival of HNC patients. A high frequency of PMN-MDSC most strongly correlated with poor overall survival in HNC. T cell suppressive activity was higher in PMN-MDSC compared with M-MDSC and e-MDSC. A subset of CD66b+/CD11b+/CD16+ mature PMN-MDSC displayed high expression and activity of arginase I, and was superior to the other subsets in suppressing proliferation and cytokine production of T cells in both cancer types. High levels of this CD11b+/CD16+ PMN-MDSC, but not other PMN-MDSC subsets, strongly correlated with adverse outcome in HNC. A subset of mature CD11b+/CD16+ PMN-MDSC was identified as the MDSC subset with the strongest immunosuppressive activity and the highest clinical relevance. Copyright ©2018, American Association for Cancer Research.
Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Larmonier, Claire; LaCasse, Collin J.; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard
2015-01-01
T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme. PMID:26491691
Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.
2015-01-01
Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599
Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma.
Greer, Alexandra M; Matthay, Michael A; Kukreja, Jasleen; Bhakta, Nirav R; Nguyen, Christine P; Wolters, Paul J; Woodruff, Prescott G; Fahy, John V; Shin, Jeoung-Sook
2014-01-01
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1⁺ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1⁺ DCs, we found that the numbers of BDCA1⁺ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1⁺ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
Hwang, In Sun; Choi, Du Seok; Kim, Nak Hyun; Kim, Dae Sung; Hwang, Byung Kook
2014-01-01
Plant defense against microbial pathogens is coordinated by a complex regulatory network. Cysteine/histidine-rich DC1 domain proteins mediate a variety of cellular processes involved in plant growth, development and stress responses. We identified a pepper (Capsicum annuum) cysteine/histidine-rich DC1 domain protein gene, CaDC1, which positively regulates plant defense during microbial infection, based on gene silencing and transient expression in pepper, as well as ectopic expression in Arabidopsis. Induction of CaDC1 by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection was pronounced at both transcriptional and translational levels in pepper leaves. Purified CaDC1 protein bound to both DNA and RNA in vitro, especially in the presence of Zn(2+). CaDC1 was localized to both the nucleus and the cytoplasm, which was required for plant cell death signaling. The nuclear localization of CaDC1 was dependent on the divergent C1 (DC1) domain. CaDC1 silencing in pepper conferred increased susceptibility to Xcv infection, which was accompanied by reduced salicylic acid accumulation and defense-related gene expression. Ectopic expression of CaDC1 in Arabidopsis enhanced resistance to Hyaloperonospora arabidopsidis. CaDC1 binds both RNA and DNA and functions as a positive regulator of plant cell death and SA-dependent defense responses. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment
Kenna, Tony J.; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J.
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells. PMID:25741704
Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment.
Blake, Stephen J P; Ching, Alan L H; Kenna, Tony J; Galea, Ryan; Large, Justin; Yagita, Hideo; Steptoe, Raymond J
2015-01-01
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.
WOJAS-TUREK, JUSTYNA; SZCZYGIEŁ, AGNIESZKA; KICIELIŃSKA, JAGODA; ROSSOWSKA, JOANNA; PIASECKI, EGBERT; PAJTASZ-PIASECKA, ELŻBIETA
2016-01-01
The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy. PMID:26648160
Rahman, M Jubayer; Rahir, Gwendoline; Dong, Matthew B; Zhao, Yongge; Rodrigues, Kameron B; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V
2016-03-01
Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.
2014-03-01
Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.
Mesenchymal Stem Cells Derived from Human Limbal Niche Cells
Li, Gui-Gang; Zhu, Ying-Ting; Xie, Hua-Tao; Chen, Szu-Yu; Tseng, Scheffer C. G.
2012-01-01
Purpose. We investigated whether human limbal niche cells generate mesenchymal stem cells. Methods. Limbal niche cells were isolated from the limbal stroma by collagenase alone or following dispase removal of the limbal epithelium (D/C), and cultured on plastic in Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS), or coated or three-dimensional Matrigel in embryonic stem cell medium with leukemia inhibitory factor and basic fibroblast growth factor. Expression of cell markers, colony-forming units-fibroblast, tri-lineage differentiation, and ability of supporting limbal epithelial stem/progenitor cells were compared to limbal residual stromal cells. Results. Stromal cells expressing angiogenesis markers were found perivascularly, subjacent to limbal basal epithelial cells, and in D/C and limbal residual stromal cells. When seeded in three-dimensional Matrigel, D/C but not limbal residual stromal cells yielded spheres of angiogenesis progenitors that stabilized vascular networks. Similar to collagenase-isolated cells, D/C cells could be expanded on coated Matrigel for more than 12 passages, yielding spindle cells expressing angiogenesis and mesenchymal stem cells markers, and possessing significantly higher colony-forming units-fibroblast and more efficient tri-lineage differentiation than D/C and limbal residual stromal cells expanded on plastic in DMEM with 10% FBS, of which both lost the pericyte phenotype while limbal residual stromal cells turned into myofibroblasts. Upon reunion with limbal epithelial stem/progenitor cells to form spheres, D/C cells expanded on coated Matrigel maintained higher expression of p63α and lower expression of cytokeratin 12 than those expanded on plastic in DMEM with 10% FBS, while spheres formed with human corneal fibroblasts expressed cytokeratin 12 without p63α. Conclusions. In the limbal stroma, cells subjacent to limbal basal epithelial cells serve as niche cells, and generate progenitors with angiogenesis and mesenchymal stem cells potentials. They might partake in angiogenesis and regeneration during corneal wound healing. PMID:22836771
The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation.
Liontos, Larissa M; Dissanayake, Dilan; Ohashi, Pamela S; Weiss, Arthur; Dragone, Leonard L; McGlade, C Jane
2011-02-15
GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.
Kulkarni, R.N.; Voglewede, P.A.; Liu, D.
2014-01-01
It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170
Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian
2007-09-01
Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Valpha24Jalpha18 TCR alpha chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0.01-0.92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8(+) iNKT cells being a phenotypic and functionally different subset from CD4(+) and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8(+) iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4(+) subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4(+) iNKT cells were the highest producers of interleukin-4, while the production of interferon-gamma and tumour necrosis factor-alpha was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases.
Montoya, Carlos J; Pollard, David; Martinson, Jeffrey; Kumari, Kumud; Wasserfall, Clive; Mulder, Candice B; Rugeles, Maria T; Atkinson, Mark A; Landay, Alan L; Wilson, S Brian
2007-01-01
Identification of human CD1d-restricted T-cell receptor (TCR)-invariant natural killer T (iNKT) cells has been dependent on utilizing combinations of monoclonal antibodies or CD1d tetramers, which do not allow for the most specific analysis of this T-cell subpopulation. A novel monoclonal antibody (clone 6B11), specific for the invariant CDR3 loop of human canonical Vα24Jα18 TCR α chain, was developed and used to specifically characterize iNKT cells. In healthy individuals studied for up to 1 year, a wide but stable frequency of circulating iNKT cells (range: 0·01–0·92%) was observed, with no differences in frequency by gender. Four stable iNKT cell subsets were characterized in peripheral blood based on the expression of CD4 and CD8, with CD8+ iNKT cells being a phenotypic and functionally different subset from CD4+ and double negative iNKT cells; in particular, LAG-3 was preferentially expressed on CD8+ iNKT cells. In addition, a strong negative linear correlation between the frequency of total iNKT cells and percentage of the CD4+ subset was observed. In terms of their potential association with disease, patients at risk for type 1 diabetes had significantly expanded frequencies of double negative iNKT cells when compared to matched controls and first-degree relatives. Moreover, peripheral blood CD4+ iNKT cells were the highest producers of interleukin-4, while the production of interferon-γ and tumour necrosis factor-α was similar amongst all iNKT cell subsets. These differences in iNKT cell subsets suggest that in humans the relative ratio of iNKT cell subsets may influence susceptibility vs. resistance to immune-mediated diseases. PMID:17662044
Gröbner, Sabine; Adkins, Irena; Schulz, Sebastian; Richter, Kathleen; Borgmann, Stefan; Wesselborg, Sebastian; Ruckdeschel, Klaus; Micheau, Olivier; Autenrieth, Ingo B
2007-10-01
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55-/- mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.
Li, Guangming; Cheng, Menglan; Nunoya, Jun-ichi; Cheng, Liang; Guo, Haitao; Yu, Haisheng; Liu, Yong-jun; Su, Lishan; Zhang, Liguo
2014-01-01
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment. PMID:25077616
Listeria arpJ gene modifies T helper type 2 subset differentiation.
Kanoh, Makoto; Maruyama, Saho; Shen, Hua; Matsumoto, Akira; Shinomiya, Hiroto; Przybilla, Karin; Gouin, Edith; Cossart, Pascale; Goebel, Werner; Asano, Yoshihiro
2015-07-15
Although the T-cell subset differentiation pathway has been characterized extensively from the view of host gene regulation, the effects of genes of the pathogen on T-cell subset differentiation during infection have yet to be elucidated. Especially, the bacterial genes that are responsible for this shift have not yet been determined. Utilizing a single-gene-mutation Listeria panel, we investigated genes involved in the host-pathogen interaction that are required for the initiation of T-cell subset differentiation in the early phase of pathogen infection. We demonstrate that the induction of T helper types 1 and 2 (Th1 and Th2) subsets are separate phenomena and are mediated by distinct Listeria genes. We identified several candidate Listeria genes that appear to be involved in the host-Listeria interaction. Among them, arpJ is the strongest candidate gene for inhibiting Th2 subset induction. Furthermore, the analysis utilizing arpJ-deficient Listeria monocytogenes (Lm) revealed that the tumor necrosis factor (TNF) superfamily (Tnfsf) 9-TNF receptor superfamily (Tnfrsf) 9 interaction inhibits the Th2 response during Lm infection. arpJ is the candidate gene for inhibiting Th2 T-cell subset induction. The arpJ gene product influences the expression of Tnfsf/Tnfrsf on antigen-presenting cells and inhibits the Th2 T-cell subset differentiation during Listeria infection. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.
Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi
2013-01-01
CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.
Distinct Roles for CXCR6+ and CXCR6− CD4+ T Cells in the Pathogenesis of Chronic Colitis
Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi
2013-01-01
CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6− CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6−CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334
Melki, Marie-Thérèse; Saïdi, Héla; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Gougeon, Marie-Lise
2010-04-15
Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process") at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV) become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV). The escape of DC(HIV) from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DC(HIV) cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV). Finally, we demonstrate that restoration of DC(HIV) susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DC(HIV) survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs.
Stimulation of dendritic cells enhances immune response after photodynamic therapy
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.
2009-02-01
Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.
Huang, Hai-li; Wu, Ben-yan; You, Wei-di; Shen, Ming-shi; Wang, Wen-ju
2003-09-01
To study the relation between dendritic cell (DC) infiltration and clinicopathologic parameters, biologic characteristics and prognosis of progressing gastric cancer. The development of apoptotic cell death (apoptotic index, AI) in 61 progressing gastric carcinoma tissues was analyzed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. The PCNA labeling index (PCNA-LI), density of dendritic cells in the tumor were detected by immunohistochemical method by the LSAB kit using antibody against S-100 protein and PC-10. DC infiltration was negatively correlated with lymph node metastasis, clinical stage and PCNA-LI, but positively with AI. The DCs in gastric cancer groups with and without lymph node metastasis were (5.63 +/- 4.37)/HPF and (8.51 +/- 5.57)/HPF with difference significant (P < 0.05). The DC infiltration in I, II, III stage lesions were (11.23 +/- 6.05)/HPF, (6.28 +/- 4.37)/HPF and (5.53 +/- 5.19)/HPF also with differences significant (P < 0.01). The PCNA-LI was significantly higher in the low DC group (57.10% +/- 14.18%) than that of high DC group (48.15% +/- 10.59%, P < 0.01). AI findings were 3.77% +/- 1.26% and 2.95% +/- 1.07% in the high and low DC groups (P < 0.01). A positive correlation was observed between DC infiltration and AI (r = 0.39, P < 0.01) whereas a negative correlation between DC infiltration and PCNA-LI (r = -0.47, P < 0.01). The prognosis of high DC infiltration patients was significantly better than those with low ones. The infiltrating dendritic cells in and around tumor, representing the local immune status of the host, may play an important role in immunological defense mechanism of host versus tumor. Dendritic cells may inhibit the proliferation and induce the apoptosis of the tumor cells, thus affecting the clinical features and improve the prognosis of gastric carcinoma.
Pohl, Judith-Mira; Gutweiler, Sebastian; Thiebes, Stephanie; Volke, Julia K; Klein-Hitpass, Ludger; Zwanziger, Denise; Gunzer, Matthias; Jung, Steffen; Agace, William W; Kurts, Christian
2017-01-01
Objective Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. Design POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. Results We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C– macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. Conclusions Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI. PMID:28615301
Barron, Martin; Zhang, Siyuan
2018-01-01
Abstract Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data. PMID:29140455
Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry*
Rothaeusler, Kristina; Baumgarth, Nicole
2010-01-01
Background Measurement of cell proliferation via BrdU incorporation in combination with multicolor cell surface staining would facilitate studies on cell subsets that require multiple markers for their identification. However, the extent to which the often harsh cell preparation procedures required affect the staining quality of more recently developed fluorescent dyes has not been assessed. Methods Three cell preparation protocols for BrdU measurement were compared for their ability to maintain fluorescent surface staining and scatter parameters of in vivo BrdU-labeled cells by flow cytometry. A 10-color fluorescent panel was developed to test the quality of surface staining following cell treatment and the ability to perform BrdU measurements on even small B lymphocyte subsets. Results All cell preparation procedures affected the quality of fluorescent and/or scatter parameters to varying degrees. Paraformaldehyde / saponin-based procedures preserved sufficient fluorescent surface staining to determine BrdU incorporation rates among all splenic B cell subsets, including B-1a cells, which constitute roughly 0.5% of cells. Turnover rates of B-1a cells were similar to immature B cells and higher than those of the other mature B cell subsets. Conclusion Paraformaldehyde / saponin-based cell preparation procedures facilitate detailed cell turnover studies on small cell subsets in vivo, revealing new functional information on rare cell populations. PMID:16538653
Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L
2018-04-15
Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. Copyright © 2018 Laksono et al.
Laksono, Brigitta M.; Grosserichter-Wagener, Christina; de Vries, Rory D.; Langeveld, Simone A. G.; Brem, Maarten D.; van Dongen, Jacques J. M.; Koopmans, Marion P. G.
2018-01-01
ABSTRACT Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (TH) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that TH1TH17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo. However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. PMID:29437964
Devriendt, Bert; Verdonck, Frank; Summerfield, Artur; Goddeeris, Bruno M; Cox, Eric
2010-06-15
F4(+) enterotoxigenic Escherichia coli (ETEC) infections are an important cause of postweaning diarrhoea in piglets and an oral immunization of piglets with purified F4 fimbriae protects them from a subsequent F4(+) ETEC infection. However, oral immunization of suckling piglets is hampered due to the immature status of their immune system. Targeting of antigens to Fcgamma receptors (FcgammaR) on human and murine dendritic cells (DC) has been shown to enhance DC maturation and both humoral and cellular immune responses. To investigate the effect of F4 fimbriae incorporated in immune complexes (F4-IC) on porcine DC, we used porcine monocytic-derived DC (MoDC) as a model system. The results in this study demonstrate that FcgammaRI, II and III mRNA is expressed by porcine MoDC. Furthermore, we show that FcgammaRII and III are expressed on the cell surface and that F4-IC are internalized by MoDC via FcgammaR. This FcgammaR ligation induced a significantly enhanced expression of Major Histocompatibility complex (MHCII) class II and the costimulatory molecules CD80/86 and CD40 by MoDC compared with immature MoDC. Furthermore, the phagocytic capacity of F4-IC stimulated MoDC was reduced as evidenced by a reduced uptake of DQ-ovalbumin and FITC-dextran. In an allogenic and autologous mixed lymphocyte reaction, these F4-IC-activated MoDC showed an improved T cell stimulatory capacity in comparison with immature MoDC. The F4-IC induced DC maturation correlated with significant higher expression levels of several pro-inflammatory cytokines such as interleukine (IL) 1beta, IL-6 and Tumor necrosis factor alpha, the chemokine IL-8 and IL-12p40 in comparison with immature MoDC. Altogether, these results clearly demonstrate that FcgammaR engagement enhances the maturation of porcine MoDC, which may suggest that antigen targeting to FcgammaR on DC could improve vaccine design against infections. Copyright 2009 Elsevier B.V. All rights reserved.
Fuzzy energy management for hybrid fuel cell/battery systems for more electric aircraft
NASA Astrophysics Data System (ADS)
Corcau, Jenica-Ileana; Dinca, Liviu; Grigorie, Teodor Lucian; Tudosie, Alexandru-Nicolae
2017-06-01
In this paper is presented the simulation and analysis of a Fuzzy Energy Management for Hybrid Fuel cell/Battery Systems used for More Electric Aircraft. The fuel cell hybrid system contains of fuel cell, lithium-ion batteries along with associated dc to dc boost converters. In this configuration the battery has a dc to dc converter, because it is an active in the system. The energy management scheme includes the rule based fuzzy logic strategy. This scheme has a faster response to load change and is more robust to measurement imprecisions. Simulation will be provided using Matlab/Simulink based models. Simulation results are given to show the overall system performance.
Opata, Michael M; Ibitokou, Samad A; Carpio, Victor H; Marshall, Karis M; Dillon, Brian E; Carl, Jordan C; Wilson, Kyle D; Arcari, Christine M; Stephens, Robin
2018-04-01
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages.
Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A
2017-06-01
During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix-modifying functions (tissue inhibitor of metalloprotinase 1 & 2 (TIMP1/2)). Collectively, MSCs selected for ALDH hi demonstrated enhanced proangiogenic secretory functions and represent a purified MSC subset amenable for vascular regenerative applications. Stem Cells 2017;35:1542-1553. © 2017 AlphaMed Press.
Specific Dioscorea Phytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines
Chang, Wei-Ting; Chen, Hui-Ming; Yin, Shu-Yi; Chen, Yung-Hsiang; Wen, Chih-Chun; Wei, Wen-Chi; Lai, Phoency; Wang, Cheng-Hsin; Yang, Ning-Sun
2013-01-01
Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII) were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50–75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1β in TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines. PMID:23935688
Yasuda, Takashi; Kamigaki, Takashi; Kawasaki, Kentaro; Nakamura, Tetsu; Yamamoto, Masashi; Kanemitsu, Kiyonori; Takase, Shiro; Kuroda, Daisuke; Kim, Yongsik; Ajiki, Tetsuo; Kuroda, Yoshikazu
2007-07-01
Cancer immunotherapy by dendritic cell (DC)/tumor cell fusion hybrids (DC/TC hybrids) has been shown to elicit potent anti-tumor effects via the induction of immune responses against multiple tumor-associated antigens. In the present study, we compared the anti-tumor effects of vaccinating Balb/c mice (H-2(d)) with CT26CL25 colon carcinoma cells that had been fused with either syngeneic DCs from Balb/c mice, allogeneic DCs from C57BL/6 mice (H-2(b)) or semiallogeneic DCs from B6D2F1 mice (H-2(b/d)). Preimmunization with either semiallogeneic or allogeneic DC/TC hybrids induced complete protection from tumor challenge, whereas mice preimmunized with syngeneic DC/TC hybrids were only partially protected (75% tumor rejection). The average number of pulmonary metastases after intravenous tumor injection decreased significantly following immunization with semiallogeneic or allogeneic DC/TC hybrids (8.3 +/- 7.9 or 16.3 +/- 3.5, mean +/- SD) relative to syngeneic DC/TC hybrids (67.8 +/- 6.3). These data demonstrate that vaccination with semiallogeneic DC/TC hybrids resulted in the greatest anti-tumor efficacy. Anti-tumor effects showed by in vivo studies were virtually accomplished by the frequency of induced CTLs specific to both gp70 and beta-galactosidase assessed by using pentameric assay. Among the fusion vaccines tested, semiallogeneic DC/TC hybrids induced the highest ratio of Th1 cytokine IFN-gamma to Th2 cytokine IL-10. In addition, allogeneic or semiallogeneic DC/TC hybrids elicited a significantly stronger NK activity than syngeneic DC/TC hybrids. These findings suggest that in clinical settings, DCs derived from a healthy donor (which are generally characterized as more semiallogeneic than allogeneic) may be more capable than autologous DCs of inducing promising anti-tumor effects in vaccinations with DC/TC hybrids.
Dudek, Aleksandra M.; Martin, Shaun; Garg, Abhishek D.; Agostinis, Patrizia
2013-01-01
Dendritic cells (DCs) are the sentinel antigen-presenting cells of the immune system; such that their productive interface with the dying cancer cells is crucial for proper communication of the “non-self” status of cancer cells to the adaptive immune system. Efficiency and the ultimate success of such a communication hinges upon the maturation status of the DCs, attained following their interaction with cancer cells. Immature DCs facilitate tolerance toward cancer cells (observed for many apoptotic inducers) while fully mature DCs can strongly promote anticancer immunity if they secrete the correct combinations of cytokines [observed when DCs interact with cancer cells undergoing immunogenic cell death (ICD)]. However, an intermediate population of DC maturation, called semi-mature DCs exists, which can potentiate either tolerogenicity or pro-tumorigenic responses (as happens in the case of certain chemotherapeutics and agents exerting ambivalent immune reactions). Specific combinations of DC phenotypic markers, DC-derived cytokines/chemokines, dying cancer cell-derived danger signals, and other less characterized entities (e.g., exosomes) can define the nature and evolution of the DC maturation state. In the present review, we discuss these different maturation states of DCs, how they might be attained and which anticancer agents or cell death modalities (e.g., tolerogenic cell death vs. ICD) may regulate these states. PMID:24376443
Targeted depletion of a MDSC subset unmasks pancreatic ductal adenocarcinoma to adaptive immunity
Stromnes, Ingunn M.; Brockenbrough, Scott; Izeradjene, Kamel; Carlson, Markus A.; Cuevas, Carlos; Simmons, Randi M.; Greenberg, Philip D.; Hingorani, Sunil R.
2015-01-01
Objective Pancreatic ductal adenocarcinoma (PDA) is characterized by a robust desmoplasia, including the notable accumulation of immunosuppressive cells that shield neoplastic cells from immune detection. Immune evasion may be further enhanced if the malignant cells fail to express high levels of antigens that are sufficiently immunogenic to engender an effector T cell response. In this report, we investigate the predominant subsets of immunosuppressive cancer-conditioned myeloid cells that chronicle and shape pancreas cancer progression. We show that selective depletion of one subset of myeloid-derived suppressor cells (MDSC) in an autochthonous, genetically engineered mouse model (GEMM) of PDA unmasks the ability of the adaptive immune response to engage and target tumor epithelial cells. Methods A combination of in vivo and in vitro studies were performed employing a GEMM that faithfully recapitulates the cardinal features of human PDA. The predominant cancer-conditioned myeloid cell subpopulation was specifically targeted in vivo and the biological outcomes determined. Results PDA orchestrates the induction of distinct subsets of cancer-associated myeloid cells through the production of factors known to influence myelopoeisis. These immature myeloid cells inhibit the proliferation and induce apoptosis of activated T cells. Targeted depletion of granulocytic MDSC (Gr-MDSC) in autochthonous PDA increases the intratumoral accumulation of activated CD8 T cells and apoptosis of tumor epithelial cells, and also remodels the tumor stroma. Conclusions Neoplastic ductal cells of the pancreas induce distinct myeloid cell subsets that promote tumor cell survival and accumulation. Targeted depletion of a single myeloid subset, the Gr-MDSC, can unmask an endogenous T cell response, revealing an unexpected latent immunity and invoking targeting of Gr-MDSC as a potential strategy to exploit for treating this highly lethal disease. PMID:24555999
Intravenous anesthetic propofol suppresses prostaglandin E2 production in murine dendritic cells.
Inada, Takefumi; Kubo, Kozue; Ueshima, Hironobu; Shingu, Koh
2011-01-01
Propofol is an intravenous anesthetic that is widely used for anesthesia and sedation. Dendritic cells (DC) are one of the crucial immune cells that bridge innate and adaptive immunity, in which DC process antigens during innate immune responses to present them to naïve T-cells, leading to an establishment of adaptive immunity. Prostaglandin (PG)-E(2) may be secreted by DC into the microenvironment, considerably influencing DC phenotype and function, and thus determining the fate of adaptive immunity. Since propofol suppresses PGE(2) production in murine macrophages, the primary purpose of the present study was to determine whether propofol also suppresses PGE(2) production in DC. Assuming a positive finding of such suppression, we tested whether this also leads to alterations of interleukin (IL)-12 and IL-10 production and DC surface marker expression, both of which can be modulated by PGE(2). In bone marrow-derived DC, propofol significantly suppressed the PGE(2) production after lipopolysaccharide stimulation. Cyclo-oxygenase (COX) protein expression and arachidonic acid release were unaffected, while COX enzyme activity was significantly inhibited by propofol. The propofol-induced COX inhibition did not lead to the increased production of cysteinyl leukotrienes and leukotriene-B(4). Endogenous COX inhibition with propofol, as well as with the selective COX-2 inhibitor, NS-398, did not affect IL-12 and IL-10 production from DC. The surface expression of I-A(b) and CD40 on DC was not changed, while that of CD86 slightly increased, with both propofol and NS-398; expression of CD80 was not affected with propofol, but increased slightly with NS-398. Finally, endogenous COX inhibition with either propofol or NS-398 did not significantly affect the ability of DC to induce allogeneic T-cell proliferation. It is concluded that the intravenous anesthetic propofol suppresses COX enzyme activity in DC, with no consequences with respect to IL-12/IL-10 production and allogeneic T-cell proliferation, while minimal consequences were observed in surface molecule expression.