Science.gov

Sample records for cell derived hepatic

  1. Early activated hepatic stellate cell-derived molecules reverse acute hepatic injury

    PubMed Central

    Chang, Wen-Ju; Song, Lu-Jun; Yi, Tuo; Shen, Kun-Tang; Wang, Hong-Shan; Gao, Xiao-Dong; Li, Min; Xu, Jian-Min; Niu, Wei-Xin; Qin, Xin-Yu

    2015-01-01

    AIM: To test whether hepatic stellate cells (HSCs) at different activation stages play different roles in acetaminophen (APAP)-induced acute liver injury (ALI). METHODS: HSCs were isolated from mouse liver and cultured in vitro. Morphological changes of initiation HSCs [HSCs (5d)] and perpetuation HSCs [HSCs (p3)] were observed by immunofluorescence and transmission electron microscopy. The protective effects of HSC-derived molecules, cell lysates and HSC-conditioned medium (HSC-CM) were tested in vivo by survival and histopathological analyses. Liver injury was determined by measuring aminotransferase levels in the serum and by histologic examination of tissue sections under a light microscope. Additionally, to determine the molecular mediators of the observed protective effects of initiation HSCs, we examined HSC-CM using a high-density protein array. RESULTS: HSCs (5d) and HSCs (p3) had different morphological and phenotypic traits. HSCs (5d) presented a star-shaped appearance with expressing α-SMA at non-uniform levels between cells. However, HSCs (p3) evolved into myofibroblast-like cells without lipid droplets and expressed a uniform and higher level of α-SMA. HSC-CM (5d), but not HSC-CM (p3), provided a significant survival benefit and showed a dramatic reduction of hepatocellular necrosis and panlobular leukocyte infiltrates in mice exposed to APAP. However, this protective effect was abrogated at higher cell masses, indicating a therapeutic window of effectiveness. Furthermore, the protein array screen revealed that HSC-CM (5d) was composed of many chemokines and growth factors that correlated with inflammatory inhibition and therapeutic activity. When compared with HSC-CM (p3), higher levels of monocyte chemoattractant protein-1, macrophage inflammatory protein-1γ, hepatocyte growth factor, interleukin-10, and matrix metalloproteinase-2, but lower levels of stem cell factor and Fas-Ligand were observed in HSC-CM (5d). CONCLUSION: These data indicated

  2. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells

    PubMed Central

    Sakiyama, Ryoichi; Blau, Brandon J; Miki, Toshio

    2017-01-01

    There is currently a pressing need for alternative therapies to liver transplantation. The number of patients waiting for a liver transplant is substantially higher than the number of transplantable donor livers, resulting in a long waiting time and a high waiting list mortality. An extracorporeal liver support system is one possible approach to overcome this problem. However, the ideal cell source for developing bioartificial liver (BAL) support systems has yet to be determined. Recent advancements in stem cell technology allow researchers to generate highly functional hepatocyte-like cells from human pluripotent stem cells (hPSCs). In this mini-review, we summarize previous clinical trials with different BAL systems, and discuss advantages of and potential obstacles to utilizing hPSC-derived hepatic cells in clinical-scale BAL systems. PMID:28373763

  3. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver.

    PubMed

    Heo, Jeonghoon; Factor, Valentina M; Uren, Tania; Takahama, Yasushi; Lee, Ju-Seog; Major, Marian; Feinstone, Stephen M; Thorgeirsson, Snorri S

    2006-12-01

    We established an efficient system for differentiation, expansion and isolation of hepatic progenitor cells from mouse embryonic stem (ES) cells and evaluated their capacity to repopulate injured liver. Using mouse ES cells transfected with the green fluorescent protein (GFP) reporter gene regulated by albumin (ALB) enhancer/promoter, we found that a serum-free chemically defined medium supports formation of embryoid bodies (EBs) and differentiation of hepatic lineage cells in the absence of exogenous growth factors or feeder cell layers. The first GFP+ cells expressing ALB were detected in close proximity to "beating" myocytes after 7 days of EB cultures. GFP+ cells increased in number, acquired hepatocyte-like morphology and hepatocyte-specific markers (i.e., ALB, AAT, TO, and G6P), and by 28 days represented more than 30% of cells isolated from EB outgrowths. The FACS-purified GFP+ cells developed into functional hepatocytes without evidence of cell fusion and participated in the repairing of diseased liver when transplanted into MUP-uPA/SCID mice. The ES cell-derived hepatocytes were responsive to normal growth regulation and proliferated at the same rate as the host hepatocytes after an additional growth stimulus from CCl(4)-induced liver injury. The transplanted GFP+ cells also differentiated into biliary epithelial cells. In conclusion, a highly enriched population of committed hepatocyte precursors can be generated from ES cells in vitro for effective cell replacement therapy.

  4. Ionone Derivatives from the Mycelium of Phellinus linteus and the Inhibitory Effect on Activated Rat Hepatic Stellate Cells

    PubMed Central

    Huang, Shiow-Chyn; Kuo, Ping-Chung; Hung, Hsin-Yi; Pan, Tai-Long; Chen, Fu-An; Wu, Tian-Shung

    2016-01-01

    Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3), were characterized from the mycelium extract of Phellinus linteus. The chemical structures were established based on the spectroscopic analysis. In addition, phellinulin A (1) was subjected to the examination of effects on activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis. PMID:27164091

  5. Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine.

    PubMed

    Earnest-Silveira, L; Christiansen, D; Herrmann, S; Ralph, S A; Das, S; Gowans, E J; Torresi, J

    2016-10-01

    A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.

  6. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts

    PubMed Central

    Kawada, Norifumi

    2015-01-01

    Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are the source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts. PMID:26617531

  7. Derivation, characterization, and phenotypic variation of hepatic progenitor cell lines isolated from adult rats.

    PubMed

    Yin, Li; Sun, Mingzeng; Ilic, Zoran; Leffert, Hyam L; Sell, Stewart

    2002-02-01

    Liver progenitor cells (LPCs) cloned from adult rat livers following allyl alcohol injury express hematopoietic stem cell and early hepatic lineage markers when cultured on feeder layers; under these conditions, neither mature hepatocyte nor bile duct, Ito, stellate, Kupffer cell, or macrophage markers are detected. These phenotypes have remained stable without aneuploidy or morphological transformation after more than 100 population doublings. When cultured without feeder layers, the early lineage markers disappear, and mature hepatocyte markers are expressed; mature hepatocytic differentiation and cell size are also augmented by polypeptide and steroidal growth factors. In contrast to hepatocytic potential, duct-like structures and biliary epithelial markers are expressed on Matrigel. Because they were derived without carcinogens or mutagens, these bipotential LPC lines provide novel tools for models of cellular plasticity and hepatocarcinogenesis, as well as lines for use in cellular transplantation, gene therapy, and bioreactor construction.

  8. Celecoxib derivative OSU-03012 inhibits the proliferation and activation of hepatic stellate cells by inducing cell senescence.

    PubMed

    Zhang, Jun; Wang, Miao; Zhang, Zuowei; Luo, Zhongguang; Liu, Fei; Liu, Jie

    2015-04-01

    Liver fibrosis may lead to portal hypertension, liver failure or hepatocellular carcinoma, and predominantly results from the proliferation and activation of hepatic stellate cells. OSU‑03012, a non‑cyclooxygenase‑inhibiting celecoxib derivative, has been previously demonstrated to promote apoptosis in certain cell types, however, its function in hepatic fibrosis remains unclear. In the current study, the inhibitory effect of OSU‑03012 on the proliferation of the LX2 human hepatic stellate cell line was evaluated by cell counting kit‑8 assay. Reverse transcription‑quantitative polymerase chain reaction was performed in order to examine the expression of α‑smooth muscle actin and type I collagen, which are representative of LX2 cell activation. The senescence of LX2 cells was measured by senescence‑associated β‑galactosidase staining, and the cell cycle and apoptosis levels were assessed by flow cytometry. The impact of senescence‑associated signaling on protein expression was assessed by western blot analysis. OSU‑03012 was observed to inhibit cell proliferation and prevent the secretion of profibrotic factors in LX2 cells in a dose‑dependent manner. Furthermore, the results demonstrated that OSU‑03012 inhibited the proliferation and activation of LX2 via the induction of cell senescence at the G1 phase, rather than via cell apoptosis. The induction of senescence may be via the upregulation of p16, p21 and p27. In conclusion, the current study provided insight into the pharmacological mechanisms of OSU‑03012 in preventing the proliferation and activation of hepatic stellate cells through cell senescence. The current study supports the theory that OSU‑03012 is a novel agent for potential use against liver fibrosis.

  9. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells.

  10. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells

    PubMed Central

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  11. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression

    PubMed Central

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B.; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease. PMID:26564715

  12. Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells

    PubMed Central

    Du, Yichen; Esfandi, Ramak; Willmore, William G.; Tsopmo, Apollinaire

    2016-01-01

    The purpose of this study was to determine, for the first time, antioxidant activities of seven peptides (P1–P7) derived from hydrolysis of oat proteins in a cellular model. In the oxygen radical absorbance capacity (ORAC) assay, it was found that P2 had the highest radical scavenging activity (0.67 ± 0.02 µM Trolox equivalent (TE)/µM peptide) followed by P5, P3, P6, P4, P1, and P7 whose activities were between 0.14–0.61 µM TE/µM). In the hepatic HepG2 cells, none of the peptides was cytotoxic at 20–300 µM. In addition to having the highest ORAC value, P2 was also the most protective (29% increase in cell viability) against 2,2′-azobis(2-methylpropionamidine) dihydrochloride -induced oxidative stress. P1, P6, and P7 protected at a lesser extent, with an 8%–21% increase viability of cells. The protection of cells was attributed to several factors including reduced production of intracellular reactive oxygen species, increased cellular glutathione, and increased activities of three main endogenous antioxidant enzymes. PMID:27775607

  13. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    PubMed

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  14. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    PubMed Central

    Sharma, Ruchi; Greenhough, Sebastian; Medine, Claire N.; Hay, David C.

    2010-01-01

    The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays. PMID:20169088

  15. Injury mechanism dictates contribution of bone marrow-derived cells to murine hepatic vascular regeneration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem and progenitor cells derived from adult marrow have been shown to regenerate vascular cells in response to injury. However, it is unclear whether the type of injury dictates the contribution of such cells to neovascularization and which subpopulations of cells contribute to vascular regeneratio...

  16. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner.

  17. Completion of the Entire Hepatitis C Virus Life Cycle in Vero Cells Derived from Monkey Kidney

    PubMed Central

    Murayama, Asako; Sugiyama, Nao; Wakita, Takaji

    2016-01-01

    ABSTRACT A hepatitis C virus (HCV) cell culture system incorporating the JFH-1 strain and the human hepatoma cell line HuH-7 enabled the production of infectious HCV particles. Several host factors were identified as essential for HCV replication. Supplementation of these factors in nonhepatic human cell lines enabled HCV replication and particle production. Vero cells established from monkey kidney are commonly used for the production of vaccines against a variety of viruses. In this study, we aimed to establish a novel Vero cell line to reconstruct the HCV life cycle. Unmodified Vero cells did not allow HCV infection or replication. The expression of microRNA 122 (miR-122), an essential factor for HCV replication, is notably low in Vero cells. Therefore, we supplemented Vero cells with miR-122 and found that HCV replication was enhanced. However, Vero cells that expressed miR-122 still did not allow HCV infection. We supplemented HCV receptor molecules and found that scavenger receptor class B type I (SRBI) was essential for HCV infection in Vero cells. The supplementation of apolipoprotein E (ApoE), a host factor important for virus production, enabled the production of infectious virus in Vero cells. Finally, we created a Vero cell line that expressed the essential factors miR-122, SRBI, and ApoE; the entire HCV life cycle, including infection, replication, and infectious virus production, was completed in these cells. In conclusion, we demonstrated that miR-122, SRBI, and ApoE were necessary and sufficient for the completion of the entire HCV life cycle in nonhuman, nonhepatic Vero cells. PMID:27302754

  18. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  19. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  20. Evolution of a Cell Culture-Derived Genotype 1a Hepatitis C Virus (H77S.2) during Persistent Infection with Chronic Hepatitis in a Chimpanzee

    PubMed Central

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M.; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E.

    2014-01-01

    ABSTRACT Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 106 FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee

  1. The mitogenic effect of platelet-derived growth factor in human hepatic stellate cells requires calcium influx.

    PubMed

    Failli, P; Ruocco, C; De Franco, R; Caligiuri, A; Gentilini, A; Giotti, A; Gentilini, P; Pinzani, M

    1995-11-01

    Platelet-derived growth factor (PDGF) is a key mitogen for hepatic stellate cells (HSC) and has been shown to be implicated in liver tissue repair and fibrogenesis. In this study the relationship between PDGF-induced intracellular Ca2+ concentration ([Ca2+]i) increase and mitogenesis in cultured human HSC was evaluated. In high-density cell cultures (80-90% subconfluence), PDGF induced a significant increase in [Ca2+]i, characterized by a short-lasting peak phase, which was followed by a long-lasting plateau phase. The plateau phase was abolished in the absence of extracellular Ca2+. However, in low-density cell cultures (30-40% subconfluence), the plateau phase was absent or markedly less pronounced. In parallel sets of experiments, PDGF was significantly less effective in inducing mitogenesis in low-density cell cultures than in high-density cell cultures and was totally ineffective in the absence of extracellular Ca2+. These results suggest that 1) spatial and time dynamics of PDGF-induced [Ca2+]i increase are dependent on cell density and 2) PDGF-induced mitogenesis requires extracellular Ca2+ influx.

  2. Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice.

    PubMed

    Ma, Chi; Kapanadze, Tamar; Gamrekelashvili, Jaba; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2012-12-01

    Recent studies show that the liver is a preferred organ for the accumulation of MDSC. In this study, we examined the effect of systemic RB6-8C5 treatment on hepatic MDSC in tumor-bearing mice. EL4 tumor-bearing mice were injected i.p. with RB6-8C5, and hepatic, splenic, and blood MDSCs were analyzed by flow cytometry. Unexpectedly, hepatic MDSC remained in the liver, although RB6-8C5 completely eliminated them from the spleen and peripheral blood 24 h after treatment. Secondary antibody staining confirmed the presence of RB6-8C5-bound MDSC in the liver of mice with s.c. tumors. Similar observations were made in two other (colon and melanoma) tumor models. Whereas RB6-8C5 injection induced cell death of hepatic MDSC, as shown by Annexin V/7-AAD staining, these cells were replaced immediately, leading to a constant, increased frequency of hepatic MDSC. Adoptively transferred MDSC migrated preferentially to the liver after RB6-8C5 treatment, suggesting that hepatic MDSCs are reconstituted rapidly after depletion. Finally, hepatic MDSC remained immunosuppressive despite RB6-8C5 injection. Our study demonstrates that RB6-8C5 is not suitable for depletion of hepatic MDSCs and analysis of their function.

  3. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals.

    PubMed

    Narmada, Balakrishnan Chakrapani; Goh, Yeek Teck; Li, Huan; Sinha, Sanjay; Yu, Hanry; Cheung, Christine

    2017-03-01

    Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.

  4. Hepatic progenitor cell lines from allyl alcohol-treated adult rats are derived from gamma-irradiated mouse STO cells.

    PubMed

    Zhang, Mingjun; Sell, Stewart; Leffert, Hyam L

    2003-01-01

    In attempts to recharacterize several markers of putative rat liver progenitor cells, single-stage reverse transcription-polymerase chain reaction (RT-PCR) analyses failed to confirm the reported immunochemical detection of albumin, alpha(1)-fetoprotein, and cytochrome P450-1A2 in the clonal line, 3(8)#21, and the cloned derivative, 3(8)#21-EGFP (enhanced green fluorescent protein). Undetectable expression occurred whether or not both lines were cultured on or off feeder layers of gamma-irradiated mouse embryonic STO (SIM [Sandoz inbred Swiss mouse] thioguanine-resistant ouabain-resistant) cells. PCR amplification of liver progenitor cell chromosomal (rat and mouse Pigr, rat INS1, mouse INS2) and mitochondrial (rat and mouse COX1) genes revealed only mouse sequences. Further analyses of rat and mouse COX1 sequences in cells from untampered storage vials of all 11 reported liver progenitor cell lines and strains revealed only mouse sequences. In addition, uniquely similar metaphase spreads were observed in STO, 3(8)#21, and 3(8)#21-EGFP cells. The combined results suggest that the previously reported "rat" liver progenitor cell lines were most likely generated during early derivation in cell culture from gamma-radiation-resistant or ineffectively irradiated mouse STO cells used as the feeder layers. These findings reveal new types of artifacts encountered in cocultures of tissue progenitor cells and feeder layer cell lines, and they sound a cautionary note: phenotypic and genotypic properties of feeder layers should be well-characterized before and during coculture with newly derived stem cells and clonal derivatives.

  5. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    PubMed Central

    Ye, Danna; Li, Tong; Heraud, Philip; Parnpai, Rangsun

    2016-01-01

    Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation. PMID:27242905

  6. Innate immune responses in human hepatocyte-derived cell lines alter genotype 1 hepatitis E virus replication efficiencies

    PubMed Central

    Devhare, Pradip B.; Desai, Swapnil; Lole, Kavita S.

    2016-01-01

    Hepatitis E virus (HEV) is a significant health problem in developing countries causing sporadic and epidemic forms of acute viral hepatitis. Hepatitis E is a self-limiting disease; however, chronic HEV infections are being reported in immunocompromised individuals. The disease severity is more during pregnancy with high mortality (20–25%), especially in third trimester. Early cellular responses after HEV infection are not completely understood. We analyzed innate immune responses associated with genotype-I HEV replication in human hepatoma cell lines (Huh7, Huh7.5 and HepG2/C3A) using HEV replicon system. These cells supported HEV replication with different efficiencies due to the cell type specific innate immune responses. HepG2/C3A cells were less supportive to HEV replication as compared to Huh7.5 and S10-3 cells. Reconstitution of the defective RIG-I and TLR3 signaling in Huh7.5 cells enabled them to induce higher level antiviral responses and restrict HEV replication, suggesting the involvement of both RIG-I and TLR3 in sensing HEV RNA and downstream activation of interferon regulatory factor 3 (IRF3) to generate antiviral responses. Inhibition of IRF3 mediated downstream responses in HepG2/C3A cells by pharmacological inhibitor BX795 significantly improved HEV replication efficiency implying the importance of this study in establishing a better cell culture system for future HEV studies. PMID:27230536

  7. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  8. Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ζ chain expression on CD8(+) T cells in chronic hepatitis C patients.

    PubMed

    Zeng, Qing-Lei; Yang, Bin; Sun, Hong-Qi; Feng, Guo-Hua; Jin, Lei; Zou, Zheng-Sheng; Zhang, Zheng; Zhang, Ji-Yuan; Wang, Fu-Sheng

    2014-01-01

    Myeloid-derived suppressor cells (MDSCs) play an important role in impairing the function of T cells. We characterized MDSCs in two chronic hepatitis C (CHC) cohorts: a cross-sectional group that included 61 treatment-naive patients with CHC, 14 rapid virologic response (RVR) cases and 22 early virologic response (EVR) cases; and a longitudinal group of 13 cases of RVR and 10 cases of EVR after pegylated-interferon-α/ribavirin treatment for genotype 1b HCV infection. Liver samples from 32 CHC patients and six healthy controls were subjected to immunohistochemical analysis. MDSCs frequency in treatment-naive CHC was significantly higher than in RVR, EVR, or healthy subjects and was positively correlated with HCV RNA. Patients infected with HCV genotype 2a had a significantly higher frequency of MDSCs than those infected with genotype 1b. Decreased T cell receptor (TCR) ζ expression on CD8(+) T cells was significantly associated with an increased frequency of MDSCs in treatment-naive CHC patients and was restored by L-arginine treatment in vitro. Increased numbers of liver arginase-1(+) cells were closely associated with the histological activity index in CHC. The TCR ζ chain was significantly downregulated on hepatic CD8(+) T cells in CHC. During antiviral follow up, MDSCs frequency in peripheral blood mononuclear cells was directly correlated with the HCV RNA load in the plasma and inversely correlated with TCR ζ chain expression in CD8(+) T cells in both RVR and EVR cases. Notably, the RVR group had a higher frequency of MDSCs at baseline than the EVR group. Collectively, this study provides evidence that MDSCs might be associated with HCV persistence and downregulation of CD8 ζ chain expression.

  9. Hepatitis C Virus-Induced Myeloid-Derived Suppressor Cells Suppress NK Cell IFN-γ Production by Altering Cellular Metabolism via Arginase-1.

    PubMed

    Goh, Celeste C; Roggerson, Krystal M; Lee, Hai-Chon; Golden-Mason, Lucy; Rosen, Hugo R; Hahn, Young S

    2016-03-01

    The hepatitis C virus (HCV) infects ∼ 200 million people worldwide. The majority of infected individuals develop persistent infection, resulting in chronic inflammation and liver disease, including cirrhosis and hepatocellular carcinoma. The ability of HCV to establish persistent infection is partly due to its ability to evade the immune response through multiple mechanisms, including suppression of NK cells. NK cells control HCV replication during the early phase of infection and regulate the progression to chronic disease. In particular, IFN-γ produced by NK cells limits viral replication in hepatocytes and is important for the initiation of adaptive immune responses. However, NK cell function is significantly impaired in chronic HCV patients. The cellular and molecular mechanisms responsible for impaired NK cell function in HCV infection are not well defined. In this study, we analyzed the interaction of human NK cells with CD33(+) PBMCs that were exposed to HCV. We found that NK cells cocultured with HCV-conditioned CD33(+) PBMCs produced lower amounts of IFN-γ, with no effect on granzyme B production or cell viability. Importantly, this suppression of NK cell-derived IFN-γ production was mediated by CD33(+)CD11b(lo)HLA-DR(lo) myeloid-derived suppressor cells (MDSCs) via an arginase-1-dependent inhibition of mammalian target of rapamycin activation. Suppression of IFN-γ production was reversed by l-arginine supplementation, consistent with increased MDSC arginase-1 activity. These novel results identify the induction of MDSCs in HCV infection as a potent immune evasion strategy that suppresses antiviral NK cell responses, further indicating that blockade of MDSCs may be a potential therapeutic approach to ameliorate chronic viral infections in the liver.

  10. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells.

    PubMed

    Resheq, Yazid J; Li, Ka-Kit; Ward, Stephen T; Wilhelm, Annika; Garg, Abhilok; Curbishley, Stuart M; Blahova, Miroslava; Zimmermann, Henning W; Jitschin, Regina; Mougiakakos, Dimitrios; Mackensen, Andreas; Weston, Chris J; Adams, David H

    2015-03-15

    Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p < 0.05). Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy.

  11. Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation.

    PubMed

    Lv, Pei-Yu; Feng, Han; Huang, Wei-Hua; Tian, Ying-Ying; Wang, Ya-Qin; Qin, Yu-Hua; Li, Xiao-Hui; Hu, Kai; Zhou, Hong-Hao; Ouyang, Dong-Sheng

    2017-03-01

    Eucommia ulmoides is an important traditional Chinese medicine and has been used as a tonic with a long history. Aucubin is an active component extracted from Eucommia ulmoides, which has liver-protection effects. However the mechanisms are still unclear. To investigate the inhibitory effects and the underlying mechanisms of aucubin on TGF-β1-induced activation of hepatic stellate cells and ECM deposition, Human hepatic stellate cells (LX-2 cells) were incubated with TGF-β1 to evaluate the anti-fibrotic effect of aucubin. Western blot was used to investigate the expression of α-SMA, Col I, Col III, MMP-2 and TIMP-1. ROS production was monitored using DCFH-DA probe, and NOX4 expression was detected by Real-time PCR. Results indicated that TGF-β1 stimulated the activation and ECM deposition of LX-2 cells. Compared with the control group, aucubin and aucubigenin both reduced the protein expression of α-SMA, Col I, Col III and MMP-2 in LX-2 cells. Aucubin and aucubigenin also suppressed the generation of ROS and down-regulated the NOX4 mRNA expression. Taken together, aucubin and aucubigenin both inhibit the activation and ECM deposition of LX-2 cells activated by TGF-β1. Aucubin and aucubigenin are potential therapeutic candidate drugs for liver fibrosis.

  12. Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection

    PubMed Central

    Sakurai, Fuminori; Mitani, Seiji; Yamamoto, Tatsuro; Takayama, Kazuo; Tachibana, Masashi; Watashi, Koichi; Wakita, Takaji; Iijima, Sayuki; Tanaka, Yasuhito; Mizuguchi, Hiroyuki

    2017-01-01

    In order to understand the life cycle of hepatitis B virus (HBV) and to develop efficient anti-HBV drugs, a useful in vitro cell culture system which allows HBV infection and recapitulates virus-host interactions is essential; however, pre-existing in vitro HBV infection models are often problematic. Here, we examined the potential of human induced-pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) as an in vitro HBV infection model. Expression levels of several genes involved in HBV infection, including the sodium taurocholate cotransporting polypeptide (NTCP) gene, were gradually elevated as the differentiation status of human iPS cells proceeded to iPS-HLCs. The mRNA levels of these genes were comparable between primary human hepatocytes (PHHs) and iPS-HLCs. Following inoculation with HBV, we found significant production of HBV proteins and viral RNAs in iPS-HLCs. The three major forms of the HBV genome were detected in iPS-HLCs by Southern blotting analysis. Anti-HBV agents entecavir and Myrcludex-B, which are a nucleoside analogue reverse transcriptase inhibitor and a synthetic pre-S1 peptide, respectively, significantly inhibited HBV infection in iPS-HLCs. These data demonstrate that iPS-HLCs can be used as a promising in vitro HBV infection model. PMID:28374759

  13. Hepatic immune regulation by stromal cells.

    PubMed

    Schildberg, Frank A; Sharpe, Arlene H; Turley, Shannon J

    2015-02-01

    A metabolic organ, the liver also has a central role in tolerance induction. Stromal cells lining the hepatic sinusoids, such as liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), are the first liver cells to encounter gut-derived and systemic antigens, thereby shaping local and systemic tolerance. Recent studies have demonstrated that stromal cells can modulate immune responses by antigen-dependent and independent mechanisms. Stromal cells interfere with the function of other antigen-presenting cells (APCs) and induce non-responsive T cells as well as regulatory T cells and myeloid-derived suppressor cells (MDSCs). The immunosuppressive microenvironment thus created provides a means to protect the liver from tissue damage. Such tolerized surroundings, however, can be exploited by certain pathogens, promoting persistent liver infections.

  14. Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines.

    PubMed

    Jirintai, Suljid; Tanggis; Mulyanto; Suparyatmo, Joseph Benedictus; Takahashi, Masaharu; Kobayashi, Tominari; Nagashima, Shigeo; Nishizawa, Tsutomu; Okamoto, Hiroaki

    2014-06-24

    Although rat hepatitis E virus (HEV) has been identified in wild rats, no cell culture systems for this virus have been established. A recent report suggesting the presence of antibodies against rat HEV in human sera encouraged us to cultivate rat HEV in human cells. When liver homogenates obtained from wild rats (Rattus rattus) in Indonesia were inoculated onto human hepatocarcinoma cells, the rat HEV replicated efficiently in PLC/PRF/5, HuH-7 and HepG2 cells, irrespective of its genetic group (G1-G3). The rat HEV particles released from cultured cells harbored lipid-associated membranes on their surface that were depleted by treatment with detergent and protease, with the buoyant density in sucrose shifting from 1.15-1.16 g/ml to 1.27-1.28 g/ml. A Northern blotting analysis revealed genomic RNA of 7.0 kb and subgenomic RNA of 2.0 kb in the infected cells. The subgenomic RNA of G1-G3 each possessed the extreme 5'-end sequence of GUAGC (nt 4933-4937), downstream of the highly conserved sequence of GAAUAACA (nt 4916-4923). The establishment of culture systems for rat HEV would allow for extended studies of the mechanisms of viral replication and functional roles of HEV proteins. Further investigation is required to clarify the zoonotic potential of rat HEV.

  15. Generalized Liver- and Blood-Derived CD8+ T-Cell Impairment in Response to Cytokines in Chronic Hepatitis C Virus Infection.

    PubMed

    Burke Schinkel, Stephanie C; Carrasco-Medina, Lorna; Cooper, Curtis L; Crawley, Angela M

    2016-01-01

    Generalized CD8+ T-cell impairment in chronic hepatitis C virus (HCV) infection and the contribution of liver-infiltrating CD8+ T-cells to the immunopathogenesis of this infection remain poorly understood. It is hypothesized that this impairment is partially due to reduced CD8+ T-cell activity in response to cytokines such as IL-7, particularly within the liver. To investigate this, the phenotype and cytokine responsiveness of blood- and liver-derived CD8+ T-cells from healthy controls and individuals with HCV infection were compared. In blood, IL-7 receptor α (CD127) expression on bulk CD8+ T-cells in HCV infection was no different than controls yet was lower on central memory T-cells, and there were fewer naïve cells. IL-7-induced signalling through phosphorylated STAT5 was lower in HCV infection than in controls, and differed between CD8+ T-cell subsets. Production of Bcl-2 following IL-7 stimulation was also lower in HCV infection and inversely related to the degree of liver fibrosis. In liver-derived CD8+ T-cells, STAT5 activation could not be increased with cytokine stimulation and basal Bcl-2 levels of liver-derived CD8+ T-cells were lower than blood-derived counterparts in HCV infection. Therefore, generalized CD8+ T-cell impairment in HCV infection is characterized, in part, by impaired IL-7-mediated signalling and survival, independent of CD127 expression. This impairment is more pronounced in the liver and may be associated with an increased potential for apoptosis. This generalized CD8+ T-cell impairment represents an important immune dysfunction in chronic HCV infection that may alter patient health.

  16. Prostaglandin E2 inhibits platelet-derived growth factor-stimulated cell proliferation through a prostaglandin E receptor EP2 subtype in rat hepatic stellate cells.

    PubMed

    Koide, Shigeki; Kobayashi, Yoshimasa; Oki, Yutaka; Nakamura, Hirotoshi

    2004-09-01

    Prostaglandin (PG) E2 inhibits hepatic stellate cell (HSC) mitogenesis. PGE-specific receptors are divided into four subtypes that are coupled either to Ca2+ mobilization (EP1 and EP3) or to the stimulation of adenyl cyclase (EP2 and EP4). The aims of the current study were to identify PGE receptor subtypes in cultured rat HSC and to examine which PGE receptor subtype(s) mediates the inhibitory effect of PGE2 on platelet-derived growth factor (PDGF)-stimulated proliferation. Reverse transcription-polymerase chain reaction analysis was performed to detect PGE receptor subtype mRNA expression. Cell proliferation was determined by measuring [3H]thymidine incorporation, and intracellular cyclic AMP was measured by radioimmunoassay. Cultured rat HSC expressed mRNAs for all four subtypes of PGE receptor. PGE2- and EP2-selective agonist produced dose-dependent inhibitory effects on PDGF-stimulated proliferation. Neither EP1-, EP3-, nor EP4-selective agonists showed any inhibitory effect. An adenylate cyclase inhibitor strongly blunted the inhibition of DNA synthesis elicited by PGE2 and the EP2 agonist. The EP2 agonist generated higher and more prolonged increases in intracellular cyclic AMP than the EP4 agonist. Activation of the PGE EP2 receptor has an antiproliferative effect in HSC that may be mediated by cyclic AMP-related signal transduction pathways.

  17. Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold

    PubMed Central

    Bao, Ji; Wu, Qiong; Wang, Yujia; Li, Yi; Li, Li; Chen, Fei; Wu, Xiujuan; Xie, Mingjun; Bu, Hong

    2016-01-01

    In the present study, we aimed to determine whether the combination of aggregate culture and decellularized liver scaffolds (DLSs) promoted the hepatic differentiation of murine bone marrow-derived mesenchymal stem cells (BM-MSCs) into high yields of mature hepatocytes in vitro. Four culturing methods for differentiation [single cell (2D), spheroids (3D), 2D + DLS and 3D + DLS] were studied. To determine the differentiation stages of the MSCs, RT-qPCR of the hepatocyte genes, immunostaining of hepatocyte markers, and functional analyses were all performed. Compared with the other groups, hepatocyte-like cells which differentiated from BM-MSC spheroids on extracellular matrix (ECM) exhibited more intensive staining of stored glycogen, an elevated level of urea biosynthesis and albumin secretion as well as the higher expression of hepatocyte-specific genes. Our results indicated that DLSs combined with spheroidal aggregate culture may be used as an effective method to facilitate the hepatic maturation of BM-MSCs and may have future applications in stem cell-based liver regenerative medicine. PMID:27314916

  18. Construction of bone marrow mesenchymal cells-derived engineered hepatic tissue and its therapeutic effect in rats with 90% subtotal hepatectomy.

    PubMed

    Yu, J; Yuan, J; Xu, R

    2014-09-16

    Engineered hepatic tissue (EHT) is considered as a promising strategy for healing acute liver failure (ALF), therefore, in the present study we evaluated the therapeutic potential of the EHT which engaged with bone marrow mesenchymal cells (BMSCs) derived hepatocytes (BMSCs—Hepas) in ALF rats. After characterization of isolated BMSCs, we seeded passage 3 BMSCs which have being cultured in medium containing 20 ng/ml hepatocyte growth factor (HGF) and 10 ng/ml epidermal growth factor (EGF) for 14 days on three scaffolds individually in Transwell system, and then cultured for more than 3 days to construct three kinds of EHT named EHT1, EHT2, and EHT3. Based on morphology and urea production assays, we chose an optimal one and transplanted it into ALF rat with 90% subtotal hepatectomy and assessed its therapeutic potential by survival time, hepatic encephalopathy score (HES) and related liver function test. The remnant liver was acquired, sectioned and identified by con-focal scanning microscopy. The isolated cells possessed basic properties of BMSCs, when cultured in hepatogenic medium for 2 weeks, BMSCs would restore to the functional properties of primary rats' hepatocytes, expressing albumin (ALB) and alpha fetoprotein (AFP) simultaneously. Transplantation of EHT3 significantly prolonged the survival time, increased HES, and ameliorated the liver function. BMSC will be a newly cell source for the construction of EHT. Importantly, the EHT transplantation may be an effective strategy to treat ALF in clinic.

  19. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    PubMed

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  20. Hepatic Differentiation from Human Ips Cells Using M15 Cells.

    PubMed

    Umeda, Kahoko; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.

  1. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    PubMed

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases.

  2. Pigment epithelium-derived factor (PEDF) peptide promotes the expansion of hepatic stem/progenitor cells via ERK and STAT3-dependent signaling

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2017-01-01

    Hepatic stem/progenitor cells (HPC) have been considered as a potential cell source of an alternative to liver transplantation. Production of large numbers of autologous HPC from small pieces of live tissue is crucial for the application of HPC-based liver therapy. In this study, we demonstrated that a synthetic 44-amino acid peptide (44-mer) derived from pigment epithelium-derived factor (PEDF) can facilitate the production of a large number of actively dividing HPC from normal adult rat livers in a 35-day culture period. The phenotypic properties of HPC were characterized by morphological observation, colony formation and high expression of classical HPC markers including epithelial cell adhesion molecule (EpCAM), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and tumor-associated calcium signal transducer (TROP2). The 44-mer stimulated HPC proliferation in vitro and in mouse livers injured by a single intraperitoneal injection of carbon tetrachloride. In addition, the 44-mer induced the phosphorylation of ERK1/2 and STAT3 in HPC. Blocking the activity of ERK or STAT3 with pharmacological inhibitors attenuated the effects of the 44-mer on the induction of HPC proliferation. The long-term expanded HPC still possessed a bipotent ability to differentiate towards bile duct cells and mature hepatocytes. These results imply that the PEDF peptide may be a simple and effective agent to improve HPC-based liver therapy. PMID:28386338

  3. Inhibitory effect of isothiocyanate derivant targeting AGPS by computer-aid drug design on proliferation of glioma and hepatic carcinoma cells.

    PubMed

    Zhu, Yu; Li, Wen-Ming; Zhang, Ling; Xue, Jing; Zhao, Meng; Yang, Ping

    2015-01-01

    Lipids metabolism was involved in the process of many types of tumor and alkylglycerone phosphate synthase (AGPS) was considered implicated in tumor process. Benzyl isothiocyanate (BITC) showed the inhibitory effect of tumor and AGPS activity, therefore, we screened a group of small molecular compound based on BITC by computer-aid design targeting AGPS and the results showed that the derivants could suppress the proliferation, the expression of tumor related genes such as survivin and Bcl-2, and the level of ether lipids such as lysophosphatidic acid ether (LPAe) and platelet activating factor ether (PAFe); however, the activity of caspase-3/8 was improved in glioma U87MG and hepatic carcinoma HepG2 cells in vitro.

  4. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats.

    PubMed

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways.

  5. Adoptive cell transfer in autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2015-06-01

    Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.

  6. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    PubMed

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  7. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    SciTech Connect

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  8. Hepatic perivascular epithelioid cell tumor

    PubMed Central

    Tang, Da; Wang, Jianmin; Tian, Yuepeng; Li, Qiuguo; Yan, Haixiong; Wang, Biao; Xiong, Li; Li, Qinglong

    2016-01-01

    Abstract Rational: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal neoplasm which expresses both myogenic and melanocytic markers. PEComas are found in a variety locations in the body, but up to now only approximately 30 cases about hepatic perivascular epithelioid cell tumor are reported in English language worldwide. Patient concerns: A 32-year-old woman was admitted in our hospital with intermittent right upper quadrant pain for 1 month and recent (1 day) progressive deterioration. Diagnoses: Based on the results of the laboratory examinations and the findings of the computed tomography, the diagnosis of hepatic hamartoma or the hepatocecullar carcinoma with hemorrhage was made. Interventions: The patient underwent a segmentectomy of the liver, and the finally diagnosis of hepatic PEComa was made with immunohistochemical confirmation with HMB-45 and SMA. Outcomes: There is no clinical or radiographic evidence of recurrence 9 months after surgery. Lessons: This kind of tumor is extremely rare and the natural history of PEComa is uncertain, as the treatment protocol for hepatic PEComa has not reached a consensus. But the main treatment of the disease may be surgical resection. Only after long term follow-up can we know whether the tumor is benign or malignant. It appears that longer clinical follow-up is necessary in all patients with hepatic PEComas. PMID:28002331

  9. Hepatic differentiation of embryonic stem cells by murine fetal liver mesenchymal cells.

    PubMed

    Ishii, Takamichi; Yasuchika, Kentaro; Ikai, Iwao

    2013-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are a potential cell source for regenerative medicine. However, it has been technically difficult to differentiate ESCs into mature hepatocytes because the definitive growth factors and molecular mechanisms governing hepatocyte differentiation have not yet been well defined. The CD45(-)CD49f(+/-)Thy1(+)gp38(+) mesenchymal cells that reside in murine fetal livers induce hepatic progenitor cells to differentiate into mature hepatocytes by direct cell-cell contact. Utilizing these cells, we employ a two-step procedure for hepatic maturation of ESCs: first, ESCs are differentiated into endodermal cells or hepatic progenitor cells, and second, ESC-derived endodermal cells are matured into functional hepatocytes by coculture with murine fetal liver mesenchymal cells. The ESC-derived hepatocyte-like cells possess hepatic functions, including ammonia removal activity, albumin secretion ability, glycogen synthesis and storage, and cytochrome P450 enzymatic activity.

  10. Inversely repeating integrated hepatitis B virus DNA and cellular flanking sequences in the human hepatoma-derived cell line huSP.

    PubMed Central

    Mizusawa, H; Taira, M; Yaginuma, K; Kobayashi, M; Yoshida, E; Koike, K

    1985-01-01

    Among recombinant phages carrying integrated hepatitis B virus (HBV) DNA sequences cloned from the human hepatoma-derived cell line huSP, one clone, lambda hu-489, revealed some unusual features. The 2.25-kilobase Eco D fragment from the insert of this clone hybridized to the HBV DNA probe only and its nucleotide sequence was determined. The viral sequence, as well as a cellular flanking sequence, showed extensive rearrangement accompanied by inverted repetition. The Eco D fragment contained HBV DNA from the 5'-end region of gene S to the middle of gene X, followed by a long cellular flanking sequence. Moreover, a part of gene X was found inversely repeated at the head of the same gene S in a head-to-head configuration truncated by the same cellular sequence. Therefore, the same junction sequence of viral DNA and the cellular sequence was found at two different sites in the Eco D fragment in opposite polarities. Images PMID:2982143

  11. A novel matrine derivate inhibits differentiated human hepatoma cells and hepatic cancer stem-like cells by suppressing PI3K/AKT signaling pathways

    PubMed Central

    Liu, Ying; Qi, Yang; Bai, Zhi-hui; Ni, Chen-xu; Ren, Qi-hui; Xu, Wei-heng; Xu, Jing; Hu, Hong-gang; Qiu, Lei; Li, Jian-zhong; He, Zhi-gao; Zhang, Jun-ping

    2017-01-01

    Matrine is an alkaloid extracted from a Chinese herb Sophora flavescens Ait, which has shown chemopreventive potential against various cancers. In this study, we evaluated the anticancer efficacy of a novel derivative of matrine, (6aS, 10S, 11aR, 11bR, 11cS)-10- methylamino-dodecahydro- 3a,7a-diazabenzo (de) (MASM), against human hepatocellular carcinoma (HCC) cells and their corresponding sphere cells in vitro and in vivo. Human HCC cell lines (Hep3B and Huh7) were treated with MASM. Cell proliferation was assessed using CCK8 and colony assays; cell apoptosis and cell cycle distributions were examined with flow cytometry. The expression of cell markers and signaling molecules was detected using Western blot and qRT-PCR analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Hep3B and Huh7 cells. The in vivo antitumor efficacy of MASM was evaluated in Huh7 cell xenograft model in BALB/c nude mice, which were administered MASM (10 mg·kg−1·d−1, ig) for 3 weeks. After the treatment was completed, tumor were excised and weighed. A portion of tumor tissue was enzymatically dissociated to obtain a single cell suspension for the spheroid formation assays. MASM (2, 10, 20 μmol/L) dose-dependently inhibited the proliferation of HCC cells, and induced apoptosis, which correlated with a reduction in Bcl-2 expression and an increase in PARP cleavage. MASM also induced cell cycle arrest in G0/G1 phase, which was accompanied by increased p27 and decreased Cyclin D1 expression. Interestingly, MASM (2, 10, and 20 μmol/L) drastically reduced the EpCAM+/CD133+ cell numbers, suppressed the sphere formation, inhibited the expression of stem cell marker genes and promoted the expression of mature hepatocyte markers in the Hep3B and Huh7 spheroids. Additionally, MASM dose-dependently suppressed the PI3K/AKT/mTOR and AKT/GSK3β/β-catenin signaling pathways in Hep3B and Huh7 cells. In Huh7 xenograft bearing nude mice, MASM administration significantly

  12. Cystathionine β-synthase-derived hydrogen sulfide regulates lipopolysaccharide-induced apoptosis of the BRL rat hepatic cell line in vitro.

    PubMed

    Yan, Jun; Teng, Feixiang; Chen, Weiwei; Ji, Yinglei; Gu, Zhenyong

    2012-11-01

    Hydrogen sulfide (H(2)S), is a member of the novel family of endogenous gaseous transmitters, termed "gasotransmitters exhibiting diverse physiological activities, and is generated in mammalian tissues mainly by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST) in conjunction with cysteine (aspartate) aminotranferase (CAT). The distributions of these enzymes are species- and tissue-specific. The liver, as the main organ that generates H(2)S in vivo, functions in biotransformation and metabolism. However, the liver is vulnerable to damage from internal and external factors, including inflammatory mediators, drugs and poisons. The present study evaluated the endogenous CBS-H(2)S synthesis regulating lipopolysaccharide (LPS)-induced apoptosis of hepatic cells. The rat hepatic cell line, BRL, was incubated with LPS for various time periods to establish a cell-damage model. Incubation with LPS resulted in a significant increase in CBS expression and H(2)S production. It also stimulated apoptosis and decreased the mitochondrial membrane potential. Pretreatment with the CBS inhibitor aminooxyacetic acid (AOAA) or CBS small interfering RNA (siRNA) decreased LPS-enhanced H(2)S production. Notably, apoptosis increased for a short period and then decreased gradually, while the mitochondrial membrane potential demonstrated the opposite trend. These results showed that endogenous CBS-H(2)S synthesis demonstrated early anti-apoptotic activity and subsequent pro-apoptotic activity in LPS-induced apoptosis. These results suggest a new approach for developing novel drugs for this condition.

  13. The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.

    PubMed

    Heine, Annkristin; Schilling, Judith; Grünwald, Barbara; Krüger, Achim; Gevensleben, Heidrun; Held, Stefanie Andrea Erika; Garbi, Natalio; Kurts, Christian; Brossart, Peter; Knolle, Percy; Diehl, Linda; Höchst, Bastian

    2016-03-01

    Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.

  14. The antioxidant (-)-epigallocatechin-3-gallate inhibits rat hepatic stellate cell proliferation in vitro by blocking the tyrosine phosphorylation and reducing the gene expression of platelet-derived growth factor-beta receptor.

    PubMed

    Chen, Anping; Zhang, Li

    2003-06-27

    During hepatic fibrogenesis, quiescent hepatic stellate cells (HSC) become active and trans-differentiate into myofibroblast-like cells. This process coincides with an increase in cell proliferation, loss of stored vitamin A droplets, and excessive production and deposition of extracellular matrix components. HSC activation is coupled with the sequential expression of cytokine receptors, including platelet-derived growth factor-beta receptor (PDGF-betaR). Although the underlying mechanisms remain incompletely understood, it is widely accepted that oxidative stress plays critical roles in activation of HSC during hepatic fibrogenesis. We have recently demonstrated that the antioxidant (-)-epigallocatechin gallate (EGCG), a major component in green tea extracts, significantly inhibited the proliferation of passaged HSC. The aim of the present study is to elucidate the underlying mechanisms. Since PDGF is a potent mitogen for HSC and mediates the early proliferative response, it was hypothesized that EGCG might inhibit HSC proliferation by interfering with the PDGF signal transduction. In this report, we demonstrated that EGCG, in two steps, significantly and effectively inhibited the proliferation of primary and passaged HSC. The polyphenolic compound initiated its inhibitory action by rapidly blocking the phosphorylation of tyrosines in PDGF-betaR elicited by PDGF in serum. This action was short lived, persisting for a few hours. In addition, this antioxidant inhibited the gene expression of PDGF-betaR by blocking the activation of transcription factors activator protein-1 and NF-kappaB, which were required for the gene transcription. The latter action remained effective for no less than 48 hours. These results provided a novel insight into the mechanisms by which EGCG inhibits HSC growth. The inhibitory effect of the natural antioxidant, its long history of beverage consumption without adverse health effects, and higher potent antioxidant capability make it a good

  15. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx

    PubMed Central

    Gong, Jin; Tu, Wei; Han, Jian; He, Jiayi; Liu, Jingmei; Han, Ping; Wang, Yunwu; Li, Mengke; Liu, Mei; Liao, Jiazhi; Tian, Dean

    2016-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver diseases, but its involvement in hepatic fibrogenesis remains unclear. Special AT-rich binding protein 1 (SATB1) has been implicated in reprogramming chromatin organization and transcription profiles in many cancers and non-cancer-related conditions. We found that hepatic SATB1 expression was significantly up-regulated in fibrotic tissues from chronic hepatitis B virus (HBV)-infected patients and HBV transgenic (HBV-Tg) mouse model. Knockdown of SATB1 in the liver significantly alleviated CCl4-induced fibrosis in HBV-Tg mouse model. Moreover, we suggested HBV encoded x protein (HBx) induced SATB1 expression through activation of JNK and ERK pathways. Enforced expression of SATB1 in hepatocytes promoted the activation and proliferation of hepatic stellate cells (HSCs) by secretion of connective tissue growth factor (CTGF), Interleukin-6 (IL-6) and platelet derived growth factor-A (PDGF-AA). Our findings demonstrated that HBx upregulated hepatic SATB1 which exerted pro-fibrotic effects by paracrine activation of stellate cells in HBV-related fibrosis. PMID:27883059

  16. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis

    PubMed Central

    Schon, Hans-Theo; Bartneck, Matthias; Borkham-Kamphorst, Erawan; Nattermann, Jacob; Lammers, Twan; Tacke, Frank; Weiskirchen, Ralf

    2016-01-01

    The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs. PMID:26941644

  17. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma.

    PubMed

    Okamoto, Koichi; Tajima, Hidehiro; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Nakamura, Keishi; Oyama, Katsunobu; Nakagawara, Hisatoshi; Fujita, Hideto; Takamura, Hiroyuki; Ninomiya, Itasu; Kitagawa, Hirohisa; Fushida, Sachio; Fujimura, Takashi; Harada, Shinichi; Wakayama, Tomohiko; Iseki, Shoichi; Ohta, Tetsuo

    2012-08-01

    We previously reported that hepatic stellate cells (HSCs) activated by angiotensin II (AngII) facilitate stromal fibrosis and tumor progression in intrahepatic cholangiocarcinoma (ICC). AngII has been known as a growth factor which can promote epithelial-to-mesenchymal transition (EMT) in renal epithelial cells, alveolar epithelial cells and peritoneal mesothelial cells. However, in the past, the relationship between AngII and stromal cell-derived factor-1 (SDF-1) in the microenvironment around cancer and the role of AngII on EMT of cancer cells has not been reported in detail. SDF-1 and its specific receptor, CXCR4, are now receiving attention as a mechanism of cell progression and metastasis. In this study, we examined whether activated HSCs promote tumor fibrogenesis, tumor progression and distant metastasis by mediating EMT via the AngII/AngII type 1 receptor (AT-1) and the SDF-1/CXCR4 axis. Two human ICC cell lines and a human HSC line, LI-90, express CXCR4. Significantly higher concentration of SDF-1α was released into the supernatant of LI-90 cells to which AngII had been added. SDF-1α increased the proliferative activity of HSCs and enhanced the activation of HSCs as a growth factor. Furthermore, addition of SDF-1α and AngII enhanced the increase of the migratory capability and vimentin expression, reduced E-cadherin expression, and translocated the expression of β-catenin into the nucleus and cytoplasm in ICC cells. Co-culture with HSCs also enhanced the migratory capability of ICC cells. These findings suggest that SDF-1α, released from activated HSCs and AngII, play important roles in cancer progression, tumor fibrogenesis, and migration in autocrine and paracrine fashion by mediating EMT. Our mechanistic findings may provide pivotal insights into the molecular mechanism of the AngII and SDF-1α-initiated signaling pathway that regulates fibrogenesis in cancerous stroma, tumor progression and meta-stasis of tumor cells expressing AT-1 and CXCR4.

  18. Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons

    PubMed Central

    Anggakusuma; Frentzen, Anne; Gürlevik, Engin; Yuan, Qinggong; Steinmann, Eike; Ott, Michael; Staeheli, Peter; Schmid-Burgk, Jonathan; Schmidt, Tobias; Hornung, Veit; Kuehnel, Florian

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling

  19. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells.

    PubMed

    Lagrutta, Armando; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels.

  20. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    PubMed Central

    Dong, Xue-Jun; Zhang, Guo-Rong; Zhou, Qing-Jun; Pan, Ruo-Lang; Chen, Ye; Xiang, Li-Xin; Shao, Jian-Zhong

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  1. Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells

    PubMed Central

    Kornek, Miroslaw; Popov, Yury; Libermann, Towia A.; Afdhal, Nezam H.; Schuppan, Detlef

    2010-01-01

    Microparticles (MP) are small cell membrane vesicles which are released from cells during apoptosis or activation. While circulating platelet MP have been studied in some detail, the existence and functional role of T cell MP remain elusive. We show that blood from patients with active hepatitis C (ALT>100 IU/ml) contains elevated numbers of T cell MP compared to patients with mild hepatitis C (ALT<40 IU/ml) and healthy controls. T cell MP fuse with cell membranes of hepatic stellate cells (HSC), the major effector cells for excess matrix deposition in liver fibrosis and cirrhosis. MP uptake is partly ICAM-1 dependent and leads to activation of NFkB and ERK1/2 and subsequent upregulation of fibrolytic genes in HSC, to downregulation of procollagen α1(I) mRNA, and blunting of profibrogenic activities of TGFβ1. Ex vivo the induced fibrolytic activity is evident in MP derived from activated CD4+ T cells, and highest with MP from activated and apoptotic CD8+ T cells. Mass spectrometry, FACS analysis and function blocking antibodies revealed CD147/Emmprin as candidate transmembrane molecule in HSC fibrolytic activation by CD8+ T cell MP. We conclude that 1) circulating T cell MP are a novel diagnostic marker for inflammatory liver diseases, and 2) in vivo induction of T cell MP may be a novel strategy to induce regression of liver fibrosis. PMID:20979056

  2. (+)-Catechin attenuates activation of hepatic stellate cells.

    PubMed

    Bragança de Moraes, Cristina Machado; Bitencourt, Shanna; de Mesquita, Fernanda Cristina; Mello, Denizar; de Oliveira, Leticia Paranhos; da Silva, Gabriela Viegas; Lorini, Vinicius; Caberlon, Eduardo; de Souza Basso, Bruno; Schmid, Julia; Ferreira, Gabriela Acevedo; de Oliveira, Jarbas Rodrigues

    2014-04-01

    (+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation.

  3. Hepatitis C virus infection of cholangiocarcinoma cell lines.

    PubMed

    Fletcher, Nicola F; Humphreys, Elizabeth; Jennings, Elliott; Osburn, William; Lissauer, Samantha; Wilson, Garrick K; van IJzendoorn, Sven C D; Baumert, Thomas F; Balfe, Peter; Afford, Simon; McKeating, Jane A

    2015-06-01

    Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. In vivo cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to ex vivo isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication in vivo.

  4. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    PubMed Central

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  5. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells

    SciTech Connect

    Parekkadan, Biju; Poll, Daan van; Megeed, Zaki; Kobayashi, Naoya; Tilles, Arno W.; Berthiaume, Francois; Yarmush, Martin L.

    2007-11-16

    Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to prevent the development of liver fibrosis in a number of pre-clinical studies. Marked changes in liver histopathology and serological markers of liver function have been observed without a clear understanding of the therapeutic mechanism by which stem cells act. We sought to determine if MSCs could modulate the activity of resident liver cells, specifically hepatic stellate cells (SCs) by paracrine mechanisms using indirect cocultures. Indirect coculture of MSCs and activated SCs led to a significant decrease in collagen deposition and proliferation, while inducing apoptosis of activated SCs. The molecular mechanisms underlying the modulation of SC activity by MSCs were examined. IL-6 secretion from activated SCs induced IL-10 secretion from MSCs, suggesting a dynamic response of MSCs to the SCs in the microenvironment. Blockade of MSC-derived IL-10 and TNF-{alpha} abolished the inhibitory effects of MSCs on SC proliferation and collagen synthesis. In addition, release of HGF by MSCs was responsible for the marked induction of apoptosis in SCs as determined by antibody-neutralization studies. These findings demonstrate that MSCs can modulate the function of activated SCs via paracrine mechanisms provide a plausible explanation for the protective role of MSCs in liver inflammation and fibrosis, which may also be relevant to other models of tissue fibrosis.

  6. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B.

    PubMed

    Joung, Young Hee; Park, Se Hee; Moon, Ki-Beom; Jeon, Jae-Heung; Cho, Hye-Sun; Kim, Hyun-Soon

    2016-10-13

    Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.

  7. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B

    PubMed Central

    Joung, Young Hee; Park, Se Hee; Moon, Ki-Beom; Jeon, Jae-Heung; Cho, Hye-Sun; Kim, Hyun-Soon

    2016-01-01

    Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed. PMID:27754367

  8. Cell survival curve for primary hepatic carcinoma cells and relationship between SF2 of hepatic carcinoma cells and radiosensitivity

    PubMed Central

    Liu, Zhi-Zhong; Huang, Wen-Ying; Lin, Ju-Sheng; Li, Xiao-Sheng; Lan, Xiao; Cai, Xiao-Kun; Liang, Kuo-Huan; Zhou, Hai-Jun

    2005-01-01

    AIM: To establish the cell survival curve for primary hepatic carcinoma cells and to study the relationship between SF2 of primary hepatic carcinoma cells and radiosensitivity. METHODS: Hepatic carcinoma cells were cultured in vitro using 39 samples of hepatic carcinoma at stages II-IV. Twenty-nine samples were cultured successfully in the fifth generation cells. After these cells were radiated with different dosages, the cell survival ratio and SF2 were calculated by clonogenic assay and SF2 model respectively. The relationship between SF2 and the clinical pathological feature was analyzed. RESULTS: Twenty-nine of thirty-nine samples were successfully cultured. After X-ray radiation of the fifth generation cells with 0, 2, 4, 6, 8 Gy, the cell survival rate was 41%, 36.5%, 31.0%, 26.8%, and 19%, respectively. There was a negative correlation between cell survival and irradiation dosage (r = -0.973, P<0.05). SF2 ranged 0.28-0.78 and correlated with the clinical stage and pathological grade of hepatic carcinoma (P<0.05). There was a positive correlation between SF2 and D0.5 (r = 0.773, P<0.05). CONCLUSION: SF2 correlates with the clinical stage and pathological grade of hepatic carcinoma and is a marker for predicting the radiosensitivity of hepatic carcinomas. PMID:16437614

  9. Hepassocin regulates cell proliferation of the human hepatic cells L02 and hepatocarcinoma cells through different mechanisms.

    PubMed

    Cao, Meng-Meng; Xu, Wang-Xiang; Li, Chang-Yan; Cao, Chuan-Zeng; Wang, Zhi-Dong; Yao, Jia-Wei; Yu, Miao; Zhan, Yi-Qun; Wang, Xiao-Hui; Tang, Liu-Jun; Chen, Hui; Li, Wei; Ge, Chang-Hui; Yang, Xiao-Ming

    2011-10-01

    Hepassocin (HPS) is a specific mitogenic active factor for hepatocytes, and inhibits growth by overexpression in hepatocellular carcinoma (HCC) cells. However, the mechanism of HPS regulation on growth of liver-derived cells still remains largely unknown. In this study, we found that HPS was expressed and secreted into the extracellular medium in cultured L02 human hepatic cells; conditional medium of L02 cells promoted proliferation of L02 cells and this activity could be blocked by anti-HPS antibody. Moreover, we identified the presence of receptor for HPS on L02 cells and HepG2 human hepatoma cells. Overproduction of truncated HPS, which signal peptide was deleted, significantly inhibited the proliferation of HCC cells and induced cell cycle arrest. These findings suggest that HPS promotes hepatic cell line L02 cells proliferation via an autocrine mechanism and inhibits HCC cells proliferation by an intracrine pathway.

  10. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  11. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.

    PubMed

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-02-23

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.

  12. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting

    PubMed Central

    Ma, Xuanyi; Qu, Xin; Zhu, Wei; Li, Yi-Shuan; Yuan, Suli; Zhang, Hong; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Zanella, Fabian; Feng, Gen-Sheng; Sheikh, Farah; Chien, Shu; Chen, Shaochen

    2016-01-01

    The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling. PMID:26858399

  13. Natural killer cells in hepatitis C: Current progress.

    PubMed

    Yoon, Joo Chun; Yang, Chang Mo; Song, Youkyong; Lee, Jae Myun

    2016-01-28

    Patients infected with the hepatitis C virus (HCV) are characterized by a high incidence of chronic infection, which results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The functional impairment of HCV-specific T cells is associated with the evolution of an acute infection to chronic hepatitis. While T cells are the important effector cells in adaptive immunity, natural killer (NK) cells are the critical effector cells in innate immunity to virus infections. The findings of recent studies on NK cells in hepatitis C suggest that NK cell responses are indeed important in each phase of HCV infection. In the early phase, NK cells are involved in protective immunity to HCV. The immune evasion strategies used by HCV may target NK cells and might contribute to the progression to chronic hepatitis C. NK cells may control HCV replication and modulate hepatic fibrosis in the chronic phase. Further investigations are, however, needed, because a considerable number of studies observed functional impairment of NK cells in chronic HCV infection. Interestingly, the enhanced NK cell responses during interferon-α-based therapy of chronic hepatitis C indicate successful treatment. In spite of the advances in research on NK cells in hepatitis C, establishment of more physiological HCV infection model systems is needed to settle unsolved controversies over the role and functional status of NK cells in HCV infection.

  14. Cell entry of hepatitis C virus

    SciTech Connect

    Bartosch, Birke . E-mail: Birke.Bartosch@ens-lyon.fr; Cosset, Francois-Loic . E-mail: Francois-Loic.Cosset@ens-lyon.fr

    2006-04-25

    Hepatitis C virus (HCV), an important human pathogen, is an enveloped, positive-stranded RNA virus classified in the hepacivirus genus of the Flaviviridae family. Cell attachment of flaviviruses generally leads to endocytosis of bound virions. Systems that support HCV replication and particle formation in vitro are emerging only now, 16 years after the discovery of the virus. Albeit this limitation, the route of HCV cell entry as well as 'capture' molecules involved in low-affinity interactions for the initial contact of HCV with target cells and potential high-affinity receptor candidates that may mediate HCV trafficking and fusion has been described. The objective of this review is to summarize the contribution of different HCV model systems to our current knowledge about structure of the HCV GPs E1 and E2 and their roles in cell entry comprising cell attachment, interactions with cellular receptors, endocytosis, and fusion.

  15. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.

  16. Connexin 32-mediated cell-cell communication is essential for hepatic differentiation from human embryonic stem cells

    PubMed Central

    Qin, Jinhua; Chang, Mingyang; Wang, Shuyong; Liu, Zhenbo; Zhu, Wei; Wang, Yi; Yan, Fang; Li, Jian; Zhang, Bowen; Dou, Guifang; Liu, Jiang; Pei, Xuetao; Wang, Yunfang

    2016-01-01

    Gap junction-mediated cell-cell interactions are highly conserved and play essential roles in cell survival, proliferation, differentiation and patterning. We report that Connexin 32 (Cx32)-mediated gap junctional intercellular communication (GJIC) is necessary for human embryonic stem cell-derived hepatocytes (hESC-Heps) during step-wise hepatic lineage restriction and maturation. Vitamin K2, previously shown to promote Cx32 expression in mature hepatocytes, up-regulated Cx32 expression and GJIC activation during hepatic differentiation and maturation, resulting in significant increases of hepatic markers expression and hepatocyte functions. In contrast, negative Cx32 regulator 2-aminoethoxydiphenyl borate blocked hESC-to-hepatocyte maturation and muted hepatocyte functions through disruption of GJIC activities. Dynamic gap junction organization and internalization are phosphorylation-dependent and the p38 mitogen-activated protein kinases pathway (MAPK) can negatively regulate Cxs through phosphorylation-dependent degradation of Cxs. We found that p38 MAPK inhibitor SB203580 improved maturation of hESC-Heps correlating with up-regulation of Cx32; by contrast, the p38 MAPK activator, anisomycin, blocked hESC-Heps maturation correlating with down-regulation of Cx32. These results suggested that Cx32 is essential for cell-cell interactions that facilitate driving hESCs through hepatic-lineage maturation. Regulators of both Cx32 and other members of its pathways maybe used as a promising approach on regulating hepatic lineage restriction of pluripotent stem cells and optimizing their functional maturation. PMID:27874032

  17. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells.

    PubMed

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-11

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC's anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  18. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    PubMed Central

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-01-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue. PMID:27063397

  19. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    NASA Astrophysics Data System (ADS)

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  20. Hepatitis C virus load in parenchyma cells correlates with hepatic injury in infected patients

    PubMed Central

    Xu, Zhen; Lin, Ji-Zong; Lin, Guo-Li; Wei, Fang-Fang; Liu, Jing; Zhao, Zhi-Xin; Zhang, Ying; Ke, Wei-Ming; Zhang, Xiao-Hong

    2017-01-01

    The association between serum hepatitis C virus (HCV) load and hepatic injury in HCV-infected patients has been extensively investigated. The present study aimed to investigate the association between HCV load in hepatic parenchyma cells and hepatic injury in HCV-infected patients. A total of 56 HCV-infected patients were included in the present retrospective study. The serum HCV mRNA was determined using quantitative polymerase chain reaction, while the hepatic parenchyma cell volume and HCV mRNA in hepatic parenchyma cells were also determined. Hepatic injury was evaluated on the basis of the severity of inflammation and fibrosis. The results demonstrated that there were evident differences in the mean serum HCV RNA levels and the HCV load/parenchyma cell volume among the various grades of hepatic inflammation (G1-G4) when groups with the least and most inflammation were compared (G1 vs. G4; P<0.05). Significant differences in the HCV load existed between groups divided according to the fibrosis grade; in addition, differences existed between fibrosis grades S1 and S2, and S2 and S4 when comparing serum HCV RNA levels (P<0.05). Similarly, differences existed between every two fibrosis stages (S0 vs. S4, S2 vs. S3, and S2 vs. S4; P<0.05) when viral loads and parenchyma cell volumes were compared (F=2.860, P<0.05). Furthermore, the fibrosis staging was correlated with the viral load/parenchyma cell volume (F=2.670, P<0.05). In conclusion, hepatic fibrosis grade was found to be associated with HCV load in parenchyma cells. The results of the present study demonstrated that the viral load in parenchyma cells is a more appropriate index compared with the serum viral load for evaluating HCV replication in hepatocytes, and may function as an important factor in HCV-infected hepatic injury evaluation. PMID:28123484

  1. Hepatitis C virus load in parenchyma cells correlates with hepatic injury in infected patients.

    PubMed

    Xu, Zhen; Lin, Ji-Zong; Lin, Guo-Li; Wei, Fang-Fang; Liu, Jing; Zhao, Zhi-Xin; Zhang, Ying; Ke, Wei-Ming; Zhang, Xiao-Hong

    2017-01-01

    The association between serum hepatitis C virus (HCV) load and hepatic injury in HCV-infected patients has been extensively investigated. The present study aimed to investigate the association between HCV load in hepatic parenchyma cells and hepatic injury in HCV-infected patients. A total of 56 HCV-infected patients were included in the present retrospective study. The serum HCV mRNA was determined using quantitative polymerase chain reaction, while the hepatic parenchyma cell volume and HCV mRNA in hepatic parenchyma cells were also determined. Hepatic injury was evaluated on the basis of the severity of inflammation and fibrosis. The results demonstrated that there were evident differences in the mean serum HCV RNA levels and the HCV load/parenchyma cell volume among the various grades of hepatic inflammation (G1-G4) when groups with the least and most inflammation were compared (G1 vs. G4; P<0.05). Significant differences in the HCV load existed between groups divided according to the fibrosis grade; in addition, differences existed between fibrosis grades S1 and S2, and S2 and S4 when comparing serum HCV RNA levels (P<0.05). Similarly, differences existed between every two fibrosis stages (S0 vs. S4, S2 vs. S3, and S2 vs. S4; P<0.05) when viral loads and parenchyma cell volumes were compared (F=2.860, P<0.05). Furthermore, the fibrosis staging was correlated with the viral load/parenchyma cell volume (F=2.670, P<0.05). In conclusion, hepatic fibrosis grade was found to be associated with HCV load in parenchyma cells. The results of the present study demonstrated that the viral load in parenchyma cells is a more appropriate index compared with the serum viral load for evaluating HCV replication in hepatocytes, and may function as an important factor in HCV-infected hepatic injury evaluation.

  2. A plant-derived edible vaccine against hepatitis B virus.

    PubMed

    Kapusta, J; Modelska, A; Figlerowicz, M; Pniewski, T; Letellier, M; Lisowa, O; Yusibov, V; Koprowski, H; Plucienniczak, A; Legocki, A B

    1999-10-01

    The infectious hepatitis B virus represents 42 nm spherical double-shelled particles. However, analysis of blood from hepatitis B virus carriers revealed the presence of smaller 22 nm particles consisting of a viral envelope surface protein. These particles are highly immunogenic and have been used in the design of hepatitis B virus vaccine produced in yeast. Upon expression in yeast, these proteins form virus-like particles that are used for parenteral immunization. Therefore, the DNA fragment encoding hepatitis B virus surface antigen was introduced into Agrobacterium tumerifacience LBA4404 and used to obtain transgenic lupin (Lupinus luteus L.) and lettuce (Lactuca sativa L.) cv. Burpee Bibb expressing envelope surface protein. Mice that were fed the transgenic lupin tissue developed significant levels of hepatitis B virus-specific antibodies. Human volunteers, fed with transgenic lettuce plants expressing hepatitis B virus surface antigen, developed specific serum-IgG response to plant produced protein.

  3. [Hepatic cell transplantation. Technical and methodological aspects].

    PubMed

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor.

  4. Exosome-Mediated Intercellular Communication between Hepatitis C Virus-Infected Hepatocytes and Hepatic Stellate Cells.

    PubMed

    Devhare, Pradip B; Sasaki, Reina; Shrivastava, Shubham; Di Bisceglie, Adrian M; Ray, Ranjit; Ray, Ratna B

    2017-03-15

    Fibrogenic pathways in the liver are principally regulated by activation of hepatic stellate cells (HSC). Fibrosis is associated with chronic hepatitis C virus (HCV) infection, although the mechanism is poorly understood. HSC comprise the major population of nonparenchymal cells in the liver. Since HCV does not replicate in HSC, we hypothesized that exosomes secreted from HCV-infected hepatocytes activate HSC. Primary or immortalized human hepatic stellate (LX2) cells were exposed to exosomes derived from HCV-infected hepatocytes (HCV-exo), and the expression of fibrosis-related genes was examined. Our results demonstrated that HCV-exo internalized to HSC and increased the expression of profibrotic markers. Further analysis suggested that HCV-exo carry miR-19a and target SOCS3 in HSC, which in turn activates the STAT3-mediated transforming growth factor β (TGF-β) signaling pathway and enhances fibrosis marker genes. The higher expression of miR-19a in exosomes was also observed from HCV-infected hepatocytes and in sera of chronic HCV patients with fibrosis compared to healthy volunteers and non-HCV-related liver disease patients with fibrosis. Together, our results demonstrated that miR-19a carried through the exosomes from HCV-infected hepatocytes activates HSC by modulating the SOCS-STAT3 axis. Our results implicated a novel mechanism of exosome-mediated intercellular communication in the activation of HSC for liver fibrosis in HCV infection.IMPORTANCE HCV-associated liver fibrosis is a critical step for end-stage liver disease progression. However, the molecular mechanisms for hepatic stellate-cell activation by HCV-infected hepatocytes are underexplored. Here, we provide a role for miR-19a carried through the exosomes in intercellular communication between HCV-infected hepatocytes and HSC in fibrogenic activation. Furthermore, we demonstrate the role of exosomal miR-19a in activation of the STAT3-TGF-β pathway in HSC. This study contributes to the

  5. Natural killer cells in hepatitis B virus infection.

    PubMed

    Wu, Shao-fei; Wang, Wen-jing; Gao, Yue-qiu

    2015-01-01

    Natural killer cells are a unique type of lymphocytes with cytotoxic capacity, and play important roles against tumors and infections. Recently, natural killer cells have been increasingly valued in their effects in hepatitis B virus infection. Since hepatitis B virus is not cytopathic, the subsequent antiviral immune responses of the host are responsible for sustaining the liver injury, which may result in cirrhosis and even hepatocellular carcinoma. Many studies have confirmed that natural killer cells participate in anti-hepatitis B virus responses both in the early phase after infection and in the chronic phase via cytolysis, degranulation, and cytokine secretion. However, natural killer cells play dichotomic roles: they exert antiviral and immunoregulatory functions whilst contribute to the pathogenesis of liver injury. Here, we review the roles of natural killer cells in hepatitis B virus infection, introducing novel therapeutic strategies for controlling hepatitis B virus infection via the modulation of natural killer cells.

  6. Hepatitis

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Hepatitis KidsHealth > For Teens > Hepatitis Print A A A ... to a liver condition called hepatitis . What Is Hepatitis? The liver is one of the body's powerhouses. ...

  7. Hepatitis

    MedlinePlus

    ... de los dientes Video: Getting an X-ray Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  8. New Pyrazolobenzothiazine Derivatives as Hepatitis C Virus NS5B Polymerase Palm Site I Inhibitors

    PubMed Central

    2015-01-01

    We have previously identified the pyrazolobenzothiazine scaffold as a promising chemotype against hepatitis C virus (HCV) NS5B polymerase, a validated and promising anti-HCV target. Herein we describe the design, synthesis, enzymatic, and cellular characterization of new pyrazolobenzothiazines as anti-HCV inhibitors. The binding site for a representative derivative was mapped to NS5B palm site I employing a mutant counterscreen assay, thus validating our previous in silico predictions. Derivative 2b proved to be the best selective anti-HCV derivative within the new series, exhibiting a IC50 of 7.9 μM against NS5B polymerase and antiviral effect (EC50 = 8.1 μM; EC90 = 23.3 μM) coupled with the absence of any antimetabolic effect (CC50 > 224 μM; SI > 28) in a cell based HCV replicon system assay. Significantly, microscopic analysis showed that, unlike the parent compounds, derivative 2b did not show any significant cell morphological alterations. Furthermore, since most of the pyrazolobenzothiazines tested altered cell morphology, this undesired aspect was further investigated by exploring possible perturbation of lipid metabolism during compound treatment. PMID:24654886

  9. Effects of platelet-derived growth factor and interleukin-10 on Fas/Fas-ligand and Bcl-2/Bax mRNA expression in rat hepatic stellate cells in vitro

    PubMed Central

    Wang, Xiao-Zhong; Zhang, Sheng-Jun; Chen, Yun-Xin; Chen, Zhi-Xin; Huang, Yue-Hong; Zhang, Li-Juan

    2004-01-01

    AIM: To investigate the effects of platelet-derived growth factor (PDGF) and interleukin-10 (IL-10) on Fas/Fas-ligand and Bcl-2/Bax mRNA expressions in rat hepatic stellate cells. METHODS: Rat hepatic stellate cells (HSCs) were isolated and purified from rat liver by in situ digestion of collagenase and pronase and single-step density Nycodenz gradient. After activated by culture in vitro, HSCs were divided into 4 groups and treated with nothing (group N), PDGF (group P), IL-10 (group I) and PDGF in combination with IL-10 (group C), respectively. Semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis was employed to compare the mRNA expression levels of Fas/FasL and Bcl-2/Bax in HSCs of each group. RESULTS: The expression levels of Fas between the 4 groups had no significant differences (P > 0.05). FasL mRNA level in normal culture-activated HSCs (group N) was very low. It increased obviously after HSCs were treated with IL-10 (group I) (0.091 ± 0.007 vs 0.385 ± 0.051, P < 0.01), but remained the low level after treated with PDGF alone (group P) or PDGF in combination with IL-10 (group C). Contrast to the control group, after treated with PDGF and IL-10, either alone or in combination, Bcl-2 mRNA expression was down-regulated and Bax mRNA expression was up-regulated, both following the turn from group P, group I to group C. Expression of Bcl-2 mRNA in group C was significantly lower than that in group P (0.126 ± 0.008 vs 0.210 ± 0.024, P < 0.01). But no significant difference was found between group C and group I, as well as between group I and group P (P > 0.05). Similarly, the expression of Bax in group C was higher than that in group P (0.513 ± 0.016 vs 0.400 ± 0.022, P < 0.01). No significant difference was found between group I and group P (P > 0.05). But compared with group C, Bax expressions in group I tended to decrease (0.449 ± 0.028 vs 0.513 ± 0.016, P < 0.05). CONCLUSION: PDGF may promote proliferation of HSCs but is

  10. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP(+) mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl4 -induced liver fibrosis was achieved.

  11. The human constitutive androstane receptor promotes the differentiation and maturation of hepatic-like cells

    PubMed Central

    Chen, Fengming; Zamule, Stephanie M.; Coslo, Denise M.; Chen, Tao; Omiecinski, Curtis J.

    2013-01-01

    Expression of the constitutive androstane receptor (CAR, NR1I3) is enriched in the mature mammalian liver and increasingly recognized for its prominent role in regulating a myriad of processes including biotransformation, chemical transport, energy metabolism and lipid homeostasis. Previously, we demonstrated that CAR levels were markedly enhanced during the differentiation of hepatic-like cells derived from hESCs, prompting the hypothesis that CAR contributes a key functional role in directing human hepatogenesis. Here we demonstrate that over-expression of CAR in human embryonic stem cells (ESCs), transduced by a lentiviral vector, accelerates the maturation of hepatic-like cells, with CAR over-expressing cells exhibiting a 2.5-fold increase in albumin secretion by day 20 in culture differentiation, and significantly enhanced levels of mRNA expression of several liver-selective markers, including hepatic transcription factors, plasma proteins, biotransformation enzymes, and metabolic enzymes. CAR over-expressing cells also exhibited enhanced CITCO-inducible CYP3A7 enzymatic activity. Knockdown of CAR via siRNA attenuated the differentiation-dependent expression programs. In contrast, expression levels of the pregnane X receptor (PXR), a nuclear receptor most similar to CAR in primary sequence, were negligible in human fetal liver tissues or in the differentiating hESCs, and stable over-expression of PXR in hepatic-induced hESCs failed to enhance expression of hepatic phenotype markers. Together, these results define a novel role for human CAR in hepatic lineage commitment. PMID:24144921

  12. Isolation and characterization of hepatic mast cells from cholestatic rats

    PubMed Central

    Hargrove, Laura; Graf-Eaton, Allyson; Kennedy, Lindsey; Demieville, Jennifer; Owens, Jennifer; Hodges, Kyle; Ladd, Brittany; Francis, Heather

    2016-01-01

    Mast cells (MCs) are immune cells that release histamine and other mediators. MC number increases after bile duct ligation (BDL) and blocking mast cell-derived histamine decrease biliary proliferation. We aimed to isolate and characterize MCs from cholestatic livers. Rats were subjected to BDL starting at 6 hrs and up to 14 days. MC infiltration was evaluated by toluidine blue. BDL rats were perfused using standard collagenase perfusion. Following enzymatic digestion, tissue was passed through a fine gauge needle. Suspensions were incubated with MAb AA4, washed and incubated with goat anti-mouse coated Dynal® beads. MCs were stained with toluidine blue, and in isolated MCs, the expression of FCεRI and MC proteases was measured. The expression of histidine decarboxylase, histamine receptors, VEGF-receptors and TIE 1 and 2 was evaluated by qPCR. Histamine and VEGF-A secretion was measured in MC supernatants. MC purity was evaluated by CK-19, CK-8, albumin, VAP-1 and α-SMA expression. In vitro, cholangiocytes and HSCs were treated with isolated MC supernatants from BDL rats treated with either NaCl or cromolyn sodium (to block MC histamine release) and biliary proliferation and hepatic fibrosis were measured. MCs infiltrate the liver and surround bile ducts starting at day 2. We isolated a virtually pure preparation of mature, functional MCs. TEM images reveal distinct secretory granules and isolated MCs secrete histamine. MCs express FCεRI, chymase, tryptase, RMCPI and RMCPII, but were virtually void of other cell markers. Biliary proliferation and fibrosis increased following treatment with MC supernatants from BDL rats + NaCl and these parameters decreased in cells treated with MC supernatants from BDL + cromolyn sodium. In conclusion, we have isolated and characterized MCs from cholestatic livers. MCs regulate cholestatic liver injury and hepatic fibrosis. This tool provides a better understanding of the paracrine influence of mast cells on biliary

  13. Neuronal cell death in hepatic encephalopathy.

    PubMed

    Butterworth, Roger F

    2007-12-01

    It is generally assumed that neuronal cell death is minimal in liver failure and is insufficient to account for the neuropsychiatric symptoms characteristic of hepatic encephalopathy. However, contrary to this assumption, neuronal cell damage and death are well documented in liver failure patients, taking the form of several distinct clinical entities namely acquired (non-Wilsonian) hepatocerebral degeneration, cirrhosis-related Parkinsonism, post-shunt myelopathy and cerebellar degeneration. In addition, there is evidence to suggest that liver failure contributes to the severity of neuronal loss in Wernicke's encephalopathy. The long-standing nature of the thalamic and cerebellar lesions, over 80% of which are missed by routine clinical evaluation, together with the probability that they are nutritional in origin, underscores the need for careful nutritional management (adequate dietary protein, Vitamin B(1)) in liver failure patients. Mechanisms identified with the potential to cause neuronal cell death in liver failure include NMDA receptor-mediated excitotoxicity, lactic acidosis, oxidative/nitrosative stress and the presence of pro-inflammatory cytokines. The extent of neuronal damage in liver failure may be attenuated by compensatory mechanisms that include down-regulation of NMDA receptors, hypothermia and the presence of neuroprotective steroids such as allopregnanolone. These findings suggest that some of the purported "sequelae" of liver transplantation (gait ataxia, memory loss, confusion) could reflect preexisting neuropathology.

  14. Hepatitis

    MedlinePlus

    ... clotting problems or chronic liver disease. previous continue Hepatitis B and Hepatitis C Although hep A is a ... does — through direct contact with infected body fluids. Hepatitis B and C are even more easily passed in ...

  15. Hepatitis

    MedlinePlus

    ... A if they've been vaccinated against it. Hepatitis B Hepatitis B is a more serious infection. It may lead ... of which cause severe illness and even death. Hepatitis B virus (HBV) is transmitted from person to person ...

  16. Hepatitis

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Hepatitis Page Content Article Body Hepatitis means “inflammation of ... it has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool ...

  17. Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    PubMed Central

    Chan, Tim; Back, Timothy C.; Subleski, Jeffrey J.; Weiss, Jonathan M.; Ortaldo, John R.; Wiltrout, Robert H.

    2012-01-01

    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections. PMID:22428016

  18. Regulatory T Cells in Hepatitis B and C Virus Infections

    PubMed Central

    2016-01-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that establish chronic persistent infection by effectively escaping the host immune response and can cause immune-mediated liver injury. It has recently become apparent that regulatory T (Treg) cells, specifically CD4+CD25+Foxp3+ Treg cells, modulate viral diseases by suppressing antiviral immune responses and regulating inflammatory host injury. The roles of Treg cells in HBV and HCV infections range from suppressing antiviral T cell responses to protecting the liver from immune-mediated damage. This review describes Treg cells and subpopulations and focuses on the roles of these cells in HBV and HCV infections. PMID:28035208

  19. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors

    PubMed Central

    Kochat, Veena; Equbal, Zaffar; Baligar, Prakash; Kumar, Vikash; Srivastava, Madhulika; Mukhopadhyay, Asok

    2017-01-01

    The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule

  20. Discovery, Optimization, and Characterization of Novel Chlorcyclizine Derivatives for the Treatment of Hepatitis C Virus Infection

    PubMed Central

    2015-01-01

    Recently, we reported that chlorcyclizine (CCZ, Rac-2), an over-the-counter antihistamine piperazine drug, possesses in vitro and in vivo activity against hepatitis C virus. Here, we describe structure–activity relationship (SAR) efforts that resulted in the optimization of novel chlorcyclizine derivatives as anti-HCV agents. Several compounds exhibited EC50 values below 10 nM against HCV infection, cytotoxicity selectivity indices above 2000, and showed improved in vivo pharmacokinetic properties. The optimized molecules can serve as lead preclinical candidates for the treatment of hepatitis C virus infection and as probes to study hepatitis C virus pathogenesis and host–virus interaction. PMID:26599718

  1. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection.

    PubMed

    Dai, Kai; Huang, Ling; Sun, Xiaomei; Yang, Lihua; Gong, Zuojiong

    2015-12-01

    Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.

  2. [Exosomes derived from dendritic cells].

    PubMed

    Amigorena, S

    2001-01-01

    Dendritic cells (DC) are potent antigen presenting cells and the only ones capable of inducing primary cytotoxic immune responses both in vivo and vitro. DCs secrete a 60-80 nm membrane vesicle population of endocytic origin, called exosomes. The protein composition of exosomes was analyzed using a systematic proteomic approach. Besides MHC and costimulatory molecules, exosomes bear several adhesion proteins, probably involved in their specific targeting. Exosomes also accumulate several cytosolic factors, most likely involved in exoxome's biogenesis in late endosomes. Like DCs, exosomes induce potent anti tumor immune responses in vivo. Indeed, a single injection of DC-derived exosomes sensitized with tumor peptides induced the eradication of established mouse tumors. Tumor-specific cytotoxic T lymphocytes were found in the spleen of exosome treated mice, and depletion of CD8+ T cells in vivo inhibited the anti tumor effect of exosomes. These results strongly support the implementation of human DC-derived exosomes for cancer immunotherapy.

  3. Catalase ameliorates hepatic fibrosis by inhibition of hepatic stellate cells activation.

    PubMed

    Dong, Yuwei; Qu, Ying; Xu, Mingyi; Wang, Xingpeng; Lu, Lungen

    2014-01-01

    Catalase, an endogenous antioxidant enzyme, is thought to have rescue effects on hepatic fibrosis. In this study, the regulation of catalase in CCl₄-induced hepatic fibrogenesis was investigated. Our results indicated that catalase expression was decreased upon CCl₄ treatment in a time-dependent manner, while the expression of several profibrosis and proangiogenic factors, including transforming growth factor (TGF)-beta 1, vascular endothelial growth factor (VEGF), and angiopoietin 1 were significantly increased. To assess the role of catalase in hepatic fibrosis, catalase was overexpressed in HSC-T6 cells. This overexpression resulted in the inhibition of cell proliferation, migratory activity, and alpha-smooth muscle actin (alpha-SMA) expression, key features that characterize activation of hepatic stellate cells (HSC). Overexpression of catalase led to a decrease in the secretion of collagen type 1 and angiopoietin 1. These results indicate that loss of catalase activity is involved in the pathogenesis of hepatic fibrosis caused by the activation of HSCs.

  4. Immunogenicity and functional characterization of Leishmania-derived hepatitis C virus envelope glycoprotein complex

    PubMed Central

    Grzyb, Katarzyna; Czarnota, Anna; Brzozowska, Agnieszka; Cieślik, Anna; Rąbalski, Łukasz; Tyborowska, Jolanta; Bieńkowska-Szewczyk, Krystyna

    2016-01-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are the main inducers of a cross-neutralizing antibody response which plays an important role in the early phase of viral infection. Correctly folded and immunologically active E1E2 complex can be expressed in mammalian cells, though the production process might still prove restrictive, even if the immunological response of a vaccine candidate is positive. Here, we report a characterization and immunogenicity study of a full-length (fE1E2) and soluble version of the E1E2 complex (tE1E2) from genotype 1a, successfully expressed in the cells of Leishmania tarentolae. In a functional study, we confirmed the binding of both Leishmania-derived E1E2 complexes to the CD-81 receptor and the presence of the major epitopes participating in a neutralizing antibody response. Both complexes were proved to be highly immunogenic in mice and elicited neutralizing antibody response. Moreover, cross-reactivity of the mouse sera was detected for all tested HCV genotypes with the highest signal intensity observed for genotypes 1a, 1b, 5 and 6. Since the development of a prophylactic vaccine against HCV is still needed to control the global infection, our Leishmania-derived E1E2 glycoproteins could be considered a potential cost-effective vaccine candidate. PMID:27481352

  5. A p7 Ion Channel-derived Peptide Inhibits Hepatitis C Virus Infection in Vitro*

    PubMed Central

    Hong, Wei; Lang, Yange; Li, Tian; Zeng, Zhengyang; Song, Yu; Wu, Yingliang; Li, Wenxin; Cao, Zhijian

    2015-01-01

    Viral infection is an early stage of its life cycle and represents a promising target for antiviral drug development. Here we designed and characterized three peptide inhibitors of hepatitis C virus (HCV) infection based on the structural features of the membrane-associated p7 polypeptide of HCV. The three peptides exhibited low toxicity and high stability while potently inhibiting initial HCV infection and suppressed established HCV infection at non-cytotoxic concentrations in vitro. The most efficient peptide (designated H2-3), which is derived from the H2 helical region of HCV p7 ion channel, inhibited HCV infection by inactivating both intracellular and extracellular viral particles. The H2-3 peptide inactivated free HCV with an EC50 (50% effective concentration) of 82.11 nm, which is >1000-fold lower than the CC50 (50% cytotoxic concentration) of Huh7.5.1 cells. H2-3 peptide also bound to cell membrane and protected host cells from viral infection. The peptide H2-3 did not alter the normal electrophysiological profile of the p7 ion channel or block viral release from Huh7.5.1 cells. Our work highlights a new anti-viral peptide design strategy based on ion channel, giving the possibility that ion channels are potential resources to generate antiviral peptides. PMID:26251517

  6. Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice.

    PubMed

    Lee, Lung-Yi; Harberg, Calvin; Matkowskyj, Kristina A; Cook, Shelly; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey; Foley, David P

    2016-01-01

    Hepatic ischemia/reperfusion injury (IRI) is a critical component of hepatic surgery. Oxidative stress has long been implicated as a key player in IRI. In this study, we examine the cell-specific role of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-antioxidant response element pathway in warm hepatic IRI. Nrf2 knockout (KO) and wild-type (WT) animals and novel transgenic mice expressing a constitutively active nuclear factor (erythroid-derived 2)-like 2 (caNrf2) mutant in hepatocytes (AlbCre+/caNrf2+) and their littermate controls underwent partial hepatic ischemia or sham surgery. The animals were killed 6 hours after reperfusion, and their serum and tissue were collected for analysis. As compared to WT animals after ischemia/reperfusion (IR), Nrf2 KO mice had increased hepatocellular injury with increased serum alanine aminotransferase and aspartate aminotransferase, Suzuki score, apoptosis, an increased inflammatory infiltrate, and enhanced inflammatory cytokine expression. On the other hand, AlbCre+/caNrf2+ that underwent IR had significantly reduced serum transaminases, less necrosis on histology, and a less pronounced inflammatory infiltrate and inflammatory cytokine expression as compared to the littermate controls. However, there were no differences in apoptosis. Taken together, Nrf2 plays a critical role in our murine model of warm hepatic IRI, with Nrf2 deficiency exacerbating hepatic IRI and hepatocyte-specific Nrf2 overactivation providing protection against warm hepatic IRI.

  7. CD133(+) human umbilical cord blood stem cells enhance angiogenesis in experimental chronic hepatic fibrosis.

    PubMed

    Elkhafif, Nagwa; El Baz, Hanan; Hammam, Olfat; Hassan, Salwa; Salah, Faten; Mansour, Wafaa; Mansy, Soheir; Yehia, Hoda; Zaki, Ahmed; Magdy, Ranya

    2011-01-01

    The in vivo angiogenic potential of transplanted human umbilical cord blood (UCB) CD133(+) stem cells in experimental chronic hepatic fibrosis induced by murine schistosomiasis was studied. Enriched cord blood-derived CD133(+) cells were cultured in primary medium for 3 weeks. Twenty-two weeks post-Schistosomiasis infection in mice, after reaching the chronic hepatic fibrotic stage, transplantation of stem cells was performed and mice were sacrificed 3 weeks later. Histopathology and electron microscopy showed an increase in newly formed blood vessels and a decrease in the fibrosis known for this stage of the disease. By immunohistochemical analysis the newly formed blood vessels showed positive expression of the human-specific angiogenic markers CD31, CD34 and von Willebrand factor. Few hepatocyte-like polygonal cells showed positive expression of human vascular endothelial growth factor and inducible nitric oxide synthase. The transplanted CD133(+) human stem cells primarily enhanced hepatic angiogenesis and neovascularization and contributed to repair in a paracrine manner by creating a permissive environment that enabled proliferation and survival of damaged cells rather than by direct differentiation to hepatocytes. A dual advantage of CD133(+) cell therapy in hepatic disease is suggested based on its capability of hematopoietic and endothelial differentiation.

  8. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Malhotra, Ashim; Henning, Justin R; Ibrahim, Junaid; Vera, Valery; Cieza-Rubio, Napoleon E; Hassan, Burhan U; Pachter, H Leon; Cohen, Steven; Frey, Alan B; Miller, George

    2010-08-15

    The normal liver is characterized by immunologic tolerance. Primary mediators of hepatic immune tolerance are liver sinusoidal endothelial cells (LSECs). LSECs block adaptive immunogenic responses to Ag and induce the generation of T regulatory cells. Hepatic fibrosis is characterized by both intense intrahepatic inflammation and altered hepatic immunity. We postulated that, in liver fibrosis, a reversal of LSEC function from tolerogenic to proinflammatory and immunogenic may contribute to both the heightened inflammatory milieu and altered intrahepatic immunity. We found that, after fibrotic liver injury from hepatotoxins, LSECs become highly proinflammatory and secrete an array of cytokines and chemokines. In addition, LSECs gain enhanced capacity to capture Ag and induce T cell proliferation. Similarly, unlike LSECs in normal livers, in fibrosis, LSECs do not veto dendritic cell priming of T cells. Furthermore, whereas in normal livers, LSECs are active in the generation of T regulatory cells, in hepatic fibrosis LSECs induce an immunogenic T cell phenotype capable of enhancing endogenous CTLs and generating potent de novo CTL responses. Moreover, depletion of LSECs from fibrotic liver cultures mitigates the proinflammatory milieu characteristic of hepatic fibrosis. Our findings offer a critical understanding of the role of LSECs in modulating intrahepatic immunity and inflammation in fibro-inflammatory liver disease.

  9. Hepatic Stellate Cells Regulate Immune Response via Induction of Myeloid Suppressor Cells

    PubMed Central

    Chou, Hong-Shiue; Hsieh, Ching-Chuan; Yang, Horng-Ren; Wang, Lianfu; Arakawa, Yusuke; Brown, Kathleen; Wu, Qingyu; Lin, Feng; Peters, Marion; Fung, John J.; Lu, Lina; Qian, Shiguang

    2011-01-01

    Although organ transplants have been applied for decades, outcomes of somatic cell transplants remain disappointing, presumably due to lack of appropriate supporting stromal cells. Thus, cotransplantation with liver stromal cells, hepatic stellate cells (HSC), achieves long-term survival of islet allografts in mice via induction of effector T cell apoptosis and generation of regulatory T (Treg) cells. In this study, we provide evidence both in vitro and in vivo that HSC can promote generation of myeloid-derived suppressor cells (MDSC). HSC-induced MDSC demonstrate potent immune inhibitory activity. Induction of MDSC is dependent on intact IFN-γ signaling pathway in HSC, and is mediated by soluble factors, suggesting that the specific tissue stromal cells, such as HSC, play a crucial role in regulating immune response via inflammation-induced generation of MDSC. Large amounts of MDSC can be propagated in vitro from bone marrow derived myeloid precursor cells under the influence of HSC. Cotransplantation with in vitro generated MDSC can effectively protects islet allografts from host immune attack. Local delivery of potent immune suppressor cells for cell transplants holds a great clinical application potential. PMID:21374665

  10. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell.

    PubMed

    Jin, Huanhuan; Jia, Yan; Yao, Zhen; Huang, Jingjing; Hao, Meng; Yao, Shunyu; Lian, Naqi; Zhang, Feng; Zhang, Chenxi; Chen, Xingran; Bian, Mianli; Shao, Jiangjuan; Wu, Li; Chen, Anping; Zheng, Shizhong

    2017-05-01

    Hepatic fibrosis, a common scarring response to various forms of chronic liver injury, is a precursor to cirrhosis and liver cancer. During liver fibrosis, hepatic stellate cells (HSCs) initially activate and proliferate, which are responsible for the secretion of extracellular matrix components. However, these cells eventually senesce and are cleared by natural killer (NK) cells. Our previous researches have shown that the natural product curcumin could promote the senescence of activated HSC. In this study, we investigated how NK cells target senescent HSC and assessed the effect of this process on liver fibrosis. We found that senescent HSC induced by curcumin are susceptible to NK cells killing, due to the increased expression of NK cell activating ligand major histocompatibility complex class I chain-related genes A (MICA) and UL16-binding proteins 2 (ULBP2), but not Poliovirus Receptor (PVR). Further studies displayed that the interaction between NK cells and senescent LX2 cells stimulated granule exocytosis. Moreover, the inhibition of granule exocytosis weakened the cytotoxicity of NK cells and promoted the accumulation of senescent LX2 cells. Therefore, these aggregated data indicated that NK cells mediated clearance of senescent LX2 cells and granule exocytosis could play a protective role in the improvement of liver fibrosis.

  11. HHV-6A in syncytial giant-cell hepatitis.

    PubMed

    Potenza, Leonardo; Luppi, Mario; Barozzi, Patrizia; Rossi, Giulio; Cocchi, Stefania; Codeluppi, Mauro; Pecorari, Monica; Masetti, Michele; Di Benedetto, Fabrizio; Gennari, William; Portolani, Marinella; Gerunda, Giorgio Enrico; Lazzarotto, Tiziana; Landini, Maria Paola; Schulz, Thomas F; Torelli, Giuseppe; Guaraldi, Giovanni

    2008-08-07

    Syncytial giant-cell hepatitis is a rare but severe form of hepatitis that is associated with autoimmune diseases, drug reactions, and viral infections. We used serologic, molecular, and immunohistochemical methods to search for an infectious cause in a case of syncytial giant-cell hepatitis that developed in a liver-transplant recipient who had latent infection with variant B of human herpesvirus 6 (HHV-6B) and who had received the organ from a donor with variant A latent infection (HHV-6A). At the onset of the disease, the detection of HHV-6A (but not HHV-6B) DNA in plasma, in affected liver tissue, and in single micromanipulated syncytial giant cells with the use of two different polymerase-chain-reaction (PCR) assays indicated the presence of active HHV-6A infection in the patient. Expression of the HHV-6A-specific early protein, p41/38, but not of the HHV-6B-specific late protein, p101, was demonstrated only in liver syncytial giant cells in the absence of other infectious pathogens. The same markers of HHV-6A active infection were documented in serial follow-up samples from the patient and disappeared only at the resolution of syncytial giant-cell hepatitis. Neither HHV-6B DNA nor late protein was identified in the same follow-up samples from the patient. Thus, HHV-6A may be a cause of syncytial giant-cell hepatitis.

  12. Donor-Derived Hepatic Neuroendocrine Tumor: Pause Before Proceeding With Liver Retransplantation

    PubMed Central

    Al-Azzawi, Yasir; Stein, Lance L.; Shrestha, Roshan; Bhasin, Devina; Citron, Steven J.; Rubin, Raymond A.

    2016-01-01

    ABSTRACT Gastrointestinal neuroendocrine tumors (NET) are rare but the age-adjusted incidence in the United States has increased, possibly due to improved radiographic and endoscopic detection. In advanced NET, hepatic metastases are common. Orthotopic liver transplant (OLT) is currently considered an acceptable therapy for selected patients with limited hepatic disease or liver metastases where complete resection is thought to have curative intent. The development of NET of donor origin is very uncommon after organ transplant, and it is unclear if the same treatment strategies applied to hepatic NET would also be efficacious after OLT. Here, we describe a unique case of an OLT recipient with a donor-derived NET that was treated with redo OLT as the primary therapy. The donor-derived NET recurred in the recipient's second liver allograft suggesting an extrahepatic reservoir. This case describes the natural history of such a rare event. Here, we highlight the treatment options for hepatic NET and challenge the role of OLT for a donor-derived hepatic NET. PMID:27830182

  13. Hepatic Stellate Cells: Partners in Crime for Liver Metastases?

    PubMed Central

    Kang, Ningling; Gores, Gregory; Shah, Vijay

    2011-01-01

    Hepatic stellate cells were recently postulated as a component of the prometastatic liver microenvironment because they can transdifferentiate into highly proliferative and motile myofibroblasts that are implicated in the desmoplastic reaction and metastatic growth. This review focuses on bidirectional interactions between tumor cells and HSC in the liver microenvironment and discusses mechanisms whereby tumor derived factors activate HSC, and in turn, activated HSC promote metastatic growth. Bidirectional interactions between tumors and HSC may function as an “amplification loop” to further enhance metastatic growth in the liver. The activation of HSC is a complex process regulated by multiple factors such as TGF-β and PDGF signaling pathways, which may present as therapeutic targets in the prevention and treatment of liver metastases. Targeting HSC/myofibroblasts with TGF-β or PDGF antagonists in coordination with chemotherapy, radiotherapy or surgery may prove to be effective at reducing liver metastases and increasing the survival benefit of patients by targeting both tumor cells and the tumor microenvironment. PMID:21520207

  14. Efficacy of a topical bovine-derived thrombin solution as a hemostatic agent in a rodent model of hepatic injury

    PubMed Central

    Rosselli, Desiree D.; Brainard, Benjamin M.; Schmiedt, Chad W.

    2015-01-01

    Hemorrhage is a major concern in patients undergoing hepatic surgery or in those with hepatic trauma. In these cases, employing traditional hemostatic strategies can be problematic due to the diffuse nature of hepatic hemorrhage and limited opportunities for direct hemostasis. This study assessed the efficacy of a bovine-derived thrombin solution, (BT), as a topical liquid agent to augment hemostasis and survival following severe hepatic hemorrhage in a rat model. Heart rate (HR), arterial blood pressure (ABP), packed cell volume (PCV), and overall survival were evaluated in 54 rats randomly assigned to receive topical application of BT, saline, or suture ligation applied immediately to a liver lobe following controlled laceration. Six additional rats received liver laceration with no applied treatment. Intravenous fluid resuscitation was initiated and HR and ABP were recorded for 60 min, after which survivors were recovered from anesthesia. Rats were then monitored for 72 h, after which survivors were euthanized. There was no significant difference in survival time, percentage survival, intra-operative ABP or HR, or post-operative PCV between treatment groups. There is insufficient evidence to recommend BT as the sole therapy using this delivery method for mitigating severe hemorrhage from liver injury. PMID:26424911

  15. Necrobiotic xanthogranuloma associated with choroidal infiltration and syncytial giant cell hepatitis.

    PubMed

    Amer, Radgonde; Pe'er, Jacob; Pappo, Orit; Dotan, Shlomo

    2005-09-01

    A 31-year-old woman developed necrobiotic xanthogranuloma (NXG), a thickened choroid, and syncytial giant cell hepatitis, a previously unreported association. NXG and syncytial giant cell hepatitis may have a common autoimmune pathogenesis.

  16. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    PubMed Central

    Itaba, Noriko; Matsumi, Yoshiaki; Okinaka, Kaori; Ashla, An Afida; Kono, Yohei; Osaki, Mitsuhiko; Morimoto, Minoru; Sugiyama, Naoyuki; Ohashi, Kazuo; Okano, Teruo; Shiota, Goshi

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentration-dependent manner. Hexachlorophene rapidly induced hepatic differentiation of human MSCs judging from expression of liver-specific genes and proteins, PAS staining, and urea production. The effect of orthotopic transplantation of human mesenchymal stem cell-engineered hepatic cell sheets against acute liver injury was examined in one-layered to three-layered cell sheets system. Transplantation of human mesenchymal stem cell-engineered hepatic cell sheets enhanced liver regeneration and suppressed liver injury. The survival rates of the mice were significantly improved. High expression of complement C3 and its downstream signals including C5a, NF-κB, and IL-6/STAT-3 pathway was observed in hepatic cell sheets-grafted tissues. Expression of phosphorylated EGFR and thioredoxin is enhanced, resulting in reduction of oxidative stress. These findings suggest that orthotopic transplantation of hepatic cell sheets manufactured from MSCs accelerates liver regeneration through complement C3, EGFR and thioredoxin. PMID:26553591

  17. Myeloid-derived suppressor cells

    PubMed Central

    Chandra, Dinesh; Gravekamp, Claudia

    2013-01-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases. PMID:24427545

  18. Acute seronegative hepatitis C manifesting itself as adult giant cell hepatitis--a case report and review of literature.

    PubMed

    Kryczka, Wiesław; Walewska-Zielecka, Bozena; Dutkiewicz, Ewa

    2003-08-01

    Adult giant cell hepatitis (AGCH) is a rare event and only about 100 cases have been reported within the last 20 years. The AGCH has been observed in association with viral infection, drug reactions or autoimmune disorders but in many cases its etiology remains unclear. AGCH manifests clinically as severe form of hepatitis histologically characterized by diffuse giant cell transformation of hepatocytes. We report the case of a 39-yr-old man with acute community-acquired hepatitis without previous pathology of the liver. Laboratory data revealed slight hypergammaglobulinemia and high titer of anti-smooth-muscle antibody with negative serology of hepatotropic viruses and absence of other known causes of hepatitis. Preliminary diagnosis of autoimmune hepatitis was established, additionally confirmed by excellent clinical and biochemical improvement during corticosteroid treatment. A liver biopsy showed the typical findings of panlobular syncytial giant cell hepatitis and positive HCV-RNA both in serum and liver. The above verified the diagnosis of acute type C hepatitis manifested histologically as adult giant cell hepatitis. After three months of treatment we withdrew corticosteroids as spontaneous clearance of HCV occurred and the lack of autoantibodies in serum as well as significant improvement of liver histology was ascertained. Within 30 months of the follow-up we have not observed biochemical and immunological abnormalities and control liver biopsy has shown no signs of hepatitis.

  19. Generation of Functional Human Hepatic Endoderm from Human iPS cells

    PubMed Central

    Sullivan, Gareth J.; Hay, David C.; Park, In-Hyun; Fletcher, Judy; Hannoun, Zara; Payne, Catherine M.; Dalgetty, Donna; Black, James R.; Ross, James A.; Samuel, Kay; Wang, Gang; Daley, George Q.; Lee, Je-Hyuk; Church, George M.; Forbes, Stuart J.; Iredale, John P.; Wilmut, Ian

    2009-01-01

    With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation of defined lineage, such as hepatic endoderm (HE). iPSC would revolutionise the way we study human liver biology and generate efficient “off the shelf” models of human liver disease. Here we show the `proof of concept' that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70–90%, using a method mimicking a physiological condition. iPSC-derived HE exhibited hepatic morphology, and expressed the hepatic markers, Albumin and E-Cadherin as assessed by immuno-histochemistry. They also expressed alpha fetal protein (AFP), HNF4a, and a metabolic marker, Cyp7A1, demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin (TTR) and AFP, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and 3A4 metabolism, which is essential for drug and toxicology testing. Conclusion This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSC that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSC from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionise predictive drug toxicology assays and allow the creation of in vitro hepatic disease models. PMID:19877180

  20. Rotating microgravity-bioreactor cultivation enhances the hepatic differentiation of mouse embryonic stem cells on biodegradable polymer scaffolds.

    PubMed

    Wang, Yingjie; Zhang, Yunping; Zhang, Shichang; Peng, Guangyong; Liu, Tao; Li, Yangxin; Xiang, Dedong; Wassler, Michael J; Shelat, Harnath S; Geng, Yongjian

    2012-11-01

    Embryonic stem (ES) cells are pluripotent cells that are capable of differentiating all the somatic cell lineages, including those in the liver tissue. We describe the generation of functional hepatic-like cells from mouse ES (mES) cells using a biodegradable polymer scaffold and a rotating bioreactor that allows simulated microgravity. Cells derived from ES cells cultured in the three-dimensional (3D) culture system with exogenous growth factors and hormones can differentiate into hepatic-like cells with morphologic characteristics of typical mature hepatocytes. Reverse-transcription polymerase chain-reaction testing, Western blot testing, immunostaining, and flow cytometric analysis show that these cells express hepatic-specific genes and proteins during differentiation. Differentiated cells on scaffolds further exhibit morphologic traits and biomarkers characteristic of liver cells, including albumin production, cytochrome P450 activity, and low-density lipoprotein uptake. When these stem cell-bearing scaffolds are transplanted into severe combined immunodeficient mice, the 3D constructs remained viable, undergoing further differentiation and maturation of hepatic-like cells in vivo. In conclusion, the growth and differentiation of ES cells in a biodegradable polymer scaffold and a rotating microgravity bioreactor can yield functional and organizational hepatocytes useful for research involving bioartificial liver and engineered liver tissue.

  1. Accumulation of I-123 IMP in hepatic cell adenoma

    SciTech Connect

    Suto, Yuji; Kodama, Fumiko; Kato, Takashi

    1995-07-01

    I-123 IMP is now widely used as a radioactive material for cerebral blood flow scintigraphy. It is also known that this substance will accumulate in certain types of tumors. The authors present a case of a 47-year-old woman who showed accumulation of I-123 IMP in hepatic cell adenoma. 6 refs., 3 figs.

  2. Liver transplant for giant cell hepatitis with autoimmune haemolytic anaemia

    PubMed Central

    Melendez, H. V.; Rela, M.; Baker, A.; Ball, C.; Portmann, B.; Mieli-Vergani, G.; Heaton, N.

    1997-01-01

    

 Giant cell hepatitis (CGH) with autoimmune haemolytic anaemia (AHA) is a distinct entity with an aggressive course. Immunosuppression may help early disease. A case is reported of a child with GCH and AHA with early disease recurrence after liver transplantation for end stage liver disease. 

 PMID:9370907

  3. Alcoholic hepatitis: The pivotal role of Kupffer cells

    PubMed Central

    Suraweera, Duminda B; Weeratunga, Ashley N; Hu, Robert W; Pandol, Stephen J; Hu, Richard

    2015-01-01

    Kupffer cells play a central role in the pathogenesis of alcoholic hepatitis (AH). It is believed that alcohol increases the gut permeability that results in raised levels of serum endotoxins containing lipopolysaccharides (LPS). LPS binds to LPS-binding proteins and presents it to a membrane glycoprotein called CD14, which then activates Kupffer cells via a receptor called toll-like receptor 4. This endotoxin mediated activation of Kupffer cells plays an important role in the inflammatory process resulting in alcoholic hepatitis. There is no effective treatment for AH, although notable progress has been made over the last decade in understanding the underlying mechanism of alcoholic hepatitis. We specifically review the current research on the role of Kupffer cells in the pathogenesis of AH and the treatment strategies. We suggest that the imbalance between the pro-inflammatory and the anti-inflammatory process as well as the increased production of reactive oxygen species eventually lead to hepatocyte injury, the final event of alcoholic hepatitis. PMID:26600966

  4. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration

    PubMed Central

    Zhang, Wei; Chen, Xiao-Ping; Zhang, Wan-Guang; Zhang, Feng; Xiang, Shuai; Dong, Han-Hua; Zhang, Lei

    2009-01-01

    AIM: To elucidate the interaction between non-parenchymal cells, extracellular matrix and oval cells during the restituting process of liver injury induced by partial hepatectomy (PH). METHODS: We examined the localization of oval cells, non-parenchymal cells, and the extracellular matrix components using immunohistochemical and double immunofluorescent analysis during the proliferation and differentiation of oval cells in N-2-acetylaminofluorene (2-AAF)/PH rat model. RESULTS: By day 2 after PH, small oval cells began to proliferate around the portal area. Most of stellate cells and laminin were present along the hepatic sinusoids in the periportal area. Kupffer cells and fibronectin markedly increased in the whole hepatic lobule. From day 4 to 9, oval cells spread further into hepatic parenchyma, closely associated with stellate cells, fibronectin and laminin. Kupffer cells admixed with oval cells by day 6 and then decreased in the periportal zone. From day 12 to 15, most of hepatic stellate cells (HSCs), laminin and fibronectin located around the small hepatocyte nodus, and minority of them appeared in the nodus. Kupffer cells were mainly limited in the pericentral sinusoids. After day 18, the normal liver lobule structures began to recover. CONCLUSION: Local hepatic microenvironment may participate in the oval cell-mediated liver regeneration through the cell-cell and cell-matrix interactions. PMID:19195056

  5. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    SciTech Connect

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  6. Fluorescent primuline derivatives inhibit hepatitis C virus NS3-catalyzed RNA unwinding, peptide hydrolysis and viral replicase formation.

    PubMed

    Ndjomou, Jean; Kolli, Rajesh; Mukherjee, Sourav; Shadrick, William R; Hanson, Alicia M; Sweeney, Noreena L; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J; Schoenen, Frank J; Frick, David N

    2012-11-01

    The hepatitis C virus (HCV) multifunctional nonstructural protein 3 (NS3) is a protease that cleaves viral and host proteins and a helicase that separates DNA and RNA structures in reactions fueled by ATP hydrolysis. Li et al. (2012) recently synthesized a series of new NS3 helicase inhibitors from the benzothiazole dimer component of the fluorescent yellow dye primuline. This study further characterizes a subset of these primuline derivatives with respect to their specificity, mechanism of action, and effect on cells harboring HCV subgenomic replicons. All compounds inhibited DNA and RNA unwinding catalyzed by NS3 from different HCV genotypes, but only some inhibited the NS3 protease function, and few had any effect on HCV NS3 catalyzed ATP hydrolysis. A different subset contained potent inhibitors of RNA stimulated ATP hydrolysis catalyzed by the related NS3 protein from Dengue virus. In assays monitoring intrinsic protein fluorescence in the absence of nucleic acids, the compounds cooperatively bound NS3 with K(d)s that reflect their potency in assays. The fluorescent properties of the primuline derivatives both in vitro and in cells are also described. The primuline derivative that was the most active against subgenomic replicons in cells caused a 14-fold drop in HCV RNA levels (IC(50)=5±2μM). In cells, the most effective primuline derivative did not inhibit the cellular activity of NS3 protease but disrupted HCV replicase structures.

  7. Congenital hepatic fibrosis, liver cell carcinoma and adult polycystic kidneys.

    PubMed

    Manes, J L; Kissane, J M; Valdes, A J

    1977-06-01

    In reviewing the literature, we found no liver cell carcinoma (LCC) or well-documented adult polycystic kidneys (APK) associated with congenital hepatic fibrosis (CHF). We report a 69-year-old man with CHF, LCC, APK, duplication cyst of distal portion of stomach, two calcified splenic artery aneurysms, myocardial fibrosis and muscular hypertrophy of esophagus. The LCC was grossly predunculated and microscopically showed prominent fibrosis and hyaline intracytoplasmic inclusions in the tumor cells.

  8. Susceptibility of nonprimate cell lines to hepatitis A virus infection.

    PubMed Central

    Dotzauer, A; Feinstone, S M; Kaplan, G

    1994-01-01

    Hepatitis A virus (HAV) has been adapted to grow in primate cell cultures. We investigated replication of HAV in nonprimate cells by inoculating 20 cell lines from different species with the tissue culture-adapted HM175 strain. Slot blot hybridization and immunofluorescence analysis revealed that HAV replicated in GPE, SP 1K, and IB-RS-2 D10 cells of guinea pig, dolphin, and pig origin, respectively. Studies in IB-RS-2 D10 cells were discontinued because cultures were contaminated with classical swine fever virus. A growth curve showed that HAV grew poorly in GPE cells and intermediately in SP 1K cells compared with growth in FRhK-4 cells. Therefore, the cell surface receptor(s) and other host factor(s) required for HAV replication are present in nonprimate as well as primate cells. Images PMID:8057483

  9. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells.

    PubMed

    Nagahara, Teruya; Shiraha, Hidenori; Sawahara, Hiroaki; Uchida, Daisuke; Takeuchi, Yasuto; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Kuwaki, Takeshi; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2015-09-01

    Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvironment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin-/N-cadherin+ and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA‑treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin-/N-cadherin+ cells. Taken together, humoral factors secreted from TWNT-1

  10. Oral administered particulate yeast-derived glucan promotes hepatitis B virus clearance in a hydrodynamic injection mouse model.

    PubMed

    Yu, Xiaoyu; Zhang, Dandan; Shi, Bisheng; Ren, Guangxu; Peng, Xiuhua; Fang, Zhong; Kozlowski, Maya; Zhou, Xiaohui; Zhang, Xiaonan; Wu, Min; Wang, Cong; Yuan, Zhenghong

    2015-01-01

    Hepatitis B virus (HBV) persistent infection is associated with ineffective immune response for the clearance of virus. Immunomodulators represent an important class of therapeutics, which potentially could be beneficial for the treatment of HBV infection. The particulate yeast-derived glucan (PYDG) has been shown to enhance the innate and adaptive immune responses. We therefore, assessed the efficacy of PYDG in enhancing HBV specific immune responses by employing the hydrodynamic injection-based (HDI) HBV transfection mouse model. Mice were intragatric administered PYDG daily for 9 weeks post pAAV/HBV1.2 hydrodynamic injection. PYDG treatment significantly promoted HBV DNA clearance and production of HBsAb compared to control mice. PYDG treatment resulted in recruitment of macrophages, dendritic cells (DCs) and effector T cells to the liver microenvironment, accompanied by a significantly augmented DCs maturation and HBV-specific IFN-γ and TNF-α production by T cell. In addition, enhanced production of Th1 cytokines in liver tissue interstitial fluid (TIF) was associated with PYDG administration. Live imaging showed the accumulation of PYDG in the mouse liver. Our results demonstrate that PYDG treatment significantly enhances HBV-specific Th1 immune responses, accompanied by clearance of HBV DNA, and therefore holds promise for further development of therapeutics against chronic hepatitis B.

  11. An epoxysuccinic acid derivative(loxistatin)-induced hepatic injury in rats and hamsters

    SciTech Connect

    Fukushima, K.; Arai, M.; Kohno, Y.; Suwa, T.; Satoh, T. )

    1990-08-01

    Loxistatin is a possible therapeutic agent of muscular dystrophy. A single oral administration of loxistatin to male rats caused focal necrosis of the liver with inflammatory cell infiltration. The severity of the lesions was dose-dependent up to 200 mg/kg and also manifest by an increase in serum alanine aminotransferase and aspartate aminotransferase activities. Hepatic glutathione (GSH) levels decreased with a maximum 20% depletion within 5 hr after the oral administration of loxistatin. Pretreatment with diethyl maleate did not potentiate the loxistatin-induced hepatic injury. On the other hand, the hepatoprotective effect of cysteamine was observed when cysteamine was administered 24 hr before loxistatin dosing, but the effect was not observed when the antidote was administered concomitantly with loxistatin. Pretreatment of rats with phenobarbital or trans-stilbene oxide provided partial protection against the hepatotoxic effect of loxistatin. Pretreatment with SKF-525A resulted in increased hepatic injury, while pretreatment with piperonyl butoxide, cimetidine, or 3-methylcholanthrene had no effect on hepatic damage by loxistatin. Five hours after (14C)loxistatin administration to rats, the covalent binding of the radioactivity to proteins was greatest in the liver, followed by the kidney, then muscle and blood to a lesser extent. (14C)Loxistatin acid, the pharmacologically active form of loxistatin, irreversibly bound to rat liver microsomal proteins; more binding occurred when the NADPH-generating system was omitted and when the microsomes were boiled first. GSH did not alter the extent of irreversible binding, whereas N-ethylmaleimide decreased the binding of (14C)loxistatin acid to rat liver microsomal proteins by 75%. Unlike the rat, administration of loxistatin to hamsters caused neither hepatic injury nor hepatic GSH depletion.

  12. Monocyte-Derived Suppressor Cells in Transplantation.

    PubMed

    Ochando, Jordi; Conde, Patricia; Bronte, Vincenzo

    Myeloid-derived suppressor cells (MDSC) are cells of myeloid origin with enhanced suppressive function. They are negative regulators of the immune responses and comprise a heterogeneous mixture of immunosuppressive cells of monocytic (M-MDSC) and granulocytic (G-MDSC) origin. A more recent nomenclature proposes the term "suppressive monocyte derived cells" (suppressive MCs) to define CSF1/CSF2-dependent mouse suppressor cells that develop from common monocyte progenitors (cMoPs) after birth. Here, we review the literature about monocytic-derived cells with demonstrated suppressor function in vitro and in vivo within the context of solid organ transplantation.

  13. Hepatitis B virus X protein activates human hepatic stellate cells through upregulating TGFβ1.

    PubMed

    Chen, H-Y; Chen, Z-X; Huang, R-F; Lin, N; Wang, X-Z

    2014-10-27

    We investigated the effects of the hepatitis B virus X gene (HBV X) on the activation of human hepatic stellate cells (HSCs) and the possible mechanisms underlying the pathway. Recombinant plasmid pHBV-X-IRES2-EGFP was constructed and transfected into HL-7702 cells using a lipid-mediated method. Transfected cells were screened by G418, which detected stable expression of the X gene by reverse transcription (RT)-PCR and Western blot analysis, and named L02/x. Cells not subjected to G418-selection were analyzed to confirm the transient expression of the X gene and named L02/48x. Subsequently, L02/x and L02/48x, together with non-HBx-expressing cells, were co-cultured with HSCs in a non-contact transwell system. After 36 h of co-culture, the proliferation and migration of HSCs was detected using different cell counting methods. Finally, the mRNA and protein levels of α-SMA, Col I, and TGFβ1 in HSCs were detected by real-time PCR and western blot analysis. RT-PCR and Western blot analysis showed that L02/x and L02/48x cells can express HBV X gene mRNA and protein. Additionally, HSCs co-cultured with L02/x or L02/48x cells showed significantly higher proliferation and migration levels than control groups. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of α-SMA, Col I, and TGFβ1 in HSCs co-cultured with HBx-expressing liver cells were higher than those in control groups. HBx protein activated HSCs in vitro, leading to increased proliferation and migration of HSCs and upregulation of α-SMA and Col I. The TGFβ1 gene may be involved in this pathway.

  14. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis

    PubMed Central

    Bataller, Ramón; Schwabe, Robert F.; Choi, Youkyung H.; Yang, Liu; Paik, Yong Han; Lindquist, Jeffrey; Qian, Ting; Schoonhoven, Robert; Hagedorn, Curt H.; Lemasters, John J.; Brenner, David A.

    2003-01-01

    Angiotensin II (Ang II) is a pro-oxidant and fibrogenic cytokine. We investigated the role of NADPH oxidase in Ang II–induced effects in hepatic stellate cells (HSCs), a fibrogenic cell type. Human HSCs express mRNAs of key components of nonphagocytic NADPH oxidase. Ang II phosphorylated p47phox, a regulatory subunit of NADPH oxidase, and induced reactive oxygen species formation via NADPH oxidase activity. Ang II phosphorylated AKT and MAPKs and increased AP-1 DNA binding in a redox-sensitive manner. Ang II stimulated DNA synthesis, cell migration, procollagen α1(I) mRNA expression, and secretion of TGF-β1 and inflammatory cytokines. These effects were attenuated by N-acetylcysteine and diphenylene iodonium, an NADPH oxidase inhibitor. Moreover, Ang II induced upregulation of genes potentially involved in hepatic wound-healing response in a redox-sensitive manner, as assessed by microarray analysis. HSCs isolated from p47phox–/– mice displayed a blunted response to Ang II compared with WT cells. We also assessed the role of NADPH oxidase in experimental liver fibrosis. After bile duct ligation, p47phox–/– mice showed attenuated liver injury and fibrosis compared with WT counterparts. Moreover, expression of smooth muscle α-actin and expression of TGF-β1 were reduced in p47phox–/– mice. Thus, NADPH oxidase mediates the actions of Ang II on HSCs and plays a critical role in liver fibrogenesis. PMID:14597764

  15. The role of curcumin in streptozotocin-induced hepatic damage and the trans-differentiation of hepatic stellate cells.

    PubMed

    Mustafa, Hesham N

    2016-04-01

    Diabetic patients frequently suffer from non-alcoholic steatohepatitis. The current study aimed to investigate the role of curcumin and the response of hepatic stellate cells in streptozotocin (STZ)-induced hepatic damage. Sixty male rats were divided into three groups. The normal control injected with a citrate buffer vehicle and the diabetic control group which was injected intraperitoneally (IP) with a single-dose of streptozotocin (50mg/kg body weight) and a diabetic group was treated with an oral dose of curcumin at 80 mg/kg body weight daily for 60 days. Curcumin effectively counteracts oxidative stress-mediated hepatic damage and improves biochemical parameters. Alpha-smooth muscle actin (α-SMA) was significantly reduced, and insulin antibodies showed strong positive immunoreactivity with curcumin administration. These results optimistically demonstrate the potential use of curcumin, which is attributed to its antiradical/antioxidant activities and its potential β-cell regenerative properties. Also, it has the capability to encourage the trans-differentiation of hepatic stellate cells into insulin-producing cells for a period of time. In addition, as it is an anti-fibrotic mediator that inhibits hepatic stellate cell activation and the transition to myofibroblast-like cells, this suggests the possibility of considering curcumin's novel therapeutic effects in reducing hepatic dysfunction in diabetic patients.

  16. Intradermal hepatitis B vaccine in thalassaemia and sickle cell disease.

    PubMed Central

    Mok, Q; Underhill, G; Wonke, B; Aldouri, M; Kelsey, M; Jefferies, D

    1989-01-01

    Thirty two patients with beta thalassaemia and sickle cell disease who were having regular blood transfusions were selected to test the efficacy and immunogenicity of low dose (2 micrograms or 0.1 ml) intradermal hepatitis B vaccine compared with the standard (20 micrograms or 1 ml) intramuscular dose. There was no significant difference in the rates of seroconversion, seroconversion had occurred in all patients by seven months. There were no significant differences in antibody titres between the intramuscular and intradermal groups at 1, 2, and 6 months. Although the titres were significantly higher in the intramuscular group at seven months and at 12-18 months, the antibody titre in the intradermal group did not fall below 10 IU/l. The results of this study suggest that low dose intradermal hepatitis B vaccination is an effective and economical way of stimulating an immune response in patients with beta thalassaemia and sickle cell disease. PMID:2526622

  17. [Hepatic cell transplantation: a new therapy in liver diseases].

    PubMed

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program.

  18. Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.

    PubMed

    Rothweiler, Sonja; Dill, Michael T; Terracciano, Luigi; Makowska, Zuzanna; Quagliata, Luca; Hlushchuk, Ruslan; Djonov, Valentin; Heim, Markus H; Semela, David

    2015-03-01

    Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.

  19. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  20. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis.

    PubMed

    Dorn, Christoph; Kraus, Birgit; Motyl, Magdalena; Weiss, Thomas S; Gehrig, Manfred; Schölmerich, Jürgen; Heilmann, Jörg; Hellerbrand, Claus

    2010-07-01

    Xanthohumol (XN) is a major prenylated chalcone found in hops, which is used to add bitterness and flavor to beer. In this study, we first investigated the effects of XN on hepatocytes and hepatic stellate cells (HSC), the central mediators of liver fibrogenesis. XN inhibited the activation of primary human HSC and induced apoptosis in activated HSC in vitro in a dose dependent manner (0-20 microM). In contrast, XN doses as high as 50 microM did not impair viability of primary human hepatocytes. However, in both cell types XN inhibited activation of the transcription factor NFkappaB and expression of NFkappaB dependent proinflammatory genes. In vivo, feeding of XN reduced hepatic inflammation and expression of profibrogenic genes in a murine model of non-alcoholic steatohepatitis. These data indicate that XN has the potential as functional nutrient for the prevention or treatment of non-alcoholic steatohepatitis or other chronic liver disease.

  1. Inhibitory Effect of Tanshinone IIA on Rat Hepatic Stellate Cells

    PubMed Central

    Liu, Ya-Wei; Huang, Yi-Tsau

    2014-01-01

    Background Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs) is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA) is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation. Materials and Methods The cell line of rat hepatic stellate cells (HSC-T6) was stimulated with lipopolysaccharide (LPS) (100 ng/ml). Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM), then induced by LPS (100 ng/ml). NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38). Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells. Results All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells. Conclusion Our results demonstrated that Tan IIA decreased LPS-induced HSC activation. PMID:25076488

  2. Efficient Inhibition of Hepatitis B Virus Infection by Acylated Peptides Derived from the Large Viral Surface Protein†

    PubMed Central

    Gripon, Philippe; Cannie, Isabelle; Urban, Stephan

    2005-01-01

    The lack of an appropriate in vitro infection system for the major human pathogen hepatitis B virus (HBV) has prevented a molecular understanding of the early infection events of HBV. We used the novel HBV-infectible cell line HepaRG and primary human hepatocytes to investigate the interference of infection by HBV envelope protein-derived peptides. We found that a peptide consisting of the authentically myristoylated N-terminal 47 amino acids of the pre-S1 domain of the large viral envelope protein (L protein) specifically prevented HBV infection, with a 50% inhibitory concentration (IC50) of 8 nM. The replacement of myristic acid with other hydrophobic moieties resulted in changes in the inhibitory activity, most notably by a decrease in the IC50 to picomolar concentrations for longer unbranched fatty acids. The obstruction of HepaRG cell susceptibility to HBV infection after short preincubation times with the peptides suggested that the peptides efficiently target and inactivate a receptor at the hepatocyte surface. Our data both shed light on the molecular mechanism of HBV entry into hepatocytes and provide a basis for the development of potent hepadnaviral entry inhibitors as a novel therapeutic concept for the treatment of hepatitis Β. PMID:15650187

  3. Identification of a New Benzimidazole Derivative as an Antiviral against Hepatitis C Virus

    PubMed Central

    Vausselin, Thibaut; Séron, Karin; Lavie, Muriel; Mesalam, Ahmed Atef; Lemasson, Matthieu; Belouzard, Sandrine; Fénéant, Lucie; Danneels, Adeline; Rouillé, Yves; Cocquerel, Laurence; Foquet, Lander; Rosenberg, Arielle R.; Wychowski, Czeslaw; Meuleman, Philip

    2016-01-01

    ABSTRACT Aminoquinolines and piperazines, linked or not, have been used successfully to treat malaria, and some molecules of this family also exhibit antiviral properties. Here we tested several derivatives of 4-aminoquinolines and piperazines for their activity against hepatitis C virus (HCV). We screened 11 molecules from three different families of compounds, and we identified anti-HCV activity in cell culture for six of them. Of these, we selected a compound (B5) that is currently ending clinical phase I evaluation for neurodegenerative diseases. In hepatoma cells, B5 inhibited HCV infection in a pangenotypic and dose-dependent manner, and its antiviral activity was confirmed in primary hepatocytes. B5 also inhibited infection by pseudoparticles expressing HCV envelope glycoproteins E1 and E2, and we demonstrated that it affects a postattachment stage of the entry step. Virus with resistance to B5 was selected by sequential passage in the presence of the drug, and reverse genetics experiments indicated that resistance was conferred mainly by a single mutation in the putative fusion peptide of E1 envelope glycoprotein (F291I). Furthermore, analyses of the effects of other closely related compounds on the B5-resistant mutant suggest that B5 shares a mode of action with other 4-aminoquinoline-based molecules. Finally, mice with humanized liver that were treated with B5 showed a delay in the kinetics of the viral infection. In conclusion, B5 is a novel interesting anti-HCV molecule that could be used to decipher the early steps of the HCV life cycle. IMPORTANCE In the last 4 years, HCV therapy has been profoundly improved with the approval of direct-acting antivirals in clinical practice. Nevertheless, the high costs of these drugs limit access to therapy in most countries. The present study reports the identification and characterization of a compound (B5) that inhibits HCV propagation in cell culture and is currently ending clinical phase I evaluation for

  4. Autopresentation of hepatitis B virus envelope antigens by T cells.

    PubMed Central

    Ferrari, C; Pilli, M; Penna, A; Bertoletti, A; Valli, A; Cavalli, A; Pasetti, G; Fiaccadori, F

    1992-01-01

    Processing and presentation by T cells appear to be limited to antigens that can directly interact with the T-cell surface, thereby overcoming the T-cell inefficiency in antigen capture and internalization. Our study provides evidence that the hepatitis B virus (HBV) envelope proteins can also be efficiently processed and presented by CD4+ and CD8+ T cells to other T cells in a human leukocyte antigen class II-restricted fashion. This phenomenon suggests a receptor-mediated interaction between T cells and the HBV envelope and defines a system that can, we hope, be exploited for the identification of the receptor binding site within the HBV envelope and for the characterization of the putative cellular HBV receptor. PMID:1548778

  5. Inhibition of Hepatitis C Virus NS5B Polymerase by S-Trityl-L-Cysteine Derivatives

    PubMed Central

    Nichols, Daniel B.; Fournet, Guy; Gurukumar, K. R.; Basu, Amartya; Lee, Jin-Ching; Sakamoto, Naoya; Kozielski, Frank; Musmuca, Ira; Joseph, Benoît; Ragno, Rino; Kaushik-Basu, Neerja

    2012-01-01

    Structure-based studies led to the identification of a constrained derivative of S-trityl-L-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC50 values between 22.3 to 39.7 μM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group. PMID:22280819

  6. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration.

    PubMed

    Hu, Chenxia; Li, Lanjuan

    2015-08-01

    Various liver diseases result in terminal hepatic failure, and liver transplantation, cell transplantation and artificial liver support systems are emerging as effective therapies for severe hepatic disease. However, all of these treatments are limited by organ or cell resources, so developing a sufficient number of functional hepatocytes for liver regeneration is a priority. Liver regeneration is a complex process regulated by growth factors (GFs), cytokines, transcription factors (TFs), hormones, oxidative stress products, metabolic networks, and microRNA. It is well-known that the function of isolated primary hepatocytes is hard to maintain; when cultured in vitro, these cells readily undergo dedifferentiation, causing them to lose hepatocyte function. For this reason, most studies focus on inducing stem cells, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), hepatic progenitor cells (HPCs), and mesenchymal stem cells (MSCs), to differentiate into hepatocyte-like cells (HLCs) in vitro. In this review, we mainly focus on the nature of the liver regeneration process and discuss how to maintain and enhance in vitro hepatic function of isolated primary hepatocytes or stem cell-derived HLCs for liver regeneration. In this way, hepatocytes or HLCs may be applied for clinical use for the treatment of terminal liver diseases and may prolong the survival time of patients in the near future.

  7. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells.

    PubMed

    Chen, H C; Chou, C K; Lee, S D; Wang, J C; Yeh, S F

    1995-05-01

    We have examined the antiviral activity of the crude extract prepared from the root of Saussurea lappa Clarks, a Chinese medicinal herb which is widely used for many illnesses including cancer. Two active components, costunolide and dehydrocostus lactone, were identified which show strong suppressive effect on the expression of the hepatitis B surface antigen (HBsAg) in human hepatoma Hep3B cells, but have little effect on the viability of the cells. Both costunolide and dehydrocostus lactone suppress the HBsAg production by Hep3B cells in a dose-dependent manner with IC50s of 1.0 and 2.0 microM, respectively. Northern blotting analysis shows that the suppression of HBsAg gene expression by both costunolide and dehydrocostus lactone were mainly at the mRNA level. Furthermore, the suppressive effect of costunolide and dehydrocostus lactone on HBsAg and hepatitis B e antigen (HBeAg), a marker for hepatitis B viral genome replication in human liver cells, was also observed in another human hepatoma cell line HepA2 which was derived from HepG2 cells by transfecting a tandemly repeat hepatitis B virus (HBV) DNA. Similarly, the mRNA of HBsAg in HepA2 cells was also suppressed by these two compounds. Our findings suggest that costunolide and dehydrocostus lactone may have potential to develop as specific anti-HBV drugs in the future.

  8. Altered T cell costimulation during chronic hepatitis B infection.

    PubMed

    Barboza, Luisa; Salmen, Siham; Peterson, Darrell L; Montes, Henry; Colmenares, Melisa; Hernández, Manuel; Berrueta-Carrillo, Leidith E; Berrueta, Lisbeth

    2009-01-01

    T-cell response to hepatitis B virus (HBV) is vigorous, polyclonal and multi-specific in patients with acute hepatitis who ultimately clear the virus, whereas it is narrow and inefficient in patients with chronic disease, where inappropriate early activation events could account for viral persistence. We investigated the induction of activation receptors and cytokine production in response to HBcAg and crosslinking of CD28 molecules, in CD4+ cells from a group of chronically infected patients (CIP) and naturally immune subjects (NIS). We demonstrated that CD4+ cells from CIP did not increase levels of CD40L and CD69 following stimulation with HBcAg alone or associated to CD28 crosslinking, in contrast to subjects that resolved the infection (p<0.01). Furthermore, CD4+ cells from CIP produced elevated levels of IL-10 in response to HBcAg. These results suggest that a predominant inhibitory environment may be responsible for altered T cell costimulation, representing a pathogenic mechanism for viral persistence.

  9. Oxidative Stress and Hepatic Stellate Cells: A PARADOXICAL RELATIONSHIP.

    PubMed

    Gandhi, Chandrashekhar R

    2012-01-01

    In physiology, reactive oxygen species (ROS) are produced by most cells for normal function and as a defense mechanism against foreign particles, microbes and viruses. Hepatic macrophages (Kupffer cells), sinusoidal endothelial cells, hepatocytes and hepatic stellate cells (HSCs) are all capable of generating ROS in physiology and pathology. ROS are also produced by infiltrating inflammatory cells during acute and chronic liver injury. Increased levels of ROS have been implicated in apoptotic/necrotic death of hepatocytes, and liver failure. In contrast to causing injury to hepatocytes, ROS and lipid peroxidation products induce transdifferentiation of the quiescent HSCs into an activated highly proliferative myofibroblast-like phenotype. ROS and lipid peroxidation products also stimulate the synthesis of extracellular matrix (ECM) by activated HSCs. Deposition of excessive amounts of ECM is the primary mechanism of fibrosis and cirrhosis of the liver, and interactions between ROS and HSCs appear to play a major role in this pathology. Although these findings suggest that HSCs are resistant to the injurious actions of ROS, there is compelling evidence demonstrating ROS-induced death of activated HSCs. Detailed mechanistic understanding of such paradoxical interactions between ROS and HSCs will be critical for developing therapies for chronic fibrotic liver disease.

  10. Human embryonic stem cell derivation and directed differentiation.

    PubMed

    Trounson, A

    2005-01-01

    Human embryonic stem cells (hESCs) are produced from normal, chromosomally aneuploid and mutant human embryos, which are available from in vitro fertilisation (IVF) for infertility or preimplantation diagnosis. These hESC lines are an important resource for functional genomics, drug screening and eventually cell and gene therapy. The methods for deriving hESCs are well established and repeatable, and are relatively successful, with a ratio of 1:10 to 1:2 hESC lines established to embryos used. hESCs can be formed from morula and blastocyst-stage embryos and from isolated inner cell mass cell (ICM) clusters. The hESCs can be formed and maintained on mouse or human somatic cells in serum-free conditions, and for several passages in cell-free cultures. The hESCs can be transfected with DNA constructs. Their gene expression profiles are being described and immunological characteristics determined. They may be grown indefinitely in culture while maintaining their original karyotype but this must be confirmed from time to time. hESCs spontaneously differentiate in the absence of the appropriate cell feeder layer, when overgrown in culture and when isolated from the ESC colony. All three major embryonic lineages are produced in differentiating attachment cultures and in unattached embryoid bodies. Cell progenitors of interest can be identified by markers, expression of reporter genes and characteristic morphology, and the culture thereafter enriched for further culture to more mature cell types. The most advanced directed differentiation pathways have been developed for neural cells and cardiac muscle cells, but many other cell types including haematopoietic progenitors, endothelial cells, lung alveoli, keratinocytes, pigmented retinal epithelium, neural crest cells and motor neurones, hepatic progenitors and cells that have some markers of gut tissue and pancreatic cells have been produced. The prospects for regenerative medicine are significant and there is much

  11. Hepatic Abscess After Yttrium-90 Radioembolization for Islet-Cell Tumor Hepatic Metastasis

    SciTech Connect

    Mascarenhas, Neil B.; Mulcahy, Mary F.; Lewandowski, Robert J.; Salem, Riad; Ryu, Robert K.

    2010-06-15

    Infectious complications after yttrium-90 (y-90) radioembolization of hepatic tumors are rare. Most reports describe hepatic abscesses as complications of other locoregional therapies, such as transcatheter arterial embolization or chemoembolization. These usually occur in patients with a history of biliary intervention and present several weeks after treatment. We report a case of hepatic abscess formed immediately after y-90 radioembolization of a hepatic metastasis in a patient who had no history of previous biliary instrumentation.

  12. The HLA-E(R)/HLA-E(R) genotype affects the natural course of hepatitis C virus (HCV) infection and is associated with HLA-E-restricted recognition of an HCV-derived peptide by interferon-gamma-secreting human CD8(+) T cells.

    PubMed

    Schulte, Daniela; Vogel, Martin; Langhans, Bettina; Krämer, Benjamin; Körner, Christian; Nischalke, Hans Dieter; Steinberg, Verena; Michalk, Monika; Berg, Thomas; Rockstroh, Jürgen K; Sauerbruch, Tilman; Spengler, Ulrich; Nattermann, Jacob

    2009-11-01

    Recently, we showed chronic hepatitis C to be associated with increased expression of HLA-E and identified peptide hepatitis C virus (HCV) core amino acids 35-44 as a ligand for HLA-E that stabilizes HLA-E expression, favoring inhibition of natural killer cell cytotoxicity. Here we describe HLA-E-restricted recognition of peptide HCV core amino acids 35-44 by CD8(+) T cells. Frequency of HLA-E-restricted responses was significantly higher in patients homozygous for the HLA-E(R) allele (60% vs 38%; P = .038). Moreover, we found that the HLA-E(R) allelic variant confers protection against chronic infection with HCV genotypes 2 and 3. Taken together, our data indicate an important immunomodulating function of HLA-E in hepatitis C.

  13. NK Cells Help Induce Anti-Hepatitis B Virus CD8+ T Cell Immunity in Mice.

    PubMed

    Zheng, Meijuan; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2016-05-15

    Although recent clinical studies demonstrate that NK cell function is impaired in hepatitis B virus (HBV)-persistent patients, whether or how NK cells play a role in anti-HBV adaptive immunity remains to be explored. Using a mouse model mimicking acute HBV infection by hydrodynamic injection of an HBV plasmid, we observed that although serum hepatitis B surface Ag and hepatitis B envelope Ag were eliminated within 3 to 4 wk, HBV might persist for >8 wk in CD8(-/-) mice and that adoptive transfer of anti-HBV CD8(+) T cells restored the ability to clear HBV in HBV-carrier Rag1(-/-) mice. These results indicate that CD8(+) T cells are critical in HBV elimination. Furthermore, NK cells increased IFN-γ production after HBV plasmid injection, and NK cell depletion led to significantly increased HBV persistence along with reduced frequency of hepatitis B core Ag-specific CD8(+) T cells. Adoptive transfer of IFN-γ-sufficient NK cells restored donor CD8(+) T cell function, indicating that NK cells positively regulated CD8(+) T cells via secreting IFN-γ. We also observed that NK cell depletion correlated with decreased effector memory CD8(+) T cell frequencies. Importantly, adoptive transfer experiments showed that NK cells were involved in anti-HBV CD8(+) T cell recall responses. Moreover, DX5(+)CD49a(-) conventional, but not DX5(-)CD49a(+) liver-resident, NK cells were involved in improving CD8(+) T cell responses against HBV. Overall, the current study reveals that NK cells, especially DX5(+)CD49a(-) conventional NK cells, promote the antiviral activity of CD8(+) T cell responses via secreting IFN-γ in a mouse model mimicking acute HBV infection.

  14. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis.

    PubMed

    Yafouz, Bashar; Kadri, Nahrizul Adib; Rothan, Hussin A; Yusof, Rohana; Ibrahim, Fatimah

    2016-02-01

    Dielectrophoresis (DEP), the induced movement of dielectric particles placed in a nonuniform electric field, has been used as a potential technique for manipulation and separation of many biological samples without destructive consequences to the cell. Cells of the same genotype in different physiological and pathological states have unique morphological and structural features, therefore, it is possible to differentiate between them using their DEP responses. This paper reports the experimental discrimination of normal and dengue-infected human hepatic fetal epithelial cells (WRL-68 cells) based on their DEP crossover frequency, at which no resultant movement occurs in the cells in response to the DEP force. A microarray dot electrode was used to conduct the DEP experiments. The DEP forces applied to the cells were quantified by analyzing the light intensity shift within the electrode's dot region based on the Cumulative Modal Intensity Shift image analysis technique. The differences in dielectric properties between infected and uninfected cells were exploited by plotting a unique DEP spectrum for each set of cells. We observed that the crossover frequency decreased from 220 kHz for the normal WRL-68 cells to 140 kHz after infection with the dengue virus in a medium conductivity of 100 μS/cm. We conclude that the change in the DEP crossover frequency between dengue-infected cells and their healthy counterparts should allow direct characterization of these cell types by exploiting their electrophysiological properties.

  15. Evaluation of hepatocyteprotective and anti-hepatitis B virus properties of Cichoric acid from Cichorium intybus leaves in cell culture.

    PubMed

    Zhang, Hong-Li; Dai, Ling-Hao; Wu, Yi-Hang; Yu, Xiao-Ping; Zhang, Yong-Yong; Guan, Rong-Fa; Liu, Tao; Zhao, Jun

    2014-01-01

    Hepatitis B is the most common serious liver infection in the world. To date, there is still no complete cure for chronic hepatitis B. Natural caffeic acid analogues possess prominent antiviral activity, especially anti-hepatitis B virus (HBV) and anti-human immunodeficiency virus effects. Cichoric acid is a caffeic acid derivative from Cichorium intybus. In the study, the anti-hepatitis B property of cichoric acid was evaluated by the D-galactosamine (D-GalN)-induced normal human HL-7702 hepatocyte injury model, the duck hepatitis B virus (DHBV)-infected duck fetal hepatocytes and the HBV-transfected cell line HepG2.2.15 cells, respectively. The results showed that cichoric acid attenuated significantly D-GalN-induced HL-7702 hepatocyte injury at 10-100 µg/mL and produced a maximum protection rate of 56.26%. Moreover, cichoric acid at 1-100 µg/mL inhibited markedly DHBV DNA replication in infected duck fetal hepatocytes. Also, cichoric acid at 10-100 µg/mL reduced significantly the hepatitis B surface and envelope antigen levels in HepG2.2.15 cells and produced the maximum inhibition rates of 79.94% and 76.41%, respectively. Meanwhile, test compound at 50-100 µg/mL inhibited markedly HBV DNA replication. In conclusion, this study verifies the anti-hepatitis B effect of cichoric acid from Cichorium intybus leaves. In addition, cichoric acid could be used to design the antiviral agents.

  16. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  17. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450.

    PubMed

    Wang, Z Y; Das, M; Bickers, D R; Mukhtar, H

    1988-01-01

    Green tea has been used for generations in China and Asia as an antipyretic and diuretic. Prior studies have shown that extracts of green tea inhibit the mutagenicity of polycyclic aromatic hydrocarbons and aflatoxin B1. In this study, we investigated the interaction of certain flavonoid components of green tea epicatechin derivatives including (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), and (-)-epigallocatechin-3-gallate (EGCG) with rat hepatic microsomal cytochrome P-450 (P-450). The addition of EC, EGC, ECG, and EGCG to hepatic microsomes prepared from phenobarbital (PB)-treated rats resulted in spectral changes characterized by absorbance maxima at 420 nm and minima at 380 nm, typical of modified Type II (reverse Type I) binding. Of the epicatechin derivatives, EGCG and ECG showed greater spectral change with oxidized P-450 and time- and concentration-dependent inhibition of the binding of carbon monoxide to dithionite-reduced cytochrome P-450. The addition of EC, EGC, ECG, and EGCG to microsomes prepared from control, PB- or 3-methylcholanthrene-treated rats resulted in a dose-dependent inhibition of cytochrome P-450-dependent aryl hydrocarbon hydroxylase, 7-ethoxycoumarin O-deethylase, and 7-ethoxyresorufin O-deethylase activities. EGCG was the most potent in this regard. Green tea polyphenols and epicatechin derivatives also significantly inhibited NADPH-cytochrome c reductase activity. An examination of the structure activity relationship of epicatechin derivatives suggests that the inhibitory effect on the microsomal enzyme system may be due to the galloyl groups or hydroxyl groups on the molecule. Our data indicate that these extracts of green tea may have potential as anticarcinogens.

  18. Mechanisms of Hepatic Fibrogenesis

    PubMed Central

    Friedman, Scott L.

    2010-01-01

    Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5–10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow– derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease. PMID:18471545

  19. Pan-genotypic Hepatitis C Virus Inhibition by Natural Products Derived from the Wild Egyptian Artichoke

    PubMed Central

    Elsebai, Mahmoud Fahmi; Koutsoudakis, George; Saludes, Verónica; Pérez-Vilaró, Gemma; Turpeinen, Ari; Mattila, Sampo; Pirttilä, Anna Maria; Fontaine-Vive, Fabien; Mehiri, Mohamed; Meyerhans, Andreas

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) infection is the leading cause of chronic liver diseases. Water extracts of the leaves of the wild Egyptian artichoke (WEA) [Cynara cardunculus L. var. sylvestris (Lam.) Fiori] have been used for centuries in the Sinai Peninsula to treat hepatitis symptoms. Here we isolated and characterized six compounds from the water extracts of WEA and evaluated their HCV inhibition capacities in vitro. Importantly, two of these compounds, grosheimol and cynaropicrin, inhibited HCV with half-maximal effective concentrations (EC50s) in the low micromolar range. They inhibited HCV entry into target cells and were active against both cell-free infection as well as cell-cell transmission. Furthermore, the antiviral activity of both compounds was pan-genotypic as HCV genotypes 1a, 1b, 2b, 3a, 4a, 5a, 6a, and 7a were inhibited. Thus, grosheimol and cynaropicrin are promising candidates for the development of new pan-genotypic entry inhibitors of HCV infection. IMPORTANCE Because there is no preventive HCV vaccine available today, the discovery of novel anti-HCV cell entry inhibitors could help develop preventive measures against infection. The present study describes two compounds isolated from the wild Egyptian artichoke (WEA) with respect to their structural elucidation, absolute configuration, and quantitative determination. Importantly, both compounds inhibited HCV infection in vitro. The first compound was an unknown molecule, and it was designated “grosheimol,” while the second compound is the known molecule cynaropicrin. Both compounds belong to the group of sesquiterpene lactones. The mode of action of these compounds occurred during the early steps of the HCV life cycle, including cell-free and cell-cell infection inhibition. These natural compounds present promising candidates for further development into anti-HCV therapeutics. PMID:26656684

  20. Activated Notch signaling is required for hepatitis B virus X protein to promote proliferation and survival of human hepatic cells.

    PubMed

    Wang, Fan; Zhou, Haiyan; Xia, Xiumei; Sun, Qian; Wang, Ying; Cheng, Bin

    2010-12-01

    Hepatitis B virus X protein (HBx) is a multifunctional oncoprotein which plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). However, the exact mechanisms remain controversial. Here we show that HBx strongly stimulated cell growth, promoted cell cycle progression and inhibited apoptosis of human non-tumor hepatic cell line L02 cells. It also accelerated tumor formation of L02 cells in BALB/c nude mice. Furthermore, Notch signaling components were upregulated in HBx-expressing L02 cells compared to normal L02 cells. However, blocking Notch signaling with a γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) attenuated cell growth, shortened the S phase of cell cycle and promoted apoptosis of HBx-expressing L02 cell in a dose- and time-dependent manner, but normal L02 cells were not significantly affected by Notch signaling blocking. Therefore, our findings demonstrate that HBx could promote the growth of human non-tumor hepatic cell line L02 cells both in vitro and in vivo, which may require the activation of Notch signaling pathway.

  1. Myeloid derived suppressor cells in transplantation.

    PubMed

    Lees, Jason R; Azimzadeh, Agnes M; Bromberg, Jonathan S

    2011-10-01

    Myeloid derived suppressor cells (MDSC) are a heterogeneous population of hematopoietic derived cell precursors that can suppress immune responses in a variety of inflammatory settings. Here we review recent studies detailing expansion of phenotypically and functionally disparate MDSC. Findings related to MDSC accumulation, activation, and mechanisms utilized in immune suppression are presented. Further, we discuss recent reports that suggest MDSC are expanded during transplantation and that modulation of MDSC can participate in preventing graft rejection.

  2. Enhanced antioxidant capacity of dental pulp-derived iPSC-differentiated hepatocytes and liver regeneration by injectable HGF-releasing hydrogel in fulminant hepatic failure.

    PubMed

    Chiang, Chih-Hung; Wu, Wai-Wah; Li, Hsin-Yang; Chien, Yueh; Sun, Cho-Chin; Peng, Chi-Hsien; Lin, Alex Tong-Long; Huang, Chi-Shuan; Lai, Ying-Hsiu; Chiou, Shih-Hwa; Hung, Shuen-Iu; Chang, Yuh-Lih; Lan, Yuan-Tzu; Liu, Dean-Mo; Chien, Chian-Shiu; Huo, Teh-Ia; Lee, Shou-Dong; Wang, Chien-Ying

    2015-01-01

    Acute hepatic failure (AHF) is a severe liver injury leading to sustained damage and complications. Induced pluripotent stem cells (iPSCs) may be an alternative option for the treatment of AHF. In this study, we reprogrammed human dental pulp-derived fibroblasts into iPSCs, which exhibited pluripotency and the capacity to differentiate into tridermal lineages, including hepatocyte-like cells (iPSC-Heps). These iPSC-Heps resembled human embryonic stem cell-derived hepatocyte-like cells in gene signature and hepatic markers/functions. To improve iPSC-Heps engraftment, we next developed an injectable carboxymethyl-hexanoyl chitosan hydrogel (CHC) with sustained hepatocyte growth factor (HGF) release (HGF-CHC) and investigated the hepatoprotective activity of HGF-CHC-delivered iPSC-Heps in vitro and in an immunocompromised AHF mouse model induced by thioacetamide (TAA). Intrahepatic delivery of HGF-CHC-iPSC-Heps reduced the TAA-induced hepatic necrotic area and rescued liver function and recipient viability. Compared with PBS-delivered iPSC-Heps, the HGF-CHC-delivered iPSC-Heps exhibited higher antioxidant and antiapoptotic activities that reduced hepatic necrotic area. Importantly, these HGF-CHC-mediated responses could be abolished by administering anti-HGF neutralizing antibodies. In conclusion, our findings demonstrated that HGF mediated the enhancement of iPSC-Hep antioxidant/antiapoptotic capacities and hepatoprotection and that HGF-CHC is as an excellent vehicle for iPSC-Hep engraftment in iPSC-based therapy against AHF.

  3. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    PubMed

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  4. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    PubMed

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  5. Hepatitis B Virus Replication in CD34+ Hematopoietic Stem Cells From Umbilical Cord Blood.

    PubMed

    Huang, Yanxin; Yan, Qin; Fan, Rongshan; Song, Shupeng; Ren, Hong; Li, Yongguo; Lan, Yinghua

    2016-05-18

    BACKGROUND Hepatitis B virus (HBV) is a hepatotropic virus that can infect extrahepatic tissue. Whether hematopoietic stem cells (HSCs) can be infected by HBV and serve as a potential virus reservoir is still unknown. In this study, the susceptibility of CD34+ HSCs to HBV was investigated. MATERIAL AND METHODS Cord blood-derived CD34+ HSCs were exposed to HBV in vitro, and immunocytochemistry, transmission electron microscopy, and RT-PCR were used to identify viral-related proteins and specific viral genomic sequences. Then, CD34+ HSCs were challenged by different titers of HBV, and intracellular and supernatant HBV DNA, and hepatitis B surface antigen (HBsAg) levels, were examined. In addition, CD34+ peripheral blood stem cells (PBSCs) from chronic HBV carriers were isolated and cultured, and HBV DNA levels were measured. RESULTS HBV-infected CD34+ cells showed positive signals for HBsAg by DAB staining and TRITC staining, and HBV particles were identified. RT-PCR results showed that the 403 bp PCR products corresponding to the amplified hepatitis B S gene fragment were observed in CD34+ HSCs infected by HBV. In addition, supernatant and intracellular HBV DNA increased with the proliferation of CD34+ HSCs. Similar results were obtained from intracellular HBsAg quantification tests. In addition, HBV DNA levels both in cells and in supernatants of CD34+ PBSCs increased proportionally, and the increments of HBV DNA in the supernatants paralleled those found in cells. CONCLUSIONS HBV can replicate in CD34+ HSCs in cord blood or peripheral blood of chronic HBV carriers.

  6. Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro

    PubMed Central

    Shimizu, I; Mizobuchi, Y; Yasuda, M; Shiba, M; Ma, Y; Horie, T; Liu, F; Ito, S

    1999-01-01

    Background—Hepatic stellate cells play a key role in the pathogenesis of hepatic fibrosis. 
Aims—To examine the inhibitory effect of oestradiol on stellate cell activation. 
Methods—In vivo, hepatic fibrosis was induced in rats by dimethylnitrosamine or pig serum. In vitro, rat stellate cells were activated by contact with plastic dishes resulting in their transformation into myofibroblast-like cells. 
Results—In the dimethylnitrosamine and pig serum models, treatment with oestradiol at gestation related doses resulted in a dose dependent suppression of hepatic fibrosis with restored content of hepatic retinyl palmitate, reduced collagen content, lower areas of stellate cells which express α smooth muscle actin (α-SMA) and desmin, and lower procollagen type I and III mRNA levels in the liver. In cultured stellate cells, oestradiol inhibited type I collagen production, α-SMA expression, and cell proliferation. These findings suggest that oestradiol is a potent inhibitor of stellate cell transformation. 
Conclusion—The antifibrogenic role of oestradiol in the liver may contribute to the sex associated differences in the progression from hepatic fibrosis to cirrhosis. 

 Keywords: hepatic stellate cells; hepatic fibrosis; oestradiol; α smooth muscle actin; retinyl palmitate PMID:9862839

  7. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity

    PubMed Central

    Heinrich, Garrett; Muturi, Harrison T.; Rezaei, Khadijeh; Al-Share, Qusai Y.; DeAngelis, Anthony M.; Bowman, Thomas A.; Ghadieh, Hilda E.; Ghanem, Simona S.; Zhang, Deqiang; Garofalo, Robert S.; Yin, Lei; Najjar, Sonia M.

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  8. Selective proliferation of chemically altered rat liver epithelial cells following hepatic transplantation.

    PubMed

    Faris, R A; Hixson, D C

    1989-07-01

    Although proliferation of oval cells is often observed during the early stages of chemical hepatocarcinogenesis, the role of these putative hepatic stem cells during the neoplastic process is unknown. In earlier studies our laboratory showed that feeding a choline-deficient (CD) diet containing 0.05% 2-acetylaminofluorene (CD-AAF) to rats produced three subpopulations of oval cells that antigenically resemble biliary duct cells, fetal liver cells, and transitional cells. In the present investigation we have employed a semiallogeneic transplantation protocol in order to study the fate of these nonparenchymal epithelial cells (NPEC) beyond the 4-week endpoint imposed by the lethality of CD-AAF diet. An enriched NPEC suspension containing gamma-glutamyl-transpeptidase (GGT)-positive oval cells (greater than 75%) was isolated from ACI rats maintained on CD-AAF diet for 3 weeks. The donor cells were transplanted via the portal vein into livers of male F1 progeny (LExACI) that had been fed a CD diet for 7 days prior to receiving a partial hepatectomy and the cell suspension. Host rats were then fed either a CD or choline-supplemented (CS) diet for 12 weeks and killed. Colonies of donor-derived cells identified in frozen sections by their lack of reactivity with ACI anti-LE alloantiserum in indirect immunofluorescence (IF) assays were only observed in rats continuously fed the CD diet. Histochemical analysis indicated that the donor-derived colonies expressed GGT, a preneoplastic marker for liver cancer. IF assays using MAbs previously shown to be capable of distinguishing between oval cells and mature hepatocytes indicated that the donor-derived colonies consisted of a mixture of cells with phenotypes resembling those of mature and immature hepatocytes rather than those of oval or ductal cells. Although the cellular origin of the GGT+ donor-derived colonies has not been unequivocally resolved, our results demonstrate that the livers of rats fed a CD-AAF diet contain a

  9. Hepatitis C virus RNA detection in serum and peripheral blood mononuclear cells of patients with hepatitis C

    PubMed Central

    Zhou, Ping; Cai, Qing; Chen, You-Chun; Zhang, Mu-Sen; Guan, Jian; Li, Xiao-Juan

    1997-01-01

    AIM: To investigate the existence and clinical significance of hepatitis C virus (HCV) RNA in the serum and peripheral blood mononuclear cells (PBMC) of patients with hepatitis C. METHODS: HCV RNA was detected by nested polymerase chain reaction (Nested PCR) in serum and in PBMC of 46 patients with acute hepatitis C (AHC) and in 42 patients with chronic hepatitis C (CHC). RESULTS: The positive rate of HCV RNA in PBMC of patients with CHC was markedly higher than that of patients with AHC (P < 0.01). The positive rates of HCV RNA in serum of patients with AHC and CHC and in PBMC of patients with CHC were significantly higher than those of anti-HCV positive patients with normal alanine aminotransferase (ALT) levels (P < 0.01). HCV RNA was negative in the serum of two patients, but could be detected in PBMC. In 12 patients, anti HCV was negative while HCV RNA was positive in serum. CONCLUSION: (1) detection of serum HCV RNA by nested PCR might be helpful in the early diagnosis of anti-HCV negative hepatitis C; (2) liver damage in patients with hepatitis C might be correlated with HCV-viremia; (3) infection of PBMC by HCV might play an important role in chronic liver damage in patients with HCV and in the chronicity of its clinical course; and (4) PBMC might be considered as a “reservoir” for HCV. PMID:27041960

  10. Interferon Response in Hepatitis C Virus (HCV) Infection: Lessons from Cell Culture Systems of HCV Infection.

    PubMed

    Sung, Pil Soo; Shin, Eui-Cheol; Yoon, Seung Kew

    2015-10-07

    Hepatitis C virus (HCV) is a positive-stranded RNA virus that infects approximately 130-170 million people worldwide. In 2005, the first HCV infection system in cell culture was established using clone JFH-1, which was isolated from a Japanese patient with fulminant HCV infection. JFH-1 replicates efficiently in hepatoma cells and infectious virion particles are released into the culture supernatant. The development of cell culture-derived HCV (HCVcc) systems has allowed us to understand how hosts respond to HCV infection and how HCV evades host responses. Although the mechanisms underlying the different outcomes of HCV infection are not fully understood, innate immune responses seem to have a critical impact on the outcome of HCV infection, as demonstrated by the prognostic value of IFN-λ gene polymorphisms among patients with chronic HCV infection. Herein, we review recent research on interferon response in HCV infection, particularly studies using HCVcc infection systems.

  11. Long Term Liver Engraftment of Functional Hepatocytes Obtained from Germline Cell-Derived Pluripotent Stem Cells

    PubMed Central

    Fagoonee, Sharmila; Famulari, Elvira Smeralda; Silengo, Lorenzo; Tolosano, Emanuela; Altruda, Fiorella

    2015-01-01

    One of the major hurdles in liver gene and cell therapy is availability of ex vivo-expanded hepatocytes. Pluripotent stem cells are an attractive alternative. Here, we show that hepatocyte precursors can be isolated from male germline cell-derived pluripotent stem cells (GPSCs) using the hepatoblast marker, Liv2, and induced to differentiate into hepatocytes in vitro. These cells expressed hepatic-specific genes and were functional as demonstrated by their ability to secrete albumin and produce urea. When transplanted in the liver parenchyma of partially hepatectomised mice, Liv2-sorted cells showed regional and heterogeneous engraftment in the injected lobe. Moreover, approximately 50% of Y chromosome-positive, GPSC-derived cells were found in the female livers, in the region of engraftment, even one month after cell injection. This is the first study showing that Liv2-sorted GPSCs-derived hepatocytes can undergo long lasting engraftment in the mouse liver. Thus, GPSCs might offer promise for regenerative medicine. PMID:26323094

  12. Roles for Cell-Cell Adhesion and Contact in Obesity-Induced Hepatic Myeloid Cell Accumulation and Glucose Intolerance.

    PubMed

    Miyachi, Yasutaka; Tsuchiya, Kyoichiro; Komiya, Chikara; Shiba, Kumiko; Shimazu, Noriko; Yamaguchi, Shinobu; Deushi, Michiyo; Osaka, Mizuko; Inoue, Kouji; Sato, Yuta; Matsumoto, Sayaka; Kikuta, Junichi; Wake, Kenjiro; Yoshida, Masayuki; Ishii, Masaru; Ogawa, Yoshihiro

    2017-03-14

    Obesity promotes infiltration of inflammatory cells into various tissues, leading to parenchymal and stromal cell interaction and development of cellular and organ dysfunction. Liver sinusoidal endothelial cells (LSECs) are the first cells that contact portal blood cells and substances in the liver, but their functions in the development of obesity-associated glucose metabolism remain unclear. Here, we find that LSECs are involved in obesity-associated accumulation of myeloid cells via VLA-4-dependent cell-cell adhesion. VLA-4 blockade in mice fed a high-fat diet attenuated myeloid cell accumulation in the liver to improve hepatic inflammation and systemic glucose intolerance. Ex vivo studies further show that cell-cell contact between intrahepatic leukocytes and parenchymal hepatocytes induces gluconeogenesis via a Notch-dependent pathway. These findings suggest that cell-cell interaction between parenchymal and stromal cells regulates hepatic glucose metabolism and offers potential strategies for treatment or prevention of obesity-associated glucose intolerance.

  13. Tracking Virus-Specific CD4+ T Cells during and after Acute Hepatitis C Virus Infection

    PubMed Central

    Pfafferot, Katja; Heeg, Malte H.J.; Gaudieri, Silvana; Grüner, Norbert; Rauch, Andri; Gerlach, J. Tilman; Jung, Maria-Christina; Zachoval, Reinhart; Pape, Gerd R.; Schraut, Winfried; Santantonio, Teresa; Nitschko, Hans; Obermeier, Martin; Phillips, Rodney; Scriba, Thomas J.; Semmo, Nasser; Day, Cheryl; Weber, Jonathan N.; Fidler, Sarah; Thimme, Robert; Haberstroh, Anita; Baumert, Thomas F.; Klenerman, Paul; Diepolder, Helmut M.

    2007-01-01

    Background CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays. Methodology/Principal Findings Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C. Conclusions/Significance During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists. PMID:17653276

  14. Myeloid Derived Suppressor Cells: Fuel the Fire.

    PubMed

    Achyut, B R; Arbab, Ali S

    2014-08-01

    Low oxygen tension, hypoxia, is a characteristic of many tumors and associated with the poor prognosis. Hypoxia invites bone marrow derived cells (BMDCs) from bone marrow to the site of tumor. These recruited CXCR4+ BMDCs provide favorable environment for the tumor growth by acquiring pro-angiogenic phenotype such as CD45+VEGFR2+ Endothelial Progenitor Cells (EPC), or CD45+Tie2+ myeloid cells. CD11b+CD13+ myeloid population of the BMDCs modulate tumor progression. These myeloid populations retain immunosuppressive characteristics, for example, myeloid derived suppressor cells (MDSCs), and regulates immune- suppression by inhibiting cytotoxic T cell function. In addition, MDSCs were observed at the premetastatic niche of the distant organs in other tumors. Protumorigenic and prometastatic role of the myeloid cells provides a basis for therapeutic targeting of immunosuppression and thus inhibiting tumor development and metastasis.

  15. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    PubMed

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  16. Human skin-derived stem cells as a novel cell source for in vitro hepatotoxicity screening of pharmaceuticals.

    PubMed

    Rodrigues, Robim M; De Kock, Joery; Branson, Steven; Vinken, Mathieu; Meganathan, Kesavan; Chaudhari, Umesh; Sachinidis, Agapios; Govaere, Olivier; Roskams, Tania; De Boe, Veerle; Vanhaecke, Tamara; Rogiers, Vera

    2014-01-01

    Human skin-derived precursors (hSKP) are postnatal stem cells with neural crest properties that reside in the dermis of human skin. These cells can be easily isolated from small (fore) skin segments and have the capacity to differentiate into multiple cell types. In this study, we show that upon exposure to hepatogenic growth factors and cytokines, hSKP acquire sufficient hepatic features that could make these cells suitable in vitro tools for hepatotoxicity screening of new chemical entities and already existing pharmaceutical compounds. Indeed, hepatic differentiated hSKP [hSKP-derived hepatic progenitor cells (hSKP-HPC)] express hepatic progenitor cell markers (EPCAM, NCAM2, PROM1) and adult hepatocyte markers (ALB), as well as key biotransformation enzymes (CYP1B1, FMO1, GSTA4, GSTM3) and influx and efflux drug transporters (ABCC4, ABCA1, SLC2A5). Using a toxicogenomics approach, we could demonstrate that hSKP-HPC respond to acetaminophen exposure in a comparable way to primary human hepatocytes in culture. The toxicological responses "liver damage", "liver proliferation", "liver necrosis" and "liver steatosis" were found to be significantly enriched in both in vitro models. Also genes associated with either cytotoxic responses or induction of apoptosis (BCL2L11, FOS, HMOX1, TIMP3, and AHR) were commonly upregulated and might represent future molecular biomarkers for hepatotoxicity. In conclusion, our data gives a first indication that hSKP-HPC might represent a suitable preclinical model for in vitro screening of hepatotoxicity. To the best of our knowledge, this is the first report in which human postnatal stem cells derived from skin are described as a potentially relevant cell source for in vitro hepatotoxicity testing of pharmaceutical compounds.

  17. Hepatic progenitor cells of biliary origin with liver repopulation capacity

    PubMed Central

    Boulter, Luke; Tsuchiya, Atsunori; Cole, Alicia M; Hay, Trevor; Guest, Rachel V; Wojtacha, Davina; Man, Tak Yung; Mackinnon, Alison; Ridgway, Rachel A; Kendall, Timothy; Williams, Michael J; Jamieson, Thomas; Raven, Alex; Hay, David C; Iredale, John P; Clarke, Alan R; Sansom, Owen J; Forbes, Stuart J

    2015-01-01

    Summary Hepatocytes and cholangiocytes self renew following liver injury. Following severe injury hepatocytes are increasingly senescent, whether Hepatic Progenitor Cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where Mdm2 is inducibly deleted in over 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease. PMID:26192438

  18. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from Fao hepatoma cells.

    PubMed

    Purushotham, Aparna; Tian, Min; Belury, Martha A

    2009-02-01

    Hepatic gluconeogenesis is the major source of fasting hyperglycemia. Here, we investigated the role of the citrus fruit flavonoid naringenin, in the attenuation of hepatic glucose production from hepatoma (Fao) cells. We show that naringenin, but not its glucoside naringin, suppresses hepatic glucose production. Furthermore, unlike insulin-mediated suppression of hepatic glucose production, incubation of hepatocytes with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor Ly294002 had no effect on the ability of naringenin to suppress hepatic glucose production. Further, naringenin did not increase phosphorylation of Akt at Ser473 or, Thr308, indicating this down-stream target of PI3-kinase is also not a player in naringenin-mediated suppression of hepatic glucose production. Importantly, like the dimethylbiguanide, metformin, naringenin significantly decreased cellular ATP levels without increasing cell cytotoxicity. Together, these results suggest that the aglycone, naringenin, has a role in the attenuation of hyperglycemia and may exert this effect in a manner similar to the drug, metformin.

  19. Oxidative stress modulation in hepatitis C virus infected cells

    PubMed Central

    Lozano-Sepulveda, Sonia A; Bryan-Marrugo, Owen L; Cordova-Fletes, Carlos; Gutierrez-Ruiz, Maria C; Rivas-Estilla, Ana M

    2015-01-01

    Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum, where the virus can induce cellular stress. Oxidative cell damage plays an important role in HCV physiopathology. Oxidative stress is triggered when the concentration of oxygen species in the extracellular or intracellular environment exceeds antioxidant defenses. Cells are protected and modulate oxidative stress through the interplay of intracellular antioxidant agents, mainly glutathione system (GSH) and thioredoxin; and antioxidant enzyme systems such as superoxide dismutase, catalase, GSH peroxidase, and heme oxygenase-1. Also, the use of natural and synthetic antioxidants (vitamin C and E, N-acetylcysteine, glycyrrhizin, polyenylphosphatidyl choline, mitoquinone, quercetin, S-adenosylmethionine and silymarin) has already shown promising results as co-adjuvants in HCV therapy. Despite all the available information, it is not known how different agents with antiviral activity can interfere with the modulation of the cell redox state induced by HCV and decrease viral replication. This review describes an evidence-based consensus on molecular mechanisms involved in HCV replication and their relationship with cell damage induced by oxidative stress generated by the virus itself and cell antiviral machinery. It also describes some molecules that modify the levels of oxidative stress in HCV-infected cells. PMID:26692473

  20. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets

    PubMed Central

    Zhang, Chong-Yang; Yuan, Wei-Gang; He, Pei; Lei, Jia-Hui; Wang, Chun-Xu

    2016-01-01

    Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells (HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis. PMID:28082803

  1. Differentiation of human foreskin fibroblast-derived induced pluripotent stem cells into hepatocyte-like cells.

    PubMed

    Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie

    2016-10-01

    The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation.

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    SciTech Connect

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  3. Protective Role of Interleukin-17 in Murine NKT Cell-Driven Acute Experimental Hepatitis

    PubMed Central

    Wondimu, Zenebech; Santodomingo-Garzon, Tania; Le, Tai; Swain, Mark G.

    2010-01-01

    NKT cells are highly enriched within the liver. On activation NKT cells rapidly release large quantities of different cytokines which subsequently activate, recruit, or modulate cells important for the development of hepatic inflammation. Recently, it has been demonstrated that NKT cells can also produce interleukin-17 (IL-17), a proinflammatory cytokine that is also known to have diverse immunoregulatory effects. The role played by IL-17 in hepatic inflammation is unclear. Here we show that during α-galactosylceramide (αGalCer)-induced hepatitis in mice, a model of hepatitis driven by specific activation of the innate immune system via NKT cells within the liver, NK1.1+ and CD4+ iNKT cells rapidly produce IL-17 and are the main IL-17-producing cells within the liver. Administration of IL-17 neutralizing monoclonal antibodies before αGalCer injection significantly exacerbated hepatitis, in association with a significant increase in hepatic neutrophil and proinflammatory monocyte (ie, producing IL-12, tumor necrosis factor-α) recruitment, and increased hepatic mRNA and protein expression for the relevant neutrophil and monocyte chemokines CXCL5/LIX and CCL2/MCP-1, respectively. In contrast, administration of exogenous recombinant murine IL-17 before α-GalCer injection ameliorated hepatitis and inhibited the recruitment of inflammatory monocytes into the liver. Our results demonstrate that hepatic iNKT cells specifically activated with α-GalCer rapidly produce IL-17, and IL-17 produced after α-GalCer administration inhibits the development of hepatitis. PMID:20847291

  4. Galactosylated collagen matrix enhanced in vitro maturation of human embryonic stem cell-derived hepatocyte-like cells.

    PubMed

    Ghodsizadeh, Arefeh; Hosseinkhani, Hossein; Piryaei, Abbas; Pournasr, Behshad; Najarasl, Mostafa; Hiraoka, Yosuke; Baharvand, Hossein

    2014-05-01

    Due to their important biomedical applications, functional human embryonic stem cell-derived hepatocyte-like cells (hESC-HLCs) are an attractive topic in the field of stem cell differentiation. Here, we have initially differentiated hESCs into functional hepatic endoderm (HE) and continued the differentiation by replating them onto galactosylated collagen (GC) and collagen matrices. The differentiation of hESC-HE cells into HLCs on GC substrate showed significant up-regulation of hepatic-specific genes such as ALB, HNF4α, CYP3A4, G6P, and ASGR1. There was more albumin secretion and urea synthesis, as well as more cytochrome p450 activity, in differentiated HLCs on GC compared to the collagen-coated substrate. These results suggested that GC substrate has the potential to be used for in vitro maturation of hESC-HLCs.

  5. Hepatic compartmentalization of exhausted and regulatory cells in HIV/HCV-coinfected patients.

    PubMed

    Barrett, L; Trehanpati, N; Poonia, S; Daigh, L; Sarin, S Kumar; Masur, H; Kottilil, S

    2015-03-01

    Accelerated intrahepatic hepatitis C virus (HCV) pathogenesis is likely the result of dysregulation within both the innate and adaptive immune compartments, but the exact contribution of peripheral blood and liver lymphocyte subsets remains unclear. Prolonged activation and expansion of immunoregulatory cells have been thought to play a role. We determined immune cell subset frequency in contemporaneous liver and peripheral blood samples from chronic HCV-infected and HIV/HCV-coinfected individuals. Peripheral blood mononuclear cells (PBMC) and biopsy-derived liver-infiltrating lymphocytes from 26 HIV/HCV-coinfected, 10 chronic HCV-infected and 10 HIV-infected individuals were assessed for various subsets of T and B lymphocytes, dendritic cell, natural killer (NK) cell and NK T-cell frequency by flow cytometry. CD8(+) T cells expressing the exhaustion marker PD-1 were increased in HCV-infected individuals compared with uninfected individuals (P = 0.02), and HIV coinfection enhanced this effect (P = 0.005). In the liver, regulatory CD4(+) CD25(+) Foxp3(+) T cells, as well as CD4(+) CD25(+) PD1(+) T cells, were more frequent in HIV/HCV-coinfected than in HCV-monoinfected samples (P < 0.001). HCV was associated with increased regulatory T cells, PD-1(+) T cells and decreased memory B cells, regardless of HIV infection (P ≤ 0.005 for all). Low CD8(+) expression was observed only in PD-1(+) CD8(+) T cells from HCV-infected individuals and healthy controls (P = 0.002) and was associated with enhanced expansion of exhausted CD8(+) T cells when exposed in vitro to PHA or CMV peptides. In conclusion, in HIV/HCV coinfection, ongoing HCV replication is associated with increased regulatory and exhausted T cells in the periphery and liver that may impact control of HCV. Simultaneous characterization of liver and peripheral blood highlights the disproportionate intrahepatic compartmentalization of immunoregulatory T cells, which may contribute to establishment of chronicity and

  6. Myeloid-derived suppressor cells in gliomas

    PubMed Central

    Kaminska, Bozena

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of early myeloid progenitors and precursors at different stages of differentiation into granulocytes, macrophages, and dendritic cells. Blockade of their differentiation into mature myeloid cells in cancer results in an expansion of this population. High-grade gliomas are the most common malignant tumours of the central nervous system (CNS), with a poor prognosis despite intensive radiation and chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed the extensive heterogeneity of immune cells infiltrating gliomas and their microenvironment. Immune cell infiltrates consist of: resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells, and T lymphocytes. Intratumoural density of glioma-associated MDSCs correlates positively with the histological grade of gliomas and patient’s survival. MDSCs have the ability to attract T regulatory lymphocytes to the tumour, but block the activation of tumour-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. Immunomodulatory mechanisms employed by malignant gliomas pose an appalling challenge to brain tumour immunotherapy. In this mini-review we describe phenotypic and functional characteristics of MDSCs in humans and rodents, and their occurrence and potential roles in glioma progression. While understanding the complexity of immune cell interactions in the glioma microenvironment is far from being accomplished, there is significant progress that may lead to the development of immunotherapy for gliomas. PMID:28373814

  7. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Ignatius Irudayam, Joseph; Contreras, Deisy; Spurka, Lindsay; Ren, Songyang; Kanagavel, Vidhya; Ramaiah, Arunachalam; Annamalai, Alagappan; French, Samuel W; Klein, Andrew S; Funari, Vincent; Arumugaswami, Vaithilingaraja

    2015-12-01

    Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.

  8. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    PubMed Central

    Tuncer, Hande H; Rana, Naveed; Milani, Cannon; Darko, Angela; Al-Homsi, Samer A

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years. The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities, infections, bleeding, sinusoidal obstruction syndrome, acute and chronic graft-versus-host disease (GVHD) as well as other long-term problems. The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented. Transplant clinicians, however, continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants, expanding transplant indications and age-limit. This review describes the most commonly seen transplant related complications, focusing on their pathogenesis, differential diagnosis and management. PMID:22563164

  9. Induction of apoptosis by tanshinone I via cytochrome c release in activated hepatic stellate cells.

    PubMed

    Kim, Ji Young; Kim, Kyoung Mi; Nan, Ji-Xing; Zhao, Yu Zhe; Park, Pil-Hoon; Lee, Sang Jun; Sohn, Dong Hwan

    2003-04-01

    Hepatic stellate cells play central roles in hepatic fibrosis. The therapeutic goal in hepatic fibrosis is to halt or reverse fibrosis. Apoptosis is suggested to eliminate activated hepatic stellate cells in fibrosis. Salvia miltiorrhiza is a traditional medicine used to improve blood circulation and treat chronic hepatitis and hepatic fibrosis. We investigated the effect of tanshinone I, an ingredient of Salvia miltiorrhiza, on the apoptotic death of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated stellate cells. Treatment of T-HSC/Cl-6 cells with tanshinone I resulted in the induction of typical DNA fragmentation and DNA ladder formation in a concentration- and time-dependent manner. The induction of apoptosis was confirmed by flow cytometric analysis. Treatment of T-HSC/Cl-6 cells with tanshinone I caused activation of caspase-3 and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase. Tanshinone I induced mitochondrial membrane dipolarization and the release of cytochrome c from mitochondria into the cytosol. In conclusion, our results demonstrate that tanshinone I induces apoptosis of T-HSC/Cl-6 cells and that tanshinone I-induced apoptosis involves caspase activation through cytochrome c release and loss of mitochondrial membrane potential.

  10. TIM-1 Promotes Hepatitis C Virus Cell Attachment and Infection.

    PubMed

    Wang, Jing; Qiao, Luhua; Hou, Zhouhua; Luo, Guangxiang

    2017-01-15

    Human TIM and TAM family proteins were recently found to serve as phosphatidylserine (PS) receptors which promote infections by many different viruses, including dengue virus, West Nile virus, Ebola virus, Marburg virus, and Zika virus. In the present study, we provide substantial evidence demonstrating that TIM-1 is important for efficient infection by hepatitis C virus (HCV). The knockdown of TIM-1 expression significantly reduced HCV infection but not HCV RNA replication. Likewise, TIM-1 knockout in Huh-7.5 cells remarkably lowered HCV cell attachment and subsequent HCV infection. More significantly, the impairment of HCV infection in the TIM-1 knockout cells could be restored completely by ectopic expression of TIM-1 but not TIM-3 or TIM-4. Additionally, HCV infection and cell attachment were inhibited by PS but not by phosphatidylcholine (PC), demonstrating that TIM-1-mediated enhancement of HCV infection is PS dependent. The exposure of PS on the HCV envelope was confirmed by immunoprecipitation of HCV particles with a PS-specific monoclonal antibody. Collectively, these findings demonstrate that TIM-1 promotes HCV infection by serving as an attachment receptor for binding to PS exposed on the HCV envelope.

  11. A New Oleanolic Acid Derivative against CCl4-Induced Hepatic Fibrosis in Rats

    PubMed Central

    Xiang, Hongjun; Han, Yaotian; Zhang, Yuzhong; Yan, Wenqiang; Xu, Bing; Chu, Fuhao; Xie, Tianxin; Jia, Menglu; Yan, Mengmeng; Zhao, Rui; Wang, Penglong; Lei, Haimin

    2017-01-01

    A novel hepatoprotective oleanolic acid derivative, 3-oxours-oleana-9(11), 12-dien-28-oic acid (Oxy-Di-OA), has been reported. In previous studies, we found that Oxy-Di-OA presented the anti-HBV (Hepatitis B Virus) activity (IC50 = 3.13 µg/mL). Remarkably, it is superior to lamivudine in the inhibition of the rebound of the viral replication rate. Furthermore, Oxy-Di-OA showed good performance of anti-HBV activity in vivo. Some studies showed that liver fibrosis may affiliate with HBV gene mutations. In addition, the anti-hepatic fibrosis activity of Oxy-Di-OA has not been studied. Therefore, we evaluated the protective effect of Oxy-Di-OA against carbon tetrachloride (CCl4)-induced liver injury in rats. Daily intraperitoneally administration of Oxy-Di-OA prevented the development of CCl4-induced liver fibrosis, which was evidenced by histological study and immunohistochemical analysis. The entire experimental protocol lasted nine weeks. Oxy-Di-OA significantly suppressed the increases of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (p < 0.05). Furthermore, Oxy-Di-OA could prevent expression of transforming growth factor β1 (TGF-β1). It is worth noting that the high-dose group Oxy-Di-OA is superior to bifendate in elevating hepatic function. Compared to the model group, Oxy-Di-OA in the high-dose group and low-dose group can significantly reduce the liver and spleen indices (p < 0.05). The acute toxicity test showed that LD50 and a 95% confidence interval (CIs) value of Oxy-Di-OA were 714.83 mg/kg and 639.73–798.73 mg/kg via intraperitoneal injection in mice, respectively. The LD50 value of Oxy-Di-OA exceeded 2000 mg/kg via gavage in mice. In addition, a simple and rapid high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed and validated to study the pharmacokinetic characteristics of the compound. After single-dose oral administration, time to reach peak concentration of Oxy-Di-OA (Cmax = 8.18

  12. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    DTIC Science & Technology

    1987-10-13

    reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Hepatitis A Vaccine, Molecular Cloning and Hybridization, 06 13 Strain Differences...cells. Molecular cloning of p16 HM175 virus cDNA. cDNA clones were derived from p16 HM175 virus RNA by cloning cDNA-RNA hybrid molecules into the Pstl... molecular cloning . Clones derived from cDNA synthesized with oligo-dT_12 18 as primer were nearly always restricted to the 3’ terminus of the genome, while

  13. Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope.

    PubMed

    Nuzzaci, M; Piazzolla, G; Vitti, A; Lapelosa, M; Tortorella, C; Stella, I; Natilla, A; Antonaci, S; Piazzolla, P

    2007-01-01

    Chimeric plant viruses are emerging as promising vectors for use in innovative vaccination strategies. In this context, cucumber mosaic virus (CMV) has proven to be a suitable carrier of the hepatitis C virus (HCV)-derived R9 mimotope. In the present work, a new chimeric CMV, expressing on its surface the HCV-derived R10 mimotope, was produced but lost the insert after the first passage on tobacco. A comparative analysis between R10- and R9-CMV properties indicated that R9-CMV stability was related to structural features typical of the foreign insert. Thus, in order to combine high virus viability with strong immuno-stimulating activity, we doubled R9 copies on each of the 180 coat protein (CP) subunits of CMV. One of the chimeras produced by this approach (2R9-CMV) was shown to systemically infect the host, stably maintaining both inserts. Notably, it was strongly recognized by sera of HCV-infected patients and, as compared with R9-CMV, displayed an enhanced ability to stimulate lymphocyte IFN-gamma production. The high immunogen levels achievable in plants or fruits infected with 2R9-CMV suggest that this chimeric form of CMV may be useful in the development of oral vaccines against HCV.

  14. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis.

    PubMed

    Wehr, Alexander; Baeck, Christer; Heymann, Felix; Niemietz, Patricia Maria; Hammerich, Linda; Martin, Christian; Zimmermann, Henning W; Pack, Oliver; Gassler, Nikolaus; Hittatiya, Kanishka; Ludwig, Andreas; Luedde, Tom; Trautwein, Christian; Tacke, Frank

    2013-05-15

    Chronic liver injury characteristically results in hepatic inflammation, which represents a prerequisite for organ fibrosis. Although NKT cells are abundantly present in liver and involved in hepatic inflammation, molecular mechanisms of their recruitment in liver fibrosis remained elusive. We hypothesized that chemokine receptor CXCR6 and its ligand CXCL16 control NKT cell migration and functionality in liver fibrosis. In patients with chronic liver diseases (n = 58), CXCR6 and CXCL16 expression was intrahepatically upregulated compared with controls. In murine liver, Cxcl16 was strongly expressed by endothelium and macrophages, whereas lymphocyte populations (NKT, NK, CD4 T, CD8 T cells) expressed CXCR6. Intravital two-photon microscopy imaging of Cxcr6(+/gfp) and Cxcr6(gfp/gfp) mice and chemotaxis studies in vitro revealed that CXCR6 specifically controls hepatic NKT cell accumulation during the early response upon experimental liver damage. Hepatic invariant NKT cells expressed distinct proinflammatory cytokines including IFN-γ and IL-4 upon injury. CXCR6-deficient mice were protected from liver fibrosis progression in two independent experimental models. Macrophage infiltration and protein levels of inflammatory cytokines IFN-γ, TNF-α, and IL-4 were also reduced in fibrotic livers of Cxcr6(-/-) mice, corroborating that hepatic NKT cells provide essential cytokine signals perpetuating hepatic inflammation and fibrogenesis. Adoptive transfer of NKT cells, but not CD4 T cells, isolated from wild type livers restored hepatic fibrosis in Cxcr6(-/-) mice upon experimental steatohepatitis. Our results demonstrate that hepatic NKT cells accumulate CXCR6-dependent early upon injury, thereby accentuating the inflammatory response in the liver and promoting hepatic fibrogenesis. Interfering with CXCR6/CXCL16 might therefore bear therapeutic potential in liver fibrosis.

  15. Antifibrotic effects of triptolide on hepatic stellate cells and dimethylnitrosamine-intoxicated rats.

    PubMed

    Chong, Lee-Won; Hsu, Yi-Chao; Chiu, Yung-Tsung; Yang, Kuo-Ching; Huang, Yi-Tsau

    2011-07-01

    Triptolide (C₃₈H₄₂O₆N₂, TP, a diterpene triepoxide derived from Tripterygium wilfordii Hook F.), is a potent immunosuppresive and antiinflammatory agent. The present study investigated whether TP exerted antihepatofibrotic effects in vitro and in vivo. A cell line of rat hepatic stellate cells (HSC-T6) was stimulated with tumor necrosis factor-α (TNF-α) or transforming growth factor (TGF)-β1. The inhibitory effects of TP on the nuclear factor-κB (NFκB) signaling cascade and fibrosis markers, including α-smooth muscle actin (α-SMA) and collagen, were assessed. An in vivo therapeutic study was conducted in dimethylnitrosamine (DMN)-treated rats. The rats were randomly assigned to one of three groups: control rats, DMN rats receiving vehicle only and DMN rats receiving TP (20 μg/kg). Treatment was given by gavage twice daily for 3 weeks starting 1 week after the start of DMN administration. TP (5-100 nM) concentration-dependently inhibited the NFκB transcriptional activity induced by TNF-α, lipopolysaccharide and phorbol 12-myristate 13-acetate in HSC-T6 cells. In addition, TP also suppressed TNF-α and TGF-β1-induced collagen deposition and α-SMA secretion in HSC-T6 cells. In vivo, TP treatment significantly reduced hepatic fibrosis scores, collagen contents, IL-6 and TNF-α levels, and the number of α-SMA and NFκB-positive cells in DMN rats. The results showed that TP exerted antifibrotic effects in both HSC-T6 cells and DMN rats.

  16. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells.

    PubMed

    Liu, Shuanghu; Chen, Ren; Hagedorn, Curt H

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid's structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.

  17. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration.

    PubMed

    Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M; Verma, Vikas K; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C; Shah, Vijay H

    2015-12-25

    Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.

  18. Exosome Adherence and Internalization by Hepatic Stellate Cells Triggers Sphingosine 1-Phosphate-dependent Migration*

    PubMed Central

    Wang, Ruisi; Ding, Qian; Yaqoob, Usman; de Assuncao, Thiago M.; Verma, Vikas K.; Hirsova, Petra; Cao, Sheng; Mukhopadhyay, Debabrata; Huebert, Robert C.; Shah, Vijay H.

    2015-01-01

    Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals. PMID:26534962

  19. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.

    PubMed

    Theise, N D; Badve, S; Saxena, R; Henegariu, O; Sell, S; Crawford, J M; Krause, D S

    2000-01-01

    Following a report of skeletal muscle regeneration from bone marrow cells, we investigated whether hepatocytes could also derive in vivo from bone marrow cells. A cohort of lethally irradiated B6D2F1 female mice received whole bone marrow transplants from age-matched male donors and were sacrificed at days 1, 3, 5, and 7 and months 2, 4, and 6 posttransplantation (n = 3 for each time point). Additionally, 2 archival female mice of the same strain who had previously been recipients of 200 male fluorescence-activated cell sorter (FACS)-sorted CD34(+)lin(-) cells were sacrificed 8 months posttransplantation under the same protocol. Fluorescence in situ hybridization (FISH) for the Y-chromosome was performed on liver tissue. Y-positive hepatocytes, up to 2.2% of total hepatocytes, were identified in 1 animal at 7 days posttransplantation and in all animals sacrificed 2 months or longer posttransplantation. Simultaneous FISH for the Y-chromosome and albumin messenger RNA (mRNA) confirmed male-derived cells were mature hepatocytes. These animals had received lethal doses of irradiation at the time of bone marrow transplantation, but this induced no overt, histologically demonstrable, acute hepatic injury, including inflammation, necrosis, oval cell proliferation, or scarring. We conclude that hepatocytes can derive from bone marrow cells after irradiation in the absence of severe acute injury. Also, the small subpopulation of CD34(+)lin(-) bone marrow cells is capable of such hepatic engraftment.

  20. Hepatitis C virus - associated B cell non-Hodgkin's lymphoma

    PubMed Central

    Mihăilă, Romeo-Gabriel

    2016-01-01

    The hepatitis C virus (HCV) infected patients are prone to develop bone marrow or various tissue infiltrates with monoclonal B cells, monoclonal B lymphocytosis or different types of B cell non-Hodgkin’s lymphoma (BCNHL), of which the most common are splenic marginal zone BCNHL, diffuse large BCNHL and follicular lymphoma. The association between chronic HCV infection and non Hodgkin’s lymphoma has been observed especially in areas with high prevalence of this viral infection. Outside the limitations of some studies that have been conducted, there are also geographic, environmental, and genetic factors that contribute to the epidemiological differences. Various microenvironmental signals, such as cytokines, viral antigenic external stimulation of lymphocyte receptors by HCV antigens, and intercellular interactions contribute to B cell proliferation. HCV lymphotropism and chronic antigenic stimulation are involved in B-lymphocyte expansion, as mixted cryoglobulinemia or monoclonal gammopathy of undetermined significance, which can progress to BCNHL. HCV replication in B lymphocytes has oncogenic effect mediated by intracellular HCV proteins. It is also involved in an important induction of reactive oxygen species that can lead to permanent B lymphocyte damage, as DNA mutations, after binding to surface B-cell receptors. Post-transplant lymphoproliferative disorder could appear and it has a multiclonal potentiality that may develop into different types of lymphomas. The hematopoietic stem cell transplant made for lymphoma in HCV-infected patients can increase the risk of earlier progression to liver fibrosis and cirrhosis. HCV infected patients with indolent BCNHL who receive antiviral therapy can be potentially cured. Viral clearance was related to lymphoma response, fact that highlights the probable involvement of HCV in lymphomagenesis. Direct acting antiviral drugs could be a solution for the patients who did not tolerate or respond to interferon, as they

  1. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    PubMed

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  2. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    PubMed Central

    Hopkinson, Branden M.; Kalisz, Mark; Vestentoft, Peter Siig; Juel Rasmussen, Lene; Bisgaard, Hanne Cathrine

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation, oxidative phosphorylation is essential at all stages of differentiation. PMID:28265337

  3. Isolation, synthesis and anti-hepatitis B virus evaluation of p-hydroxyacetophenone derivatives from Artemisia capillaris.

    PubMed

    Zhao, Yong; Geng, Chang-An; Chen, Hao; Ma, Yun-Bao; Huang, Xiao-Yan; Cao, Tuan-Wu; He, Kang; Wang, Hao; Zhang, Xue-Mei; Chen, Ji-Jun

    2015-04-01

    p-Hydroxyacetophenone (p-HAP), as a main hepatoprotective and choleretic constituent of Artemisia capillaris, was revealed with anti-hepatitis B virus (HBV) effects in recent investigation. In addition to p-HAP, four derivatives of p-HAP were also isolated from A. capillaris by various chromatographic methods. Subsequent structural modification on p-HAP and its glycoside led to the synthesis of 28 additional derivatives, of which 13 compounds showed activity inhibiting hepatitis B surface antigen (HBsAg) secretion; and 18 compounds possessed inhibition on HBV DNA replication. The primary structure-activity relationships (SARs) suggested that the conjugated derivatives of p-HAP glycoside and substituted cinnamic acids (2a-2i) obviously enhanced the activity against HBV DNA replication with IC50 values ranged from 5.8 to 74.4 μM.

  4. Generation of Endoderm derived Human iPS cells from Primary Hepatocytes

    PubMed Central

    Liu, Hua; Ye, Zhaohui; Kim, Yong-Hak; Sharkis, Saul; Jang, Yoon-Young

    2010-01-01

    Recent advances in induced pluripotent stem (iPS) cell research significantly changed our perspective on regenerative medicine. Patient specific iPS cells have been derived not only for disease modeling but also as sources for cell replacement therapy. However, there have been insufficient data to prove that iPS cells are functionally equivalent to hES cells or safer than hES cells. There are several important issues which need to be addressed and foremost are the safety and efficacy of human iPS cells from different origins. Human iPS cells have been derived mostly from cells originated from mesoderm, with a few cases from ectoderm. So far there has been no report of endoderm derived human iPS cells, preventing comprehensive comparative investigations on the quality of human iPS cells from different origins. Here we show for the first time reprogramming of human endoderm derived cells (i.e. primary hepatocytes) to pluripotency. Hepatocyte-derived iPS cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, and differentiation potential in embryoid body formation and teratoma assays. In addition, these cells were able to directly differentiate into definitive endoderm, hepatic progenitors, and mature hepatocytes. The technology to develop endoderm derived human iPS cell lines, together with other established cell lines, will provide a foundation to elucidate the mechanisms of cellular reprogramming and to study the safety and efficacy of differentially originated human iPS cells for cell therapy. For studying liver disease pathogenesis, this technology also provides a potentially more amenable system to generate liver disease specific iPS cells. PMID:20432258

  5. Hepatic differentiation of human embryonic stem cells as microscaled multilayered colonies leading to enhanced homogeneity and maturation.

    PubMed

    Yao, Rui; Wang, Jingyu; Li, Xiaokang; Jung Jung, Da; Qi, Hao; Kee, Keh Kooi; Du, Yanan

    2014-11-12

    Directed differentiation of human embryonic stem cells (hESCs) towards hepatocyte-like cells on planar tissue culture plates has been extensively investigated with great promise to provide alternative cell sources for drug metabolism/toxicity testing. Recently, hepatic differentiation of hESCs in 3D configuration with better mimicry of embryonic liver development represents incremental efforts to improve the differentiation efficiency and cellular maturation. However, most of the present 3D differentiation configurations involved interruptive operations during the multi-staged differentiation process, which might impose unwanted influence on cellular differentiation. Most of the current researches resulted in generation of hepatocytes with high expression of AFP, which is minimally expressed in primary hepatocytes. Here, off-the-shelf micro-stencil arrays are developed to generate adherent multilayered colonies composed of hESCs-derived cells. Uninterrupted cellular differentiation and proliferation is achieved to recapitulate the continuous and multi-stage liver development. Compared with conventional 2D format, the micro-scaled multilayered colonies with uniform and defined sizes constrained within the microwells are composed of more homogenous and mature hepatocyte-like cells with significantly lowered AFP expression and elevated hepatic functions. The multilayered colonies as novel 3D configuration for hepatic differentiation of hESCs represent a significant step toward efficient generation of functional hepatocytes for regenerative medicine and drug discovery.

  6. Natural killer cells contribute to hepatic injury and help in viral persistence during progression of hepatitis B e-antigen-negative chronic hepatitis B virus infection.

    PubMed

    Ghosh, S; Nandi, M; Pal, S; Mukhopadhyay, D; Chakraborty, B C; Khatun, M; Bhowmick, D; Mondal, R K; Das, S; Das, K; Ghosh, R; Banerjee, S; Santra, A; Chatterjee, M; Chowdhury, A; Datta, S

    2016-08-01

    Hepatitis B e-antigen negative (e(-)) chronic HBV infection (CHI) encompasses a heterogeneous clinical spectrum ranging from inactive carrier (IC) state to e(-) chronic hepatitis B (CHB), cirrhosis and hepatic decompensation. In the backdrop of dysfunctional virus-specific T cells, natural killer (NK) cells are emerging as innate effectors in CHI. We characterized CD3(-) CD56(+) NK cells in clinically well-defined, treatment-naive e(-) patients in IC, e(-)CHB or decompensated liver cirrhosis (LC) phase to appraise their role in disease progression. The NK cell frequencies increased progressively with disease severity (IC 8.2%, e(-)CHB 13.2% and LC 14.4%). Higher proportion of NK cells from LC/e(-)CHB expressed CD69, NKp46, NKp44, TRAIL and perforin, the last two being prominent features of CD56(bright) and CD56(dim) NK subsets, respectively. The frequencies of CD3(-) CD56(+) NK cells together with TRAIL(+) CD56(bright) and Perforin(+) CD56(dim) NK cells correlated positively with serum alanine transaminase levels in e(-)CHB/LC. K562 cell-stimulated NK cells from e(-)CHB/LC exhibited significantly greater degranulation but diminished interferon-γ production than IC. Further, Perforin(+) NK cell frequency inversely correlated with autologous CD4(+) T-cell count in e(-) patients and ligands of NK receptors were over-expressed in CD4(+) T cells from e(-)CHB/LC relative to IC. Co-culture of sorted CD56(dim) NK cells and CD4(+) T cells from e(-)CHB showed enhanced CD4(+) T-cell apoptosis, which was reduced by perforin inhibitor, concanamycin A, suggesting a possible perforin-dependent NK cell-mediated CD4(+) T-cell depletion. Moreover, greater incidence of perforin-expressing NK cells and decline in CD4(+) T cells were noticed intrahepatically in e(-)CHB than IC. Collectively, NK cells contribute to the progression of e(-)CHI by enhanced TRAIL- and perforin-dependent cytolytic activity and by restraining anti-viral immunity through reduced interferon-γ secretion and

  7. Hepatic and extrahepatic uptake of HDL-derived plasma cholesterol in exercised and sedentary rats

    SciTech Connect

    Padmanathan, S.; Green, M.H.; Kris-Etherton, P.M.

    1986-03-01

    The present investigation was designed to study high density lipoprotein (HDL)-derived plasma cholesterol (C) turnover in hepatic and extrahepatic tissues of sedentary (S) and exercised (E) rats. 4-week-old Long Evans rats were exercised for 1 hr, 6 days weekly, for a period of 38 weeks, on a motor-driven treadmill at 0.8 mph at a 12% grade. Animals were injected with HDL that was labelled in vitro with /sup 3/H-cholesteryl ester. Serial blood samples and tissues were collected. HDL-C concentration was lower in E vs S rats (23.0 +/- 1.2 and 26.6 +/- 1.9 mg/dl, p < 0.01). While total plasma C was not different, liver C was higher in S vs E rats (8.2 +/- 0.8 and 7.2 +/- 0.5 mg/g). Adrenal C was higher in E vs S rats (29.5 +/- 2.3 and 20.7 +/- 2.3 mg/g, p < 0.01). Multicompartmental analysis of plasma and tissue tracer response led to development of an 8-component model (5 physiological; 3 nonphysiological) that depicted HDL-derived plasma C turnover. Plasma fraction of tracer declined more rapidly in E vs S rats. E rats cleared nonphysiological tracer more rapidly than S rats, but delayed release of tracer into the plasma longer. Fractional rate of tracer uptake into adrenals, liver, testes, and carcass was greater in E rats. There was a greater fractional turnover rate of tracer in adrenals and liver in S vs E rats. Hence HDL-derived plasma C turnover is altered with vigorous exercise.

  8. Adoptive transfer of hepatic stellate cells ameliorates liver ischemia reperfusion injury through enriching regulatory T cells.

    PubMed

    Feng, Min; Wang, Quanrongzi; Wang, Hao; Wang, Meng; Guan, Wenxian; Lu, Ling

    2014-04-01

    Our previous study indicated that adoptive transferred regulatory T cells (Tregs) attenuated liver ischemia reperfusion injury (IRI). Recent studies demonstrated that hepatic stellate cells (HSCs) were producers of induced Tregs (iTregs) via retinoic acid. This study aimed to investigate the role of adoptive transferred HSCs in liver IRI. Mice were treated with gradient doses of HSCs before surgery at 24h or 72h. The levels of serum aminotransferases and hepatic cytokines were evaluated after reperfusion. Meanwhile, hepatic Tregs and their subsets were analyzed by flow cytometry. We found that adoptive transferred HSCs attenuated liver IRI. Administration of HSCs expanded the number of hepatic iTregs and natural Tregs (nTregs) after reperfusion. In addition, we found that the increased Tregs were almost Helios-Tregs before surgery. These Helios-Tregs were considered as iTregs and protected liver from IRI partially. Furthermore, adoptive transferred HSCs stabilized nTregs and prevented nTregs from reducing after reperfusion. These nTregs also attenuated liver IRI partially. Depletion of Tregs abolished the protective effect of HSCs. Thus, we conclude that adoptive transferred HSCs ameliorate liver IRI in Tregs-dependent manner.

  9. Hepatic NK cell-mediated hypersensitivity to ConA-induced liver injury in mouse liver expressing hepatitis C virus polyprotein.

    PubMed

    Fu, Qiuxia; Yan, Shaoduo; Wang, Licui; Duan, Xiangguo; Wang, Lei; Wang, Yue; Wu, Tao; Wang, Xiaohui; An, Jie; Zhang, Yulong; Zhou, Qianqian; Zhan, Linsheng

    2016-08-04

    The role of hepatic NK cells in the pathogenesis of HCV-associated hepatic failure is incompletely understood. In this study, we investigated the effect of HCV on ConA-induced immunological hepatic injury and the influence of HCV on hepatic NK cell activation in the liver after ConA administration. An immunocompetent HCV mouse model that encodes the entire viral polyprotein in a liver-specific manner based on hydrodynamic injection and φC31o integrase was used to study the role of hepatic NK cells. Interestingly, the frequency of hepatic NK cells was reduced in HCV mice, whereas the levels of other intrahepatic lymphocytes remained unaltered. Next, we investigated whether the reduction in NK cells within HCV mouse livers might elicit an effect on immune-mediated liver injury. HCV mice were subjected to acute liver injury models upon ConA administration. We observed that HCV mice developed more severe ConA-induced immune-mediated hepatitis, which was dependent on the accumulated intrahepatic NK cells. Our results indicated that after the administration of ConA, NK cells not only mediated liver injury through the production of immunoregulatory cytokines (IFN-γ, TNF-α and perforin) with direct antiviral activity, but they also killed target cells directly through the TRAIL/DR5 and NKG2D/NKG2D ligand signaling pathway in HCV mice. Our findings suggest a critical role for NK cells in oversensitive liver injury during chronic HCV infection.

  10. Human embryonic stem cells derived by somatic cell nuclear transfer.

    PubMed

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  11. Apoptotic Epitope-Specific CD8+ T Cells and Interferon Signaling Intersect in Chronic Hepatitis C Virus Infection.

    PubMed

    Martini, Helene; Citro, Alessandra; Martire, Carmela; D'Ettorre, Gabriella; Labbadia, Giancarlo; Accapezzato, Daniele; Piconese, Silvia; De Marzio, Paolo; Cavallari, Eugenio N; Calvo, Ludovica; Rizzo, Fabiana; Severa, Martina; Coccia, Eliana M; Grazi, Gian Luca; Di Filippo, Simona; Sidney, John; Vullo, Vincenzo; Sette, Alessandro; Barnaba, Vincenzo

    2016-02-15

    CD8(+) T cells specific to caspase-cleaved antigens derived from apoptotic T cells represent a principal player in chronic immune activation. Here, we found that both apoptotic epitope-specific and hepatitis C virus (HCV)-specific CD8(+) T cells were mostly confined within the effector memory (EM) or terminally differentiated EM CD45RA(+) cell subsets expressing a dysfunctional T-helper 1-like signature program in chronic HCV infection. However, apoptotic epitope-specific CD8(+) T cells produced tumor necrosis factor α and interleukin 2 at the intrahepatic level significantly more than HCV-specific CD8(+) T cells, despite both populations expressing high levels of programmed death 1 receptor. Contextually, only apoptotic epitope-specific CD8(+) T cells correlated with both interferon-stimulated gene levels in T cells and hepatic fibrosis score. Together, these data suggest that, compared with HCV-specific CD8(+) T cells, apoptotic epitope-specific CD8(+) T cells can better sustain chronic immune activation, owing to their capacity to produce tumor necrosis factor α, and exhibit greater resistance to inhibitory signals during chronic HCV infection.

  12. Suppressive effect of interleukin 10 on priming of naive hepatitis C virus-specific CD8+ T cells.

    PubMed

    Niesen, Emanuel; Schmidt, Julia; Flecken, Tobias; Thimme, Robert

    2015-03-01

    Growing evidence suggests a role for the immunomodulatory cytokine interleukin-10 (IL-10) in hepatitis C virus (HCV)-specific CD8(+) T-cell failure. To address the possible role of IL-10 during priming, we performed in vitro priming experiments with naive HCV-specific CD8(+) T cells and autologous monocyte-derived dendritic cells in the absence or presence of IL-10. Our results showed that IL-10, when present during priming, significantly reduced the frequency of HCV-specific CD8(+) T cells after coculture; It was directly targeting CD8(+) T cells and led to impaired effector cell differentiation. These results may provide a possible mechanistic basis for the association between early IL-10 elevation, T-cell failure, and viral persistence.

  13. Modelling the Impact of Cell-To-Cell Transmission in Hepatitis B Virus

    PubMed Central

    2016-01-01

    Cell-free virus is a well-recognized and efficient mechanism for the spread of hepatitis B virus (HBV) infection in the liver. Cell-to-cell transmission (CCT) can be a more efficient means of virus propagation. Despite experimental evidence implying CCT occurs in HBV, its relative impact is uncertain. We develop a 3-D agent-based model where each hepatocyte changes its viral state according to a dynamical process driven by cell-free virus infection, CCT and intracellular replication. We determine the relative importance of CCT in the development and resolution of acute HBV infection in the presence of cytolytic (CTL) and non-CTL mechanisms. T cell clearance number is defined as the minimum number of infected cells needed to be killed by each T cell at peak infection that results in infection clearance within 12 weeks with hepatocyte turnover (HT, number of equivalent livers) ≤3. We find that CCT has very little impact on the establishment of infection as the mean cccDNA copies/cell remains between 15 to 20 at the peak of the infection regardless of CCT strength. In contrast, CCT inhibit immune-mediated clearance of acute HBV infection as higher CCT strength requires higher T cell clearance number and increases the probability of T cell exhaustion. An effective non-CTL inhibition can counter these negative effects of higher strengths of CCT by supporting rapid, efficient viral clearance and with little liver destruction. This is evident as the T cell clearance number drops by approximately 50% when non-CTL inhibition is increased from 10% to 80%. Higher CCT strength also increases the probability of the incidence of fulminant hepatitis with this phenomenon being unlikely to arise for no CCT. In conclusion, we report the possibility of CCT impacting HBV clearance and its contribution to fulminant hepatitis. PMID:27560827

  14. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro.

    PubMed

    Zhang, Yajie; Zhou, Xiaoming; Xu, Lipeng; Wang, Lulu; Liu, Jinling; Ye, Jing; Qiu, Pengxin; Liu, Qinghua

    2016-11-18

    Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.

  15. Hepatitis B virus efficiently infects non-adherent hepatoma cells via human sodium taurocholate cotransporting polypeptide

    PubMed Central

    Okuyama-Dobashi, Kaori; Kasai, Hirotake; Tanaka, Tomohisa; Yamashita, Atsuya; Yasumoto, Jun; Chen, Wenjia; Okamoto, Toru; Maekawa, Shinya; Watashi, Koichi; Wakita, Takaji; Ryo, Akihide; Suzuki, Tetsuro; Matsuura, Yoshiharu; Enomoto, Nobuyuki; Moriishi, Kohji

    2015-01-01

    Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection. PMID:26592202

  16. Determining the Cellular Diversity of Hepatitis C Virus Quasispecies by Single-Cell Viral Sequencing

    PubMed Central

    McLauchlan, John

    2013-01-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants. PMID:24049174

  17. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection.

    PubMed

    Takahashi, Ken; Asabe, Shinichi; Wieland, Stefan; Garaigorta, Urtzi; Gastaminza, Pablo; Isogawa, Masanori; Chisari, Francis V

    2010-04-20

    Hepatitis C virus (HCV), a member of the Flaviviridae family, is a single-stranded positive-sense RNA virus that infects >170 million people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Despite its ability to block the innate host response in infected hepatocyte cell lines in vitro, HCV induces a strong type 1 interferon (IFN) response in the infected liver. The source of IFN in vivo and how it is induced are currently undefined. Here we report that HCV-infected cells trigger a robust IFN response in plasmacytoid dendritic cells (pDCs) by a mechanism that requires active viral replication, direct cell-cell contact, and Toll-like receptor 7 signaling, and we show that the activated pDC supernatant inhibits HCV infection in an IFN receptor-dependent manner. Importantly, the same events are triggered by HCV subgenomic replicon cells but not by free virus particles, suggesting the existence of a novel cell-cell RNA transfer process whereby HCV-infected cells can activate pDCs to produce IFN without infecting them. These results may explain how HCV induces IFN production in the liver, and they reveal a heretofore unsuspected aspect of the innate host response to viruses that can subvert the classical sensing machinery in the cells they infect, and do not infect or directly activate pDCs.

  18. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    SciTech Connect

    Sakai, Hiroshi; Tagawa, Yoh-ichi; Tamai, Miho; Motoyama, Hiroaki; Ogawa, Shinichiro; Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi

    2010-12-17

    Research highlights: {yields} Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. {yields} Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. {yields} PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  19. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  20. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Shtratnikova, V. Y.; Kutueva, L. I.; Vorotelyak, E. A.; Borisov, M. A.; Terskikh, V. V.; Gvazava, I. G.; Vasiliev, A. V.

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells. PMID:26798494

  1. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  2. Aloe emodin suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture.

    PubMed

    Woo, Sun Wook; Nan, Ji-Xing; Lee, Sung Hee; Park, Eun-Jeon; Zhao, Yu Zhe; Sohn, Dong Hwan

    2002-04-01

    We have studied the inhibitory effect of aloe emodin on hepatic stellate cells activation and proliferation, as these cells play a key role in the pathogenesis of hepatic fibrosis. Rat hepatic stellate cells were activated by contact with plastic dishes, resulting in their transformation into myofibroblast-like cells. Primary hepatic stellate cells were exposed to aloe emodin (1-10 microg/ml). Possible cytotoxic effects were measured on stellate cells and hepatocytes using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of aloe emodin on production of type I collagen and smooth muscle cell alpha-actin were examined at the same concentration, by quantitative immunoprecipitation. Antiproliferative effects were examined by bromodeoxyuridine incorporation. Aloe emodin at 10 microg/ml restored the morphological changes characteristic of activated primary stellate cells, reduced DNA synthesis to 95% of control hepatic stellate cells at 10 microg/ml without affecting cell viability, and inhibited type I collagen production and smooth muscle alpha-actin expression by 86.77% and 99%, respectively, which suggest that aloe emodin is a potent inhibitor of stellate cell transformation.

  3. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    PubMed

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  4. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  5. Fibrogenic response of hepatic stellate cells in ovariectomised rats exposed to ketogenic diet.

    PubMed

    Bobowiec, R; Wojcik, M; Jaworska-Adamu, J; Tusinska, E

    2013-02-01

    The discrepancy about the role of estrogens in hepatic fibrogenesis and lack of studies addressed of ketogenic diet (KD) on hepatic stellate cells (HSC), prompted us to investigate the activity of HSC in control, KD- and thioacetamide (TAA)-administrated rats with different plasma concentration of estradiol (E2). HSC were isolated by the collagenase perfusion methods and separated by the Percoll gradient centrifugation. After the 4(th) and 8(th) day of incubation, lysates of HSC and the media were collected for further analysis. The HSC derived from KD-rats released remarkably more transforming growth factor (TGF)-β1 than cells obtained from animals fed with a standard diet. The ovariectomy of KD-rats markedly intensified the secretion of this fibrogenic cytokine on the 8(th) day of incubation (201.33 ±1 7.15 pg/ml). In HSC of rats exposed to E2, the TGF-β1 concentration did not exceed 157 ± 34.39 pg/ml. In respect to the collagen type I, the HSC obtained from ovariectomised KD-rats released an augmented amount of this ECM protein after the 8(th) day of culture (1.83 ± 0.14 U/ml). In the same time, higher quantities of ASMA appeared in the KD rats (1.41 ± 0.3 pg/mg protein). Exposition of rats to E2 did not markedly decrease the amount of ASMA. In summary, KD was able to induce morphological and functional changes in HSC, especially derived from rats deprived of ovarian estrogens. However, the preservation of E2 in ovariectomised rats didn't substantially alter the activation of HSC.

  6. Lack of optimal T-cell reactivity against the hepatitis C virus is associated with the development of fibrosis/cirrhosis during chronic hepatitis.

    PubMed

    Sreenarasimhaiah, Jayaprakash; Jaramillo, Andrés; Crippin, Jeffrey; Lisker-Melman, Mauricio; Chapman, William C; Mohanakumar, T

    2003-02-01

    Chronic hepatitis C virus (HCV) infection develops in 85% of exposed individuals and 20% develop cirrhosis. However, the pathogenesis of this process is not well-understood. The objective of this study was to determine whether HCV-reactive T cells play a role in the process of development of cirrhosis during chronic HCV infection. We analyzed 21 human leukocyte antigen (HLA)-A2 patients with chronic HCV infection (9 with histology of inflammation and 12 with histology of fibrosis/cirrhosis). The frequency of CD8(+) T cells reactive to 12 HCV-derived epitopes was determined by an interferon-gamma enzyme-linked immunospot (ELISPOT) assay. The frequency of CD4(+) Th1 and Th2 cells reactive to the HCV core antigen was determined by interferon-gamma and interleukin-5 ELISPOT assays, respectively. Patients with histology of inflammation showed a significantly higher CD8(+) T-cell response to five HCV-derived epitopes (YLLPRRGPRL [core], CINGVCWTV [NS3], LLCPAGHAV [NS3], ILAGYGAGV [NS4B], and GLQDCTMLV [NS5B]) as compared with patients with histology of fibrosis/cirrhosis. Also, patients with histology of inflammation showed a significantly higher CD4(+) Th1 response to the HCV core antigen as compared to patients with histology of fibrosis/cirrhosis. These results indicate that a lack of an optimal T-cell response to HCV is associated with the development of cirrhosis during chronic HCV infection.

  7. The Transcriptomic Response of Rat Hepatic Stellate Cells to Endotoxin: Implications for Hepatic Inflammation and Immune Regulation

    PubMed Central

    Tandon, Ashish; Gandhi, Chandrashekhar R.

    2013-01-01

    With their location in the perisinusoidal space of Disse, hepatic stellate cells (HSCs) communicate with all of the liver cell types both by physical association (cell body as well as cytosolic processes penetrating into sinusoids through the endothelial fenestrations) and by producing several cytokines and chemokines. Bacterial lipopolysaccharide (LPS), circulating levels of which are elevated in liver diseases and transplantation, stimulates HSCs to produce increased amounts of cytokines and chemokines. Although recent research provides strong evidence for the role of HSCs in hepatic inflammation and immune regulation, the number of HSC-elaborated inflammatory and immune regulatory molecules may be much greater then known at the present time. Here we report time-dependent changes in the gene expression profile of inflammatory and immune-regulatory molecules in LPS-stimulated rat HSCs, and their validation by biochemical analyses. LPS strongly up-regulated LPS-response elements (TLR2 and TLR7) but did not affect TLR4 and down-regulated TLR9. LPS also up-regulated genes in the MAPK, NFκB, STAT, SOCS, IRAK and interferon signaling pathways, numerous CC and CXC chemokines and IL17F. Interestingly, LPS modulated genes related to TGFβ and HSC activation in a manner that would limit their activation and fibrogenic activity. The data indicate that LPS-stimulated HSCs become a major cell type in regulating hepatic inflammatory and immunological responses by altering expression of numerous relevant genes, and thus play a prominent role in hepatic pathophysiology including liver diseases and transplantation. PMID:24349206

  8. 15th International Symposium on Cells of the Hepatic Sinusoid, 2010.

    PubMed

    DeLeve, Laurie D; Jaeschke, Hartmut; Kalra, Vijay K; Asahina, Kinji; Brenner, David A; Tsukamoto, Hidekazu

    2011-07-01

    This is a meeting report of the presentations given at the 15th International Symposium on Cells of the Hepatic Sinusoid, held in 2010. The areas covered include the contributions of the various liver cell populations to liver disease, molecular and cellular targets involved in steatohepatitis, hepatic fibrosis and cancer and regenerative medicine. In addition to a review of the science presented at the meeting, this report provides references to recent literature on the topics covered at the meeting.

  9. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  10. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair.

    PubMed Central

    Saile, B.; Knittel, T.; Matthes, N.; Schott, P.; Ramadori, G.

    1997-01-01

    During liver tissue repair, hepatic stellate cells (HSC), a pericyte-like mesenchymal liver cell population, transform from a "quiescent" status ("resting" HSC) into myofibroblast-like cells ("activated" HSC) with the latter representing the principle matrix synthesizing cell of the liver. Presently, the mechanisms that terminate HSC cell proliferation when tissue repair is concluded are poorly understood. Controlled cell death known as apoptosis could be a mechanism underlying this phenomenon. Therefore, apoptosis and its regulation were studied in HSC using an in vitro and in vivo approach. Spontaneous apoptosis became detectable in parallel with HSC activation because resting cells (2 days after isolation) displayed no sign of apoptosis, whereas apoptosis was present in 8% (+/- 5%) of "transitional" cells (day 4) and in 18% (+/- 8%) of fully activated cells (day 7). Both CD95 (APO-1/Fas) and CD95L (APO-1-/Fas-ligand) became increasingly expressed during the course of activation. Apoptosis could be fully blocked by CD95-blocking antibodies in normal cells and HSC already entering the apoptotic cycle. Using CD95-activating antibodies, transition of more than 95% cells into apoptosis was evident at each activation step. The apoptosis-regulating proteins Bcl-2 and p53 could not be detected in resting cells but were found in increasing amounts at days 4 and 7 of cultivation. Whereas p53 expression was induced by the CD95-activating antibody, no change was inducible in Bcl-2 expression. The Bcl-2-related protein bax could be found at days 2 and 4 in similar expression, was considerably up-regulated at day 7, but was not regulated by CD95-agonistic antibodies. In vivo, acute tissue damage was first accompanied by activation and proliferation of HSC displaying no sign of apoptosis. In the recovery phase, apoptotic HSC were detectable in parallel to a reduction in the total number of HSC present in the liver tissue. The data demonstrate that apoptosis becomes detectable

  11. Hepatitis E virus egress depends on the exosomal pathway, with secretory exosomes derived from multivesicular bodies.

    PubMed

    Nagashima, Shigeo; Jirintai, Suljid; Takahashi, Masaharu; Kobayashi, Tominari; Tanggis; Nishizawa, Tsutomu; Kouki, Tom; Yashiro, Takashi; Okamoto, Hiroaki

    2014-10-01

    Our previous studies indicated that hepatitis E virus (HEV) forms membrane-associated particles in the cytoplasm, most likely by budding into intracellular vesicles, and requires the multivesicular body (MVB) pathway to release virus particles, and the released HEV particles with a lipid membrane retain the trans-Golgi network protein 2 on their surface. To examine whether HEV utilizes the exosomal pathway to release the virus particles, we analysed whether the virion release from PLC/PRF/5 cells infected with genotype 3 HEV (strain JE03-1760F) is affected by treatment with bafilomycin A1 or GW4869, or by the introduction of a small interfering RNA (siRNA) against Rab27A or Hrs. The extracellular HEV RNA titre was increased by treatment with bafilomycin A1, but was decreased by treatment with GW4869. The relative levels of virus particles released from cells depleted of Rab27A or Hrs were decreased to 16.1 and 11.5 %, respectively, of that released from cells transfected with negative control siRNA. Electron microscopic observations revealed the presence of membrane-associated virus-like particles with a diameter of approximately 50 nm within the MVB, which possessed internal vesicles in infected cells. Immunoelectron microscopy showed positive immunogold staining for the HEV ORF2 protein on the intraluminal vesicles within the MVB. Additionally, immunofluorescence analysis indicated the triple co-localization of the ORF2, ORF3 and CD63 proteins in the cytoplasm, as specific loculated signals, supporting the presence of membrane-associated HEV particles within the MVB. These findings indicate that membrane-associated HEV particles are released together with internal vesicles through MVBs by the cellular exosomal pathway.

  12. Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture.

    PubMed

    Harak, Christian; Meyrath, Max; Romero-Brey, Inés; Schenk, Christian; Gondeau, Claire; Schult, Philipp; Esser-Nobis, Katharina; Saeed, Mohsan; Neddermann, Petra; Schnitzler, Paul; Gotthardt, Daniel; Perez-Del-Pulgar, Sofia; Neumann-Haefelin, Christoph; Thimme, Robert; Meuleman, Philip; Vondran, Florian W R; Francesco, Raffaele De; Rice, Charles M; Bartenschlager, Ralf; Lohmann, Volker

    2016-12-19

    With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs). In contrast, in Huh7 hepatoma cells, the virus must acquire loss-of-function mutations that prevent PI4KA overactivation. This adaptive mechanism is necessitated by increased PI4KA levels in Huh7 cells compared with PHHs, and is conserved across HCV genotypes. PI4KA-specific inhibitors promote replication of unadapted viral isolates and allow efficient replication of patient-derived virus in cell culture. In summary, this study has uncovered a long-sought mechanism of HCV cell-culture adaptation and demonstrates how a virus can adapt to changes in a cellular environment associated with tumorigenesis.

  13. Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes.

    PubMed

    Kasuya, Junichi; Sudo, Ryo; Masuda, Genta; Mitaka, Toshihiro; Ikeda, Mariko; Tanishita, Kazuo

    2015-03-01

    In liver sinusoids, hepatic stellate cells (HSCs) locate the outer surface of microvessels to form a functional unit with endothelia and hepatocytes. To reconstruct functional liver tissue in vitro, formation of the HSC-incorporated sinusoidal structure is essential. We previously demonstrated capillary formation of endothelial cells (ECs) in tri-culture, where a polyethylene terephthalate (PET) microporous membrane was intercalated between the ECs and hepatic organoids composed of small hepatocytes (SHs), i.e. hepatic progenitor cells, and HSCs. However, the high thickness and low porosity of the membranes limited heterotypic cell-cell interactions, which are essential to form HSC-EC hybrid structures. Here, we focused on the effective use of the thin and highly porous poly( d, l-lactide-co-glycolide) (PLGA) microporous membranes in SH-HSC-EC tri-culture to reconstruct the HSC-incorporated liver capillary structures in vitro. First, the formation of EC capillary-like structures was induced on Matrigel-coated PLGA microporous membranes. Next, the membranes were stacked on hepatic organoids composed of small SHs and HSCs. When the pore size and porosity of the membranes were optimized, HSCs selectively migrated to the EC capillary-like structures. This process was mediated in part by platelet-derived growth factor (PDGF) signalling. In addition, the HSCs were located along the outer surface of the EC capillary-like structures with their long cytoplasmic processes. In the HSC-incorporated capillary tissues, SHs acquired high levels of differentiated functions, compared to those without ECs. This model will provide a basis for the construction of functional, thick, vascularized liver tissues in vitro.

  14. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid

    PubMed Central

    Dunham, Richard M.; Thapa, Manoj; Velazquez, Victoria M.; Elrod, Elizabeth J.; Denning, Timothy L.; Pulendran, Bali

    2013-01-01

    The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)–polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3+ Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4+ T cells. We found that HSCs alone do not present Ag to naive CD4+ T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3+ Tregs and, therefore, may play a role in the tolerogenic nature of the liver. PMID:23359509

  15. Hepatic Stellate Cells and microRNAs in Pathogenesis of Liver Fibrosis

    PubMed Central

    Kitano, Mio; Bloomston, P. Mark

    2016-01-01

    microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either blocking translation or inducing degradation of target mRNA. miRNAs play essential roles in diverse biological and pathological processes, including development of hepatic fibrosis. Hepatic stellate cells (HSCs) play a central role in development of hepatic fibrosis and there are intricate regulatory effects of miRNAs on their activation, proliferation, collagen production, migration, and apoptosis. There are multiple differentially expressed miRNAs in activated HSCs, and in this review we aim to summarize current data on miRNAs that participate in the development of hepatic fibrosis. Based on this review, miRNAs may serve as biomarkers for diagnosis of liver disease, as well as markers of disease progression. Most importantly, dysregulated miRNAs may potentially be targeted by novel therapies to treat and reverse progression of hepatic fibrosis. PMID:26999230

  16. An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells

    PubMed Central

    Qian, Hui; Deng, Xing; Huang, Zhao-Wei; Wei, Ji; Ding, Chen-Hong; Feng, Ren-Xin; Zeng, Xin; Chen, Yue-Xiang; Ding, Jin; Qiu, Lei; Hu, Zhen-Lin; Zhang, Xin; Wang, Hong-Yang; Zhang, Jun-Ping; Xie, Wei-Fen

    2015-01-01

    Hepatocytes are critical for the maintenance of liver homeostasis, but its involvement in hepatic fibrogenesis remains elusive. Hepatocyte nuclear factor 1α (HNF1α) is a liver-enriched transcription factor that plays a key role in hepatocyte function. Our previous study revealed a significant inhibitory effect of HNF1α on hepatocellular carcinoma. In this study, we report that the expression of HNF1α is significantly repressed in both human and rat fibrotic liver. Knockdown of HNF1α in the liver significantly aggravates hepatic fibrogenesis in either dimethylnitrosamine (DMN) or bile duct ligation (BDL) model in rats. In contrast, forced expression of HNF1α markedly alleviates hepatic fibrosis. HNF1α regulates the transcriptional expression of SH2 domain-containing phosphatase-1 (SHP-1) via directly binding to SHP-1 promoter in hepatocytes. Inhibition of SHP-1 expression abrogates the anti-fibrotic effect of HNF1α in DMN-treated rats. Moreover, HNF1α repression in primary hepatocytes leads to the activation of NF-κB and JAK/STAT pathways and initiates an inflammatory feedback circuit consisting of HNF1α, SHP-1, STAT3, p65, miR-21 and miR-146a, which sustains the deregulation of HNF1α in hepatocytes. More interestingly, a coordinated crosstalk between hepatocytes and hepatic stellate cells (HSCs) participates in this positive feedback circuit and facilitates the progression of hepatocellular damage. Our findings demonstrate that impaired hepatocytes play an active role in hepatic fibrogenesis. Early intervention of HNF1α-regulated inflammatory feedback loop in hepatocytes may have beneficial effects in the treatment of chronic liver diseases. PMID:26169608

  17. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver.

    PubMed

    Gamal, Wesam; Treskes, Philipp; Samuel, Kay; Sullivan, Gareth J; Siller, Richard; Srsen, Vlastimil; Morgan, Katie; Bryans, Anna; Kozlowska, Ada; Koulovasilopoulos, Andreas; Underwood, Ian; Smith, Stewart; Del-Pozo, Jorge; Moss, Sharon; Thompson, Alexandra Inés; Henderson, Neil C; Hayes, Peter C; Plevris, John N; Bagnaninchi, Pierre-Olivier; Nelson, Leonard J

    2017-01-30

    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.

  18. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver

    PubMed Central

    Gamal, Wesam; Treskes, Philipp; Samuel, Kay; Sullivan, Gareth J.; Siller, Richard; Srsen, Vlastimil; Morgan, Katie; Bryans, Anna; Kozlowska, Ada; Koulovasilopoulos, Andreas; Underwood, Ian; Smith, Stewart; del-Pozo, Jorge; Moss, Sharon; Thompson, Alexandra Inés; Henderson, Neil C.; Hayes, Peter C.; Plevris, John N.; Bagnaninchi, Pierre-Olivier; Nelson, Leonard J.

    2017-01-01

    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization. PMID:28134251

  19. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury

    PubMed Central

    Chen, Yuan-Li; Xu, Guo; Liang, Xiao; Wei, Juan; Luo, Jing; Chen, Guan-Nan; Yan, Xiao-Di; Wen, Xue-Ping; Zhong, Ming; Lv, Xin

    2016-01-01

    Pyroptosis is a programmed cell death associated with caspase-1 and accompanied by the secretion of a large number of pro-inflammatory cytokines. In the acute stage of sepsis, the release of several pro-inflammatory cytokines aggravates hepatic cell death, and acute liver injury is aggravated with the progress of the disease, resulting in acute liver failure with a very high mortality rate. The present study investigated the effect of inhibiting hepatic cell pyroptosis on the septic acute liver injury. Septic acute liver injury mice model was established by cecal ligation and puncture (CLP model). The liver tissues were assessed for inflammatory infiltration by HE, serum concentrations of ALT, AST, IL-1β, and IL-18 were examined by ELISA, hepatic cell pyroptosis was determined by flow cytometry, and expressions of caspase-1 and NLRP3 were assessed by Western blot. CLP-induced acute liver injury was distinct at 24 h post-operation, with the highest hepatic cell pyroptosis rate. The pyroptosis rate and liver injury indexes were positively correlated. Western blot showed that the expressions of pyroptosis-related proteins, caspase-1, and NLRP3, were increased. Normal mouse hepatic cells were cultured in vitro and LPS+ATP introduced to establish the cell model of septic acute liver injury. The expressions of caspase-1, NLRP3, IL-1β, and IL-18 in LPS+ATP group were significantly higher than the control group by Western blot and ELISA. The inhibitors of NLRP3 (Glyburide) and caspase-1 (AC-YVAD-CMK) alone or in combination were used to pre-treat the hepatic cells, which revealed that the pyroptosis rate was decreased and the cell damage alleviated. The in vivo assay in rats showed that post inhibitor treatment, the 10-days survival was significantly improved and the liver damage reduced. Therefore, inhibiting the hepatic cell pyroptosis could alleviate CLP-induced acute liver injury, providing a novel treatment target for septic acute liver injury. PMID:28078039

  20. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis

    PubMed Central

    Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis. PMID:26691857

  1. Chemokine Receptor Ccr6 Deficiency Alters Hepatic Inflammatory Cell Recruitment and Promotes Liver Inflammation and Fibrosis.

    PubMed

    Affò, Silvia; Rodrigo-Torres, Daniel; Blaya, Delia; Morales-Ibanez, Oriol; Coll, Mar; Millán, Cristina; Altamirano, José; Arroyo, Vicente; Caballería, Joan; Bataller, Ramón; Ginès, Pere; Sancho-Bru, Pau

    2015-01-01

    Chronic liver diseases are characterized by a sustained inflammatory response in which chemokines and chemokine-receptors orchestrate inflammatory cell recruitment. In this study we investigated the role of the chemokine receptor CCR6 in acute and chronic liver injury. In the absence of liver injury Ccr6-/- mice presented a higher number of hepatic macrophages and increased expression of pro-inflammatory cytokines and M1 markers Tnf-α, Il6 and Mcp1. Inflammation and cell recruitment were increased after carbon tetrachloride-induced acute liver injury in Ccr6-/- mice. Moreover, chronic liver injury by carbon tetrachloride in Ccr6-/- mice was associated with enhanced inflammation and fibrosis, altered macrophage recruitment, enhanced CD4+ cells and a reduction in Th17 (CD4+IL17+) and mature dendritic (MHCII+CD11c+) cells recruitment. Clodronate depletion of macrophages in Ccr6-/- mice resulted in a reduction of hepatic pro-inflammatory and pro-fibrogenic markers in the absence and after liver injury. Finally, increased CCR6 hepatic expression in patients with alcoholic hepatitis was found to correlate with liver expression of CCL20 and severity of liver disease. In conclusion, CCR6 deficiency affects hepatic inflammatory cell recruitment resulting in the promotion of hepatic inflammation and fibrosis.

  2. Chronic hepatitis C and persistent occult hepatitis C virus infection are characterized by distinct immune cell cytokine expression profiles.

    PubMed

    Pham, T N Q; Mercer, S E; Michalak, T I

    2009-08-01

    Hepatitis C virus (HCV) replicates in immune cells in both chronic hepatitis C (CHC) and occult HCV infection, but the extent of virus replication in this compartment in these opposing infection forms varies greatly. It was unknown whether this could be linked to HCV genotype or to differences in host gene expression shaping the immune response, and whether HCV replication in immune cells is sensitive to endogenous antiviral cytokines. In this study, we uncovered that significantly greater HCV load in peripheral blood mononuclear cells (PBMC), but not in plasma, coincided with HCV genotypes 2 and 3 in CHC, but with genotype 1 in residual occult infection after clinical resolution of hepatitis C. Moreover, PBMC from individuals with occult infection transcribed significantly greater levels of IFN-alpha, IFN-gamma and TNF-alpha, but less interleukin (IL)-10 than those from CHC. In CHC, PBMC with low HCV load expressed significantly more IFN-gamma but less IL-12 than did cells with high virus content. In occult infection, HCV RNA detection in PBMC was associated with much lower IFN-alpha and IL-12 expression. Further, HCV replication in T lymphocytes could be completely eliminated by activation of endogenous IFN-gamma in CHC, but of IFN-alpha in occult infection. In conclusion, CHC and persistent occult HCV infection are characterized by clearly different profiles of antiviral cytokine response in circulating immune cells which are also different from those of healthy individuals. Higher expression of IL-10, combined with lower transcription of IFN-alpha, IFN-gamma and TNF-alpha, is associated with a more robust HCV replication in immune cells.

  3. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells.

    PubMed

    Li, Ji; Zhao, Xin; Liu, Xiaoliang; Liu, Huanqiu

    2015-08-01

    Hepatic ischaemia reperfusion (IR) injury results from the infiltration of multiple immune cells especially dendritic cells (DC). T-cell immunoglobulin-domain and mucin-domain 4 (TIM-4) is a type I cell-surface glycoprotein which is extensively expressed on antigen presenting cells (APC) like DC and macrophages. TIM-4 has been demonstrated to be implicated in mucosal allergy, skin allograft rejection and tumour-immune tolerance. However, the role of TIM-4 expressed on DC in hepatic IR injury remains largely unknown. In the present study, we aimed to investigate whether and how DC expressed TIM-4 was involved in hepatic IR injury. With segmental hepatic warm ischaemia mice models, we demonstrated that promoted DC infiltration and increased TIM-4 expression were induced by hepatic IR. Blockade of TIM-4 by anti-TIM-4 mAb (0.35mg/mouse) markedly ameliorated hepatic injury and reduced inflammatory cytokine secretion. Furthermore, in a DC:CD4+ T cell co-culture system, blockade of TIM-4 on DC significantly inhibited T helper-2 cell differentiation and facilitated induced CD4+ CD25+ Foxp3+ T regulatory cell (iTreg) expansion. Interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (Stat 6) signalling was shown to be impeded by TIM-4 blockade and involved in iTreg generation. Additionally, adoptive transfer of iTreg produced by TIM-4 blockade into hepatic IR mice models remarkably attenuated liver injury. We conclude that TIM-4 on DC play a critical role in hepatic IR injury and may be an efficient target for the prevention of liver or other organ IR injury.

  4. Hepatic progenitor cell resistance to TGF-{beta}1's proliferative and apoptotic effects

    SciTech Connect

    Clark, J. Brian; Rice, Lisa; Sadiq, Tim; Brittain, Evan; Song, Lujun; Wang Jian; Gerber, David A. . E-mail: David_Gerber@med.unc.edu

    2005-04-01

    The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-{beta}1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-{beta}1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-{beta}1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-{beta}1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease.

  5. Hepatic Tumor Metastases Cause Enhanced PEGylated Liposome Uptake by Kupffer Cells.

    PubMed

    Ukawa, Masami; Fujiwara, Yukako; Ando, Hidenori; Shimizu, Taro; Ishida, Tatsuhiro

    2016-01-01

    Kupffer cells in livers bearing tumor metastases were found to have promoted tumor invasion and exacerbated the metastasis. This implies that the function of Kupffer cells might differ between animals bearing hepatic metastases and those that are healthy. Kupffer cells are considered responsible for the accumulation of liposomes in the liver. In this study, we hypothesized that the alteration in the function of Kupffer cells by hepatic metastasis would also affect the biodistribution of liposomes following intravenous administration. The hepatic accumulation and the blood concentration of PEGylated liposomes were compared between healthy mice and tumor-bearing mice. We noted that hepatic accumulation and elimination from the blood were significantly accelerated in tumor-bearing mice, indicating that our hypothesis was correct. In the tumor-bearing mice, the proportion of Kupffer cells taking up liposomes was significantly increased. Intravenous injection of oxaliplatin (l-OHP) containing PEGylated liposomes decreased the fraction of Kupffer cells, but this administration caused no injury to the hepatocytes. These results suggest that PEGylated liposomes containing l-OHP may have the potential to treat metastatic hepatic cancer-not only via the direct killing of the cancer cells but also via a reduction in tumor-supportive Kupffer cells.

  6. Erythropoietin-producing cells in the liver of ICR-derived glomerulonephritis (ICGN) mice.

    PubMed

    Yamaguchi-Yamada, Misuzu; Akashi, Naotsugu; Goto, Yasufumi; Anan, Sayuri; Yamamoto, Yoshie; Ogura, Atsuo; Manabe, Noboru

    2006-01-01

    The ICR-derived glomerulonephritis (ICGN) mouse is an appropriate model for anemia associated with chronic renal disorder (CRD). Insufficient renal production of erythropoietin (EPO) induces the anemia associated with CRD. EPO mRNA is expressed in both kidneys and liver of progressing-stage ICGN mice. Hypoxic stimulation induced the EPO mRNA expression in the liver as well as in the kidneys of ICGN mice. The localization of EPO-producing cells in the liver remains controversial. Present study using an amplified in situ hybridization technique identified that nonparenchymal cells were the source of hepatic EPO production in ICGN mice under both normoxia and hypoxia.

  7. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells

    PubMed Central

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi

    2015-01-01

    Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514

  8. CPM Is a Useful Cell Surface Marker to Isolate Expandable Bi-Potential Liver Progenitor Cells Derived from Human iPS Cells.

    PubMed

    Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi

    2015-10-13

    To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes.

  9. Hepatitis E virus derived from different sources exhibits different behaviour in virus inactivation and/or removal studies with plasma derivatives.

    PubMed

    Yunoki, Mikihiro; Tanaka, Hiroyuki; Takahashi, Kadue; Urayama, Takeru; Hattori, Shinji; Ideno, Shoji; Furuki, Rie; Sakai, Kaoru; Hagiwara, Katsuro; Ikuta, Kazuyoshi

    2016-09-01

    Hepatitis E virus (HEV) causes viral hepatitis, and is considered a risk factor for blood products. Although some HEV inactivation/removal studies have been reported, detailed investigations of different manufacturing steps as heat treatment, partitioning during cold ethanol fractionation, low pH treatment, and virus filtration have yet to be reported for plasma-derived medicinal products. In this study, human serum- and swine faeces-derived HEVs, with and without detergent treatment, were used. The kinetic patterns of inactivation, log reduction value, or partitioning during the process were evaluated. In addition, the mouse encephalomyocarditis virus (EMCV) and canine and porcine parvoviruses (CPV/PPV) were also evaluated as model viruses for HEV. Small pore size (19 or 15 nm) virus filtration demonstrated effective removal of HEV. Middle pore size (35 nm) virus filtration and 60 °C liquid heating demonstrated moderate inactivation/removal. Ethanol fractionation steps demonstrated limited removal of HEV. Unpurified HEV exhibited different properties than the detergent-treated HEV, and both forms displayed differences when compared with EMCV, CPV, and PPV. Limited or no inactivation of HEV was observed during low pH treatment. Untreated plasma-derived HEV from humans showed different properties compared to that of HEV treated with detergent or derived from swine faeces. Therefore, HEV spike preparation requires more attention.

  10. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    PubMed

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  11. Viable transgenic goats derived from skin cells.

    PubMed

    Behboodi, Esmail; Memili, Erdogan; Melican, David T; Destrempes, Margaret M; Overton, Susan A; Williams, Jennifer L; Flanagan, Peter A; Butler, Robin E; Liem, Hetty; Chen, Li How; Meade, Harry M; Gavin, William G; Echelard, Yann

    2004-06-01

    The current study was undertaken to evaluate the possibility of expanding transgenic goat herds by means of somatic cell nuclear transfer (NT) using transgenic goat cells as nucleus donors. Skin cells from adult, transgenic goats were first synchronized at quiescent stage (G0) by serum starvation and then induced to exit G0 and proceed into G1. Oocytes collected from superovulated donors were enucleated, karyoplast-cytoplast couplets were constructed, and then fused and activated simultaneously by a single electrical pulse. Fused couplets were either co-cultured with oviductal cells in TCM-199 medium (in vitro culture) or transferred to intermediate recipient goat oviducts (in vivo culture) until final transfer. The resulting morulae and blastocysts were transferred to the final recipients. Pregnancies were confirmed by ultrasonography 25-30 days after embryo transfer. In vitro cultured NT embryos developed to morulae and blastocyst stages but did not produce any pregnancies while 30% (6/20) of the in vivo derived morulae and blastocysts produced pregnancies. Two of these pregnancies were resorbed early in gestation. Of the four recipients that maintained pregnancies to term, two delivered dead fetuses 2-3 days after their due dates, and two recipients gave birth to healthy kids at term. Fluorescence in situ hybridization (FISH) analysis confirmed that both kids were transgenic and had integration sites consistent with those observed in the adult cell line.

  12. Ly6Chi monocytes regulate T cell responses in viral hepatitis

    PubMed Central

    Zhu, Jiangao; Chen, Huiyao; Huang, Xiaopei; Jiang, Songfu

    2016-01-01

    Viral hepatitis remains a global health challenge despite recent progress in the development of more effective therapies. Although virus-specific CD8+ and CD4+ T cell responses are essential for viral clearance, it remains largely unknown what regulates T cell–mediated viral clearance. Thus, a better understanding of the regulation of anti-viral T cell immunity would be critical for the design of more effective therapies for viral hepatitis. Using a model of adenovirus-induced hepatitis, here we showed that adenoviral infection induced recruitment of Ly6Chi monocytes to the liver in a CCR2-dependent manner. These recruited Ly6Chi monocytes suppressed CD8+ and CD4+ T cell responses to adenoviral infection, leading to a delay in viral clearance. In vivo depletion of Ly6Chi monocytes markedly enhanced anti-viral T cell responses and promoted viral clearance. Mechanistically, we showed that induction of iNOS and the production of NO by Ly6Chi monocytes are critical for the suppression of T cell responses. In addition, a contact-dependent mechanism mediated by PD-1 and PD-L1 interaction is also required for T cell suppression by Ly6Chi monocytes. These findings suggest a critical role for Ly6Chi monocytes in the regulation of T cell immunity in viral hepatitis and may provide new insights into development of more effective therapies for treating viral hepatitis based on targeting the immunosuppressing monocytes. PMID:27777980

  13. Rat-derived amniotic epithelial cells differentiate into mature hepatocytes in vivo with no evidence of cell fusion.

    PubMed

    Marongiu, Michela; Serra, Maria Paola; Contini, Antonella; Sini, Marcella; Strom, Stephen C; Laconi, Ezio; Marongiu, Fabio

    2015-06-15

    Amniotic epithelial cells (AEC) derived from human placenta represent a useful and noncontroversial source for liver-based regenerative medicine. Previous studies suggested that human- and rat-derived AEC differentiate into hepatocyte-like cells upon transplantation. In the retrorsine (RS) model of liver repopulation, clusters of donor-derived cells engrafted in the recipient liver and, importantly, showed characteristics of mature hepatocytes. The aim of the current study was to investigate the possible involvement of cell fusion in the emergence of hepatocyte clusters displaying a donor-specific phenotype. To this end, 4-week-old GFP(+)/DPP-IV(-) rats were treated with RS and then transplanted with undifferentiated AEC isolated from the placenta of DPP-IV(+) pregnant rats at 16-19 days of gestational age. Results indicated that clusters of donor-derived cells were dipeptidyl peptidase type IV (DPP-IV) positive, but did not express the green fluorescent protein (GFP), suggesting that rat amniotic epithelial cells (rAEC) did not fuse within the host parenchyma, as no colocalization of the two tags was observed. Moreover, rAEC-derived clusters expressed markers of mature hepatocytes (eg, albumin, cytochrome P450), but were negative for the expression of biliary/progenitor markers (eg, epithelial cell adhesion molecule [EpCAM]) and did not express the marker of preneoplastic hepatic nodules glutathione S-transferase P (GST-P). These results extend our previous findings on the potential of AEC to differentiate into mature hepatocytes and suggest that this process can occur in the absence of cell fusion with host-derived cells. These studies support the hypothesis that amnion-derived epithelial cells can be an effective cell source for the correction of liver disease.

  14. Derivation of induced pluripotent stem cells from pig somatic cells.

    PubMed

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  15. Interleukin 17-Producing γδT Cells Promote Hepatic Regeneration in Mice

    PubMed Central

    Rao, Raghavendra; Graffeo, Christopher S.; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M.; Gelbstein, Yisroel; Heerden, Eliza Van; Miller, George

    2014-01-01

    Background & Aims Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). Methods We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd−/−, or Clec7a−/− mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. Results In mice, partial hepatectomy upregulated expression of CCL20 and ligands of Dectin-1, associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)17 family cytokines. Recruited γδT cells induced production of IL6 by antigen-presenting cells and suppressed expression of interferon γ by natural killer T cells, promoting hepatocyte proliferation. Absence of IL17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL17 and Dectin-1. Conclusions γδT cells regulate hepatic regeneration by producing IL22 and IL17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. PMID:24801349

  16. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes.

    PubMed

    Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu

    2015-01-01

    The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.

  17. Relative rigidity of cell-substrate effects on hepatic and hepatocellular carcinoma cell migration.

    PubMed

    Yangben, Yanzi; Wang, Hongbing; Zhong, Li; Chiang, Martin Y M; Tan, Qiaoyan; Singh, Gurinder K; Li, Song; Yang, Li

    2013-01-01

    Polyacrylamide gels with different stiffness and glass were employed as substrates to investigate how substrate stiffness affects the cellular stiffness of adherent hepatocellular carcinoma (HCCLM3) and hepatic (L02) cells. The interaction of how cell-substrate stiffness influences cell migration was also explored. An atom force microscope measured the stiffness of HCCLM3 and L02 cells on different substrates. Further, F-actin assembly was analyzed using immunofluorescence and Western blot. Finally, cell-surface expression of integrin β1 was quantified by flow cytometry. The results show that, while both HCCLM3 and L02 cells adjusted their cell stiffness to comply with the stiffness of the substrate they were adhered to, their tuning capabilities were different. HCCLM3 cell stiffness complied when substrate stiffness was between 1.1 and 33.7 kPa, whereas the analogous stiffness for L02 cells occurred at a higher substrate stiffness, 3.6 kPa up to glass. These ranges correlated with F-actin filament assembly and integrin β1 expression. In a migration assay, HCCLM3 cells migrated faster on a relatively soft substrate, while L02 cells migrated faster on substrates that were relatively rigid. These findings indicate that different tuning capabilities of HCCLM3 and L02 cells may influence cell migration velocity on substrates with different stiffness by regulating cy- toskeleton remodeling and integrin β1 expression.

  18. Physicochemical properties of recombinant hepatitis B surface antigen expressed in mammalian cell (C127).

    PubMed

    Lee, Y S; Kim, B K; Choi, E C

    1998-10-01

    The physicochemical properties of recombinant hepatitis B surface antigen (r-HBsAg), which was expressed in C127 mammalian cell were studied. Using roller bottle culture in DMEM supplemented with fetal bovine serum, 10-15 mg/L of r-HBsAg was produced with about 31% of purification yield. The purity of r-HBsAg by HPLC was 99.8% and electron microscopic examination showed homogeneous spherical particle with 22 nm in diameter, a morphological characteristic of HBsAg. The density of r-HBsAg by CsCl density gradient method was 1.19 g/ml and the isoelectric point by Mono P HR 5/20 column was 4.6. The analysis of subunit protein pattern using SDS-PAGE followed by scanning densitometry gave 81.3% of S protein and 18.7% of pre-S protein. Fluorophore-assisted-carbohydrate-electrophoresis analysis showed the relative amount of carbohydrate to protein was 1.7% and its major component was N-acetyl glucosamine, which was about 39% of total carbohydrate. The relative amount of lipid to protein determined by vanillin phosphoric acid method was 32.5% and its major component was phospholipid, which was about 70% of total lipid. The physicochemical properties of C127 mammalian cell-derived r-HBsAg are similar to those of p-HBsAg, suggesting that the r-HBsAg can be used in developing a new preventive vaccine against hepatitis B.

  19. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling.

    PubMed

    So, Wing Yan; Leung, Po Sing

    2016-09-01

    Irisin is a newly identified myokine that promotes the browning of white adipose tissue, enhances glucose uptake in skeletal muscle and modulates hepatic metabolism. However, the signaling pathways involved in the effects on hepatic glucose and lipid metabolism have not been resolved. This study aimed to examine the role of irisin in the regulation of hepatic glucose/lipid metabolism and cell survival, and whether adenosine monophosphate-activated protein kinase (AMPK), a master metabolic regulator in the liver, is involved in irisin's actions. Human liver-derived HepG2 cells were cultured in normal glucose-normal insulin (NGNI) or high glucose-high insulin (HGHI/insulin-resistant) condition. Hepatic glucose and lipid metabolism was evaluated by glucose output and glycogen content or triglyceride accumulation assays, respectively. Our results showed that irisin stimulated phosphorylation of AMPK and acetyl-CoA-carboxylase (ACC) via liver kinase B1 (LKB1) rather than Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) in HepG2 cells. Irisin ameliorated hepatic insulin resistance induced by HGHI condition. Irisin reduced hepatic triglyceride content and glucose output, but increased glycogen content, with those effects reversed by dorsomorphin, an AMPK inhibitor. Furthermore, irisin also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and promoted cell survival in an AMPK-dependent manner. In conclusion, our data indicate that irisin ameliorates dysregulation of hepatic glucose/lipid metabolism and cell death in insulin-resistant states via AMPK activation. These findings reveal a novel irisin-mediated protective mechanism in hepatic metabolism which provides a scientific basis for irisin as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes mellitus.

  20. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases.

    PubMed

    Liepelt, Anke; Tacke, Frank

    2016-08-01

    The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer.

  1. Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells

    PubMed Central

    Zhao, Xiao; Monson, Christopher; Gao, Chuan; Gouon-Evans, Valerie; Matsumoto, Nobuyuki; Sadler, Kirsten C.; Friedman, Scott L

    2010-01-01

    Krüppel-like factor 6 (Klf6; copeb in zebrafish) is a zinc-finger transcription factor and tumor suppressor gene. Klf6−/− mice have defects in hematopoiesis and angiogenesis and do not form a liver. However, the vascular abnormalities in Klf6−/− mice obfuscate its role in liver development since these two processes are linked in mammals. We utilized zebrafish and mouse ES cells to investigate the role of copeb in endoderm specification and hepatogenesis separate from its function in angiogenesis. During zebrafish development, copeb expression is enriched in digestive organs. Morpholino knockdown of copeb blocks expansion of the liver, pancreas and intestine, but does not affect their specification, differentiation or the vascularization of the liver. Decreased hepatocyte proliferation in copeb morphants is accompanied by upregulation of the cell cycle inhibitor, cdkn1a, a Copeb transcriptional target. A cell autonomous role for Klf6 in endoderm and hepatic development was investigated by manipulating Klf6 expression in mouse ES cells driven to differentiate along the hepatic lineage. Expression of the endoderm markers Hnf3β, Gata4, Sox17, and CxCr4 is not induced in Klf6−/− cells but is upregulated in ES cells over-expressing Klf6. Collectively, these findings indicate that copeb/Klf6 is essential for the development of endoderm-derived organs. PMID:20430021

  2. Flow cytometric quantification of T cell proliferation and division kinetics in woodchuck model of hepatitis B.

    PubMed

    Gujar, Shashi A; Michalak, Tomasz I

    2005-01-01

    Woodchucks infected with woodchuck hepatitis virus (WHV) represent the closest natural animal model to study the immunopathogenesis of liver injury caused by essentially noncytopathic, highly human specific hepatitis B virus (HBV). The importance of antiviral T cell response in induction of hepatitis and in control of HBV replication has been demonstrated. However, the understanding of how these responses contribute to the development of different immunomorphological forms of liver disease and their outcomes remain elusive. In this study, we established and standardized a flow cytometry assay using peripheral blood mononuclear cells labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE) to assess WHV-specific and mitogen-driven T lymphocyte proliferative responses in woodchucks. The assay is of significantly greater sensitivity than the adenine incorporation assay currently used when applied to measure either WHV-specific T cell responses in acute (P < 0.001) and chronic (P < 0.03) viral hepatitis or those induced by mitogens in both healthy and WHV-infected animals. It also provides a new type of information, not previously available, characterizing the strength of woodchuck T cell proliferative reactivity by measuring cell division rates. The study shows that woodchuck PBMC labeled with CFSE exhibit light scatter and fluorescence profiles compatible to those of human PBMC, allowing quantitation and deconvolution of the flow cytometric data by applying the existing analytical softwares. The availability of this novel assay should facilitate a more precise and comprehensive evaluation of hepadnavirus-specific and generalized T cell responses in experimental WHV hepatitis.

  3. Myeloid derived suppressor cells in human diseases

    PubMed Central

    Greten, Tim F.; Manns, Michael P.; Korangy, Firouzeh

    2012-01-01

    Myeloid derived suppressor cells (MDSC) have been described as a heterogeneous cell population with potent immune suppressor function in mice. Limited data are available on MDSC in human diseases. Interpretation of these data is complicated by the fact that different markers have been used to analyze human MDSC subtypes in various clinical settings. Human MDSC are CD11b+, CD33+, HLA-DRneg/low and can be divided into granulocytic CD14− and monocytic CD14+ subtypes. Interleukin 4Rα, VEGFR, CD15 and CD66b have been suggested to be more specific markers for human MDSC, however these markers can only be found on some MDSC subsets. Until today the best marker for human MDSC remains their suppressor function, which can be either direct or indirect through the induction of regulatory T cells. Immune suppressor activity has been associated with high arginase 1 and iNOS activity as well as ROS production by MDSC. Not only in murine models, but even more importantly in patients with cancer, different drugs have been shown to either reverse the immune suppressor function of MDSC or directly target these cells. Systemic treatment with all-trans-retinoic acid has been shown to mature human MDSC and reverse their immune suppressor function. Alternatively, MDSC can be targeted by treatment with the multi-targeted receptor tyrosine kinase inhibitor sunitinib. In this review will provide a comprehensive summary of the recent literature on human MDSC. PMID:21237299

  4. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    PubMed

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity.

  5. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  6. Different Levels of T-Cell Receptor Triggering Induce Distinct Functions in Hepatitis B and Hepatitis C Virus-Specific Human CD4+ T-Cell Clones

    PubMed Central

    Diepolder, Helmut M.; Gruener, Norbert H.; Gerlach, J. Tilman; Jung, Maria-Christina; Wierenga, Eddy A.; Pape, Gerd R.

    2001-01-01

    CD4+ T cells play a major role in the host defense against viruses and intracellular microbes. During the natural course of such an infection, specific CD4+ T cells are exposed to a wide range of antigen concentrations depending on the body compartment and the stage of disease. While epitope variants trigger only subsets of T-cell effector functions, the response of virus-specific CD4+ T cells to various concentrations of the wild-type antigen has not been systematically studied. We stimulated hepatitis B virus core- and hepatitis C virus NS3-specific CD4+ T-cell clones which had been isolated from patients with acute hepatitis during viral clearance with a wide range of specific antigen concentrations and determined the phenotypic changes and the induction of T-cell effector functions in relation to T-cell receptor internalization. A low antigen concentration induced the expression of T-cell activation markers and adhesion molecules in CD4+ T-cell clones in the absence of cytokine secretion and proliferation. The expression of CD25, HLA-DR, CD69, and intercellular cell adhesion molecule 1 increased as soon as T-cell receptor internalization became detectable. A 30- to 100-fold-higher antigen concentration, corresponding to the internalization of 20 to 30% of T-cell receptor molecules, however, was required for the induction of proliferation as well as for gamma interferon and interleukin-4 secretion. These data indicate that virus-specific CD4+ T cells can respond to specific antigen in a graded manner depending on the antigen concentration, which may have implications for a coordinate regulation of specific CD4+ T-cell responses. PMID:11483723

  7. Human Hepatic Progenitor Cells Express Hematopoietic Cell Markers CD45 and CD109

    PubMed Central

    Li, Jun; Xin, Jiaojiao; Zhang, Liyuan; Wu, Jian; Jiang, Longyan; Zhou, Qian; Li, Jun; Guo, Jing; Cao, Hongcui; Li, Lanjuan

    2014-01-01

    Objective: To clarify the precise characteristics of human hepatic progenitor cells (HPCs) for future cytotherapy in liver diseases. Methods: Hepatic progenitor-like cells were isolated and cultured from the livers of patients who had undergone partial hepatectomy for various pathologies but displayed no sign of hepatic dysfunction. These cells were characterized by transcriptomic profiling, quantitative real-time PCR and immunocyto/histochemistry. Results:Cultured HPCs contained polygonal, high nucleus/cytoplasm ratio and exhibited a global gene expression profile similar (67.8%) to that of primary hepatocytes. Among the genes with more than 20-fold higher expression in HPCs were a progenitor marker (CD90), a pentraxin-related gene (PTX3), collagen proteins (COL5A2, COL1A1 and COL4A2), cytokines (EGF and PDGFD), metabolic enzymes (CYBRD1, BCAT1, TIMP2 and PAM), a secreted protein (SPARC) and an endothelial protein C receptor (PROCR). Moreover, eight markers (ALB, AFP, CK8, CK18, CK19, CD90, CD117 and Oval-6) previously described as HPC markers were validated by qRT-PCR and/or immunocyto/histochemistry. Interestingly, human HPCs were also positive for the hematopoietic cell markers CD45 and CD109. Finally, we characterized the localization of HPCs in the canals of Hering and periportal areas with six previously described markers (Oval-6, CK8, CK18, CK19, CD90 and CD117) and two potential markers (CD45 and CD109). Conclusion: The human HPCs are highly similar to primary hepatocytes in their transcriptional profiles. The CD45 and CD109 markers could potentially be utilized to identify and isolate HPCs for further cytotherapy of liver diseases. PMID:24396288

  8. Proinflammatory and prothrombotic effects on human vascular endothelial cells of Immune-cell-derived LIGHT

    PubMed Central

    2009-01-01

    Objective LIGHT (TNFSF 14) belongs to the tumor necrosis factor superfamily and is expressed by activated T cells as well as various types of antigen presenting cells. LIGHT binds to its cellular receptors TR2 and LTßR and has a co-stimulatory role in T cell activation. Here, we compared the relative expression of LIGHT in different immune cells and the biological activity of immune cell-derived LIGHT on endothelial cells. Methods and Results Surface expression of LIGHT and mRNA production by PBMC and isolated T cells (CD4+ or CD8+) significantly increased after stimulation with PMA (Phorbolester-12-Myristat-13-Acetat) + ionomycin. No LIGHT expression on PMA stimulated monocytes or monocytic-like THP-1 cells could be detected; differentiation of monocytes and THP-1 cells into macrophages, however, resulted in up-regulation of LIGHT. Supernatants of stimulated T cells contained higher concentrations of soluble LIGHT than macrophage supernatants normalized to cell numbers; release of soluble LIGHT was found to be dependent on metalloproteinase activity. Size determination of released soluble LIGHT by size exclusion chromatography revealed a molecular mass of ~60 kDa, suggesting a trimeric form. Released soluble LIGHT induced expression of proinflammatory antigens ICAM-1, tissue factor and IL-8 in human endothelial cells and caused apoptosis of IFN-γ pretreated endothelial cells. Soluble LIGHT was detected at low levels in sera of healthy controls and was significantly enhanced in sera of patients with chronic hepatitis C and rheumatoid arthritis (24.93 ± 9.41 vs.129.53 ± 49.14 and 172.13 ± 77.64; p < 0.0005). Conclusion These findings suggest that among immune cells activated T lymphocytes are the main source of soluble LIGHT with released amounts of soluble LIGHT markedly higher compared to platelets. Immune cell-derived membrane-bound and soluble trimeric LIGHT is biologically active, inducing proinflammatory changes in endothelial cells. Enhanced plasma

  9. Enriched retinal ganglion cells derived from human embryonic stem cells

    PubMed Central

    Gill, Katherine P.; Hung, Sandy S. C.; Sharov, Alexei; Lo, Camden Y.; Needham, Karina; Lidgerwood, Grace E.; Jackson, Stacey; Crombie, Duncan E.; Nayagam, Bryony A.; Cook, Anthony L.; Hewitt, Alex W.; Pébay, Alice; Wong, Raymond C. B.

    2016-01-01

    Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies. PMID:27506453

  10. Sarcoma derived from cultured mesenchymal stem cells.

    PubMed

    Tolar, Jakub; Nauta, Alma J; Osborn, Mark J; Panoskaltsis Mortari, Angela; McElmurry, Ron T; Bell, Scott; Xia, Lily; Zhou, Ning; Riddle, Megan; Schroeder, Tania M; Westendorf, Jennifer J; McIvor, R Scott; Hogendoorn, Pancras C W; Szuhai, Karoly; Oseth, Leann; Hirsch, Betsy; Yant, Stephen R; Kay, Mark A; Peister, Alexandra; Prockop, Darwin J; Fibbe, Willem E; Blazar, Bruce R

    2007-02-01

    To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole-body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain-specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon-related genetic abnormality, and p53 was not overexpressed. Infusion of MSC-derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.

  11. Hepatic perivascular epithelioid cell tumor (PEComa): a case report with a review of literatures

    PubMed Central

    Son, Hyun-Jin; Kang, Dong Wook; Kim, Joo Heon; Han, Hyun Young; Lee, Min Koo

    2017-01-01

    Hepatic perivascular epithelioid cell tumors (PEComas) are very rare. We report a primary hepatic PEComa with a review of the literature. A 56-year-old women presented with a nodular mass detected during the management of chronic renal failure and chronic hepatitis C. Diagnostic imaging studies suggested a nodular hepatocellular carcinoma in segment 5 of the liver. The patient underwent partial hepatectomy. A brown-colored expansile mass measuring 3.2×3.0 cm was relatively demarcated from the surrounding liver parenchyma. The tumor was mainly composed of epithelioid cells that were arranged in a trabecular growth pattern. Adipose tissue and thick-walled blood vessels were minimally identified. A small amount of extramedullary hematopoiesis was observed in the sinusoidal spaces between tumor cells. Tumor cells were diffusely immunoreactive for human melanoma black 45 (HMB45) and Melan A, focally immunoreactive for smooth muscle actin, but not for hepatocyte specific antigen (HSA). PMID:28288506

  12. All-trans and 9-cis retinoic acid alter rat hepatic stellate cell phenotype differentially

    PubMed Central

    Hellemans, K; Grinko, I; Rombouts, K; Schuppan, D; Geerts, A

    1999-01-01

    BACKGROUND—Hepatic stellate cells exert specific functions in the liver: storage of large amounts of retinyl esters, synthesis and breakdown of hepatic extracellular matrix, secretion of a variety of cytokines, and control of the diameter of the sinusoids.
AIMS—To examine the influence of all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9RA) on extracellular matrix production and proliferation of activated hepatic stellate cells.
METHODS—Cells were isolated using collagenase/pronase, purified by centrifugation in nycodenz, and cultured for two weeks. At this time point the cells exhibited the activated phenotype. Cells were exposed to various concentrations of ATRA and 9RA. The expression of procollagens I, III, and IV, of fibronectin and of laminin were analysed by immunoprecipitation and northern hybridisation.
RESULTS—ATRA exerted a significant inhibitory effect on the synthesis of procollagens type I, III, and IV, fibronectin, and laminin, but did not influence stellate cell proliferation, whereas 9RA showed a clear but late effect on proliferation. 9RA increased procollagen I mRNA 1.9-fold, but did not affect the expression of other matrix proteins.
CONCLUSION—Results showed that ATRA and 9RA exert different, often contrary effects on activated stellate cells. These observations may explain prior divergent results obtained following retinoid administration to cultured stellate cells or in animals subjected to fibrogenic stimuli.


Keywords: hepatic stellate cells; retinoic acid; extracellular matrix proteins; proliferation PMID:10369717

  13. Beta-carotene storage, conversion to retinoic acid, and induction of the lipocyte phenotype in hepatic stellate cells.

    PubMed

    Martucci, Renata B; Ziulkoski, Ana L; Fortuna, Vitor A; Guaragna, Regina M; Guma, Fátima C R; Trugo, Luiz C; Borojevic, Radovan

    2004-05-15

    Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.

  14. Hepatitis B vaccine induces apoptotic death in Hepa1-6 cells.

    PubMed

    Hamza, Heyam; Cao, Jianhua; Li, Xinyun; Li, Changchun; Zhu, Mengjin; Zhao, Shuhong

    2012-05-01

    Vaccines can have adverse side-effects, and these are predominantly associated with the inclusion of chemical additives such as aluminum hydroxide adjuvant. The objective of this study was to establish an in vitro model system amenable to mechanistic investigations of cytotoxicity induced by hepatitis B vaccine, and to investigate the mechanisms of vaccine-induced cell death. The mouse liver hepatoma cell line Hepa1-6 was treated with two doses of adjuvanted (aluminium hydroxide) hepatitis B vaccine (0.5 and 1 μg protein per ml) and cell integrity was measured after 24, 48 and 72 h. Hepatitis B vaccine exposure increased cell apoptosis as detected by flow cytometry and TUNEL assay. Vaccine exposure was accompanied by significant increases in the levels of activated caspase 3, a key effector caspase in the apoptosis cascade. Early transcriptional events were detected by qRT-PCR. We report that hepatitis B vaccine exposure resulted in significant upregulation of the key genes encoding caspase 7, caspase 9, Inhibitor caspase-activated DNase (ICAD), Rho-associated coiled-coil containing protein kinase 1 (ROCK-1), and Apoptotic protease activating factor 1 (Apaf-1). Upregulation of cleaved caspase 3,7 were detected by western blot in addition to Apaf-1 and caspase 9 expressions argues that cell death takes place via the intrinsic apoptotic pathway in which release of cytochrome c from the mitochondria triggers the assembly of a caspase activation complex. We conclude that exposure of Hepa1-6 cells to a low dose of adjuvanted hepatitis B vaccine leads to loss of mitochondrial integrity, apoptosis induction, and cell death, apoptosis effect was observed also in C2C12 mouse myoblast cell line after treated with low dose of vaccine (0.3, 0.1, 0.05 μg/ml). In addition In vivo apoptotic effect of hepatitis B vaccine was observed in mouse liver.

  15. Impaired responsiveness of homosexual men with HIV antibodies to plasma derived hepatitis B vaccine.

    PubMed

    Carne, C A; Weller, I V; Waite, J; Briggs, M; Pearce, F; Adler, M W; Tedder, R S

    1987-04-04

    Thirty five homosexual men (17 positive for antibody to the human immunodeficiency virus (HIV) and 18 consistently negative) were vaccinated against hepatitis B virus infection. Eight of the 17 seropositive patients failed to develop detectable hepatitis B surface antibody within three months of the third injection compared with only one of the 18 seronegative patients (p less than 0.01). HIV infection is prevalent in the developed world in groups at risk for hepatitis B infection and in certain Third World countries where widespread vaccination programmes exist. This study shows the impact that coincident HIV infection may have on an otherwise efficacious vaccine. The efficacy of this and other vaccines in patients infected with HIV needs to be studied urgently.

  16. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  17. Sofosbuvir and Simeprevir Treatment of a Stem Cell Transplanted Teenager With Chronic Hepatitis C Infection.

    PubMed

    Fischler, Björn; Priftakis, Peter; Sundin, Mikael

    2016-06-01

    There have been no previous reports on the use of interferon-free combinations in pediatric patients with chronic hepatitis C infection. An infected adolescent with severe sickle cell disease underwent stem cell transplantation and subsequent treatment with sofosbuvir and simeprevir during ongoing immunosuppression. Despite the emergence of peripheral edema as a side effect, treatment was continued with sustained antiviral response.

  18. FGF2 mediates hepatic progenitor cell formation during human pluripotent stem cell differentiation by inducing the WNT antagonist NKD1

    PubMed Central

    Twaroski, Kirk; Mallanna, Sunil K.; Jing, Ran; DiFurio, Francesca; Urick, Amanda; Duncan, Stephen A.

    2015-01-01

    Fibroblast growth factors (FGFs) are required to specify hepatic fate within the definitive endoderm through activation of the FGF receptors (FGFRs). While the signaling pathways involved in hepatic specification are well understood, the mechanisms through which FGFs induce hepatic character within the endoderm are ill defined. Here we report the identification of genes whose expression is directly regulated by FGFR activity during the transition from endoderm to hepatic progenitor cell. The FGFR immediate early genes that were identified include those encoding transcription factors, growth factors, and signaling molecules. One of these immediate early genes encodes naked cuticle homolog 1 (NKD1), which is a repressor of canonical WNT (wingless-type MMTV integration site) signaling. We show that loss of NKD1 suppresses the formation of hepatic progenitor cells from human induced pluripotent stem cells and that this phenotype can be rescued by using a pharmacological antagonist of canonical WNT signaling. We conclude that FGF specifies hepatic fate at least in large part by inducing expression of NKD1 to transiently suppress the canonical WNT pathway. PMID:26637527

  19. Sensitive detection of hepatocellular injury in chronic hepatitis C patients with circulating hepatocyte-derived microRNA-122.

    PubMed

    van der Meer, A J; Farid, W R R; Sonneveld, M J; de Ruiter, P E; Boonstra, A; van Vuuren, A J; Verheij, J; Hansen, B E; de Knegt, R J; van der Laan, L J W; Janssen, H L A

    2013-03-01

    As chronic hepatitis C patients with progressive disease can present themselves with normal ALT levels, more sensitive biomarkers are needed. MicroRNAs are newly discovered small noncoding RNAs that are stable and detectable in the circulation. We aimed to investigate the association between hepatocyte-derived microRNAs in serum and liver injury in patients with chronic hepatitis C. The hepatocyte-derived miR-122 and miR-192 were analysed in sera of 102 chronic HCV-infected patients and 24 healthy controls. Serum levels of miR-122 and miR-192 correlated strongly with ALT (R = 0.67 and R = 0.65, respectively, P < 0.001 for both). Median levels of miR-122 and miR-192 in HCV-infected patients were 23 times and 8 times higher as in healthy controls (P < 0.001 for both). Even within the HCV-infected patients with a normal ALT (n = 38), the levels of miR-122 and miR-192 were 12 times and 4 times higher compared with healthy controls (P < 0.001 for both). Multivariate logistic regression analyses showed that only miR-122 was a significant predictor of the presence of chronic HCV infection (P = 0.026). Importantly, miR-122 was also superior in discriminating chronic HCV-infected patients with a normal ALT from healthy controls compared with the ALT level (AUC = 0.97 vs AUC = 0.78, P = 0.007). In conclusion, our study confirmed that liver injury is associated with high levels of hepatocyte-derived microRNAs in circulation and demonstrated that in particular miR-122 is a sensitive marker to distinguish chronic hepatitis C patients from healthy controls. More sensitive blood markers would benefit especially those patients with minor levels of hepatocellular injury, who are not identified by current screening with ALT testing.

  20. Decline of miR-124 in myeloid cells promotes regulatory T-cell development in hepatitis C virus infection.

    PubMed

    Ren, Jun P; Wang, Lin; Zhao, Juan; Wang, Ling; Ning, Shun B; El Gazzar, Mohamed; Moorman, Jonathan P; Yao, Zhi Q

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) and microRNAs (miRNAs) contribute to attenuating immune responses during chronic viral infection; however, the precise mechanisms underlying their suppressive activities remain incompletely understood. We have recently shown marked expansion of MDSCs that promote regulatory T (Treg) cell development in patients with chronic hepatitis C virus (HCV) infection. Here we further investigated whether the HCV-induced expansion of MDSCs and Treg cells is regulated by an miRNA-mediated mechanism. The RNA array analysis revealed that six miRNAs were up-regulated and six miRNAs were down-regulated significantly in myeloid cells during HCV infection. Real-time RT-PCR confirmed the down-regulation of miR-124 in MDSCs from HCV patients. Bioinformatic analysis suggested that miR-124 may be involved in the regulation of signal transducer and activator of transcription 3 (STAT-3), which was overexpressed in MDSCs from HCV patients. Notably, silencing of STAT-3 significantly increased the miR-124 expression, whereas reconstituting miR-124 decreased the levels of STAT-3, as well as interleukin-10 and transforming growth factor-β, which were overexpressed in MDCSs, and reduced the frequencies of Foxp3(+) Treg cells that were developed during chronic HCV infection. These results suggest that reciprocal regulation of miR-124 and STAT-3 in MDSCs promotes Treg cell development, thus uncovering a novel mechanism for the expansion of MDSC and Treg cells during HCV infection.

  1. Coexistence of hepatoma with mantle cell lymphoma in a hepatitis B carrier

    PubMed Central

    Lee, Mu-Hsien; Lin, Yu-Ching; Cheng, Hao-Tsai; Chuang, Wen-Yu; Huang, Hsin-Chih; Kao, Hsiao-Wen

    2015-01-01

    The coexistence of hepatocellular carcinoma (HCC) and non-Hodgkin’s lymphoma (NHL) in the liver is rare. Reports show that these patients have cirrhotic livers or hepatitis virus infections before they develop HCC and NHL. We present a patient with hepatitis B virus infection who was transferred to our hospital with a newly detected liver mass; abdominal computed tomography examination showed one hypodense mass of 7 cm in diameter and multiple mesenteric and mediastinal lymph nodes. A liver tumor biopsy showed a hepatoma, and the pathologic findings from an inguinal lymph node excision showed mantle cell lymphoma. An immunohistochemical stain confirmed that the atypical lymphoid cells within the HCC were positive for the CD20, CD5 and cyclin D1 antigens. Taking these findings into account, the hepatic tumor was determined to be a HCC infiltrated by mantle cell lymphoma. PMID:26668520

  2. Radioimmunofocus assay for quantitation of hepatitis A virus in cell cultures.

    PubMed Central

    Lemon, S M; Binn, L N; Marchwicki, R H

    1983-01-01

    A new method is described for the quantitation of hepatitis A virus in cell cultures, based on the immune autoradiographic detection of foci of infected cells (radioimmunofoci) developing beneath an agarose overlay 14 days after the inoculation of petri dish cultures of continuous African green monkey kidney cells (BS-C-1). The number of foci developing in each culture was linearly related to the dose of hepatitis A virus (either HM-175 or PA-21 strain) inoculated. Focus development was prevented by prior incubation of virus with specific antisera, and the specificity of the radiolabeled antibody reaction was confirmed in competitive blocking experiments. This new assay method retains many of the advantages of conventional plaque assays for virus. Compared with existing end-dilution methods for the quantitation of hepatitis A virus, the radioimmunofocus assay offers greatly improved accuracy and comparable sensitivity, yet is relatively rapid and highly conservative of reagents. Images PMID:6306048

  3. Coexistence of hepatoma with mantle cell lymphoma in a hepatitis B carrier.

    PubMed

    Lee, Mu-Hsien; Lin, Yu-Ching; Cheng, Hao-Tsai; Chuang, Wen-Yu; Huang, Hsin-Chih; Kao, Hsiao-Wen

    2015-12-07

    The coexistence of hepatocellular carcinoma (HCC) and non-Hodgkin's lymphoma (NHL) in the liver is rare. Reports show that these patients have cirrhotic livers or hepatitis virus infections before they develop HCC and NHL. We present a patient with hepatitis B virus infection who was transferred to our hospital with a newly detected liver mass; abdominal computed tomography examination showed one hypodense mass of 7 cm in diameter and multiple mesenteric and mediastinal lymph nodes. A liver tumor biopsy showed a hepatoma, and the pathologic findings from an inguinal lymph node excision showed mantle cell lymphoma. An immunohistochemical stain confirmed that the atypical lymphoid cells within the HCC were positive for the CD20, CD5 and cyclin D1 antigens. Taking these findings into account, the hepatic tumor was determined to be a HCC infiltrated by mantle cell lymphoma.

  4. Human fetal hepatic progenitor cells are distinct from, but closely related to, hematopoietic stem/progenitor cells.

    PubMed

    Chen, Qingfeng; Khoury, Maroun; Limmon, Gino; Choolani, Mahesh; Chan, Jerry K Y; Chen, Jianzhu

    2013-06-01

    Much controversy surrounds the identity and origin of human hepatic stem and progenitor cells in part because of a lack of small animal models in which the developmental potential of isolated candidate cell populations can be functionally evaluated. We show here that adoptive transfer of CD34(+) cells from human fetal liver into sublethally irradiated NOD-SCID Il2rg(-/-) (NSG) mice leads to an efficient development of not only human hematopoietic cells but also human hepatocyte-like cells in the liver of the recipient mice. Using this simple in vivo assay in combination with cell fractionation, we show that CD34(+) fetal liver cells can be separated into three distinct subpopulations: CD34(hi) CD133(hi), CD34(lo) CD133(lo), and CD34(hi) CD133(neg). The CD34(hi) CD133(hi) population contains hematopoietic stem/progenitor cells (HSPCs) as they give rise to T cells, B cells, NK cells, dendritic cells, and monocytes/macrophages in NSG mice and colony-forming unit (CFU)-GEMM cells in vitro. The CD34(lo) CD133(lo) population does not give rise to hematopoietic cells, but reproducibly generates hepatocyte-like cells in NSG mice and in vitro. The CD34(hi) CD133(neg) population only gives rise to CFU-GM and burst-forming unit-erythroid in vitro. Furthermore, we show that the CD34(lo) CD133(lo) cells express hematopoietic, hepatic, and mesenchymal markers, including CD34, CD133, CD117, epithelial cell adhesion molecule, CD73, albumin, α-fetal protein, and vimentin and transcriptionally are more closely related to HSPCs than to mature hepatocytes. These results show that CD34(lo) CD133(lo) fetal liver cells possess the hepatic progenitor cell properties and that human hepatic and hematopoietic progenitor cells are distinct, although they may originate from the same precursors in the fetal liver.

  5. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  6. A Rare Case of Hepatic T-Cell Rich B-Cell Lymphoma (TCRBCL) in a Juvenile Dog

    PubMed Central

    CHUNG, Tae-Ho; LAMM, Catherine; CHOI, Young-Chul; LEE, Jung-Woo; YU, Dohyeon; CHOI, Ul-Soo

    2014-01-01

    ABSTRACT A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient’s history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy. PMID:25283946

  7. Acute hepatitis due to shen-min: a herbal product derived from Polygonum multiflorum.

    PubMed

    Cárdenas, Andrés; Restrepo, Juan Carlos; Sierra, Fernando; Correa, Gonzalo

    2006-08-01

    Shen-Min is a herbal product sold as a supplement for women to enhance hair growth. It is widely available across Asia, Europe, and the United States and sold without prescription as a hair nutritional supplement. We describe a case of acute liver injury in a 28-year-old white woman who developed symptomatic hepatitis 8 weeks after starting Shen-Min. All other potential causes of acute hepatitis including viral, hypoxic/ischemic, metabolic, and autoimmune etiologies were excluded. The liver injury slowly resolved over 3 weeks after discontinuing the herbal product. Although the mechanism of Shen-Min hepatotoxicity is unknown, we suspect an idiosyncratic reaction because the patient developed a fine maculopapular rash, mild eosinophilia, and did not overdose. Shen-Min is a Chinese herbal product with a mixture of several plants and vitamins including Polygonum multiflorum, a root that has been previously associated with hepatotoxicity. Nonetheless to our knowledge this is the first reported case of herbal-induced hepatotoxicity in a patient taking Shen-Min per se. Clinicians taking care of patients with acute hepatitis of unclear etiology should be aware that the consumption of Shen-Min, a hair supplement widely available in the United States and Western countries might cause acute hepatitis.

  8. Osteogenesis of Adipose-Derived Stem Cells

    PubMed Central

    Grottkau, Brian E.; Lin, Yunfeng

    2013-01-01

    Current treatment options for skeletal repair, including immobilization, rigid fixation, alloplastic materials and bone grafts, have significant limitations. Bone tissue engineering offers a promising method for the repair of bone deficieny caused by fractures, bone loss and tumors. The use of adipose derived stem cells (ASCs) has received attention because of the self-renewal ability, high proliferative capacity and potential of osteogenic differentiation in vitro and in vivo studies of bone regeneration. Although cell therapies using ASCs are widely promising in various clinical fields, no large human clinical trials exist for bone tissue engineering. The aim of this review is to introduce how they are harvested, examine the characterization of ASCs, to review the mechanisms of osteogenic differentiation, to analyze the effect of mechanical and chemical stimuli on ASC osteodifferentiation, to summarize the current knowledge about usage of ASC in vivo studies and clinical trials, and finally to conclude with a general summary of the field and comments on its future direction. PMID:26273498

  9. Murine viral hepatitis involves NK cell depletion associated with virus-induced apoptosis

    PubMed Central

    LEHOUX, M; JACQUES, A; LUSIGNAN, S; LAMONTAGNE, L

    2004-01-01

    Mouse hepatitis virus type 3 (MHV3), a coronavirus, is an excellent animal model for the study of immunological disorders related to acute and chronic hepatitis. In this study, we have verified if the fulminant hepatitis induced by MHV3 could be related to an impairment of innate immunity. Groups of three C57BL/6 mice were infected with the pathogenic L2-MHV3 or attenuated YAC-MHV3 viruses, and the natural killer (NK) cell populations from liver, spleen and bone marrow were analysed. The percentage of intrahepatic NK1·1+T cell receptor (TCR)− cells did not increase while NK1·1+TCRinter cells decreased in both L2-MHV3- and YAC-MHV3-infected mice. Concurrently, splenic and myeloid NK1·1+ cells decreased in L2-MHV3-infected mice. However, the cytotoxic activity of NK cells increased in liver and decreased in bone marrow from pathogenic L2-MHV3-infected mice while no modification was detected in YAC-MHV3-infected mice. Flow cytometric analysis revealed that both normal and larger splenic or myeloid NK cells decreased more in pathogenic L2-MHV3-infected mice than in attenuated YAC-MHV3-infected mice. In vitro viral infections of interleukin (IL)-15-stimulated lymphoid cells from liver and bone marrow revealed that L2-MHV3 induced higher decreases in cell viability of NK1·1+ cells than the YAC-MHV3 variant. The NK cell decreases were due to the viral permissivity leading to cytopathic effects characterized by cell rounding, syncytia formation and apoptosis. Larger NK+ syncytia were observed in L2-MHV3-infected cells than in YAC-MHV3-infected cells. These results suggest that NK cell production is impaired by viral infection favouring fulminant hepatitis. PMID:15196242

  10. Epigallocatechin-3-gallate, a green-tea polyphenol, suppresses Rho signaling in TWNT-4 human hepatic stellate cells.

    PubMed

    Higashi, Nobuhiko; Kohjima, Motoyuki; Fukushima, Marie; Ohta, Satoshi; Kotoh, Kazuhiro; Enjoji, Munechika; Kobayashi, Naoya; Nakamuta, Makoto

    2005-06-01

    Epigallocatechin-3-gallate (EGCG), a major constituent of the polyphenoids in green tea, has been reported to possess a wide range of biologic activities, including antifibrogenesis. Activated hepatic stellate cells (HSCs) are central to hepatic fibrosis, and Rho (a small GTPase)-signaling pathways have been implicated in the activation and proliferation of HSCs. In this study, we investigated the effect of EGCG on Rho-signaling pathways in activated human HSC-derived TWNT-4 cells. EGCG inhibited stress-fiber formation, an indicator of Rho activation, and changed the distribution of alpha-smooth-muscle actin. These inhibitory effects of EGCG were restored by overexpression of constitutively active Rho. A pull-down assay revealed that activated Rho (GTP-bound state) was strongly inhibited by ECGC and accompanied by suppressed phosphorylation of focal adhesion kinase, which is a regulator of Rho-signaling pathways. 5-Bromo-2'-deoxy-uridine incorporation demonstrated that ECGC (100 micromol/L suppressed cell growth by 80%, and terminal deoxynucleotidyl transferase viotin-deoxyruidine triphosphate nick end-labeling revealed that EGCG (100 micromol/L) caused apoptosis in half of the total cells. EGCG also strongly inhibited lysophoaphatidic acid (an activator of Rho) and induced phosphorylation of mitogen-activated protein kinases (Erk1/2, c-jun kinase, and p38). These findings demonstrate that EGCG regulates the structure and growth of HSCs by way of Rho-signaling pathways and suggest that EGCG has therapeutic potential in the setting of liver fibrosis.

  11. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells.

    PubMed

    Nakamuta, Makoto; Higashi, Nobuhiko; Kohjima, Motoyuki; Fukushima, Marie; Ohta, Satoshi; Kotoh, Kazuhiro; Kobayashi, Naoya; Enjoji, Munechika

    2005-10-01

    Catechins such as epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and epigallocatechin (EGC) are polyphenol components of green tea. EGCG is the major component and has been reported to possess a wide range of biological properties including anti-fibrogenic activity. In hepatic fibrosis, activated hepatic stellate cells (HSCs) play a central role. In this study, we investigated the effect of catechins, including EGCG, on collagen production and collagenase activity in rat primary HSCs and activated human HSC-derived TWNT-4 cells. EGCG (50 microM) suppressed type I collagen production in rat HSCs more than ECG (50 microM) did; however, EGC (50 microM) did not show suppressive effects. EGCG also inhibited both collagen production and collagenase activity (active matrix metalloproteinase-1 [MMP-1]) in a dose-dependent manner, but did not affect the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production in TWNT-4 cells. Real-time PCR unexpectedly revealed that EGCG enhanced the transcription of type I collagen and TIMP-1, but did not affect the transcription of alpha-smooth muscle actin (alpha-SMA), and reduced the transcription MMP-1 in TWNT-4 cells. These findings demonstrated that EGCG inhibited collagen production regardless of enhanced collagen transcription and suppressed collagenase activity, and suggested that EGCG might have therapeutic potential for liver fibrosis.

  12. Universal immunization of infants with low doses of a low-cost, plasma-derived hepatitis B vaccine in South Africa.

    PubMed Central

    Schoub, B. D.; Matai, U.; Singh, B.; Blackburn, N. K.; Levin, J. B.

    2002-01-01

    OBJECTIVE: To evaluate the effectiveness of universal vaccination against viral hepatitis B in South Africa among 18-month-old rural children. METHODS: Children were immunized with a course of low-dose (1.5 microg), plasma-derived hepatitis B vaccine at 6, 10 and 14 weeks of age, and blood samples from the children were tested for three hepatitis B markers: hepatitis B surface antigen (HBsAg), anti-HBs and anti-HBc. FINDINGS: One year after vaccination, a protective anti-HBs antibody titre of at least 10 IU/l was present in 669/769 (87.0%) of blood serum samples tested. Only 3/756 children (0.4%) were HBsAg positive and a fourth child was anti-HBc positive (HBsAg negative). This is a marked decrease compared to the hepatitis B prevalences reported in previous studies. Among rural migrant mine-workers, for example, HBsAg prevalence was 9.9%, and was 10.1% among children 0-6 years of age in the Eastern Cape Province. CONCLUSION: The low-dose, plasma-derived hepatitis B vaccine, which is affordable to most developing countries, was very successful in controlling endemic hepatitis B infection, where the virus is predominantly spread by horizontal transmission among infants and young children. PMID:12075363

  13. Myeloid-derived cells are key targets of tumor immunotherapy

    PubMed Central

    Medina-Echeverz, José; Aranda, Fernando; Berraondo, Pedro

    2014-01-01

    Tumors are composed of heterogeneous cell populations recruited by cancer cells to promote growth and metastasis. Among cells comprising the tumor stroma, myeloid-derived cells play pleiotropic roles in supporting tumorigenesis at distinct stages of tumor development. The tumor-infiltrating myeloid cell contingent is composed of mast cells, neutrophils, dendritic cells, macrophages, and myeloid-derived suppressor cells. Such cells are capable of evading the hostile tumor environment typically prone to immune cell destruction and can even promote angiogenesis, chronic inflammation, and invasion. This paper briefly summarizes the different myeloid-derived subsets that promote tumor development and the strategies that have been used to counteract the protumorigenic activity of these cells. These strategies include myeloid cell depletion, reduction of recruitment, and inactivation or remodeling of cell phenotype. Combining drugs designed to target tumor myeloid cells with immunotherapies that effectively trigger antitumor adaptive immune responses holds great promise in the development of novel cancer treatments. PMID:25050208

  14. Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types.

    PubMed

    Salloum, Shadi; Holmes, Jacinta A; Jindal, Rohit; Bale, Shyam S; Brisac, Cynthia; Alatrakchi, Nadia; Lidofsky, Anna; Kruger, Annie J; Fusco, Dahlene N; Luther, Jay; Schaefer, Esperance A; Lin, Wenyu; Yarmush, Martin L; Chung, Raymond T

    2016-12-01

    Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfection accelerates progressive liver fibrosis; however, the mechanisms remain poorly understood. HCV and HIV independently induce profibrogenic markers transforming growth factor beta-1 (TGFβ1) (mediated by reactive oxygen species [ROS]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in hepatocytes and hepatic stellate cells in monoculture; however, they do not account for cellular crosstalk that naturally occurs. We created an in vitro coculture model and investigated the contributions of HIV and HCV to hepatic fibrogenesis. Green fluorescent protein reporter cell lines driven by functional ROS (antioxidant response elements), NFκB, and mothers against decapentaplegic homolog 3 (SMAD3) promoters were created in Huh7.5.1 and LX2 cells, using a transwell to generate cocultures. Reporter cell lines were exposed to HIV, HCV, or HIV/HCV. Activation of the 3 pathways was measured and compared according to infection status. Extracellular matrix products (collagen type 1 alpha 1 (CoL1A1) and tissue inhibitor of metalloproteinase 1 (TIMP1)) were also measured. Both HCV and HIV independently activated TGFβ1 signaling through ROS (antioxidant response elements), NFκB, and SMAD3 in both cell lines in coculture. Activation of these profibrotic pathways was additive following HIV/HCV coexposure. This was confirmed when examining CoL1A1 and TIMP1, where messenger RNA and protein levels were significantly higher in LX2 cells in coculture following HIV/HCV coexposure compared with either virus alone. In addition, expression of these profibrotic genes was significantly higher in the coculture model compared to either cell type in monoculture, suggesting an interaction and feedback mechanism between Huh7.5.1 and LX2 cells.

  15. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha.

    PubMed

    Connolly, Michael K; Bedrosian, Andrea S; Mallen-St Clair, Jon; Mitchell, Aaron P; Ibrahim, Junaid; Stroud, Andrea; Pachter, H Leon; Bar-Sagi, Dafna; Frey, Alan B; Miller, George

    2009-11-01

    Hepatic fibrosis occurs during most chronic liver diseases and is driven by inflammatory responses to injured tissue. Because DCs are central to modulating liver immunity, we postulated that altered DC function contributes to immunologic changes in hepatic fibrosis and affects the pathologic inflammatory milieu within the fibrotic liver. Using mouse models, we determined the contribution of DCs to altered hepatic immunity in fibrosis and investigated the role of DCs in modulating the inflammatory environment within the fibrotic liver. We found that DC depletion completely abrogated the elevated levels of many inflammatory mediators that are produced in the fibrotic liver. DCs represented approximately 25% of the fibrotic hepatic leukocytes and showed an elevated CD11b+CD8- fraction, a lower B220+ plasmacytoid fraction, and increased expression of MHC II and CD40. Moreover, after liver injury, DCs gained a marked capacity to induce hepatic stellate cells, NK cells, and T cells to mediate inflammation, proliferation, and production of potent immune responses. The proinflammatory and immunogenic effects of fibrotic DCs were contingent on their production of TNF-alpha. Therefore, modulating DC function may be an attractive approach to experimental therapeutics in fibro-inflammatory liver disease.

  16. Role of T cell death in maintaining immune tolerance during persistent viral hepatitis

    PubMed Central

    Larrubia, Juan Ramón; Lokhande, Megha Uttam; García-Garzón, Silvia; Miquel, Joaquín; Subirá, Dolores; Sanz-de-Villalobos, Eduardo

    2013-01-01

    Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance. PMID:23569333

  17. Intrahepatic CD4+ cell depletion in hepatitis C virus/HIV-coinfected patients.

    PubMed

    Canchis, P Wilfredo; Yee, Herman T; Fiel, M Isabel; Dieterich, Douglas T; Liu, Ruei-Che; Chiriboga, Luis; Jacobson, Ira M; Edlin, Brian R; Talal, Andrew H

    2004-09-01

    Coinfection with HIV and hepatitis C virus (HCV)-specific immune responses, increases hepatic inflammation, accelerates hepatic fibrosis, and is associated with deceased treatment responses. We quantified intrahepatic lymphocyte and hepatocyte phenotypes in HCV-infected patients with (n = 38) and without (n = 41) HIV infection. A single pathologist counted positive cells in 5 portal and 5 lobular areas. Coinfected patients had 6.81 +/- 1.9 fewer CD4 cells per portal field (10.58 +/- 1.12 vs. 4.97 +/- 1.09 cells/high-power field [HPF]; P < 0.001) and 0.48 +/- 0.15 more apoptotic lymphocytes per lobular field (0.16 +/- 0.06 vs. 0.64 +/- 0.15 cell/HPF; P = 0.002) than monoinfected patients. The number of portal CD4 cells was not associated with the peripheral CD4 cell number. Portal and lobular CD8 cells did not differ between the 2 groups. Portal proliferative hepatocytes were increased in coinfected patients with HIV RNA levels of >400 copies/mL (1.13 +/- 0.32 cells/HPF; P = 0.01) compared with those with undetectable HIV RNA (0.46 +/- 0.09 cell/HPF) and monoinfected patients (0.45 +/- 0.08 cell/HPF). In conclusion, HIV coinfection is associated with fewer portal CD4 cells and increased lobular lymphocyte apoptosis that may impact on the natural history of HCV infection.

  18. Hepatitis B e antigen polypeptides isolated from sera of individuals infected with hepatitis B virus: comparison with HBeAg polypeptide derived from Dane particles.

    PubMed

    Takahashi, K; Imai, M; Gotanda, T; Sano, T; Oinuma, A; Mishiro, S; Miyakawa, Y; Mayumi, M

    1980-09-01

    Hepatitis B e antigen (HBeAg) occurs in the serum of individuals infected with hepatitis B virus both free and in association with IgG. Utilizing a succession of steps involving salt precipitation, affinity chromatography, ion-exchange chromatography and isoelectrofocusing, we isolated free and IgG-bound forms of HBeAg from the sera of infected individuals with an overall gain in specific activity of 3000-fold and 540-fold, respectively. Polypeptide profiles of purified HBeAg preparations were studied by SDS-polyacrylamide gel electrophoresis in the presence of 2-mercaptoethanol. Both free and IgG-bound preparations revealed polypeptides with mol. wt. of 15500 (P15.5) and 16 500 (P16.5), and HBeAg activity was detected corresponding to their positions. The HBeAg polypeptides (P15.5/16.5) derived from sera were physicochemically different from the two polypeptides with HBeAg activity (P19 and P45) liberated from Dane particle cores by the conventional method involving incubation with Nonidet P40 and 2-mercaptoethanol. However, when core particles were prepared in the presence of a proteolytic enzyme, in addition to Nonidet P40 and 2-mercaptoethanol, they gave rise to HBeAg polypeptides with mol. wt. of 31000 (P31) and 15 500. Furthermore, P31 split into P15.5 when heated at 100 degrees C for 2 min. On the basis of these results, P15.5 may be assumed to be the essential polypeptide bearing HBeAg activity in the serum and also in Dane particles.

  19. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    PubMed Central

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  20. Intestinal dendritic cells change in number in fulminant hepatic failure

    PubMed Central

    Cao, Xu; Liu, Mei; Wang, Peng; Liu, Dong-Yan

    2015-01-01

    AIM: To investigate the change in intestinal dendritic cell (DC) number in fulminant hepatic failure (FHF). METHODS: An animal model of FHF was created. Intestinal CD11b/c was detected by immunohistochemistry and Western blot. Quantitative real-time polymerase chain reaction (PCR) was used to detect intestinal integrin-α mRNA expression. Intestinal CD83, CD86, CD74, CD3 and AKT were detected by immunohistochemistry, Western blot and PCR. Phosphorylated-AKT (p-AKT) was detected by immunohistochemistry and Western blot. RESULTS: In the FHF group [D-galactosamine (D-Galn) + lipopolysaccharide (LPS) group], the mice began to die after 6 h; conversely, in the D-Galn and LPS groups, the activity of mice was poor, but there were no deaths. Immunohistochemistry results showed that in FHF, the expression of CD11b/c (7988400 ± 385941 vs 1102400 ± 132273, P < 0.05), CD83 (13875000 ± 467493 vs 9257600 ± 400364, P < 0.05), CD86 (7988400 ± 385941 vs 1102400 ± 13227, P < 0.05) and CD74 (11056000 ± 431427 vs 4633400 ± 267903, P < 0.05) was significantly increased compared with the normal saline (NS) group. Compared with the NS group, the protein expression of CD11b/c (5.4817 ± 0.77 vs 1.4073 ± 0.37, P < 0.05) and CD86 (4.2673 ± 0.69 vs 1.1379 ± 0.42, P < 0.05) was significantly increased. Itg-α (1.1224 ± 0.3 vs 0.4907 ± 0.19, P < 0.05), CD83 (3.6986 ± 0.40 vs 1.0762 ± 0.22, P < 0.05) and CD86 (1.5801 ± 0.32 vs 0.8846 ± 0.10, P < 0.05) mRNA expression was increased significantly in the FHF group. At the protein level, expression of CD74 in the FHF group (2.3513 ± 0.52) was significantly increased compared with the NS group (1.1298 ± 0.33), whereas in the LPS group (2.3891 ± 0.47), the level of CD74 was the highest (P < 0.05). At the gene level, the relative expression of CD74 mRNA in the FHF group (1.5383 ± 0.26) was also significantly increased in comparison to the NS group (0.7648 ± 0.22; P < 0.05). CD3 expression was the highest in the FHF group (P < 0

  1. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy

    PubMed Central

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-01-01

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases. PMID:27803769

  2. Hepatitis C and double-hit B cell lymphoma successfully treated by antiviral therapy.

    PubMed

    Galati, Giovanni; Rampa, Lorenzo; Vespasiani-Gentilucci, Umberto; Marino, Mirella; Pisani, Francesco; Cota, Carlo; Guidi, Alessandro; Picardi, Antonio

    2016-10-18

    B cells lymphoma is one of the most challenging extra-hepatic manifestations of hepatitis C virus (HCV). Recently, a new kind of B-cell lymphoma, named double-hit B (DHL), was characterized with an aggressive clinical course whereas a potential association with HCV was not investigated. The new antiviral direct agents (DAAs) against HCV are effective and curative in the majority of HCV infections. We report the first case, to our knowledge, of DHL and HCV-infection successfully treated by new DAAs. According to our experience, a DHL must be suspected in case of HCV-related lymphoma, and an early diagnosis could direct towards a different hematological management because a worse prognosis might be expected. A possible effect of DAAs on DHL regression should be investigated, but eradicating HCV would avoid life-threatening reactivation of viral hepatitis during pharmacological immunosuppression in onco-haematological diseases.

  3. Reverse seroconversion of hepatitis B virus after hematopoietic stem cell transplantation.

    PubMed

    Goyama, S; Kanda, Y; Nannya, Y; Kawazu, M; Takeshita, M; Niino, M; Komeno, Y; Nakamoto, T; Kurokawa, M; Tsujino, S; Ogawa, S; Aoki, K; Chiba, S; Motokura, T; Shiratori, Y; Hirai, H

    2002-11-01

    Hepatitis B virus (HBV) reactivation in patients previously positive for hepatitis B surface antibody (HBsAb), so-called reverse seroconversion, has been considered to be a rare complication after hematopoietic stem cell transplantation (HSCT). We experienced two patients who developed reverse seroconversion among nine who were HBsAb positive and Hepatitis B core antibody (HBcAb) positive before HSCT; one after autologous bone marrow transplantation (BMT) and another after allogeneic peripheral blood stem cell transplantation (PBSCT). We reviewed the literature and considered that reverse seroconversion of HBV after HSCT is not uncommon among HBsAb positive recipients. The use of corticosteroids, the lack of HBsAb in donor, and a decrease in serum HBsAb and HBcAb levels may predict reverse seroconversion after HSCT.

  4. Ultrastructural changes in hepatic sinusoidal endothelial cells acutely exposed to colloidal iron.

    PubMed

    Bassett, Mark L; Dahlstrom, Jane E; Taylor, Matthew C; Koina, Mark E; Maxwell, Lesley; Francis, Douglas; Jain, Sanjiv; McLean, Allan J

    2003-07-01

    Hepatic sinusoidal endothelial cells form an important interface between the vascular system, represented by the sinusoids, and the space of Disse that surrounds the hepatocyte microvilli. This study aimed to assess the light microscopic and ultrastructural effects of acute exposure of hepatic sinusoidal endothelial cells to colloidal iron by injection of rats with iron polymaltose. Eight minutes after a single intravenous injection of iron polymaltose sinusoidal endothelial cells showed defenestration, and thickening and layering as assessed by transmission electron microscopy. Kupffer cells and stellate cells appeared activated. These changes were not observed in control animals, experiments using equivalent doses of maltose, or experiments using colloidal carbon except for Kupffer cell activation due to colloidal carbon. No significant light microscopic changes were seen in study or control animals. The findings indicate that acute exposure to colloidal iron causes changes in hepatic sinusoidal endothelial cells, stellate cells and Kupffer cells. This may be the result of a direct toxic effect of iron or increased production of reactive oxygen species. These observations suggest a possible mechanism for defenestration of sinusoidal endothelial cells in ageing and in disease states.

  5. Sulfatide-Mediated Activation of Type II Natural Killer T Cells Prevents Hepatic Ischemic Reperfusion Injury In Mice

    PubMed Central

    Arrenberg, Philomena; Maricic, Igor; Kumar, Vipin

    2011-01-01

    Background & Aims Hepatic ischemic reperfusion injury (IRI) is a major complication of liver transplantation and resectional hepatic surgeries. Natural killer T (NKT) cells predominate in liver, where they recognize lipid antigens bound to CD1d molecules. Type I NKT cells utilize a semi-invariant T-cell receptor and react with α-galactosylceramide; type II NKT cells use diverse T-cell receptors. Some type II NKT cells recognize the self-glycolipid sulfatide. It is not clear whether or how these distinct NKT cell subsets mediate hepatocellular damage following IRI. Methods We examined the roles of type I and type II NKT cells in mice with partial hepatic, warm ischemia and reperfusion injury. Results Mice that lack type I NKT cells (Jα18−/−) were protected from hepatic IRI, indicated by reduced hepatocellular necrosis and serum levels of alanine aminotransferase. Sulfatide-mediated activation of type II NKT cells reduced IFN-γ secretion by type I NKT cells and prevented IRI. Protection from hepatic IRI by sulfatide-mediated inactivation of type I NKT cells was associated with significant reductions in hepatic recruitment of myeloid cell subsets, especially the CD11b+Gr-1int, Gr-1−, and NK cells. Conclusion In mice, subsets of NKT cells have opposing roles in hepatic IRI: type I NKT cells promote injury whereas sulfatide-reactive type II NKT cells protect against injury. CD1d activation of NKT cells is conserved from mice to humans, so strategies to modify these processes might be developed to treat patients with hepatic reperfusion injury. PMID:20950612

  6. Immune-driven adaptation of hepatitis B virus genotype D involves preferential alteration in B-cell epitopes and replicative attenuation--an insight from human immunodeficiency virus/hepatitis B virus coinfection.

    PubMed

    Mondal, R K; Khatun, M; Ghosh, S; Banerjee, P; Datta, S; Sarkar, S; Saha, B; Santra, A; Banerjee, S; Chowdhury, A; Datta, S

    2015-07-01

    An important driving force behind the sequence diversity of hepatitis B virus (HBV) is viral adaptation to host immune responses. To gain an insight into the impact of host immunity on genetic diversification and properties of HBV, we characterized HBV of genotype D from treatment-naive hepatitis B e antigen-positive (EP) and hepatitis B e antigen-negative (EN) patients with chronic hepatitis B (CHB), where HBV is under stronger immune pressure, with that of HBV derived from human immunodeficiency virus (HIV)/HBV-coinfected individuals, where HIV infection has significantly weakened the immune system. Full-length sequence analysis showed that HBV heterogeneity was most extensive in EN-CHB followed by EP-CHB and HIV/HBV coinfection. The relative magnitude of non-synonymous changes within B-cell epitopes was greater than that in T-cell epitopes of HBV open reading frames (ORFs) in both EP-CHB and EN-CHB. Nine amino acid substitutions were identified in B-cell epitopes and one in a T-cell epitope of HBV in EN-CHB, most of which resulted in altered hydrophobicities, as determined using the Kyte and Doolittle method, relative to wild-type residues found in HBV from the HIV-positive group. Additionally, 19 substitutions occurred at significantly higher frequencies in non-epitope regions of HBV ORF-P in EN-CHB than HIV/HBV-coinfected patients. In vitro replication assay demonstrated that the substitutions, particularly in reverse transcriptase and RNaseH domains of ORF-P, resulted in a decline in replication capacity of HBV. Hence, our results indicate that HBV adapts to increasing immune pressure through preferential mutations in B-cell epitopes and by replicative attenuation. The viral epitopes linked to immune response identified in this study bear important implications for future HBV vaccine studies.

  7. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    EPA Pesticide Factsheets

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  8. Derivation and spontaneous differentiation of human embryonic stem cells*

    PubMed Central

    Amit, Michal; Itskovitz-Eldor, Joseph

    2002-01-01

    Abstract Embryonic stem (ES) cells are unique cells derived from the inner cell mass of the mammalian blastocyst. These cells are immortal and pluripotent, retain their developmental potential after prolonged culture, and can be continuously cultured in an undifferentiated state. Many in vitro differentiation systems have been developed for mouse ES cells, including reproducible methods for mouse ES cell differentiation into haematopoietic and neural precursors, cardiomyocytes, insulin-secreting cells, endothelial cells and various other cell types. The derivation of new human ES cell lines provides the opportunity to develop unique models for developmental research and for cell therapies. In this review we consider the derivation and spontaneous differentiation of human ES cells. PMID:12033726

  9. The Diagnostic Value of Hepatic Arterial Velocity in Venoocclusive Disease After Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Kaya, Nusabe; Erbey, Fatih; Atay, Didem; Akçay, Arzu; Bozkurt, Ceyhun; Ozturk, Gulyuz

    2017-03-06

    The aim of this study was to determine usefulness of measurements of maximal systolic velocity of the hepatic artery with Doppler ultrasonography in the diagnosis of venoocclusive disease (VOD) after hematopoietic stem cell transplantation. We prospectively obtained 5 sonograms per patient: pretransplantation, day +1, +7, +14, and +28 on 36 nonconsecutive children who underwent hematopoietic stem cell transplantation. We examined the hepatic artery, the portal, hepatic and splenic veins, the thickness of the gallbladder wall, the presence of ascites, and the liver and spleen size. The diagnosis of VOD was based on clinical and laboratory data. Patients were divided into 2 groups: those with VOD (n=18) and those without VOD (n=18). The variance of 2 groups was analyzed. Vmax of the hepatic artery had a strong correlation with clinical VOD diagnosis (P<0.001). There was no statistically significant difference in the other Doppler parameters. The results of our study showed that the measurement of Vmax of the hepatic artery can provide important support in the diagnosis of VOD and can be useful in the follow-up of treatment response.

  10. Mitogen-induced upregulation of hepatitis C virus expression in human lymphoid cells.

    PubMed

    Pham, Tram N Q; Macparland, Sonya A; Coffin, Carla S; Lee, Samuel S; Bursey, Ford R; Michalak, Tomasz I

    2005-03-01

    Considering growing evidence indicating that hepatitis C virus (HCV) replicates in lymphoid cells, establishment of a reliable and sensitive method for detection of HCV in these cells may provide means for monitoring the infection and the efficacy of sterilizing antiviral therapy. In this study, conditions for ex vivo augmentation and detection of the HCV genome in peripheral blood mononuclear cells (PBMCs) from patients with chronic hepatitis C (CHC) or after a sustained virological response (SVR) to antiviral treatment were assessed. Following stimulation with combinations of mitogens and/or cytokines, PBMCs and, in certain cases, affinity-purified T and B cells were examined for HCV positive- and negative-strand RNA by using RT-PCR followed by nucleic acid hybridization, while the presence of viral NS3 protein was determined by flow cytometry. HCV RNA augmentation was assessed by quantification of Southern and dot-blot hybridization signals. The results showed that treatment of peripheral lymphoid cells with mitogens stimulating T- and B-cell proliferation and with cytokines supporting their growth significantly increased HCV RNA detection in patients with both CHC and SVR. This enhancement was up to 100-fold for the HCV genome and fivefold for the NS3 protein compared with untreated cells. In conclusion, HCV RNA can be readily detected in circulating lymphoid cells in progressing hepatitis C and following SVR after ex vivo cell stimulation. As such, this method offers a new investigative tool to study HCV lymphotropism and to monitor virus presence during the course of HCV infection.

  11. Analysis of T cell repertoire in the liver of patients with chronic hepatitis C

    PubMed Central

    Umemura, T; Yoshizawa, K; Ota, M; Katsuyama, Y; Inada, H; Tanaka, E; Kiyosawa, K

    2000-01-01

    Many T cells infiltrate into the liver of patients with chronic hepatitis C (CH-C). They are believed to play a crucial role in the immunopathogenesis of hepatic inflammation, but their clonality and specificity are unknown. The aim of this study was to clarify the characteristics of these T cells. We analysed the complementarity-determining region (CDR)3 size lengths of T cell receptor (TCR) β-chains by size spectratyping, and determined the sequences of Vβ CDR3 after subcloning Vβ-specific polymerase chain reaction products. Spectratyping showed clonal expansions in all liver specimens, most of which showed more than two T cell clones. Moreover, many non-clonal T cells also accumulated in the liver. Clonality of the T cells suspected by spectratyping was confirmed by CDR3 sequencing. Although the sequences revealed no whole CDR3-shared clones among different patients, some common motif sequences were observed. Our data suggest that T cells are stimulated by several hepatitis C virus (HCV) epitopes, then accumulate in the liver of CH-C patients. Shared motifs of expanded T cell clones suggest that they might recognize the same regions of HCV peptides, but have differences due to HCV peptide mutational changes. These clones might also interact with non-clonal T cells and play a crucial role in the immunopathogenesis of CH-C. PMID:10886248

  12. Stephanthraniline A suppressed CD4(+) T cell-mediated immunological hepatitis through impairing PKCθ function.

    PubMed

    Chen, Feng-Yang; Zhou, Li-Fei; Li, Xiao-Yu; Zhao, Jia-Wen; Xu, Shi-Fang; Huang, Wen-Hai; Gao, Li-Juan; Hao, Shu-Juan; Ye, Yi-Ping; Sun, Hong-Xiang

    2016-10-15

    Stephanthraniline A (STA), a C21 steroid isolated from Stephanotis mucronata (Blanco) Merr., was previously shown to inhibit T cells activation and proliferation in vitro and in vivo. The purpose of this study was to further evaluate the in vivo immunosuppressive activity of STA and to elucidate its potential mechanisms. The results showed that pretreatment with STA significantly attenuated concanavalin A (Con A)-induced hepatitis and reduced CD4(+) T cells activation and aggregation in hepatic tissue in mice. STA directly suppressed the activation and proliferation of Con A-induced CD4(+) T cells, and inhibited NFAT, NFκB and MAPK signaling cascades in activated CD4(+) T cells in vitro. Moreover, it was proved that STA inhibited T cells activation and proliferation through proximal T cell-receptor (TCR) signaling- and Ca(2+) signaling-independent way. The molecular docking studies predicted that STA could tight bind to PKCθ via five hydrogen. The further findings indicated STA directly inhibited PKCθ kinase activity, and its phosphorylation in activated CD4(+) T cells in vitro. Collectively, the present study indicated that STA could protect against CD4(+) T cell-mediated immunological hepatitis in mice through PKCθ and its downstream NFAT, NFκB and MAPK signaling cascades. These results highlight the potential of STA as an effective leading compound for use in the treatment of CD4(+) T cell-mediated inflammatory and autoimmune diseases.

  13. [Changes in neuropeptide Y and substance P immunoreactive nerve fibres and immunocompetent cells in hepatitis].

    PubMed

    Fehér, Erzsébet

    2015-11-22

    Neuropeptide Y and substance P were thought to play a role in the function of immune cells and in amplification or elimination of the inflammatory processes. In hepatitis the number of both neuropeptide Y and substance P immunoreactive nerve fibres are increased, where the increase of neoropeptide Y is significant. A large number of lymphocytes and mast cells are also stained for neuropeptide Y and substance P. Very close associations (less than 1 µm) were observed between neuropeptide Y immunoreactive nerve fibres and immune cells stained also with neuropeptide Y. Some immune cells were also found to be immunoreactive for tumor necrosis factor-α and NF-κB. Some of the SP IR immunocells were also stained for TNF-α and nuclear factor kappaB. Based on these data it is hypothesized that neuropeptid Y and substance P released from nerve fibres and immune cells play a role in inflammation and elimination of inflammation in hepatitis.

  14. γδ T cells are indispensable for interleukin-23-mediated protection against Concanavalin A-induced hepatitis in hepatitis B virus transgenic mice.

    PubMed

    Meng, Ziyu; Wang, Jingya; Yuan, Yifang; Cao, Guangchao; Fan, Shuobing; Gao, Chao; Wang, Li; Li, Zheng; Wu, Xiaoli; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan

    2017-05-01

    Hepatitis B virus surface antigen (HBsAg) carriers are highly susceptible to liver injury triggered by environmental biochemical stimulation. Previously, we have reported an inverse correlation between γδ T cells and liver damage in patients with hepatitis B virus (HBV). However, whether γδ T cells play a role in regulating the hypersensitivity of HBsAg carriers to biochemical stimulation-induced hepatitis is unknown. In this study, using HBV transgenic (HBs-Tg) and HBs-Tg T-cell receptor-δ-deficient (TCR-δ(-/-) ) mice, we found that mice genetically deficient in γδ T cells exhibited more severe liver damage upon Concanavalin A (Con A) treatment, as indicated by substantially higher serum alanine aminotransferase levels, further elevated interferon-γ (IFN-γ) levels and more extensive necrosis. γδ T-cell deficiency resulted in elevated IFN-γ in CD4(+) T cells but not in natural killer or natural killer T cells. The depletion of CD4(+) T cells and neutralization of IFN-γ reduced liver damage in HBs-Tg and HBs-Tg-TCR-δ(-/-) mice to a similar extent. Further investigation revealed that HBs-Tg mice showed an enhanced interleukin-17 (IL-17) signature. The administration of exogenous IL-23 enhanced IL-17A production from Vγ4 γδ T cells and ameliorated liver damage in HBs-Tg mice, but not in HBs-Tg-TCR-δ(-/-) mice. In summary, our results demonstrated that γδ T cells played a protective role in restraining Con A-induced hepatitis by inhibiting IFN-γ production from CD4(+) T cells and are indispensable for IL-23-mediated protection against Con A-induced hepatitis in HBs-Tg mice. These results provided a potential therapeutic approach for treating the hypersensitivity of HBV carriers to biochemical stimulation-induced liver damage.

  15. Peroxiredoxin I is important for cancer-cell survival in Ras-induced hepatic tumorigenesis.

    PubMed

    Han, Bing; Shin, Hye-Jun; Bak, In Seon; Bak, Yesol; Jeong, Ye-Lin; Kwon, Taeho; Park, Young-Ho; Sun, Hu-Nan; Kim, Cheol-Hee; Yu, Dae-Yeul

    2016-10-18

    Peroxiredoxin I (Prx I), an antioxidant enzyme, has multiple functions in human cancer. However, the role of Prx I in hepatic tumorigenesis has not been characterized. Here we investigated the relevance and underlying mechanism of Prx I in hepatic tumorigenesis. Prx I increased in tumors of hepatocellular carcinoma (HCC) patients that aligned with overexpression of oncogenic H-ras. Prx I also increased in H-rasG12V transfected HCC cells and liver tumors of H-rasG12V transgenic (Tg) mice, indicating that Prx I may be involved in Ras-induced hepatic tumorigenesis. When Prx I was knocked down or deleted in HCC-H-rasG12V cells or H-rasG12V Tg mice, cell colony or tumor formation was significantly reduced that was associated with downregulation of pERK pathway as well as increased intracellular reactive oxygen species (ROS) induced DNA damage and cell death. Overexpressing Prx I markedly increased Ras downstream pERK/FoxM1/Nrf2 signaling pathway and inhibited oxidative damage in HCC cells and H-rasG12V Tg mice. In this study, we found Nrf2 was transcriptionally activated by FoxM1, and Prx I was activated by the H-rasG12V/pERK/FoxM1/Nrf2 pathway and suppressed ROS-induced hepatic cancer-cell death along with formation of a positive feedback loop with Ras/ERK/FoxM1/Nrf2 to promote hepatic tumorigenesis.

  16. Specific CD8+ T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis

    PubMed Central

    Moreno-Cubero, Elia; Larrubia, Juan-Ramón

    2016-01-01

    Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway. PMID:27605882

  17. Changes in the balance between Treg and Th17 cells in patients with chronic hepatitis B.

    PubMed

    Su, Zhi-Jun; Yu, Xue-Ping; Guo, Ru-Yi; Ming, De-Song; Huang, Lv-Ye; Su, Mi-Long; Deng, Yong; Lin, Zhen-Zhong

    2013-08-01

    The purpose of this study was to explore the role of Treg cells, Th17 cells and cytokines associated with Treg/Th17 differentiation in the occurrence, development and outcome of chronic hepatitis B (CHB). To do so, we detected populations of Treg and Th17 cells and their associated cytokines in the peripheral blood of CHB patients. The populations of Treg cells (CD4(+)CD25(high)CD127(low) T cells) and Th17 cells (CD3(+)CD8(-)IL-17(+) T cells) were analyzed in 46 patients with low to moderate chronic hepatitis B (CHB-LM), 24 patients with severe chronic hepatitis B (CHB-S) and 20 healthy controls (HC) using flow cytometry. The levels of cytokines associated with Treg/Th17 differentiation, including IL-10, TGF-β1, IL-17 and IL-23, were measured by enzyme-linked immunosorbent assay (ELISA). Our study showed that the imbalance of Treg and Th17 cells might play an important role in the occurrence, development and outcome of CHB.

  18. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response.

    PubMed

    Li, Qi; Liu, Zhiguo; Guo, Jianli; Chen, Jiangyuan; Yang, Pu; Tian, Jun; Sun, Jun; Zong, Yiqiang; Qu, Shen

    2009-10-01

    Reported data indicate that cholesterol loading in the liver can cause hepatic injury. To explore the possible mechanisms of cell damage resulting from cholesterol overloading in hepatocytes, cell apoptosis, the unfolded protein response (UPR) and the correlation between them were assessed in the cholesterol-overloaded normal human hepatic cell line L02. L02 cells were incubated with 200 microg/ ml of low density lipoprotein (LDL) for 24 h with or without 20 microg/ml 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In the LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymatic combined high performance liquid chromatography assay. Expression of immunoglobulin-binding protein, X-box binding protein 1, activating transcription factor 6, activating transcription factor 4, CCAAT/enhancer-binding protein homologous protein-10, markers of endoplasmic reticulum stress (ERS)/ UPR, were up-regulated as determined using reverse transcription-polymerase chain reaction (RT-PCR) or Western blot analysis. The rate of cell apoptic death increased 21.3+/-2.4%. Meanwhile, the active caspase-3 protein expression was increased 8.4-fold compared to the active caspase-3 protein expression in the controls. Furthermore, 4-phenylbutyric acid, an inhibitor of UPR, partly reduced cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induces ERS and activates the UPR which, in part, leads to the apoptotic damage of cells.

  19. Lamivudine treatment can restore T cell responsiveness in chronic hepatitis B.

    PubMed Central

    Boni, C; Bertoletti, A; Penna, A; Cavalli, A; Pilli, M; Urbani, S; Scognamiglio, P; Boehme, R; Panebianco, R; Fiaccadori, F; Ferrari, C

    1998-01-01

    High viral and/or antigen load may be an important cause of the T cell hyporesponsiveness to hepatitis B virus (HBV) antigens that is often observed in patients with chronic HBV infection. Reduction of viral and antigen load by lamivudine treatment represents an ideal model for investigating this hypothesis. HLA class II restricted T cell responses and serum levels of HBV-DNA, HBsAg, and HBeAg were studied before and during lamivudine treatment in 12 patients with hepatitis B e antigen positive chronic active hepatitis B to assess possible correlations between viral and/or antigen load and vigor of the T cell response. Cell proliferation to HBV nucleocapsid antigens and peptides and frequency of circulating HBV nucleocapsid-specific T cells were assessed to characterize CD4-mediated responses. A highly significant enhancement of the CD4-mediated response to HBV nucleocapsid antigens was already detectable in most patients 7-14 d after the start of lamivudine treatment. This effect was dramatic and persistent in 10 patients but undetectable in 2. It occurred concomitant with a rapid and marked reduction of viremia. Interestingly, lamivudine also enhanced the responses to mitogens and recall antigens, showing that its effect was not limited to HBV-specific T cells. In conclusion, an efficient antiviral T cell response can be restored by lamivudine treatment in patients with chronic hepatitis B concurrently with reduction of viremia, indicating the importance of viral load in the pathogenesis of T cell hyporesponsiveness in these patients. Since lamivudine treatment can overcome T cell hyporeactivity, combining lamivudine with treatments directed to stimulate the T cell response may represent an effective strategy to induce eradication of chronic HBV infection. PMID:9727065

  20. Pluripotent stem cells derived from mouse and human white mature adipocytes.

    PubMed

    Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R; Shahmirian, Laurine J; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A; Yao, Yucheng; Boström, Kristina I

    2014-02-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5-7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies.

  1. Pluripotent Stem Cells Derived From Mouse and Human White Mature Adipocytes

    PubMed Central

    Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R.; Shahmirian, Laurine J.; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A.; Yao, Yucheng

    2014-01-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5–7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies. PMID:24396033

  2. Association of interleukin-15-induced peripheral immune activation with hepatic stellate cell activation in persons coinfected with hepatitis C virus and HIV.

    PubMed

    Allison, Robert D; Katsounas, Antonios; Koziol, Deloris E; Kleiner, David E; Alter, Harvey J; Lempicki, Richard A; Wood, Brad; Yang, Jun; Fullmer, Brandie; Cortez, Karoll J; Polis, Michael A; Kottilil, Shyam

    2009-08-15

    Hepatic stellate cells (HSCs) mediate hepatitis C virus (HCV)-related liver fibrosis, and increased HSC activation in human immunodeficiency virus (HIV)/HCV coinfection may be associated with accelerated fibrosis. We examined the level of HSC activation in HIV/HCV-coinfected and HCV-monoinfected subjects and its relationship to the level of activation and gene expression of peripheral immune cells in coinfected subjects. HSC activation levels positively correlated with peripheral CD4+ and CD8+ T cell immune activation and were associated with enhanced interleukin-15 (IL-15) gene expression, suggesting a pathogenic role for IL-15-driven immunomediated hepatic fibrosis. Future strategies that reduce immune activation and HSC activation may delay progression of liver fibrosis.

  3. CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis.

    PubMed

    Borkham-Kamphorst, Erawan; Steffen, Bettina T; Van de Leur, Eddy; Haas, Ute; Tihaa, Lidia; Friedman, Scott L; Weiskirchen, Ralf

    2016-01-01

    CCN1/CYR61 is a matricellular protein of the CCN family, comprising six secreted proteins specifically associated with the extracellular matrix (ECM). CCN1 acts as an enhancer of the cutaneous wound healing process by preventing hypertrophic scar formation through induction of myofibroblast senescence. In liver fibrosis, the senescent cells are primarily derived from activated hepatic stellate cells (HSC) that initially proliferate in response to liver damage and are the major source of ECM. We investigate here the possible use of CCN1 as a senescence inducer to attenuate liver fibrogenesis by means of adenoviral gene transfer in primary HSC, myofibroblasts (MFB) and immortalized HSC lines (i.e. LX-2, CFSC-2G). Infection with Ad5-CMV-CCN1 induced large amounts of CCN1 protein in all these cells, resulting in an overload of the endoplasmic reticulum (ER) and in a compensatory unfolded protein response (UPR). The UPR resulted in upregulation of ER chaperones including BIP/Grp78, Grp94 and led to an activation of IRE1α as evidenced by spliced XBP1 mRNA with IRE1α-induced JNK phosphorylation. The UPR arm PERK and eIF2a was phosphorylated, combined with significant CHOP upregulation. Ad5-CMV-CCN1 induced HSC apoptosis that was evident by proteolytic cleavage of caspase-12, caspase-9 and the executor caspase-3 and positive TUNEL stain. Remarkably, Ad5-CMV-CCN1 effectively reduced collagen type I mRNA expression and protein. We conclude that the matricellular protein CCN1 gene transfer induces HSC apoptosis through ER stress and UPR.

  4. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    PubMed

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  5. Bone marrow-derived dendritic cells.

    PubMed

    Roney, Kelly

    2013-01-01

    While much is understood about dendritic cells and their role in the immune system, the study of these cells is critical to gain a more complete understanding of their function. Dendritic cell isolation from mouse body tissues can be difficult and the number of cells isolated small. This protocol describes the growth of large number of dendritic cells from the culture of mouse bone marrow cells. The dendritic cells grown in culture facilitate experiments that may require large number of dendritic cells without great expense or use of large number of mice.

  6. Polycomb Group Protein Ezh2 Regulates Hepatic Progenitor Cell Proliferation and Differentiation in Murine Embryonic Liver

    PubMed Central

    Ueno, Yasuharu; Nakata, Susumu; Obana, Yuta; Sekine, Keisuke; Zheng, Yun-Wen; Takebe, Takanori; Isono, Kyoichi; Koseki, Haruhiko; Taniguchi, Hideki

    2014-01-01

    In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2), a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3), which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3. PMID:25153170

  7. Hepatic Microenvironment Affects Oval Cell Localization in Albumin-Urokinase-Type Plasminogen Activator Transgenic Mice

    PubMed Central

    Braun, Kristin M.; Thompson, Anne W.; Sandgren, Eric P.

    2003-01-01

    Mice carrying an albumin-urokinase type plasminogen activator transgene (AL-uPA) develop liver disease secondary to uPA expression in hepatocytes. Transgene-expressing parenchyma is replaced gradually by clones of cells that have deleted transgene DNA and therefore are not subject to uPA-mediated damage. Diseased liver displays several abnormalities, including hepatocyte vacuolation and changes in nonparenchymal tissue. The latter includes increases in laminin protein within parenchyma and the appearance of cytokeratin 19-positive bile ductule-like cells (oval cells) both in portal regions and extending into the hepatic parenchyma. In this study, we subjected AL-uPA mice to two-thirds partial hepatectomy to identify the response of these livers to additional growth stimulation. We observed several changes in hepatic morphology. First, the oval cells increased in number and often formed ductules in the parenchyma. Second, this cellular change was accompanied by a further increase in laminin associated with single or clusters of oval cells. Third, desmin-positive Ito cells increased in number and maintained close association with oval cells. Fourth, these changes were localized precisely to uPA-expressing areas of liver. Regenerating clones of uPA-deficient cells appeared to be unaffected both by stromal and cellular alterations. Thus, additional growth stimulation of diseased uPA-expressing liver induces an oval cell-like response, as observed in other models of severe hepatic injury, but the localization of this response seems to be highly regulated by the hepatic microenvironment. PMID:12507902

  8. Hepatic veno-occlusive disease after hematopoietic stem cell transplantation: Prophylaxis and treatment controversies.

    PubMed

    Cheuk, Daniel Kl

    2012-04-24

    Hepatic veno-occlusive disease (VOD), also known as sinusoidal obstruction syndrome, is a major complication of hematopoietic stem cell transplantation and it carries a high mortality. Prophylaxis for hepatic VOD is commonly given to transplant recipients from the start of conditioning through the early weeks of transplant. However, high quality evidence from randomized controlled trials is scarce with small sample sizes and the trials yielded conflicting results. Although various treatment options for hepatic VOD are available, most have not undergone stringent evaluation with randomized controlled trial and therefore it remains uncertain which treatment offers real benefit. It remains controversial whether VOD prophylaxis should be given, which prophylactic therapy should be given, who should receive prophylaxis, and what treatment should be offered once VOD is established.

  9. Hepatitis virus vaccines: present status.

    PubMed Central

    Krugman, S.

    1982-01-01

    During the past decade there has been extraordinary progress toward the development of vaccines for the prevention of type A and type B hepatitis. The successful propagation of hepatitis A virus in cell culture in 1979 was followed by the preparation of experimental live attenuated hepatitis A vaccines that have been shown to induce antibody in marmosets and chimpanzees and protect immunized marmosets against challenge with hepatitis A virus. The first human immunization trials will begin in mid-1982. An inactivated hepatitis B vaccine that was licensed in the United States in November 1981 has been shown to be safe, immunogenic, and effective. When this vaccine becomes available for use in July 1982, it will be recommended for persons who are considered to be at increased risk of contracting hepatitis B infection. Future generations of hepatitis B vaccines may be prepared from hepatitis B surface antigen derived from DNA recombinant technology or by in vitro synthesis of HBs Ag determinants by chemical means. PMID:6295013

  10. Profile of stress and toxicity gene expression in human hepatic cells treated with Efavirenz.

    PubMed

    Gomez-Sucerquia, Leysa J; Blas-Garcia, Ana; Marti-Cabrera, Miguel; Esplugues, Juan V; Apostolova, Nadezda

    2012-06-01

    Hepatic toxicity and metabolic disorders are major adverse effects elicited during the pharmacological treatment of the human immunodeficiency virus (HIV) infection. Efavirenz (EFV), the most widely used non-nucleoside reverse transcriptase inhibitor (NNRTI), has been associated with these events, with recent studies implicating it in stress responses involving mitochondrial dysfunction and oxidative stress in human hepatic cells. To expand these findings, we analyzed the influence of EFV on the expression profile of selected stress and toxicity genes in these cells. Significant up-regulation was observed with Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), which indicated metabolic stress. Several genes directly related to oxidative stress and damage exhibited increased expression, including Methalothionein 2A (MT2A), Heat shock 70kDa protein 6 (HSPA6), Growth differentiation factor 15 (GDF15) and DNA-damage-inducible transcript 3 (DDIT3). In addition, Early growth response protein 1 (EGR1) was enhanced, whereas mRNA levels of the inflammatory genes Chemokine (C-X-C motif) ligand 10 (CXCL10) and Serpin peptidase inhibitor (nexin, plasminogen activator inhibitor type 1), member 1 (SERPINE1) decreased and increased, respectively. This profile of gene expression supports previous data demonstrating altered mitochondrial function and presence of oxidative stress/damage in EFV-treated hepatic cells, and may be of relevance in the search for molecular targets with therapeutic potential to be employed in the prevention, diagnosis and treatment of the hepatic toxicity associated with HIV therapy.

  11. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    PubMed

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs.

  12. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering.

    PubMed

    Stevens, Kelly R; Miller, Jordan S; Blakely, Brandon L; Chen, Christopher S; Bhatia, Sangeeta N

    2015-10-01

    Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331-3338, 2015.

  13. Naturally derived anti-hepatitis B virus agents and their mechanism of action.

    PubMed

    Wu, Yi-Hang

    2016-01-07

    Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus (HBV) are available for HBV patients, HBV infection is still a severe public health problem in the world. All the approved therapeutic drugs (including interferon-alpha and nucleoside analogues) have their limitations. No drugs or therapeutic methods can cure hepatitis B so far. Therefore, it is urgently needed to discover and develop new anti-HBV drugs, especially non-nucleoside agents. Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms. In this review, the natural products against HBV are discussed according to their chemical classes such as terpenes, lignans, phenolic acids, polyphenols, lactones, alkaloids and flavonoids. Furthermore, novel mode of action or new targets of some representative anti-HBV natural products are also discussed. The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20 years, especially novel skeletons and mode of action. Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date, scarcely any of them are found in the list of conventional anti-HBV drugs worldwide. Additionly, in anti-HBV mechanism of action, only a few references reported new targets or novel mode of action of anti-HBV natural products.

  14. Naturally derived anti-hepatitis B virus agents and their mechanism of action

    PubMed Central

    Wu, Yi-Hang

    2016-01-01

    Despite that some approved drugs and genetically engineered vaccines against hepatitis B virus (HBV) are available for HBV patients, HBV infection is still a severe public health problem in the world. All the approved therapeutic drugs (including interferon-alpha and nucleoside analogues) have their limitations. No drugs or therapeutic methods can cure hepatitis B so far. Therefore, it is urgently needed to discover and develop new anti-HBV drugs, especially non-nucleoside agents. Naturally originated compounds with enormous molecular complexity and diversity offer a great opportunity to find novel anti-HBV lead compounds with specific antiviral mechanisms. In this review, the natural products against HBV are discussed according to their chemical classes such as terpenes, lignans, phenolic acids, polyphenols, lactones, alkaloids and flavonoids. Furthermore, novel mode of action or new targets of some representative anti-HBV natural products are also discussed. The aim of this review is to report new discoveries and updates pertaining to anti-HBV natural products in the last 20 years, especially novel skeletons and mode of action. Although many natural products with various skeletons have been reported to exhibit potent anti-HBV effects to date, scarcely any of them are found in the list of conventional anti-HBV drugs worldwide. Additionly, in anti-HBV mechanism of action, only a few references reported new targets or novel mode of action of anti-HBV natural products. PMID:26755870

  15. Kupffer cell inactivation by carbon monoxide bound to red blood cells preserves hepatic cytochrome P450 via anti-oxidant and anti-inflammatory effects exerted through the HMGB1/TLR-4 pathway during resuscitation from hemorrhagic shock.

    PubMed

    Ogaki, Shigeru; Taguchi, Kazuaki; Maeda, Hitoshi; Watanabe, Hiroshi; Ishima, Yu; Otagiri, Masaki; Maruyama, Toru

    2015-10-01

    Red blood cell (RBC) transfusions for controlling hemorrhaging induce systemic ischemia reperfusion, resulting in a decrease in hepatic cytochrome P450 (CYP) levels. Carbon monoxide (CO), when bound to red blood cells (CO-RBC) has the potential to protect the hepatic CYP protein to produce a resuscitative effect in a hemorrhagic shock rat model. The aim of this study was to investigate the mechanism by which CO-RBC resuscitation from a massive hemorrhage protects against a decrease in hepatic CYP. In the early phase (∼1h) after a hemorrhage and RBC resuscitation, hepatic CYP protein levels were significantly decreased with increasing hepatic free heme levels, but were maintained by a pre-treatment of gadolinium chloride (GdCl3), a Kupffer cell inhibitor, and Trolox, an anti-oxidant agent, as well as CO-RBC resuscitation. Under these conditions, the production of reactive oxygen species (ROS) derived from activated Kupffer cells was increased, but this increase was suppressed by CO-RBC resuscitation. At a late phase (6∼24h), CYP mRNA levels decreased after hemorrhage and RBC resuscitation, but not in the case of CO-RBC resuscitation. The increases in plasma IL-6 and TNF-α levels were decreased by CO-RBC resuscitation via the suppression of the toll-like receptor-4 (TLR-4) and the expression of the high mobility group box-1 (HMGB-1). Hepatic CYP protection after a hemorrhage and CO-RBC resuscitation can be attributed to the inactivation of Kupffer cells, resulting in the suppression of ROS production in the early phase and the suppression of inflammatory cytokine production via the TLR-4/HMGB-1signal pathway in the late phase.

  16. Transcriptional regulation of myeloid-derived suppressor cells

    PubMed Central

    Condamine, Thomas; Mastio, Jérôme; Gabrilovich, Dmitry I.

    2015-01-01

    Myeloid-derived suppressor cells are a heterogeneous group of pathologically activated immature cells that play a major role in the negative regulation of the immune response in cancer, autoimmunity, many chronic infections, and inflammatory conditions, as well as in the regulation of tumor angiogenesis, tumor cell invasion, and metastases. Accumulation of myeloid-derived suppressor cells is governed by a network of transcriptional regulators that could be combined into 2 partially overlapping groups: factors promoting myelopoiesis and preventing differentiation of mature myeloid cells and factors promoting pathologic activation of myeloid-derived suppressor cells. In this review, we discuss the specific nature of these factors and their impact on myeloid-derived suppressor cell development. PMID:26337512

  17. Engineering musculoskeletal tissues with human embryonic germ cell derivatives.

    PubMed

    Varghese, Shyni; Hwang, Nathaniel S; Ferran, Angela; Hillel, Alexander; Theprungsirikul, Parnduangjai; Canver, Adam C; Zhang, Zijun; Gearhart, John; Elisseeff, Jennifer

    2010-04-01

    The cells derived from differentiating embryoid bodies of human embryonic germ (hEG) cells express a broad spectrum of gene markers and have been induced toward ecto- and endodermal lineages. We describe here in vitro and in vivo differentiation of hEG-derived cells (LVEC line) toward mesenchymal tissues. The LVEC cells express many surface marker proteins characteristic of mesenchymal stem cells and differentiated into cartilage, bone, and fat. Homogenous hyaline cartilage was generated from cells after 63 population doublings. In vivo results demonstrate cell survival, differentiation, and tissue formation. The high proliferative capacity of hEG-derived cells and their ability to differentiate and form three-dimensional mesenchymal tissues without teratoma formation underscores their significant potential for regenerative medicine. The adopted coculture system also provides new insights into how a microenvironment comprised of extracellular and cellular components may be harnessed to generate hierarchically complex tissues from pluripotent cells.

  18. Notch Signaling Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Patients with Chronic Hepatitis C.

    PubMed

    Qin, Lei; Zhou, Yan-Cai; Wu, Hong-Jie; Zhuo, Ya; Wang, Yan-Ping; Si, Chang-Yun; Qin, Yong-Mei

    2017-04-01

    The imbalance of regulatory T cells (Tregs) and T helper 17 (Th17) cells contributes to the persistent hepatitis C virus (HCV) infection. However, modulatory factors associated with Tregs-Th17 balance were not fully elucidated. A recent study demonstrated an immunoregulatory strategy by inactivation of Notch signaling to reverse the disequilibrium of Tregs-Th17 cells in immune thrombocytopenia. Thus, the aim of this study was to assess the effect of Notch signaling in regulating the functions of Tregs and Th17 cells in chronic hepatitis C. A total of 46 patients with chronic hepatitis C and 17 normal controls (NCs) were enrolled. mRNA expressions of Notch1 and Notch2 were semiquantified by real-time reserve polymerase chain reaction. Percentages of Tregs-Th17, levels of key transcriptional factors, and cytokine productions were measured in response to treatment by DAPT, a γ-secretase inhibitor to suppress Notch signaling. We found that Notch1 and Notch2 mRNAs were significantly elevated in peripheral blood mononuclear cells from chronic hepatitis C patients compared with those from NCs. DAPT treatment reduced Th17 response by downregulation of RORγt expression and interleukin (IL)-17/IL-22 secretion. Tregs proportion, FoxP3 expression, and IL-10 production did not change significantly with DAPT treatment in chronic hepatitis C; however, blockage of Notch signaling inhibited the suppressive function of Tregs. Moreover, effective anti-HCV therapy not only reduced Notch1 and Notch2 expression but also decreased Tregs and Th17 proportions. The current data provided a novel mechanism underlying the modulation of Treg-Th17 balance. The link between Notch signaling and Th cells might lead to a new intervention for breaking immunotolerance of chronic HCV infection.

  19. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    SciTech Connect

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  20. Curative effect of combined lamivudine, adefovir dipivoxil, and stem cell transplantation on decompensated hepatitis B cirrhosis.

    PubMed

    Liu, L; Yan, Y; Zhou, J; Huang, L W; He, C P; Ling, K; Zhou, H C; Wen, Q M; Wang, X M

    2014-02-21

    This study assessed the clinical efficacy of lamivudine and adefovir dipivoxil combined with autologous bone marrow stem cell transplantation as treatment for patients with hepatitis B and decompensated liver cirrhosis. In total, 77 patients with hepatitis B and decompensated liver cirrhosis were randomly divided into two groups. Under general symptomatic and supportive treatment, the patients in group A (37 cases) were treated with lamivudine and adefovir dipivoxil, whereas those in group B (40 cases) were treated with autologous bone marrow stem cell transplantation in combination with lamivudine and adefovir dipivoxil. After 4 weeks of treatment, the liver function indicators and clinical signs and symptoms of the patients in group B improved more significantly than those of patients in group A. Lamivudine and adefovir dipivoxil in combination with autologous bone marrow stem cell transplantation effectively prevented hepatitis B virus infection and bone marrow stem cell damage. This combination treatment facilitates the differentiation of bone marrow stem cells into normal liver cells to restore liver structure and improve liver function, thereby improving the quality of life of patients.

  1. Activin A induces growth arrest through a SMAD- dependent pathway in hepatic progenitor cells

    PubMed Central

    2014-01-01

    Background Activin A, an important member of transforming growth factor-β superfamily, is reported to inhibit proliferation of mature hepatocyte. However, the effect of activin A on growth of hepatic progenitor cells is not fully understood. To that end, we attempted to evaluate the potential role of activin A in the regulation of hepatic progenitor cell proliferation. Results Using the 2-acetaminofluorene/partial hepatectomy model, activin A expression decreased immediately after partial hepatectomy and then increased from the 9th to 15th day post surgery, which is associated with the attenuation of oval cell proliferation. Activin A inhibited oval cell line LE6 growth via activating the SMAD signaling pathway, which manifested as the phosphorylation of SMAD2/3, the inhibition of Rb phosphorylation, the suppression of cyclinD1 and cyclinE, and the promotion of p21WAF1/Cip1 and p15INK4B expression. Treatment with activin A antagonist follistatin or blocking SMAD signaling could diminish the anti-proliferative effect of activin A. By contrast, inhibition of the MAPK pathway did not contribute to this effect. Antagonizing activin A activity by follistatin administration enhanced oval cell proliferation in the 2-acetylaminofluorene/partial hepatectomy model. Conclusion Activin A, acting through the SMAD pathway, negatively regulates the proliferation of hepatic progenitor cells. PMID:24628936

  2. Modulation of cell growth by the hepatitis C virus nonstructural protein NS5A.

    PubMed

    Arima, N; Kao, C Y; Licht, T; Padmanabhan, R; Sasaguri, Y; Padmanabhan, R

    2001-04-20

    Hepatitis C virus nonstructural protein, NS5A, is a phosphoprotein produced from the processing of the viral polyprotein precursor. NS5A associates with several cellular proteins in mammalian cells, and the biological consequences of this interaction are currently unknown. To this end, five stable NS5A-expressing murine and human cell lines were established. Tetracycline-regulated NIH3T3 cells and rat liver epithelial cells as well as the constitutive, NS5A-expressing, human Chang liver, HeLa, and NIH3T3 cells all exhibited cell growth retardation compared with the control cells. Cell cycle analysis by flow cytometry indicated that the NS5A-expressing human epitheloid tumor cells had a reduced S phase and an increase in the G(2)/M phase, which could be explained by a p53-dependent induction of p21(Waf1/Cip1) protein and mRNA levels. NS5A interacts with Cdk1 in vivo and in vitro, and a significant portion of the p21(Waf1/Cip1) was found to be in a complex with Cdk2 in the NS5A-expressing human hepatic cell line. Cdk1 and cyclin B1 proteins were also reduced in human Chang liver cells consistent with the increase in G(2)/M phase. Our results suggest that the NS5A protein causes growth inhibition and cell cycle perturbations by targeting the Cdk1/2-cyclin complexes.

  3. JAM-A is both essential and inhibitory to development of hepatic polarity in WIF-B cells.

    PubMed

    Braiterman, Lelita T; Heffernan, Sean; Nyasae, Lydia; Johns, David; See, Alfred P; Yutzy, Rebeca; McNickle, Allison; Herman, Mira; Sharma, Arun; Naik, Ulhas P; Hubbard, Ann L

    2008-02-01

    Junctional adhesion molecule (JAM) is involved in tight junction (TJ) formation in epithelial cells. Three JAMs (A, B, and C) are expressed in rat hepatocytes, but only rat JAM-A is present in polarized WIF-B cells, a rat-human hepatic line. We used knockdown (KD) and overexpression in WIF-B cells to determine the role of JAM-A in the development of hepatic polarity. Expression of rat JAM-A short hairpin RNA resulted in approximately 50% KD of JAM-A and substantial loss of hepatic polarity, as measured by the absence of apical cysts formed by adjacent cells and sealed by TJ belts. When inhibitory RNA-resistant human JAM-A (huWT) was expressed in KD cells, hepatic polarity was restored. In contrast, expression of JAM-A that either lacked its PDZ-binding motif (huDeltaC-term) or harbored a point mutation (T273A) did not complement, indicating that multiple sites within JAM-A's cytoplasmic tail are required for the development of hepatic polarity. Overexpression of huWT in normal WIF-B cells unexpectedly blocked WIF-B maturation to the hepatic phenotype, as did expression of three huJAM-A constructs with single point mutations in putative phosphorylation sites. In contrast, huDeltaC-term was without effect, and the T273A mutant only partially blocked maturation. Our results show that JAM-A is essential for the development of polarity in cultured hepatic cells via its possible phosphorylation and recruitment of relevant PDZ proteins and that hepatic polarity is achieved within a narrow range of JAM-A expression levels. Importantly, formation/maintenance of TJs and the apical domain in hepatic cells are linked, unlike simple epithelia.

  4. Exploration of acetanilide derivatives of 1-(ω-phenoxyalkyl)uracils as novel inhibitors of Hepatitis C Virus replication.

    PubMed

    Magri, Andrea; Ozerov, Alexander A; Tunitskaya, Vera L; Valuev-Elliston, Vladimir T; Wahid, Ahmed; Pirisi, Mario; Simmonds, Peter; Ivanov, Alexander V; Novikov, Mikhail S; Patel, Arvind H

    2016-07-12

    Hepatitis C Virus (HCV) is a major public health problem worldwide. While highly efficacious directly-acting antiviral agents have been developed in recent years, their high costs and relative inaccessibility make their use limited. Here, we describe new 1-(ω-phenoxyalkyl)uracils bearing acetanilide fragment in 3 position of pyrimidine ring as potential antiviral drugs against HCV. Using a combination of various biochemical assays and in vitro virus infection and replication models, we show that our compounds are able to significantly reduce viral genomic replication, independently of virus genotype, with their IC50 values in the nanomolar range. We also demonstrate that our compounds can block de novo RNA synthesis and that effect is dependent on a chemical structure of the compounds. A detailed structure-activity relationship revealed that the most active compounds were the N(3)-substituted uracil derivatives containing 6-(4-bromophenoxy)hexyl or 8-(4-bromophenoxy)octyl fragment at N(1) position.

  5. Factors important in the extraction, stability and in vitro assembly of the hepatitis B surface antigen derived from recombinant plant systems.

    PubMed

    Smith, Mark L; Keegan, Mark E; Mason, Hugh S; Shuler, Michael L

    2002-01-01

    The expression of vaccine antigens in edible plant material together with their delivery by the oral route constitutes a powerful paradigm, with the potential to dramatically reduce the cost of vaccine production and administration, in addition to improving distribution and patient compliance. These products will be subject to many of the same regulations applied to current injectable vaccines, so reliable methods to quantify antigen and ensure stability in crude plant extracts are required. As a model system the hepatitis B surface antigen (HBsAg) was expressed in soybean and tobacco cell cultures. This complex antigen consists of membrane-associated small surface antigen proteins (p24(s)), disulfide cross-linked to yield dimers and higher multimers. Although the total p24(s) extracted from plant cells was relatively unaffected by detergent concentration, the quantification of antigenically reactive product depended strongly on the ratio of detergent to cell concentration. Furthermore, 1-20% w/v sodium ascorbate improved the measured levels of monoclonal-reactive antigen 4- to 12-fold. Detergent also influenced antigen stability in cell lysates stored at 4 degrees C; under optimum conditions stability was maintained for at least 1 month, whereas excess detergent rendered the antigen susceptible to proteolytic degradation. This proteolysis could be counteracted by the addition of skim milk or its protein component, which stabilized antigenically reactive p24(s) for up to 2 months. The immunologically relevant epitopes of HBsAg are critically dependent on disulfide bonding. By altering the sodium ascorbate concentration or buffer pH the proportion of HBsAg displaying the monoclonal reactive epitopes was increased between 8- and 20-fold. In addition, under certain conditions the dimerized p24(s) could be converted to oligomeric aggregates, resembling the form of the serum-derived antigen. These simple in vitro manipulations, compatible with the goal of a minimally

  6. Effect of Kruppel-like factor 4 on Notch pathway in hepatic stellate cells.

    PubMed

    Xue, Yin-Kai; Tan, Jun; Dou, Dong-Wei; Chen, Ding; Chen, Lu-Jia; Ren, Huan-Ping; Chen, Li-Bo; Xiong, Xin-Gao; Zheng, Hai

    2016-12-01

    The relationship between Kruppel-like factor 4 (KLF4) and the Notch pathway was determined to investigate the effect of KLF4 on the activation of hepatic stellate cells and underlying mechanisms. Fifty SPF BALB/c mice were randomly divided into two groups. A liver fibrosis model was established in 25 mice as the experimental group, and the remaining 25 mice served as controls. On the day 0, 7, 14, and 35, liver tissues were removed for immunofluorescent detection. The Notch pathway inhibitor DAPT was added to the primary original hepatic stellate cells, and KLF4 and Notch-associated factor expression was detected by qRT-PCR. Additionally, the hepatic stellate cell line LX-2 was used to establish control and experimental groups, and was cultured in vitro. LX-2 cells in the experimental groups were treated with DAPT and the Notch activator transforming growth factor-beta 1 separately, whereas those in the control group were given isotonic culture medium. After 48 h, KLF4 expression was examined by Western blotting. After transient transfection of LX-2 cells to increase KLF4, the expression of Notch factor was examined. Immunofluorescence analysis showed that, with the aggravation of liver fibrosis, the absorbance (A) values of KLF4 were decreased (day 0: 980.73±153.19; day 7: 1087.99±230.23; day 14: 390.95±93.56; day 35: 245.99±87.34). The expression of Notch pathway- related factors (Notch-1, Notch-2, and Jagged-1) in the hepatic stellate cell membrane was negatively correlated to KLF4 expression. With the increase of KLF4 expression, Notch-2 (0.73±0.13) and Jagged-1 (0.43±0.12) expression decreased, whereas Notch-1 level was not detectable. When the Notch pathway was inhibited, KLF4 levels generally increased (18.12±1.31). Our results indicate that KLF4 expression is negatively correlated to the Notch pathway in hepatic stellate cells, which may provide a reference for the treatment of hepatic fibrosis.

  7. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression.

    PubMed

    Soliman, Elwy M; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H; Dranoff, Jonathan A

    2009-03-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca(2+) signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca(2+) signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca(2+) chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca(2+) signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca(2+) signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca(2+) signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca(2+) signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca(2+) are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis.

  8. Primary isolation and serial passage of hepatitis A virus strains in primate cell cultures.

    PubMed

    Binn, L N; Lemon, S M; Marchwicki, R H; Redfield, R R; Gates, N L; Bancroft, W H

    1984-07-01

    Although several primate cell types have been reported to support replication of hepatitis A virus, optimal conditions for the isolation and production of quantities of virus have not been defined. We therefore examined seven different primate cell types for their ability to support replication of primate-passaged and wild-type virus as reflected by intracytoplasmic accumulation of viral antigen (direct immunofluorescence and radioimmunoassay) and propagation of cell culture-adapted virus. Of the cells tested, low-passage African green monkey kidney (AGMK) cells were most sensitive for initial isolation. Viral replication was documented after inoculation of AGMK cells with seven of nine hepatitis A virus antigen-positive fecal specimens (from seven epidemiologically distinct sources). With six inocula, virus was successfully passed in serial cultures. AGMK-adapted virus was readily propagated in continuous AGMK (BS-C-1) cells. The optimal temperature for the growth of virus in BS-C-1 cells was 35 degrees C. Viral release into supernatant fluids was documented in the absence of any cytopathic effect, and infectivity titers in supernatant fluids 21 days after inoculation (50% tissue culture infective does [TCID50], 10(6.0)/ml) equalled or exceeded those in the cell fraction (TCID50, 10(5.5)/ml). Cells maintained in serum-free media readily supported viral growth, with yields of virus (TCID50, 10(6.5)/ml) equal to or greater than those obtained with cells maintained in 2% fetal bovine serum.

  9. Primary isolation and serial passage of hepatitis A virus strains in primate cell cultures.

    PubMed Central

    Binn, L N; Lemon, S M; Marchwicki, R H; Redfield, R R; Gates, N L; Bancroft, W H

    1984-01-01

    Although several primate cell types have been reported to support replication of hepatitis A virus, optimal conditions for the isolation and production of quantities of virus have not been defined. We therefore examined seven different primate cell types for their ability to support replication of primate-passaged and wild-type virus as reflected by intracytoplasmic accumulation of viral antigen (direct immunofluorescence and radioimmunoassay) and propagation of cell culture-adapted virus. Of the cells tested, low-passage African green monkey kidney (AGMK) cells were most sensitive for initial isolation. Viral replication was documented after inoculation of AGMK cells with seven of nine hepatitis A virus antigen-positive fecal specimens (from seven epidemiologically distinct sources). With six inocula, virus was successfully passed in serial cultures. AGMK-adapted virus was readily propagated in continuous AGMK (BS-C-1) cells. The optimal temperature for the growth of virus in BS-C-1 cells was 35 degrees C. Viral release into supernatant fluids was documented in the absence of any cytopathic effect, and infectivity titers in supernatant fluids 21 days after inoculation (50% tissue culture infective does [TCID50], 10(6.0)/ml) equalled or exceeded those in the cell fraction (TCID50, 10(5.5)/ml). Cells maintained in serum-free media readily supported viral growth, with yields of virus (TCID50, 10(6.5)/ml) equal to or greater than those obtained with cells maintained in 2% fetal bovine serum. PMID:6086708

  10. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells

    PubMed Central

    YOSHIZATO, Katsutoshi; THUY, Le Thi Thanh; SHIOTA, Goshi; KAWADA, Norifumi

    2016-01-01

    Cytoglobin (CYGB), a new member of the globin family, was discovered in 2001 as a protein associated with stellate cell activation (stellate cell activation-associated protein [STAP]). Knowledge of CYGB, including its crystal, gene, and protein structures as well as its physiological and pathological importance, has increased progressively. We investigated the roles of oxygen (O2)-binding CYGB as STAP in hepatic stellate cells (HSCs) to understand the part played by this protein in their pathophysiological activities. Studies involving CYGB-gene-deleted mice have led us to suppose that CYGB functions as a regulator of O2 homeostasis; when O2 homeostasis is disrupted, HSCs are activated and play a key role(s) in hepatic fibrogenesis. In this review, we discuss the rationale for this hypothesis. PMID:26972599

  11. Conserved Motifs within Hepatitis C Virus Envelope (E2) RNA and Protein Independently Inhibit T Cell Activation

    PubMed Central

    Bhattarai, Nirjal; McLinden, James H.; Xiang, Jinhua; Kaufman, Thomas M.; Stapleton, Jack T.

    2015-01-01

    T cell receptor (TCR) signaling is required for T-cell activation, proliferation, differentiation, and effector function. Hepatitis C virus (HCV) infection is associated with impaired T-cell function leading to persistent viremia, delayed and inconsistent antibody responses, and mild immune dysfunction. Although multiple factors appear to contribute to T-cell dysfunction, a role for HCV particles in this process has not been identified. Here, we show that incubation of primary human CD4+ and CD8+ T-cells with HCV RNA-containing serum, HCV-RNA containing extracellular vesicles (EVs), cell culture derived HCV particles (HCVcc) and HCV envelope pseudotyped retrovirus particles (HCVpp) inhibited TCR-mediated signaling. Since HCVpp’s contain only E1 and E2, we examined the effect of HCV E2 on TCR signaling pathways. HCV E2 expression recapitulated HCV particle-induced TCR inhibition. A highly conserved, 51 nucleotide (nt) RNA sequence was sufficient to inhibit TCR signaling. Cells expressing the HCV E2 coding RNA contained a short, virus-derived RNA predicted to be a Dicer substrate, which targeted a phosphatase involved in Src-kinase signaling (PTPRE). T-cells and hepatocytes containing HCV E2 RNA had reduced PTPRE protein levels. Mutation of 6 nts abolished the predicted Dicer interactions and restored PTPRE expression and proximal TCR signaling. HCV RNA did not inhibit distal TCR signaling induced by PMA and Ionomycin; however, HCV E2 protein inhibited distal TCR signaling. This inhibition required lymphocyte-specific tyrosine kinase (Lck). Lck phosphorylated HCV E2 at a conserved tyrosine (Y613), and phospho-E2 inhibited nuclear translocation of NFAT. Mutation of Y613 restored distal TCR signaling, even in the context of HCVpps. Thus, HCV particles delivered viral RNA and E2 protein to T-cells, and these inhibited proximal and distal TCR signaling respectively. These effects of HCV particles likely aid in establishing infection and contribute to viral persistence

  12. Role of the thymus in streptococcal cell wall-induced arthritis and hepatic granuloma formation. Comparative studies of pathology and cell wall distribution in athymic and euthymic rats.

    PubMed Central

    Allen, J B; Malone, D G; Wahl, S M; Calandra, G B; Wilder, R L

    1985-01-01

    Systemic administration of an aqueous suspension of group A streptococcal cell wall fragments to susceptible rats induces acute and chronic polyarthritis, as well as noncaseating hepatic granulomas. To gain insight into the role of the thymus in the pathogenesis of this experimental model, pathologic responses and cell wall tissue distribution were compared in congenitally athymic rats (rnu/rnu) and their euthymic littermates (NIH/rnu). Within 24 h, both rat strains developed acute arthritis, characterized by polymorphonuclear leukocytic exudate in the synovium and joint spaces. This acute process was maximal at day 3 and gradually subsided. Beginning 2-3 wk after injection, the euthymic, but not the athymic, rats developed the typical exacerbation of arthritis, characterized by synovial cell hyperplasia with villus formation and T helper/inducer lymphocyte-rich mononuclear cell infiltration. This process eventually resulted in marginal erosions and destruction of periarticular bone and cartilage. Parallel development of acute and chronic hepatic lesions was observed. Bacterial cell wall antigen distribution and persistence were similar in the athymic and euthymic rats. Cell wall antigens were demonstrated in the cytoplasm of cells within subchondral bone marrow, synovium, liver, and spleen, coincident with the development of the acute lesions, and persisted in these sites, although in decreasing amounts, for the duration of the experiment. Our findings provide evidence that the acute and chronic phases of the experimental model are mechanistically distinct. The thymus and functional thymus derived-lymphocytes appear not to be required for the development of the acute exudative disease but are essential for the development of chronic proliferative and erosive disease. Induction of disease is dependent upon cell wall dissemination to and persistence in the affected tissues. Images PMID:3876354

  13. Exosome-associated hepatitis C virus in cell cultures and patient plasma.

    PubMed

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J

    2014-12-12

    Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell-cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  14. Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo.

    PubMed

    Bhattarai, Nirjal; McLinden, James H; Xiang, Jinhua; Mathahs, M Meleah; Schmidt, Warren N; Kaufman, Thomas M; Stapleton, Jack T

    2017-02-24

    Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3' UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence.

  15. Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo

    PubMed Central

    Bhattarai, Nirjal; McLinden, James H.; Xiang, Jinhua; Mathahs, M. Meleah; Schmidt, Warren N.; Kaufman, Thomas M.

    2017-01-01

    Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3’ UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence. PMID:28235043

  16. Hepatic Differentiation from Murine and Human iPS Cells Using Nanofiber Scaffolds.

    PubMed

    Yamazoe, Taiji; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    The induced pluripotent stem (iPS) cells of murine and human are capable to differentiate into any cell type of the body through recapitulating normal development, similarly as the embryonic stem (ES) cells. Lines of evidence support that both ES cells and iPS cells are induced to differentiate in vitro by sequential treatment of humoral cues such as growth factors and chemicals, combined with the use of certain microenvironments including extracellular matrices and scaffolds.Here, we describe the procedure to potentiate hepatic lineage cells differentiation from murine and human iPS cells, using growth factor cocktails and nanofiber scaffolds. Nanofiber scaffolds have a three-dimensional surface mimicking the fine structures of the basement membrane in vivo, allow the iPS cells to differentiate into the definitive endoderm and mature hepatocyte-like cells more efficiently than the two-dimensional conventional culture plates.

  17. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    PubMed

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-03-23

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation.

  18. MIF, secreted by human hepatic sinusoidal endothelial cells, promotes chemotaxis and outgrowth of colorectal cancer in liver prometastasis.

    PubMed

    Hu, Chun-Ting; Guo, Li-Li; Feng, Na; Zhang, Lei; Zhou, Na; Ma, Li-Li; Shen, Lan; Tong, Gui-Hui; Yan, Qian-Wen; Zhu, Shi-Jie; Bian, Xiu-Wu; Lai, Mao D; Deng, Yong-Jian; Ding, Yan-Qing

    2015-09-08

    Growth and invasion of metastatic colorectal cancer (CRC) cells in the liver depend on microenvironment. Here, we showed that human hepatic sinusoidal endothelial cells (HHSECs) induce chemotaxis and outgrowth of CRC cells. Macrophage migration inhibitory factor (MIF), released by HHSECs, stimulated chemotaxis of CRC cells. MIF secreted by HHSECs, but not by CRC cells themselves, promoted migration and epithelial-mesenchymal transition (EMT) and facilitated proliferation and apoptotic resistance of CRC cells. In orthotopic implantation models in nude mice, exogenous MIF stimulated growth of CRC cells and metastasis. Furthermore, MIF accelerated mobility of CRC cells by suppressing F-actin depolymerization and phosphorylating cofilin. Noteworthy, MIF levels were correlated with the size of hepatic metastases. We suggest that HHSECs and paracrine MIF promote initial migration and proliferation of CRC cells in the hepatic sinusoids to generate liver metastases.

  19. State of hepatitis B viral DNA in a human hepatoma cell line.

    PubMed Central

    Marion, P L; Salazar, F H; Alexander, J J; Robinson, W S

    1980-01-01

    PLC/PRF/5, a tissue culture cell line isolated from a human hepatocellular carcinoma and producing hepatitis B surface antigen, was studied for the presence of hepatitis B virus (HBV)-specific DNA and RNA. PLC/PRF/5 cell DNA accelerated the rate of reassociation of HBV [32P]DNA, and quantitative experiments indicated that the cells contained approximately four copies of viral DNA per haploid, mammalian cell DNA equivalent. PLC/PRF/5 DNA accelerated the rate of reassociation of all individual restriction endonucleases HincII and HaeIII fragments of HBV [32P]DNA, indicating that DNA from all regions of the viral genome is present in the cells. This suggests that these cells contain at least most, and possibly all, of the viral genome. Digestion of PLC/PRF/5 cell DNA with restriction endonuclease HindIII (an enzyme found not to cleave the DNA of any HBV isolate so far examined) yielded only three fragments, all larger than virion DNA, which contained HBV DNA base sequences, suggesting that HBV DNA is integrated in high-molecular-weight DNA at three different sites in these cells and that there is no viral DNA in an episomal form. PLC/PRF/5 cell [32P]RNA was found to hybridize with all restriction fragments of HBV DNA adequately tested, indicating that at least most, and possibly all, of the viral DNA in these cells is transcribed. Images PMID:6251250

  20. Capillarization of Hepatic Sinusoid by Liver Endothelial Cell-Reactive Autoantibodies in Patients with Cirrhosis and Chronic Hepatitis

    PubMed Central

    Xu, Bo; Broome, Ulrika; Uzunel, Mehmet; Nava, Silvia; Ge, Xupeng; Kumagai-Braesch, Makiko; Hultenby, Kjell; Christensson, Birger; Ericzon, Bo-Göran; Holgersson, Jan; Sumitran-Holgersson, Suchitra

    2003-01-01

    The special features of liver sinusoidal endothelium (LSE) are crucial for normal liver physiology. Cirrhotic livers, especially in primary biliary cirrhosis (PBC), are characterized by transformation of the LSE into a continuous, vascular type. The transformation is important for disease progression and explains some of the pathological hallmarks of the cirrhotic liver. Here, we investigated the presence of liver sinusoidal endothelial cell (LSEC)-reactive autoantibodies (Abs) in the sera of patients with autoimmune liver diseases, and assessed the ability of these Abs to transform LSE into vascular endothelium. Compared to healthy individuals (9%), significantly higher numbers of patients with PBC (59%; P < 0.001) and autoimmune hepatitis (AIH) (32%; P < 0.05) had Abs against LSECs. Incubation of primary LSEC cultures with F(ab′)2 fragments of anti-LSEC Abs isolated from sera of patients with PBC and AIH, induced 1) cell surface expression of vascular endothelium-associated markers, CD31, and factor VIII-related antigen; 2) significant production of fibronectin, laminin and collagen type IV; 3) loss of fenestrae, formation of tight junctions and Weibel-Palade bodies. Deposition of immunoglobulins on LSECs were found in liver biopsies of AIH and PBC patients. Thus, anti-LSEC autoAbs transform LSE into a vascular type and may therefore play an important role in the development of hepatocellular failure and portal hypertension in PBC and AIH patients. PMID:14507637

  1. Premalignant alteration assessment in liver-like tissue derived from embryonic stem cells by aristolochic acid I exposure

    PubMed Central

    Li, Tong; Jin, Ke; Zhu, Dan-yan; Li, Lu; Mao, Zheng-rong; Wu, Bo-wen; Wang, Yi-fan; Pan, Zong-fu; Li, Lan-juan; Xiang, Chun-sheng; Su, Kun-kai; Lou, Yi-jia

    2016-01-01

    The in vitro predictive evaluation of chemical carcinogenicity based on hepatic premalignance has so far not been established. Here, we report a novel approach to investigate the premalignant events triggered by human carcinogen aristolochic acid I (AAI) in the liver-like tissue derived from mouse embryonic stem cells. By AAI exposure, the liver-like tissue exhibited the paracrine interleukin-6 phenotypic characteristics. Hepatocytes expressed STAT3/p-STAT3, c-Myc and Lin28B in parallel. Some of them displayed the dedifferentiation characteristics, such as full of α-fetoprotein granules, increase in size, and nucleocytoplasmic shuttle of Oct4. When these cells were injected into mice, the xenografts mostly displayed the uniform area of hepatic-like tissue with malignant nuclei. The hepatic malignant markers, α-fetoprotein, cytokeratin 7 and cytokeratin 19, were co-expressed in albumin-positive areas, respectively. In conclusion, we established an approach to predict the hepatic premalignance triggered by carcinogen AAI. This premalignant assay system might aid to evaluate the effects of potential carcinogens in liver, and probably to screen the protecting against hepatocarcinogenic efficacy of pharmaceuticals in vitro. PMID:27713163

  2. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  3. Hepatitis A

    MedlinePlus

    ... bowel movements Loss of appetite Low-grade fever Dark urine Joint pain Yellowing of the skin and ... person ingests even tiny amounts of contaminated fecal matter. The hepatitis A virus infects liver cells and ...

  4. Bone marrow-derived cell regulation of skeletal muscle regeneration

    PubMed Central

    Sun, Dongxu; Martinez, Carlo O.; Ochoa, Oscar; Ruiz-Willhite, Lourdes; Bonilla, Jose R.; Centonze, Victoria E.; Waite, Lindsay L.; Michalek, Joel E.; McManus, Linda M.; Shireman, Paula K.

    2009-01-01

    Limb regeneration requires the coordination of multiple stem cell populations to recapitulate the process of tissue formation. Therefore, bone marrow (BM) -derived cell regulation of skeletal muscle regeneration was examined in mice lacking the CC chemokine receptor 2 (CCR2). Myofiber size, numbers of myogenic progenitor cells (MPCs), and recruitment of BM-derived cells and macrophages were assessed after cardiotoxin-induced injury of chimeric mice produced by transplanting BM from wild-type (WT) or CCR2−/− mice into irradiated WT or CCR2−/− host mice. Regardless of the host genotype, muscle regeneration and recruitment of BM-derived cells and macrophages were similar in mice replenished with WT BM, whereas BM-derived cells and macrophage accumulation were decreased and muscle regeneration was impaired in all animals receiving CCR2−/− BM. Furthermore, numbers of MPCs (CD34+/Sca-1−/CD45− cells) were significantly increased in mice receiving CCR2−/− BM despite the decreased size of regenerated myofibers. Thus, the expression of CCR2 on BM-derived cells regulated macrophage recruitment into injured muscle, numbers of MPC, and the extent of regenerated myofiber size, all of which were independent of CCR2 expression on host-derived cells. Future studies in regenerative medicine must include consideration of the role of BM-derived cells, possibly macrophages, in CCR2-dependent events that regulate effective skeletal muscle regeneration.—Sun, D., Martinez, C. O., Ochoa, O., Ruiz-Willhite, L., Bonilla, J. R., Centonze, V. E., Waite, L. L., Michalek, J. E., McManus, L. M., Shireman, P. K. Bone marrow-derived cell regulation of skeletal muscle regeneration. PMID:18827026

  5. Lysis of primary hepatic tumours by lymphokine activated killer cells.

    PubMed Central

    Hsieh, K H; Shu, S Y; Lee, C S; Chu, C T; Yang, C S; Chang, K J

    1987-01-01

    Lymphokine activated killer cell is a newly described lytic system against a variety of solid tumours and is distinct in several respects from the classic cytolytic T cell and the natural killer systems. This study was conducted to evaluate the lytic activity of lymphokine activated killer cells against fresh autologous and allogeneic, as well as cultured hepatocellular carcinoma cells. Lymphokine activated killer cell was generated by incubating peripheral blood mononuclear cells with various concentrations of recombinant IL-2 (rIL-2, Cetus, USA) for various periods of time. A four hour 51Cr release assay was used to measure cytotoxicity. The results show that fresh and cultured hepatocellular carcinoma cells were only slightly susceptible to natural killer cells. Normal hepatocytes were resistant to lymphokine activated killer-mediated lysis. Lymphokine activated killer cells could be generated from mononuclear cells of hepatocellular carcinoma patients and normal subjects with lytic activity against fresh autologous and allogeneic and cultured hepatocellular carcinoma cells, but lymphokine activated killer cells from the former was less efficient than that from the latter. It is concluded that the adoptive immunotherapy with combined rIL-2 and lymphokine activated killer may be worth trying in early cases of primary hepatocellular carcinoma. PMID:3030899

  6. Long-lasting memory T cell responses following self-limited acute hepatitis B.

    PubMed Central

    Penna, A; Artini, M; Cavalli, A; Levrero, M; Bertoletti, A; Pilli, M; Chisari, F V; Rehermann, B; Del Prete, G; Fiaccadori, F; Ferrari, C

    1996-01-01

    The molecular and cellular basis of long-term T cell memory against viral antigens is still largely undefined. To characterize anti-viral protection by memory T cells against non-cytopathic viruses able to cause acute self-limited and chronic infections, such as the hepatitis B virus (HBV), we studied HLA class II restricted responses against HBV structural antigens in 17 patients with acute hepatitis B, during the acute stage of infection and 2.2 to 13 yr after clinical resolution of disease. Results indicate that: (a) significant T cell proliferative responses to HBV nucleocapsid antigens were detectable in all patients during the acute phase of infection and in 14/17 also 2-13 yr after clinical resolution of disease; b) long-lasting T cell responses were sustained by CD45RO+T cells, predominantly expressing the phenotype of recently activated cells; c) limiting dilution analysis showed that in some patients the frequency of HBV-specific T cells was comparable to that observed in the acute stage of infection and, usually, higher than in patients with chronic HBV infection; d) the same amino acid sequences were recognized by T cells in the acute and recovery phases of infection; and e) HBV-DNA was detectable by nested-PCR in approximately half of the subjects. to conclusion, our results show that vigorous anti-viral T cell responses are detectable in vitro several years after clinical recovery from acute hepatitis B. Detection of minute amounts of virus in some recovered subjects suggests that long-term maintenance of an active anti-viral T cell response could be important not only for protection against reinfection but also for keeping the persisting virus under tight control. PMID:8787682

  7. Adipose-derived stem cells for periodontal tissue regeneration.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2011-01-01

    Mesenchymal stem cells can effectively regenerate destroyed periodontal tissue. Because periodontal tissues are complex, mesenchymal stem cells that can differentiate into many tissue types would aid periodontal tissue regeneration. Indeed, periodontal tissue regeneration using mesenchymal stem cells derived from adipose tissue or bone marrow has been performed in experimental animal models, such as rat, canine, swine, and monkey. We have shown that rat periodontal tissue can be regenerated with adipose-derived stem cells. Adipose tissue contains a large number of stromal cells and is relatively easy to obtain in large quantities, and thus constitutes a very convenient stromal cell source. In this chapter, we introduce a rat periodontal tissue regeneration model using adipose-derived stem cells.

  8. Perspective on liver regeneration by bone marrow-derived stem cells-a scientific realization or a paradox.

    PubMed

    Mukhopadhyay, Asok

    2013-08-01

    Bone marrow (BM)-derived stem cells are reported to have cellular plasticity, which provoked many investigators to use of these cells in the regeneration of nonhematopoietic tissues. However, adult stem cell plasticity contradicts our classic understanding on progressive restriction of the developmental potential of a cell type. Many alternate mechanisms have been proposed to explain this phenomenon; the working hypotheses for elucidating the cellular plasticity of BM-derived stem cells are on the basis of direct differentiation and/or fusion between donor and recipient cells. This review dissects the different outcomes of the investigations on liver regeneration, which were performed with the use of BM-derived stem cells in experimental animals, and reveals some critical factors to explain cellular plasticity. It has been hypothesized that the competent BM-derived stem/progenitor cells, under the influence of liver-regenerating cues, can directly differentiate into hepatic cells. This differentiation takes place as a result of genetic reprogramming, which may be possible in the chemically induced acute liver injury model or at the stage of fetal liver development. Cellular plasticity emerges as an important phenomenon in cell-based therapies for the treatment of many liver diseases in which tissue regeneration is necessary.

  9. Hyaline droplets in Kupffer cells: a novel diagnostic clue for autoimmune hepatitis.

    PubMed

    Tucker, Suzanne M; Jonas, Maureen M; Perez-Atayde, Antonio R

    2015-06-01

    Pediatric autoimmune hepatitis (AIH) is relatively common and has a characteristic but relatively nonspecific histopathology with a usually prominent lymphoplasmacytic infiltrate. Herein, we describe for the first time the presence of characteristic hyaline droplets in the cytoplasm of Kupffer cells on routine hematoxylin and eosin (H&E) sections in AIH. The medical records and pathologic material over a 20-year period (1992 to 2012) were reviewed from children with AIH (n=30), hepatitis B virus (n=30), and hepatitis C virus (n=30) from the pathology files at Boston Children's Hospital. All children had percutaneous needle liver biopsies. We reviewed sections stained with H&E, PAS, and PAS with diastase for the presence of hyaline droplets in all 90 biopsies. We also performed immunohistochemical analysis for IgG, IgA, and IgD in 6 biopsies with AIH. Hyaline droplets were identified in Kupffer cells throughout the lobules in 15 of 30 biopsies (easily found in 13 and rare in 2); conversely, no droplets were identified in 15. Droplets were identified in 10 AIH type 1 biopsies, 1 in AIH type 2, 3 in overlap syndrome, and 1 in unclassified. Serum IgG levels, when available, were correlated with biopsy findings. Seventeen patients had serum IgG levels available for review. The average IgG level in patients without droplets in their biopsies was 1364 mg/dL, in contrast to 3424 mg/dL in patients with droplets (P=0.021). Immunohistochemical analysis performed in 6 biopsies revealed that droplets were nearly always positive for IgG, occasionally for IgA, and rarely for IgD. None of the biopsies in patients with hepatitis C contained hyaline droplets. One biopsy of a patient with hepatitis B revealed hyaline droplets; this biopsy had an unusually prominent plasmacytic infiltrate, and the patient was found to have an elevated IgG serum level and antibodies to smooth muscle actin. As far as we are aware, hyaline droplets in Kupffer cells on routine H&E sections have never been

  10. Hepatitis B transmission by cell and tissue allografts: How safe is safe enough?

    PubMed Central

    Solves, Pilar; Mirabet, Vicente; Alvarez, Manuel

    2014-01-01

    More than 2 million human tissue transplants (bone, tendon, cartilage, skin, cornea, amniotic membrane, stem cells, heart valve, blood vessel, etc.), are performed worldwide every year. Cells and tissues are shared between countries which have different regulations and laboratory equipment and represent a risk of hepatitis B virus (HBV) transmission that has become a global safety concern. While the risk of transfusion-transmitted HBV infection from blood donations has been estimated, the rate of HBV transmission from donors to recipients of allografts is unknown and varies between different tissues. There are various important ways of reducing the transmission risk, but donor screening and donor testing are still the main factors for preventing HBV transmission. HBV detection is included in the routine screening tests for cell and tissue donors. The standard test for preventing transplant-transmitted hepatitis B is the hepatitis B surface antigen. The implementation of methods involving nucleic acid amplification and the new generation of reactives to detect viral antibodies or antigens with an immunoassay, has increased the sensitivity and the specificity of the screening tests. The objective of our research was to review the literature and critically analyse the different steps for avoiding HBV transmission in cell and tissue donors, focusing on the screening tests performed. PMID:24966613

  11. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  12. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology.

    PubMed

    Husain, Zaheed; Seth, Pankaj; Sukhatme, Vikas P

    2013-11-01

    Many malignant cells produce increased amounts of lactate, which promotes the development of myeloid-derived suppressor cells (MDSCs). MDSCs, lactate, and a low pH in the tumor microenvironment inhibit the function of natural killer (NK) cells and T lymphocytes, hence allowing for disease progression. Ketogenic diets can deplete tumor-bearing animals from MDSCs and regulatory T cells, thereby improving their immunological profile.

  13. Increasing LAG-3 expression suppresses T-cell function in chronic hepatitis B

    PubMed Central

    Ye, Bo; Li, Xuefen; Dong, Yuejiao; Wang, Yiyin; Tian, Li; Lin, Sha; Liu, Xia; Kong, Haishen; Chen, Yu

    2017-01-01

    Abstract Weak or absent virus-specific CD8+ T-cell responses to hepatitis B virus (HBV) infection are thought to be responsible for persistent HBV infection. Previous studies have indicated that multiple inhibitory receptors, including lymphocyte activation gene-3 (LAG-3), can suppress the CD8+ T-cell response in chronic viral infection. This study aimed to detect LAG-3 expression and to investigate the manner in which the immune response is regulated to balance the strength of the response with the extent of liver injury in chronic HBV infection. The results showed that LAG-3 expression levels were significantly higher in CD8+ T cells from chronic hepatitis B patients in the immune-active phase compared with chronic asymptomatic HBV carriers and healthy controls. CD8+ T-cell function was suppressed in cells with high LAG-3 expression, and these cells exhibited reduced interferon-γ (IFN-γ) secretion. Furthermore, IFN-γ secretion was restored in CD8+ T cells that were treated with a specific antibody to LAG-3. Taken together, liver injury was prominent in the immune-active phase, but suppressing T-cell function could mitigate this damage. Importantly, the inhibitory function of LAG-3 can be blocked using a LAG-3-specific antibody, and this can restore the activity of non-functional T cells. PMID:28072682

  14. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity

    PubMed Central

    Fukuhara, Takasuke; Yamamoto, Satomi; Ono, Chikako; Nakamura, Shota; Motooka, Daisuke; Mori, Hiroyuki; Kurihara, Takeshi; Sato, Asuka; Tamura, Tomokazu; Motomura, Takashi; Okamoto, Toru; Imamura, Michio; Ikegami, Toru; Yoshizumi, Tomoharu; Soejima, Yuji; Maehara, Yoshihiko; Chayama, Kazuaki; Matsuura, Yoshiharu

    2017-01-01

    It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity. PMID:28327559

  15. Quasispecies of Hepatitis C Virus Participate in Cell-Specific Infectivity.

    PubMed

    Fukuhara, Takasuke; Yamamoto, Satomi; Ono, Chikako; Nakamura, Shota; Motooka, Daisuke; Mori, Hiroyuki; Kurihara, Takeshi; Sato, Asuka; Tamura, Tomokazu; Motomura, Takashi; Okamoto, Toru; Imamura, Michio; Ikegami, Toru; Yoshizumi, Tomoharu; Soejima, Yuji; Maehara, Yoshihiko; Chayama, Kazuaki; Matsuura, Yoshiharu

    2017-03-22

    It is well documented that a variety of viral quasispecies are found in the patients with chronic infection of hepatitis C virus (HCV). However, the significance of quasispecies in the specific infectivity to individual cell types remains unknown. In the present study, we analyzed the role of quasispecies of the genotype 2a clone, JFH1 (HCVcc), in specific infectivity to the hepatic cell lines, Huh7.5.1 and Hep3B. HCV RNA was electroporated into Huh7.5.1 cells and Hep3B/miR-122 cells expressing miR-122 at a high level. Then, we adapted the viruses to Huh7 and Hep3B/miR-122 cells by serial passages and termed the resulting viruses HCVcc/Huh7 and HCVcc/Hep3B, respectively. Interestingly, a higher viral load was obtained in the homologous combination of HCVcc/Huh7 in Huh7.5.1 cells or HCVcc/Hep3B in Hep3B/miR-122 cells compared with the heterologous combination. By using a reverse genetics system and deep sequence analysis, we identified several adaptive mutations involved in the high affinity for each cell line, suggesting that quasispecies of HCV participate in cell-specific infectivity.

  16. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  17. Homeostatic regulation of T cell trafficking by a B cell derived peptide is impaired in autoimmune and chronic inflammatory disease

    PubMed Central

    Apta, Bonita; Kuravi, Sahithi J.; Yates, Clara M.; Kennedy, Amy; Odedra, Arjun; Alassiri, Mohammed; Harrison, Matthew; Martin, Ashley; Barone, Francesca; Nayar, Saba; Hitchcock, Jessica R.; Cunningham, Adam F.; Raza, Karim; Filer, Andrew; Copland, David A.; Dick, Andrew D.; Robinson, Joseph; Kalia, Neena; Walker, Lucy S. K.; Buckley, Christopher D.; Nash, Gerard B.; Narendran, Parth; Rainger, G. Ed.

    2015-01-01

    During an inflammatory response, lymphocyte recruitment into tissue must be tightly controlled because dysregulated trafficking contributes to the pathogenesis of chronic disease. Here we show that during inflammation and in response to adiponectin, B cells tonically inhibit T cell trafficking by secreting a peptide (PEPITEM) proteolytically derived from 14.3.3.ζδ protein. PEPITEM binds cadherin-15 on endothelial cells, promoting synthesis and release of sphingosine-1 phosphate, which inhibits trafficking of T cells without affecting recruitment of other leukocytes. Expression of adiponectin receptors on B cells and adiponectin induced PEPITEM secretion wanes with age, implying immune senescence of the pathway. Additionally, these changes are evident in individuals with type-1-diabetes or rheumatoid arthritis, and circulating PEPITEM in patient serum is reduced compared to healthy age matched donors. In both diseases, tonic inhibition of T cell trafficking across inflamed endothelium is lost. Importantly, control of patient T cell trafficking is re-established by exogenous PEPITEM. Moreover, in animal models of peritonitis, hepatic I/R injury, Salmonella infection, Uveitis and Sjögren’s Syndrome, PEPITEM could reduce T cell recruitment into inflamed tissues. PMID:25894827

  18. Enhanced immunogenicity of a sequence derived from hepatitis B virus surface antigen in a composite peptide that includes the immunostimulatory region from human interleukin 1.

    PubMed Central

    Rao, K V; Nayak, A R

    1990-01-01

    The effect on immunogenicity of coupling the immunostimulatory nonapeptide sequence (residues 163-171) from human interleukin 1 beta (IL-1 beta) to a small immunogen was examined. A 21-amino acid sequence spanning positions 12-32 on the large protein of hepatitis B surface antigen was chosen as a model. Three peptides were synthesized corresponding to the IL-1 beta-derived sequence [peptide IL-(163-171)], the hepatitis B surface antigen-derived sequence [peptide S1-(12-32)] and a composite peptide that included both these sequences separated by a spacer of two glycine residues [peptide S1-(12-32)-IL-(163-171)]. In an in vitro thymocyte proliferation assay, both peptides S1-(12-32)-IL-(163-171) and IL-(163-171) showed comparable activity, whereas peptide S1-(12-32) was inactive. Groups of five to seven mice each from C3H/CH, BALB/c, SJL/J, and C57BL/6 strains were immunized with equimolar amounts of either peptide S1-(12-32), peptide S1-(12-32)-IL-(163-171), or a mixture of peptides S1-(12-32) and IL-(163-171), and sera were screened for anti-S1-(12-32) antibodies. In all strains, peptide S1-(12-32)-IL-(163-171) elicited an increased primary and secondary anti-S1-(12-32) antibody response compared to the other two groups. Further, peptide S1-(12-32)-IL-(163-171) also induced an increased number of responders to primary immunization, though the number of responders was quantitative in all groups following secondary immunization. At least part of the enhanced immunogenicity of the S1-(12-32) sequence in peptide S1-(12-32)-IL-(163-171) appears to be due to augmented T-helper cell activity. These results suggest that coupling of the immunostimulatory IL-1 beta-derived sequence in tandem with an immunogen may confer inbuilt adjuvanticity. PMID:2371286

  19. Lost in translation: pluripotent stem cell-derived hematopoiesis

    PubMed Central

    Ackermann, Mania; Liebhaber, Steffi; Klusmann, Jan-Henning; Lachmann, Nico

    2015-01-01

    Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage. PMID:26174486

  20. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells.

    PubMed

    Wu, Yuanfeng; Chitranshi, Priyanka; Loukotková, Lucie; Gamboa da Costa, Gonçalo; Beland, Frederick A; Zhang, Jie; Fang, Jia-Long

    2016-11-28

    Triclosan is a widely used broad-spectrum anti-bacterial agent. The objectives of this study were to identify which cytochrome P450 (CYP) isoforms metabolize triclosan and to examine the effects of CYP-mediated metabolism on triclosan-induced cytotoxicity. A panel of HepG2-derived cell lines was established, each of which overexpressed a single CYP isoform, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1. The extent of triclosan metabolism by each CYP was assessed by reversed-phase high-performance liquid chromatography with online radiochemical detection. Seven isoforms were capable of metabolizing triclosan, with the order of activity being CYP1A2 > CYP2B6 > CYP2C19 > CYP2D6 ≈ CYP1B1 > CYP2C18 ≈ CYP1A1. The remaining 11 isoforms (CYP2A6, CYP2A7, CYP2A13, CYP2C8, CYP2C9, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1) had little or no activity toward triclosan. Three metabolites were detected: 2,4-dichlorophenol, 4-chlorocatechol, and 5'-hydroxytriclosan. Consistent with the in vitro screening data, triclosan was extensively metabolized in HepG2 cells overexpressing CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP2C18, and these cells were much more resistant to triclosan-induced cytotoxicity compared to vector cells, suggesting that CYP-mediated metabolism of triclosan attenuated its cytotoxicity. In addition, 2,4-dichlorophenol and 4-chlorocatechol were less toxic than triclosan to HepG2/vector cells. Conjugation of triclosan, catalyzed by human glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), also occurred in HepG2/CYP-overexpressing cells and primary human hepatocytes, with a greater extent of conjugation being associated with higher cell viability. Co-administration of triclosan with UGT or SULT inhibitors led to greater cytotoxicity in HepG2 cells and primary human hepatocytes, indicating that glucuronidation and

  1. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals

    PubMed Central

    Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter

    2016-01-01

    The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573

  2. B-cell translocation gene 2 promotes hepatic hepcidin production via induction of Yin Yang 1.

    PubMed

    Lee, Sung-Eun; Hwang, Seung-Lark; Jang, Won-Gu; Chang, Hyeun Wook; Kim, Yong Deuk

    2015-05-15

    Hepcidin is a peptide hormone secreted in the liver and plays a key role in maintaining iron homeostasis. Here, we demonstrate that B-cell translocation gene 2 (BTG2) is a key player in hepatic hepcidin regulation via induction of Yin Yang 1 (YY1). Hepatic hepcidin gene expression significantly enhanced by fasting states and glucagon exposure led to induction of gluconeogenic gene expression, and elevated serum hepcidin production in mice. Notably, overexpression of BTG2 using adenoviral system (Ad-BTG2) significantly elevated serum hepcidin levels via a significant induction of YY1 gene transcription. Immunoprecipitation studies demonstrated that BTG2 physically interacted with YY1 and recruited on the hepcidin gene promoter. Finally, ablation of hepatic BTG2 gene by gene silencing markedly attenuated the elevation of serum hepcidin production along with YY1 and hepcidin mRNA expression in fasting state. Likewise, forskolin (FSK)-stimulated hepcidin promoter activity was dramatically disrupted by endogenous BTG2 knockdown. Overall, our current study provides a novel molecular mechanism of BTG2-mediated induction of hepcidin gene expression, thereby contributing to a better understanding of the hepatic hepcidin production involved in iron homeostasis.

  3. Tricyclic Antidepressants Promote Ceramide Accumulation to Regulate Collagen Production in Human Hepatic Stellate Cells

    PubMed Central

    Chen, Jennifer Y.; Newcomb, Benjamin; Zhou, Chan; Pondick, Joshua V.; Ghoshal, Sarani; York, Samuel R.; Motola, Daniel L.; Coant, Nicolas; Yi, Jae Kyo; Mao, Cungui; Tanabe, Kenneth K.; Bronova, Irina; Berdyshev, Evgeny V.; Fuchs, Bryan C.; Hannun, Yusuf; Chung, Raymond T.; Mullen, Alan C.

    2017-01-01

    Activation of hepatic stellate cells (HSCs) in response to injury is a key step in hepatic fibrosis, and is characterized by trans-differentiation of quiescent HSCs to HSC myofibroblasts, which secrete extracellular matrix proteins responsible for the fibrotic scar. There are currently no therapies to directly inhibit hepatic fibrosis. We developed a small molecule screen to identify compounds that inactivate human HSC myofibroblasts through the quantification of lipid droplets. We screened 1600 compounds and identified 21 small molecules that induce HSC inactivation. Four hits were tricyclic antidepressants (TCAs), and they repressed expression of pro-fibrotic factors Alpha-Actin-2 (ACTA2) and Alpha-1 Type I Collagen (COL1A1) in HSCs. RNA sequencing implicated the sphingolipid pathway as a target of the TCAs. Indeed, TCA treatment of HSCs promoted accumulation of ceramide through inhibition of acid ceramidase (aCDase). Depletion of aCDase also promoted accumulation of ceramide and was associated with reduced COL1A1 expression. Treatment with B13, an inhibitor of aCDase, reproduced the antifibrotic phenotype as did the addition of exogenous ceramide. Our results show that detection of lipid droplets provides a robust readout to screen for regulators of hepatic fibrosis and have identified a novel antifibrotic role for ceramide. PMID:28322247

  4. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    PubMed

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  5. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  6. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    PubMed

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.

  7. Low Immunogenicity of Recombinant Hepatitis B Vaccine Derived from Hansenula polymorpha in Adults Aged Over 40 Years.

    PubMed

    Caetano, Karlla Antonieta Amorim; Del-Rios, Nativa Helena Alves; Pinheiro, Raquel Silva; Bergamaschi, Fabiana Perez Rodrigues; Carneiro, Megmar Aparecida Dos Santos; Teles, Sheila Araujo

    2017-01-11

    The Brazilian recombinant hepatitis B vaccine (VrHB-IB) is based on the expression of the recombinant antigen in Hansenula polymorpha yeast cells. Currently, data on the immunogenicity of this vaccine in older adults are nonexistent. This study aimed to evaluate the immunogenicity of VrHB-IB in adults over 40 years of age. From May to October 2011, 235 rural settlers between 2 and 93 years of age from the State of Goias in Brazil were eligible for vaccination. Of these, 180 accepted the first dose of the vaccine and 106 (58.9%) completed the vaccination schedule. Multivariate analysis revealed that individuals ≥ 40 years of age responded significantly less well to vaccination than younger adults. Also, a greater proportion of male nonresponders was observed (versus women; P = 0.02). These results point to the need for better evaluation of the immunogenicity of VrHB-IB in older adults.

  8. Induction of hepatic CYP3A enzymes by pregnancy-related hormones: studies in human hepatocytes and hepatic cell lines.

    PubMed

    Papageorgiou, Ioannis; Grepper, Susan; Unadkat, Jashvant D

    2013-02-01

    CYP3A activity is induced by approximately 2-fold during the third trimester of human pregnancy. Placental growth hormone (PGH), estrogens (primarily 17β-estradiol), cortisol, and progesterone have the potential to modulate CYP3A activity. Therefore, we determined whether the elevated plasma concentrations of these hormones during pregnancy induce hepatic CYP3A expression. We incubated sandwich-cultured human hepatocytes (SCHH) from premenopausal female donors (n = 2) with the physiologic (unbound, 1× total) and the 10× total third trimester hormone plasma concentrations (individually and in combination) and determined their effect on CYP3A activity and the transcripts of CYP3A4, CYP3A5, and the respective hormone receptors (growth hormone receptor, glucocorticoid receptor, and estrogen receptor alpha). Of all the hormones, cortisol was the most potent inducer of CYP3A activity and CYP3A4, CYP3A5 mRNA expression. The combination of PGH/growth hormone and cortisol induced CYP3A activity and expression significantly more than did cortisol alone. When incubated with the unbound or total plasma concentration of all the hormones, CYP3A activity in SCHH was induced to an extent comparable to that observed in vivo during the third trimester. These hormones had only a modest effect on the mRNA expression of the hormone receptors. The pattern of induction observed in SCHH was reproduced in HepaRG cells but not in HuH7/HepG2 cells. SCHH or HepaRG cells could be used to determine the mechanistic basis of CYP3A induction during pregnancy and to predict the magnitude of induction likely to be observed during the first and second trimesters, when phenotyping studies to measure in vivo CYP3A activity are logistically difficult to perform.

  9. Intrahepatic CD4 T-Cell apoptosis is related to METAVIR score in patients with chronic hepatitis C virus.

    PubMed

    Roger, P-M; Chaillou, S; Breittmayer, J-P; Dahman, M; St Paul, M-C; Chevallier, P; Benzaken, S; Ticchioni, M; Bernard, A; Dellamonica, P; Tran, A

    2005-08-01

    Hepatitis C virus (HCV) infection leads to liver injury, which is thought to be immune-mediated. Apoptosis of hepatic T cells could influence histological damage. We quantified peripheral and intrahepatic T-cell apoptosis in 28 patients with chronic hepatitis C by using cytofluorometric techniques. METAVIR score and HCV plasma viral load were determined. Six liver biopsies, obtained from controls without chronic hepatitis during hepatobiliary surgery, served as controls. In patients, liver T-cell apoptosis was upregulated compared to peripheral T cells: 35 versus 7% for CD4+ and 56 versus 13% for CD8+ T cells (P < 0.001). Liver T-cell apoptosis levels from patients were increased compared to controls for both CD4+ (P = 0.041) and CD8+ T cells (P = 0.007). Nine patients exhibiting METAVIR scores A and F < or = 1 showed higher intrahepatic CD4+ T-cell apoptosis compared to the 19 patients with a higher METAVIR score (P = 0.001) and both histological activity and fibrosis were related to apoptosis level. There was also an inverse relationship between the level of intrahepatic CD8+ T-cell apoptosis and serum transaminase activity (P = 0.023). Our study shows immune compartmentalization, suggesting that the study of peripheral blood lymphocytes may not be fully relevant to the pathophysiology of HCV hepatitis, and that the severity of liver injury is inversely correlated with intrahepatic CD4+ T-cell apoptosis.

  10. Neuroendocrine Cells of the Prostate Derive from the Neural Crest*

    PubMed Central

    Szczyrba, Jaroslaw; Wagner, Mathias; Wandernoth, Petra M.; Aumüller, Gerhard; Wennemuth, Gunther

    2017-01-01

    The histogenesis of prostatic neuroendocrine cells is controversial: a stem cell hypothesis with a urogenital sinus-derived progeny of all prostatic epithelial cells is opposed by a dual origin hypothesis, favoring the derivation of neuroendocrine cells from the neural crest, with the secretory and basal cells being of urogenital sinus origin. A computer-assisted 3D reconstruction was used to analyze the distribution of chromogranin A immunoreactive cells in serial sections of human fetal prostate specimens (gestation weeks 18 and 25). Immunohistochemical double labeling studies with YFP and serotonin antisera combined with electron microscopy were carried out on double-transgenic Wnt1-Cre/ROSA26-YFP mice showing stable YFP expression in all neural crest-derived cell populations despite loss of Wnt1 expression. 3D reconstruction of the distribution pattern of neuroendocrine cells in the human fetal prostate indicates a migration of paraganglionic cells passing the stroma and reaching the prostate ducts. Double-transgenic mice showed 55% double labeling of periurethral neuroendocrine cells expressing both serotonin and YFP, whereas single serotonin labeling was observed in 36% and exclusive YFP labeling in 9%. The results favor the assumption of a major fraction of neural crest-derived neuroendocrine cells in both the human and murine prostates. PMID:28003366

  11. Autoimmune hemolytic anemia and giant cell hepatitis: Report of three infants.

    PubMed

    Ünal, Şule; Kuşkonmaz, Barış; Balamtekin, Necati; Baysoy, Gökhan; Aytaç Elmas, Selin; Orhan, Diclehan; Kale, Gülsev; Yüce, Aysel; Gürakan, Figen; Gümrük, Fatma; Çetin, Mualla

    2010-12-05

    Giant cell hepatitis associated with direct Coombs' test-positive hemolytic anemia is a rare condition of childhood and the pathogenesis remains unclear. An autoimmune activation and loss of self-tolerance in these patients may be the underlying pathology related to the response of some of the patients to immunosuppressive treatment. Herein, we report the clinical presentation and course of three consecutive patients with this rare condition. We conclude that serum ferritin at diagnosis may be used for prediction of the outcome.

  12. 'Hardcore' OX40(+) immunosuppressive regulatory T cells in hepatic cirrhosis and cancer.

    PubMed

    Piconese, Silvia; Timperi, Eleonora; Barnaba, Vincenzo

    2014-01-01

    Human regulatory T cells (Tregs) comprise an array of distinct subsets displaying diverse functions in response to microenvironmental signals. Here, we review our recent findings demonstrating the preferential accumulation of uncommitted, Th1-like and OX40(-) Tregs in non-cirrhotic tissues in contrast to the presence of committed, Th1-suppressing and OX40(+) Tregs in cirrhotic and tumor contexts in human liver affected by chronic hepatitis C.

  13. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis.

    PubMed

    Hintermann, Edith; Bayer, Monika; Ehser, Janine; Aurrand-Lions, Michel; Pfeilschifter, Josef M; Imhof, Beat A; Christen, Urs

    2016-07-03

    Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.

  14. LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis

    PubMed Central

    Odena, Gemma; Chen, Jiegen; Lozano, Juan Jose; Altamirano, Jose; Rodrigo-Torres, Daniel; Affo, Silvia; Morales-Ibanez, Oriol; Matsushita, Hiroshi; Zou, Jian; Dumitru, Raluca; Caballeria, Juan; Gines, Pere; Arroyo, Vicente; You, Min; Rautou, Pierre-Emmanuel; Valla, Dominique; Crews, Fulton; Seki, Ekihiro; Sancho-Bru, Pau; Bataller, Ramon

    2016-01-01

    Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development. PMID:27752144

  15. Hepatitis B Virus X Protein Driven Alpha Fetoprotein Expression to Promote Malignant Behaviors of Normal Liver Cells and Hepatoma Cells

    PubMed Central

    Zhu, Mingyue; Lu, Yan; Li, Wei; Guo, Junli; Dong, Xu; Lin, Bo; Chen, Yi; Xie, Xieju; Li, Mengsen

    2016-01-01

    Background: The infection of Hepatitis B virus (HBV) is closely associated with the development of hepatocellular carcinoma(HCC), HBV-X protein(HBx) is able to induce expression of alpha-fetoprotein(AFP) in normal liver cells, and AFP harbors a function to promote malignant transformation of normal liver cells, but the role AFP playing in malignant behaviors of HCC cells is still unclear. Methods: Fifty-six liver tissue samples were collected from the clinical patients through hepatectomy(include normal liver tissues, HBV-related hepatitis liver tissues and HBV-related HCC tissues), and diagnosis of these tissues by pathology section, expression of AFP, Ras and CXCR4 were evidenced by immunohisochemical staining and Western blotting; The proliferation of human normal liver cells line L-02 cells and human hepatoma cells line, HLE cells(non AFP-producing) were performed by MTT method; Repaired capacity of L-02 and HLE cells were compared by wound healing assay; Migration and invasion of these cells were analyzed by Transwell chamber assay; HBx expressed vectors(pcDNA3.1-HBx) were constructed and transfected into L-02 and HLE cells, effects of pcDNA3.1-HBx on the malignant behaviors were also detected by MTT, Transwell chamber assay and the expression of AFP, Ras and CXCR4 were evidenced by Western blotting. Results: we found that expression of AFP, Ras and CXCR4 in HBV-related HCC and lymph nodes metastasis tissues were significantly elevated compared with HBV-related HCC, non metastasis tissues and HBV-related hepatitis tissues; Expression of AFP, Ras and CXCR4 in HBV-related hepatitis tissues were significantly enhanced compared with normal liver tissues; The growth ratio, migratory and invasive ability, expression of AFP, Ras and CXCR4 of the cells were outstanding promoted while L-02 and HLE cells were transfected with pcDNA3.1-HBx vectors. The proliferation ratio, migration and invasion ability, and expression of Ras and CXCR4 were significantly inhibited while

  16. Pure red cell aplasia associated with autoimmune hepatitis successfully treated with cyclosporine A.

    PubMed

    Sato, Akira; Sano, Fumiaki; Ishii, Toshiya; Adachi, Kayo; Negishi, Ryujirou; Matsumoto, Nobuyuki; Okuse, Chiaki

    2014-02-01

    A 47-year-old female with a 17-year history of autoimmune hepatitis had been treated with prednisolone, azathioprine, and ursodeoxycholic acid. Although her alanine aminotransferase level occasionally showed mild abnormality, the prednisolone dose could not be increased because she had developed cataract during the course of her illness. In May 2012, she developed severe normochromic normocytic anemia without hemorrhage, and azathioprine was discontinued because it was suspected of being the cause. However, anemia recurred frequently even after discontinuation, necessitating repeated blood transfusions. Bone marrow analysis revealed selective erythroblastopenia, thus leading to a diagnosis of pure red cell aplasia. Cyclosporine A was administered, which led to a dramatic recovery from anemia, and stabilized her alanine aminotransferase levels. Furthermore, the prednisolone dose could be gradually tapered. Pure red cell aplasia associated with autoimmune hepatitis is extremely rare. The present case shows that patients with autoimmune hepatitis refractory to the standard treatment regimen and those with concomitant pure red cell aplasia may be treated with cyclosporine A.

  17. Efficient Hepatitis Delta Virus RNA Replication in Avian Cells Requires a Permissive Factor(s) from Mammalian Cells

    PubMed Central

    Liu, Yu-Tsueng; Brazas, Rob; Ganem, Don

    2001-01-01

    Hepatitis delta virus (HDV) is a highly pathogenic human RNA virus whose genome is structurally related to those of plant viroids. Although its spread from cell to cell requires helper functions supplied by hepatitis B virus (HBV), intracellular HDV RNA replication can proceed in the absence of HBV proteins. As HDV encodes no RNA-dependent RNA polymerase, the identity of the (presumably cellular) enzyme responsible for this reaction remains unknown. Here we show that, in contrast to mammalian cells, avian cells do not support efficient HDV RNA replication and that this defect cannot be rescued by provision of HDV gene products in trans. Contrary to earlier assertions, this defect is not due to enhanced apoptosis triggered in avian cells by HDV. Fusion of avian cells to mammalian cells rescues HDV replication in avian nuclei, indicating that the nonpermissive phenotype of avian cells is not due to the presence of dominantly acting inhibitors of replication. Rather, avian cells lack one or more essential permissive factors present in mammalian cells. These results set the stage for the identification of such factors and also explain the failure of earlier efforts to transmit HDV infection to avian hosts harboring indigenous hepadnaviruses. PMID:11462021

  18. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes.

    PubMed

    Segers, Seppe; Mertes, Heidi; de Wert, Guido; Dondorp, Wybo; Pennings, Guido

    2017-01-13

    In this review we aim to provide an overview of the most important ethical pros and cons of stem cell derived gametes (SCD-gametes), as a contribution to the debate about reproductive tissue engineering. Derivation of gametes from stem cells holds promising applications both for research and for clinical use in assisted reproduction. We explore the ethical issues connected to gametes derived from embryonic stem cells (both patient specific and non-patient specific) as well as those related to gametes derived from induced pluripotent stem cells. The technology of SCD-gametes raises moral concerns of how reproductive autonomy relates to issues of embryo destruction, safety, access, and applications beyond clinical infertility.

  19. Isolation and Characterization of Pluripotent Human Spermatogonial Stem Cell-Derived Cells

    PubMed Central

    Kossack, Nina; Meneses, Juanito; Shefi, Shai; Nguyen, Ha Nam; Chavez, Shawn; Nicholas, Cory; Gromoll, Joerg; Turek, Paul J; Reijo-Pera, Renee A

    2009-01-01

    Several reports have documented the derivation of pluripotent cells (multipotent germline stem cells) from spermatogonial stem cells obtained from the adult mouse testis. These spermatogonia-derived stem cells express embryonic stem cell markers and differentiate to the three primary germ layers, as well as the germline. Data indicate that derivation may involve reprogramming of endogenous spermatogonia in culture. Here, we report the derivation of human multipotent germline stem cells (hMGSCs) from a testis biopsy. The cells express distinct markers of pluripotency, form embryoid bodies that contain derivatives of all three germ layers, maintain a normal XY karyotype, are hypomethylated at the H19 locus, and express high levels of telomerase. Teratoma assays indicate the presence of human cells 8 weeks post-transplantation but limited teratoma formation. Thus, these data suggest the potential to derive pluripotent cells from human testis biopsies but indicate a need for novel strategies to optimize hMGSC culture conditions and reprogramming. PMID:18927477

  20. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells.

    PubMed

    Kehat, Izhak; Khimovich, Leonid; Caspi, Oren; Gepstein, Amira; Shofti, Rona; Arbel, Gil; Huber, Irit; Satin, Jonathan; Itskovitz-Eldor, Joseph; Gepstein, Lior

    2004-10-01

    Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.

  1. Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells.

    PubMed

    Date, Tomoko; Kato, Takanobu; Miyamoto, Michiko; Zhao, Zijiang; Yasui, Kotaro; Mizokami, Masashi; Wakita, Takaji

    2004-05-21

    A hepatitis C virus genotype 2a subgenomic replicon, JFH-1 replicon, was previously established using the consensus sequence of clone JFH-1 from a patient with fulminant hepatitis and, in a previous report, was indicated to replicate efficiently in Huh7. Here the replication of JFH-1 replicon was tested in HepG2, a human hepatocyte-derived cell line, and in IMY-N9, a cell line developed by fusing human hepatocytes and HepG2 cells. Following transfection with in vitro transcribed replicon RNA and selection by cultivation with G418, colonies formed in both cell lines although at efficiencies substantially lower than those of Huh7. The H2476L mutation identified in the Huh7 replicon in our previous study increased the colony formation efficiencies of the JFH-1 replicon in HepG2 and IMY-N9 cells. Higher amounts of replicon RNA were detected in IMY-N9 clones than in HepG2 clones by real time detection reverse transcription-PCR, and replicon RNA replication and viral protein expression were confirmed by Northern and Western blotting in isolated clones. Sequencing of replicon RNAs revealed that mutations found in hepatitis C virus-derived regions were not identical and that two of nine HepG2 clones and three of nine IMY-N9 clones had no or one synonymous mutation. This system with the JFH-1 replicon and three cell lines is useful not only for estimating the cellular factors affecting viral activity but also for clarifying the common gene response of the host.

  2. Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes.

    PubMed

    Funakoshi, Natalie; Duret, Cédric; Pascussi, Jean-Marc; Blanc, Pierre; Maurel, Patrick; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2011-09-01

    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate.

  3. [A Case of Renal Cell Carcinoma with High Everolimus Blood Concentrations and Hyperglycemia Due to Everolimus-Induced Hepatic Dysfunction].

    PubMed

    Takasaki, Shinya; Kikuchi, Masafumi; Kawasaki, Yoshihide; Ito, Akihiro; Arai, Yoichi; Yamaguchi, Hiroaki; Mano, Nariyasu

    2017-01-01

    We report the case of a patient who had renal cell carcinoma with high everolimus blood concentrations and hyperglycemia due to everolimus-induced hepatic dysfunction. A 74-year-old man who underwent right nephrectomy for renal cell carcinoma was administered everolimus for multiple lung metastases. Everolimus caused grade 3 hepatic dysfunction and hyperglycemia; hence, high blood levels of everolimus were observed. Although the patient was re-administrated everolimus after recovering from hepatic dysfunction, hepatic function test values worsened again. Everolimus was discontinued before its blood concentration increased, and the patient was switched to axitinib treatment. Therefore, the measurement of everolimus blood level is considered useful for the management of adverse events in renal cell carcinoma.

  4. Structural Phenotyping of Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-01-01

    Summary Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. PMID:25733020

  5. Schizophrenia patient-derived olfactory neurosphere-derived cells do not respond to extracellular reelin

    PubMed Central

    Tee, Jing Yang; Sutharsan, Ratneswary; Fan, Yongjun; Mackay-Sim, Alan

    2016-01-01

    Reelin expression is reduced in various regions in the post-mortem brain of schizophrenia patients but the exact role of reelin function in the neurobiology of schizophrenia remains elusive. Absence of reelin in knockout mouse causes inverted lamination of the neocortex due to aberrant neuronal migration. The aim of this study was to utilize patient-derived olfactory neurosphere-derived (ONS) cells to investigate whether extracellular reelin alters cell motility in schizophrenia patient-derived cells. ONS cells from nine patients were compared with cells from nine matched healthy controls. Automated high-throughput imaging and analysis were used to track motility of individual living cells on reelin-coated surfaces produced from reelin secreted into the medium by HEK293FT cells transfected with the full-length reelin plasmid pCrl. Automated assays were used to quantify intracellular cytoskeleton composition, cell morphology, and focal adhesions. Expression of reelin and components of the reelin signaling pathway were measured by western blot and flow cytometry. Reelin inhibited the motility of control cells but not patient cells, and increased the number and size of focal adhesions in control cells but not patient cells. Patient and control cells expressed similar levels of the reelin receptors and the reelin signaling protein, Dab1, but patient cells expressed less reelin. Patient cells were smaller than control cells and had less actin and acetylated α-tubulin, components of the cytoskeleton. These findings are the first direct evidence that cellular responses to reelin are impaired in schizophrenia and are consistent with the role of reelin in cytoarchitectural deficits observed in schizophrenia patient brains. PMID:27602387

  6. Expression of MicroRNA miR-122 Facilitates an Efficient Replication in Nonhepatic Cells upon Infection with Hepatitis C Virus

    PubMed Central

    Fukuhara, Takasuke; Kambara, Hiroto; Shiokawa, Mai; Ono, Chikako; Katoh, Hiroshi; Morita, Eiji; Okuzaki, Daisuke; Maehara, Yoshihiko; Koike, Kazuhiko

    2012-01-01

    Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly. PMID:22593164

  7. Transmission of human hepatitis C virus from patients in secondary cells for long term culture

    PubMed Central

    Revie, Dennis; Braich, Ravi S; Bayles, David; Chelyapov, Nickolas; Khan, Rafat; Geer, Cheryl; Reisman, Richard; Kelley, Ann S; Prichard, John G; Salahuddin, S Zaki

    2005-01-01

    Infection by human hepatitis C virus (HCV) is the principal cause of post-transfusion hepatitis and chronic liver diseases worldwide. A reliable in vitro culture system for the isolation and analysis of this virus is not currently available, and, as a consequence, HCV pathogenesis is poorly understood. We report here the first robust in vitro system for the isolation and propagation of HCV from infected donor blood. This system involves infecting freshly prepared macrophages with HCV and then transmission of macrophage-adapted virus into freshly immortalized B-cells from human fetal cord blood. Using this system, newly isolated HCV have been replicated in vitro in continuous cultures for over 130 weeks. These isolates were also transmitted by cell-free methods into different cell types, including B-cells, T-cells and neuronal precursor cells. These secondarily infected cells also produced in vitro transmissible infectious virus. Replication of HCV-RNA was validated by RT-PCR analysis and by in situ hybridization. Although nucleic acid sequencing of the HCV isolate reported here indicates that the isolate is probably of type 1a, other HCV types have also been isolated using this system. Western blot analysis shows the synthesis of major HCV structural proteins. We present here, for the first time, a method for productively growing HCV in vitro for prolonged periods of time. This method allows studies related to understanding the replication process, viral pathogenesis, and the development of anti-HCV drugs and vaccines. PMID:15840164

  8. Natural killer cell populations in Egyptians infected with hepatitis C virus.

    PubMed

    Rafik, M; Sidhom, G; Mamdouh, R; Ellebedy, D; Mohamed, M

    2012-09-01

    Natural killer (NK) cells are key players in the immune response to viruses. This study examined the effect of hepatitis C virus (HCV) on the frequency of NK cells and their subsets in individuals with different clinical outcomes; 20 positive for anti-HCV and HCV-RNA (chronic hepatitis C), 20 positive for anti-HCV but negative for HCV-RNA (spontaneously resolved) and 20 healthy controls free of HCV. There was a significant reduction in the frequency of total NK cells in the chronic group compared to the control (P = 0.001) or resolved (P = 0.01) groups. The percentage of CD56(bright) cells was significantly higher than the control group (P = 0.04). While the percentages of CD56 (dim) cells and their CD16 expression were lower in the chronic group, this was not statistically significant. The frequency of CD3+CD56- T cells was significantly lower in both the chronic and resolved groups compared to the control group (P = 0.04). Our results confirm a potential role of NK cells and the different subsets in the pathogenesis of chronic HCV infection.

  9. Autoimmune Hepatitis: Progress from Global Immunosuppression to Personalised Regulatory T Cell Therapy

    PubMed Central

    Than, Nwe Ni; Jeffery, Hannah C.; Oo, Ye H.

    2016-01-01

    Autoimmune hepatitis (AIH) is an immune mediated liver injury. The precise aetiology of AIH is still unknown but current evidence suggests both genetic and environmental factors are involved. Breakdown in peripheral self-tolerance, and impaired functions of FOXP3+ regulatory T cell along with effector cell resistance to suppression at the tissue level seem to play an important role in AIH immunopathogenesis. AIH is predominantly a T lymphocytes driven disease but B lymphocytes are also involved in the immunopathology. Innate immune cells are crucial in the initial onset of disease and their response is followed by adaptive T (Th1, Th17, and cytotoxic T cells) and B cell responses evidenced by liver histology and peripheral blood serology. Standard treatment regimens involving steroid and immunosuppressive medications lead to global immune suppression requiring life-long therapy with many side effects. Biologic therapies have been attempted but duration of remission is short-lived. Future direction of diagnosis and treatment for AIH should be guided by “omics” and the immunology profile of the individual patient and clinicians should aim to deliver personalised medicine for their patients. Cell therapy such as infusion of autologous, antigen-specific, and liver-homing regulatory T cells to restore hepatic immune tolerance may soon be a potential future treatment for AIH patients. PMID:27446862

  10. Cross-genotype-specific T-cell responses in acute hepatitis E virus (HEV) infection.

    PubMed

    Gisa, A; Suneetha, P V; Behrendt, P; Pischke, S; Bremer, B; Falk, C S; Manns, M P; Cornberg, M; Wedemeyer, H; Kraft, A R M

    2016-04-01

    Hepatitis E is an inflammatory liver disease caused by infection with the hepatitis E virus (HEV). In tropical regions, HEV is highly endemic and predominantly mediated by HEV genotypes 1 and 2 with >3 million symptomatic cases per year and around 70 000 deaths. In Europe and America, the zoonotic HEV genotypes 3 and 4 have been reported with continues increasing new infections per year. So far, little is known about T-cell responses during acute HEV genotype 3 infection. Therefore, we did a comprehensive study investigating HEV-specific T-cell responses using genotypes 3- and 1-specific overlapping peptides. Additional cytokines and chemokines were measured in the plasma. In four patients, longitudinal studies were performed. Broad functional HEV-specific CD4(+) and CD8(+) T-cell responses were detectable in patients acutely infected with HEV genotype 3. Elevated of pro- and anti-inflammatory cytokine levels during acute HEV infection correlated with ALT levels. Memory HEV-specific T-cell responses were detectable up to >1.5 years upon infection. Importantly, cross-genotype HEV-specific T-cell responses (between genotypes 1 and 3) were measurable in all investigated patients. In conclusion, we could show for the first time HEV-specific T-cell responses during and after acute HEV genotype 3 infection. Our data of cross-genotype HEV-specific T-cell responses might suggest a potential role in cross-genotype-specific protection between HEV genotypes 1 and 3.

  11. Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence

    PubMed Central

    Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.

    2013-01-01

    Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505

  12. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    PubMed

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  13. Autologous Stem Cells Transplantation in Egyptian Patients with Liver Cirrhosis on Top of Hepatitis C Virus

    PubMed Central

    Al Tayeb, Hoda; El Dorry, Ahmed; Amer, Nehad; Mowafy, Nadia; Zimaity, Maha; Bayoumy, Essam; Saleh, Shereen A.

    2015-01-01

    Background and Objectives Use of pluripotent stem cells is an ideal solution for liver insufficiencies. This work aims is to evaluate the safety and feasibility of autologous stem cells transplantation (SCT) in Egyptian patients of liver cirrhosis on top of hepatitis C virus (HCV). Subjects and Results 20 patients with HCV induced liver cirrhosis were divided into 2 groups. Group I: included 10 patients with liver cirrhosis Child score ≥9, for whom autologous stem cell transplantation was done using granulocyte colony stimulating factor (G-CSF) for stem cells mobilization. Separation and collection of the peripheral blood stem cells was done by leukapheresis. G-CSF mobilized peripheral blood mononuclear cells (G-CSF PB-MNCs) were counted by flow cytometry. Stem cell injection into the hepatic artery was done. Group II: included 10 patients with HCV induced liver cirrhosis as a control group. Follow up and comparison between both groups were done over a follow up period of 6 months. The procedure was well tolerated. Mobilization was successful and the total number of G-CSF PB-MNCs in the harvests ranged from 25×106 to 191×106. There was improvement in the quality of life, serum albumin, total bilirubin, liver enzymes and the Child-Pugh score of group I over the first two-three months after the procedure. Conclusion SCT in HCV induced liver cirrhosis is a safe procedure. It can improve the quality of life and hepatic functions transiently with no effect on the life expectancy or the fate of the liver cirrhosis. PMID:26634069

  14. Graptopetalum Paraguayense Ameliorates Chemical-Induced Rat Hepatic Fibrosis In Vivo and Inactivates Stellate Cells and Kupffer Cells In Vitro

    PubMed Central

    Su, Li-Jen; Chang, Chia-Chuan; Yang, Chih-Hsueh; Hsieh, Shur-Jong; Wu, Yi-Chin; Lai, Jin-Mei; Tseng, Tzu-Ling; Huang, Chi-Ying F.; Hsu, Shih-Lan

    2013-01-01

    Background Graptopetalum paraguayense (GP) is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN)- and carbon tetrachloride (CCl4)-induced liver injury rats. Methods Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP) by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs) and Kupffer cells, respectively, were evaluated. Results Oral administration of MGP significantly alleviated DMN- or CCl4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA) expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. Conclusions The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis. PMID:23335984

  15. Recombinant retrovirus-derived virus-like particle-based vaccines induce hepatitis C virus-specific cellular and neutralizing immune responses in mice.

    PubMed

    Huret, Christophe; Desjardins, Delphine; Miyalou, Mathilde; Levacher, Béatrice; Amadoudji Zin, Martin; Bonduelle, Olivia; Combadière, Béhazine; Dalba, Charlotte; Klatzmann, David; Bellier, Bertrand

    2013-03-01

    While the immunological correlates of hepatitis C virus (HCV)-specific immunity are not well understood, it is now admitted that an effective vaccine against HCV will need to induce both cellular and humoral immune responses and address viral heterogeneity to prevent immune escape. We developed a vaccine platform specifically aimed at inducing such responses against HCV antigens displayed by recombinant retrovirus-based virus-like particles (VLPs) made of Gag of murine leukemia virus. Both ex vivo produced VLPs and plasmid DNA encoding VLPs can be used as vaccines. Here, we report that immunizations with plasmid DNA forming VLPs pseudotyped with HCV E1 and E2 envelope glycoproteins (HCV-specific plasmo-retroVLPs) induce strong T-cell-mediated immune responses that can be optimized by using proper DNA delivery methods and/or genetic adjuvants. Additionally, multigenotype or multi-specific T-cell responses were observed after immunization with plasmids that encode VLPs pseudotyped with E1E2 derived from numerous viral genotypes and/or displaying NS3 antigen in capsid proteins. While homologous prime-boost immunizations with HCV-specific plasmo-retroVLPs or ex vivo produced VLPs induce a low level of specific antibody responses, optimal combination of plasmo-retroVLPs and VLPs was identified for inducing HCV-specific T-cell and B-cell responses as well as neutralizing antibodies. Altogether, these results have important meanings for the development of anti-HCV preventive vaccines and exemplify the flexibility and potential of our retrovirus-based platform in inducing broad cellular and humoral immune responses.

  16. Combined therapy of transcatheter hepatic arterial embolization with intratumoral dendritic cell infusion for hepatocellular carcinoma: clinical safety

    PubMed Central

    Nakamoto, Y; Mizukoshi, E; Tsuji, H; Sakai, Y; Kitahara, M; Arai, K; Yamashita, T; Yokoyama, K; Mukaida, N; Matsushima, K; Matsui, O; Kaneko, S

    2007-01-01

    The curative treatments for hepatocellular carcinoma (HCC), including surgical resection and radiofrequency ablation (RFA), do not prevent tumour recurrence effectively. Dendritic cell (DC)-based immunotherapies are believed to contribute to the eradication of the residual and recurrent tumour cells. The current study was designed to assess the safety and bioactivity of DC infusion into tumour tissues following transcatheter hepatic arterial embolization (TAE) for patients with cirrhosis and HCC. Peripheral blood mononuclear cells (PBMCs) were differentiated into phenotypically confirmed DCs. Ten patients were administered autologous DCs through an arterial catheter during TAE treatment. Shortly thereafter, some HCC nodules were treated additionally to achieve the curative local therapeutic effects. There was no clinical or serological evidence of adverse events, including hepatic failure or autoimmune responses in any patients, in addition to those due to TAE. Following the infusion of 111Indium-labelled DCs, DCs were detectable inside and around the HCC nodules for up to 17 days, and were associated with lymphocyte and monocyte infiltration. Interestingly, T lymphocyte responses were induced against peptides derived from the tumour antigens, Her-2/neu, MRP3, hTERT and AFP, 4 weeks after the infusion in some patients. The cumulative survival rates were not significantly changed by this strategy. These results demonstrate that transcatheter arterial DC infusion into tumour tissues following TAE treatment is feasible and safe for patients with cirrhosis and HCC. Furthermore, the antigen-non-specific, immature DC infusion may induce immune responses to unprimed tumour antigens, providing a plausible strategy to enhance tumour immunity. PMID:17223971

  17. Anticytoproliferative effect of Vitamin C on rat hepatic stellate cell

    PubMed Central

    Su, Min; Chao, Guo; Liang, Minqing; Song, Jianhua; Wu, Ka

    2016-01-01

    This study was conducted to investigate the potential therapeutical benefit of Vitamin (VC), a potent antioxidant, on suppressing proliferation of immortalized rat liver stellate cell line (HSC-T6) in vitro, and to discuss the underlying mechanism. HSC-T6 was co-treated with different concentrations of VC (50, 100, 200 μmol/L) on designed time points. Then, cell viability was assessed by using MTT analysis, and the changes of cytomorphology was observed with apoptosis-specific TUNEL and immunohistochemical stains, as well as the intracellular target genes was determined by using RT-PCR, respectively. As the outcomes, VC-treated HSC-T6 showed significantly inhibited cell growth in a dose-dependent manner when compared to the vehicle control. Cytologically, VC increased TUNEL-labeled positive cells in cultured HSC-T6, which the cell count was greater than vehicle control. Meanwhile, VC-treated HSC-T6 showed elevated immunoreactive for TGF-β1-labeled cells. Moreover, VC contributed to down-regulated expressions of intracellular c-myc, cyclin D1, mTOR mRNAs in HSC-T6. Collectively, these preliminary findings have demonstrated that VC-mediated anti-proliferative effect on HSCs is involved in molecular mechanisms of promoting apoptosis and blocking endogenous collagenation. PMID:27398165

  18. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    PubMed

    Wang, Zhi-Ming; Z