Sample records for cell demonstration project

  1. Hydrogen Fuel Cell Electric Vehicle Learning Demonstration | Hydrogen and

    Science.gov Websites

    Fuel Cells | NREL Fuel Cell Electric Vehicle Learning Demonstration Hydrogen Fuel Cell Electric Vehicle Learning Demonstration Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project-later dubbed the Fuel Cell Electric Vehicle (FCEV) Learning Demonstration

  2. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fred Mitlitsky; Sara Mulhauser; David Chien

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements.more » The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.« less

  3. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  4. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    DTIC Science & Technology

    2005-09-01

    history . The fuel cell was sited between the student cafeteria and the Campbell Hall Com- bined Services ROTC Building. The fuel cell installation...produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites

  5. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew B

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage researchmore » and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.« less

  6. American Fuel Cell Bus Project : First Analysis Report

    DOT National Transportation Integrated Search

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALSTAR...

  7. American fuel cell bus project : first analysis report.

    DOT National Transportation Integrated Search

    2013-06-01

    This report summarizes the experience and early results from the American Fuel Cell Bus Project, a fuel cell electric bus demonstration : funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by CALST...

  8. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  9. Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    DOT National Transportation Integrated Search

    2017-05-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...

  10. American Fuel Cell Bus Project Evaluation : Second Report

    DOT National Transportation Integrated Search

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Admini...

  11. American Fuel Cell Bus Project Evaluation : Third Report

    DOT National Transportation Integrated Search

    2017-05-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses (FCEB) operating in the Coachella Valley area of California. The AFCB, built on an ElDorado National-California 40-foot Axess bus p...

  12. Fuel Cell Demonstration Project at a Sunline Transit Agency

    NASA Astrophysics Data System (ADS)

    Hsiung, S.

    2001-09-01

    This is the final report summarizing the Fuel Cell Demonstration Project activities of the XCELLSIS Zebus (zero emissions bus) performance at the SunLine Transit Agency in Thousand Palms, California. Under this demonstration project, SunLine participated with XCELLSIS in the fueling, training, operating, and testing of this prototype fuel cell bus. The report presents a summary of project activities, including the results of the 13-month test of the XCELLSIS Zebus performance at SunLine Transit. This final report includes data relating to Zebus performance, along with the successes achieved beyond the technical realm. The study concludes that the project was very useful in establishing operating parameters and environmental testing in extreme heat conditions and in transferring technology to a transit agency. At the end of the 13-month test period, the Zebus ran flawlessly in the Michelin Challenge Bibendum from Los Angeles to Las Vegas, a 275-mile trek. SunLine refueled the Zebus in transit to Baker, California, 150 miles from its home base. Everyone who encountered or rode the Zebus was impressed with its smoothness, low engine noise, and absence of emissions. The study states that the future for the Zebus looks very bright. Fuel cell projects are anticipated to continue in California and Europe with the introduction new buses equipped with Ballard P5 and other fuel cell engines as early as the first half of 2003.

  13. American Fuel Cell Bus Project Evaluation. Second Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE'smore » National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.« less

  14. Florida Hydrogen Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less

  15. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  16. Demonstrating Cell Traction--Using Hens' Egg Vitelline Membrane as Substratum.

    ERIC Educational Resources Information Center

    Downie, Roger

    1987-01-01

    Suggests ways in which hens' egg vitelline membranes can be used to demonstrate cell traction effects. Reviews procedures for using and culturing the membranes and identifies topic areas for student projects. (ML)

  17. FTA fuel cell bus program : research accomplishments through 2011.

    DOT National Transportation Integrated Search

    2012-03-01

    Prepared by the Federal Transit Administration (FTA) Office of Research, Demonstration, and Innovation (TRI), this report summarizes the accomplishments of fuel-cell-transit-bus-related research and demonstrations projects supported by FTA through 20...

  18. BC Transit Fuel Cell Bus Project Evaluation Results : Second Report

    DOT National Transportation Integrated Search

    2014-09-01

    Beginning in 2009, British Columbia Transit (BC Transit) led a project to conduct a 5-year demonstration of 20 fuel cell electric buses (FCEB) in Whistler, Canada. The FCEB fleet was introduced during the 2010 Winter Olympic Games and operated throug...

  19. Behavior‐dependent activity patterns of GABAergic long‐range projecting neurons in the rat hippocampus

    PubMed Central

    Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A.; Valenti, Ornella; Viney, Tim J.; Kotzadimitriou, Dimitrios; Klausberger, Thomas

    2017-01-01

    ABSTRACT Long‐range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O‐LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin‐labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave‐ripples, most projection cells, including a novel SOM+ GABAergic back‐projecting cell, increased their activity similar to bistratified cells, but unlike O‐LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O‐LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior‐ and network state‐dependent binding of neuronal assemblies amongst functionally‐related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27997999

  20. Photovoltaic test and demonstration project for the National Photovoltaic Conversion program

    NASA Technical Reports Server (NTRS)

    Deyo, J. N.

    1975-01-01

    Proposed are photovoltaic system tests and demonstrations covering a wide range of applications in order to develop low cost photovoltaic cells suitable for terrestrial applications. Program objectives are: (1) tests and model system demonstrations; (2) device performance and diagnostics; and (3) endurance of solar cell modules and arrays.

  1. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  2. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography.

    PubMed

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James

    2015-04-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.

  3. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  4. BC Transit Fuel Cell Bus Project : Evaluation Results Report

    DOT National Transportation Integrated Search

    2014-02-02

    British Columbia Transit (BC Transit) has been leading a demonstration of fuel cell electric buses (FCEB) in Whistler, Canada, since early 2010. This 20-bus demonstration was introduced during the 2010 Winter Olympic Games and is the worlds larges...

  5. Behavior-dependent activity patterns of GABAergic long-range projecting neurons in the rat hippocampus.

    PubMed

    Katona, Linda; Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A; Valenti, Ornella; Viney, Tim J; Kotzadimitriou, Dimitrios; Klausberger, Thomas; Somogyi, Peter

    2017-04-01

    Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottler, Gary

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  7. Spatial uniformity inspection apparatus for solar cells using a projection display.

    PubMed

    Yoo, Jae-Keun; Kim, Seung Kwan; Lee, Dong-Hoon; Park, Seung-Nam

    2012-07-10

    We demonstrate a measurement apparatus to inspect spatial uniformity of quantum efficiency of solar cells using a beam projector. Deviation of irradiance from the used beam projector over the area of 1.5×0.8 m on the cell plane was flattened within ±2.6% through gray scale adjustment, which was originally about 200%. Scanning a small square image with an area of 3×3 mm over a square-shaped photovoltaic cell with an area of 15.6×15.6 cm, we could identify the locations according to efficiency level and showed that the cell had quantum efficiency deviation of more than 10%. Utilizing the advantageous feature of a projection display, we also demonstrated that this apparatus can inspect the spatial uniformity of solar modules and panels consisting of multiple solar cells.

  8. Overhead Projection Cell for Streamline Flow

    ERIC Educational Resources Information Center

    Waage, Harold M.

    1969-01-01

    Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)

  9. Fuelcell-Hybrid Mine loader (LHD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James L Dippo; Tim Erikson; Kris Hess

    2009-07-10

    The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantagesmore » (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.« less

  10. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  11. Final Report - MEA and Stack Durability for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets.more » The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.« less

  12. Connecticut Nutmeg Fuel Cell Bus Project : Demonstrating Advanced-Design Hybrid Fuel Cell Buses in Connecticut

    DOT National Transportation Integrated Search

    2011-07-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through Julymore » 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.« less

  14. Photovoltaic test and demonstration project. [residential energy program

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  15. Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America

    DOT National Transportation Integrated Search

    2012-02-01

    The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...

  16. Connecticut nutmeg fuel cell bus project : first analysis report.

    DOT National Transportation Integrated Search

    2012-07-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administra-tion (FTA) under the National Fuel Cell Bus Program (NFCBP). A team led by the Northeast Advanced Vehicle Consortium a...

  17. Segregated Excitatory–Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex

    PubMed Central

    Morishima, Mieko; Kobayashi, Kenta; Kato, Shigeki; Kobayashi, Kazuto; Kawaguchi, Yasuo

    2017-01-01

    Abstract A prominent feature of neocortical pyramidal cells (PCs) is their numerous projections to diverse brain areas. In layer 5 (L5) of the rat frontal cortex, there are 2 major subtypes of PCs that differ in their long-range axonal projections, corticopontine (CPn) cells and crossed corticostriatal (CCS) cells. The outputs of these L5 PCs can be regulated by feedback inhibition from neighboring cortical GABAergic cells. Two major subtypes of GABAergic cells are parvalbumin (PV)-positive and somatostatin (SOM)-positive cells. PV cells have a fast-spiking (FS) firing pattern, while SOM cells have a low threshold spike (LTS) and regular spiking. In this study, we found that the 2 PC subtypes in L5 selectively make recurrent connections with LTS cells. The connection patterns correlated with the morphological and physiological diversity of LTS cells. LTS cells with high input resistance (Ri) exhibited more compact dendrites and more rebound spikes than LTS cells with low Ri, which had vertically elongated dendrites. LTS subgroups differently inhibited the PC subtypes, although FS cells made nonselective connections with both projection subtypes. These results demonstrate a novel recurrent network of inhibitory and projection-specific excitatory neurons within the neocortex. PMID:29045559

  18. Expanding Applications of the Nano Intravital Device as a Platform for Exploring Tumor Microenvironments

    NASA Astrophysics Data System (ADS)

    Padgen, Michael R.

    The tumor microenvironment has been demonstrated to be a key determinant in the progression of cancer. Unfortunately, the mechanisms behind the different microenvironments (cytokine gradients, hypoxia, hypoglycemia, etc) have not been fully elucidated. Identifying these mechanisms can lead to targeted, individualized therapy to prevent metastasis. The Nano Intravital Device (NANIVID) is a microfabricated, implantable device designed to initiate specific microenvironments in vivo so that the time course of the effects can be observed. With both spatial and temporal control over the induced environments, the affected regions of the tumor can be compared to the rest of the tumor. The NANIVID was first used to establish cytokine gradients to monitor the migration of invasive cancer cells. The three projects that comprise this work expand the applications of the NANIVID to establish the device as a robust platform for investigating tumor microenvironment interactions. The first project released chemical mimics from the device to induce the cellular hypoxic response in tumors to determine how hypoxia affects the fate of disseminated tumor cells. The second project used the NANIVID in combination with an atomic force microscope to investigate the altered mechanics of migrating invasive cancer cells. The final project was to develop a cell counter to monitor the isolation of the invasive subpopulation of cells that were drawn into the device using a chemoattractant. These three projects demonstrate the potential of the NANIVID as a platform for investigating the tumor microenvironment.

  19. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  20. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  1. Molecular definition of the identity and activation of natural killer cells.

    PubMed

    Bezman, Natalie A; Kim, Charles C; Sun, Joseph C; Min-Oo, Gundula; Hendricks, Deborah W; Kamimura, Yosuke; Best, J Adam; Goldrath, Ananda W; Lanier, Lewis L

    2012-10-01

    Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.

  2. Computational considerations for collecting and using data in the equidistant cylindrical map projection and the bounds of sampling geographic data at progressively higher resolution

    USGS Publications Warehouse

    Foley, Kevin M.

    2011-01-01

    The Equidistant Cylindrical Map projection is popular with digital modelers and others for storing and processing worldwide data sets because of the simple association of latitude and longitude to cell values or pixels in the resulting grid. This projection does not accurately display area, and the diminished geographic area represented by cells at high latitudes is not often carefully considered. A simple mathematical analysis quantifies the discrepancy in area sampled by cells at different latitudes. The presence of this discrepancy indicates that the use of this projection can induce bias in data sets when both sampling and reporting data. It is demonstrated that as the resolution requirements of input data for models increase, the necessity of providing data to accurately describe smaller cells, particularly at high latitude, will be a challenge.

  3. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transportedmore » and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.« less

  4. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    . Transit Fleets: Current Status 2017, L. Eudy and M. Post (November 2017) Zero Emission Bay Area (ZEBA ) Fuel Cell Bus Demonstration Results: Sixth Report, L. Eudy, M. Post, and M. Jeffers (September 2017 2017) American Fuel Cell Bus Project Evaluation: Third Report, L. Eudy, M. Post, and M. Jeffers (May

  5. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3.

    PubMed

    Jackson, Jesse; Bland, Brian H; Antle, Michael C

    2009-01-01

    The brainstem raphe nuclei are typically assigned a role in serotonergic brain function. However, numerous studies have reported that a large proportion of raphe projection cells are nonserotonergic. The identity of these projection cells is unknown. Recent studies have reported that the vesicular glutamate transporter VGLUT3 is found in both serotonergic and nonserotonergic neurons in both the median raphe (MR) and dorsal raphe (DR) nuclei. We injected the retrograde tracer cholera toxin subunit B into either the dorsal hippocampus or the medial septum (MS) and used triple labeled immunofluorescence to determine if nonserotonergic raphe cells projecting to these structures contained VGLUT3. Consistent with previous studies, only about half of retrogradely labeled MR neurons projecting to the hippocampus contained serotonin, whereas a majority of the retrogradely labeled nonserotonergic cells contained VGLUT3. Similar patterns were observed for MR cells projecting to the MS. About half of retrogradely labeled nonserotonergic neurons in the DR contained VGLUT3. Additionally, a large number of retrogradely labeled cells in the caudal linear and interpeduncular nuclei projecting to the MS were found to contain VGLUT3. These data suggest the enigmatic nonserotonergic projection from the MR to forebrain regions may be glutamatergic. In addition, these results demonstrate a dissociation between glutamatergic and serotonergic MR afferent inputs to the MS and hippocampus suggesting divergent and/or complementary roles of these pathways in modulating cellular activity within the septohippocampal network.

  6. Yeast G-proteins mediate directional sensing and polarization behaviors in response to changes in pheromone gradient direction

    PubMed Central

    Moore, Travis I.; Tanaka, Hiromasa; Kim, Hyung Joon; Jeon, Noo Li; Yi, Tau-Mu

    2013-01-01

    Yeast cells polarize by projecting up mating pheromone gradients, a classic cell polarity behavior. However, these chemical gradients may shift direction. We examine how yeast cells sense and respond to a 180o switch in the direction of microfluidically generated pheromone gradients. We identify two behaviors: at low concentrations of α-factor, the initial projection grows by bending, whereas at high concentrations, cells form a second projection toward the new source. Mutations that increase heterotrimeric G-protein activity expand the bending-growth morphology to high concentrations; mutations that increase Cdc42 activity result in second projections at low concentrations. Gradient-sensing projection bending requires interaction between Gβγ and Cdc24, whereas gradient-nonsensing projection extension is stimulated by Bem1 and hyperactivated Cdc42. Of interest, a mutation in Gα affects both bending and extension. Finally, we find a genetic perturbation that exhibits both behaviors. Overexpression of the formin Bni1, a component of the polarisome, makes both bending-growth projections and second projections at low and high α-factor concentrations, suggesting a role for Bni1 downstream of the heterotrimeric G-protein and Cdc42 during gradient sensing and response. Thus we demonstrate that G-proteins modulate in a ligand-dependent manner two fundamental cell-polarity behaviors in response to gradient directional change. PMID:23242998

  7. DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Hadley; R. Mike Mishra; Michael Placha

    1999-01-27

    The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less

  8. Flat-plate solar array project. Volume 5: Process development

    NASA Technical Reports Server (NTRS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-01-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  9. CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Meng

    2015-03-01

    The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less

  10. Registered report: tumour vascularization via endothelial differentiation of glioblastoma stem-like cells.

    PubMed

    Chroscinski, Denise; Sampey, Darryl; Maherali, Nimet

    2015-02-25

    The Nature in 2010 (Ricci-Vitiani et al., 2010). The experiments that will be replicated are those reported in Figure 4B and Supplementary Figure 10B (Ricci-Vitiani et al., 2010), which demonstrate that glioblastoma stem-like cells can derive into endothelial cells, and can be selectively ablated to reduce tumor progression in vivo, and Supplementary Figures S10C and S10D (Ricci-Vitiani et al., 2010), which demonstrate that fully differentiated glioblastoma cells cannot form functionally relevant endothelium. The Reproducibility Project: Cancer Biology is a collaboration between the eLife.

  11. Evaluation program for secondary spacecraft cells: Initial evaluation tests of General Electric Company 12.0 ampere-hour nickel-cadmium spacecraft cells for the international ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1976-01-01

    An evaluation test program was conducted to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. The 20 cells were manufactured for the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The cells are from a lot of 175 cells procured for the International Ultraviolet Explorer project. Due to a change in requirements, the project selected to use 6.0 ampere-hour cells. Therefore, the remaining cells of this lot have been placed in storage at GSFC for use on a future GSFC project. All the cells are rated at 12.0 ampere-hours and contain double ceramic seals. Test limits specify those values in which a cell is to be terminated from a particular charge or discharge. Requirements are referred to as normally expected values based on past performance of aerospace nickel cadmium cells with demonstrated life characteristics.

  12. Cord Blood Stem Cell Procurement in Minority Donors

    DTIC Science & Technology

    2009-03-01

    stem cell transplantation. The educational process and expansion of collection sites has given us a steady supply of cord blood for clinical use; and now we have the operational nucleus of several collection sites that is self-perpetuating a continual drive to expand to affiliated institutions. The greatest benefit of this project is the demonstration of how we solved the problem of increasing the overall yield of the cord blood units. We convincingly demonstrate that putting resources into individual patient education and prenatal visits is not likely to increase the cell

  13. Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus

    PubMed Central

    Jinno, Shozo; Klausberger, Thomas; Marton, Laszlo F.; Dalezios, Yannis; Roberts, J. David B.; Fuentealba, Pablo; Bushong, Eric A.; Henze, Darrell; Buzsáki, György; Somogyi, Peter

    2008-01-01

    The formation and recall of sensory, motor, and cognitive representations require coordinated fast communication among multiple cortical areas. Interareal projections are mainly mediated by glutamatergic pyramidal cell projections; only few long-range GABAergic connections have been reported. Using in vivo recording and labeling of single cells and retrograde axonal tracing, we demonstrate novel long-range GABAergic projection neurons in the rat hippocampus: (1) somatostatin- and predominantly mGluR1α-positive neurons in stratum oriens project to the subiculum, other cortical areas, and the medial septum; (2) neurons in stratum oriens, including somatostatin-negative ones; and (3) trilaminar cells project to the subiculum and/or other cortical areas but not the septum. These three populations strongly increase their firing during sharp wave-associated ripple oscillations, communicating this network state to the septotemporal system. Finally, a large population of somatostatin-negative GABAergic cells in stratum radiatum project to the molecular layers of the subiculum, presubiculum, retrosplenial cortex, and indusium griseum and fire rhythmically at high rates during theta oscillations but do not increase their firing during ripples. The GABAergic projection axons have a larger diameter and thicker myelin sheet than those of CA1 pyramidal cells. Therefore, rhythmic IPSCs are likely to precede the arrival of excitation in cortical areas (e.g., subiculum) that receive both glutamatergic and GABAergic projections from the CA1 area. Other areas, including the retrosplenial cortex, receive only rhythmic GABAergic CA1 input. We conclude that direct GABAergic projections from the hippocampus to other cortical areas and the septum contribute to coordinating oscillatory timing across structures. PMID:17699661

  14. Performance Assessment of Baseline Cells for the High Efficiency Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Schneidegger, Brianne T.

    2012-01-01

    The Enabling Technology Development and Demonstration (ETDD) Program High Efficiency Space Power Systems (HESPS) Project, formerly the Exploration Technology Development Program (ETDP) Energy Storage Project is tasked with developing advanced lithium-ion cells for future NASA Exploration missions. Under this project, components under development via various in-house and contracted efforts are delivered to Saft America for scale-up and integration into cells. Progress toward meeting project goals will be measured by comparing the performance to these cells with cells of a similar format with Saft s state-of-the-art aerospace chemistry. This report discusses the results of testing performed on the first set of baseline cells delivered by Saft to the NASA Glenn Research Center. This build is a cylindrical "DD" geometry with a 10 Ah nameplate capacity. Testing is being performed to establish baseline cell performance at conditions relevant to ETDD HESPS Battery Key Performance Parameter (KPP) goals including various temperatures, rates, and cycle life conditions. Data obtained from these cells will serve as a performance baseline for future cell builds containing optimized ETDD HESPSdeveloped materials. A test plan for these cells was developed to measure cell performance against the high energy cell KPP goals. The goal for cell-level specific energy of the high energy technology is 180 Wh/kg at a C/10 discharge rate and 0 C. The cells should operate for at least 2000 cycles at 100 percent DOD with 80 percent capacity retention. Baseline DD cells delivered 152 Wh/kg at 20 C. This number decreased to 143.9 Wh/kg with a 0 C discharge. This report provides performance data and summarizes results of the testing performed on the DD cells.

  15. Nigrothalamic projections in the monkey demonstrated by autoradiographic technics.

    PubMed

    Carpenter, M B; Nakano, K; Kim, R

    1976-02-15

    In spite of repeated demonstrations by degeneration technics, nigrothalamic fibers have been regarded with some skepticism. Attempts were made to trace nigral efferent projections in the monkey by autoradiographic technics. Tritiated amino acids (L-leucine, L-lysine and L-proline), injected into portions of the substantia nigra (SN), labeled cells in four regions, designated as, (1) rostrolateral, (2) caudolateral, (3) rostromedial and (4) central. Rostrolateral nigral neurons transported radioactive label preferentially and abundantly to thalamic nuclei; localized isotope was found in parts of three thalamic nuclei, the medial part of the ventral lateral nucleus (VLm), the magnocellular part of the ventral anterior nucleus (VAmc), and the paralaminar part of the dorsomedial nucleus (DMpl)9 Lateral neurons in the caudal half of the SN transmitted radioactive label to the same thalamic nuclei as rostrolateral nigral neuron. Isotope transported to portions of the striatum was modest and localized. Radioactive label taken up by large cells in the caudal third of the SN was transported to portions of the striatum, but not to thalamic nuclei. Labeled nigral neurons in the medial two-thirds of the rostral half of the SN, and in the middle third of the central part of the SN, transported the label mainly to parts of the caudate nucleus and putamen. In these animals modest radioactive label was seen in VLm and VAmc, but not in other thalamic nuclei. There was no evidence that nigral neurons project to the subthalamic nucleus. No radioactive transport from nigral neurons was detected in the superior colliculus, the midbrain tegmentum, or the red nucleus, and none was transported to more caudal brain stem nuclei. Nigrothalamic fibers arise particularly from cells in rostral and lateral parts of the substantia nigra. While some cells in other parts of the nigra project to thalamic nuclei, these appear scattered and less numerous. Large cells in caudal parts of the SN do not project to thalamic nuclei. These observations confirm nigrothalamic projections to VLm and VAmc, and identify a new nigral projection to part of the dorsomedial nucleus of the thalamus (DMpl). No nigral efferent fibers project to any of the intralaminar thalamic nuclei.

  16. Bidirectional Control of Anxiety-Related Behaviors in Mice: Role of Inputs Arising from the Ventral Hippocampus to the Lateral Septum and Medial Prefrontal Cortex.

    PubMed

    Parfitt, Gustavo Morrone; Nguyen, Robin; Bang, Jee Yoon; Aqrabawi, Afif J; Tran, Matthew M; Seo, D Kanghoon; Richards, Blake A; Kim, Jun Chul

    2017-07-01

    Anxiety is an adaptive response to potentially threatening situations. Exaggerated and uncontrolled anxiety responses become maladaptive and lead to anxiety disorders. Anxiety is shaped by a network of forebrain structures, including the hippocampus, septum, and prefrontal cortex. In particular, neural inputs arising from the ventral hippocampus (vHPC) to the lateral septum (LS) and medial prefrontal cortex (mPFC) are thought to serve as principal components of the anxiety circuit. However, the role of vHPC-to-LS and vHPC-to-mPFC signals in anxiety is unclear, as no study has directly compared their behavioral contribution at circuit level. We targeted LS-projecting vHPC cells and mPFC-projecting vHPC cells by injecting the retrogradely propagating canine adenovirus encoding Cre recombinase into the LS or mPFC, and injecting a Cre-responsive AAV (AAV8-hSyn-FLEX-hM3D or hM4D) into the vHPC. Consequences of manipulating these neurons were examined in well-established tests of anxiety. Chemogenetic manipulation of LS-projecting vHPC cells led to bidirectional changes in anxiety: activation of LS-projecting vHPC cells decreased anxiety whereas inhibition of these cells produced opposite anxiety-promoting effects. The observed anxiety-reducing function of LS-projecting cells was in contrast with the function of mPFC-projecting cells, which promoted anxiety. In addition, double retrograde tracing demonstrated that LS- and mPFC-projecting cells represent two largely anatomically distinct cell groups. Altogether, our findings suggest that the vHPC houses discrete populations of cells that either promote or suppress anxiety through differences in their projection targets. Disruption of the intricate balance in the activity of these two neuron populations may drive inappropriate behavioral responses seen in anxiety disorders.

  17. Differentiation of Swine iPSC into Rod Photoreceptors and Their Integration into the Retina

    PubMed Central

    Zhou, Liang; Wang, Wei; Liu, Yongqing; de Castro, Juan Fernandez; Ezashi, Toshihiko; Telugu, Bhanu Prakash V.L.; Roberts, R. Michael; Kaplan, Henry J.; Dean, Douglas C.

    2014-01-01

    Absence of a regenerative pathway for damaged retina following injury or disease has led to experiments utilizing stem cell transplantation for retinal repair, and encouraging results have been obtained in rodents. The swine eye is a closer anatomical and physiological match to the human eye, but embryonic stem cells have not been isolated from pig, and photoreceptor differentiation has not been demonstrated with swine induced pluripotent stem cells (iPSC). Here, we subjected swine iPSC to a rod photoreceptor differentiation protocol consisting of floating culture as embryoid bodies followed by differentiation in adherent culture. Real time PCR and immunostaining of differentiated cells demonstrated loss of expression of the pluripotent genes POU5F1, NANOG and SOX2 and induction of rod photoreceptor genes RCVRN, NRL, RHO and ROM1. While these differentiated cells displayed neuronal morphology, culturing on a Matrigel substratum triggered a further morphological change resulting in concentration of RHO and ROM1 in outer segment-like projections resembling those on primary cultures of rod photoreceptors. The differentiated cells were transplanted into the subretinal space of pigs treated with iodoacetic acid to eliminate rod photoreceptors. Three weeks after transplantation, engrafted RHO+ cells were evident in the outer nuclear layer where photoreceptors normally reside. A portion of these transplanted cells had generated projections resembling outer segments. These results demonstrate that swine iPSC can differentiate into photoreceptors in culture and these cells can integrate into the damaged swine neural retina thus laying a foundation for future studies using the pig as a model for retinal stem cell transplantation. PMID:21491544

  18. Identification and Characterization of Soluble Factors Involved in Delayed Effects of Low Dose Radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baulch, Janet

    2013-09-11

    This is a 'glue grant' that was part of a DOE Low Dose project entitled 'Identification and Characterization of Soluble Factors Involved in Delayed Effects of Low Dose Radiation'. This collaborative program has involved Drs. David L. Springer from Pacific Northwest National Laboratory (PNNL), John H. Miller from Washington State University, Tri-cities (WSU) and William F. Morgan then from the University of Maryland, Baltimore (UMB). In July 2008, Dr. Morgan moved to PNNL and Dr. Janet E. Baulch became PI for this project at University of Maryland. In November of 2008, a one year extension with no new funds wasmore » requested to complete the proteomic analyses. The project stemmed from studies in the Morgan laboratory demonstrating that genomically unstable cells secret a soluble factor or factors into the culture medium, that cause cytogenetic aberrations and apoptosis in normal parental GM10115 cells. The purpose of this project was to identify the death inducing effect (DIE) factor or factors, estimate their relative abundance, identify the cell signaling pathways involved and finally recapitulate DIE in normal cells by exogenous manipulation of putative DIE factors in culture medium. As reported in detail in the previous progress report, analysis of culture medium from the parental cell line, and stable and unstable clones demonstrated inconsistent proteomic profiles as relate to candidate DIE factors. While the proposed proteomic analyses did not provide information that would allow DIE factors to be identified, the analyses provided another important set of observations. Proteomic analysis suggested that proteins associated with the cellular response to oxidative stress and mitochondrial function were elevated in the medium from unstable clones in a manner consistent with mitochondrial dysfunction. These findings correlate with previous studies of these clones that demonstrated functional differences between the mitochondria of stable and unstable clones. These mitochondrial abnormalities in the unstable clones contributes to oxidative stress.« less

  19. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less

  20. TEST RESULTS FOR FUEL-CELL OPERATION ON LANDFILL GAS

    EPA Science Inventory

    Test results from a demonstration of fuel-cell (FC) energy recovery and control of landfill gas emissions are presented. The project addressed two major issues: (i) the design, construction, and testing of a landfill-gas cleanup system; and (ii) a field test of a commercial phos...

  1. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  2. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  3. TECHNICAL ASSESSMENT OF FUEL CELL OPERATION ON LANDFILL GAS AT THE GROTON, CT, LANDFILL

    EPA Science Inventory

    The paper summarizes the results from a seminal assessment conducted on a fuel cell technology which generates electrical power from waste landfill gas. This assessment/ demonstration was the second such project conducted by the EPA, the first being conducted at the Penrose Power...

  4. Light-trapping in perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  5. Light-trapping in perovskite solar cells

    DOE PAGES

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    2016-06-01

    We numerically demonstrate enhanced light harvesting efficiency in both CH 3NH 3PbI 3 and CH(NH 2) 2PbI 3-based perovskite solar cells using inverted verticalcone photonic-crystal nanostructures. For CH 3NH 3PbI 3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm 2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm 2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60more » degree for both S- and P- polarizations. For the corresponding CH(NH 2) 2PbI 3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm 2, corresponding to 95.4% of the total available photocurrent. Furthermore, the projected power conversion efficiency of the CH(NH 2) 2PbI 3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.« less

  6. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less

  7. The Palm Desert renewable [hydrogen] transportation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlin, C.E.; Lehman, P.

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less

  8. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  9. Multiscale Poly-(ϵ-caprolactone) Scaffold Mimicking Nonlinearity in Tendon Tissue Mechanics

    PubMed Central

    Banik, Brittany L.; Lewis, Gregory S.; Brown, Justin L.

    2016-01-01

    Regenerative medicine plays a critical role in the future of medicine. However, challenges remain to balance stem cells, biomaterial scaffolds, and biochemical factors to create successful and effective scaffold designs. This project analyzes scaffold architecture with respect to mechanical capability and preliminary mesenchymal stem cell response for tendon regeneration. An electrospun fiber scaffold with tailorable properties based on a “Chinese-fingertrap” design is presented. The unique criss-crossed fiber structures demonstrate non-linear mechanical response similar to that observed in native tendon. Mechanical testing revealed that optimizing the fiber orientation resulted in the characteristic “S”-shaped curve, demonstrating a toe region and linear elastic region. This project has promising research potential across various disciplines: vascular engineering, nerve regeneration, and ligament and tendon tissue engineering. PMID:27141530

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodford, William

    This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm 2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independentmore » testing; 4) those processes were scaled to a large-format (> 260 cm 2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.« less

  11. The next generation CdTe technology- Substrate foil based solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferekides, Chris

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal ofmore » this project) a roll-to-toll high throughput technology could be developed.« less

  12. Lithium-Ion Battery Program Status

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  13. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmentalmore » impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.« less

  14. Improved FCG-1 cell technology

    NASA Astrophysics Data System (ADS)

    Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.

    1980-10-01

    Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Fred C.

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the researchmore » program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.« less

  16. Photovoltaic fabrics

    DTIC Science & Technology

    2015-04-22

    CLADDING SOLAR CELLS PV (PHOTOVOLTAIC) University of Massachusetts – Dartmouth 285 Old Westport Road Dartmouth, MA 02747...Lowell, MA 01852 14. ABSTRACT This report describes a project to improve photovoltaic fabrics. It had four objectives: 1) Efficiency – make PV wires on...direct sunlight (AM1.5). Over the duration of the project we demonstrated PV efficiency ranging from 5.04% (wire on a black background) to >8

  17. Technology Pathway Partnership Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less

  18. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and other Meteorological Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Larry; Cecil, Dan; Bateman, Monte; Stano, Geoffrey; Goodman, Steve

    2012-01-01

    Objective of project is to refine, adapt and demonstrate the Lightning Jump Algorithm (LJA) for transition to GOES -R GLM (Geostationary Lightning Mapper) readiness and to establish a path to operations Ongoing work . reducing risk in GLM lightning proxy, cell tracking, LJA algorithm automation, and data fusion (e.g., radar + lightning).

  19. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina

    PubMed Central

    Crook, Joanna D.; Peterson, Beth B.; Packer, Orin S.; Robinson, Farrel R.; Troy, John B.; Dacey, Dennis M.

    2009-01-01

    The distinctive parasol ganglion cell of the primate retina transmits a transient, spectrally non-opponent signal to the magnocellular layers of the lateral geniculate nucleus (LGN). Parasol cells show well-recognized parallels with the alpha-Y cell of other mammals, yet two key alpha-Y cell properties, a collateral projection to the superior colliculus and nonlinear spatial summation, have not been clearly established for parasol cells. Here we show by retrograde photodynamic staining that parasol cells project to the superior colliculus. Photostained dendritic trees formed characteristic spatial mosaics and afforded unequivocal identification of the parasol cells among diverse collicular-projecting cell types. Loose-patch recordings were used to demonstrate for all parasol cells a distinct Y-cell receptive field ‘signature’ marked by a non-linear mechanism that responded to contrast-reversing gratings at twice the stimulus temporal frequency (second Fourier harmonic, F2) independent of stimulus spatial phase. The F2 component showed high contrast gain and temporal sensitivity and appeared to originate from a region coextensive with that of the linear receptive field center. The F2 spatial frequency response peaked well beyond the resolution limit of the linear receptive field center, showing a Gaussian center radius of ~15 μm. Blocking inner retinal inhibition elevated the F2 response, suggesting that amacrine circuitry does not generate this non-linearity. Our data are consistent with a pooled-subunit model of the parasol-Y cell receptive field in which summation from an array of transient, partially rectifying cone bipolar cells accounts for both linear and non-linear components of the receptive field. PMID:18971470

  20. Overcoming the Fundamental Bottlenecks to a new world-record silicon solar cell. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohatgi, Ajeet; Zimbardi, Francesco; Rounsaville, Brian

    The objective of the work performed within this contract is to reveal the materials and device physics that currently limit the experimental world record efficiency to 25% for single junction Si (2013), and to demonstrate 26.5% efficiency. The starting efficiency for this project was 23.9% in 2013. Four strategies are being combined throughout the project to achieve 26.5% cell efficiency: (1) passivated contacts via tunnel dielectrics, (2) emitter optimization and passivation through dopant profile engineering, (3) enhanced light trapping through development of photonic crystals and (4) base optimization.

  1. NASA Dryden's Dave Bushman aims the optics of a laser device at a panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

    NASA Image and Video Library

    2003-09-17

    NASA Dryden project engineer Dave Bushman carefully aims the optics of a laser device at a solar cell panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

  2. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less

  3. Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park.

    PubMed

    Ramsing, N B; Ferris, M J; Ward, D M

    1997-06-01

    This study demonstrates light-induced motility of two thermophilic Synechococcus isolates that are morphologically similar but that belong to different cyanobacterial lineages. Both isolates migrated away from densely inoculated streaks to form fingerlike projections extending toward or away from the light source, depending on the light intensity. However, the two isolates seemed to prefer widely different light conditions. The behavior of each isolate was controlled by several factors, including temperature, preacclimation of inocula, acclimation during the experiment, and strain-specific genetic preferences for different light conditions (adaptation). Time-lapse microscopy confirmed that these projections were formed by actively gliding cells and were not simply the outcome of directional cell division. The observed motility rates of individual cells of 0.1 to 0.3 micrometers s-1 agreed well with the distance traversed by the projections, 0.3 to 0.5 mm h-1, suggesting that most cells in each projection are travelling in the same direction. The finding of motility among two phylogenetically unaffiliated unicellular cyanobacteria suggests that this trait may be widespread among this group. If so, this would have important implications for experiments on colonization, succession, diel positioning, and photosynthetic activity in hot spring mats dominated by Synechococcus-like cyanobacteria.

  4. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, KNEELS TO SHOW HOW ONE OF THE THIN-FILM SIDES OR "PETALS" IN WHICH PHOTO-VOLTAIC CELLS ARE EMBEDDED, IS FOLDED AND STOWED BEFORE LAUNCH. LOOKING ON DURING A DEMONSTRATION AFTER TESTING AT NEXOLVE, ARE LES JOHNSON, LEFT, ALSO CO-PRINCIPAL INVESTIGATOR, AND DARREN BOYD, RIGHT, THE RADIO FREQUENCY LEAD FOR THE PROJECT.

  5. The morphological change of supporting cells in the olfactory epithelium after bulbectomy.

    PubMed

    Makino, Nobuko; Ookawara, Shigeo; Katoh, Kazuo; Ohta, Yasushi; Ichikawa, Masumi; Ichimura, Keiichi

    2009-02-01

    Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.

  6. Ratio of Circulating IFNγ (+) "Th17 Cells" in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project.

    PubMed

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17(+)Th17 cells, and IFNγ (+)Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ (+)Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies.

  7. Office of Electricity Delivery and Energy Reliability (OE) National Energy Technology Laboratory (NETL) American Recovery and Reinvestment Act 2009 United States Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mohit; Grape, Ulrik

    2014-07-29

    The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validatemore » the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.« less

  8. Projection-specific visual feature encoding by layer 5 cortical subnetworks

    PubMed Central

    Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.

    2016-01-01

    Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011

  9. Microfluidic device for chemical and mechanical manipulation of suspended cells

    NASA Astrophysics Data System (ADS)

    Rezvani, Samaneh; Shi, Nan; Squires, Todd M.; Schmidt, Christoph F.

    2018-01-01

    Microfluidic devices have proven to be useful and versatile for cell studies. We here report on a method to adapt microfluidic stickers made from UV-curable optical adhesive with inserted permeable hydrogel membrane micro-windows for mechanical studies of suspended cells. The windows were fabricated by optical projection lithography using scanning confocal microscopy. The device allows us to rapidly exchange embedding medium while observing and probing the cells. We characterize the device and demonstrate the function by exposing cultured fibroblasts to varying osmotic conditions. Cells can be shrunk reversibly under osmotic compression.

  10. The 4.5 inch diameter IPV Ni-H2 cell development program

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1986-01-01

    Interest in larger capacity Ni-H2 battery cells for space applications has resulted in the initiation of a development/qualification/production program. Cell component design was completed and component hardware fabricated and/or delivered. Finished cell design projections demonstrate favorable specific energies in the range of 70 to 75 Whr/Kg (32 to 34 Whr/Lb) for capacities of 100 to 250 Ah. It is further planned during this effort to evaluate the advanced cell design technology which has evolved from the work conducted at the NASA/Lewis Research Center.

  11. The 4.5 inch diameter IPV Ni-H2 cell development program

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1986-09-01

    Interest in larger capacity Ni-H2 battery cells for space applications has resulted in the initiation of a development/qualification/production program. Cell component design was completed and component hardware fabricated and/or delivered. Finished cell design projections demonstrate favorable specific energies in the range of 70 to 75 Whr/Kg (32 to 34 Whr/Lb) for capacities of 100 to 250 Ah. It is further planned during this effort to evaluate the advanced cell design technology which has evolved from the work conducted at the NASA/Lewis Research Center.

  12. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    The ultimate goal of this project is to develop a photovoltaic system high conversion efficiency (>20%) using high quality III-V compound-based three-dimensional micro-structures on silicon and poly-silicon. Such a PV-system could be of very low cost due to minimum usages of III-V materials. This project will address the barriers that currently hamper the performance of solar cells based on three-dimensional micro-structures. To accomplish this goal the project is divided into 4 tasks, each dealing with a different aspect of the project: materials quality, micropillar growth control, light management, and pillar based solar cells. Materials Quality: the internal quantum efficiency (IQE)more » - by which is meant here the internal fluorescence yield - of the micro-pillars has to be increased. We aim at achieving an IQE of 45% by the end of the first year. By the end of the second year there will be a go-no-go milestone of 65% IQE. By the end of year 3 and 4 we aim to achieve 75% and 90% IQE, respectively. Micropillar growth control: dense forests of micropillars with high fill ratios need to be grown. Pillars within forests should show minimum variations in size. We aim at achieving fill ratios of 2%, 10%, >15%, >20% in years 1, 2, 3, and 4, respectively. Variations in dimension should be minimized by site-controlled growth of pillars. By the end of year 1 we will aim at achieving site-controlled growth with > 15% yield. By end of year 2 the variation of critical pillar dimensions should be less than 25%. Light management: high light absorption in the spectral range of the sun has been to be demonstrated for the micropillar forests. By the end of year 1 we will employ FDTD simulation techniques to demonstrate that pillar forests with fill ratios <20% can achieve 99% light absorption. By end of year 2 our original goal was to demonstrate >85% absorption. By end of year 3 > 90% absorption should be demonstrated. Pillar based solar cells: devices will be studied to explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  13. Medial vestibular connections with the hypocretin (orexin) system

    NASA Technical Reports Server (NTRS)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  14. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, Bryan M.; Bishop, Sean; Gore, Colin

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and themore » lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large format cells as large as 10 cm by 10 cm when operated at ~600 °C. The project culminated in the demonstration of a 12-cell stack using the porous anode-based SOFC technology.« less

  15. Ratio of Circulating IFNγ + “Th17 Cells” in Memory Th Cells Is Inversely Correlated with the Titer of Anti-CCP Antibodies in Early-Onset Rheumatoid Arthritis Patients Based on Flow Cytometry Methods of the Human Immunology Project

    PubMed Central

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with chronic joint inflammation characterized by activated T cells. IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. However, it remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we validated the methods of the Human Immunology Project using only the cell-surface marker through measuring the actual expression of IL-17 and IFNγ. We also evaluated the expression of CD161 in human Th17 cells. We then tried to identify Th17 cells, IL-17+Th17 cells, and IFNγ +Th17 cells in the peripheral blood of early-onset RA patients using the standardized method of the Human Immunology Project. Our findings validated the method and the expression of CD161. The ratio of IFNγ +Th17 cells in memory T cells was inversely correlated to the titers of anti-CCP antibodies in the early-onset RA patients. These findings suggest that Th17 cells play important roles in the early phase of RA and that anti-IL-17 antibodies should be administered to patients with early phase RA, especially those with high titers of CCP antibodies. PMID:27294146

  16. Research, development and demonstration of lead-acid batteries for electric vehicle propulsion

    NASA Astrophysics Data System (ADS)

    Bowman, D. E.

    1983-08-01

    Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation.

  17. Dip-coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Gutter, C. D.; Schuldt, S. B.

    1977-01-01

    The objective of this research program is to investigate the technical and economic feasibility of producing solar-cell-quality sheet silicon by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. The past quarter demonstrated significant progress in several areas. Seeded growth of silicon-on-ceramic (SOC) with an EFG ribbon seed was demonstrated. Different types of mullite were successfully coated with silicon. A new method of deriving minority carrier diffusion length, L sub n from spectral response measurements was evaluated. ECOMOD cost projections were found to be in good agreement with the interim SAMIS method proposed by JPL. On the less positive side, there was a decrease in cell performance which we believe to be due to an unidentified source of impurities.

  18. Demonstration of a PC 25 Fuel Cell in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

    2004-09-01

    This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three majormore » tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.« less

  19. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  20. Characterization of the Ecosole HCPV tracker and single module inverter

    NASA Astrophysics Data System (ADS)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  1. Investigation of welded interconnection of large area wraparound contacted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1984-01-01

    An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.

  2. Protrusio acetabuli in sickle-cell anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, S.; Apple, J.S.; Baber, C.

    1984-04-01

    Of 155 adults with sickle-cell anemia (SS, SC), radiographs of the pelvis or hip demonstrated protrusio acetabuli on at least one side in 14 (3 men and 11 women), as indicated by projection of the acetabular line medial to the ilio-ischial line. All 14 patients had bone changes attributable to sickle-cell anemia, including marrow hyperplasia and osteonecrosis; however, the severity of femoral or acetabular osteonecrosis did not appear directly related to the protrusion. The authors conclude that sickle-cell anemia can predispose to development of protrusio acetabuli.

  3. Increased projection of MHC and tumor antigens in murine B16-BL6 melanoma induced by hydrostatic pressure and chemical crosslinking.

    PubMed

    Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M

    1993-05-01

    The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Jeffers, Matthew

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB, which was developed as part of the Federal Transit Administration's (FTA) National Fuel Cell Bus Program, was delivered to SunLine in November 2011 and was put in revenue service in mid-December 2011. Two new AFCBs with an upgraded design were delivered in June/July of 2014 and a third new AFCB was delivered in February 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE)more » and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report covers the performance of the AFCBs from July 2015 through December 2016.« less

  5. A 65 Ah rechargeable lithium molybdenum disulfide battery

    NASA Technical Reports Server (NTRS)

    Brandt, K.

    1986-01-01

    A rechargeable lithium molybdenum disulfide battery which has a number of superior performance characteristics which includes a high energy density, a high power density, and a long charge retention time was developed. The first cell sizes developed included a C size cell and an AA size cell. Over the last two years, a project to demonstrate the feasibility of the scale up to this technology to a BC size cell with 65 Ah capacity was undertaken. The objective was to develop, build, and test a .6 kWh storage battery consisting of 6 BC cells in series.

  6. Efficient coarse simulation of a growing avascular tumor

    PubMed Central

    Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.

    2013-01-01

    The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128

  7. The union of somatic gonad precursors and primordial germ cells during C. elegans embryogenesis

    PubMed Central

    Rohrschneider, Monica R.; Nance, Jeremy

    2013-01-01

    Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple C. elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship. PMID:23562590

  8. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Post, Matthew; Gikakis, Christina

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less

  9. Center for Fuel Cell Research and Applications development phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center willmore » enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.« less

  10. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  11. Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact

    PubMed Central

    Ray, Thomas A; Roy, Suva; Kozlowski, Christopher; Wang, Jingjing; Cafaro, Jon; Hulbert, Samuel W; Wright, Christopher V; Field, Greg D

    2018-01-01

    A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here, we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism’s importance in forming circuit-specific sublayers. PMID:29611808

  12. Redox flow cell development and demonstration project, calendar year 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The major focus of the effort was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable semipermeable separator membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.

  13. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2011-08-01

    induced RSR breast cell model, in which cyclin E can be conditionally induced to trigger RSR in normal breast cells. Using this model, we demonstrated...which makes these defects effective targets for both breast cancer prevention and breast cancer treatment. This project is to use cutting-edge...defective RSR; identify drugs that target these defects; and develop RSR-defect-targeting nanoparticles for diagnostic imaging, prevention, and

  14. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  15. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.« less

  16. V.C.3 Technology Validation : Fuel Cell Bus Evaluations

    DOT National Transportation Integrated Search

    2005-01-06

    Based on the results of this analysis and the response from the project partners, the SunLine demonstration was deemed to be a success. Although it was a prototype (or pre-commercial) vehicle, the ThunderPower bus operated in revenue service at a rel...

  17. Optical detection of metastatic cancer cells using a scanned laser pico-projection system

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Ling; Chiu, Wen-Tai; Lo, Yu-Lung; Chuang, Chin-Ho; Chen, Yu-Bin; Chang, Shu-Jing; Ke, Tung-Ting; Cheng, Hung-Chi; Wu, Hua-Lin

    2015-03-01

    Metastasis is responsible for 90% of all cancer-related deaths in humans. As a result, reliable techniques for detecting metastatic cells are urgently required. Although various techniques have been proposed for metastasis detection, they are generally capable of detecting metastatic cells only once migration has already occurred. Accordingly, the present study proposes an optical method for physical characterization of metastatic cancer cells using a scanned laser pico-projection system (SLPP). The validity of the proposed method is demonstrated using five pairs of cancer cell lines and two pairs of non-cancer cell lines treated by IPTG induction in order to mimic normal cells with an overexpression of oncogene. The results show that for all of the considered cell lines, the SLPP speckle contrast of the high-metastatic cells is significantly higher than that of the low-metastatic cells. As a result, the speckle contrast measurement provides a reliable means of distinguishing quantitatively between low- and high-metastatic cells of the same origin. Compared to existing metastasis detection methods, the proposed SLPP approach has many advantages, including a higher throughput, a lower cost, a larger sample size and a more reliable diagnostic performance. As a result, it provides a highly promising solution for physical characterization of metastatic cancer cells in vitro.

  18. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    PubMed

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  20. Evaluation of NHTSA distracted driving high-visibility enforcement demonstration projects in California and Delaware.

    DOT National Transportation Integrated Search

    2015-01-01

    High-visibility enforcement (increased police presence supported by paid and earned media) was implemented in the Sacramento area of California and in Delaware in support of laws banning the use of handheld cell phones while driving. Three waves of e...

  1. Telerobotic electronic materials processing experiment

    NASA Technical Reports Server (NTRS)

    Ollendorf, Stanford

    1991-01-01

    The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.

  2. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  3. GABAergic Projections from the Medial Septum Selectively Inhibit Interneurons in the Medial Entorhinal Cortex

    PubMed Central

    Gonzalez-Sulser, Alfredo; Parthier, Daniel; Candela, Antonio; McClure, Christina; Pastoll, Hugh; Garden, Derek; Sürmeli, Gülşen

    2014-01-01

    The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25–60 Hz) and high (60–180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits. PMID:25505326

  4. Redox flow cell development and demonstration project, calendar year 1977

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research and development on the redox flow cell conducted from January 1, 1977, to December 31, 1977, are described in this report. The major focus of the effort during 1977 was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable ion exchange membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.

  5. A Potent Oncolytic Herpes Simplex Virus for Therapy of Advanced Prostate Cancer

    DTIC Science & Technology

    2005-07-01

    DNA replication in the targeted cells. As oncolytic HSV can only initiate - viral replication in tumor cells, this restricts the syncytial formation from virus infection to malignant cells only. Therefore fusogenic oncolytic HSV should be no more toxic than its parental construct. Nonetheless, we proposed in the year 2 of this funded project to conduct extensive studies in animal models to confirm its safety in vivo. The results obtained so far from these experiments have demonstrated that the fusogenic oncolytic HSV is indeed not significantly more toxic than the

  6. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays

    PubMed Central

    Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta

    2015-01-01

    Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133

  7. Proton exchange membrane fuel cell systems engineering at Vickers Shipbuilding and Engineering Limited (VSEL)

    NASA Astrophysics Data System (ADS)

    Seymour, C. M.

    1992-01-01

    A project, jointly funded by VSEL and CJB Developments Limited, is aimed at the development of complete power generation systems based on PEM fuel cell technology. Potential markets for such systems are seen as being very broadly based, ranging from military land and marine systems through to commercial on-site power generation and transport. From the outset the project was applications driven, the intent being to identify market requirements, in terms of system specifications and to use these to produce development targets. The two companies have based their work on the Ballard PEM stack and have focused their efforts on the development of supporting systems. This benefits all three companies as it allows Ballard to obtain applications information on which to base future research and VSEL/CJBD are able to capitalise on the advanced development of the Ballard stack. Current work is focused on the production of a 20 kW, methanol fuelled, power generation system demonstrator, although work is also in hand to address a wider range of fuels including natural gas. The demonstrator, when complete, will be used to indicate the potential benefits of such systems and to act as a design aid for the applications phase of the project. Preliminary work on this next phase is already in hand, with studies to assess both systems and fuel cell stack design requirements for specific applications and to generate concept designs. Work to date has concentrated on the development of a methanol reformer, suitable for integration into a fuel cell system and on extensive testing and evaluation of the Ballard fuel cell stacks. This testing has covered a wide range of operating parameters, including different fuel and oxidant combinations. The effect of contaminants on the performance and life of the fuel cells is also under evaluation. PEM fuel cells still require a great deal of further development if they are to gain widespread commercial acceptance. A recent study conducted by VSEL in conjunction with the UK Department of Energy has addressed the fuel cell cost and performance requirements in order to both focus future research and to aid understanding of the time-scale to reach full commercialisation.

  8. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fuelingmore » infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.« less

  9. Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling

    PubMed Central

    Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758

  10. Finite state projection based bounds to compare chemical master equation models using single-cell data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Zachary; Neuert, Gregor; Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232

    2016-08-21

    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort.more » In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.« less

  11. 77 FR 66470 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... provided by grantees under the SCDTDP and monitor and drive improvement on quality measures; (2) collect... review by the Office of Management and Budget (OMB), in compliance with the Paperwork Reduction Act of... Act of 1995: Proposed Project: Sickle Cell Disease Treatment Demonstration Program-- Quality...

  12. DESIGN AND CONSTRUCTION OF DEMONSTRATION/RESEARCH WETLANDS FOR TREATMENT OF DAIRY FARM WASTEWATER

    EPA Science Inventory

    There are no constructed wetlands currently used in Oregon for treating agricultural wastes. his report discusses the construction of nine wetland cells at the Oregon State University dairy farm. hese wetlands will be used in a long-term project which will attempt to: 1) Develop ...

  13. Effects of naringin, a flavanone glycoside in grapefruits and citrus fruits, on the nigrostriatal dopaminergic projection in the adult brain

    PubMed Central

    Jung, Un Ju; Kim, Sang Ryong

    2014-01-01

    Recently, we have demonstrated the ability of naringin, a well-known flavanone glycoside of grapefruits and citrus fruits, to prevent neurodegeneration in a neurotoxin model of Parkinson's disease. Intraperitoneal injection of naringin protected the nigrostriatal dopaminergic projection by increasing glial cell line-derived neurotrophic factor expression and decreasing the level of tumor necrosis factor-alpha in dopaminergic neurons and microglia, respectively. These results suggest that naringin can impart to the adult dopaminergic neurons the ability to produce glial cell line-derived neurotrophic factor against Parkinson's disease with anti-inflammatory effects. Based on these results, we would like to describe an important perspective on its possibility as a therapeutic agent for Parkinson's disease. PMID:25317167

  14. Electrophoresis tests on STS-3 and ground control experiments - A basis for future biological sample selections

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.; Lewis, M. L.

    1982-01-01

    Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.

  15. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  16. Polymer electrolyte fuel cells: Potential transportation and stationary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1993-01-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less

  17. Polymer electrolyte fuel cells: Potential transportation and stationary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottesfeld, S.

    1993-04-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scalemore » transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.« less

  18. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior

    PubMed Central

    Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John

    2007-01-01

    Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497

  19. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringel, Steven

    This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first high performance GaAsP/Si double junction cell, the demonstration of a new method that allow for rapid, quantitative and non-destructive characterization of dislocations (ECCI-electron channeling contrast imaging), the first observation, explanation and solution of the now commonly reported lifetime degradation and recovery phenomena in III-V/Si MOCVD growth, the first demonstration of a high performance SiGe cell with a bandgap of 0.9 eV, amongst other highlights. The impact of the program on the international community has been significant. At the start of our FPACE1 project and for the immediate prior years, 1-2 conference papers/annually were presented at IEEE PVSC. Once FPACE1 commenced in 2011, related efforts sprouted across the US, Europe and Asia and by 2015 there were 26 papers presented on III-V/Si multijunctions in the 2015 PVSC, demonstrating the excitement that was stimulated by the results of this FPACE1 effort.« less

  20. North-South Corridor Demonstration Project: Ethical and Logistical Challenges in the Design of a Demonstration Study of Early Antiretroviral Treatment for Long Distance Truck Drivers along a Transport Corridor through South Africa, Zimbabwe, and Zambia

    PubMed Central

    Gomez, G. B.; Venter, W. D. F.; Lange, J. M. A.; Rees, H.; Hankins, C.

    2013-01-01

    Background. Long-distance truck drivers are at risk of acquiring and transmitting HIV and have suboptimal access to care. New HIV prevention strategies using antiretroviral drugs to reduce transmission risk (early antiretroviral therapy (ART) at CD4 count >350 cells/μL) have shown efficacy in clinical trials. Demonstration projects are needed to evaluate “real world” programme effectiveness. We present the protocol for a demonstration study to evaluate the feasibility, acceptability, and cost of an early ART intervention for HIV-positive truck drivers along a transport corridor across South Africa, Zimbabwe, and Zambia, as part of an enhanced strategy to improve treatment adherence and retention in care. Methods and Analysis. This demonstration study would follow an observational cohort of truck drivers receiving early treatment. Our mixed methods approach includes quantitative, qualitative, and economic analyses. Key ethical and logistical issues are discussed (i.e., choice of drug regimen, recruitment of participants, and monitoring of adherence, behavioural changes, and adverse events). Conclusion. Questions specific to the design of tailored early ART programmes are amenable to operational research approaches but present substantial ethical and logistical challenges. Addressing these in demonstration projects can inform policy decisions regarding strategies to reduce health inequalities in access to HIV prevention and treatment programmes. PMID:23606977

  1. Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2012-01-01

    Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.

  2. Test results for fuel cell operation on anaerobic digester gas

    NASA Astrophysics Data System (ADS)

    Spiegel, R. J.; Preston, J. L.

    EPA, in conjunction with ONSI, embarked on a project to define, design, test, and assess a fuel cell energy recovery system for application at anaerobic digester waste water (sewage) treatment plants. Anaerobic digester gas (ADG) is produced at these plants during the process of treating sewage anaerobically to reduce solids. ADG is primarily comprised of methane (57-66%), carbon dioxide (33-39%), nitrogen (1-10%), and a small amount of oxygen (<0.5%). Additionally, ADG contains trace amounts of fuel cell catalyst contaminants consisting of sulfur-bearing compounds (principally hydrogen sulfide) and halogen compounds (chlorides). The project has addressed two major issues: development of a cleanup system to remove fuel cell contaminants from the gas and testing/assessing of a modified ONSI PC25 C fuel cell power plant operating on the cleaned, but dilute, ADG. Results to date demonstrate that the ADG fuel cell power plant can, depending on the energy content of the gas, produce electrical output levels close to full power (200 kW) with measured air emissions comparable to those obtained by a natural gas fuel cell. The cleanup system results show that the hydrogen sulfide levels are reduced to below 10 ppbv and halides to approximately 30 ppbv.

  3. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity

    PubMed Central

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm2). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain. PMID:27375437

  4. Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity.

    PubMed

    Esquiva, Gema; Avivi, Aaron; Hannibal, Jens

    2016-01-01

    The blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail. Using the ganglion cell marker RNA-binding protein with multiple splicing (RBPMS) it was shown that the Spalax eye contains 890 ± 62 RGCs. Of these, 87% (752 ± 40) contain melanopsin (cell density 788 melanopsin RGCs/mm(2)). The remaining RGCs were shown to co-store Brn3a and calretinin. The melanopsin cells were located mainly in the GCL with projections forming two dendritic plexuses located in the inner part of the IPL and in the OPL. Few melanopsin dendrites were also found in the ONL. The Spalax retina is rich in rhodopsin and long/middle wave (L/M) cone opsin bearing photoreceptor cells. By using Ctbp2 as a marker for ribbon synapses, both rods and L/M cone ribbons containing pedicles in the OPL were found in close apposition with melanopsin dendrites in the outer plexus suggesting direct synaptic contact. A subset of cone bipolar cells and all photoreceptor cells contain recoverin while a subset of bipolar and amacrine cells contain calretinin. The calretinin expressing amacrine cells seemed to form synaptic contacts with rhodopsin containing photoreceptor cells in the OPL and contacts with melanopsin cell bodies and dendrites in the IPL. The study demonstrates the complex retinal circuitry used by the Spalax to detect light, and provides evidence for both melanopsin and non-melanopsin projecting pathways to the brain.

  5. New therapeutic possibilities for vein graft disease in the post-edifoligide era.

    PubMed

    Cai, Xinjiang; Freedman, Neil J

    2006-07-01

    Vein graft neointimal hyperplasia involves proliferation and migration of vascular smooth muscle cells into the vessel intima, and ultimately engenders accelerated atherosclerosis and vein graft failure. Since a myriad of stimuli provoke smooth muscle cell proliferation, molecular therapies for vein graft disease have targeted mechanisms fundamental to all cell proliferation - the 'cell-cycle' machinery. Preclinically, the most successful of these therapies has been edifoligide (E2F decoy), a double-stranded oligodeoxynucleotide that binds to the transcription factor known as E2F. Recently, PRoject of Ex vivo vein GRaft Engineering via Transfection (PREVENT) III and IV demonstrated that edifoligide failed to benefit human vein grafts employed to treat lower-extremity ischemia and coronary heart disease, respectively. The clinical failure of edifoligide calls into question previous models of vein graft disease and lends credence to recent animal studies demonstrating that vein graft arterialization substantially involves the immigration into the vein graft of a variety of vascular progenitor cells. Future vein graft disease therapies will likely target not only proliferation of graft-intrinsic cells, but also immigration of graft-extrinsic cells.

  6. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.

    PubMed

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-06-21

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown to be capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm(2) (i.e. 17.96 mm × 13.52 mm).

  7. Establishment of the Co-C Eutectic Fixed-Point Cell for Thermocouple Calibrations at NIMT

    NASA Astrophysics Data System (ADS)

    Ongrai, O.; Elliott, C. J.

    2017-08-01

    In 2015, NIMT first established a Co-C eutectic temperature reference (fixed-point) cell measurement capability for thermocouple calibration to support the requirements of Thailand's heavy industries and secondary laboratories. The Co-C eutectic fixed-point cell is a facility transferred from NPL, where the design was developed through European and UK national measurement system projects. In this paper, we describe the establishment of a Co-C eutectic fixed-point cell for thermocouple calibration at NIMT. This paper demonstrates achievement of the required furnace uniformity, the Co-C plateau realization and the comparison data between NIMT and NPL Co-C cells by using the same standard Pt/Pd thermocouple, demonstrating traceability. The NIMT measurement capability for noble metal type thermocouples at the new Co-C eutectic fixed point (1324.06°C) is estimated to be within ± 0.60 K (k=2). This meets the needs of Thailand's high-temperature thermocouple users—for which previously there has been no traceable calibration facility.

  8. Development and Application of Novel Diagnostics for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    2002-01-01

    This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.

  9. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

    PubMed

    Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R

    2011-05-25

    The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.

  10. The L1-CAM, Neuroglian, functions in glial cells for Drosophila antennal lobe development.

    PubMed

    Chen, Weitao; Hing, Huey

    2008-07-01

    Although considerable progress has been made in understanding the roles of olfactory receptor neurons (ORNs) and projection neurons (PNs) in Drosophila antennal lobe (AL) development, the roles of glia have remained largely mysterious. Here, we show that during Drosophila metamorphosis, a population of midline glial cells in the brain undergoes extensive cellular remodeling and is closely associated with the collateral branches of ORN axons. These glial cells are required for ORN axons to project across the midline and establish the contralateral wiring in the ALs. We find that Neuroglian (Nrg), the Drosophila homolog of the vertebrate cell adhesion molecule, L1, is expressed and functions in the midline glial cells to regulate their proper development. Loss of Nrg causes the disruption in glial morphology and the agenesis of the antennal commissural tract. Our genetic analysis further demonstrates that the functions of Nrg in the midline glia require its ankyrin-binding motif. We propose that Nrg is an important regulator of glial morphogenesis and axon guidance in AL development. (Copyright) 2008 Wiley Periodicals, Inc.

  11. Effect of Bioactive Materials Modified with Chondroitin Sulfate on Human MSC =

    NASA Astrophysics Data System (ADS)

    De La Torre Torres, Jessica Elizabeth

    In this project chondroitin sulfate (CS) and growth factors were studied for their effect on hMSC in biomaterials. First, the effect of these biomolecules was tested in solution. Then, two kinds of biomaterials were created: bioactive surfaces for enhancing bioactivity of implantable devices and bioactive hydrogels which can be used as 3D scaffolds for cell encapsulation and delivery. A pro-survival effect of the growth factors studied in this project (epidermal growth factor, vascular endothelial growth factor and fibroblast growth factor) was not observed when tested in solution, therefore the project further focused on CS effect only. Interestingly, CS did not affect cell growth in media containing serum, while inducing cell detachment from substrate in serum free conditions. For the bioactive surfaces construction, CS was grafted to either an amine-rich plasmapolymerized coating created on polyethylene terephthalate (PET) films (further referred as LP) or to commercial cell culture plates functionalized with amino groups. The bioactive surfaces were characterized by different techniques such as contact angle, atomic force microscopy, Orange II dye and Toluidine Blue O dye colorimetric assays (for amino group and CS quantification respectively) and finally, cell culture experiments (adhesion, growth and survival). Results confirmed the presence of CS grafted on both substrates. Commercial amine plates grafted almost five times more CS compared to LP. This rendered the surface antifouling for proteins and cells as confirmed by protein adsorption and cell culture assays. Cell culture assays on bioactive surfaces based on LP demonstrated improved cell adhesion and growth when compared to tissue culture plates or bare PET films in serum containing conditions. Chitosan based hydrogels containing CS at a concentration of 500 mug/ml resulted in a cohesive hydrogel which supported hMSC viability up to 7 days. However increasing CS concentration to high level such as 10000 mug/ml led to decrease of cell viability after 4 or 7 days, probably due to lack of porosity and water since the hydrogel precipitates upon formation and expulses water. In conclusion, this work demonstrated that CS immobilization can enhance the biological interactions of hMSC with biomaterials used for implantable devices such as PET. Further studies are needed to evaluate the possible effect of CS on hMSC differentiation and phenotype. Hydrogels with CS could be very interesting for tissue engineering applications such as cartilage formation. (Abstract shortened by ProQuest.).

  12. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  13. Gap junction-dependent homolog avoidance in the developing CNS.

    PubMed

    Baker, Michael W; Yazdani, Neema; Macagno, Eduardo R

    2013-10-16

    Oppositely directed projections of some homologous neurons in the developing CNS of the medicinal leech (Hirudo verbana), such as the AP cells, undergo a form of contact-dependent homolog avoidance. Embryonic APs extend axons within the connective nerve toward adjacent ganglia, in which they meet and form gap junctions (GJs) with the oppositely directed axons of their segmental homologs, stop growing, and are later permanently retracted (Wolszon et al., 1994a,b). However, early deletion of an AP neuron leads to resumed growth and permanent maintenance of the projections of neighboring APs. Here we test the hypothesis that a GJ-based signaling mechanism is responsible for this instance of homolog avoidance. We demonstrate that selective knockdown of GJ gene Hve-inx1 expression in single embryonic APs, by expressing a short-hairpin interfering RNA, leads to continued growth of the projections of the cell toward, into, and beyond adjacent ganglia. Moreover, the projections of the APs in adjacent ganglia also resume growth, mimicking their responses to cell deletion. Continued growth was also observed when two different INX1 mutant transgenes that abolish dye coupling between APs were expressed. These include a mutant transgene that effectively downregulates all GJ plaques that include the INX1 protein and a closed channel INX1 mutant that retains the adhesive cellular binding characteristic of INX1 GJs but not the open channel pore function. Our results add GJ intercellular communication to the list of molecular signaling mechanisms that can act as mediators of growth-inhibiting cell-cell interactions that define the topography of neuronal arbors.

  14. Interband Cascade Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamentalmore » aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.« less

  15. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory

    PubMed Central

    Uematsu, Akira; Tan, Bao Zhen

    2015-01-01

    Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494

  16. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartley, Laura; Wu, Y.; Zhu, L.

    Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other transcription factors from the rice gene network. Eight of fifteen (53%) of these have not previously been examined for this function. Some of these may represent novel grass-diverged cell wall regulators, while others are likely to have this function across angiosperms. A parallel effort of this project to expand knowledge of enzymes that have evolved to function in grass cell wall synthesis, revealed that a grass-diverged enzyme in rice, OsAT 5, ferulates monolignols that are naturally incorporated into grass cell walls. This finding opens potential natural selection avenues for improving biomass composition for downstream processing by weak base pretreatment. Thus, this project has significantly expanded knowledge of cell wall synthesis and regulation in rice, information that can be used in reverse genetics and synthetic biology approaches to re-engineer cell walls for improved production of biofuel and high-value products. To lay the foundation for translating these results directly for switchgrass improvement, the project employed a comparative phylogenetic analysis of the major group of cell wall transcription factors that have been found to function in cell wall regulation, the R 2R 3 MYBs. This analysis concluded that known cell wall regulators are largely conserved across switchgrass, rice, maize, poplar, and Arabidopsis. This interpretation is also largely consistent with the gene network analysis described above, though both approaches provide evidence that some co-orthologs of Arabidopsis regulators have diminished or increased in importance based on gene expression patterns. Also, several clades containing dicot cell wall regulators have expanded, consistent with the evolution of new cell wall regulators. This latter result is supported by functional analysis of the R 2R 3 MYB protein SWAM 1 in a collaboration between this project and the DOE-funded group of Dr. S. Hazen at the University of Massachusettes. The curation of the switchgrass genome through this project provides specific targets for future engineering of switchgrass cell wall regulation and may also facilitate identification of regulators that underlie the molecular markers that are genetically linked to differences in cell wall quality. With the goal of spurring further research and technological developments in lignocellulosic biofuel production, this work has been communicated to the bioenergy and cell wall communities though various presentations and publications. To date, three manuscripts have been published, two others are near to publication, three others are in an advanced state, and two to four more are likely to be written based on analyses still in progress. In addition, project participants have presented thirteen posters and talks at regional, national, and international meetings about aspects of this project. In sum, the work supported by this funding has made and communicated significant progress in identifying the genes that grasses use for cell wall synthesis and regulation, information that will be used by project participants and others to improve the efficiency of conversion of lignocellulosic biomass to biofuels.« less

  17. The Cosmetics Europe strategy for animal-free genotoxicity testing: project status up-date.

    PubMed

    Pfuhler, S; Fautz, R; Ouedraogo, G; Latil, A; Kenny, J; Moore, C; Diembeck, W; Hewitt, N J; Reisinger, K; Barroso, J

    2014-02-01

    The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests: The completed "False Positives" project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures. The on-going "3D skin model" project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages. The completed "Metabolism" project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure. The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Portable Cell Maintenance System for Rapid Toxicity Monitoring Final Report CRADA No. TC-02081-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, S.; Zhou, P.

    The Phase I STTR research project was targeted at meeting the objectives and requirements stated in STTR solicitation A04-T028 for a Portable Cell Maintenance System for Rapid Toxicity Monitoring. In accordance with the requirements for STTR programs, collaboration was formed between a small business, Kionix, Inc., and The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL). The collaboration included CytoDiscovery, Inc. (CDI) which, in collaboration with Kionix, provided access to membrane chip technology and provided program support and coordination. The objective of the overall program (excerpted from the original solicitation) was: “To develop a small, portable cellmore » maintenance system for the transport, storage, and monitoring of viable vertebrate cells and tissues.” The goal of the Phase I project was to demonstrate the feasibility of achieving the program objectives utilizing a system comprised of a small-size, microfluidic chip-based cell maintenance cartridge (CMC) and a portable cell maintenance system (CMS) capable of housing a minimum of four CMCs. The system was designed to be capable of optimally maintaining multiple vertebrate cell types while supporting a wide variety of cellular assays.« less

  19. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The positions will provide excellent training opportunities in mucosal immunology.  The ideal candidates must be able to work independently and have demonstrated abilities in clear scientific project planning and reporting.  Experience in multiparameter flow cytometry, gene expression analysis, intestinal cell isolation, and mouse models of disease is desirable.  One position

  20. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Marcie

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  1. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  2. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  3. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical to understanding how local processing in V1 relates to downstream processing. We have identified the local circuits of a population of cells in V1 layer (L)4B that project to area V2. These cells' local circuits differ from classical descriptions of L4B circuits in both the laminar and functional compartments targeted by their axons, and identify two neuron classes. Our results demonstrate that both local intra-V1 and extrinsic V1-to-V2 connections of L4B neurons preserve CO-stream segregation, suggesting that across-stream integration occurs downstream of V1, and that output targets dictate local V1 circuitry. PMID:28077720

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimatelymore » provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.« less

  5. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages.

    PubMed

    da Silva, Bruno José Martins; Rodrigues, Ana Paula D; Farias, Luis Henrique S; Hage, Amanda Anastácia P; Do Nascimento, Jose Luiz M; Silva, Edilene O

    2014-10-03

    The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent.

  6. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages

    PubMed Central

    2014-01-01

    Background The bone marrow is a hematopoietic tissue that, in the presence of cytokines and growth factors, generates all of the circulating blood cells. These cells are important for protecting the organism against pathogens and for establishing an effective immune response. Previous studies have shown immunomodulatory effects of different products isolated from plant extracts. This study aimed to evaluate the immunomodulatory properties of aqueous Physalis angulata (AEPa) extract on the differentiation of bone marrow cells. Results Increased cellular area, higher spreading ability and several cytoplasmatic projections were observed in the treated cells, using optical microscopy, suggesting cell differentiation. Furthermore, AEPa did not promote the proliferation of lymphocytes and polymorphonuclear leukocytes, however promotes increased the number of macrophages in the culture. The ultrastructural analysis by Transmission Electron Microscopy of treated cells showed spreading ability, high number of cytoplasmatic projections and increase of autophagic vacuoles. Moreover, a high level of LC3b expression by treated cells was detected by flow cytometry, suggesting an autophagic process. Cell surface expression of F4/80 and CD11b also indicated that AEPa may stimulate differentiation of bone marrow cells mainly into macrophages. In addition, AEPa did not differentiate cells into dendritic cells, as assessed by CD11c analysis. Furthermore, no cytotoxic effects were observed in the cells treated with AEPa. Conclusion Results demonstrate that AEPa promotes the differentiation of bone marrow cells, particularly into macrophages and may hold promise as an immunomodulating agent. PMID:25281406

  7. Shh/Boc Signaling Is Required for Sustained Generation of Ipsilateral Projecting Ganglion Cells in the Mouse Retina

    PubMed Central

    Sánchez-Camacho, Cristina; Carreres, M. Isabel; Herrera, Eloisa; Okada, Ami; Bovolenta, Paola

    2013-01-01

    Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc−/− mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc−/− VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos. Consistent with this observation, organization of retinal projections at the dorsallateral geniculate nucleus is altered in Boc−/− mice. Analyses of the molecular and cellular consequences of introducing Shh into the developing VTC and Zic2 and Boc into the central retina indicate that Boc expression alone is in sufficient to fully activate the ipsilateral program and that Zic2 regulates Shh expression. Taking these data together, we propose that expression of Boc in cells from the VTC is required to sustain Zic2 expression, likely by regulating the levels of Shh signaling from the nearby cRGCs. Zic2, in turn, directly or indirectly, counteracts Shh and Islet2 expression in the VTC and activates the ipsilateral program. PMID:23678105

  8. Photovoltaic research and development in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  9. Automated array assembly task development of low-cost polysilicon solar cells

    NASA Technical Reports Server (NTRS)

    Jones, G. T.

    1980-01-01

    Development of low cost, large area polysilicon solar cells was conducted in this program. Three types of polysilicon materialk were investigated. A theoretical and experimenal comparison between single crystal silicon and polysilicon solar cell efficiency was performed. Significant electrical performance differences were observed between types of wafer material, i.e. fine grain and coarse grain polysilicon and single crystal silicon. Efficiency degradation due to grain boundaries in fin grain and coarse grain polysilicon was shown to be small. It was demonstrated that 10 percent efficient polysilicon solar cells can be produced with spray on n+ dopants. This result fulfills an important goal of this project, which is the production of batch quantity of 10 percent efficient polysilicon solar cells.

  10. Experimental comparison of MCFC performance using three different biogas types and methane

    NASA Astrophysics Data System (ADS)

    Bove, Roberto; Lunghi, Piero

    Biogas recovery is an environmentally friendly and cost-effective practice that is getting consensus in both the scientific and industrial community, as the growing number of projects demonstrate. The use of fuel cells as energy conversion systems increases the conversion efficiency, as well as the environmental benefits. Molten carbonate fuel cells (MCFC) operate at a temperature of about 650 °C, thus presenting a high fuel flexibility, compared to low temperature fuel cells. Aim of the present study is to compare the performance of an MCFC single cell, fuelled with different biogas types as well as methane. The biogases considered are derived from the following processes: (1) steam gasification in an entrained flow gasifier; (2) steam gasification in a duel interconnect fluidized bed gasifier; (3) biogas from an anaerobic digestion process. The performances are evaluated for different fuel utilization and current densities. The results are an essential starting point for a complete system design and demonstration.

  11. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    PubMed

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Modelling of the production of gaseous by-products in anaerobic digestion.

    PubMed

    Strik, D P; Domnanovich, A M; Pfeiffer, B; Karlovitz, M; Zani, L; Braun, R; Holubar, P

    2003-01-01

    Goal of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Processes Behaviour towards Biogas Usage in Fuel Cells) is demonstration of the practical use of biogas in fuel cells. The right precondition is a biogas quality which fits into the fuel cells tolerances. Therefore the mission of the workgroup Environmental biotechnology is to control anaerobic digestion in a way that production of potential harmful by-products for fuel cells is reduced. A good understanding of the production of these by products is essential for an applicable decision support tool. This poster presents the modelling of hydrogen sulfide by means of hierarchical neural networks and a classical mathematical method.

  13. Validation of an Integrated Hydrogen Energy Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydorn, Edward C

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). Build on the experiencemore » gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. Maintain safety as the top priority in the system design and operation. Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.« less

  14. Recovery Act: Demonstration of a SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessette, Norman

    The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less

  15. Restoration of vision after transplantation of photoreceptors.

    PubMed

    Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R

    2012-05-03

    Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.

  16. 2013: A Year in Space

    NASA Image and Video Library

    2014-01-24

    2013 was a big year for Ames Research Center's space exploration programs, including several new launches, and continuing a long history of cutting-edge innovations. Projects listed include: LADEE, IRIS, Kepler, PhoneSat, TechEdSat, NLAS, K10 Rover, Seedling Growth-1, Cell Biology Tech Demonstration, ADEPT, Spaceloft 7 and 8, CheMin, MSL, MRO, Bion-M1, Pioneer 11.

  17. COMBINED LABORATORY/FIELD STUDY ON THE USE OF NITRATE FOR IN SITU BIOREMEDIATION OF A FUEL-CONTAMINATED AQUIFER

    EPA Science Inventory

    A pilot demonstration project was conducted at Eglin Air Force Base, FL, to compare the extent of bioremediation of a fuel-contaminated aquifer using sprinkler application with and without nitrate addition on two adjacent 30 m x 30 m cells. Target compound groups included both B...

  18. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing

    PubMed Central

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook

    2017-01-01

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. SIGNIFICANCE STATEMENT Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and behavioral reinforcement. PMID:28053028

  19. EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breen, B.J.; Garcia-Sineriz, J.L.; Maurer, H.

    2012-07-01

    Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out atmore » underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring programmes. It is also planned, as part of the MoDeRn programme of stakeholder engagement to show some of these monitoring demonstrations to lay stakeholders in order to receive their feed-back on the approach taken and their views on the value of this work. This feedback will help improve our understanding of how this work and future work on monitoring can be more effectively communicated. (authors)« less

  20. Design and manufacture of solid ZrO2 electrolyte

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The following project assignment was given to the students: 'design and build a suitable YSZ solid electrolyte cell. Describe advantages of the design and fabrication method. Finally, to the limits of available resources, fabricate the design. Explain why it would be superior to other designs.' Clemson University students definitely benefitted from this experience with USRA/NASA. The challenge that this project gave the students was both exciting and attention-getting. Students spent far more time per credit hour on this project than on their other course. This project advanced the art of making efficient oxygen generators as well. Clemson students are now well on the way to designing a solid electrolyte with a large active surface area and comparatively small volume. Previous devices have had to endure the limitation of using only simple shapes such as tubes. The results of this project have demonstrated that better configurations are not only possible but practical.

  1. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs.

    PubMed

    Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S

    2014-10-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.

  2. The pore of the leaf cavity of Azolla species: teat cell differentiation and cell wall projections.

    PubMed

    Veys, P; Lejeune, A; Van Hove, C

    2002-02-01

    The differentiation of the specialized secretory teat cells of the leaf cavity pore of Azolla species was investigated at the ultrastructural level with emphasis on their peculiar cell wall projections. The results indicated that the projections are formed as soon as the teat cells complete their differentiation and that their production is principally associated with changes in endoplasmic reticulum profiles. The number of projections increases with the teat cell age and is stimulated under salt and P deficiency stresses. Salt stress also promotes their emergence on Azolla species that under normal conditions do not produce projections. Cytochemical tests on different Azolla species showed that the projection composition is almost identical: proteins, acidic polysaccharides, and pectin are always detected. This study revealed that Azolla teat cell projections differ fundamentally from other types of hitherto described cell wall projections that are considered as remnant structures from cell separation. In contrast, in Azolla teat cells projections are actively produced and compounds are excreted by an exocytotic mechanism. The possible role of the projections in the symbiosis of Azolla spp. with Anabaena azollae is discussed.

  3. Correlation of physical and genetic maps of human chromosome 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  4. Correlation of physical and genetic maps of human chromosome 16. Annual progress report, October 1, 1990--July 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, G.R.

    1991-12-31

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentiallymore » 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.« less

  5. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage

    PubMed Central

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D.; Almeida, Maria; O’Brien, Charles A.

    2016-01-01

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation. PMID:27064143

  6. Neutron Tomography of a Fuel Cell: Statistical Learning Implementation of a Penalized Likelihood Method

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.

    2013-10-01

    At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.

  7. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, David L.; Sleiti, Ahmad

    2011-09-19

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less

  8. Experimental Microfluidic System

    NASA Technical Reports Server (NTRS)

    Culbertson, Christopher; Gonda, Steve; Ramsey, John Michael

    2005-01-01

    The ultimate goal of this project is to integrate microfluidic devices with NASA's space bioreactor systems. In such a system, the microfluidic device would provide realtime feedback control of the bioreactor by monitoring pH, glucose, and lactate levels in the cell media; and would provide an analytical capability to the bioreactor in exterrestrial environments for monitoring bioengineered cell products and health changes in cells due to environmental stressors. Such integrated systems could be used as biosentinels both in space and on planet surfaces. The objective is to demonstrate the ability of microfabricated devices to repeatedly and reproducibly perform bead cytometry experiments in micro, lunar, martian, and hypergravity (1.8g).

  9. Silicon-on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Brian David; Houchins, Cassidy; Huya-Kouadio, Jennie Moton

    The Fuel Cell Technologies Office (FCTO) has identified hydrogen storage as a key enabling technology for advancing hydrogen and fuel cell power technologies in transportation, stationary, and portable applications. Consequently, FCTO has established targets to chart the progress of developing and demonstrating viable hydrogen storage technologies for transportation and stationary applications. This cost assessment project supports the overall FCTO goals by identifying the current technology system components, performance levels, and manufacturing/assembly techniques most likely to lead to the lowest system storage cost. Furthermore, the project forecasts the cost of these systems at a variety of annual manufacturing rates to allowmore » comparison to the overall 2017 and “Ultimate” DOE cost targets. The cost breakdown of the system components and manufacturing steps can then be used to guide future research and development (R&D) decisions. The project was led by Strategic Analysis Inc. (SA) and aided by Rajesh Ahluwalia and Thanh Hua from Argonne National Laboratory (ANL) and Lin Simpson at the National Renewable Energy Laboratory (NREL). Since SA coordinated the project activities of all three organizations, this report includes a technical description of all project activity. This report represents a summary of contract activities and findings under SA’s five year contract to the US Department of Energy (Award No. DE-EE0005253) and constitutes the “Final Scientific Report” deliverable. Project publications and presentations are listed in the Appendix.« less

  11. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less

  12. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Jie; Minh, Nguyen

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuelmore » cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.« less

  13. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    Pathways involved in the cutaneous trunci muscle (CTM) reflex in the cat were investigated. Experimental animals were injected with tritium-labeled L-leucine into their spinal cord, brain stem, or diencephalon and, after six weeks, perfused with 10-percent formalin. The brains and spinal cords were postfixed in formalin and were cut into transverse 25-micron-thick frozen sections for autoradiography. Results based on injections in the C1, C2, C6, and C8 segments suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do no exist, although these propriospinal projections are very strong to all other motoneuronal cell groups surrounding the CTM motor nucleus. The results also demonstrate presence of specific supraspinal projections to the CTM motor nucleus, originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum.

  14. Large basolateral processes on type II hair cells comprise a novel processing unit in mammalian vestibular organs

    PubMed Central

    Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.

    2014-01-01

    Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750

  15. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hameed A. Naseem, Husam H. Abu-Safe

    2007-02-09

    The purpose of this project was to investigate metal-induced crystallization of amorphous silicon at low temperatures using excitation sources such as laser and rapid thermal annealing, as well as, electric field. Deposition of high quality crystalline silicon at low temperatures allows the use of low cost soda-lime glass and polymeric films for economically viable photovoltaic solar cells and low cost large area flat panel displays. In light of current and expected demands on Si supply due to expanding use of consumer electronic products throughout the world and the incessant demand for electric power the need for developing high grade Simore » thin films on low cost substrate becomes even more important. We used hydrogenated and un-hydrogenated amorphous silicon deposited by plasma enhanced chemical vapor deposition and sputtering techniques (both of which are extensively used in electronic and solar cell industries) to fabricate nano-crystalline, poly-crystalline (small as well as large grain), and single-crystalline (epitaxial) films at low temperatures. We demonstrated Si nanowires on flat surfaces that can be used for fabricating nanometer scale transistors. We also demonstrated lateral crystallization using Al with and without an applied electric field. These results are critical for high mobility thin film transistors (TFT) for large area display applications. Large grain silicon (~30-50 µm grain size for < 0.5 µm thick films) was demonstrated on glass substrates at low temperatures. We also demonstrated epitaxial growth of silicon on (100) Si substrates at temperatures as low as 450°C. Thin film Si solar cells are being projected as the material of choice for low cost high efficiency solar cells when properly coupled with excellent light-trapping schemes. Ar ion laser (CW) was shown to produce dendritic nanowire structures at low power whereas at higher powers yielded continuous polycrystalline films. The power density required for films in contact with Al was demonstrated to be at least two orders of magnitude lower that that reported in the literature before. Polysilicon was successfully achieved on polyimide (Kapton©) films. Thin film Si solar cells on lightweight stoable polymer offer great advantage for terrestrial and space power applications. In summary we have demonstrated through this research the viability of producing low cost nano-, poly-, and epitaxial Si material on substrates of choice for applications in economically viable environmentally friendly sustainable solar power systems. This truly enabling technology has widespread applications in multibillion dollar electronic industry and consumer products.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska wasmore » approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  17. Aluminum-oxygen batteries for space applications

    NASA Technical Reports Server (NTRS)

    Niksa, Marilyn J.; Wheeler, Douglas J.

    1987-01-01

    An aluminum oxygen fuel cell is under development. Several highly efficient cell designs were constructed and tested. Air cathodes catalyzed with cobalt tetramethoxy porphorin have demonstrated more than 2000 cycles in intermittant use conditions. Aluminum alloys have operated at 4.2 kWH/kg at 200 mA/sq cm. A novel separator device, an impeller fluidizer was coupled with the battery to remove the solid hydrargillite discharge product. A 60 kW, 720 kWH battery system is projected to weigh about 2200 lbs., for an energy density of 327 WH lb.

  18. BAIT: Organizing genomes and mapping rearrangements in single cells.

    PubMed

    Hills, Mark; O'Neill, Kieran; Falconer, Ester; Brinkman, Ryan; Lansdorp, Peter M

    2013-01-01

    Strand-seq is a single-cell sequencing technique to finely map sister chromatid exchanges (SCEs) and other rearrangements. To analyze these data, we introduce BAIT, software which assigns templates and identifies and localizes SCEs. We demonstrate BAIT can refine completed reference assemblies, identifying approximately 21 Mb of incorrectly oriented fragments and placing over half (2.6 Mb) of the orphan fragments in mm10/GRCm38. BAIT also stratifies scaffold-stage assemblies, potentially accelerating the assembling and finishing of reference genomes. BAIT is available at http://sourceforge.net/projects/bait/.

  19. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  20. Raman Life Detection Instrument Development for Icy Worlds

    NASA Technical Reports Server (NTRS)

    Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.

    2017-01-01

    The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.

  1. In vivo fluorescence lifetime optical projection tomography

    PubMed Central

    McGinty, James; Taylor, Harriet B.; Chen, Lingling; Bugeon, Laurence; Lamb, Jonathan R.; Dallman, Margaret J.; French, Paul M. W.

    2011-01-01

    We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherently ratiometric method, in conjunction with OPT results in a quantitative 3-D tomographic technique that could be used as a robust method for in vivo biological and pharmaceutical research, for example as a readout of Förster resonance energy transfer based interactions. PMID:21559145

  2. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  3. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan

    2002-01-01

    Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling

  4. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  5. Progress in the Development of Metamorphic Multi-Junction III-V Space-Solar Cells at Essential Research Incorporated

    NASA Technical Reports Server (NTRS)

    Sinharoy, Samar; Patton, Martin O.; Valko, Thomas M., Sr.; Weizer, Victor G.

    2002-01-01

    Theoretical calculations have shown that highest efficiency III-V multi-junction solar cells require alloy structures that cannot be grown on a lattice-matched substrate. Ever since the first demonstration of high efficiency metamorphic single junction 1.1 eV and 1.2 eV InGaAs solar cells by Essential Research Incorporated (ERI), interest has grown in the development of multi-junction cells of this type using graded buffer layer technology. ERI is currently developing a dual-junction 1.6 eV InGaP/1.1 eV InGaAs tandem cell (projected practical air-mass zero (AM0), one-sun efficiency of 28%, and 100-sun efficiency of 37.5%) under a Ballistic Missile Defense Command (BMDO) SBIR Phase II program. A second ongoing research effort at ERI involves the development of a 2.1 eV AlGaInP/1.6 eV InGaAsP/1.2 eV InGaAs triple-junction concentrator tandem cell (projected practical AM0 efficiency of 36.5% under 100 suns) under a SBIR Phase II program funded by the Air Force. We are in the process of optimizing the dual-junction cell performance. In case of the triple-junction cell, we have developed the bottom and the middle cell, and are in the process of developing the layer structures needed for the top cell. A progress report is presented in this paper.

  6. AEA Cell-Bypass-Switch Activation: An Update

    NASA Technical Reports Server (NTRS)

    Keys, Denney; Rao, Gopalakrishna M.; Wannemacher, Harry

    2002-01-01

    The objectives of this project included the following: (1) verify the performance of AEA cell bypass protection device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration; (2) assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD; and (3) confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy). The nominal performance of AEA CBPD under flight operating conditions (vacuum except zero-G, and high impedance cell) has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). The formation of a continuous low impedance path (a homogeneous low melting point alloy) has been confirmed.

  7. Vascular biology in altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.

    2005-10-01

    The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.

  8. Direct 3D-printing of cell-laden constructs in microfluidic architectures.

    PubMed

    Liu, Justin; Hwang, Henry H; Wang, Pengrui; Whang, Grace; Chen, Shaochen

    2016-04-21

    Microfluidic platforms have greatly benefited the biological and medical fields, however standard practices require a high cost of entry in terms of time and energy. The utilization of three-dimensional (3D) printing technologies has greatly enhanced the ability to iterate and build functional devices with unique functions. However, their inability to fabricate within microfluidic devices greatly increases the cost of producing several different devices to examine different scientific questions. In this work, a variable height micromixer (VHM) is fabricated using projection 3D-printing combined with soft lithography. Theoretical and flow experiments demonstrate that altering the local z-heights of VHM improved mixing at lower flow rates than simple geometries. Mixing of two fluids occurs as low as 320 μL min(-1) in VHM whereas the planar zigzag region requires a flow rate of 2.4 mL min(-1) before full mixing occurred. Following device printing, to further demonstrate the ability of this projection-based method, complex, user-defined cell-laden scaffolds are directly printed inside the VHM. The utilization of this unique ability to produce 3D tissue models within a microfluidic system could offer a unique platform for medical diagnostics and disease modeling.

  9. 76 FR 12081 - Notice of Two-Year Continuation of Disease Management Demonstration Project for TRICARE Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Management Demonstration Project for TRICARE Standard Beneficiaries AGENCY: Department of Defense. ACTION: Notice of Two-Year Continuation of Disease Management Demonstration Project for TRICARE Standard... System (MHS) demonstration project entitled ``Disease Management Demonstration Project for TRICARE...

  10. Direct glass bonded high specific power silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Rand, J. A.; Cummings, J. R.; Lampo, S. M.; Shreve, K. P.; Barnett, Allen M.

    1991-01-01

    A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications.

  11. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken; Weldeab, Asmerom; Fagnani, Dan

    Organic solar cells have the potential to offer low-cost solar energy conversion due to low material costs and compatibility with low-temperature and high throughput manufacturing processes. This project aims to further improve the efficiency of organic solar cells by applying a previously demonstrated molecular self-assembly approach to longer-wavelength light-absorbing organic materials. The team at the University of Florida designed and synthesized a series of low-bandgap organic semiconductors with functional hydrogen-bonding groups, studied their assembly characteristics and optoelectronic properties in solid-state thin film, and fabricated organic solar cells using solution processing. These new organic materials absorb light up 800 nm wavelength,more » and provide a maximum open-circuit voltage of 1.05 V in the resulted solar cells. The results further confirmed the effectiveness in this approach to guide the assembly of organic semiconductors in thin films to yield higher photovoltaic performance for solar energy conversion. Through this project, we have gained important understanding on designing, synthesizing, and processing organic semiconductors that contain appropriately functionalized groups to control the morphology of the organic photoactive layer in solar cells. Such fundamental knowledge could be used to further develop new functional organic materials to achieve higher photovoltaic performance, and contribute to the eventual commercialization of the organic solar cell technology.« less

  12. NASA Space Radiation Program Integrative Risk Model Toolkit

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  13. European opportunities for fuel cell commercialisation

    NASA Astrophysics Data System (ADS)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    The European electricity market is changing. This paper will look at the background to power generation in Europe and highlight the recent factors which have entered the market to promote change. The 1990s seem to offer great possibilities for fuel cell commercialisation. Awareness of environmental problems has never been greater and there is growing belief that fuel cell technology can contribute to solving some of these problems. Issues which have caused the power industry in Europe to re-think its methods of generation include: concern over increasing carbon dioxide emissions and their contribution to the greenhouse effect; increasing SO x and NO x emissions and the damage cause by acid rain; the possibility of adverse effects on health caused by high voltage transmission lines; environmental restrictions to the expansion of hydroelectric schemes; public disenchantment with nuclear power following the Chernobyl accident; avoidance of dependence on imported oil following the Gulf crisis and a desire for fuel flexibility. All these factors are hastening the search for clean, efficient, modular power generators which can be easily sited close to the electricity consumer and operated using a variety of fuels. It is not only the power industry which is changing. A tightening of the legislation concerning emissions from cars is encouraging European auto companies to develop electric vehicles, some of which may be powered by fuel cells. Political changes, such as the opening up of Eastern Europe will also expand the market for low-emission, efficient power plants as attempts are made to develop and clean up that region. Many Europeans organisations are re-awakening their interest, or strengthening their activities, in the area of fuel cells because of the increasing opportunities offered by the European market. While some companies have chosen to buy, test and demonstrate Japanese or American fuel cell stacks with the aim of gaining operational experience and developing European sub-systems, others have chosen to develop their own novel cell technology. This paper will survey the extent of the fuel cell activities in Europe and emphasise the particular markets which fuel cell manufacturers are targeting. Demand for fuel cells in defence and military applications will be the first sector to be commercially viable — European companies such as Siemens, Elenco and VSEL are already marketing AFC or PEM systems for naval and aerospace applications. The small-scale CHP sector is also a likely early market for fuel cell plant. Co-generation fuel cells are of great interest to gas companies like ENAGAS and British Gas looking to promote sales of gas by installing on-site gas-fired generators on their customers' premises. The market for utility scale fuel cell plants is expected to develop later in the decade. The largest demonstration planned for Europe is the 1 MW PAFC for Milan, due to come onstream in 1992. MBB GmbH is considering developing MW-scale MCFC plants with the US company ERC — a 2 MW demonstration is planned for the end of 1993. The potential market for utility fuel cells is large — installation rates could reach 500-1000 MW/year by the turn of the century. Fuel cells will probably not achieve significant use in transport applications in Europe until after the turn of the century unless very stringent emissions legislation for vehicles is introduced. The likely early markets for fuel cells in the transport sector seem to be for delivery and fleet vehicles. Examples of European projects in this area include the Amsterdam city bus project which will use Elenco's AFC technology and Siemens' fork lift truck which will incorporate a PEM fuel cell. Fuel cells also link conveniently with renewable energy systems — coupled with an electrolyser a fuel cell can store solar, wind or wave power. The electrolysis proces is used to generate hydrogen from water at times of surplus energy while the fuel cell consumes hydrogen fuel when demand for power exceeds supply. The SWB solar hydrogen project in Germany is testing PAFC and AFC stacks in this application. Several problems remain before fuel cell technology can fulfil its maximum potential market. For PAFC there is a need to reduce plant capital costs and to verify lifetimes and reliability. KTI's 25 kW demonstration at Delft and the Milan 1 MW plant will increase European knowledge and experience of PAFC plant operation. For MCFC there are materials problems to be solved and work needs to be carried out on the best way to scale up plants. Projects underway in the Netherlands, Germany, Italy and elsewhere should bring Europe to the forefront of MCFC technology. SOFC requires further study in the area of design configurations and fabrication techniques. Research on these aspects is underway in Denmark, Switzerland, Germany, the Netherlands and the UK. For PEM technology work on reducing precious metal loadings and selecting the best polymer membrane is required — an area in which Johnson Matthey is involved. For all fuel cell technologies there needs to be a greater awareness among power suppliers, consumers, legislators and environmentalists of the advantages that fuel cells can offer. The increase in activity among European organisations in developing, demonstrating, testing and optimising fuel cell systems will encourage a greater awareness of the technology and bring commercialisation closer to reality.

  14. 5 CFR 470.305 - Submission of proposals for demonstration projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.305 Submission of proposals for demonstration projects. (a) OPM...

  15. Large area silicon sheet by EFG

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.

    1982-01-01

    Work carried out on the JPL Flat Plate Solar Array Project, for the purpose of developing a method for silicon ribbon production by Edge-defined Film-fed Growth (EEG) for use as low-cost substrate material in terrestrial solar cell manufacture, is described. A multiple ribbon furnace unit that is designed to operate on a continuous basis for periods of at least one week, with melt replenishment and automatic ribbon width control, and to produce silicon sheet at a rate of one square meter per hour, was constructed. Program milestones set for single ribbon furnace operation to demonstrate basic EEG system capabilities with respect to growth speed, thickness and cell performance were achieved for 10 cm wide ribbon: steady-state growth at 4 cm/min and 200 micron thickness over periods of an hour and longer was made routine, and a small area cell efficiency of 13+% demonstrated. Large area cells of average efficiency of 10 to 11%, with peak values of 11 to 12% were also achieved. The integration of these individual performance levels into multiple ribbon furnace operation was not accomplished.

  16. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  17. Coarse-grained hydrodynamics from correlation functions

    NASA Astrophysics Data System (ADS)

    Palmer, Bruce

    2018-02-01

    This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.

  18. New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, Earl; Topping, Chris; Morgan, Brad

    Hydrogen fuel cells are currently one of the more promising long term alternative energy options and out of the range of fuel cell technologies under development, proton exchange membranes [PEMs] have the advantage of being able to deliver high power density at relatively low operating temperatures. This is essential for systems such as fuel cell vehicles (FCV) and many stationary applications that undergoing frequent on/off cycling. One of the biggest challenges for PEM systems is the need to maintain a high level of hydration in the cell to enable efficient conduction of protons from the anode to the cathode. Inmore » addition to significant power loss, low humidity conditions lead to increased stress on the membranes which can result in both physical and chemical degradation. Therefore, an effective fuel cell humidifier can be critical for the efficient operation and durability of the system under high load and low humidity conditions. The most common types of water vapor transport (WVT) devices are based on water permeable membrane based separators. Successful membranes must effectively permeate water vapor while restricting crossover of air, and be robust to the temperature and humidity fluctuations experienced in fuel cell systems. DOE sponsored independent evaluations indicate that balance of plant components, including humidification devices, make up more than half of the cost of current automotive fuel cell systems. Despite its relatively widespread us in other applications, the current industry standard perfluorosulfonic acid based Nafion® remains expensive compared with non-perfluorinated polymer membranes. During Phase II of this project, we demonstrated the improved performance of our semi-fluorinated perfluorocyclobutyl polymer based membranes compared with the current industry standard perfluorosulfonic acid based Nafion®, at ~ 50% lower cost. Building on this work, highlights of our Phase IIB developments, in close collaboration with leading global automotive component supplier Dana Holding Corporation include: • Development of a lower cost series of ionomers, with reduced synthetic steps and purification requirements and improved scale-ability, while maintaining performance advantages over Nafion® demonstrated during Phase II. • Demonstration of efficient, continuous production of down-selected WVT membrane configurations at commercial continuous roll coating facilities. We see no major issues producing Tetramer supported WVT membranes on a large commercial scale. • Following the production and testing of three prototype humidifier stacks, a full size humidifier unit was manufactured and successfully tested by an automotive customer for performance and durability. • Assuming the availability of a reasonably priced support, our cost projections for mid to large scale production of Tetramer WVT membranes are within the acceptable range of the leading automotive manufacturers and at a large scale, our calculations based on bulk sourcing of raw materials indicate we can achieve the project goal of $25/m2.« less

  19. Multiphoton-generated localized electron plasma for membrane permeability modification in single cells

    NASA Astrophysics Data System (ADS)

    Merritt, T.; Leblanc, M.; McMillan, J.; Westwood, J.; Khodaparast, G. A.

    2014-03-01

    Successful incorporation of a specific macromolecule into a single cell would be ideal for characterizing trafficking dynamics through plasmodesmata or for studying intracellular localizations. Here, we demonstrate NIR femtosecond laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into living cells of Arabidopsis thaliana seedling stems. Based on the reactions of fluorescing vacuoles of transgenic cells and artificial cell walls comprised of nanocellulose, laser intensity and exposure time were adjusted to avoid deleterious effects. Using these plant-tailored laser parameters, cells were injected with the fluorophores and long-term dye retention was observed, all while preserving vital cell functions. This method is ideal for studies concerning cell-to-cell interactions and potentially paves the way for introducing transgenes to specific cells. This work was supported by NSF award IOS-0843372 to JHW, with additional support from and U.S. Department of Agriculture Hatch Project no. 135997, and by the Institute of Critical Technology and Applied Sciences (ICTAS) at Virginia Tech.

  20. Ultrasonic seam welding on thin silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.

    1982-01-01

    The ultrathin silicon solar cell has progressed to where it is a serious candidate for future light weight or radiation tolerant spacecraft. The ultrasonic method of producing welds was found to be satisfactory. These ultrathin cells could be handled without breakage in a semiautomated welding machine. This is a prototype of a machine capable of production rates sufficiently large to support spacecraft array assembly needs. For comparative purposes, this project also welded a variety of cells with thicknesses up to 0.23 mm as well as the 0.07 mm ultrathin cells. There was no electrical degradation in any cells. The mechanical pull strength of welds on the thick cells was excellent when using a large welding force. The mechanical strength of welds on thin cells was less since only a small welding force could be used without cracking these cells. Even so, the strength of welds on thin cells appears adequate for array application. The ability of such welds to survive multiyear, near Earth orbit thermal cycles needs to be demonstrated.

  1. 76 FR 80907 - TRICARE Prime Urgent Care Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Prime Urgent Care Demonstration Project....S. Code, section 1092, entitled Department Of Defense TRICARE Prime Urgent Care Demonstration Project. The demonstration project is intended to test whether allowing four visits to an urgent care...

  2. Applications of Parallel Computation in Micro-Mechanics and Finite Element Method

    NASA Technical Reports Server (NTRS)

    Tan, Hui-Qian

    1996-01-01

    This project discusses the application of parallel computations related with respect to material analyses. Briefly speaking, we analyze some kind of material by elements computations. We call an element a cell here. A cell is divided into a number of subelements called subcells and all subcells in a cell have the identical structure. The detailed structure will be given later in this paper. It is obvious that the problem is "well-structured". SIMD machine would be a better choice. In this paper we try to look into the potentials of SIMD machine in dealing with finite element computation by developing appropriate algorithms on MasPar, a SIMD parallel machine. In section 2, the architecture of MasPar will be discussed. A brief review of the parallel programming language MPL also is given in that section. In section 3, some general parallel algorithms which might be useful to the project will be proposed. And, combining with the algorithms, some features of MPL will be discussed in more detail. In section 4, the computational structure of cell/subcell model will be given. The idea of designing the parallel algorithm for the model will be demonstrated. Finally in section 5, a summary will be given.

  3. Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation

    PubMed Central

    Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.

    2012-01-01

    SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340

  4. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Maureen

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts inmore » relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line containing hotoconvertible GFP, we observed transfer of protein from one plastid to another and within a stromule from single plastids. We provided time-lapse movies demonstrating movement of both the photoconvertible GFP and standard GFP between plastids. We previously demonstrated the lack of a plastid network within plant cells. We provided protocols explaining how to use fluorescent protein technology to track plastids and stromules within plant cells. We demonstrated that standard GFP unexpectedly could be photoconverted to a red form under certain conditions, allowing the use of GFP lines for studies that require photoconversion.« less

  5. Stochastic spectral projection of electrochemical thermal model for lithium-ion cell state estimation

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin

    2017-03-01

    A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.

  6. Polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.

    The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.

  7. Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae.

    PubMed

    Mishra, C; Semino, C E; McCreath, K J; de la Vega, H; Jones, B J; Specht, C A; Robbins, P W

    1997-03-30

    Chitin deacetylase (EC 3.5.1.41), which hydrolyses the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, has been demonstrated in crude extracts from sporulating Saccharomyces cerevisiae. Two S. cerevisiae open reading frames (ORFs), identified by the Yeast Genome Project, have protein sequence homology to a chitin deacetylase from Mucor rouxii. Northern blot hybridizations show each ORF was transcribed in diploid cells after transfer to sporulation medium and prior to formation of asci. Each ORF was cloned in a vector under transcriptional control of the GAL 1, 10 promoter and introduced back into haploid strains of S. cerevisiae. Chitin deacetylase activity was detected by in vitro assays from vegetative cells grown in galactose. Chemical analysis of these cells also demonstrated the synthesis of chitosam in vivo. Both recombinant chitin deacetylases showed similar qualitative and quantitative activities toward chitooligosaccharides in vitro. A diploid strain deleted to both ORFs, when sporulated, did not show deacetylase activity. The mutant spores were hypersensitive to lytic enzymes (Glusulase or Zymolyase).

  8. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    The positions will provide excellent training opportunities in mucosal immunology.  The ideal candidates must be able to work independently and have demonstrated abilities in clear scientific project planning and reporting.  Experience in multiparameter flow cytometry, gene expression analysis, intestinal cell isolation, and mouse models of disease is desirable.  One position will be preferentially given to candidate with experience in non-human primate models.  

  9. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    DTIC Science & Technology

    2015-08-27

    photodiodes with different cutoff wavelengths connected in series with tunnel diodes between adjacent photodiodes. The LEDs optically bias the inactive...perfectly conductive n-CdTe/p-InSb tunnel junction. 15. SUBJECT TERMS optical biasing; multi-junction photodetectors; triple-junction solar cell...during this project, including initial demonstrations of optical addressing, tunnel junction studies and multicolor device characterization

  10. Status of Diffused Junction p(+)n InP Solar Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  11. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2017-01-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the beta decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). We report on results for calibration measurements performed with Kr-83m in a gas cell that fulfills the stringent requirements for a measurement using tritium: cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged

  12. [Neuronal organization of thalamic nucleus reticularis in adult man].

    PubMed

    Berezhnaia, L A

    2005-01-01

    The neuronal content of human thalamic nucleus reticularis was studied in serial sections cut in sagittal and frontal projections and impregnated with silver nitrate using Golgi method. The neuronal content of human thalamic nucleus reticularis was found to be more diverse than previously reported in animals and man. Besides two types of sparsely-branched long-dendritic spineless R1 and R2 neurons, this nucleus contained spiny cells. Medium and small-sized sparsely-branched short-dendritic neurons and densely-branched spiny cells were demonstrated. The principle of organization of human thalamic nucleus reticularis is described.

  13. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.« less

  14. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.« less

  15. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing.

    PubMed Central

    Sanderson, C J; Glauert, A M

    1979-01-01

    Electron micrographs of material fixed during the first 10 min of a T-cell cytotoxic system showed T-cell projections and T-cell burrowing into target cells. These observations were made possible by using a system with a very high rate of killing. The projections vary in shape and size, and can push deeply into the target cell, distorting organelles in their path, including the nucleus. The projections contain fine fibrillar material, to the exclusion of organelles. They push the target cell membrane in front of them to form pockets approximating to the shape of the projection. Areas of close contact occur between the projections and the target cell membrane, particularly at the leading edges. The likelihood that these projections develop as a result of contact with specific antigen, and are involved in the cytotoxic mechanism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:311336

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahl, S.B.

    Although significant progress toward the application of boronated LDL for site selective boron drug delivery has been made during the past year, the loss of our animal and cell culture testing site at WSU has seriously hampered progress on this project. Results are reported of one in vivo biodistribution study in B16BL6-bearing mice and a series of in vitro studies that demonstrate very substantial uptake of boronated LDL in certain cell lines. The influence of 17{alpha}-ethinyl estradiol (EE) on cellular uptake has also been probed. Most significantly LDL loaded with HC was demonstrated to be taken up with exceptional ariditymore » in several lines. Significant progress has also been made in the development of a rapid infrared analysis of boron in boronated LDL solution, which may be useful for clinical BNCT studies in Finland.« less

  17. Project analysis and integration economic analyses summary

    NASA Technical Reports Server (NTRS)

    Macomber, H. L.

    1986-01-01

    An economic-analysis summary was presented for the manufacture of crystalline-silicon modules involving silicon ingot/sheet, growth, slicing, cell manufacture, and module assembly. Economic analyses provided: useful quantitative aspects for complex decision-making to the Flat-plate Solar Array (FSA) Project; yardsticks for design and performance to industry; and demonstration of how to evaluate and understand the worth of research and development both to JPL and other government agencies and programs. It was concluded that future research and development funds for photovoltaics must be provided by the Federal Government because the solar industry today does not reap enough profits from its present-day sales of photovoltaic equipment.

  18. Power plants development in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanasescu, F.T.; Olariu, N.

    1994-12-31

    The Romanian PV research program initiated in 1980 has as its aim the development of the Romanian own PV network from solar cells production to demonstration projects and commercial applications. Concerning the PV grid connected systems the Romanian research program is financed by the Romanian Ministry for Research and Technology. Setting out the main objectives and the related stages of this project, in the paper are presented aspects concerning the plant configuration, its component characteristics and preliminary achieved results. The aspects which are going to be developed in the following stages of the grid-connected PV plant implementation in Romania aremore » also underlined.« less

  19. Kinematics of red cell aspiration by fluorescence-imaged microdeformation.

    PubMed

    Discher, D E; Mohandas, N

    1996-10-01

    Maps of fluorescing red cell membrane components on a pipette-aspirated projection are quantitated in an effort to elucidate and unify the heterogeneous kinematics of deformation. Transient gradients of diffusing fluorescent lipid first demonstrate the fluidity of an otherwise uniform-density bilayer and corroborate a "universal" calibration scale for relative surface density. A steep but smooth and stable gradient in the densities of the skeleton components spectrin, actin, and protein 4.1 is used to estimate large elastic strains along the aspirated skeleton. The deformation fields are argued to be an unhindered response to loading in the surface normal direction. Density maps intermediate to those of the compressible skeleton and fluid bilayer are exhibited by particular transmembrane proteins (e.g., Band 3) and yield estimates for the skeleton-connected fractions. Such connected proteins appear to occupy a significant proportion of the undeformed membrane surface and can lead to steric exclusion of unconnected integral membrane proteins from regions of network condensation. Consistent with membrane repatterning kinematics in reversible deformation, final vesiculation of the projection tip produces a cell fragment concentrated in freely diffusing proteins but depleted of skeleton.

  20. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE PAGES

    Watts, Seth; Tortorelli, Daniel A.

    2017-04-13

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  1. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Seth; Tortorelli, Daniel A.

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  2. Mechanotransduction through Integrins

    NASA Technical Reports Server (NTRS)

    Ingber, Donald

    2004-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.

  3. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    NASA Technical Reports Server (NTRS)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  4. An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution

    PubMed Central

    2011-01-01

    Optical projection tomography (OPT) imaging is a powerful tool for three-dimensional imaging of gene and protein distribution patterns in biomedical specimens. We have previously demonstrated the possibility, by this technique, to extract information of the spatial and quantitative distribution of the islets of Langerhans in the intact mouse pancreas. In order to further increase the sensitivity of OPT imaging for this type of assessment, we have developed a protocol implementing a computational statistical approach: contrast limited adaptive histogram equalization (CLAHE). We demonstrate that this protocol significantly increases the sensitivity of OPT imaging for islet detection, helps preserve islet morphology and diminish subjectivity in thresholding for tomographic reconstruction. When applied to studies of the pancreas from healthy C57BL/6 mice, our data reveal that, at least in this strain, the pancreas harbors substantially more islets than has previously been reported. Further, we provide evidence that the gastric, duodenal and splenic lobes of the pancreas display dramatic differences in total and relative islet and β-cell mass distribution. This includes a 75% higher islet density in the gastric lobe as compared to the splenic lobe and a higher relative volume of insulin producing cells in the duodenal lobe as compared to the other lobes. Altogether, our data show that CLAHE substantially improves OPT based assessments of the islets of Langerhans and that lobular origin must be taken into careful consideration in quantitative and spatial assessments of the pancreas. PMID:21633198

  5. Renewable Firming EnergyFarm Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepien, Tom; Collins, Mark

    2017-01-26

    The American Recovery and Reinvestment Act (ARRA) of 2009 (Recovery Act) provided the U.S. Department of Energy (DOE) with funds to modernize the electric power grid. One program under this initiative is the Smart Grid Demonstration program (SGDP). The SGDP mandate is to demonstrate how a suite of existing and emerging smart grid technologies can be innovatively applied and integrated to prove technical, operational, and business-model feasibility. Primus Power is a provider of low cost, long life and long duration energy storage systems. The Company’s flow batteries are shipping to US and international microgrid, utility, military, commercial and industrial customers.more » Primus Power’s EnergyPod® is a modular battery system for grid scale applications available in configurations ranging from 25 kW to more than 25 MW. The EnergyPod provides nameplate power for 5 hours. This long duration unlocks economic benefits on both sides of the electric meter. It allows commercial and industrial customers to shift low cost electricity purchased at night to offset afternoon electrical peaks to reduce utility demand charges. It also allows utilities to economically reduce power peaks and defer costly upgrades to distribution infrastructure. An EnergyPod contains one or more EnergyCells-a highly engineered flow battery core made from low cost, readily available materials. An EnergyCell includes a membrane-free stack of titanium electrodes located above a novel liquid electrolyte management system. This patented design enables reliable, low maintenance operation for decades. It is safe and robust, featuring non-flammable aqueous electrolyte, sophisticated fault detection and built-in secondary containment. Unlike Li Ion batteries, the EnergyCell is not susceptible to thermal runaway. This cooperative agreement project was started in Feb 2010. The objectives of the project are: 1. Trigger rapid adoption of grid storage systems in the US by demonstrating a low cost, robust and flexible EnergyFarm®. 2. Accelerate adoption of renewable energy and enhance grid stability by firming the output of wind & solar farms. 3. Demonstrate improved grid asset utilization by storing energy during off-peak periods for dispatch during local load peaks. 4. Establish an advanced battery manufacturing industry in the U.S. 5. Reduce CO2 emissions from utilities. This report summarizes the key milestones, data, results and lessons learned from the project. The desired goals and benefits of the cooperative agreement with the DOE have all been achieved. The project has contributed to reducing power costs, accelerating adoption of renewable energy resources, reducing greenhouse gas emissions and establishing advanced battery manufacturing in the U.S. The Recovery Act funds provided thru the DOE have been leveraged multiple times by additional private equity investment. Primus Power continues to ship low cost, long life and long duration EnergyPod® flow battery systems to utilities, commercial/industrial, microgrid and data center customers. After the conclusion of this project, Primus Power has modified the EnergyPod® design to optimize around energy performance. Primus Power has moved to a prefabricated enclosure instead of multiple EnergyCells in a container. This lowers capital and maintenance costs and can optimize site design. Utilities are starting to adopt energy storage for a variety of functions. The market will grow as the technology is proven and profitable applications expand.« less

  6. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in realmore » time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.« less

  7. 34 CFR 377.1 - What is the Demonstration Projects to Increase Client Choice Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What is the Demonstration Projects to Increase Client... PROJECTS TO INCREASE CLIENT CHOICE PROGRAM General § 377.1 What is the Demonstration Projects to Increase Client Choice Program? The Demonstration Projects to Increase Client Choice Program is designed to...

  8. Temporal bone radiography using the orthopantomograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatezawa, T.

    1981-09-01

    Temporal bone radiographs obtained with an Orthopantomograph were compared with conventional radiographs. In acoustic neurinoma, cholesteatoma, otitis media, and middle fossa tumors, both methods demonstrated the abnormalities well. In two cases with lesions extending beyond the range of conventional projections, the broad orthopantomographic coverage was very valuable. Mastoid air cells, the mastoid process, petrous ridge, and internal auditory meatus were well demonstrated by both techniques. Orthopantomography was found to be superior in the demonstration of the petrous apex, while the superior semicircular canal was better demonstrated on the conventional views. Bilateral symmetry was particularly good and because of fewer films,more » radiation exposure was considerably less with orthopantomography. For many applications, orthopantomography is an adequate convenient substitute for conventional methods of examining the temporal bones.« less

  9. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by KB Science and Engineering and is currently patented by KB Science. The buoy's purpose was to collected hyperspectral optical signatures for analysis and resulting estimation of water quality parameters such as chlorophyll-a, seston and dissolved organic matter (DOC). The ultimate goal of the project was to develop a buoy that would integrate a probe to measure upwelling light from a source and thus relate this backscattered light to water quality parameters.

  10. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...-01] Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology... cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding... cell lines accepted on the NIST Applied Genetics Group Web site at http://www.nist.gov/mml/biochemical...

  11. 5 CFR 470.303 - Eligible parties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.303... demonstration projects under 5 U.S.C. 4701(a)(1) and 4701(b) may conduct demonstration projects after approval...

  12. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  13. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  14. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  15. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  16. 40 CFR 117.14 - Demonstration projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...

  17. Isolation and Analysis of Novel Electrochemically Active Bacteria for Enhanced Power Generation in Microbial Fuel Cells

    DTIC Science & Technology

    2009-03-07

    new exoelectrogenic bacteria during this project. We isolated Rhodopseudomonas palustris DX-1, and demonstrated for the first time that a pure culture...production in these systems. Here we report that the phototrophic purple non-sulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC...The exoelectrogenic PPNS bacterium, Rhodopseudomonas palustris DX- 1, was examined here for hydrogen production by electrohydrogenesis due to its

  18. Laser-zone growth in a Ribbon-To-Ribbon, RTR, process silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1977-01-01

    A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.

  19. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    The descending pathways to the motoneuronal cell group of the cutaneous trunci muscle (CTM) of the cat were investigated by injecting H-3-labeled lucine into the brain stem, the diencephalon, or the C1, C2, C6, and C8 segments of the spinal cord, and examining fixed autoradiographic sections of the spinal cord and brain regions. Results demonstrate presence of specific supraspinal projectons to the CTM motor nucleus originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum. Results also suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do not exist, although these propriospinal projections to all other motoneuronal cell groups surrounding the CTM nucleus are very strong.

  20. 75 FR 77379 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research; Notice #0;#0..., authorizes the Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at... to execute a process and plan to employ the Department's personnel management demonstration project...

  1. 75 FR 30197 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...

  2. 76 FR 12080 - TRICARE Access to Care Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Access to Care Demonstration Project AGENCY..., Section 1092, entitled Department of Defense TRICARE Access to Care Demonstration Project. The demonstration project is intended to improve access to urgent care including minor illness or injury for Coast...

  3. A Lemon Cell Battery for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  4. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    PubMed

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-08-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity.

  5. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb.

    PubMed Central

    Jastreboff, P J; Pedersen, P E; Greer, C A; Stewart, W B; Kauer, J S; Benson, T E; Shepherd, G M

    1984-01-01

    A critical gap exists in our knowledge of the topographical relationship between the olfactory epithelium and olfactory bulb. The present report describes the application to this problem of a method involving horseradish peroxidase conjugated to wheat germ agglutinin. This material was iontophoretically delivered to circumscribed glomeruli in the olfactory bulb and the characteristics and distribution of retrogradely labeled receptor cells were assessed. After discrete injections into small glomerular groups in the caudomedial bulb, topographically defined populations of receptor cells were labeled. Labeled receptor cell somata appeared at several levels within the epithelium. The receptor cell apical dendrites followed a tight helical course towards the surface of the epithelium. The data thus far demonstrate that functional units within the olfactory system may include not only glomeruli as previously suggested but, in addition, a corresponding matrix of receptor cells possessing functional and topographical specificity. Images PMID:6206495

  6. Serotonergic neuron system in the spinal cord of the gar Lepisosteus oculatus (Lepisosteiformes, Osteichthyes) with special regard to the juxtameningeal serotonergic plexus as a paracrine site.

    PubMed

    Chiba, Akira

    2007-02-08

    Immunohistochemical and electron microscopic studies were carried out to elucidate the structure of the serotonergic neuron system in the spinal cord of the spotted gar, Lepisosteus oculatus, a nonteleost actinopterygian. Serotonin-immunoreactive (5HT-IR) cell bodies and fibers were widely distributed in the spinal cord, constituting an intrinsic neuron system. This system comprised three anatomical cell groups in different portions of the spinal cord, i.e., the rostromedial cell group, the paired ventrolateral cell groups, and the ventral superficial cell group. The rostromedial cell group included cerebrospinal fluid-contacting neurons with intraventricular processes. The immunostained fibers projecting from all three of these cell groups ran in various directions, mainly ventrally and ventrolaterally, and partly gave rise to a dense plexus at the ventrolateral surface of the spinal cord. Immunoelectron microscopy of the relevant portion demonstrated many varicose fibers containing 5HT-immunopositive vesicles. Conventional electron microscopy of the plexus showed that the constituent varicose fibers were unmyelinated and frequently made a direct contact with the basement membrane contiguous to the leptomeniges (meninx primitiva). There, exocytotic figures of cytoplasmic vesicles were demonstrated, suggesting that 5HT may be secreted, in a paracrine way, into the extraspinal space. This specialized area in the gar spinal cord may be referred to as the juxtameningeal serotonergic plexus.

  7. Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation

    PubMed Central

    Leão, Richardson N.; Edwards, Steven J.

    2017-01-01

    Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control. PMID:28182735

  8. Expression of calpain-calpastatin system (CCS) member proteins in human lymphocytes of young and elderly individuals; pilot baseline data for the CALPACENT project.

    PubMed

    Mikosik, Anna; Foerster, Jerzy; Jasiulewicz, Aleksandra; Frąckowiak, Joanna; Colonna-Romano, Giuseppina; Bulati, Matteo; Buffa, Silvio; Martorana, Adriana; Caruso, Calogero; Bryl, Ewa; Witkowski, Jacek M

    2013-07-08

    Ubiquitous system of regulatory, calcium-dependent, cytoplasmic proteases - calpains - and their endogenous inhibitor - calpastatin - is implicated in the proteolytic regulation of activation, proliferation, and apoptosis of many cell types. However, it has not been thoroughly studied in resting and activated human lymphocytes yet, especially in relation to the subjects' ageing process. The CALPACENT project is an international (Polish-Italian) project aiming at verifying the hypothesis of the role of calpains in the function of peripheral blood immune cells of Polish (Pomeranian) and Italian (Sicilian) centenarians, apparently relatively preserved in comparison to the general elderly population. In this preliminary report we aimed at establishing and comparing the baseline levels of expression of μ- and m-calpain and calpastatin in various, phenotypically defined, populations of human peripheral blood lymphocytes for healthy elderly Sicilians and Poles, as compared to these values observed in young cohort. We have found significant differences in the expression of both μ- and m-calpain as well as calpastatin between various populations of peripheral blood lymphocytes (CD4+, CD8+ and CD19+), both between the age groups compared and within them. Interestingly, significantly higher amounts of μ- and m-calpains but not of calpastatin could be demonstrated in the CD4+CD28- and CD8+CD28- lymphocytes of old subjects (but not in the cells of young individuals), as compared to their CD28+ counterparts. Finally, decreased expression of both calpains in the elderly T cells is not related to the accumulation of effector/memory (CD45RO+) cells in the latter, as the expression of both calpains does not differ significantly between the naïve and memory T cells, while is significantly lower for elderly lymphocytes if both populations are taken separately. Observed differences in the amounts of CCS member proteins between various populations of lymphocytes of young and elderly subjects may participate in the impaired proliferative activity of these cells in the elderly.

  9. Engineering intracellular active transport systems as in vivo biomolecular tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachand, George David; Carroll-Portillo, Amanda

    2006-11-01

    Active transport systems provide essential functions in terms of cell physiology and metastasis. These systems, however, are also co-opted by invading viruses, enabling directed transport of the virus to and from the cell's nucleus (i.e., the site of virus replication). Based on this concept, fundamentally new approaches for interrogating and manipulating the inner workings of living cells may be achievable by co-opting Nature's active transport systems as an in vivo biomolecular tool. The overall goal of this project was to investigate the ability to engineer kinesin-based transport systems for in vivo applications, specifically the collection of effector proteins (e.g., transcriptionalmore » regulators) within single cells. In the first part of this project, a chimeric fusion protein consisting of kinesin and a single chain variable fragment (scFv) of an antibody was successfully produced through a recombinant expression system. The kinesin-scFv retained both catalytic and antigenic functionality, enabling selective capture and transport of target antigens. The incorporation of a rabbit IgG-specific scFv into the kinesin established a generalized system for functionalizing kinesin with a wide range of target-selective antibodies raised in rabbits. The second objective was to develop methods of isolating the intact microtubule network from live cells as a platform for evaluating kinesin-based transport within the cytoskeletal architecture of a cell. Successful isolation of intact microtubule networks from two distinct cell types was demonstrated using glutaraldehyde and methanol fixation methods. This work provides a platform for inferring the ability of kinesin-scFv to function in vivo, and may also serve as a three-dimensional scaffold for evaluating and exploiting kinesin-based transport for nanotechnological applications. Overall, the technology developed in this project represents a first-step in engineering active transport system for in vivo applications. Further development could potentially enable selective capture of intracellular antigens, targeted delivery of therapeutic agents, or disruption of the transport systems and consequently the infection and pathogenesis cycle of biothreat agents.« less

  10. Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus.

    PubMed

    Brunton, J; Charpak, S

    1997-05-01

    The thalamic reticular nucleus receives afferents from the dorsal thalamus, cortex and brainstem, and projects back onto most cortically projecting thalamic nuclei thus playing a key role in the synchronization of the thalamocortical network. Although this nucleus was initially thought to consist of a homogeneous population of cells using GABA as a transmitter, and sharing identical intrinsic membrane properties, some heterogeneity was subsequently reported. The morphological diversity is generally acknowledged, but only two studies have shown functional differences between two classes of cells which vary in their ability to discharge in bursts. However, the location of the non-bursting cells was not characterized with anatomical techniques. Our recent work on the action of mu-opioid agonists in the thalamus revealed a widespread K+-mediated inhibition of most, if not all, thalamic relay and diffuse projection neurons. However, in the reticular nucleus, preliminary experiments suggested that the opioid sensitivity was variable. Based on these results and on observations of a discrete localization of mu-opioid receptors in the reticular nucleus, we investigated cellular heterogeneity within the nucleus using opioid agonists as markers. Using the whole cell patch clamp technique in young rat thalamic slices, we tested the responses of 28 neurons to opioids, the intrinsic membrane properties of each cell, and their relative location within the nucleus. Two types of intrinsic membrane properties underlying distinct discharge behaviours were seen in neurobiotin-labelled cells clearly located in the reticular nucleus: type I with the typical bursting behaviour previously reported in reticularis neurons, and type II in which bursting was greatly reduced or absent. Each class of cell could be further divided into subpopulations based on their opioid sensitivity. About half of both bursting (20) and non-bursting or tonic (8) cells were strongly inhibited by the mu-opioid receptor agonist D-Ala2,N-Me-Phe4,glycinol5-enkephalin, an effect mediated by an increase in K+ conductance. At no time was inhibition by delta- or kappa-receptor agonists seen. Our work therefore further demonstrates that the reticular nucleus is functionally heterogeneous, although the role of such cell diversity has still to be determined.

  11. 77 FR 21102 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... OMB Review; Comment Request Title: Child Welfare Demonstration Projects Information Collection. OMB No... child welfare waiver demonstration projects. CB is able to approve up to ten child welfare waiver demonstration projects in each of Fiscal Years 2012, 2013 and 2014. These waiver demonstration projects involve...

  12. 77 FR 69601 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... to demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act... the NDAA for FY 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects...

  13. 75 FR 27865 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... of coverage of the AFRL Personnel Demonstration Project to AFRL employees in Business Management and... conduct demonstration projects to determine whether a specified change in personnel management policies or... plan to employ the personnel management demonstration project authorities granted to the Office of...

  14. Design and fabrication of wraparound contact silicon solar cells

    NASA Technical Reports Server (NTRS)

    Goodelle, G.

    1972-01-01

    Work is reported on the development and production of 1,000 N+/P wraparound solar cells of two different design configurations: Design 1, a bar configuration wraparound and Design 2, a corner pad configuration wraparound. The project goal consisted of determining which of the two designs was better with regard to production cost where the typical cost of a conventional solar cell was considered as the norm. Emphasis was also placed on obtaining the highest possible output efficiency, although a minumum efficiency of 10.5% was required. Five hundred cells of Design 1 and 500 cells of Design 2 were fabricated. Design 1 which used similar procedures to those used in the fabrication of conventional cells, was the less expensive with a cost very close to that of a conventional cell. Design 2 was more expensive mainly because the more exotic process procedures used were less developed than those used for Design 1. However, Design 2 processing technology demonstrated a feasibility that should warrant future investigation toward improvement and refinement.

  15. 78 FR 29335 - Science and Technology Reinvention Laboratory (STRL) Personnel Management Demonstration Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act (NDAA) for Fiscal... 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects at DoD...

  16. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less

  17. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dizdaroglu, Miral

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the successmore » of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein components using gel electrophoresis, and by absorption spectral analysis. GeneraUy, the RNA content was <5% of the amount of DNA, and the ratio of the amount of protein to that of DNA was =1. 8-2 (w/w). Having developed a suitable methodology for routine isolation of chromatin from mammalian cells, studies of DNA damage in chromatin in vitro and in cultured human cells were pursued.« less

  18. Status of diffused junction p+n InP solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Goradia, C.; Faur, Maria; Fatemi, N. S.; Jenkins, P. P.; Flood, D. J.; Brinker, D. J.; Wilt, D. M.; Bailey, S.; Goradia, M.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  19. Status of diffused junction p+n InP solar cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faur, M.; Goradia, C.; Faur, M.

    1994-09-01

    Recently, the authors have succeeded in fabricating diffused junction p{sup +}n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V{sub OC}) of 887.6 mV, which, to the best of their knowledge, is higher than previously reported V{sub OC} values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating andmore » emitter thickness. This paper summarizes recent advances in the technology of fabrication of p{sup +}n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p{sup +} InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.« less

  20. WE-AB-207A-02: John’s Equation Based Consistency Condition and Incomplete Projection Restoration Upon Circular Orbit CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Qi, H; Wu, S

    Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method ismore » proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections, especially for their high frequency component.« less

  1. Service and Methods Demonstration - Annual Report

    DOT National Transportation Integrated Search

    1975-11-01

    This report contains a description of the Service and Methods Demonstration Program. Transit demonstration projects undertaken in previous years are reviewed. Recently completed and current demonstration projects are described and project results fro...

  2. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals

    PubMed Central

    Baum, Michael J.

    2012-01-01

    Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition. PMID:22679420

  3. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  4. ARPA-E: Transforming Our Energy Future

    ScienceCinema

    Williams, Ellen; Raman, Aaswath

    2018-06-22

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  5. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.

    PubMed

    DeTomaso, David; Yosef, Nir

    2016-08-23

    A key challenge in the emerging field of single-cell RNA-Seq is to characterize phenotypic diversity between cells and visualize this information in an informative manner. A common technique when dealing with high-dimensional data is to project the data to 2 or 3 dimensions for visualization. However, there are a variety of methods to achieve this result and once projected, it can be difficult to ascribe biological significance to the observed features. Additionally, when analyzing single-cell data, the relationship between cells can be obscured by technical confounders such as variable gene capture rates. To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed FastProject, a software tool which analyzes a gene expression matrix and produces a dynamic output report in which two-dimensional projections of the data can be explored. Annotated gene sets (referred to as gene 'signatures') are incorporated so that features in the projections can be understood in relation to the biological processes they might represent. FastProject provides a novel method of scoring each cell against a gene signature so as to minimize the effect of missed transcripts as well as a method to rank signature-projection pairings so that meaningful associations can be quickly identified. Additionally, FastProject is written with a modular architecture and designed to serve as a platform for incorporating and comparing new projection methods and gene selection algorithms. Here we present FastProject, a software package for two-dimensional visualization of single cell data, which utilizes a plethora of projection methods and provides a way to systematically investigate the biological relevance of these low dimensional representations by incorporating domain knowledge.

  6. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration and neovascularization were also evident demonstrating that direct bonding of engineered tissue structures in particular those with low processability such as collagen lattice to the host tissue is feasible.

  7. American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Gus

    2011-07-31

    HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation ofmore » hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.« less

  8. Hardware simulation of fuel cell/gas turbine hybrids

    NASA Astrophysics Data System (ADS)

    Smith, Thomas Paul

    Hybrid solid oxide fuel cell/gas turbine (SOFC/GT) systems offer high efficiency power generation, but face numerous integration and operability challenges. This dissertation addresses the application of hardware-in-the-loop simulation (HILS) to explore the performance of a solid oxide fuel cell stack and gas turbine when combined into a hybrid system. Specifically, this project entailed developing and demonstrating a methodology for coupling a numerical SOFC subsystem model with a gas turbine that has been modified with supplemental process flow and control paths to mimic a hybrid system. This HILS approach was implemented with the U.S. Department of Energy Hybrid Performance Project (HyPer) located at the National Energy Technology Laboratory. By utilizing HILS the facility provides a cost effective and capable platform for characterizing the response of hybrid systems to dynamic variations in operating conditions. HILS of a hybrid system was accomplished by first interfacing a numerical model with operating gas turbine hardware. The real-time SOFC stack model responds to operating turbine flow conditions in order to predict the level of thermal effluent from the SOFC stack. This simulated level of heating then dynamically sets the turbine's "firing" rate to reflect the stack output heat rate. Second, a high-speed computer system with data acquisition capabilities was integrated with the existing controls and sensors of the turbine facility. In the future, this will allow for the utilization of high-fidelity fuel cell models that infer cell performance parameters while still computing the simulation in real-time. Once the integration of the numeric and the hardware simulation components was completed, HILS experiments were conducted to evaluate hybrid system performance. The testing identified non-intuitive transient responses arising from the large thermal capacitance of the stack that are inherent to hybrid systems. Furthermore, the tests demonstrated the capabilities of HILS as a research tool for investigating the dynamic behavior of SOFC/GT hybrid power generation systems.

  9. Long-term culture and partial characterization of dog gallbladder epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, D.; Lee, S.P.; Hayashi, A.

    1991-05-01

    We describe the successful isolation and maintenance of primary cultures of dog gallbladder epithelial cells. The surgically removed gallbladder was treated with trypsin/EDTA for 45 minutes and epithelial cells were collected and resuspended in Eagle's minimum essential medium with 10% fetal calf serum, and plated on Vitrogen-coated culture dishes. Each gallbladder yielded approximately 12 to 15 x 10{sup 6} columnar epithelial cells, greater than 95% of which were viable by trypan blue exclusion. In culture, cells maintained their polarity. They were arranged and grew in small and tight clusters that coalesced at confluency. When examined using transmission electron microscopy, prominentmore » and numerous microville were identified on the apical portion of the plasma membrane. Cells were connected by well-formed desmosomes. Scanning electron microscopy revealed clusters of polyhedral cells with numerous papillary projections. Immunohistochemical studies demonstrated uniform staining of cells to keratin 35BH11 and AE1. Histochemical studies were positive for gamma-glutamyl transpeptidase and negative for glucose-6-phosphatase and albumin. Cells incorporated ({sup 3}H)uridine into intracellular proteins and ({sup 14}C)glucosamine into tissue and secreted mucous glycoproteins linearly over 2 to 24 hours. Flow cytometry studies demonstrated a consistent and reproducible number of cells (10 to 12%) at S-phase. However, the number of cells at S-phase was dramatically reduced to almost negligible as cells reached confluency. This method of culturing primary dog gallbladder epithelial cells is highly reproducible and reliable. These cells preserve their state of differentiation, polarity, histochemical and immunohistochemical profile, morphologic, and metabolic integrity with repeated passaging or after being frozen.« less

  10. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    DOE PAGES

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less

  11. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism

    PubMed Central

    Willsey, A. Jeremy; Sanders, Stephan J.; Li, Mingfeng; Dong, Shan; Tebbenkamp, Andrew T.; Muhle, Rebecca A.; Reilly, Steven K.; Lin, Leon; Fertuzinhos, Sofia; Miller, Jeremy A.; Murtha, Michael T.; Bichsel, Candace; Niu, Wei; Cotney, Justin; Ercan-Sencicek, A. Gulhan; Gockley, Jake; Gupta, Abha; Han, Wenqi; He, Xin; Hoffman, Ellen; Klei, Lambertus; Lei, Jing; Liu, Wenzhong; Liu, Li; Lu, Cong; Xu, Xuming; Zhu, Ying; Mane, Shrikant M.; Lein, Edward S.; Wei, Liping; Noonan, James P.; Roeder, Kathryn; Devlin, Bernie; Šestan, Nenad; State, Matthew W.

    2013-01-01

    SUMMARY Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD “seed” genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology. PMID:24267886

  12. Center for Neural Engineering: applications of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel

    1999-03-01

    Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.

  13. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis.

    PubMed

    Tran, David H; Berg, Celeste A

    2003-12-01

    bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.

  14. High-efficiency Thin-film Fe 2SiS 4 and Fe 2GeS 4-based Solar Cells Prepared from Low-Cost Solution Precursors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radu, Daniela Rodica; Liu, Mimi; Hwang, Po-yu

    The project aimed to provide solar energy education to students from underrepresented groups and to develop a novel, nano-scale approach, in utilizing Fe 2SiS 4 and Fe 2GeS 4 materials as precursors to the absorber layer in photovoltaic thin-film devices. The objectives of the project were as follows: 1. Develop and implement one solar-related course at Delaware State University and train two graduate students in solar research. 2. Fabricate and characterize high-efficiency (larger than 7%) Fe 2SiS 4 and Fe 2GeS 4-based solar devices. The project has been successful in both the educational components, implementing the solar course at DSUmore » as well as in developing multiple routes to prepare the Fe 2GeS 4 with high purity and in large quantities. The project did not meet the efficiency objective, however, a functional solar device was demonstrated.« less

  15. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation.

    PubMed

    Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R

    2012-03-22

    The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Hypothalamic Circuits for Predation and Evasion.

    PubMed

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. L1CAM/Neuroglian controls the axon–axon interactions establishing layered and lobular mushroom body architecture

    PubMed Central

    Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza

    2015-01-01

    The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon–axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type–specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule–mediated axon–axon interactions that enable precise assembly of complex neuronal circuits. PMID:25825519

  18. L1CAM/Neuroglian controls the axon-axon interactions establishing layered and lobular mushroom body architecture.

    PubMed

    Siegenthaler, Dominique; Enneking, Eva-Maria; Moreno, Eliza; Pielage, Jan

    2015-03-30

    The establishment of neuronal circuits depends on the guidance of axons both along and in between axonal populations of different identity; however, the molecular principles controlling axon-axon interactions in vivo remain largely elusive. We demonstrate that the Drosophila melanogaster L1CAM homologue Neuroglian mediates adhesion between functionally distinct mushroom body axon populations to enforce and control appropriate projections into distinct axonal layers and lobes essential for olfactory learning and memory. We addressed the regulatory mechanisms controlling homophilic Neuroglian-mediated cell adhesion by analyzing targeted mutations of extra- and intracellular Neuroglian domains in combination with cell type-specific rescue assays in vivo. We demonstrate independent and cooperative domain requirements: intercalating growth depends on homophilic adhesion mediated by extracellular Ig domains. For functional cluster formation, intracellular Ankyrin2 association is sufficient on one side of the trans-axonal complex whereas Moesin association is likely required simultaneously in both interacting axonal populations. Together, our results provide novel mechanistic insights into cell adhesion molecule-mediated axon-axon interactions that enable precise assembly of complex neuronal circuits. © 2015 Siegenthaler et al.

  19. Morphology, classification, and distribution of the projection neurons in the dorsal lateral geniculate nucleus of the rat.

    PubMed

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60-340 µm(2). Labeled projection neurons supported 7-55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0 × 10(4) µm(2). Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short "tufted" appendages arise mainly from the distal branches of dendrites; "spine-like" appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and "grape-like" appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.

  20. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  1. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  2. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  3. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  4. 34 CFR 461.33 - What are special experimental demonstration projects and teacher training projects?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What are special experimental demonstration projects...? § 461.33 What are special experimental demonstration projects and teacher training projects? (a) In... personnel in programs designed to carry out the purposes of the Act; and (ii) Training professional teachers...

  5. Structural Diversity in the Inner Ear of Teleost Fishes: Implications for Connections to the Mauthner Cell

    NASA Technical Reports Server (NTRS)

    Popper, Arthur N.; Edds-Walton, Peggy L.

    1995-01-01

    A body of literature suggests that the Mauthner cell startle response can be elicited by stimulation of the ear. While we know that there are projections to the M-cell from the ear, the specific endorgan(s) of the ear projecting to the M-cell are not known. Moreover, there are many reasons to question whether there is one pattern of inner ear to M-cell connection or whether the endorgan(s) projection to the M-cell varies in species that have different hearing capabilities of hearing structures. In this paper, we briefly review the structure of fish ears, with an emphasis on structural regionalization within the ear. We also review the central projections of the ear, along with a discussion of the limited data on projections to the M-cell.

  6. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function.

    PubMed

    Wang, Hongtao; Hughes, Inna; Planer, William; Parsadanian, Alexander; Grider, John R; Vohra, Bhupinder P S; Keller-Peck, Cynthia; Heuckeroth, Robert O

    2010-01-27

    Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.

  7. A microfluidic device for studying cell signaling with multiple inputs and adjustable amplitudes and frequencies

    NASA Astrophysics Data System (ADS)

    Ningsih, Zubaidah; Chon, James W. M.; Clayton, Andrew H. A.

    2013-12-01

    Cell function is largely controlled by an intricate web of macromolecular interactions called signaling networks. It is known that the type and the intensity (concentration) of stimulus affect cell behavior. However, the temporal aspect of the stimulus is not yet fully understood. Moreover, the process of distinguishing between two stimuli by a cell is still not clear. A microfluidic device enables the delivery of a precise and exact stimulus to the cell due to the laminar flow established inside its micro-channel. The slow stream delivers a constant stimulus which is adjustable according to the experiment set up. Moreover, with controllable inputs, microfluidic facilitates the stimuli delivery according to a certain pattern with adjustable amplitude, frequency and phase. Several designs of PDMS microfluidic device has been produced in this project via photolithography and soft lithography processes. To characterize the microfluidic performance, two experiments has been conducted. First, by comparing the fluorescence intensity and the lifetime of fluorescein in the present of KI, mixing extent between two inputs was observed using Frequency Lifetime Imaging Microscopy (FLIM). Furthermore, the input-output relationship of fluorescein concentration delivered was also drawn to characterize the amplitude, frequency and phase of the inputs. Second experiment involved the cell culturing inside microfluidic. Using NG108-15 cells, proliferation and differentiation were observed based on the cell number and cell physiological changes. Our results demonstrate that hurdle design gives 86% mixing of fluorescein and buffer. Relationship between inputoutput fluorescein concentrations delivered has also been demonstrated and cells were successfully cultured inside the microfluidic.

  8. Potential of mid IR spectroscopy in the rapid label free identification of skin malignancies

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2016-03-01

    The rapid inspection of suspicious skin lesions for pathological cell types is the objective of optical point of care diagnostics technologies. A marker free fast diagnosis of skin malignancies would overcome the limitations of the current gold standard surgical biopsy. The time consuming and costly biopsy procedure requires the inspection of each sample by a trained pathologist, which limits the analysis of potentially malignant lesions. Optical technologies like RAMAN or infrared spectroscopy, which provide both, localization and chemical information, can be used to differentiate malignant from healthy tissue by the analysis of multi cell structures and cell type specific spectra. We here report the application of midIR spectroscopy towards fast and reliable skin diagnostics. Within the European research project MINERVA we developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional human skin equivalents. The standards were characterized in the established midIR range and also with newly developed systems for fast imaging up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially the tumor cells. The signals from single cell layers were sufficient for cell type differentiation. We have compared different midIR systems and found all of them suitable for specific cell type identification. Our data demonstrate the potential of midIR spectroscopy for fast image acquisition and an improved data processing as sensitive and specific optical biopsy technology.

  9. Detection and discrimination of colour, a comparison of physiological and psychophysical data

    NASA Astrophysics Data System (ADS)

    Valberg, A.; Lee, B. B.

    1989-01-01

    Whereas the physiological basis of colorimetry (colour matches) is well understood in terms of the trireceptor theory of colour vision, colour discrimination and scaling still lack a comparable foundation. We present here experimental data that demonstrate how sensitivity and responsiveness of different types of cone-opponent and non-opponent cells of the macaque monkey correlate with human threshold sensitivity on the one hand, and how they in combination can be used to construct a suprathreshold equidistant colour space. Psychophysical thresholds correlate well with the threshold envelope of the most sensitive cells when stimuli are projected upon a steady white background. Detection thresholds for stimuli of differing wavelength and purity (saturation) generally indicate a transition from a phasic non-opponent system to a tonic opponent system of on-centre cells as purity increases. Detection and chromatic discrimination thresholds coincide only for long and short wavelengths of high purity, whereas they differ for mid-spectral lights. Different cell types may thus support detection and discrimination with different stimuli. With chromatic scaling of surface colours on the other hand, when stimuli are darker than an adaptation field still other cell types are needed. We demonstrate that it is possible, from a combination of on- and off-opponent cells, to reconstruct a uniform colour space, using summed outputs of cells with the same cone combination and vector addition for cells with different combinations. Different hues are represented by opponent cells with inputs from different cone types, the hue percept being related to the ratio of the activities of these cell systems.

  10. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Demonstration Projects for the Integration... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  11. A Low Cost Weather Balloon Borne Solar Cell Calibration Payload

    NASA Technical Reports Server (NTRS)

    Snyder, David B.; Wolford, David S.

    2012-01-01

    Calibration of standard sets of solar cell sub-cells is an important step to laboratory verification of on-orbit performance of new solar cell technologies. This paper, looks at the potential capabilities of a lightweight weather balloon payload for solar cell calibration. A 1500 gr latex weather balloon can lift a 2.7 kg payload to over 100,000 ft altitude, above 99% of the atmosphere. Data taken between atmospheric pressures of about 30 to 15 mbar may be extrapolated via the Langley Plot method to 0 mbar, i.e. AMO. This extrapolation, in principle, can have better than 0.1 % error. The launch costs of such a payload arc significantly less than the much larger, higher altitude balloons, or the manned flight facility. The low cost enables a risk tolerant approach to payload development. Demonstration of 1% standard deviation flight-to-flight variation is the goal of this project. This paper describes the initial concept of solar cell calibration payload, and reports initial test flight results. .

  12. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  13. Recent Progress Towards Space Applications Of Thin Film Solar Cells- The German Joint Project 'Flexible CIGSE Thin Film Solar Cells For Space Flight' And OOV

    NASA Astrophysics Data System (ADS)

    Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter

    2011-10-01

    A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.

  14. Laser-zone growth in a Ribbon-To-Ribbon (RTR) process. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.; Legge, R.; Sopori, B.; Ellis, R. J.

    1977-01-01

    The Ribbon-to-Ribbon (RTR) approach to silicon ribbon growth is investigated. An existing RTR apparatus is to be upgraded to its full capabilities and operated routinely to investigate and optimize the effects of various growth parameters on growth results. A new RTR apparatus was constructed to incorporate increased capabilities and improvements over the first apparatus and to be capable of continuous growth. New high power lasers were implemented and this led to major improvements in growth velocity -- 4 inch/min. growth has been demonstrated. A major step in demonstration of the full feasibility of the RTR process is reported in the demonstration of RTR growth from CVD polyribbon rather than sliced polyribbon ingots. Average solar cell efficiencies of greater than 9% and a best cell efficiency of 11.7% are reported. Processing was shown to provide a substantial improvement in material minority carrier diffusion length. An economic analysis is reported which treats both the polyribbon fabrication and RTR processes.

  15. 40 projects in stem cell research, tissue engineering, tolerance induction and more (NRP46 "Implants and Transplants" 1999-2006).

    PubMed

    Thiel, Gilbert T

    2007-03-02

    Forty projects on stem cell research, tissue and matrix engineering, tolerance induction and other topics were supported by the Swiss National Research Program NRP46 (Implants, Transplants) from 1999-2006. The last project is devoted to developing stem cell lines from frozen surplus human embryos in Switzerland, which would otherwise have to be destroyed at the end of 2008. It is entitled JESP (Joint Embryonic Stem Cell Project) since it involves two Swiss universities, in vitro fertilisation centres and experts from the humanities (ethics and law) to handle this difficult problem. Over the years, stem cell transplantation and tissue/matrix engineering have drawn closer to each other and even developed synergies. Progress in stem cell research has been slower than anticipated, but a multitude of technical skills (phenotyping, isolation, transfection, induction of differentiation, labelling, expanding cells in culture, etc) were acquired. Understanding of stem cell biology has grown. The 7 projects on tissue and matrix engineering progressed closer to clinical applicability than the stem cell projects. Of 3 projects to implant encapsulated cells for the production of hormones (insulin, erythropoietin), one is close to clinical pilot studies with an advanced encapsulated device. Five projects were devoted to mechanisms of tolerance or the role of metzincins in chronic allograft nephropathy. Four studies in psychology and communication in transplantation were funded, as were 5 projects in ethics, law and the history of transplantation in Switzerland. The goal of NRP46 was to provide an impulse for research in these new fields and bring together experts from the humanities, biology and medicine to cope more effectively with the problems of regenerative medicine in the future. The majority of goals were attained, mainly in the basics.

  16. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-10-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  17. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  18. Interfacial Modifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ina; French, Roger H.

    Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification ofmore » the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.« less

  19. iFORM: Incorporating Find Occurrence of Regulatory Motifs.

    PubMed

    Ren, Chao; Chen, Hebing; Yang, Bite; Liu, Feng; Ouyang, Zhangyi; Bo, Xiaochen; Shu, Wenjie

    2016-01-01

    Accurately identifying the binding sites of transcription factors (TFs) is crucial to understanding the mechanisms of transcriptional regulation and human disease. We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for scanning DNA sequences with TF motifs described as position weight matrices (PWMs). Both performance assessment with a receiver operating characteristic (ROC) curve and a correlation-based approach demonstrated that iFORM achieves higher accuracy and sensitivity by integrating five classical motif discovery programs using Fisher's combined probability test. We have used iFORM to provide accurate results on a variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demonstrated its utility in further elucidating individual roles of functional elements. Both the source and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/iFORM. The identified TF binding sites across human cell and tissue types using iFORM have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.

  20. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... Collection; Comment Request; Identification of Human Cell Lines Project AGENCY: National Institute of... by short tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding information will be posted in a publically...

  1. An Undergraduate Course to Bridge the Gap between Textbooks and Scientific Research

    PubMed Central

    Wiegant, Fred; Scager, Karin; Boonstra, Johannes

    2011-01-01

    This article reports on a one-semester Advanced Cell Biology course that endeavors to bridge the gap between gaining basic textbook knowledge about cell biology and learning to think and work as a researcher. The key elements of this course are 1) learning to work with primary articles in order to get acquainted with the field of choice, to learn scientific reasoning, and to identify gaps in our current knowledge that represent opportunities for further research; 2) formulating a research project with fellow students; 3) gaining thorough knowledge of relevant methodology and technologies used within the field of cell biology; 4) developing cooperation and leadership skills; and 5) presenting and defending research projects before a jury of experts. The course activities were student centered and focused on designing a genuine research program. Our 5-yr experience with this course demonstrates that 1) undergraduate students are capable of delivering high-quality research designs that meet professional standards, and 2) the authenticity of the learning environment in this course strongly engages students to become self-directed and critical thinkers. We hope to provide colleagues with an example of a course that encourages and stimulates students to develop essential research thinking skills. PMID:21364103

  2. An undergraduate course to bridge the gap between textbooks and scientific research.

    PubMed

    Wiegant, Fred; Scager, Karin; Boonstra, Johannes

    2011-01-01

    This article reports on a one-semester Advanced Cell Biology course that endeavors to bridge the gap between gaining basic textbook knowledge about cell biology and learning to think and work as a researcher. The key elements of this course are 1) learning to work with primary articles in order to get acquainted with the field of choice, to learn scientific reasoning, and to identify gaps in our current knowledge that represent opportunities for further research; 2) formulating a research project with fellow students; 3) gaining thorough knowledge of relevant methodology and technologies used within the field of cell biology; 4) developing cooperation and leadership skills; and 5) presenting and defending research projects before a jury of experts. The course activities were student centered and focused on designing a genuine research program. Our 5-yr experience with this course demonstrates that 1) undergraduate students are capable of delivering high-quality research designs that meet professional standards, and 2) the authenticity of the learning environment in this course strongly engages students to become self-directed and critical thinkers. We hope to provide colleagues with an example of a course that encourages and stimulates students to develop essential research thinking skills.

  3. Development of Residential SOFC Cogeneration System

    NASA Astrophysics Data System (ADS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  4. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  5. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    PubMed

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted <10 d). Together, these data suggest that intrinsic plasticity within mPFC-BLA projection neurons occurs in a subregion- and cell-type-specific manner during acquisition, consolidation, and extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change during behavior. This is the first study to demonstrate that trace fear conditioning significantly alters the intrinsic excitability of mPFC-to-amygdala projection neurons in a subregion- and cell-type-specific manner, which is also transient and reversed by extinction. These data are of broad interest to the neuroscientific community, and the results will inspire additional studies investigating the cellular mechanisms underlying circuit-specific changes within the brain as a result of associative learning and memory. Copyright © 2015 the authors 0270-6474/15/3513511-14$15.00/0.

  6. Reaction and Aggregation Dynamics of Cell Surface Receptors

    NASA Astrophysics Data System (ADS)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  7. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  8. Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation

    PubMed Central

    Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus

    2016-01-01

    A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046

  9. RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins.

    PubMed

    Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma

    2013-01-04

    One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.

  10. Silicon on Ceramic Process: Silicon Sheet Growth and Device Development for the Large-area Silicon Sheet and Cell Development Tasks of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.

    1979-01-01

    The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.

  11. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  12. Development of processes for the production of low cost silicon dendritic web for solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.

    1980-01-01

    High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).

  13. [Unresolved issues in the evaluation of research projects involving induced pluripotent stem cells (iPS)].

    PubMed

    Casado, María; de Lecuona, Itziar

    2013-01-01

    This paper identifies problems and analyzes those conflicts posed by the evaluation of research projects involving the collection and use of human induced pluripotent stem cells (iPS) in Spain. Current legislation is causing problems of interpretation, circular and unnecessary referrals, legal uncertainty and undue delays. Actually, this situation may cause a lack of control and monitoring, and even some paralysis in regenerative medicine and cell therapy research, that is a priority nowadays. The analysis of the current legislation and its bioethical implications, led us to conclude that the review of iPS research projects cannot be assimilated to the evaluation of research projects that involve human embryonic stem cell (hESC). In this context, our proposal is based on the review by the Research Ethics Committees and the checkout by the Spanish Comission of Guarantees for Donation and Use of Human Cells and Tissues (CGDUCTH) of human iPS cells research projects. Moreover, this article claims for a more transparent research system, by effectively articulating the Registry on Research Projects. Finally, a model of verification protocol (checklist) for checking out biomedical research projects involving human iPS cells is suggested.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwack, R.

    The goal of the Silicon Material Task, a part of the FSA Project, was to develop and demonstrate the technology for the low-cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. To be compatible with the price goals of the FSA Project, the price of the produced silicon was to be less than $10/kg (in 1975 dollars). Summarized in this document are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and government researchers. The silane-production sectionmore » of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot plant stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. Production of very high-purity silane and silicon was demonstrated. Although it has as yet not achieved commercial application, the development of fluidized-bed technology for the low-cost, high-throughput conversion of silane-to-silicon has been demonstrated in the research laboratory and now is in engineering development.« less

  15. The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections

    PubMed Central

    2011-01-01

    Background Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of CCW12 results in severe cell wall damage and reduced mating efficiency. Results In order to explore the function of CCW12, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of CCW12. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are PFD1, WHI3, SRN2, PAC10, FEN1 and YDR417C, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant ccw12Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are BCK1, CHS3, EDE1, PFD1, SLT2 and SLA1 that were also identified in the SGA. In contrast, a specific feature of mutant ccw12Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection. Conclusions The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of CCW12. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth. The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned. PMID:21320323

  16. Strategy Guideline. Demonstration Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  17. Strategy Guideline: Demonstration Home

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  18. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  19. Cine Computed Tomography Without Respiratory Surrogate in Planning Stereotactic Radiotherapy for Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegel, Adam C. B.A.; Chang, Joe Y.; Vedam, Sastry S.

    2009-02-01

    Purpose: To determine whether cine computed tomography (CT) can serve as an alternative to four-dimensional (4D)-CT by providing tumor motion information and producing equivalent target volumes when used to contour in radiotherapy planning without a respiratory surrogate. Methods and Materials: Cine CT images from a commercial CT scanner were used to form maximum intensity projection and respiratory-averaged CT image sets. These image sets then were used together to define the targets for radiotherapy. Phantoms oscillating under irregular motion were used to assess the differences between contouring using cine CT and 4D-CT. We also retrospectively reviewed the image sets for 26more » patients (27 lesions) at our institution who had undergone stereotactic radiotherapy for Stage I non-small-cell lung cancer. The patients were included if the tumor motion was >1 cm. The lesions were first contoured using maximum intensity projection and respiratory-averaged CT image sets processed from cine CT and then with 4D-CT maximum intensity projection and 10-phase image sets. The mean ratios of the volume magnitude were compared with intraobserver variation, the mean centroid shifts were calculated, and the volume overlap was assessed with the normalized Dice similarity coefficient index. Results: The phantom studies demonstrated that cine CT captured a greater extent of irregular tumor motion than did 4D-CT, producing a larger tumor volume. The patient studies demonstrated that the gross tumor defined using cine CT imaging was similar to, or slightly larger than, that defined using 4D-CT. Conclusion: The results of our study have shown that cine CT is a promising alternative to 4D-CT for stereotactic radiotherapy planning.« less

  20. Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body.

    PubMed

    Schofield, Brett R; Motts, Susan D; Mellott, Jeffrey G; Foster, Nichole L

    2014-01-01

    Direct projections from the cochlear nucleus (CN) to the medial geniculate body (MG) mediate a high-speed transfer of acoustic information to the auditory thalamus. Anderson etal. (2006) used anterograde tracers to label the projection from the dorsal CN (DCN) to the MG in guinea pigs. We examined this pathway with retrograde tracers. The results confirm a pathway from the DCN, originating primarily from the deep layers. Labeled cells included a few giant cells and a larger number of small cells of unknown type. Many more labeled cells were present in the ventral CN (VCN). These cells, identifiable as multipolar (stellate) or small cells, were found throughout much of the VCN. Most of the labeled cells were located contralateral to the injection site. The CN to MG pathway bypasses the inferior colliculus (IC), where most ascending auditory information is processed. Anderson etal. (2006) hypothesized that CN-MG axons are collaterals of axons that reach the IC. We tested this hypothesis by injecting different fluorescent tracers into the MG and IC and examining the CN for double-labeled cells. After injections on the same side of the brain, double-labeled cells were found in the contralateral VCN and DCN. Most double-labeled cells were in the VCN, where they accounted for up to 37% of the cells labeled by the MG injection. We conclude that projections from the CN to the MG originate from the VCN and, less so, from the DCN. A significant proportion of the cells send a collateral projection to the IC. Presumably, the collateral projections send the same information to both the MG and the IC. The results suggest that T-stellate cells of the VCN are a major source of direct projections to the auditory thalamus.

  1. Rationale, design, and methods for process evaluation in the Childhood Obesity Research Demonstration project

    USDA-ARS?s Scientific Manuscript database

    The cross-site process evaluation plan for the Childhood Obesity Research Demonstration (CORD) project is described here. The CORD project comprises 3 unique demonstration projects designed to integrate multi-level, multi-setting health care and public health interventions over a 4-year funding peri...

  2. Mesenchymal change and drug resistance in neuroblastoma.

    PubMed

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Fifth Quarterly Project Report - FY14 Q1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a largemore » array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling at various temperatures, thereby enabling earlier warning of thermal runaway than possible with external sensors. Ultimately, the team plans to extend this work to include: (12) flexible wireless controllers, also using Bluetooth 4.0 standard, essential for balancing large-scale battery packs. LLNL received $925K for this project, and has $191K remaining after accomplishing these objectives.« less

  4. An application programming interface for CellNetAnalyzer.

    PubMed

    Klamt, Steffen; von Kamp, Axel

    2011-08-01

    CellNetAnalyzer (CNA) is a MATLAB toolbox providing computational methods for studying structure and function of metabolic and cellular signaling networks. In order to allow non-experts to use these methods easily, CNA provides GUI-based interactive network maps as a means of parameter input and result visualization. However, with the availability of high-throughput data, there is a need to make CNA's functionality also accessible in batch mode for automatic data processing. Furthermore, as some algorithms of CNA are of general relevance for network analysis it would be desirable if they could be called as sub-routines by other applications. For this purpose, we developed an API (application programming interface) for CNA allowing users (i) to access the content of network models in CNA, (ii) to use CNA's network analysis capabilities independent of the GUI, and (iii) to interact with the GUI to facilitate the development of graphical plugins. Here we describe the organization of network projects in CNA and the application of the new API functions to these projects. This includes the creation of network projects from scratch, loading and saving of projects and scenarios, and the application of the actual analysis methods. Furthermore, API functions for the import/export of metabolic models in SBML format and for accessing the GUI are described. Lastly, two example applications demonstrate the use and versatile applicability of CNA's API. CNA is freely available for academic use and can be downloaded from http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Golden Gate Vanpool Demonstration Project

    DOT National Transportation Integrated Search

    1979-07-01

    The report evaluates the Golden Gate Vanpool Demonstration Project activities begun in October 1977. The objective of the demonstration is to successfuly promote commuter ridesharing through vanpools. The project grantee, the Golden Gate Bridge, High...

  6. ARPA-E: Transforming Our Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ellen; Raman, Aaswath

    2016-03-02

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy andmore » helping to create a more secure, affordable and sustainable American energy future.« less

  7. 78 FR 16476 - Notice for Termination of a Disease Management Demonstration Project for TRICARE Standard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Management Demonstration Project for TRICARE Standard Beneficiaries.'' The demonstration provided disease... DEPARTMENT OF DEFENSE Office of the Secretary Notice for Termination of a Disease Management Demonstration Project for TRICARE Standard Beneficiaries AGENCY: Office of the Secretary of Defense, (Health...

  8. 76 FR 80903 - Extension of Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Extension of Autism Services Demonstration Project... Enhanced Access to Autism Services Demonstration Project under the Extended Care Health Option for beneficiaries diagnosed with an Autism Spectrum Disorder (ASD). Under the demonstration, the Department...

  9. 78 FR 78342 - Extension of Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... DEPARTMENT OF DEFENSE Office of the Secretary Extension of Autism Services Demonstration Project... (the Department) Enhanced Access to Autism Services Demonstration Project (Autism Demonstration) under the Extended Care Health Option (ECHO) for beneficiaries diagnosed with an Autism Spectrum Disorder...

  10. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  11. Demonstration of alternative traffic information collection and management technologies

    NASA Astrophysics Data System (ADS)

    Knee, Helmut E.; Smith, Cy; Black, George; Petrolino, Joe

    2004-03-01

    Many of the components associated with the deployment of Intelligent Transportation Systems (ITS) to support a traffic management center (TMC) such as remote control cameras, traffic speed detectors, and variable message signs, have been available for many years. Their deployment, however, has been expensive and applied primarily to freeways and interstates, and have been deployed principally in the major metropolitan areas in the US; not smaller cities. The Knoxville (Tennessee) Transportation Planning Organization is sponsoring a project that will test the integration of several technologies to estimate near-real time traffic information data and information that could eventually be used by travelers to make better and more informed decisions related to their travel needs. The uniqueness of this demonstration is that it will seek to predict traffic conditions based on cellular phone signals already being collected by cellular communications companies. Information about the average speed on various portions of local arterials and incident identification (incident location) will be collected and compared to similar data generated by "probe vehicles". Successful validation of the speed information generated from cell phone data will allow traffic data to be generated much more economically and utilize technologies that are minimally infrastructure invasive. Furthermore, when validated, traffic information could be provided to the traveling public allowing then to make better decisions about trips. More efficient trip planning and execution can reduce congestion and associated vehicle emissions. This paper will discuss the technologies, the demonstration project, the project details, and future directions.

  12. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....301 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.301 Program expectations. (a) Demonstration projects permit the Office of Personnel...

  13. Effects of spaceflight on the proliferation of jejunal mucosal cells

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Moeller, C. L.; Sawyer, Heywood R.; Smirnov, K. L.

    1991-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  14. Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion.

    PubMed

    Kottom, Theodore J; Limper, Andrew H

    2016-02-01

    Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0-8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.

  15. Evidence for a Pneumocystis carinii Flo8-like Transcription Factor: Insights into Organism Adhesion

    PubMed Central

    Kottom, Theodore J.; Limper, Andrew H.

    2015-01-01

    Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesin/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41% homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0–8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ (deficient) yeast strains demonstrated the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together these data suggests that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation. PMID:26215665

  16. Analysis of results of ASTP experiment in electrophoresis

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; Krumrine, P. H.

    1977-01-01

    The Apollo-Soyuz Test Project (ASTP) included an electrophoretic separation experiment of biological cells. The nature separation results of aldehyde-fixed rabbit, human and horse red blood cells, which were taken in the form of photographs taken at three-minute intervals, are the subject of this report. The electrophoretic separation was successful in that fractionation according to mobility did occur and was found in the sliced samples. Photographic evidence indicates that the low electroosmotic methylcellulose coating was successful in reducing the electroosmosis to a near zero value. Also, the flight film shows that the bands migrated down the column as theory would predict, producing two bands of high cell concentration separated and surrounded by regions of lower cell concentration. However, most likely some clumping of cells occurred to cause the trailing band to be larger than expected from theory. Overall, the experiment was a success in demonstrating a static electrophoresis separation under microgravity conditions with a resolution not possible on earth.

  17. Cell Separations in Microgravity and Development of a Space Bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1985-01-01

    A bioreactor optimized for operations in space is now being developed. The current research is focused on determining the optimum cell-bead ratios, medium content and proper maintenance conditions required to keep living cell specimens alive and healthy for the entire flight. The bioreactor development project has recently added a microprocessor/computer to the JSC prototype for control and data analysis. Appropriate new technology is being combined with the current bioreactor designs and tested to determine what specific features must be included in the fabrication of a bioreactor designed to operate for STS demonstration tests. Considerations include: (1) circulation and resupply of culture media; (2) sensors required to monitor temperature, cell growth, mass transport, and oxygen consumption; and (3) inflight control of shear stress on cells, gas transfer in microgravity, diffusion, and intracellular transport. These data and results from the JSC prototype bioreactor test will be used for the design and construction of a small space bioreactor for the Orbiter middeck.

  18. 75 FR 8927 - Autism Services Demonstration Project for TRICARE Beneficiaries Under the Extended Care Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF DEFENSE Office of the Secretary Autism Services Demonstration Project for TRICARE... Access to Autism Services Demonstration Project under the Extended Care Health Option for beneficiaries diagnosed with an Autism Spectrum Disorder (ASD). Under the demonstration, the Department implemented a...

  19. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  20. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  1. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  2. 34 CFR 380.1 - What is the program of special projects and demonstrations for providing supported employment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... demonstrations for providing supported employment services to individuals with the most severe disabilities and... employment services to individuals with the most severe disabilities, including projects that demonstrate the... SPECIAL PROJECTS AND DEMONSTRATIONS FOR PROVIDING SUPPORTED EMPLOYMENT SERVICES TO INDIVIDUALS WITH THE...

  3. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-01-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  4. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior

    NASA Astrophysics Data System (ADS)

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  5. Development of a soldier-portable fuel cell power system. Part I: A bread-board methanol fuel processor

    NASA Astrophysics Data System (ADS)

    Palo, Daniel R.; Holladay, Jamie D.; Rozmiarek, Robert T.; Guzman-Leong, Consuelo E.; Wang, Yong; Hu, Jianli; Chin, Ya-Huei; Dagle, Robert A.; Baker, Eddie G.

    A 15-W e portable power system is being developed for the US Army that consists of a hydrogen-generating fuel reformer coupled to a proton-exchange membrane fuel cell. In the first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14-80 W t output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 W e, the system yielded a fuel processor efficiency of 45% (LHV of H 2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 Wh/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified, and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, a fuel cell, and a rechargeable battery. The battery will provide power for start-up and added capacity for times of peak power demand.

  6. Development of a Soldier-Portable Fuel Cell Power System, Part I: A Bread-Board Methanol Fuel Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palo, Daniel R.; Holladay, Jamelyn D.; Rozmiarek, Robert T.

    A 15-We portable power system is being developed for the US Army, comprised of a hydrogen-generating fuel reformer coupled to a hydrogen-converting fuel cell. As a first phase of this project, a methanol steam reformer system was developed and demonstrated. The reformer system included a combustor, two vaporizers, and a steam-reforming reactor. The device was demonstrated as a thermally independent unit over the range of 14 to 80 Wt output. Assuming a 14-day mission life and an ultimate 1-kg fuel processor/fuel cell assembly, a base case was chosen to illustrate the expected system performance. Operating at 13 We, the systemmore » yielded a fuel processor efficiency of 45% (LHV of H2 out/LHV of fuel in) and an estimated net efficiency of 22% (assuming a fuel cell efficiency of 48%). The resulting energy density of 720 W-hr/kg is several times the energy density of the best lithium-ion batteries. Some immediate areas of improvement in thermal management also have been identified and an integrated fuel processor is under development. The final system will be a hybrid, containing a fuel reformer, fuel cell, and rechargeable battery. The battery will provide power for startup and added capacity for times of peak power demand.« less

  7. Replication-deficient adenovirus vector transfer of gfp reporter gene into supraoptic nucleus and subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.

    1998-01-01

    The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.

  8. Hydrogen Production via a High-Efficiency Low-Temperature Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul KT Liu; Theo T. Tsotsis

    2006-05-31

    Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposedmore » to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.« less

  9. Dynamic optical projection of acquired luminescence for aiding oncologic surgery

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Gullicksrud, Kyle; Mondal, Suman; Sudlow, Gail P.; Achilefu, Samuel; Akers, Walter J.

    2013-12-01

    Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems.

  10. 5 CFR 890.1303 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL... Demonstration Project § 890.1303 Eligibility. (a) To enroll in the demonstration project, an individual must... benefit plans offered through the FEHB Program under the demonstration project. (d) When determining...

  11. 5 CFR 470.309 - Public hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.309... present their written or oral views concerning the proposed demonstration project. The notice of public...

  12. Accelerated Innovation Deployment (AID) Demonstration Project : Intelligent Compaction and Infrared Scanning Projects

    DOT National Transportation Integrated Search

    2018-02-01

    This report documents the Missouri Department of Transportation (MoDOT) demonstration grant award for field demonstration projects using intelligent compaction (IC) and infrared scanning (IR) (also called paver-mounted thermal profiles PMTP in the AA...

  13. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  14. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  15. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  16. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  17. Analytical and Radio-Histo-Chemical Experiments of Plants and Tissue Culture Cells Treated with Lunar and Terrestrial Materials

    NASA Technical Reports Server (NTRS)

    Halliwell, R. S.

    1973-01-01

    The nature and mechanisms of the apparent simulation of growth originally observed in plants growing in contact with lunar soil during the Apollo project quarantine are examined. Preliminary experiments employing neutron activated lunar soil indicate uptake of a few elements by plants. It was found that while the preliminary neutron activation technique allowed demonstration of uptake of minerals it presented numerous disadvantages for use in critical experiments directed at elucidating possible mechanisms of stimulation.

  18. An interferometer for high-resolution optical surveillance from GEO - internal metrology breadboard

    NASA Astrophysics Data System (ADS)

    Bonino, L.; Bresciani, F.; Piasini, G.; Pisani, M.; Cabral, A.; Rebordão, J.; Musso, F.

    2017-11-01

    This paper describes the internal metrology breadboard development activities performed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell by AAS-I and INETI. The Michelson Interferometer Testbed demonstrates the possibility of achieving a cophasing condition between two arms of the optical interferometer starting from a large initial white light Optical Path Difference (OPD) unbalance and of maintaining the fringe pattern stabilized in presence of disturbances.

  19. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  20. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  1. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  2. Cortical feedback control of olfactory bulb circuits.

    PubMed

    Boyd, Alison M; Sturgill, James F; Poo, Cindy; Isaacson, Jeffry S

    2012-12-20

    Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Visualisation of plastid outgrowths in potato (Solanum tuberosum L.) tubers by carboxyfluorescein diacetate staining.

    PubMed

    Borucki, Wojciech; Bederska, Magdalena; Sujkowska-Rybkowska, Marzena

    2015-05-01

    We describe two types of plastid outgrowths visualised in potato tubers after carboxyfluorescein diacetate staining. Probable esterase activity of the outgrowths has been demonstrated for the first time ever. Plastid outgrowths were observed in the phelloderm and storage parenchyma cells of red potato (S. tuberosum L. cv. Rosalinde) tubers after administration of carboxyfluorescein diacetate stain. Endogenous esterases cleaved off acetic groups to release membrane-unpermeable green fluorescing carboxyfluorescein which accumulated differentially in particular cell compartments. The intensive green fluorescence of carboxyfluorescein exhibited highly branched stromules (stroma-filled plastid tubular projections of the plastid envelope) and allowed distinguishing them within cytoplasmic strands of the phelloderm cells. Stromules (1) were directed towards the nucleus or (2) penetrated the whole cells through the cytoplasmic bands of highly vacuolated phelloderm cells. Those directed towards the nucleus were flattened and adhered to the nuclear envelope. Stromule-like interconnections between two parts of the same plastids (isthmuses) were also observed. We also documented the formation of another type of the stroma-filled plastid outgrowths, referred to here as protrusions, which differed from previously defined stromules in both morphology and esterase activity. Unlike stromules, the protrusions were found to be associated with developmental processes leading to starch accumulation in the storage parenchyma cells. These results strongly suggest that stromules and protrusions exhibit esterase activity. This has been demonstrated for the first time. Morphological and biochemical features as well as possible functions of stromules and protrusions are discussed below.

  4. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of the...

  5. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Project evaluation. 470.317 Section 470... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.317 Project evaluation. (a) Compliance evaluation. OPM will review the operation of the...

  6. Polymer electrolyte fuel cells for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, T.E.; Wilson, M.S.; Garzon, F.H.

    1993-01-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less

  7. Polymer electrolyte fuel cells for transportation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, T.E.; Wilson, M.S.; Garzon, F.H.

    1993-03-01

    The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received incrming attention during the last few years. This increased attention has been fueled by a combination of significant technical advances in this field and by the initiation of some projects for the demonstration of a complete, PEFC-based power system in a bus or in a passenger car. Such demonstration pretieds reflect an increased faith of industry in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential Nevertheless, large scalemore » transportation applications of PEFCs requim a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve cost effective, highly performing PEFC stack and power system. We describe in this contribution some recent results of work performed within the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed transportation applications of PEFCs.« less

  8. Rechargeable aluminum batteries with conducting polymers as positive electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudak, Nicholas S.

    2013-12-01

    This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less

  9. The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus

    PubMed Central

    2011-01-01

    Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed. PMID:22185478

  10. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression.

    PubMed

    Fu, YuHong; Tvrdik, Petr; Makki, Nadja; Palombi, Olivier; Machold, Robert; Paxinos, George; Watson, Charles

    2009-05-19

    The linear nucleus (Li) is a prominent cell group in the caudal hindbrain, which was first described in a study of cerebellar afferents in the rat by [Watson, C.R.R., Switzer, R.C. III, 1978. Trigeminal projections to cerebellar tactile areas in the rat origin mainly from N. interpolaris and N. principalis. Neurosci. Lett. 10, 77-82.]. It was named for its elongated appearance in transverse sections. Since this original description in the rat, reference to the nucleus seems to have been largely absent from experimental studies of mammalian precerebellar nuclei. We therefore set out to define the cytoarchitecture, cerebellar connections, and molecular characteristics of Li in the mouse. In coronal Nissl sections at the level of the rostral inferior olive, it consists of two parallel bands of cells joined at their dorsal apex by a further band of cells, making the shape of the Greek capital letter pi. Our three-dimensional reconstruction demonstrated that the nucleus is continuous with the lateral reticular nucleus (LRt) and that the ambiguus nucleus sits inside the arch of Li. Cerebellar horseradish peroxidase injections confirmed that the cells of Li project to cerebellum. We have shown that Li cells express Atoh1 and Wnt1 lineage markers that are known to label the rhombic lip derived precerebellar nuclei. We have examined the relationship of Li cells to a number of molecular markers, and have found that many of the cells express a nonphosphorylated epitope in neurofilament H (SMI 32), a feature they share with the LRt. The mouse Li therefore appears to be a rostrodorsal extension of the LRt.

  11. The role of a Sertoli cell actin-myosin system in sperm bundle formation in the ratfish, Hydrolagus colliei (Chondrichthyes, Holocephali).

    PubMed

    Stanley, H P; Lambert, C C

    1985-11-01

    Sertoli cells in the ratfish entirely surround a clone of spermatids to form a spermatocyst. As spermiogenesis proceeds within the cyst cavity, the acrosome areas become apposed to the Sertoli cell plasma membrane lining the spermatocyst. The spermatids elongate and are gathered into an increasingly compact bundle oriented with acrosomal tips directed toward the Sertoli cell base. As all acrosome areas move closer together, Sertoli cell microfilaments oriented parallel to the long spermatid axis appear and increase in concentration. Actin and myosin were demonstrated in the microfilament area with fluorescent antibodies and NBD-Phallacidin. Simultaneously, endocytosis of Sertoli cell membrane between spermatid attachment sites removes the intervening membrane and allows the latter sites to approach each other. Sertoli cell endocytosis is spatially and temporally related to a unique projection at the basal rim of each acrosome. During midspermiogenesis, structured intercellular material appears between the Sertoli cell and the acrosomal region of each spermatid. Its periodicity is closely related to periodic arrangement of Sertoli cell actin and material within the spermatids. These attachment sites move together upon endocytosis, gathering a clone of spermatids into a closely packed bundle.

  12. Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan

    NASA Astrophysics Data System (ADS)

    Morozumi, Satoshi; Nara, Koichi

    Recently many such distributed generating systems as co-generation, photovoltaic, wind, fuel cells etc. are introduced into power distribution system, and the power system must cope with the situation with distributed generators. Moreover, such industries as IT request reliable and high quality power to preserve their businesses, and some other electric energy based industries request less reliable but cheaper electricity. From these backgrounds, several new type power delivery systems are emerging where lots of distributed generators (DGs) can be connected and many benefits offered by DGs can be realized without affecting the existing power system. They are referred to various names. In U.S.A., Microgrid, Power Park and Virtual Utilities, etc. are proposed. In Europe, DISPOWER or Smart Grid is under developing. In Japan, FRIENDS and Demand Area Network System etc. are proposed and tested in real sites. In this paper, first, general concepts of such new type power delivery systems and new businesses expected to be created by using DGs are introduced. Then, recent research activities in this area in Japan are introduced so as to stimulate new business opportunities. In the later part of this paper, related NEDO's demonstrative projects are introduced. NEDO is the largest public R&D management organization and promoting several projects regarding grid connecting issues on the power system. Those projects were planned to solve several problems on the power system where distributed renewable energy resources are installed.

  13. 5 CFR 470.311 - Final project approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.311 Final project approval. (a) The Office of Personnel Management will consider all timely...) The Office of Personnel Management shall provide a copy of the final version of the project plan to...

  14. Development of a Woven-Grid Quasi-Bipolar Battery

    NASA Technical Reports Server (NTRS)

    Tokumaru, P.; Rippel, W.; Zambrano, T.

    1998-01-01

    This report describes an analytical and experimental investigation of AeroVironment's Quasi-Bipolar battery concept. The modelling/battery design part of the study demonstrates that there is a trade-off between thermal and specified electrical performance. Even so, quasi-bipolar batteries can be designed, with ten times better thermal uniformity, that meet or exceed current state-of-the-art hybrid-electric vehicle battery pack performance, even using the same active materials. The thermal uniformity, power, and energy for these quasi-bipolar battery packs is projected to be very good. The experimental part of the investigation demonstrates the concept of the quasi-bipolar plate applied to a lead foil current collector wrapping around two sides of an inexpensive plastic film core. Approximately 50 quasi-biplate samples were fabricated using a hot laminating press. Hot lamination with "texture" between the plastic and lead shows some promise as a low cost method for fabricating the plates. Five of these plates were assembled into two cells plus one two-cell battery. Data from these test cells were compared with existing data for similar true bipolar batteries. The positive side of the plates exhibited corrosion where not protected by the active material.

  15. Direct Methanol Fuel Cell Power Supply For All-Day True Wireless Mobile Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Wells

    PolyFuel has developed state-of-the-art portable fuel cell technology for the portable computing market. A novel approach to passive water recycling within the MEA has led to significant system simplification and size reduction. Miniature stack technology with very high area utilization and minimalist seals has been developed. A highly integrated balance of plant with very low parasitic losses has been constructed around the new stack design. Demonstration prototype systems integrated with laptop computers have been shown in recent months to leading OEM computer manufacturers. PolyFuel intends to provide this technology to its customers as a reference design as a means ofmore » accelerating the commercialization of portable fuel cell technology. The primary goal of the project was to match the energy density of a commercial lithium ion battery for laptop computers. PolyFuel made large strides against this goal and has now demonstrated 270 Wh/liter compared with lithium ion energy densities of 300 Wh/liter. Further, more incremental, improvements in energy density are envisioned with an additional 20-30% gains possible in each of the next two years given further research and development.« less

  16. Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors

    PubMed Central

    Fleming, Michael S; Vysochan, Anna; Paixão, Sόnia; Niu, Jingwen; Klein, Rüdiger; Savitt, Joseph M; Luo, Wenqin

    2015-01-01

    RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling. DOI: http://dx.doi.org/10.7554/eLife.06828.001 PMID:25838128

  17. 5 CFR 470.305 - Submission of proposals for demonstration projects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Submission of proposals for demonstration projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements...

  18. Activity-dependent disruption of intersublaminar spaces and ABAKAN expression does not impact functional on and off organization in the ferret retinogeniculate system

    PubMed Central

    2011-01-01

    In the adult visual system, functionally distinct retinal ganglion cells (RGCs) within each eye project to discrete targets in the brain. In the ferret, RGCs encoding light increments or decrements project to independent On and Off sublaminae within each eye-specific layer of the dorsal lateral geniculate nucleus (dLGN). Here we report a manipulation of retinal circuitry that alters RGC action potential firing patterns during development and eliminates the anatomical markers of segregated On and Off sublaminae in the LGN, including the intersublaminar spaces and the expression of a glial-associated inhibitory molecule, ABAKAN, normally separating On and Off leaflets. Despite the absence of anatomically defined On and Off sublaminae, electrophysiological recordings in the dLGN reveal that On and Off dLGN cells are segregated normally. These data demonstrate a dissociation between normal anatomical sublamination and segregation of function in the dLGN and call into question a purported role for ABAKAN boundaries in the developing visual system. PMID:21401945

  19. Basigin/EMMPRIN/CD147 mediates neuron-glia interactions in the optic lamina of Drosophila.

    PubMed

    Curtin, Kathryn D; Wyman, Robert J; Meinertzhagen, Ian A

    2007-11-15

    Basigin, an IgG family glycoprotein found on the surface of human metastatic tumors, stimulates fibroblasts to secrete matrix metalloproteases (MMPs) that remodel the extracellular matrix, and is thus also known as Extracellular Matrix MetalloPRotease Inducer (EMMPRIN). Using Drosophila we previously identified novel roles for basigin. Specifically, photoreceptors of flies with basigin eyes show misplaced nuclei, rough ER and mitochondria, and swollen axon terminals, suggesting cytoskeletal disruptions. Here we demonstrate that basigin is required for normal neuron-glia interactions in the Drosophila visual system. Flies with basigin mutant photoreceptors have misplaced epithelial glial cells within the first optic neuropile, or lamina. In addition, epithelial glia insert finger-like projections--capitate projections (CPs)--sites of vesicle endocytosis and possibly neurotransmitter recycling. When basigin is missing from photoreceptors terminals, CP formation between glia and photoreceptor terminals is disrupted. Visual system function is also altered in flies with basigin mutant eyes. While photoreceptors depolarize normally to light, synaptic transmission is greatly diminished, consistent with a defect in neurotransmitter release. Basigin expression in photoreceptor neurons is required for normal structure and placement of glia cells.

  20. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  1. Kinematics of red cell aspiration by fluorescence-imaged microdeformation.

    PubMed Central

    Discher, D E; Mohandas, N

    1996-01-01

    Maps of fluorescing red cell membrane components on a pipette-aspirated projection are quantitated in an effort to elucidate and unify the heterogeneous kinematics of deformation. Transient gradients of diffusing fluorescent lipid first demonstrate the fluidity of an otherwise uniform-density bilayer and corroborate a "universal" calibration scale for relative surface density. A steep but smooth and stable gradient in the densities of the skeleton components spectrin, actin, and protein 4.1 is used to estimate large elastic strains along the aspirated skeleton. The deformation fields are argued to be an unhindered response to loading in the surface normal direction. Density maps intermediate to those of the compressible skeleton and fluid bilayer are exhibited by particular transmembrane proteins (e.g., Band 3) and yield estimates for the skeleton-connected fractions. Such connected proteins appear to occupy a significant proportion of the undeformed membrane surface and can lead to steric exclusion of unconnected integral membrane proteins from regions of network condensation. Consistent with membrane repatterning kinematics in reversible deformation, final vesiculation of the projection tip produces a cell fragment concentrated in freely diffusing proteins but depleted of skeleton. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:8889146

  2. Cochleovestibular nerve development is integrated with migratory neural crest cells

    PubMed Central

    Sandell, Lisa L.; Butler Tjaden, Naomi E.; Barlow, Amanda J.; Trainor, Paul A.

    2015-01-01

    The cochleovestibular (CV) nerve, which connects the inner ear to the brain, is the nerve that enables the senses of hearing and balance. The aim of this study was to document the morphological development of the mouse CV nerve with respect to the two embryonic cells types that produce it, specifically, the otic vesicle-derived progenitors that give rise to neurons, and the neural crest cell (NCC) progenitors that give rise to glia. Otic tissues of mouse embryos carrying NCC lineage reporter transgenes were whole mount immunostained to identify neurons and NCC. Serial optical sections were collected by confocal microscopy and were compiled to render the three dimensional (3D) structure of the developing CV nerve. Spatial organization of the NCC and developing neurons suggest that neuronal and glial populations of the CV nerve develop in tandem from early stages of nerve formation. NCC form a sheath surrounding the CV ganglia and central axons. NCC are also closely associated with neurites projecting peripherally during formation of the vestibular and cochlear nerves. Physical ablation of NCC in chick embryos demonstrates that survival or regeneration of even a few individual NCC from ectopic positions in the hindbrain results in central projection of axons precisely following ectopic pathways made by regenerating NCC. PMID:24252775

  3. Centre of the Cell: Science Comes to Life.

    PubMed

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London's East End. This article describes Centre of the Cell's first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory.

  4. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens.

    PubMed

    Brown, Dean G; May-Dracka, Tricia L; Gagnon, Moriah M; Tommasi, Ruben

    2014-12-11

    To better understand the difficulties surrounding the identification of novel antibacterial compounds from corporate screening collections, physical properties of ∼3200 antibacterial project compounds with whole cell activity against Gram-negative or Gram-positive pathogens were profiled and compared to actives found from high throughput (HTS) screens conducted on both biochemical and phenotypic bacterial targets. The output from 23 antibacterial HTS screens illustrated that when compared to the properties of the antibacterial project compounds, the HTS actives were significantly more hydrophobic than antibacterial project compounds (typically 2-4 log units higher), and furthermore, for 14/23 HTS screens, the average clogD was higher than the screening collection average (screening collection clogD = 2.45). It was found that the consequences of this were the following: (a) lead identification programs often further gained hydrophobic character with increased biochemical potency, making the separation even larger between the physicochemical properties of known antibacterial agents and the HTS active starting point, (b) the probability of plasma protein binding and cytotoxicity are often increased, and (c) cell-based activity in Gram-negative bacteria was severely limited or, if present, demonstrated significant efflux. Our analysis illustrated that compounds least susceptible to efflux were those which were highly polar and small in MW or very large and typically zwitterionic. Hydrophobicity was often the dominant driver for HTS actives but, more often than not, precluded whole cell antibacterial activity. However, simply designing polar compounds was not sufficient for antibacterial activity and pointed to a lack of understanding of complex and specific bacterial penetration mechanisms.

  5. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited.

    PubMed

    McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith

    2011-03-01

    The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.

  6. The value of demonstration projects for new interventions: The case of human papillomavirus vaccine introduction in low- and middle-income countries.

    PubMed

    Howard, N; Mounier-Jack, S; Gallagher, K E; Kabakama, S; Griffiths, U K; Feletto, M; LaMontagne, D S; Burchett, H E D; Watson-Jones, D

    2016-09-01

    Demonstration projects or pilots of new public health interventions aim to build learning and capacity to inform country-wide implementation. Authors examined the value of HPV vaccination demonstration projects and initial national programmes in low-income and lower-middle-income countries, including potential drawbacks and how value for national scale-up might be increased. Data from a systematic review and key informant interviews, analyzed thematically, included 55 demonstration projects and 8 national programmes implemented between 2007-2015 (89 years' experience). Initial demonstration projects quickly provided consistent lessons. Value would increase if projects were designed to inform sustainable national scale-up. Well-designed projects can test multiple delivery strategies, implementation for challenging areas and populations, and integration with national systems. Introduction of vaccines or other health interventions, particularly those involving new target groups or delivery strategies, needs flexible funding approaches to address specific questions of scalability and sustainability, including learning lessons through phased national expansion.

  7. Final report for project "Effects of Low-Dose Irradiation on NFkB Signaling Networks and Mitochondria"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloschak, Gayle E; Grdina, David; Li, Jian-Jian

    Low dose ionizing radiation effects are difficult to study in human population because of the numerous confounding factors such as genetic and lifestyle differences. Research in mammalian model systems and in vitro is generally used in order to overcome this difficulty. In this program project three projects have joined together to investigate effects of low doses of ionizing radiation. These are doses at and below 10 cGy of low linear energy transfer ionizing radiation such as X-ray and gamma rays. This project was focused on cellular signaling associated with nuclear factor kappa B (NFkB) and mitochondria - subcellular organelles criticalmore » for cell aging and aging-like changes induced by ionizing radiation. In addition to cells in culture this project utilized animal tissues accumulated in a radiation biology tissue archive housed at Northwestern University (http://janus.northwestern.edu/janus2/index.php). Major trust of Project 1 was to gather all of the DoE sponsored irradiated animal (mouse, rat and dog) data and tissues under one roof and investigate mitochondrial DNA changes and micro RNA changes in these samples. Through comparison of different samples we were trying to delineate mitochondrial DNA quantity alterations and micro RNA expression differences associated with different doses and dose rates of radiation. Historic animal irradiation experiments sponsored by DoE were done in several national laboratories and universities between 1950’s and 1990’s; while these experiments were closed data and tissues were released to Project 1. Project 2 used cells in culture to investigate effects that low doses or radiation have on NFκB and its target genes manganese superoxide dismutase (MnSOD) and genes involved in cell cycle: Cyclins (B1 and D1) and cyclin dependent kinases (CDKs). Project 3 used cells in culture such as “normal” human cells (breast epithelial cell line MCF10A cells and skin keratinocyte cells HK18) and mouse embryo fibroblast (mef) cells to focus on role of NFkB protein and several other proteins such as survivin (BIRC5) in radiation dependent regulation of tumor necrosis factor alpha (TNFα) and its downstream signaling.« less

  8. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  9. Solar Airplanes and Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    2007-01-01

    A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.

  10. Downscaled projections of Caribbean coral bleaching that can inform conservation planning.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki

    2015-09-01

    Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  11. Quantification of the fraction poorly deformable red blood cells using ektacytometry.

    PubMed

    Streekstra, G J; Dobbe, J G G; Hoekstra, A G

    2010-06-21

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.

  12. Recent progress in terrestrial photovoltaic collector technology

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  13. METABOLIC AND MORPHOLOGICAL OBSERVATIONS ON THE EFFECT OF SURFACE-ACTIVE AGENTS ON LEUKOCYTES

    PubMed Central

    Graham, R. C.; Karnovsky, M. J.; Shafer, A. W.; Glass, E. A.; Karnovsky, Manfred L.

    1967-01-01

    Morphological and metabolic observations have been made on the effects of endotoxin, deoxycholate, and digitonin (at less than 50 µg/ml) on polymorphonuclear leukocytes and mononuclear cells. The agents stimulate the respiration and glucose oxidation of these cells in a manner similar to that seen during phagocytosis. Electron microscopy revealed no morphological changes with the first two agents, but dramatic membrane changes were seen in the case of digitonin. Here tubular projections of characteristic size and shape formed on and split off the membrane. All the agents stimulated uptake of inulin, but efforts to demonstrate increased pinocytosis by electron microscopy have not so far succeeded, probably due to limitations in present experimental techniques. PMID:6034482

  14. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project

    ERIC Educational Resources Information Center

    Palombi, Peggy Shadduck; Jagger, Kathleen Snell

    2008-01-01

    Using cultured fibroblast cells, undergraduate students explore cell division and the responses of cultured cells to a variety of environmental changes. The students learn new research techniques and carry out a self-designed experiment. Through this project, students enhance their creative approach to scientific inquiry, learn time-management and…

  15. Multifunctional Yarns and Fabrics for Energy Applications (NBIT Phase 2)

    DTIC Science & Technology

    2013-05-29

    project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen...redox supercapacitors resulted from program work. While project focus was on fuel cell and energy storage electrodes based on biscrolled yarns...project focus on developing biscrolled carbon nanotube yarns and textiles for supercapacitor /battery and fuel cell electrode applications was chosen

  16. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Brian David; Huya-Kouadio, Jennie Moton; Houchins, Cassidy

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  17. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  18. The projective field of a retinal amacrine cell

    PubMed Central

    de Vries, Saskia E. J.; Baccus, Stephen A.; Meister, Markus

    2011-01-01

    In sensory systems, neurons are generally characterized by their receptive field, namely the sensitivity to activity patterns at the circuit's input. To assess the neuron's role in the system, one must also know its projective field, namely the spatio-temporal effects the neuron exerts on all the circuit's outputs. We studied both the receptive and projective fields of an amacrine interneuron in the salamander retina. This amacrine type has a sustained OFF response with a small receptive field, but its output projects over a much larger region. Unlike other amacrines, this type is remarkably promiscuous and affects nearly every ganglion cell within reach of its dendrites. Its activity modulates the sensitivity of visual responses in ganglion cells, while leaving their kinetics unchanged. The projective field displays a center-surround structure: Depolarizing a single amacrine suppresses the visual sensitivity of ganglion cells nearby, and enhances it at greater distances. This change in sign is seen even within the receptive field of one ganglion cell; thus the modulation occurs presynaptically on bipolar cell terminals, most likely via GABAB receptors. Such an antagonistic projective field could contribute to the retina's mechanisms for predictive coding. PMID:21653863

  19. Human genome project and sickle cell disease.

    PubMed

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  20. Pyrite Iron Sulfide Solar Cells Made from Solution Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Matt

    This document summarizes research done under the SunShot Next Generation PV II project entitled, “Pyrite Iron Sulfide Solar Cells Made from Solution,” award number DE-EE0005324, at the University of California, Irvine, from 9/1/11 thru 11/30/16. The project goal was to develop iron pyrite (cubic FeS 2) as an absorber layer for solution-processible p-n heterojunction solar cells with a pathway to >20% power conversion efficiency. Project milestones centered around seven main Tasks: (1) make device-quality pyrite thin-films from solar ink; (2) develop an ohmic bottom contact with suitable low resistivity; (3) produce a p-n heterojunction with VOC > 400 mV; (4)more » make a solar cell with >5% power conversion efficiency; (5) use alloying to increase the pyrite band gap to ~1.2-1.4 eV; (6) produce a p-n heterojunction with VOC > 500 mV; and finally (7) make a solar cell with >10% power conversion efficiency. In response to project findings, the Tasks were amended midway through the project to focus particular effort on passivating the surface of pyrite in order to eliminate excessively-strong surface band bending believed to be responsible for the low VOC of pyrite diodes. Major project achievements include: (1) development and detailed characterization of several new solution syntheses of high-quality thin-film pyrite, including two “molecular ink” routes; (2) demonstration of Mo/MoS 2 bilayers as good ohmic bottom contacts to pyrite films; (3) fabrication of pyrite diodes with a glass/Mo/MoS 2/pyrite/ZnS/ZnO/AZO layer sequence that show VOC values >400 mV and as high as 610 mV at ~1 sun illumination, although these high VOC values ultimately proved irreproducible; (4) established that ZnS is a promising n-type junction partner for pyrite; (5) used density functional theory to show that the band gap of pyrite can be increased from ~1.0 to a more optimal 1.2-1.3 eV by alloying with oxygen; (6) through extensive measurements of ultrahigh-purity pyrite single crystals, proved the existence of a conductive, hole-rich inversion layer at the surface of n-type pyrite crystals and established that the inversion layer is the likely reason for pyrite’s low VOC; (7) developed several surface passivation treatments to reduce the surface hole density, but not enough to expect a significant increase in VOC; (8) by controlling the single crystal growth conditions, reduced the concentration of near-surface deep donors by a factor of ~1000, which should be sufficient to avoid thermionic field emission (i.e., tunneling) across the pyrite surface and thereby increase pyrite VOC. Recent project results will be described in forthcoming peer-reviewed publications.« less

  1. Clean Coal Technology Demonstration Program: Program Update 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  2. 78 FR 64204 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research (ONR); Amendment... ONR Personnel Management Demonstration Project (75 FR 77380-77447, December 10, 2010). SUMMARY: On December 10, 2010 (75 FR 77380-77447), DoD published a notice of approval of a personnel management...

  3. DEMONSTRATION PROJECT FOR THE ABATEMENT OF NITROGEN OXIDES EMISSIONS USING REBURN TECHNOLOGY FOR COGENERATION PLANTS IN TAIWAN

    EPA Science Inventory

    The report summarizes the key technical results of a joint demonstration project between the U.S. Environmental Protection Agency and the Taiwan Environmental Protection Administration. The project demonstrated that coal reburning can be used to reduce nitrogen oxides (NOX) emiss...

  4. 77 FR 19682 - Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ...-FF09E30000] Proposed Information Collection; Wolf Livestock Demonstration Project Grant Program AGENCY: Fish... Interior and the Secretary of Agriculture to develop a Wolf Livestock Demonstration Project Grant Program... of livestock loss due to predation by wolves; and Compensate livestock producers for livestock losses...

  5. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  6. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  7. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  8. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  9. 20 CFR 404.1599 - Work incentive experiments and rehabilitation demonstration projects in the disability program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and demonstration projects designed to provide more cost-effective ways of encouraging disabled beneficiaries to return to work and leave benefit rolls. These experiments and demonstration projects will test... to test their effect on the program. (c) Applicability and scope—(1) Participants and nonparticipants...

  10. Hawaii Demonstration Project to Avert Unintended Teenage Pregnancy: 1978-1982. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Levitt-Merin, Marta; Sutter, Sharon Kingdon

    This final report provides a descriptive overview of three approaches which the Hawaii Demonstration Project initiated to reduce unintended teenage pregnancies. Project evaluation findings are summarized; both qualitative and quantitative data are presented for a comprehensive picture of the project and its input. Project limitations and successes…

  11. OPERATIONAL RETRIEVAL, THE BASIC EDUCATION COMPONENT OF EXPERIMENTAL AND DEMONSTRATION PROJECTS (E/D) FOR DISADVANTAGED YOUTHS.

    ERIC Educational Resources Information Center

    SEXTON, PATRICIA CAYO

    IN THIS STUDY OF EXPERIMENTAL AND DEMONSTRATION BASIS EDUCATION PROJECTS FOR DISADVANTAGED YOUTHS, VISITS WERE MADE TO THE JOB UPGRADING PROJECT (NORTH RICHMOND, CALIFORNIA), THE MAYOR'S YOUTH EMPLOYMENT PROJECT (DETROIT), THE LANE COUNTY YOUTH PROJECT (EUGENE, OREGON), JOB OPPORTUNITIES, THROUGH BETTER SKILLS (CHICAGO), THE YMCA…

  12. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet}more » Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed« less

  13. [Conjunctival fibrous histiocytoma simulating atipical pterygium in the Amazon region: case report].

    PubMed

    Carvalho, Roberto Murillo Limongi de Souza; Taleb, Alexandre; Carvalho, Giulianna Limongi de Souza; Avila, Marcos

    2010-01-01

    An inedited case in the Brazilian literature of conjunctival fibrous histiocytoma discovered during a wide scale community project accomplished by the team of the Center of Reference in Ophthalmology of the Hospital das Clínicas da Universidade Federal de Goiás in the Amazon region is reported. A 38 year-old caucasian woman presented with a vascularized lesion on the medial portion of the bulbar conjunctiva and caruncular region of the right eye with extension for the limbus and invading about 2 mm of the medial cornea resembling a pterygium. Pathologic findings revealed that the lesion was constituted by spindle-shaped cells, with storiform arrangement, and large histocytelike cells. The immunohistochemistry revealed strong positivity for vimentin and the neoplastic cells were negative for AE1/AE3, HMB 45, S 100 protein. The histopathologic diagnosis was fibrous histiocytoma. The evolution demonstrated the tumoral growth and the possibility of a malignant lesion.

  14. Neurotransmitters couple brain activity to subventricular zone neurogenesis

    PubMed Central

    Young, Stephanie Z.; Taylor, M. Morgan; Bordey, Angélique

    2011-01-01

    Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local GABA and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep, and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments. PMID:21395856

  15. Imaging single cells in a beam of live cyanobacteria with an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-11

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  16. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  17. Silicon web process development. [for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  18. Numerical and analytical approaches to an advection-diffusion problem at small Reynolds number and large Péclet number

    NASA Astrophysics Data System (ADS)

    Fuller, Nathaniel J.; Licata, Nicholas A.

    2018-05-01

    Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we discuss the results from an undergraduate research project on the advection-diffusion equation at small Reynolds number and large Péclet number. In particular, we consider the problem of mass transport for a Stokesian spherical swimmer. We approach the problem numerically and analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the swimming cell demonstrates quantitative agreement between the numerical and analytical approaches. We conclude by discussing the connections between our results and the design of smart toxin disposal systems.

  19. The European Partnership for Alternative Approaches to Animal Testing (EPAA): promoting alternative methods in Europe and beyond.

    PubMed

    Cozigou, Gwenole; Crozier, Jonathan; Hendriksen, Coenraad; Manou, Irene; Ramirez-Hernandez, Tzutzuy; Weissenhorn, Renate

    2015-03-01

    Here in we introduce the European Partnership for Alternative Approaches to Animal Testing (EPAA) and its activities, which are focused on international cooperation toward alternative methods. The EPAA is one of the leading organizations in Europe for the promotion of alternative approaches to animal testing. Its innovative public-private partnership structure enables a consensus-driven dialogue across 7 industry sectors to facilitate interaction between regulators and regulated stakeholders. Through a brief description of EPAA's activities and organizational structure, we first articulate the value of this collaboration; we then focus on 2 key projects driven by EPAA. The first project aims to address research gaps on stem cells for safety testing, whereas the second project strives for an approach toward demonstration of consistency in vaccine batch release testing. We highlight the growing need for harmonization of international acceptance and implementation of alternative approaches and for increased international collaboration to foster progress on nonanimal alternatives.

  20. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles

    PubMed Central

    Agrawal, Parul

    2016-01-01

    In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather, Lar disrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lack Lar anticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles. PMID:27030770

  1. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Scott

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontiummore » manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.« less

  2. Glycinergic Input to the Mouse Basal Forebrain Cholinergic Neurons

    PubMed Central

    Bardóczi, Zsuzsanna; Pál, Balázs; Kőszeghy, Áron; Wilheim, Tamás; Záborszky, László; Liposits, Zsolt

    2017-01-01

    The basal forebrain (BF) receives afferents from brainstem ascending pathways, which has been implicated first by Moruzzi and Magoun (1949) to induce forebrain activation and cortical arousal/waking behavior; however, it is very little known about how brainstem inhibitory inputs affect cholinergic functions. In the current study, glycine, a major inhibitory neurotransmitter of brainstem neurons, and gliotransmitter of local glial cells, was tested for potential interaction with BF cholinergic (BFC) neurons in male mice. In the BF, glycine receptor α subunit-immunoreactive (IR) sites were localized in choline acetyltransferase (ChAT)-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs (sIPSCs; 0.81 ± 0.25 × 10−1 Hz) recorded in whole-cell conditions. Potential neuronal as well as glial sources of glycine were indicated in the extracellular space of cholinergic neurons by glycine transporter type 1 (GLYT1)- and GLYT2-IR processes found in apposition to ChAT-IR cells. Ultrastructural analyses identified synapses of GLYT2-positive axon terminals on ChAT-IR neurons, as well as GLYT1-positive astroglial processes, which were localized in the vicinity of synapses of ChAT-IR neurons. The brainstem raphe magnus was determined to be a major source of glycinergic axons traced retrogradely from the BF. Our results indicate a direct effect of glycine on BFC neurons. Furthermore, the presence of high levels of plasma membrane glycine transporters in the vicinity of cholinergic neurons suggests a tight control of extracellular glycine in the BF. SIGNIFICANCE STATEMENT Basal forebrain cholinergic (BFC) neurons receive various activating inputs from specific brainstem areas and channel this information to the cortex via multiple projections. So far, very little is known about inhibitory brainstem afferents to the BF. The current study established glycine as a major regulator of BFC neurons by (1) identifying glycinergic neurons in the brainstem projecting to the BF, (2) showing glycine receptor α subunit-immunoreactive (IR) sites in choline acetyltransferase (ChAT)-IR neurons, (3) demonstrating glycine transporter type 2 (GLYT2)-positive axon terminals synapsing on ChAT-IR neurons, and (4) localizing GLYT1-positive astroglial processes in the vicinity of synapses of ChAT-IR neurons. The effect of glycine on BFC neurons was demonstrated by bicuculline-resistant, strychnine-sensitive spontaneous IPSCs recorded in whole-cell conditions. PMID:28874448

  3. UV Decontamination of MDA Reagents for Single Cell Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Janey; Tighe, Damon; Sczyrba, Alexander

    2011-03-18

    Single cell genomics, the amplification and sequencing of genomes from single cells, can provide a glimpse into the genetic make-up and thus life style of the vast majority of uncultured microbial cells, making it an immensely powerful and increasingly popular tool. This is accomplished by use of multiple displacement amplification (MDA), which can generate billions of copies of a single bacterial genome producing microgram-range DNA required for shotgun sequencing. Here, we address a key challenge inherent to this approach and propose a solution for the improved recovery of single cell genomes. While DNA-free reagents for the amplification of a singlemore » cell genome are a prerequisite for successful single cell sequencing and analysis, DNA contamination has been detected in various reagents, which poses a considerable challenge. Our study demonstrates the effect of UV irradiation in efficient elimination of exogenous contaminant DNA found in MDA reagents, while maintaining Phi29 activity. Consequently, we also find that increased UV exposure to Phi29 does not adversely affect genome coverage of MDA amplified single cells. While additional challenges in single cell genomics remain to be resolved, the proposed methodology is relatively quick and simple and we believe that its application will be of high value for future single cell sequencing projects.« less

  4. Demonstration of optimum fuel-to-moderator ratio in a PWR unit fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.; Pozsgai, C.

    1992-01-01

    Nuclear engineering students at The Pennsylvania State University develop scaled-down [[approx]350 MW(thermal)] pressurized water reactors (PWRs) using actual plants as references. The design criteria include maintaining the clad temperature below 2200[degree]F, fuel temperature below melting point, sufficient departure from nucleate boiling ratio (DNBR) margin, a beginning-of-life boron concentration that yields a negative moderator temperature coefficient, an adequate cycle power production (330 effective full-power days), and a batch loading scheme that is economical. The design project allows for many degrees of freedom (e.g., assembly number, pitch and height and batch enrichments) so that each student's result is unique. The iterative naturemore » of the design process is stressed in the course. The LEOPARD code is used for the unit cell depletion, critical boron, and equilibrium xenon calculations. Radial two-group diffusion equations are solved with the TWIDDLE-DEE code. The steady-state ZEBRA thermal-hydraulics program is used for calculating DNBR. The unit fuel cell pin radius and pitch (fuel-to-moerator ratio) for the scaled-down design, however, was set equal to the already optimized ratio for the reference PWR. This paper describes an honors project that shows how the optimum fuel-to-moderator ratio is found for a unit fuel cell shown in terms of neutron economics. This exercise illustrates the impact of fuel-to-moderator variations on fuel utilization factor and the effect of assuming space and energy separability.« less

  5. Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus.

    PubMed

    Schofield, Brett R; Mellott, Jeffrey G; Motts, Susan D

    2014-01-01

    Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives.

  6. Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus

    PubMed Central

    Schofield, Brett R.; Mellott, Jeffrey G.; Motts, Susan D.

    2014-01-01

    Experiments in several species have identified direct projections to the medial geniculate nucleus (MG) from cells in subcollicular auditory nuclei. Moreover, many cochlear nucleus cells that project to the MG send collateral projections to the inferior colliculus (IC) (Schofield et al., 2014). We conducted three experiments to characterize projections to the MG from the superior olivary and the lateral lemniscal regions in guinea pigs. For experiment 1, we made large injections of retrograde tracer into the MG. Labeled cells were most numerous in the superior paraolivary nucleus, ventral nucleus of the trapezoid body, lateral superior olivary nucleus, ventral nucleus of the lateral lemniscus, ventrolateral tegmental nucleus, paralemniscal region and sagulum. Additional sources include other periolivary nuclei and the medial superior olivary nucleus. The projections are bilateral with an ipsilateral dominance (66%). For experiment 2, we injected tracer into individual MG subdivisions. The results show that the subcollicular projections terminate primarily in the medial MG, with the dorsal MG a secondary target. The variety of projecting nuclei suggest a range of functions, including monaural and binaural aspects of hearing. These direct projections could provide the thalamus with some of the earliest (i.e., fastest) information regarding acoustic stimuli. For experiment 3, we made large injections of different retrograde tracers into one MG and the homolateral IC to identify cells that project to both targets. Such cells were numerous and distributed across many of the nuclei listed above, mostly ipsilateral to the injections. The prominence of the collateral projections suggests that the same information is delivered to both the IC and the MG, or perhaps that a common signal is being delivered as a preparatory indicator or temporal reference point. The results are discussed from functional and evolutionary perspectives. PMID:25100950

  7. Experiment K-7-17: Effects of Spaceflight on the Proliferation of Jejunal Mucosal Cells

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Moeller, C. L.; Sawyer, H. R.; Smirnov, K. L.

    1994-01-01

    The purpose of this project was to test the hypothesis that the generalized, whole body decrease in synthetic activity due to microgravity conditions encountered during spaceflight would be demonstrable in cells and tissues characterized by a rapid rate of turnover. Jejunal mucosal cells were chosen as a model since these cells are among the most rapidly proliferating in the body. Accordingly, the percentage of mitotic cells present in the crypts of Lieberkuhn in each of 5 rats flown on the COSMOS 2044 mission were compared to the percentage of mitotic cells present in the crypts in rats included in each of 3 ground control groups (i.e., vivarium, synchronous and caudal-elevated). No significant difference (p greater than .05) was detected in mitotic indices between the flight and vivarium group. Although the ability of jejunal mucosal cells to divide by mitosis was not impaired in flight group, there was, however, a reduction in the length of villi and depth of crypts. The concommitant reduction in villus length and crypth depth in the flight group probably reflects changes in connective tissue components within the core of villi.

  8. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  9. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  10. The Interdisciplinary Generalist Curriculum Project: A National Medical School Demonstration Project.

    ERIC Educational Resources Information Center

    Kahn, Norman B., Jr.; And Others

    1995-01-01

    The Interdisciplinary Generalist Curriculum Project was developed to encourage schools of medicine and colleges of osteopathic medicine to implement interdisciplinary generalist curricula in the preclinical years. Five sites were competitively established as demonstration projects, and rigorous attention to creating and maintaining an…

  11. A review of recent progress in heterogeneous silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masafumi; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki

    2018-04-01

    Silicon solar cells are the most established solar cell technology and are expected to dominate the market in the near future. As state-of-the-art silicon solar cells are approaching the Shockley-Queisser limit, stacking silicon solar cells with other photovoltaic materials to form multi-junction devices is an obvious pathway to further raise the efficiency. However, many challenges stand in the way of fully realizing the potential of silicon tandem solar cells because heterogeneously integrating silicon with other materials often degrades their qualities. Recently, above or near 30% silicon tandem solar cell has been demonstrated, showing the promise of achieving high-efficiency and low-cost solar cells via silicon tandem. This paper reviews the recent progress of integrating solar cell with other mainstream solar cell materials. The first part of this review focuses on the integration of silicon with III-V semiconductor solar cells, which is a long-researched topic since the emergence of III-V semiconductors. We will describe the main approaches—heteroepitaxy, wafer bonding and mechanical stacking—as well as other novel approaches. The second part introduces the integration of silicon with polycrystalline thin-film solar cells, mainly perovskites on silicon solar cells because of its rapid progress recently. We will also use an analytical model to compare the material qualities of different types of silicon tandem solar cells and project their practical efficiency limits.

  12. Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip

    PubMed Central

    Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin

    2013-01-01

    The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells. PMID:23320067

  13. Computer Link Offering Variable Educational Records (Project CLOVER). A National Diffusion Network Developer/Demonstrator Project.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    Project CLOVER (Computerized Link Offering Variable Educational Records) is a demonstration project designed to increase use of the Migrant Student Record Transfer System (MSRTS). Project CLOVER (1) helps to ensure that schools attended by migrant students have the capability to receive and transmit academic and medical information on students;…

  14. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  15. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  16. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  17. 34 CFR 425.1 - What is the Demonstration Projects for the Integration of Vocational and Academic Learning Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Vocational and Academic Learning Program? 425.1 Section 425.1 Education Regulations of the Offices... EDUCATION DEMONSTRATION PROJECTS FOR THE INTEGRATION OF VOCATIONAL AND ACADEMIC LEARNING PROGRAM General § 425.1 What is the Demonstration Projects for the Integration of Vocational and Academic Learning...

  18. Characterizing Mystery Cell Lines: Student-driven Research Projects in an Undergraduate Neuroscience Laboratory Course.

    PubMed

    Lemons, Michele L

    2012-01-01

    Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a "mystery" cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed.

  19. Characterizing Mystery Cell Lines: Student-driven Research Projects in an Undergraduate Neuroscience Laboratory Course

    PubMed Central

    Lemons, Michele L.

    2012-01-01

    Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a “mystery” cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed. PMID:23504583

  20. Experimental and theoretical analysis for improved microscope design of optical projection tomographic microscopy.

    PubMed

    Coe, Ryan L; Seibel, Eric J

    2013-09-01

    We present theoretical and experimental results of axial displacement of objects relative to a fixed condenser focal plane (FP) in optical projection tomographic microscopy (OPTM). OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The cell rotates in a microcapillary to acquire projections from different perspectives where the objective FP is scanned through the cell while the condenser FP remains fixed at the center of the microcapillary. This work uses a combination of experimental and theoretical methods to improve the OPTM instrument design.

  1. Acoustic Overexposure Increases the Expression of VGLUT-2 Mediated Projections from the Lateral Vestibular Nucleus to the Dorsal Cochlear Nucleus

    PubMed Central

    Barker, Matthew; Solinski, Hans Jürgen; Hashimoto, Haruka; Tagoe, Thomas; Pilati, Nadia; Hamann, Martine

    2012-01-01

    The dorsal cochlear nucleus (DCN) is a first relay of the central auditory system as well as a site for integration of multimodal information. Vesicular glutamate transporters VGLUT-1 and VGLUT-2 selectively package glutamate into synaptic vesicles and are found to have different patterns of organization in the DCN. Whereas auditory nerve fibers predominantly co-label with VGLUT-1, somatosensory inputs predominantly co-label with VGLUT-2. Here, we used retrograde and anterograde transport of fluorescent conjugated dextran amine (DA) to demonstrate that the lateral vestibular nucleus (LVN) exhibits ipsilateral projections to both fusiform and deep layers of the rat DCN. Stimulating the LVN induced glutamatergic synaptic currents in fusiform cells and granule cell interneurones. We combined the dextran amine neuronal tracing method with immunohistochemistry and showed that labeled projections from the LVN are co-labeled with VGLUT-2 by contrast to VGLUT-1. Wistar rats were exposed to a loud single tone (15 kHz, 110 dB SPL) for 6 hours. Five days after acoustic overexposure, the level of expression of VGLUT-1 in the DCN was decreased whereas the level of expression of VGLUT-2 in the DCN was increased including terminals originating from the LVN. VGLUT-2 mediated projections from the LVN to the DCN are likely to play a role in the head position in response to sound. Amplification of VGLUT-2 expression after acoustic overexposure could be a compensatory mechanism from vestibular inputs in response to hearing loss and to a decrease of VGLUT-1 expression from auditory nerve fibers. PMID:22570693

  2. Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hansen-Hagge, Thomas; Kurtz, Andreas; Mrowka, Ralf; Wölfl, Stefan; Gärtner, Claudia

    2017-02-01

    The development of new drugs is time-consuming, extremely expensive and often promising drug candidates fail in late stages of the development process due to the lack of suitable tools to either predict toxicological effects or to test drug candidates in physiologically relevant environments prior to clinical tests. We therefore try to develop diagnostic multiorgan microfluidic chips based on patient specific induced pluripotent stem cell (iPS) technology to explore liver dependent toxic effects of drugs on individual human tissues such as liver or kidney cells. Based initially on standardized microfluidic modules for cell culture, we have developed integrated microfluidic devices which contain different chambers for cell/tissue cultivation. The devices are manufactured using injection molding of thermoplastic polymers such as polystyrene or cyclo-olefin polymer. In the project, suitable surface modification methods of the used materials had to be explored. We have been able to successfully demonstrate the seeding, cultivation and further differentiation of modified iPS, as shown by the use of differentiation markers, thus providing a suitable platform for toxicity testing and potential tissue-tissue interactions.

  3. Generation of subnatural-linewdith biphotons from a hot rubidium atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Zhu, Lingbang; Shu, Chi; Guo, Xianxin; Chen, Peng; Xiao, Yanhong; Jeong, Heejeong; Du, Shengwang

    2017-04-01

    We report the generation of narrowband entangled photon pairs (biphotons) from a hot atomic vapor cell. Making use of backward spontaneous four-wave mixing with electromagnetically induced transparency (EIT), we produced subnatural-linewidth (1.9 MHz < 6 MHz) biphotons from a Doppler-broadened (0.5 GHz) hot (63 C) paraffin-coated rubidium 87 vapor cell. The biphoton coherence time is controable and can be tuned up to 100 ns by EIT. The uncorrelated photons from resonance Raman scattering are suppressed by a spatially separated and tailored optical pumping beam. The spectral brightness is as high as 14,000 s- 1 MHz- 1 . As compared with the cold-atom experiment , the hot atomic vapour cell configuration is much simpler for operation and maintenance, and it is a continuous biphoton source. Our demonstration may lead to miniature narrowband biphoton sources based on atomic vapour cells for practical quantum applications and engineering. The work was supported by Hong Kong Research Grants Council (Project No. 16301214), and in part by the CAS/SAFEA International Partnership Program for Creative Research Teams. L.Z. acknowledges support from the Undergraduate Research Opportunities Program.

  4. Multiview Projection Using CADKEY Freeze-Frame Demonstrations.

    ERIC Educational Resources Information Center

    Kelso, Robert P.; Ziai, M. Reza

    1988-01-01

    Describes a three-dimensional computer aided design software package, CADKEY, for demonstrating orthographic orthodirectional projection theory to a classroom. Provides several figures for showing the demonstrations. (Author/YP)

  5. Texas Hydrogen Education Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchcock, David; Bullock, Dan

    2011-06-30

    The Texas Hydrogen Education project builds on past interest in hydrogen and fuel cells to help create better informed leaders and stakeholders and thereby improve decision making and planning for inclusion of hydrogen and fuel cell technologies as energy alternatives in Texas. In past years in Texas, there was considerable interest and activities about hydrogen and fuel cells (2000-­2004). During that time, the Houston Advanced Research Center (HARC) created a fuel cell consortium and a fuel cell testing lab. Prior to 2008, interest and activities had declined substantially. In 2008, in cooperation with the Texas H2 Coalition and the Statemore » Energy Conservation Office, HARC conducted a planning process to create the Texas Hydrogen Roadmap. It was apparent from analysis conducted during the course of this process that while Texas has hydrogen and fuel cell advantages, there was little program and project activity as compared with other key states. Outreach and education through the provision of informational materials and organizing meetings was seen as an effective way of reaching decision makers in Texas. Previous hydrogen projects in Texas had identified the five major urban regions for program and project development. This geographic targeting approach was adopted for this project. The project successfully conducted the five proposed workshops in four of the target metropolitan areas: San Antonio, Houston, Austin, and the Dallas-­Ft. Worth area. In addition, eight outreach events were included to further inform state and local government leaders on the basics of hydrogen and fuel cell technologies. The project achieved its primary objectives of developing communication with target audiences and assembling credible and consistent outreach and education materials. The major lessons learned include: (1) DOE’s Clean Cities programs are a key conduit to target transportation audiences, (2) real-­world fuel cell applications (fuel cell buses, fuel cell fork lifts, and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).« less

  6. The cholinergic forebrain arousal system acts directly on the circadian pacemaker

    PubMed Central

    Yamakawa, Glenn R.; Basu, Priyoneel; Cortese, Filomeno; MacDonnell, Johanna; Whalley, Danica; Smith, Victoria M.

    2016-01-01

    Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system. PMID:27821764

  7. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  8. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels.

    PubMed

    Soman, Pranav; Chung, Peter H; Zhang, A Ping; Chen, Shaochen

    2013-11-01

    Complex 3D interfacial arrangements of cells are found in several in vivo biosystems such as blood vasculature, renal glomeruli, and intestinal villi. Current tissue engineering techniques fail to develop suitable 3D microenvironments to evaluate the concurrent effects of complex topography and cell encapsulation. There is a need to develop new fabrication approaches that control cell density and distribution within complex 3D features. In this work, we present a dynamic projection printing process that allows rapid construction of complex 3D structures using custom-defined computer-aided-design (CAD) files. Gelatin-methacrylate (GelMA) constructs featuring user-defined spiral, pyramid, flower, and dome micro-geometries were fabricated with and without encapsulated cells. Encapsulated cells demonstrate good cell viability across all geometries both on the scaffold surface and internal to the structures. Cells respond to geometric cues individually as well as collectively throughout the larger-scale patterns. Time-lapse observations also reveal the dynamic nature of mechanical interactions between cells and micro-geometry. When compared to conventional cell-seeding, cell encapsulation within complex 3D patterned scaffolds provides long-term control over proliferation, cell morphology, and geometric guidance. Overall, this biofabrication technique offers a flexible platform to evaluate cell interactions with complex 3D micro-features, with the ability to scale-up towards high-throughput screening platforms. © 2013 Wiley Periodicals, Inc.

  9. Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex

    PubMed Central

    Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu

    2013-01-01

    The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796

  10. Bringing space technology down to earth

    NASA Technical Reports Server (NTRS)

    Gray, E. Z.

    1974-01-01

    The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.

  11. Design of durability test protocol for vehicular fuel cell systems operated in power-follow mode based on statistical results of on-road data

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Reimer, Uwe; Li, Jianqiu; Huang, Haiyan; Hu, Zunyan; Jiang, Hongliang; Janßen, Holger; Ouyang, Minggao; Lehnert, Werner

    2018-02-01

    City buses using polymer electrolyte membrane (PEM) fuel cells are considered to be the most likely fuel cell vehicles to be commercialized in China. The technical specifications of the fuel cell systems (FCSs) these buses are equipped with will differ based on the powertrain configurations and vehicle control strategies, but can generally be classified into the power-follow and soft-run modes. Each mode imposes different levels of electrochemical stress on the fuel cells. Evaluating the aging behavior of fuel cell stacks under the conditions encountered in fuel cell buses requires new durability test protocols based on statistical results obtained during actual driving tests. In this study, we propose a systematic design method for fuel cell durability test protocols that correspond to the power-follow mode based on three parameters for different fuel cell load ranges. The powertrain configurations and control strategy are described herein, followed by a presentation of the statistical data for the duty cycles of FCSs in one city bus in the demonstration project. Assessment protocols are presented based on the statistical results using mathematical optimization methods, and are compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.

  12. Neurodegeneration and adaptation in response to low-dose photon irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limoli, Charles L.

    2014-10-27

    Neural stem and precursor cells (i.e. multipotent neural cells) are concentrated in the neurogenic regions of the brain (hippocampal dentate gyrus, subventricular zones), and considerable evidence suggests that these cells are important in mediating the stress response of the CNS after damage from ionizing radiation. The capability of these cells to proliferate, migrate and differentiate (i.e. to undergo neurogenesis) suggests they can participate in the repair and maintenance of CNS functions by replacing brain cells damaged or depleted due to irradiation. Importantly, we have shown that multipotent neural cells are markedly sensitive to irradiation and oxidative stress, insults that compromisemore » neurogenesis and hasten the onset and progression of degenerative processes that are likely to have an adverse impact on cognition. Our past and current work has demonstrated that relatively low doses of radiation cause a persistent (weeks-months) oxidative stress in multipotent neural cells that can elicit a range of degenerative sequelae in the CNS. Therefore, our project is focused on determining the extent that endogenous and redox sensitive multipotent neural cells represent important radioresponsive targets for low dose radiation effects. We hypothesize that the activation of redox sensitive signaling can trigger radioadaptive changes in these cells that can be either harmful or beneficial to overall cognitive health.« less

  13. Target-Selectivity of Parvalbumin-Positive Interneurons in Layer II of Medial Entorhinal Cortex in Normal and Epileptic Animals

    PubMed Central

    Armstrong, Caren; Wang, Jessica; Lee, Soo Yeun; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan

    2015-01-01

    The medial entorhinal cortex layer II (MEClayerII) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII. However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII. However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII. Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. PMID:26663222

  14. Target-selectivity of parvalbumin-positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals.

    PubMed

    Armstrong, Caren; Wang, Jessica; Yeun Lee, Soo; Broderick, John; Bezaire, Marianne J; Lee, Sang-Hun; Soltesz, Ivan

    2016-06-01

    The medial entorhinal cortex layer II (MEClayerII ) is a brain region critical for spatial navigation and memory, and it also demonstrates a number of changes in patients with, and animal models of, temporal lobe epilepsy (TLE). Prior studies of GABAergic microcircuitry in MEClayerII revealed that cholecystokinin-containing basket cells (CCKBCs) select their targets on the basis of the long-range projection pattern of the postsynaptic principal cell. Specifically, CCKBCs largely avoid reelin-containing principal cells that form the perforant path to the ipsilateral dentate gyrus and preferentially innervate non-perforant path forming calbindin-containing principal cells. We investigated whether parvalbumin containing basket cells (PVBCs), the other major perisomatic targeting GABAergic cell population, demonstrate similar postsynaptic target selectivity as well. In addition, we tested the hypothesis that the functional or anatomic arrangement of circuit selectivity is disrupted in MEClayerII in chronic TLE, using the repeated low-dose kainate model in rats. In control animals, we found that PVBCs innervated both principal cell populations, but also had significant selectivity for calbindin-containing principal cells in MEClayerII . However, the magnitude of this preference was smaller than for CCKBCs. In addition, axonal tracing and paired recordings showed that individual PVBCs were capable of contacting both calbindin and reelin-containing principal cells. In chronically epileptic animals, we found that the intrinsic properties of the two principal cell populations, the GABAergic perisomatic bouton numbers, and selectivity of the CCKBCs and PVBCs remained remarkably constant in MEClayerII . However, miniature IPSC frequency was decreased in epilepsy, and paired recordings revealed the presence of direct excitatory connections between principal cells in the MEClayerII in epilepsy, which is unusual in normal adult MEClayerII . Taken together, these findings advance our knowledge about the organization of perisomatic inhibition both in control and in epileptic animals. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Year 2000 Computerized Farm Project. Final Report.

    ERIC Educational Resources Information Center

    McGrann, James M.; Lippke, Lawrence A.

    An ongoing project was funded to develop and demonstrate a computerized approach to operation and management of a commercial-sized farm. Other project objectives were to facilitate the demonstration of the computerized farm to the public and to develop individual software packages and make them available to the public. Project accomplishments…

  16. Alternative Youth Employment Strategies Project: Final Report.

    ERIC Educational Resources Information Center

    Sadd, Susan; And Others

    The Alternative Youth Employment Strategies (AYES) Project began as one of the demonstration projects funded under the Youth Employment and Demonstration Project Act in 1980. The program, which features three training models, is targeted toward high-risk, disadvantaged youth, especially minority youths from urban areas who had prior involvement…

  17. An Evaluation of the Community Education Demonstration Projects.

    ERIC Educational Resources Information Center

    Wynne, Ronald D.

    The report summarizes a six-month evaluation (July-December 1967) of 11 community education projects funded by the Office of Economic Opportunity. Major focus is on eight projects which comprised a special series of Section 207 Community Education Demonstration Projects--Appalachian Volunteers, Inc., the Columbia College Citizenship Council…

  18. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  19. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach.

    PubMed

    Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing

    2018-02-01

    Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca 2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.

  20. 75 FR 59237 - TRICARE Co-Pay Waiver at Captain James A. Lovell Federal Health Care Center Demonstration Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Federal Health Care Center Demonstration Project AGENCY: Office of the Secretary, Department of Defense. ACTION: Notice of TRICARE Co-Pay waiver at Captain James A. Lovell Federal Health Care Center... ``TRICARE Co-Pay Waiver at Captain James A. Lovell Federal Health Care (FHCC) Demonstration Project.'' Under...

  1. Changes in neuropeptide Y receptors and pro-opiomelanocortin in the anorexia (anx/anx) mouse hypothalamus.

    PubMed

    Broberger, C; Johansen, J; Brismar, H; Johansson, C; Schalling, M; Hökfelt, T

    1999-08-15

    The pro-opiomelanocortinergic (POMCergic) system originating in the hypothalamic arcuate nucleus extends projections widely over the brain and has been shown to be intricately linked and parallel to the arcuate neuropeptide Y (NPY) system. Both NPY and POMC-derived peptides (melanocortins) have been strongly implicated in the control of feeding behavior, with the former exerting orexigenic effects and the latter having anorexigenic properties. Mice homozygous for the lethal anorexia (anx) mutation are hypophagic, emaciated, and exhibit anomalous processing of NPY exclusively in the arcuate nucleus, providing an interesting model to study NPY-POMC interactions. In the present study, several morphological markers were used to investigate the histochemistry and morphology of the POMC system in anx/anx mice. In situ hybridization demonstrated decreased numbers of POMC mRNA-expressing neurons in the anx/anx arcuate nucleus. In parallel, mRNA levels for both the NPY Y1 and Y5 receptors, which are expressed in POMC neurons, were decreased. Also, expression of the NPY Y2 autoreceptor was attenuated. Immunohistochemistry using antibodies against adrenocorticotropic hormone to demonstrate POMC cell bodies, against alpha-melanocyte-stimulating hormone to demonstrate axonal projections and against the NPY Y1 receptor to demonstrate dendritic arborizations, showed strikingly decreased immunoreactivities for all these markers. The present data suggest that degeneration of the arcuate POMC system is a feature characteristic of the anx/anx mouse. The possible relationship to the NPYergic phenotype of this animal is discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Thomas J.

    The project objective was to further assist in the commercialization of fuel cell and H2 technology by building further upon the successful fuel cell lift truck deployments that were executed by LiftOne in 2007, with longer deployments of this technology in real-world applications. We involved facilities management, operators, maintenance personnel, safety groups, and Authorities Having Jurisdiction. LiftOne strived to educate a broad group from many areas of industry and the community as to the benefits of this technology. Included were First Responders from the local areas. We conducted month long deployments with end-users to validate the value proposition and themore » market requirements for fuel cell powered lift trucks. Management, lift truck operators, Authorities Having Jurisdiction and the general public experienced 'hands on' fuel cell experience in the material handling applications. We partnered with Hydrogenics in the execution of the deployment segment of the program. Air Products supplied the compressed H2 gas and the mobile fueler. Data from the Fuel Cell Power Packs and the mobile fueler was sent to the DOE and NREL as required. Also, LiftOne conducted the H2 Education Seminars on a rotating basis at their locations for lift trucks users and for other selected segments of the community over the project's 36 month duration. Executive Summary The technology employed during the deployments program was not new, as the equipment had been used in several previous demos and early adoptions within the material handling industry. This was the case with the new HyPx Series PEM - Fuel Cell Power Packs used, which had been demo'd before during the 2007 Greater Columbia Fuel Cell Challenge. The Air Products HF-150 Fueler was used outdoors during the deployments and had similarly been used for many previous demo programs. The methods used centered on providing this technology as the power for electric sit-down lift trucks at high profile companies operating large fleets. As a long-standing lift truck dealership, LiftOne was able to introduce the fuel cells to such companies in the demanding applications. Accomplishments vs Objectives: We were successful in respect to the stated objectives. The Education Segment's H2 Education Sessions were able to introduce fuel cell technology to many companies and reached the intended broad audience. Also, demos of the lift truck at the sessions as well as the conferences; expos and area events provided great additional exposure. The Deployments were successful in allowing the 6 participating companies to test the 2 fuel cell powered lift trucks in their demanding applications. One of the 6 sites (BMW) eventually adopted over 80 fuel cells from Plug Power. LiftOne was one of the 3 fuel cell demonstrators at BMW for this trial and played a major role in helping to prove the viability and efficiency of this alternative form of energy for BMW. The other 5 companies that participated in the project's deployments were encouraged by the trials and while not converting over to fuel cell power at this time, expressed the desire to revisit acquisition scenarios in the near future as the cost of fuel cells and infrastructure continue to improve. The Education sessions began in March of 2009 at the 7 LiftOne Branches and continued throughout the duration of the project. Attendees came from a large base of lift truck users in North Carolina, South Carolina and Virginia. The sessions were free and invitations were sent out to potential users and companies with intrigue. In addition to the Education content at the sessions (which was offered in a 'H2 101' format), LiftOne was able to demonstrate a working fuel cell powered lift truck, which proved to be a big draw with the 'hands on' experience. LiftOne also demo'd the fuel cell lift trucks at many conferences, expos, professional association meetings, trade shows and 'Green' events in major cities region including Charlotte, Greenville, and Columbia. Such events allowed for H2 Education Material to be presented, and recruit attendees for future sessions. The Deployments began in May '09 and continued through August'10. While the overall results were good, there were some technical problems with the fuel cells at times during the trials. These items are detailed in the attachment provided with this submission. There were never any safety issues during the trials as design features and diagnostic capabilities allowed for quick analysis and field repairs. There were no products developed during this award, as we demo'd existing products. During the project, Tom Dever was able to speak at several panel type discussions and presentations at the NHA/ Fuel Cell & H2 Energy Annual Conference, as well as at the Promat Show in Chicago. Expertise and deployment/ education experiences were imparted during these events. The presentations are included as attachments.« less

  3. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  4. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  5. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  6. From genes to proteins to behavior: a laboratory project that enhances student understanding in cell and molecular biology.

    PubMed

    Aronson, Benjamin D; Silveira, Linda A

    2009-01-01

    In the laboratory, students can actively explore concepts and experience the nature of scientific research. We have devised a 5-wk laboratory project in our introductory college biology course whose aim was to improve understanding in five major concepts that are central to basic cellular, molecular biology, and genetics while teaching molecular biology techniques. The project was focused on the production of adenine in Saccharomyces cerevisiae and investigated the nature of mutant red colonies of this yeast. Students created red mutants from a wild-type strain, amplified the two genes capable of giving rise to the red phenotype, and then analyzed the nucleotide sequences. A quiz assessing student understanding in the five areas was given at the start and the end of the course. Analysis of the quiz showed significant improvement in each of the areas. These areas were taught in the laboratory and the classroom; therefore, students were surveyed to determine whether the laboratory played a role in their improved understanding of the five areas. Student survey data demonstrated that the laboratory did have an important role in their learning of the concepts. This project simulated steps in a research project and could be adapted for an advanced course in genetics.

  7. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  8. Automated fiber placement: Evolution and current demonstrations

    NASA Technical Reports Server (NTRS)

    Grant, Carroll G.; Benson, Vernon M.

    1993-01-01

    The automated fiber placement process has been in development at Hercules since 1980. Fiber placement is being developed specifically for aircraft and other high performance structural applications. Several major milestones have been achieved during process development. These milestones are discussed in this paper. The automated fiber placement process is currently being demonstrated on the NASA ACT program. All demonstration projects to date have focused on fiber placement of transport aircraft fuselage structures. Hercules has worked closely with Boeing and Douglas on these demonstration projects. This paper gives a description of demonstration projects and results achieved.

  9. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  10. 77 FR 5258 - Proposed Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Information Collection Activity; Comment Request Proposed Projects Title: Child Welfare Demonstration Projects... agencies to submit proposals for new child welfare waiver demonstration projects. CB is able to approve up to ten child welfare [[Page 5259

  11. 5 CFR 470.317 - Project evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Project evaluation. 470.317 Section 470.317 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration...

  12. PenMap demonstration project, landslide mapping system

    DOT National Transportation Integrated Search

    2002-12-01

    This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...

  13. Rapid Automated Sample Preparation for Biological Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusteff, M

    Our technology utilizes acoustic, thermal, and electric fields to separate out contaminants such as debris or pollen from environmental samples, lyse open cells, and extract the DNA from the lysate. The objective of the project is to optimize the system described for a forensic sample, and demonstrate its performance for integration with downstream assay platforms (e.g. MIT-LL's ANDE). We intend to increase the quantity of DNA recovered from the sample beyond the current {approx}80% achieved using solid phase extraction methods. Task 1: Develop and test an acoustic filter for cell extraction. Task 2: Develop and test lysis chip. Task 3:more » Develop and test DNA extraction chip. All chips have been fabricated based on the designs laid out in last month's report.« less

  14. Update on the CeC PoP 704 MHz 5-cell cavity cryomodule design and fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brutus, J. C.; Belomestnykh, S.; Ben-Zvi, I.

    2015-05-03

    A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the new technique of cooling proton and ion beams that may increase the beam luminosity in certain cases, by as much as tenfold. The 704 MHz cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22MeV. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cellmore » SRF for CeC PoP experiment.« less

  15. Raman lidar for hydrogen gas concentration monitoring and future radioactive waste management.

    PubMed

    Liméry, Anasthase; Cézard, Nicolas; Fleury, Didier; Goular, Didier; Planchat, Christophe; Bertrand, Johan; Hauchecorne, Alain

    2017-11-27

    A multi-channel Raman lidar has been developed, allowing for the first time simultaneous and high-resolution profiling of hydrogen gas and water vapor. The lidar measures vibrational Raman scattering in the UV (355 nm) domain. It works in a high-bandwidth photon counting regime using fast SiPM detectors and takes into account the spectral overlap between hydrogen and water vapor Raman spectra. Measurement of concentration profiles of H 2 and H 2 O are demonstrated along a 5-meter-long open gas cell with 1-meter resolution at 85 meters. The instrument precision is investigated by numerical simulation to anticipate the potential performance at longer range. This lidar could find applications in the French project Cigéo for monitoring radioactive waste disposal cells.

  16. Texas Labor Mobility, Experimental and Demonstration Project. Final Report.

    ERIC Educational Resources Information Center

    Texas Employment Commission, Austin.

    The Texas Labor Mobility Project's purpose was to demonstrate the effectiveness of using financial assistance to create stability in migrant workers and to reduce unemployment. The program was designed as a research project to gather information about all phases of the Mobility Project. This was handled through the Texas Employment Commission. In…

  17. Implementing Interactive Telecommunications Services. Final Report on Problems Which Arise During Implementation of Field Trials and Demonstration Projects.

    ERIC Educational Resources Information Center

    Elton, Martin C. J.; Carey, John

    Intended primarily for use by individuals about to assume responsibility for the implementation of field trials and demonstration projects built around interactive telecommunication systems, this report provides brief descriptions of 20 telemedicine projects, 12 teleconferencing projects, and seven involving two-way applications of cable…

  18. FINAL REPORT ON GDE GAP CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate thatmore » the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.« less

  19. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    PubMed

    Bozler, Julianna; Kacsoh, Balint Z; Bosco, Giovanni

    2017-01-01

    Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus) and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a process of enucleation. Here we describe these cells in detail for the first time and examine their evolutionary history in Drosophila.

  20. SOLID STATE ENERGY CONVERSION ALLIANCE DELPHI SOLID OXIDE FUEL CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Shaffer; Sean Kelly; Subhasish Mukerjee

    2003-12-08

    The objective of Phase I under this project is to develop a 5 kW Solid Oxide Fuel Cell power system for a range of fuels and applications. During Phase I, the following will be accomplished: Develop and demonstrate technology transfer efforts on a 5 kW stationary distributed power generation system that incorporates steam reforming of natural gas with the option of piped-in water (Demonstration System A). Initiate development of a 5 kW system for later mass-market automotive auxiliary power unit application, which will incorporate Catalytic Partial Oxidation (CPO) reforming of gasoline, with anode exhaust gas injected into an ultra-lean burnmore » internal combustion engine. This technical progress report covers work performed by Delphi from January 1, 2003 to June 30, 2003, under Department of Energy Cooperative Agreement DE-FC-02NT41246. This report highlights technical results of the work performed under the following tasks: Task 1 System Design and Integration; Task 2 Solid Oxide Fuel Cell Stack Developments; Task 3 Reformer Developments; Task 4 Development of Balance of Plant (BOP) Components; Task 5 Manufacturing Development (Privately Funded); Task 6 System Fabrication; Task 7 System Testing; Task 8 Program Management; and Task 9 Stack Testing with Coal-Based Reformate.« less

Top