Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis
Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai
2017-01-01
Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577
Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem
2015-04-01
Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.
Kovacic, Peter; Somanathan, Ratnasamy
2011-04-01
Nitric oxide was first the object of extensive investigation in animals. It has been designated as the most widespread signaling molecule. An overview is presented with emphasis on cell signaling, mechanism, and physiological activity. Hence, a basis is provided for comparison of NO in plants with a similar approach. Mechanistically, cell signaling, electron transfer, radicals, and antioxidants are involved. A role is played by NO derivatives, such as peroxynitrite, nitroxyl, nitrite, nitrate, and S-nitroso derivatives. Comparison is made with ethylene. The multifaceted, interdisciplinary approach provides novel insight.
N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor.
Stamler, J; Mendelsohn, M E; Amarante, P; Smick, D; Andon, N; Davies, P F; Cooke, J P; Loscalzo, J
1989-09-01
Recent evidence suggests that endothelium-derived relaxing factor exhibits properties of nitric oxide. Like nitric oxide, it inhibits platelet function and mediates its effects by elevating intracellular cyclic GMP. In this study we have investigated the role of reduced thiol in the mechanism of action of endothelium-derived relaxing factor on platelets. Bovine aortic endothelial cells were grown on microcarrier beads and pretreated with aspirin before use. Endothelial cells stimulated with bradykinin or exposed to stirred medium expressed a dose-dependent inhibition of platelet aggregation that was potentiated by the reduced thiol, N-acetylcysteine. Endothelial cell-mediated platelet inhibition was attenuated by methylene blue. Inhibition of platelet aggregation by endothelial cells was associated with a rise in platelet intracellular cyclic GMP, an effect that was enhanced by N-acetylcysteine. These data show that 1) the reduced thiol N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor and 2) this effect is associated with increasing intracellular platelet cyclic GMP levels.
Kumar, Ashutosh; Ehrenshaft, Marilyn; Tokar, Erik J; Mason, Ronald P; Sinha, Birandra K
2016-07-01
Etoposide and doxorubicin, topoisomerase II poisons, are important drugs for the treatment of tumors in the clinic. Topoisomerases contain several free sulfhydryl groups which are important for their activity and are also potential targets for nitric oxide (NO)-induced nitrosation. NO, a physiological signaling molecule nitrosates many cellular proteins, causing altered protein and cellular functions. Here, we have evaluated the roles of NO/NO-derived species in the activity/stability of topo II both in vitro and in human tumor cells, and in the cytotoxicity of topo II-poisons, etoposide and doxorubicin. Treatment of purified topo IIα with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of both the catalytic and relaxation activity in vitro, and decreased etoposide-dependent cleavable complex formation in both human HT-29 colon and MCF-7 breast cancer cells. PPNO treatment also induced significant nitrosation of topo IIα protein in these human tumor cells. These events, taken together, caused a significant resistance to etoposide in both cell lines. However, PPNO had no effect on doxorubicin-induced cleavable complex formation, or doxorubicin cytotoxicity in these cell lines. Inhibition of topo II function by NO/NO-derived species induces significant resistance to etoposide, without affecting doxorubicin cytotoxicity in human tumor cells. As tumors express inducible nitric oxide synthase and generate significant amounts of NO, modulation of topo II functions by NO/NO-derived species could render tumors resistant to certain topo II-poisons in the clinic. Published by Elsevier B.V.
Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12
Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J
2010-01-01
Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477
Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease
Kraehling, Jan R.; Sessa, William C.
2017-01-01
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. PMID:28360348
NASA Technical Reports Server (NTRS)
McAllister, T. N.; Du, T.; Frangos, J. A.
2000-01-01
Bone is a porous tissue that is continuously perfused by interstitial fluid. Fluid flow, driven by both vascular pressure and mechanical loading, may generate significant shear stresses through the canaliculi as well as along the bone lining at the endosteal surface. Both osteoblasts and osteocytes produce signaling factors such as prostaglandins and nitric in response to fluid shear stress (FSS); however, these humoral agents appear to have more profound affects on osteoclast activity at the endosteal surface. We hypothesized that osteoclasts and preosteoclasts may also be mechanosensitive and that osteoclast-mediated autocrine signaling may be important in bone remodeling. In this study, we investigated the effect of FSS on nitric oxide (NO), prostaglandin E(2) (PGE(2)), and prostacyclin (PGI(2)) release by neonatal rat bone marrow-derived preosteoclast-like cells. These cells were tartrate-resistant acid phosphatase (TRAP) positive, weakly nonspecific esterase (NSE) positive, and capable of fusing into calcitonin-responsive, bone-resorbing, multinucleated cells. Bone marrow-derived preosteoclast-like cells exposed for 6 h to a well-defined FSS of 16 dynes/cm(2) produced NO at a rate of 7.5 nmol/mg protein/h, which was 10-fold that of static controls. This response was completely abolished by 100 microM N(G)-amino-L-arginine (L-NAA). Flow also stimulated PGE(2) production (3.9 microg/mg protein/h) and PGI(2) production (220 pg/mg protein/h). L-NAA attenuated flow-induced PGE(2) production by 30%, suggesting that NO may partially modulate PGE(2) production. This is the first report demonstrating that marrow derived cells are sensitive to FSS and that autocrine signaling in these cells may play an important role in load-induced remodeling and signal transduction in bone. Copyright 2000 Academic Press.
Tseng, Chih-Hua; Tung, Chun-Wei; Peng, Shin-I; Chen, Yeh-Long; Tzeng, Cherng-Chyi; Cheng, Chih-Mei
2018-04-28
The synthesis and anti-inflammatory effects of certain pyrazolo[4,3- c ]quinoline derivatives 2a ⁻ 2r are described. The anti-inflammatory activities of these derivatives were evaluated by means of inhibiting nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among them, 3-amino-4-(4-hydroxyphenylamino)-1 H -pyrazolo[4,3- c ]-quinoline ( 2i ) and 4-(3-amino-1 H -pyrazolo[4,3- c ]quinolin-4-ylamino)benzoic acid ( 2m ) exhibited significant inhibition of LPS-stimulated NO production with a potency approximately equal to that of the positive control, 1400 W. Important structure features were analyzed by quantitative structure⁻activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the inhibitory effects on the accumulation of nitric oxide for RAW 264.7 cells in response to LPS. In addition, our results indicated that their anti-inflammatory effects involve the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expression. Further studies on the structural optimization are ongoing.
Achike, Francis I; Kwan, Chiu-Yin
2003-09-01
1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or purified drugs derived from Chinese medicinal herbs with proposed actions on NO pathways are also reviewed.
Afzal, Muhammad Z.; Reiter, Melanie; Gastonguay, Courtney; McGivern, Jered V.; Guan, Xuan; Ge, Zhi-Dong; Mack, David L.; Childers, Martin K.; Ebert, Allison D.; Strande, Jennifer L.
2016-01-01
Background Dystrophin-deficient cardiomyopathy is a growing clinical problem without targeted treatments. We investigated whether nicorandil promotes cardioprotection in human dystrophin-deficient induced pluripotent stem cell (iPSC)-derived cardiomyocytes and the muscular dystrophy mdx mouse heart. Methods and Results Dystrophin-deficient iPSC-derived cardiomyocytes had decreased levels of endothelial nitric oxide synthase and neuronal nitric oxide synthase. The dystrophin-deficient cardiomyocytes had increased cell injury and death after 2 hours of stress and recovery. This was associated with increased levels of reactive oxygen species and dissipation of the mitochondrial membrane potential. Nicorandil pretreatment was able to abolish these stress-induced changes through a mechanism that involved the nitric oxide–cyclic guanosine monophosphate pathway and mitochondrial adenosine triphosphate-sensitive potassium channels. The increased reactive oxygen species levels in the dystrophin-deficient cardiomyocytes were associated with diminished expression of select antioxidant genes and increased activity of xanthine oxidase. Furthermore, nicorandil was found to improve the restoration of cardiac function after ischemia and reperfusion in the isolated mdx mouse heart. Conclusion Nicorandil protects against stress-induced cell death in dystrophin-deficient cardiomyocytes and preserves cardiac function in the mdx mouse heart subjected to ischemia and reperfusion injury. This suggests a potential therapeutic role for nicorandil in dystrophin-deficient cardiomyopathy. PMID:26940570
El Daker, Sary; Sacchi, Alessandra; Tempestilli, Massimo; Carducci, Claudia; Goletti, Delia; Vanini, Valentina; Colizzi, Vittorio; Lauria, Francesco Nicola; Martini, Federico; Martino, Angelo
2015-01-01
Tuberculosis (TB) is still the principal cause of death caused by a single infectious agent, and the balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. The aim of this work was to study the role of myeloid-derived suppressor cells (MDSCs) during active pulmonary tuberculosis at the site of infection. We observed an expansion of MDSCs in the lung and blood of patients with active TB, which are correlated with an enhanced amount of nitric oxide in the plasma. We also found that these cells have the remarkable ability to suppress T-cell response, suggesting an important role in the modulation of the immune response against TB. Interestingly, a trend in the diminution of MDSCs was found after an efficacious anti-TB therapy, suggesting that these cells may be used as a potential biomarker for monitoring anti-TB therapy efficacy. PMID:25879532
Garczorz, Wojciech; Francuz, Tomasz; Gmiński, Jan; Likus, Wirginia; Siemianowicz, Krzysztof; Jurczak, Teresa; Strzałka-Mrozik, Barbara
2011-01-01
Endothelial dysfunction plays an important role in the development of atherosclerosis. Elastin-derived peptides (EDP), hyperglycemia, hypercholesterolemia and oxidized LDL have a proven proatherosclerotic potential. Nitric oxide generated by endothelial nitric oxide synthase (eNOS; EC 1.14.13.39) is an important vasorelaxant. Here we studied the influence of those proatherosclerotic factors on eNOS gene and protein expression in artery-derived endothelial cells. Human umbilical artery endothelial cells (HUAEC) were incubated with or without: glucose (270 mg/dl), LDL (200 mg/dl), oxidized LDL (oxLDL 25 mg/dl) or κ-elastin (0.5 and 2.5 µg/ml). Gene expression was assessed by real time RT-PCR, whilst the eNOS protein by ELISA. In cells incubated with 2.5 µg/ml of κ-elastin, a 31 % increase of eNOS mRNA expression was observed, but the protein level remained unchanged. OxLDL, LDL and glucose decreased the eNOS protein level by 74 %, 37 % and 29 %, respectively. OxLDL decreased eNOS mRNA by 42 %. LDL non-significantly decreased eNOS mRNA expression. An elevated glucose level did not affect the eNOS mRNA expression. Hyperglycemia and an elevated level of LDL, particularly oxLDL, decreased the level of eNOS protein in endothelial cells. As κ-elastin did not decrease the expression of eNOS gene in HUAEC, the proatherogenic properties of elastin-derived peptides are unlikely to be due to their influence on eNOS.
Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease.
Kraehling, Jan R; Sessa, William C
2017-03-31
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications. © 2017 American Heart Association, Inc.
Li, Linlin; Zhu, Lingqun; Hao, Bingtao; Gao, Wenwen; Wang, Qianli; Li, Keyi; Wang, Meng; Huang, Mengqiu; Liu, Zhengjun; Yang, Qiaohong; Li, Xiqing; Zhong, Zhuo; Huang, Wenhua; Xiao, Guanghui; Xu, Yang; Yao, Kaitai; Liu, Qiuzhen
2017-05-16
Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer.
Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro
2009-01-16
Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.
Trevin, S; Kataoka, Y; Kawachi, R; Shuto, H; Kumakura, K; Oishi, R
1998-08-01
1. Nitric oxide (NO) production in C6 glioma cells was directly monitored in real time by electrochemical detection with a NO-specific biosensor. 2. We present here the first direct evidence that noradrenaline elicits long-lasting NO production in C6 cells pretreated with lipopolysaccharide and interferon-gamma, an effect blocked by NG-monomethyl-L-arginine, a NO synthase inhibitor. 3. This direct electrochemical measurement of glia-derived NO should facilitate our understanding of the kinetics of glial signaling in glia-glia and glia-neuron networks in the brain.
Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO.
Kröncke, K D
2001-11-01
Nitric oxide (NO) in the low nanomolar range acts as a transcellular messenger molecule to initiate regulatory and physiological responses in nearby target cells via binding to the soluble guanylate cyclase heme moiety. Higher NO concentrations, as synthesized by the inducible NO synthase (iNOS) during inflammatory processes, show additional effects: NO may react with O2, yielding nitrogen oxides like N2O3 that are able to nitrosate thiols. A variety of proteins involved in very different functions of the cell contain cysteine-Zn2+ complexes. Effects of NO on different proteins containing cysteine-Zn2+ domains and playing essential roles during transcription, protein folding, and proteolysis are discussed. It is suggested that iNOS-derived NO acts as a signal molecule targeting cysteine-Zn2+ linkages, thus enabling cells to react toward nitrosative stress.
Hao, Bingtao; Gao, Wenwen; Wang, Qianli; Li, Keyi; Wang, Meng; Huang, Mengqiu; Liu, Zhengjun; Yang, Qiaohong; Li, Xiqing; Zhong, Zhuo; Huang, Wenhua; Xiao, Guanghui; Xu, Yang; Yao, Kaitai; Liu, Qiuzhen
2017-01-01
Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer. PMID:28380434
Isenberg, Jeff S; Yu, Christine; Roberts, David D
2008-02-15
ABT-510 is a potent mimetic of an anti-angiogenic sequence from the second type 1 repeat of thrombospondin-1. ABT-510 and the original d-Ile mimetic from which it was derived, GDGV(dI)TRIR, are similarly active for inhibiting vascular outgrowth in a B16 melanoma explant assay. Because GDGV(dI)TRIR and thrombospondin-1 modulate nitric oxide signaling by inhibiting the fatty translocase activity of CD36, we examined the ability ABT-510 to modulate fatty acid uptake into vascular cells and downstream nitric oxide/cGMP signaling. Remarkably, ABT-510 is less active than GDGV(dI)TRIR for inhibiting myristic acid uptake into both endothelial and vascular smooth muscle cells. Correspondingly, ABT-510 is less potent than GDGV(dI)TRIR for blocking a myristate-stimulated increase in cell adhesion to collagen and nitric oxide-driven accumulation of cGMP. ABT-510 at concentrations sufficient to inhibit CD36 fatty acid translocase activity synergizes with thrombin in aggregating platelets and blunts the activity of NO to delay aggregation, but again less than GDGV(dI)TRIR. In contrast, ABT-510 is more potent than GDGV(dI)TRIR for inducing caspase activation in vascular cells. Thus, we propose that ABT-510 is a drug with at least two mechanisms of action, and its potent anti-tumor activity may be in part independent of CD36 fatty acid translocase inhibition.
Isenberg, Jeff S.; Yu, Christine; Roberts, David D.
2008-01-01
ABT-510 is a potent mimetic of an anti-angiogenic sequence from the second type 1 repeat of thrombospondin-1. ABT-510 and the original d-Ile mimetic from which it was derived, GDGV(dI)TRIR, are similarly active for inhibiting vascular outgrowth in a B16 melanoma explant assay. Because GDGV(dI)TRIR and thrombospondin-1 modulate nitric oxide signaling by inhibiting the fatty translocase activity of CD36, we examined the ability ABT-510 to modulate fatty acid uptake into vascular cells and downstream nitric oxide/cGMP signaling. Remarkably, ABT-510 is less active than GDGV(dI)TRIR for inhibiting myristic acid uptake into both endothelial and vascular smooth muscle cells. Correspondingly, ABT-510 is less potent than GDGV(dI)TRIR for blocking a myristate-stimulated increase in cell adhesion to collagen and nitric oxide-driven accumulation of cGMP. ABT-510 at concentrations sufficient to inhibit CD36 fatty acid translocase activity synergizes with thrombin in aggregating platelets and blunts the activity of NO to delay aggregation, but again less than GDGV(dI)TRIR. In contrast, ABT-510 is more potent than GDGV(dI)TRIR for inducing caspase activation in vascular cells. Thus, we propose that ABT-510 is a drug with at least two mechanisms of action, and its potent anti-tumor activity may be in part independent of CD36 fatty acid translocase inhibition. PMID:18068687
Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P
2017-07-01
Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.
Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu
2012-01-01
Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.
Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.
Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J
1992-01-01
We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be regulated for the maintenance of vascular tone. PMID:1502182
Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.
Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J
1992-08-15
We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be regulated for the maintenance of vascular tone.
Schmidt, Dörthe; Asmis, Lars M; Odermatt, Bernhard; Kelm, Jens; Breymann, Christian; Gössi, Matthias; Genoni, Michele; Zund, Gregor; Hoerstrup, Simon P
2006-10-01
Tissue-engineered living blood vessels (TEBV) with growth capacity represent a promising new option for the repair of congenital malformations. We investigate the functionality of TEBV with endothelia generated from human umbilical cord blood-derived endothelial progenitor cells. Tissue-engineered living blood vessels were generated from human umbilical cord-derived myofibroblasts seeded on biodegradable vascular scaffolds, followed by endothelialization with differentiated cord blood-derived endothelial progenitor cells. During in vitro maturation the TEBV were exposed to physiologic conditioning in a flow bioreactor. For functional assessment, a subgroup of TEBV was stimulated with tumor necrosis factor-alpha. Control vessels endothelialized with standard vascular endothelial cells were treated in parallel. Analysis of the TEBV included histology, immunohistochemistry, biochemistry (extracellular matrix analysis, DNA), and biomechanical testing. Endothelia were analyzed by flow cytometry and immunohistochemistry (CD31, von Willebrand factor, thrombomodulin, tissue factor, endothelial nitric oxide synthase). Histologically, a three-layered tissue organization of the TEBV analogous to native vessels was observed, and biochemistry revealed the major matrix constituents (collagen, proteoglycans) of blood vessels. Biomechanical properties (Young's modulus, 2.03 +/- 0.65 MPa) showed profiles resembling those of native tissue. Endothelial progenitor cells expressed typical endothelial cell markers CD31, von Willebrand factor, and endothelial nitric oxide synthase comparable to standard vascular endothelial cells. Stimulation with tumor necrosis factor-alpha resulted in physiologic upregulation of tissue factor and downregulation of thrombomodulin expression. These results indicate that TEBV with tissue architecture and functional endothelia similar to native blood vessels can be successfully generated from human umbilical cord progenitor cells. Thus, blood-derived progenitor cells obtained before or at birth may enable the clinical realization of tissue engineering constructs for pediatric applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rastad, Jessica L.
2016-12-15
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other,more » soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.« less
Myeloid-derived suppressor cells modulate B-cell responses.
Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik
2017-08-01
Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Interactions between muscle and the immune system during modified musculoskeletal loading
NASA Technical Reports Server (NTRS)
Tidball, James G.
2002-01-01
Interactions between the immune system and skeletal muscle may play a significant role in modulating the course of muscle injury and repair after modified musculoskeletal loading. Current evidence indicates that activation of the complement system is an early event during modified loading, which then leads to inflammatory cell invasion. However, the functions of those inflammatory cells are complex and they seem to be capable of promoting additional injury and repair. Recent findings implicate an early invading neutrophil population in increasing muscle damage that is detected by the presence of muscle membrane lesions. Macrophages that invade subsequently serve to remove cellular debris, and seem to promote repair. However, macrophages also have the ability to increase damage in muscle in which there is an impaired capacity to generate nitric oxide. In vivo and in vitro evidence indicates that muscle-derived nitric oxide can serve an important role in protecting muscle from membrane damage by invading inflammatory cells. Collectively, these findings indicate that the dynamic balance between inflammatory cells, the complement system, and muscle-derived free radicals can play important roles in the secondary damage of muscle during modified musculoskeletal loading.
MacCallum, Donna M.; Brown, Gordon D.
2017-01-01
ABSTRACT The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468
García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen
2014-03-01
Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.
Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.
Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A
2017-07-25
Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.
Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R
2017-01-24
The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the "conditionally essential" amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases. Copyright © 2017 Wagener et al.
Rus, A; Peinado, M A; Blanco, S; Del Moral, M L
2011-03-01
Nitric oxide (NO) has been reported to act both as a destructive and a protective agent in the pathogenesis of the injuries that occur during hypoxia/reoxygenation (H/R). It has been suggested that this dual role of NO depends directly on the isoform of NO synthase (NOS) involved. In this work, we investigate the role that NO derived from endothelial NOS (eNOS) plays in cardiac H/R-induced injury. Wistar rats were submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 12 h and 5 days), with or without prior treatment using the selective eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis and protein nitration, as well as NO production (NOx), were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. However, no change was found in the lipid peroxidation level, the percentage of apoptotic cells or nitrated protein expression, implying that eNOS-derived NO may not be involved in the injuries occurring during H/R in the heart. We conclude that LNIO would not be useful in alleviating the adverse effects of cardiac H/R.
Sarti, Paolo; Forte, Elena; Giuffrè, Alessandro; Mastronicola, Daniela; Magnifico, Maria Chiara; Arese, Marzia
2012-01-01
Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO2 −, PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O2 competitiveness. In the mitochondrion, during turnover with O2, one pathway prevails over the other one depending on NO, cytochrome c 2+ and O2 concentration. High cytochrome c 2+, and low O2 proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications. PMID:22811713
Huang, Guang; Zhao, Hui-Ran; Meng, Qing-Qing; Zhang, Qi-Jing; Dong, Jin-Yun; Zhu, Bao-Quan; Li, Shao-Shun
2018-01-01
As a continuation of our research on developing potent and potentially safe antineoplastic agents, a set of forty five sulfur-containing shikonin oxime derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human colon cancer (HCT-15), gastric carcinoma (MGC-803), liver (Bel7402), breast (MCF-7) cancer cells and human skin fibroblast (HSF) cells. All the synthesized compounds exhibited potent cytotoxic activity selectively towards HCT-15 cells and did not display apparent toxicity to the normal HSF cells, some of which were more or comparatively effective to the parent compound against HCT-15, MGC-803 and Bel7402 cells. The most active agent 9m displayed high potency against human cancer cells with IC 50 ranging from 0.27 ± 0.02 to 9.23 ± 0.12 μM. The structure-activity relationships (SARs) studies suggested that the nature of substituent group in the side chain is important for antitumor potency in vitro. Additionally, nitric oxide release studies revealed that the amount of nitric oxide generated from these oxime derivatives was relatively low. Furthermore, cellular mechanism investigations indicated that compound 9m could arrest cell cycle at G1 phase and induce a strong apoptotic response in HCT-15 cells. Moreover, western blot studies revealed that compound 9m induced apoptosis through the down-regulation of Bcl-2 and up-regulation of Bax, caspase 3 and 9. For all these reasons, compound 9m hold promising potential as antineoplastic agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zhuqin; Yu, Fengxiang; Gong, Ping
2014-04-15
Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxicmore » concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. - Highlights: • Subneurotoxic copper(II) triggers NF-κB-dependent microglial activation. • This activation leads to hippocampal neuronal death. • This activation may involve mitochondria-derived reactive oxygen species.« less
Lopez, Jose R; Uryash, A; Kolster, J; Estève, E; Zhang, R; Adams, J A
2018-03-26
We have previously shown that inadequate dystrophin in cortical neurons in mdx mice is associated with age-dependent dyshomeostasis of resting intracellular Ca 2+ ([Ca 2+ ] i ) and Na + ([Na + ] i ), elevated reactive oxygen species (ROS) production, increase in neuronal damage and cognitive deficit. In this study, we assessed the potential therapeutic properties of the whole body periodic acceleration (pGz) to ameliorate the pathology observed in cortical neurons from the mdx mouse. pGz adds small pulses to the circulation, thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of nitric oxide (NO). We found [Ca 2+ ] i and [Na + ] i overload along with reactive oxygen species (ROS) overproduction in mdx neurons and cognitive dysfunction. mdx neurons showed increased activity of superoxide dismutase, glutathione peroxidase, malondialdehyde, and calpain as well as decreased cell viability. mdx neurons were more susceptible to hypoxia-reoxygenation injury than WT. pGz ameliorated the [Ca 2+ ] i , and [Na + ] i elevation and ROS overproduction and further increased the activities of superoxide dismutase, glutathione peroxidase and reduced the malondialdehyde and calpains. pGz diminished cell damage and elevated [Ca 2+ ] i during hypoxia-reoxygenation and improved cognitive function in mdx mice. Moreover, pGz upregulated the expression of utrophin, dystroglycan-β and CAPON, constitutive nitric oxide synthases, prosaposin, brain-derived neurotrophic, and glial cell line-derived neurotrophic factors. The present study demonstrated that pGz is an effective therapeutic approach to improve mdx neurons function, including cognitive functions.
Freidl, Raphaela; Fernández, Carmen
2014-01-01
Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC) can influence the functionality of resident pulmonary macrophages (PuM). We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a) in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG) by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b) the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS)1; c) AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS), secretion of nitric oxide (NO), or IL-12, d) in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms. PMID:25089618
Wu, Chi-Ming; Chen, Yen-Hao; Dayananda, Kasala; Shiue, Tsun-Wei; Hung, Chen-Hsiung; Liaw, Wen-Feng; Chen, Po-Yu; Wang, Yun-Ming
2011-12-05
A colorless and non-fluorescent rhodamine derivative, rhodamine B hydrazide (RH), is applied to detect nitric oxide and form fluorescent rhodamine B (RB). The reaction mechanism of RH with NO is proposed in this study. The probe shows good stability over a broad pH range (pH>4). Furthermore, fluorescence intensity of RH displays an excellent linearity to the NO concentration and the detection limit is as low as 20 nM. A 1000-fold fluorescence turn-on from a dark background was observed. Moreover, the selectivity study indicated that the fluorescence intensity increasing in the presence of NO was significantly higher than those of other reactive oxygen/nitrogen species. In exogenously generated NO detection study, clear intracellular red fluorescence was observed in the presence of S-nitroso-N-acetyl-D,L-penicillamine (SNAP, a kind of NO releasing agent). In endogenously generated NO detection study, increasing incubation time of RH with lipopolysaccharied (LPS) pre-treated cells could obtain a highly fluorescent cell image. These cell imaging results demonstrated that RH can efficiently penetrate into Raw 264.7 cells and be used for detection of exogenously and endogenously generated nitric oxide. Copyright © 2011 Elsevier B.V. All rights reserved.
Decker, Ningling Kang; Abdelmoneim, Soha S; Yaqoob, Usman; Hendrickson, Helen; Hormes, Joe; Bentley, Mike; Pitot, Henry; Urrutia, Raul; Gores, Greg J; Shah, Vijay H
2008-10-01
Tumor progression is regulated through paracrine interactions between tumor cells and stromal cells in the microenvironment, including endothelial cells and myofibroblasts. Nitric oxide (NO) is a key molecule in the regulation of tumor-microenvironment interactions, although its precise role is incompletely defined. By using complementary in vitro and in vivo approaches, we studied the effect of endothelial NO synthase (eNOS)-derived NO on liver tumor growth and metastasis in relation to adjacent stromal myofibroblasts and matrix because liver tumors maintain a rich, vascular stromal network enriched with phenotypically heterogeneous myofibroblasts. Mice with an eNOS deficiency developed liver tumors more frequently in response to carcinogens compared with control animals. In a surgical model of pancreatic cancer liver metastasis, eNOS overexpression in the tumor microenvironment attenuated both the number and size of tumor implants. NO promoted anoikis of tumor cells in vitro and limited their invasive capacity. Because tumor cell anoikis and invasion are both regulated by myofibroblast-derived matrix, we explored the effect of NO on tumor cell protease expression. Both microarray and Western blot analysis revealed eNOS-dependent down-regulation of the matrix protease cathepsin B within tumor cells, and silencing of cathepsin B attenuated tumor cell invasive capacity in a similar manner to that observed with eNOS overexpression. Thus, a NO gradient within the tumor microenvironment influences tumor progression through orchestrated molecular interactions between tumor cells and stroma.
Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung
2011-11-01
Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation.
Pae, H O; Kim, H G; Paik, Y S; Paik, S G; Kim, Y M; Oh, G S; Chung, H T
2000-03-01
We investigated the protective effects of nitric oxide on cell death of murine embryonic liver cells (BNL CL.2) after glucose deprivation. Endogenous nitric oxide production by BNL CL.2 cells was induced by 6 hr pretreatment with interferon-gamma and lipopolysaccharide. We used sodium nitroprusside and S-nitroso-L-glutathione as exogenous nitric oxide-generating compounds. All agents were used at doses that did not show direct cytotoxicity as measured by crystal violet staining assay. In the BNL CL.2 cells, the viability dropped very steeply after 24 hr incubation with glucose-free media. Endogenous nitric oxide produced by treatment of the cells with interferon-gamma and lipopolysaccharide protected the cells from glucose deprivation-induced cytotoxicity, but did not protect them in the presence of the nitric oxide synthesis inhibitor, N(G)-monomethyl-L-arginine. Exogenous nitric oxide protected the cells from glucose deprivation-induced cytotoxicity in a concentration-dependent manner. Cytoprotection by nitric oxide donors was abolished by the use of nitric oxide scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazole, but not by the soluble guanosine cyclase inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. In addition, cytoprotective effects comparable to endogenous or exogenous nitric oxide were not observed when the cells were incubated with dibutyl guanosine 3',5'-cyclic monophosphate. Based upon these results, we suggest that nitric oxide may enhance the cell survival of BNL CL.2 cells after glucose deprivation via a guanosine 3',5'-cyclic monophosphate-independent pathway.
2017-01-01
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804
Role of nitric oxide in progression and regression of atherosclerosis.
Cooke, J P
1996-01-01
Endothelium-derived nitric oxide is a potent endogenous vasodilator that is derived from the metabolism of L-arginine. This endothelial factor inhibits circulating blood elements from interacting with the vessel wall. Platelet adherence and aggregation as well as monocyte adherence and infiltration are opposed by this paracrine substance. By virtue of these characteristics, endothelium-derived nitric oxide inhibits atherogenesis in animal models and may even induce regression. Images Figure 1. PMID:8686299
Gelam Honey Scavenges Peroxynitrite During the Immune Response
Kassim, Mustafa; Mansor, Marzida; Suhaimi, Anwar; Ong, Gracie; Yusoff, Kamaruddin Mohd
2012-01-01
Monocytes and macrophages are part of the first-line defense against bacterial, fungal, and viral infections during host immune responses; they express high levels of proinflammatory cytokines and cytotoxic molecules, including nitric oxide, reactive oxygen species, and their reaction product peroxynitrite. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death. Honey, in addition to its well-known sweetening properties, is a natural antioxidant that has been used since ancient times in traditional medicine. We examined the ability of Gelam honey, derived from the Gelam tree (Melaleuca spp.), to scavenge peroxynitrite during immune responses mounted in the murine macrophage cell line RAW 264.7 when stimulated with lipopolysaccharide/interferon-γ (LPS/IFN-γ) and in LPS-treated rats. Gelam honey significantly improved the viability of LPS/IFN-γ-treated RAW 264.7 cells and inhibited nitric oxide production—similar to the effects observed with an inhibitor of inducible nitric oxide synthase (1400W). Furthermore, honey, but not 1400W, inhibited peroxynitrite production from the synthetic substrate 3-morpholinosydnonimine (SIN-1) and prevented the peroxynitrite-mediated conversion of dihydrorhodamine 123 to its fluorescent oxidation product rhodamine 123. Honey inhibited peroxynitrite synthesis in LPS-treated rats. Thus, honey may attenuate inflammatory responses that lead to cell damage and death, suggesting its therapeutic uses for several inflammatory disorders. PMID:23109904
Nitric Oxide in Mammary Tumor Progression
1998-07-01
and endothelial cells, and poor cent work utilizing live videomicroscopy has dem- in human macrophages [24]. onstrated that even after successful...AC: Steps in tumor metastasis: New tion. concepts in intravital videomicroscopy . Cancer Met Rev 14: 2. How universal is the phenomenon of NO-medi- 1279... videomicroscopy . It is shown phokine (IL-2) activated killer (LAK) cells can in- that endogenous NO (derived from tumor vascular flict direct damage to
Menichini, G; Alfano, C; Marrelli, M; Toniolo, C; Provenzano, E; Statti, G A; Nicoletti, M; Menichini, F; Conforti, F
2013-04-01
Our interest continues in discovering phytocomplexes from medicinal plants with phototoxic activity against human melanoma cells; thus the aim of the present study was to assess antioxidant, anti-inflammatory and phototoxic activity of Hypericum perforatum L. subsp. perforatum, and relate these properties to the plant's chemical composition. Components of H. perforatum subsp. perforatum were extracted by hydroalcoholic solution and chemical profiles of preparations (HyTE-3) performed by HPTLC. Linoleic acid peroxidation and DPPH tests were used to assess antioxidant activity, while MTT assay allowed evaluation of anti-proliferative activity with respect to A375 human melanoma cells after irradiation with UVA dose, 1.8 J/cm(2) . Inhibition of nitric oxide production of macrophages was also investigated. HyTE-3 indicated better antioxidant activity with β-carotene bleaching test in comparison to DPPH assay (IC50 = 0.89 μg/ml); significant phototoxicity in A375 cells at 78 μg/ml concentration resulted in cell destruction of 50%. HyTE-3 caused significant dose-related inhibition of nitric oxide production in murine monocytic macrophage cell line RAW 264.7 with IC50 value of 342 μg/ml. The H. perforatum subsp. perforatum-derived product was able to suppress proliferation of human malignant melanoma A375 cells; extract together with UVA irradiation enhanced phototoxicity. This biological activity of antioxidant effects was combined with inhibition of nitric oxide production. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup
2015-03-01
The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.
Inducible nitric oxide synthase and apoptosis in murine proximal tubule epithelial cells.
Tiwari, Manish M; Messer, Kurt J; Mayeux, Philip R
2006-06-01
Since inducible nitric oxide synthase (iNOS) and proximal tubule injury are known to be critical determinants of lipopolysaccharide (LPS)-induced renal failure, the role of nitric oxide (NO) in proximal tubule cell apoptosis was examined. An 18-h treatment with a combination of LPS (5 microg/ml) and interferon-gamma (IFN-gamma, 100 units/ml) synergistically induced iNOS and produced a 20-fold increase in NO generation in the TKPTS murine proximal tubule cell line. NO generation by LPS + IFN-gamma was blocked by a specific iNOS blocker, L-N6-(1-iminoethyl)-lysine (L-NIL, 1 mM). To assess the role of iNOS-derived NO in proximal tubule cell apoptosis, annexin V- and propidium iodide-labeled cells were analyzed by flow cytometry. Neither the induction of iNOS nor its inhibition produced significant apoptotic cell death in TKPTS cells. Two exogenous NO donors were used to examine the role of NO more directly in proximal tubule apoptosis. Although both sodium nitroprusside (SNP), an iron-containing, nitrosonium cation donor, and S-nitroso-N-acetylpenicillamine (SNAP), a noniron-containing, NO generator, produced a concentration-dependent increase in NO generation, only SNP increased apoptotic cell death in TKPTS cells (5.9 +/- 0.7% in control cells vs. 21.6 +/- 3.8% in SNP [500 microM]-treated cells; n = 4-9; p < 0.01). SNP-mediated tubule cell apoptosis was not dependent on the activation of caspases or p53 but was possibly related to the generation of reactive oxygen species by SNP. Thus, in TKPTS cells induction of iNOS and generation of NO by LPS does not lead to tubular epithelial cell death.
Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung
2011-01-01
Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation. PMID:23717093
l-Arginine is a Radioprotector for Hematopoietic Progenitor Cells
Pearce, Linda L.; Zheng, Xichen; Martinez-Bosch, Sandra; Kerr, Patrick P.; Khlangwiset, Pornsri; Epperly, Michael W.; Fink, Mitchell P.; Greenberger, Joel S.; Peterson, Jim
2012-01-01
l-Arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation (137Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with l-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of l-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). l-Arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production. PMID:22175298
Nitric oxide pathology and therapeutics in sickle cell disease.
Kim-Shapiro, Daniel B; Gladwin, Mark T
2018-01-01
Sickle cell disease is caused by a mutant form of hemoglobin that polymerizes under hypoxic conditions which leads to red blood cell (RBC) distortion, calcium-influx mediated RBC dehydration, increased RBC adhesivity, reduced RBC deformability, increased RBC fragility, and hemolysis. These impairments in RBC structure and function result in multifaceted downstream pathology including inflammation, endothelial cell activation, platelet and leukocyte activation and adhesion, and thrombosis, all of which contribute vascular occlusion and substantial morbidity and mortality. Hemoglobin released upon RBC hemolysis scavenges nitric oxide (NO) and generates reactive oxygen species (ROS) and thereby decreases bioavailability of this important signaling molecule. As the endothelium-derived relaxing factor, NO acts as a vasodilator and also decreases platelet, leukocyte, and endothelial cell activation. Thus, low NO bioavailability contributes to pathology in sickle cell disease and its restoration could serve as an effective treatment. Despite its promise, clinical trials based on restoring NO bioavailability have so far been mainly disappointing. However, particular "NO donating" agents such as nitrite, which unlike some other NO donors can improve sickle RBC properties, may yet prove effective.
Takeichi, O; Saito, I; Okamoto, Y; Tsurumachi, T; Saito, T
1998-01-01
To determine if nitric oxide (NO) is produced by chronically infected human polymorphonuclear leucocytes (PMNs) in vivo, inflamed exudates (periapical exudates: PE) collected from periapical periodontitis patients were examined. Cell-free supernatants and cells were separated by centrifugation. Significant levels of nitrite concentrations were observed in the supernatants. The production of inducible NO synthase (iNOS) in highly purified PMNs derived from PEs was then immunocytochemically determined using rabbit anti-human iNOS antiserum. In vitro, human peripheral blood PMNs (PB-PMNs) isolated from patients were cultured with a combination of Esherichia coli-lipopolysaccharide (LPS), recombinant human interferon-gamma (rhIFN-gamma) and/or interleukin-1 beta (rhIL-1 beta). The stimulated PB-PMNs showed steady-state levels of nitrite. The stimulation of LPS, rhIFN-gamma and rhIL-1 beta showed more NO induction than that of LPS with either IFN-gamma or IL-1 beta, suggesting the synergistic effects of cytokines. Cryostat sections of surgically removed periapical tissues were also immunohistochemically examined for iNOS, IFN-gamma and IL-1 beta. Two-colour immunohistochemistry revealed the interaction of iNOS-producing PMNs and IFN-gamma- or IL-1 beta-producing mononuclear cells. On the basis of these data, we concluded that with the stimulation of inflammatory cytokines derived from mononuclear cells, PMNs can spontaneously produce NO at the site of chronic infection. The present studies are consistent with a hypothesis suggesting that PMNs could be regulated and delicately balanced to produce NO by mononuclear cell-derived cytokines in vivo. NO-producing cells may play a pivotal role in chronic inflammation. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:9616379
RECON-Dependent Inflammation in Hepatocytes Enhances Listeria monocytogenes Cell-to-Cell Spread.
McFarland, Adelle P; Burke, Thomas P; Carletti, Alexie A; Glover, Rochelle C; Tabakh, Hannah; Welch, Matthew D; Woodward, Joshua J
2018-05-15
The oxidoreductase RECON is a high-affinity cytosolic sensor of bacterium-derived cyclic dinucleotides (CDNs). CDN binding inhibits RECON's enzymatic activity and subsequently promotes inflammation. In this study, we sought to characterize the effects of RECON on the infection cycle of the intracellular bacterium Listeria monocytogenes , which secretes cyclic di-AMP (c-di-AMP) into the cytosol of infected host cells. Here, we report that during infection of RECON-deficient hepatocytes, which exhibit hyperinflammatory responses, L. monocytogenes exhibits significantly enhanced cell-to-cell spread. Enhanced bacterial spread could not be attributed to alterations in PrfA or ActA, two virulence factors critical for intracellular motility and intercellular spread. Detailed microscopic analyses revealed that in the absence of RECON, L. monocytogenes actin tail lengths were significantly longer and there was a larger number of faster-moving bacteria. Complementation experiments demonstrated that the effects of RECON on L. monocytogenes spread and actin tail lengths were linked to its enzymatic activity. RECON enzyme activity suppresses NF-κB activation and is inhibited by c-di-AMP. Consistent with these previous findings, we found that augmented NF-κB activation in the absence of RECON caused enhanced L. monocytogenes cell-to-cell spread and that L. monocytogenes spread correlated with c-di-AMP secretion. Finally, we discovered that, remarkably, increased NF-κB-dependent inducible nitric oxide synthase expression and nitric oxide production were responsible for promoting L. monocytogenes cell-to-cell spread. The work presented here supports a model whereby L. monocytogenes secretion of c-di-AMP inhibits RECON's enzymatic activity, drives augmented NF-κB activation and nitric oxide production, and ultimately enhances intercellular spread. IMPORTANCE To date, bacterial CDNs in eukaryotes are solely appreciated for their capacity to activate cytosolic sensing pathways in innate immunity. However, it remains unclear whether pathogens that actively secrete CDNs benefit from this process. Here, we provide evidence that secretion of CDNs leads to enhancement of L. monocytogenes cell-to-cell spread. This is a heretofore-unknown role of these molecules and suggests L. monocytogenes may benefit from their secretion in certain contexts. Molecular characterization revealed that, surprisingly, nitric oxide was responsible for the enhanced spread. Pathogens act to prevent nitric oxide production or, like L. monocytogenes , they have evolved to resist its direct antimicrobial effects. This study provides evidence that intracellular bacterial pathogens not only tolerate nitric oxide, which is inevitably encountered during infection, but can also capitalize on the changes this pleiotropic molecule enacts on the host cell. Copyright © 2018 McFarland et al.
Potz, Brittany A; Scrimgeour, Laura A; Pavlov, Vasile I; Sodha, Neel R; Abid, M Ruhul; Sellke, Frank W
2018-06-12
Mesenchymal stem cell-derived extracellular vesicles (EVs) are believed to be cardioprotective in myocardial infarct. The objective of this study was to examine the effects of human mesenchymal cell-derived EV injection on cardiac function, myocardial blood flow, and vessel density in the setting of chronic myocardial ischemia. Twenty-three Yorkshire swine underwent placement of an ameroid constrictor on their left circumflex artery. Two weeks later, the animals were split into 2 groups: the control group (CON; n=7) and the EV myocardial injection group (MVM; n=10). The MVM group underwent myocardial injection of 50 μg of EVs in 2 mL 0.9% saline into the ischemic myocardium. Five weeks later, the pigs underwent a harvest procedure, and the left ventricular myocardium was analyzed. Absolute blood flow and the ischemic/nonischemic myocardial perfusion ratio were increased in the ischemic myocardium in the MVM group compared with the CON group. Pigs in the MVM group had increased capillary and arteriolar density in the ischemic myocardial tissue compared with CON pigs. There was an increase in expression of the phospho-mitogen-activated protein kinase/mitogen-activated protein kinase ratio, the phospho-endothelial nitric oxide synthase/endothelial nitric oxide synthase ratio, and total protein kinase B in the MVM group compared with CON. There was an increase in cardiac output and stroke volume in the MVM group compared with CON. In the setting of chronic myocardial ischemia, myocardial injection of human mesenchymal cell-derived EVs increases blood flow to ischemic myocardial tissue by induction of capillary and arteriolar growth via activation of the protein kinase B/endothelial nitric oxide synthase and mitogen-activated protein kinase signaling pathways resulting in increased cardiac output and stroke volume. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori
2003-09-01
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.
Nitric oxide: a physiologic messenger.
Lowenstein, C J; Dinerman, J L; Snyder, S H
1994-02-01
To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.
Quang, Tran Hong; Ngan, Nguyen Thi Thanh; Ko, Wonmin; Kim, Dong-Cheol; Yoon, Chi-Su; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol
2014-12-15
Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.
Parker, William H.; Rhea, Elizabeth Meredith; Qu, Zhi-Chao; Hecker, Morgan R.
2016-01-01
Vitamin C, or ascorbic acid, both tightens the endothelial permeability barrier in basal cells and also prevents barrier leak induced by inflammatory agents. Barrier tightening by ascorbate in basal endothelial cells requires nitric oxide derived from activation of nitric oxide synthase. Although ascorbate did not affect cyclic AMP levels in our previous study, there remains a question of whether it might activate downstream cyclic AMP-dependent pathways. In this work, we found in both primary and immortalized cultured endothelial cells that ascorbate tightened the endothelial permeability barrier by ∼30%. In human umbilical vein endothelial cells, this occurred at what are likely physiologic intracellular ascorbate concentrations. In so doing, ascorbate decreased measures of oxidative stress and also flattened the cells to increase cell-to-cell contact. Inhibition of downstream cyclic AMP-dependent proteins via protein kinase A did not prevent ascorbate from tightening the endothelial permeability barrier, whereas inhibition of Epac1 did block the ascorbate effect. Although Epac1 was required, its mediator Rap1 was not activated. Furthermore, ascorbate acutely stabilized microtubules during depolymerization induced by colchicine and nocodazole. Over several days in culture, ascorbate also increased the amount of stable acetylated α-tubulin. Microtubule stabilization was further suggested by the finding that ascorbate increased the amount of Epac1 bound to α-tubulin. These results suggest that physiologic ascorbate concentrations tighten the endothelial permeability barrier in unstimulated cells by stabilizing microtubules in a manner downstream of cyclic AMP that might be due both to increasing nitric oxide availability and to scavenging of reactive oxygen or nitrogen species. PMID:27605450
Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A
2016-01-01
Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. © 2016 Poultry Science Association Inc.
Modulation of cytokine and nitric oxide by mesenchymal stem cell transfer in lung injury/fibrosis
2010-01-01
Background No effective treatment for acute lung injury and fibrosis currently exists. Aim of this study was to investigate the time-dependent effect of bone marrow-derived mesenchymal stem cells (BMDMSCs) on bleomycin (BLM)-induced acute lung injury and fibrosis and nitric oxide metabolites and inflammatory cytokine production. Methods BMDMSCs were transferred 4 days after BLM inhalation. Wet/dry ratio, bronchoalveolar lavage cell profiles, histologic changes and deposition of collagen were analyzed. Results Nitrite, nitrate and cytokines were measured weekly through day 28. At day 7, the wet/dry ratio, neutrophilic inflammation, and amount of collagen were elevated in BLM-treated rats compared to sham rats (p = 0.05-0.002). Levels nitrite, nitrate, IL-1β, IL-6, TNF-α, TGF-β and VEGF were also higher at day 7 (p < 0.05). Degree of lymphocyte and macrophage infiltration increased steadily over time. BMDMSC transfer significantly reduced the BLM-induced increase in wet/dry ratio, degree of neutrophilic infiltration, collagen deposition, and levels of the cytokines, nitrite, and nitrate to those in sham-treated rats (p < 0.05). Fluorescence in situ hybridization localized the engrafted cells to areas of lung injury. Conclusion Systemic transfer of BMDMSCs effectively reduced the BLM-induced lung injury and fibrosis through the down-regulation of nitric oxide metabolites, and proinflammatory and angiogenic cytokines. PMID:20137099
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38
Yi, Young-Su
2017-01-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.
Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl
2017-05-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.
Kikugawa, Masaki; Ida, Tomoaki; Ihara, Hideshi; Sakamoto, Tatsuji
2017-08-01
We recently reported that two water-soluble derivatives of ferulic acid (1-feruloyl glycerol, 1-feruloyl diglycerol) previously developed by our group exhibited protective effects against amyloid-β-induced neurodegeneration in vitro and in vivo. In the current study, we aimed to further understand this process by examining the derivatives' ability to suppress abnormal activation of astrocytes, the key event of neurodegeneration. We investigated the effects of ferulic acid (FA) derivatives on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in rat primary astrocytes. The results showed that these compounds inhibited NO production and iNOS expression in a concentration-dependent manner and that the mechanism underlying these effects was the suppression of the nuclear factor-κB pathway. This evidence suggests that FA and its derivatives may be effective neuroprotective agents and could be useful in the treatment of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease.
Nitric oxide-mediated modulation of the murine locomotor network
Foster, Joshua D.; Dunford, Catherine; Sillar, Keith T.
2013-01-01
Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1–12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior. PMID:24259545
Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.
Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V
2014-01-01
Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.
Zinc regulates iNOS-derived nitric oxide formation in endothelial cells
Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.
2014-01-01
Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171
Li, Shi-Ting; Pan, Jing; Hua, Xu-Ming; Liu, Hong; Shen, Sa; Liu, Jia-Fu; Li, Bin; Tao, Bang-Bao; Ge, Xiao-Li; Wang, Xu-Hui; Shi, Juan-Hong; Wang, Xiao-Qiang
2014-02-01
Several lines of evidence demonstrated that endothelial nitric oxide synthase (eNOS) confers protective effects during cerebral ischemia. In this study, we explored the underlying cellular and molecular mechanisms of neuroprotection by eNOS. A series of in vivo and in vitro ischemic models were employed to study the role of eNOS in maintaining neuronal survival and to identify the downstream factors. The current data showed that pretreatment with a specific eNOS inhibitor, L-N5-(1-iminoethyl) ornithine (L-NIO), aggravated the neuronal loss in the rat cerebral ischemic model, accompanied by reduction in brain-derived neurotrophic factor (BDNF) level, which was consistent with the findings in an oxygen-glucose deprivation model (OGD) with two neuronal cells: primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Furthermore, the extensive neuronal loss induced by L-NIO was totally abolished by exogenous BDNF in both in vitro and in vivo models. On the other hand, eNOS overexpression through an adenoviral vector exerted a prominent protective effect on the neuronal cells subject to OGD, and the protective effect was totally abrogated by a neutralizing anti-BDNF antibody. Collectively, our results indicate that the neuroprotection of neuron-derived eNOS against the cerebral ischemia was mediated through the regulation of BDNF secretion. In conclusion, our discovery provides a novel explanation for the neuroprotective effect of eNOS under pathological ischemic conditions such as stroke. © 2014 John Wiley & Sons Ltd.
The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie
We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-{kappa}B and decreased intracellular level of its inhibitor IkB{alpha}. These effects, accompanied by increased production of H{sub 2}O{sub 2}, were very similar to thosemore » observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-{kappa}B activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed.« less
Takatani, Yudai; Ono, Kenji; Suzuki, Hiromi; Inaba, Masato; Sawada, Makoto; Matsuda, Naoyuki
2018-02-14
Hypothermia is a significant sign of sepsis, which is associated with poor prognosis, but few mechanisms underlying the regulation of hypothermia are known. Inducible nitric oxide synthase (iNOS) is a key inflammatory mediator of sepsis. However, the therapeutic benefit of iNOS inhibition in sepsis is still controversial, and requires elucidation in an accurate model system. In this study, wild-type (WT) mice showed temperature drops in a biphasic manner at the early and late phase of sepsis, and all mice died within 48 h of sepsis. In contrast, iNOS-knockout (KO) mice never showed the second temperature drop and exhibited improved mortality. Plasma nitric oxide (NO) levels of WT mice increased in the late phase of sepsis and correlated to hypothermia. The results indicate that iNOS-derived NO during the late phase of sepsis caused vasodilation-induced hypothermia and a lethal hypodynamic state. The expression of the iNOS mRNA was high in the lung of WT mice with sepsis, which reflects the pathology of acute respiratory distress syndrome (ARDS). We obtained the results in a modified keyhole-type cecal ligation and puncture model of septic shock induced by minimally invasive surgery. In this accurate and reproducible model system, we transplanted the bone marrow cells of GFP transgenic mice into WT and iNOS-KO mice, and evaluated the role of increased pulmonary iNOS expression in cell migration during the late phase of sepsis. We also investigated the quantity and type of bone marrow-derived cells (BMDCs) in the lung. The number of BMDCs in the lung of iNOS-KO mice was less than that in the lung of WT mice. The major BMDCs populations were CD11b-positive, iNOS-negative cells in WT mice, and Gr-1-positive cells in iNOS-KO mice that expressed iNOS. These results suggest that sustained hypothermia may be a beneficial guide for future iNOS-targeted therapy of sepsis, and that iNOS modulated the migratory efficiency and cell type of BMDCs in septic ARDS.
Daniels, Bryan A; Baldridge, William H
2011-03-01
Horizontal cells of the vertebrate retina have large receptive fields as a result of extensive gap junction coupling. Increased ambient illumination reduces horizontal cell receptive field size. Using the isolated goldfish retina, we have assessed the contribution of nitric oxide to the light-dependent reduction of horizontal cell receptive field size. Horizontal cell receptive field size was assessed by comparing the responses to centered spot and annulus stimuli and from the responses to translated slit stimuli. A period of steady illumination decreased the receptive field size of horizontal cells, as did treatment with the nitric oxide donor (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (100 μM). Blocking the endogenous production of nitric oxide with the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (1 mM), decreased the light-induced reduction of horizontal cell receptive field size. These findings suggest that nitric oxide is involved in light-induced reduction of horizontal cell receptive field size. Copyright © Cambridge University Press, 2011
Stuart-Smith, K
2002-01-01
The discovery of nitric oxide (NO) demonstrated that cells could communicate via the manufacture and local diffusion of an unstable lipid soluble molecule. Since the original demonstration of the vascular relaxant properties of endothelium derived NO, this fascinating molecule has been shown to have multiple, complex roles within many biological systems. This review cannot hope to cover all of the recent advances in NO biology, but seeks to place the discovery of NO in its historical context, and show how far our understanding has come in the past 20 years. The role of NO in mitochondrial respiration, and consequently in oxidative stress, is described in detail because these processes probably underline the importance of NO in the development of disease. PMID:12456772
Potential of Food and Natural Products to Promote Endothelial and Vascular Health.
Auger, Cyril; Said, Amissi; Nguyen, Phuong Nga; Chabert, Philippe; Idris-Khodja, Noureddine; Schini-Kerth, Valérie B
2016-07-01
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Bocca, Claudia; Bozzo, Francesca; Bassignana, Andrea; Miglietta, Antonella
2010-07-01
It has been shown previously that a novel nitrooxy derivative of celecoxib exerts antiproliferative and pro-apoptotic effects in human colon cancer cells. The aim of this study was to elucidate whether these biological properties depend on COX-2 inhibition and/or NO release. Therefore, the derivative was decomposed into the parent compound celecoxib and the NO donor benzyl nitrate and the biological role of each was tested in COX-2-positive (HT-29) and -negative (SW-480) colon cancer cells. The main findings were that the nitro-oxy derivative behaved like celecoxib in HT-29 cells in terms of COX-2 and ERK/MAPK inhibition, as well as induction of apoptosis, while the benzyl nitrate had no such effects. Interestingly, the beta-catenin system was activated by the nitro-oxy derivative as well as by benzyl nitrate alone more potently than by the parent compound celecoxib, suggesting a possible regulatory role for NO. In SW480 cells, these activities were substantially less pronounced, suggesting the presence of COX-2-dependent mechanisms in the modulation of these parameters.
Wu, Muzhou; Tsirka, Stella E
2009-08-15
Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.
Lewis, Eli C; Blaabjerg, Lykke; Størling, Joachim; Ronn, Sif G; Mascagni, Paolo; Dinarello, Charles A; Mandrup-Poulsen, Thomas
2011-01-01
In type 1 diabetes, inflammatory and immunocompetent cells enter the islet and produce proinflammatory cytokines such as interleukin-1β (IL-1β), IL-12, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ); each contribute to β-cell destruction, mediated in part by nitric oxide. Inhibitors of histone deacetylases (HDAC) are used commonly in humans but also possess antiinflammatory and cytokine-suppressing properties. Here we show that oral administration of the HDAC inhibitor ITF2357 to mice normalized streptozotocin (STZ)-induced hyperglycemia at the clinically relevant doses of 1.25–2.5 mg/kg. Serum nitrite levels returned to nondiabetic values, islet function improved and glucose clearance increased from 14% (STZ) to 50% (STZ + ITF2357). In vitro, at 25 and 250 nmol/L, ITF2357 increased islet cell viability, enhanced insulin secretion, inhibited MIP-1α and MIP-2 release, reduced nitric oxide production and decreased apoptosis rates from 14.3% (vehicle) to 2.6% (ITF2357). Inducible nitric oxide synthase (iNOS) levels decreased in association with reduced islet-derived nitrite levels. In peritoneal macrophages and splenocytes, ITF2357 inhibited the production of nitrite, as well as that of TNFα and IFNγ at an IC50 of 25–50 nmol/L. In the insulin-producing INS cells challenged with the combination of IL-1β plus IFNγ, apoptosis was reduced by 50% (P < 0.01). Thus at clinically relevant doses, the orally active HDAC inhibitor ITF2357 favors β-cell survival during inflammatory conditions. PMID:21193899
Lin, Aihong; Wang, Yiqin; Tang, Jiuyou; Xue, Peng; Li, Chunlai; Liu, Linchuan; Hu, Bin; Yang, Fuquan; Loake, Gary J.; Chu, Chengcai
2012-01-01
Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H2O2) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H2O2-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H2O2-induced leaf cell death in rice. PMID:22106097
Han, Sang Yun; Kim, Eunji; Hwang, Kyeonghwan; Ratan, Zubair Ahmed; Hwang, Hyunsik; Kim, Eun-Mi; Kim, Doman; Park, Junseong; Cho, Jae Youl
2018-05-15
Epigallocatechin gallate (EGCG) is a well-studied polyphenol with antioxidant effects. Since EGCG has low solubility and stability, many researchers have modified EGCG residues to ameliorate these problems. A novel EGCG derivative, EGCG-5'- O -α-glucopyranoside (EGCG-5'Glu), was synthesized, and its characteristics were investigated. EGCG-5'Glu showed antioxidant effects in cell and cell-free systems. Under SNP-derived radical exposure, EGCG-5'Glu decreased nitric oxide (NO) production, and recovered ROS-mediated cell viability. Moreover, EGCG-5'Glu regulated apoptotic pathways (caspases) and cell survival molecules (phosphoinositide 3-kinase (PI3K) and phosphoinositide-dependent kinase 1 (PDK1)). In another radical-induced condition, ultraviolet B (UVB) irradiation, EGCG-5'Glu protected cells from UVB and regulated the PI3K/PDK1/AKT pathway. Next, the proliferative effect of EGCG-5'Glu was examined. EGCG-5'Glu increased cell proliferation by modulating nuclear factor (NF)-κB activity. EGCG-5'Glu protects and repairs cells from external damage via its antioxidant effects. These results suggest that EGCG-5'Glu could be used as a cosmetics ingredient or dietary supplement.
Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F. A.; Redda, Kinfe K.
2014-01-01
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a–l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 μg/mL)-activated microglial cells. The data show that only SO2-substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 μM (9i), 14.64 μM (9j), 19.63 μM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 μM). The most potent SO2-substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immunomodulating effects of SO2-substituted THP derivatives. PMID:24585402
Olivera, Gabriela C.; Ren, Xiaoyuan; Vodnala, Suman K.; Lu, Jun; Coppo, Lucia; Leepiyasakulchai, Chaniya; Holmgren, Arne; Kristensson, Krister; Rottenberg, Martin E.
2016-01-01
Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos -/- and wild-type mice. Inos -/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos -/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier. PMID:26915097
Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich
2010-01-01
The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266
The Red Blood Cell Transfusion Trigger: Has the Sin of Commission Now Become a Sin of Omission?.
1997-05-01
disease. N . Engl. J. Med. 1995;333:251-253. 85. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium -derived relaxing factor produced and released from...George D, Loscalzo J. Inhibition of fibrinogen binding to human platelets by S-nitroso- N - acetylcysteine . J. Biol. Chem. 1990;265:19028-19034. 28 92...attributable primarily to shear stress-induced nitric oxide release from the endothelium , it would seem logical that transfusing red blood cells to the 30
Study on reduction and back extraction of Pu(IV) by urea derivatives in nitric acid conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, G.A.; Xiao, S.T.; Yan, T.H.
2013-07-01
The reduction kinetics of Pu(IV) by hydroxyl-semicarbazide (HSC), hydroxyurea (HU) and di-hydroxyurea (DHU) in nitric acid solutions were investigated separately with adequate kinetic equations. In addition, counter-current cascade experiments were conducted for Pu split from U in nitric acid media using three kinds of reductant, respectively. The results show that urea derivatives as a kind of novel salt-free reductant can reduce Pu(IV) to Pu(III) rapidly in the nitric acid solutions. The stripping experimental results showed that Pu(IV) in the organic phase can be stripped rapidly to the aqueous phase by the urea derivatives, and the separation factors of plutonium /uraniummore » can reach more than 10{sup 4}. This indicates that urea derivatives is a kind of promising salt-free agent for uranium/plutonium separation. In addition, the complexing effect of HSC with Np(IV) was revealed, and Np(IV) can be back-extracted by HSC with a separation factor of about 20.« less
NASA Astrophysics Data System (ADS)
Halasa, Salaheldin; Dickinson, Eva
2014-02-01
From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.
Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells
NASA Technical Reports Server (NTRS)
Koh, T. J.; Tidball, J. G.
2000-01-01
We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.
Neural mechanisms in nitric-oxide-deficient hypertension
NASA Technical Reports Server (NTRS)
Sander, M.; Victor, R. G.; Blomqvist, C. G. (Principal Investigator)
1999-01-01
Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.
Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E
2018-04-23
Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective.
Mahmud, Hafij Al; Seo, Hoonhee; Kim, Sukyung; Islam, Md Imtiazul; Nam, Kung-Woo; Cho, Hyun-Deuk; Song, Ho-Yeon
2017-05-25
Human tuberculosis, which is caused by the pathogen Mycobacterium tuberculosis, remains a major public health concern. Increasing drug resistance poses a threat of disease resurgence and continues to cause considerable mortality worldwide, which necessitates the development of new drugs with improved efficacy. Thymoquinone (TQ), an essential compound of Nigella sativa, was previously reported as an active anti-tuberculosis agent. In this study, the effects of TQ on intracellular mycobacterial replication are examined in macrophages. In addition, its effect on mycobacteria-induced NO production and pro-inflammatory responses were investigated in Mycobacterium tuberculosis (MTB)-infected Type II human alveolar and human myeloid cell lines. TQ at concentrations ranging from 12.5 to 25 μg/mL and 6.25 to 12.5 μg/mL reduced intracellular M. tuberculosis H37Rv and extensively drug-resistant tuberculosis (XDR-TB) 72 h post-infection in RAW 264.7 cells. TQ treatment also produced a concentration-dependent reduction in nitric oxide production in both H37Rv and XDR-TB infected RAW 264.7 cells. Furthermore, TQ reduced the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and interlukin-6 (IL-6) in H37Rv-infected cells and eventually reduced pathogen-derived stress in host cells. TQ inhibits intracellular H37Rv and XDR-TB replication and MTB-induced production of NO and pro-inflammatory molecules. Therefore, along with its anti-inflammatory effects, TQ represents a prospective treatment option to combat Mycobacterium tuberculosis infection.
Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells.
Nishida, Motohiro; Nishimura, Akiyuki; Matsunaga, Tetsuro; Motohashi, Hozumi; Kasamatsu, Shingo; Akaike, Takaaki
2017-08-01
Maintaining a redox balance by means of precisely controlled systems that regulate production, and elimination, and metabolism of electrophilic substances (electrophiles) is essential for normal cardiovascular function. Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and the derivative reactive species of nitric oxide during stress responses, as well as by exogenous electrophiles including compounds in foods and environmental pollutants. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive persulfide species such as cysteine persulfides and polysulfides that are endogenously produced in cells are likely to be involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cardiovascular physiology and pathophysiology. In our review, we focus on the redox-dependent regulation of electrophilic signaling via reduction and metabolism of electrophiles by reactive persulfides in cardiac cells, and we include suggestions for a new therapeutic strategy for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Jensen, Amanda R; Drucker, Natalie A; Ferkowicz, Michael J; Markel, Troy A
2018-04-01
Umbilical-derived mesenchymal stromal cells (USCs) have shown promise in the protection of ischemic organs. We hypothesized that USCs would improve mesenteric perfusion, preserve intestinal histological architecture, and limit inflammation by nitric oxide-dependent mechanisms following intestinal ischemia/reperfusion (IR) injury. Adult wild-type C57BL/6J (WT) and endothelial nitric oxide synthase knock out (eNOS KO) mice were used: (1) WT IR + vehicle, (2) WT IR + USC, (3) eNOS KO IR + vehicle, and (4) eNOS KO IR + USC. Mice were anesthetized, and a midline laparotomy was performed. The superior mesenteric artery was clamped with a nonoccluding clamp for 60-min. Following IR, mice were treated with an injection of 250 μL phosphate buffered saline or 2 × 10 6 USCs suspended in 250-μL phosphate buffered saline solution. Mesenteric perfusion images were acquired using laser Doppler imaging. Perfusion was analyzed as a percentage of baseline. At 24 h, mice were euthanized, and intestines were harvested. Intestines were evaluated for injury, and data were analyzed using the Mann-Whitney or Kruskal-Wallis tests. Intestinal mesenteric perfusion was significantly improved in WT mice treated with USC therapy compared with eNOS KOs. Intestinal histological architecture was preserved with USC therapy in WT mice. However, in eNOS KO mice, this benefit was abolished. Finally, the presence of several cytokines and growth factors were significantly improved in WT mice compared with eNOS KO mice treated with USCs. The benefits of USC-mediated therapy following intestinal IR injury likely occur via nitric oxide-dependent pathways. Further studies are required to define the molecular mechanisms by which USCs activate endothelial nitric oxide synthase to bring about their protective effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung
2014-07-10
Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.
Yu, Pan; Xia, Chao-Jie; Li, Dong-Dong; Ni, Jun-Jun; Zhao, Lin-Guo; Ding, Gang; Wang, Zhen-Zhong; Xiao, Wei
2018-05-28
Chlorogenic acid (CGA) has been reported to exhibit potent anti-inflammatory activity. However, the development of anti-inflammatory agent based on CGA has not been investigated. In this paper, a series of caffeoyl salicylate compounds derived from CGA were designed, synthesized, and evaluated by LPS-induced nitric oxide synthase inhibition and QRT-PCR technique. Most compounds showed modest activity to inhibit production of nitric oxide (NO) in RAW 264.7 cells induced by lipopolysaccharides (LPS). Among these compounds, QRT-PCR and western blotting results indicated that compounds 6b, 6c, 6f, 6g and D104 that possess 5-member ring or 6-member ring caused a significant inhibition against expression of the iNOS2 in LPS-induced macrophages. In addition, cytotoxic assay displayed most derivatives have good safety in vitro. This new promising scaffold could be further exploited for the development of anti-inflammatory agent in the future. Copyright © 2017. Published by Elsevier B.V.
Glia: the not so innocent bystanders.
Chao, C C; Hu, S; Peterson, P K
1996-08-01
Activated glial cells (microglia and astrocytes) are a hallmark of a variety of neurodegenerative diseases. Recent in vitro studies have suggested that mediators derived from reactive glial cells (eg, cytokines, reactive oxygen intermediates, nitric oxide, glutamate or quinolinic acids, and neurotoxins) contribute to neuronal injury. Several of these mediators have been implicated in the neuropathogenesis of HIV-1. Although the precise role of glial cell-mediated neurotoxicity in viral infections of the central nervous system has not been established, it is hoped that research in this field will yield new therapies for these infections as well as for immune-mediated neurodegenerative diseases.
Shimizu, S; Paul, R J
1999-10-01
We investigated the mechanisms by which hypoxia and alkalinization inhibit the endothelium-dependent relaxation to Substance P (SP) in porcine coronary artery. In a KCl contracture, the major component of the SP response is endothelium-derived nitric oxide (EDNO), whereas with receptor-mediated 9,11-dideoxy-llalpha, 9alpha-epoxymethanoprostaglandin F(2alpha) (U46619) stimulation, the SP response is dependent on both EDNO and endothelium-derived hyperpolarization factor. Intracellular alkalinization by NH(4)Cl reduced the peak of SP responses when arteries were contracted with KCl, whereas with U46619 stimulation, the peak was little effected but the duration was shortened. In endothelial cell-denuded arteries, alkalinization with NH(4)Cl shifted the sodium nitroprusside concentration-relaxation relations rightward. The effects of NH(4)Cl in SP- and sodium nitroprusside-induced relaxations were attenuated by decreasing extracellular pH (pH(o)) from 7.4 to 7.2, which normalized intracellular pH (pH(i)) to control levels. In contrast, in U46619 contractures, the SP response in the presence of a NO synthase inhibitor was unaffected by NH(4)Cl. Moreover, hypoxia blunted but did not abolish the responses to SP for U46619 contractures; addition of KCl, however, abolished the SP response under hypoxia. Endothelial [Ca(2+)](i) was measured with fura-2 differentially loaded only into endothelial cells on intact arteries. Despite the attenuation of the SP response in KCl contractures by NH(4)Cl or hypoxia, endothelial [Ca(2+)](i) responses were unchanged. Our results suggest that hypoxia and alkalinization inhibit EDNO but not endothelium-derived hyperpolarization factor relaxations through a mechanism(s) not involving endothelial cell [Ca(2+)](i). Inhibition of EDNO relaxation by alkalinization with NH(4)Cl is likely to occur at the level of activation of guanylate cyclase and/or at a step downstream in smooth muscle.
Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.
Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C
2015-08-18
Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.
Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2009-12-01
Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Measurement of IL-13–Induced iNOS-Derived Gas Phase Nitric Oxide in Human Bronchial Epithelial Cells
Suresh, Vinod; Mih, Justin D.; George, Steven C.
2007-01-01
Exhaled nitric oxide (NO) is altered in numerous diseases including asthma, and is thought broadly to be a noninvasive marker of inflammation. However, the precise source of exhaled NO has yet to be identified, and the interpretation is further hampered by significant inter-subject variation. Using fully differentiated normal human bronchial epithelial (NHBE) cells, we sought to determine (1) the rate of NO release (flux, pl·s−1.cm−2) into the gas; (2) the effect of IL-13, a prominent mediator of allergic inflammation, on NO release; and (3) inter-subject/donor variability in NO release. NHBE cells from three different donors were cultured at an air–liquid interface and stimulated with different concentrations of IL-13 (0, 1, and 10 ng/ml) for 48 h. Gas phase NO concentrations in the headspace over the cells were measured using a chemiluminescence analyzer. The basal NO flux from the three donors (0.05 ± 0.03) is similar in magnitude to that estimated from exhaled NO concentrations, and was significantly increased by IL-13 in a donor-specific fashion. The increase in NO release was strongly correlated with inducible nitric oxide synthase (iNOS) gene and protein expression. There was a trend toward enhanced production of nitrate relative to nitrite as an end product of NO metabolism in IL-13–stimulated cells. NO release from airway epithelial cells can be directly measured. The rate of release in response to IL-13 is strongly dependent on the individual donor, but is primarily due to the expression of iNOS. PMID:17347445
Reece, Stephen T; Vogelzang, Alexis; Tornack, Julia; Bauer, Wolfgang; Zedler, Ulrike; Schommer-Leitner, Sandra; Stingl, Georg; Melchers, Fritz; Kaufmann, Stefan H E
2018-01-01
Abstract Persistence of Mycobacterium tuberculosis within human bone marrow stem cells has been identified as a potential bacterial niche during latent tuberculosis. Using a murine model of tuberculosis, we show here that bone marrow stem and progenitor cells containing M. tuberculosis propagated tuberculosis when transferred to naive mice, given that both transferred cells and recipient mice were unable to express inducible nitric oxide synthase, which mediates killing of intracellular bacteria via nitric oxide. Our findings suggest that bone marrow stem and progenitor cells containing M. tuberculosis propagate hallmarks of disease if nitric oxide-mediated killing of bacteria is defective. PMID:29471332
Lagoda, Gwen; Sezen, Sena F; Cabrini, Marcelo R; Musicki, Biljana; Burnett, Arthur L
2013-02-01
Priapism is a vasculopathy that occurs in approximately 40% of patients with sickle cell disease. Mouse models suggest that dysregulated nitric oxide synthase and RhoA/ROCK signaling as well as increased oxidative stress may contribute to the mechanisms of sickle cell disease associated priapism. We examined changes in the protein expression of nitric oxide synthase and ROCK signaling pathways, and a source of oxidative stress, NADPH oxidase, in penile erectile tissue from patients with a priapism history etiologically related and unrelated to sickle cell disease. Human penile erectile tissue was obtained from 5 patients with sickle cell disease associated priapism and from 6 with priapism of other etiologies during nonemergent penile prosthesis surgery for erectile dysfunction or priapism management and urethroplasty. Tissue was also obtained from 5 control patients without a priapism history during penectomy for penile cancer. Samples were collected, immediately placed in cold buffer and then frozen in liquid nitrogen. The expression of phosphodiesterase 5, endothelial nitric oxide synthase, neuronal nitric oxide synthase, inducible nitric oxide synthase, RhoA, ROCK1, ROCK2, p47(phox), p67(phox), gp91(phox) and β-actin were determined by Western blot analysis. Nitric oxide was measured using the Griess reaction. In the sickle cell disease group phosphodiesterase 5 (p <0.05), endothelial nitric oxide synthase (p <0.01) and RhoA (p <0.01) expression was significantly decreased, while gp91(phox) expression (p <0.05) was significantly increased compared to control values. In the nonsickle cell disease group endothelial nitric oxide synthase, ROCK1 and p47(phox) expression (each p <0.05) was significantly decreased compared to control values. Total nitric oxide levels were not significantly different between the study groups. Mechanisms of sickle cell disease associated priapism in the human penis may involve dysfunctional nitric oxide synthase and ROCK signaling, and increased oxidative stress associated with NADPH oxidase mediated signaling. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young
2016-12-01
Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.
Nozaki, Yuichi; Fujita, Koji; Wada, Koichiro; Yoneda, Masato; Kessoku, Takaomi; Shinohara, Yoshiyasu; Imajo, Kento; Ogawa, Yuji; Nakamuta, Makoto; Saito, Satoru; Masaki, Naohiko; Nagashima, Yoji; Terauchi, Yasuo; Nakajima, Atsushi
2015-04-01
Although many of the factors and molecules closely associated with non-alcoholic steatohepatitis (NASH) have been reported, the role of inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) on the progression of NASH remains unclear. We therefore investigated the role of iNOS-derived NO in NASH pathogenesis with a long-term follow-up study using systemic iNOS-knockout mice under high-fat diet (HFD) conditions. iNOS-knockout and wild-type mice were fed a basal or HFD for 10 or 48 weeks. Lipid accumulation, fibrosis, and inflammation were evaluated, and various factors and molecules closely associated with NASH were analyzed. Marked fibrosis and inflammation (indicators of NASH) were observed in the livers of iNOS-knockout mice compared to wild-type mice after 48 weeks of a HFD; however, lipid accumulation in iNOS-knockout mice livers was less than in the wild-type. Increased expressions of various cytokines that are transcriptionally controlled by NF-kB in iNOS-deficient mice livers were observed during HFD conditions. iNOS-derived NO may play a protective role against the progression to NASH during an HFD by preventing fibrosis and inflammation, which are mediated by NF-kB activation in Kupffer cells. A lack of iNOS-derived NO accelerates progression to NASH without excessive lipid accumulation.
Cai, Bangrong; Seong, Kyung-Joo; Bae, Sun-Woong; Chun, Changju; Kim, Won-Jae; Jung, Ji-Yeon
2018-06-08
Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3β, 25R)‑spirost‑5‑en‑3‑oxyl (2‑((2((2‑aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells. In addition, DGP decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β, and tumor necrosis factor alpha (TNF-α). The inhibitory effects of DGP on these inflammatory mediators in LPS-stimulated microglial BV2 cells were regulated by NF-κB signaling through blocking p65 nuclear translocation and NF-κB p65/DNA binding activity. DGP also blocked the phosphorylation of c-Jun amino-terminal kinase (JNK), but not p38 kinase or extracellular signal-regulated kinases (ERK). The NF-κB inhibitor JSH-23 and JNK-specific inhibitor SP600125 significantly decreased NO production and IL-6 release in LPS-stimulated BV2 cells, respectively. The overall results demonstrate that DGP has anti-inflammatory effects on LPS-stimulated BV2 cells via inhibition of NF-κB and JNK activation, suggesting that DGP is a potential prophylactic agent in various neurodegenerative disorders. Copyright © 2018. Published by Elsevier B.V.
Vanhoutte, P M
2000-07-03
The endothelial cells release both relaxing [nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), prostacyclin] and contracting factors [endoperoxides, thromboxane A(2), superoxide anions, endothelin-1 (ET)]. The production of ET is inhibited by NO. The latter also strongly opposes the direct effects of the former on vascular smooth muscle. With aging and vascular disease, the production of enothelial NO declines, and thus ET can be released, act and contribute to the symptoms.
Gangapuram, Madhavi; Mazzio, Elizabeth; Eyunni, Suresh; Soliman, Karam F A; Redda, Kinfe K
2014-05-01
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cirino, G.; Wheeler-Jones, C. P.; Wallace, J. L.; Del Soldato, P.; Baydoun, A. R.
1996-01-01
1. The effects of novel nitric oxide-releasing nonsteroidal anti-inflammatory compounds (NO-NSAIDs) on induction of nitric oxide (NO) synthase by bacterial lipopolysaccharide (LPS) were examined in a murine cultured macrophage cell line, J774. 2. LPS-induced nitrite production was markedly attenuated by the nitroxybutylester derivatives of flurbiprofen (FNBE), aspirin, ketoprofen, naproxen, diclofenac and ketorolac, with each compound reducing accumulated nitrite levels by > 40% at the maximum concentrations (100 micrograms ml-1) used. 3. Further examination revealed that nitrite production was inhibited in a concentration-dependent (1-100 micrograms ml-1) manner by FNBE which at 100 micrograms ml-1 decreased LPS-stimulated levels by 63.3 +/- 8.6% (n = 7). The parent compound flurbiprofen was relatively ineffective over the same concentration-range, inhibiting nitrite accumulation by 24 +/- 0.9% (n = 3) at the maximum concentration used (100 micrograms ml-1). 4. FNBE reduced LPS-induced nitrite production when added to cells up to 4 h after LPS. Thereafter, FNBE caused very little or no reduction in nitrite levels. Furthermore NO-NSAIDs (100 micrograms ml-1) did not inhibit the metabolism of L-[3H]-arginine to citrulline by NO synthase isolated from LPS-activated macrophages. 5. Western blot analysis demonstrated that NO synthase expression was markedly attenuated following co-incubation of J774 cell with LPS (1 microgram ml-1; 24 h) and FNBE (100 micrograms ml-1; 24 h). Thus taken together, these findings indicate that NO-NSAIDs inhibit induction of NO synthase without directly affecting enzyme activity. 6. In conclusion our results indicate that NO-NSAIDs can inhibit the inducible L-arginine-NO pathway, and are capable of suppressing NO synthesis by inhibiting expression of NO synthase. The clinical implications of these findings remain to be established. Images Figure 4 PMID:8730734
Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.
2015-01-01
The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446
Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents
Kondratyuk, Tamara P.; Park, Eun-Jung; Yu, Rui; van Breemen, Richard B.; Asolkar, Ratnakar N.; Murphy, Brian T.; Fenical, William; Pezzuto, John M.
2012-01-01
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects. PMID:22412812
Dietrich, Sascha; Okun, Jürgen G.; Schmidt, Kathrin; Falk, Christine S.; Wagner, Andreas H.; Karamustafa, Suzan; Radujkovic, Aleksandar; Hegenbart, Ute; Ho, Anthony D.; Dreger, Peter; Luft, Thomas
2014-01-01
Steroid-refractory graft-versus-host disease is a life-threatening complication after allogeneic stem cell transplantation. Evidence is accumulating that steroid-refractory graft-versus-host disease is associated with endothelial distress. Endothelial cell homeostasis is regulated by nitric oxide, and serum nitrates are derived from nitric oxide synthase activity or dietary sources. In this retrospective study based on 417 patients allografted at our institution we investigated whether quantification of serum nitrates could predict steroid-refractory graft-versus-host disease. Elevated pre-transplant levels of serum nitrates (>26.5 μM) predicted steroid-refractory graft-versus-host disease (P=0.026) and non-relapse mortality (P=0.028), particularly in combination with high pre-transplant angiopoietin-2 levels (P=0.0007 and P=0.021, respectively). Multivariate analyses confirmed serum nitrates as independent predictors of steroid-refractory graft-versus-host disease and non-relapse mortality. Differences in serum nitrate levels did not correlate with serum levels of tumor necrosis factor or C-reactive protein or expression of inducible nitric oxide synthase in blood cells. Patients with high pre-transplant nitrate levels had significantly reduced rates of refractory graft-versus-host disease (P=0.031) when pravastatin was taken. In summary, patients at high risk of developing steroid-refractory graft-versus-host disease could be identified prior to transplantation by serum markers linked to endothelial cell function. Retrospectively, statin medication was associated with a reduced incidence of refractory graft-versus-host disease in this endothelial high-risk cohort. PMID:24142995
L-citrulline immunostaining identifies nitric oxide production sites within neurons
NASA Technical Reports Server (NTRS)
Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.
2002-01-01
The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.
S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model.
Santos, Ana Isabel; Carreira, Bruno Pereira; Izquierdo-Álvarez, Alicia; Ramos, Elena; Lourenço, Ana Sofia; Filipa Santos, Daniela; Morte, Maria Inês; Ribeiro, Luís Filipe; Marreiros, Ana; Sánchez-López, Nuria; Marina, Anabel; Carvalho, Caetana Monteiro; Martínez-Ruiz, Antonio; Araújo, Inês Maria
2018-01-01
Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.
Mgbemena, Victoria; Segovia, Jesus A.; Chang, Te-Hung; Tsai, Su-Yu; Cole, Garry T.; Hung, Chiung-Yu; Bose, Santanu
2012-01-01
Influenza A virus (flu) is a respiratory tract pathogen causing high morbidity and mortality among the human population. Nitric oxide (NO) is a cellular mediator involved in tissue damage due to apoptosis of target cells and resulting enhancement of local inflammation. Inducible nitric oxide (iNOS) is involved in the production of NO following infection. Although NO is a key player in the development of exaggerated lung disease during flu infection, the underlying mechanism including the role of NO in apoptosis during infection has not been reported. Similarly, the mechanism of iNOS gene induction during flu infection is not well defined in terms of host trans-activator(s) required for iNOS gene expression. In the current study we have identified kruppel-like factor 6 (KLF6) as a critical transcription factor essential for iNOS gene expression during flu infection. We have also underscored the requirement of iNOS in inducing apoptosis during infection. KLF6 gene silencing in human lung epithelial cells resulted in drastic loss of NO production, iNOS-promoter specific luciferase activity and expression of iNOS mRNA following flu infection. Chromatin immuno-precipitation assay revealed a direct interaction of KLF6 with iNOS promoter during both in vitro and in vivo flu infection of human lung cells and mouse respiratory tract, respectively. Significant reduction in flu mediated apoptosis was noted in KLF6 silenced cells, cells treated with iNOS inhibitor and in primary murine macrophages derived from iNOS knock-out (KO) mice. A similar reduction in apoptosis was noted in the lungs following intra-tracheal flu infection of iNOS KO mice. PMID:22711891
Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2013-01-01
Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882
Li, Huige; Xia, Ning; Brausch, Isolde; Yao, Ying; Förstermann, Ulrich
2004-09-01
Nitric oxide (NO) produced by endothelial nitric-oxide synthase (eNOS) represents an antithrombotic and anti-atherosclerotic principle in the vasculature. Hence, an enhanced expression of eNOS in response to pharmacological interventions could provide protection against cardiovascular diseases. In EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (HUVECs), an artichoke leaf extract (ALE) increased the activity of the human eNOS promoter (determined by luciferase reporter gene assay). An organic subfraction from ALE was more potent in this respect than the crude extract, whereas an aqueous subfraction of ALE was without effect. ALE and the organic subfraction thereof also increased eNOS mRNA expression (measured by an RNase protection assay) and eNOS protein expression (determined by Western blot) both in EA.hy 926 cells and in native HUVECs. NO production (measured by NO-ozone chemiluminescence) was increased by both extracts. In organ chamber experiments, ex vivo incubation (18 h) of rat aortic rings with the organic subfraction of ALE enhanced the NO-mediated vasodilator response to acetylcholine, indicating that the up-regulated eNOS remained functional. Caffeoylquinic acids and flavonoids are two major groups of constituents of ALE. Interestingly, the flavonoids luteolin and cynaroside increased eNOS promoter activity and eNOS mRNA expression, whereas the caffeoylquinic acids cynarin and chlorogenic acid were without effect. Thus, in addition to the lipid-lowering and antioxidant properties of artichoke, an increase in eNOS gene transcription may also contribute to its beneficial cardiovascular profile. Artichoke flavonoids are likely to represent the active ingredients mediating eNOS up-regulation.
Español, Alejandro Javier; Salem, Agustina; Rojo, Daniela; Sales, María Elena
2015-11-01
Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Choe, So-Hui; Choi, Eun-Young; Hyeon, Jin-Yi; Choi, In Soon; Kim, Sung-Jo
2017-10-14
The purpose of this study was to investigate the influences of NCX 2121, a nitric oxide (NO)-releasing derivative of indomethacin, upon the generation of proinflammatory mediators using murine macrophages activated by lipopolysaccharide (LPS) isolated from Prevotella intermedia, which is one of the pathogens implicated in periodontal diseases. Inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their relevant mRNA were significantly attenuated by NCX 2121 in RAW264.7 cells activated by P. intermedia LPS. NCX 2121 was much more effective than the parental compound indomethacin in reducing these proinflammatory mediators. NCX 2121 triggered induction of heme oxygenase-1 (HO-1) in cells exposed to P. intermedia LPS, and its inhibitory influence upon P. intermedia LPS-elicited NO generation was notably blocked by SnPP treatment. NCX 2121 attenuated NF-κB-dependent SEAP release induced by P. intermedia LPS. NCX 2121 did not display inhibitory action towards IκB-α degradation triggered by LPS. Instead, it significantly diminished nuclear translocation as well as DNA-binding action of NF-κB p50 subunit elicited by P. intermedia LPS. Further, NCX 2121 significantly up-regulated SOCS1 mRNA expression in cells challenged with P. intermedia LPS. In summary, NCX 2121 down-regulates P. intermedia LPS-elicited generation of NO, IL-1β and IL-6 in murine macrophages in a mechanism that involves anti-inflammatory HO-1 induction as well as decrement of NF-κB activation, which may be associated with SOCS1 expression. NCX 2121 may have potential benefits as a host immunomodulatory agent for the therapy of periodontal disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation
Henan, Xu; Toyota, Naoka; Yanjiang, Xing; Fujita, Yuuki; Zhijun, Huang; Touma, Maki; Qiong, Wu; Sugimoto, Kenkichi
2014-01-01
Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of CD11b+ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-α), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells. [BMB Reports 2014; 47(5): 286-291] PMID:24286318
Macrophage cell lines derived from major histocompatibility complex II-negative mice
NASA Technical Reports Server (NTRS)
Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1998-01-01
Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.
Tatakihara, Vera Lucia Hideko; Malvezi, Aparecida Donizette; Panis, Carolina; Cecchini, Rubens; Zanluqui, Nagela Ghabdan; Yamauchi, Lucy Megumi; Martins, Maria Isabel Lovo; da Silva, Rosiane Valeriano; Yamada-Ogatta, Sueli Fumie; Rizzo, Luiz Vicente; Martins-Pinge, Marli Cardoso; Pinge-Filho, Phileno
2015-02-05
Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected with this disease worldwide. T. cruzi infection causes an intense inflammatory response, which is critical for the control of parasite proliferation and disease development. Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as chemopreventive agents. In this study, we investigated the effect of NO-indomethacin on parasite burden, cell invasion, and oxidative stress in erythrocytes during the acute phase of infection. NO-indomethacin was dissolved in dimethyl formamide followed by i.p. administration of 50 ppm into mice 30 min after infection with 5×10(3) blood trypomastigote forms (Y strain). The drug was administered every day until the animals died. Control animals received 100 μL of drug vehicle via the same route. Within the NO-indomethacin-treatment group, parasitemia and mortality (100%) were higher and oxidative stress in erythrocytes, anemia, and entry of parasites into macrophages were significantly greater than that seen in controls. Increase in the entry and survival of intracellular T. cruzi was associated with inhibition of nitric oxide production by macrophages treated with NO-indomethacin (2.5 μM). The results of this study provide strong evidence that NO-NSAIDs potently inhibit nitric oxide production, suggesting that NO-NSAID-based therapies against infections would be difficult to design and would require caution. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, J.; Curran, R.D.; Ochoa, J.B.
1991-02-01
Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less
2014-01-01
Background Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. Results HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Conclusions Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways. PMID:25012519
Friedl, Roswitha; Moeslinger, Thomas; Kopp, Brigitte; Spieckermann, Paul Gerhard
2001-01-01
In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 – 0.8 μg μl−1) showed a dose dependent stimulation of inducible nitric oxide synthesis. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-κB DNA binding activity. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase. PMID:11739242
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2009-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2008-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749
Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages.
Bae, Deok Sung; Kim, Young Hoon; Pan, Cheol-Ho; Nho, Chu Won; Samdan, Javzan; Yansan, Jamyansan; Lee, Jae Kown
2012-02-01
Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E(2) (PGE(2)) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).
Adebayo, Salmon A; Shai, Leshweni J; Eloff, Jacobus N
2017-01-01
To investigate the anti-inflammatory activity of different fractions and glutinol (isolated compound), using nitric oxide synthase and cyclooxygenase (COX) inhibition as an indication of anti-inflammatory activity. Anti-inflammatory activity was evaluated using an in vitro assay determining the inhibition of the activity of pro-inflammatory enzyme model. Cyclooxygenases and inducible nitric oxide synthase are crucial enzymes involved in the pathogenesis of many chronic inflammatory conditions. Sub-fraction F3.3 that was derived from n-hexane fraction of PA leaves significantly inhibited (P = 0.01) the catalytic activity of COX-2 (IC 50 = 0.67 μg/mL) better than isolated compound, glutinol (IC 50 = 1.22 μg/mL), compound 2 (CP2) (IC 50 = 1.71 μg/mL) and sub-fraction F3.3.0 (IC 50 = 1.30 μg/mL). A similar trend was observed in investigation of the inhibition of nitric oxide synthesis in RAW 264.7 cells by F3.3, glutinol, CP2 and F3.3.0. Inducible COX-2 and inducible nitric oxide synthase are among potent signalling enzymes that exacerbate inflammation. Bioactive sub-fractions (F3.3 and F3.3.0) derived from the n-hexane fraction of PA had good anti-inflammatory activity, and the isolated compound, and glutinol may be useful as a template for the development of new anti-inflammatory drugs. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ae Sin; Jung, Yu Jin; Kim, Dal
2014-08-08
Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophagesmore » isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that deficiency of SIRT2 ameliorates iNOS, NO expression and reactive oxygen species production with suppressing LPS-induced activation of NFκB in macrophages.« less
Effect of PDT-treated apoptotic cells on macrophages
NASA Astrophysics Data System (ADS)
Song, Sheng; Xing, Da; Zhou, Fei-fan; Chen, Wei R.
2009-02-01
Recently, the long-term immunological effects of photodynamic therapy have attracted much attention. PDT induced immune response was mainly initiated through necrotic cells and apoptotic cells, as well as immune cells such as macrophages. Nitric oxide (NO) as an important regulatory factor in signal transfer between cells has been wildly studied for generation, development, and metastasis of tumors. NO synthase is a key enzyme in nitric oxide synthesis. However, inducible nitric oxide synthase (iNOS) is usually activated under pathological conditions, such as stress and cancer, which can produce high levels of nitric oxide and contribute to tumor cytotoxicity. In addition, increased NO production by iNOS has been associated with the host immune response and cell apoptosis, which play an important role in many carcinogenesis and anti-carcinoma mechanisms. This study focuses on the NO production in macrophages, induced by mouse breast carcinoma apoptotic cells treated by PDT in vitro, and on the effects of immune response induced by apoptotic cells in tumor cells growth.
Brix, Britta; Mesters, Jeroen R; Pellerin, Luc; Jöhren, Olaf
2012-07-11
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling
As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-inducedmore » inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.« less
Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin
2016-01-01
Background Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Methods Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis–induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Results Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection– and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ–induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis– induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted anti-phagocytic activity against both Escherichia coli and P. gingivalis. Conclusion These findings suggest that xylitol acts as an antiinflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis. PMID:24592909
Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin
2014-06-01
Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.
Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity.
Sang-Ngern, Mayuramas; Youn, Ui Joung; Park, Eun-Jung; Kondratyuk, Tamara P; Simmons, Charles J; Wall, Marisa M; Ruf, Michael; Lorch, Sam E; Leong, Ethyn; Pezzuto, John M; Chang, Leng Chee
2016-06-15
Three new withanolides, physaperuvin G (1), with physaperuvins I (2), and J (3), along with seven known derivatives (4-10), were isolated from the aerial parts of Physalis peruviana. The structures of 1-3 were determined by NMR, X-ray diffraction, and mass spectrometry. Compounds 1-10 were evaluated in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Compounds 4, 5, and 10 with potent nitric oxide inhibitory activity in LPS-activated RAW 264.7 cells, with IC50 values in the range of 0.32-7.8μM. In addition, all compounds were evaluated for potential to inhibit tumor necrosis factor-alpha (TNF-α)-activated nuclear factor-kappa B (NF-κB) activity with transfected human embryonic kidney cells 293. Compounds 4-7 inhibited TNF-α-induced NF-κB activity with IC50 values in the range of 0.04-5.6μM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mohanraj, Bhavana; Huang, Alice H; Yeger-McKeever, Meira J; Schmidt, Megan J; Dodge, George R; Mauck, Robert L
2018-05-29
Tissue engineering is a promising approach for the repair of articular cartilage defects, with engineered constructs emerging that match native tissue properties. However, the inflammatory environment of the damaged joint might compromise outcomes, and this may be impacted by the choice of cell source in terms of their ability to operate anabolically in an inflamed environment. Here, we compared the response of engineered cartilage derived from native chondrocytes and mesenchymal stem cells (MSCs) to challenge by TNFα and IL-1β in order to determine if either cell type possessed an inherent advantage. Compositional (extracellular matrix) and functional (mechanical) characteristics, as well as the release of catabolic mediators (matrix metalloproteinases (MMPs), nitric oxide (NO)) were assessed to determine cell- and tissue- level changes following exposure to IL-1β or TNF-α. Results demonstrated that MSC-derived constructs were more sensitive to inflammatory mediators than chondrocyte-derived constructs, exhibiting a greater loss of proteoglycans and functional properties at lower cytokine concentrations. While MSCs and chondrocytes both have the capacity to form functional engineered cartilage in vitro, this study suggests that the presence of an inflammatory environment is more likely to impair the in vivo success of MSC-derived cartilage repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhou, Zuping; French, Deborah L.; Ma, Ge; Eisenstein, Samuel; Chen, Ying; Divino, Celia M.; Keller, Gordon; Chen, Shu-Hsia; Pan, Ping-Ying
2015-01-01
Emerging evidence suggests that myeloid-derived suppressor cells (MDSCs) have great potential as a novel immune intervention modality in the fields of transplantation and autoimmune diseases. Thus far, efforts to develop MDSC-based therapeutic strategies have been hampered by the lack of a reliable source of MDSCs. Here we show that functional MDSCs can be efficiently generated from mouse embryonic stem (ES) cells and bone marrow hematopoietic stem (HS) cells. In vitro-derived MDSCs encompass two homogenous subpopulations: CD115+Ly-6C+ and CD115+Ly-6C− cells. The CD115+Ly-6C+ subset is equivalent to the monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-bearing mice. In contrast, the CD115+Ly-6C− cells, a previously unreported population of MDSCs, resemble the granulocyte/macrophage progenitors developmentally. In vitro, ES- and HS-MDSCs exhibit robust suppression against T-cell proliferation induced by polyclonal stimuli or alloantigens via multiple mechanisms involving nitric oxide synthase-mediated NO production and interleukin (IL)-10. Impressively, they display even stronger suppressive activity and significantly enhance ability to induce CD4+CD25+Foxp3+ regulatory T-cell development compared with tumor-derived MDSCs. Furthermore, adoptive transfer of ES-MDSCs can effectively prevent alloreactive T-cell-mediated lethal graft-versus-host disease, leading to nearly 82% long-term survival among treated mice. The successful in vitro generation of MDSCs may represent a critical step toward potential clinical application of MDSCs. PMID:20073041
Cheng, Yu Wen; Chang, Ching Yi; Lin, Kou Lung; Hu, Chien Ming; Lin, Cheng Hui; Kang, Jaw Jou
2008-11-20
Shikonin/alkannin (SA) derivatives, analogs of naphthoquinone pigments, are the major components of root extracts of the Chinese medicinal herb (Lithospermum erythrorhizon; LE) and widely distributed in several folk medicines. In the present study, the effect and the underline molecular mechanism of shikonin derivatives isolated from root extracts of Lithospermum euchroma on lipopolysaccharide (LPS)-induced inflammatory response were investigated. Effects of five SA derivatives, including SA, acetylshikonin, beta,beta-dimethylacrylshikonin, 5,8-dihydroxy-1.4-naphthoquinone, and 1,4-naphthoquinone on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in mouse macrophage RAW264.7 cells were examined. Data suggested that SA derivatives inhibited LPS-induced NO and PGE(2) production, and iNOS protein expression. RT-PCR analysis showed that SA derivatives diminished LPS-induced iNOS mRNA expression. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in LPS-stimulated RAW 264.7 cells was concentration-dependently suppressed by SA derivatives. SA inhibited NF-kappaB activation by prevention of the degradation of inhibitory factor-kappaB and p65 level in nuclear fractions induced by LPS. Taken together, these results suggest that the anti-inflammatory properties of SA derivatives might result from inhibition of iNOS protein expression through the downregulation of NF-kappaB activation via suppression of phosphorylation of ERK, in LPS-stimulated RAW 264.7 cells.
Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells
Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A; Byrd, John C; Satoskar, Abhay R
2016-01-01
Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF-β, IL-10 and IL-18. While ibrutinib dampened MHC-II and CD86 expression on DCs, CD80 expression was upregulated. Further, ibrutinib-treated DCs promoted T cell proliferation and enhanced IL-17 production upon co-culture with nylon wool enriched T cells. Taken together, our results indicate that ibrutinib modulates TLR-4 mediated DC activation to promote an IL-17 response. We describe a novel mode of action for ibrutinib on DCs which should be explored to treat other forms of cancer besides B cell malignancies. PMID:26942065
Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells.
Natarajan, Gayathri; Terrazas, Cesar; Oghumu, Steve; Varikuti, Sanjay; Dubovsky, Jason A; Byrd, John C; Satoskar, Abhay R
Ibrutinib (PCI-32765) is an irreversible dual Btk/Itk inhibitor shown to be effective in treating several B cell malignancies. However, limited studies have been conducted to study the effect of this drug on myeloid cell function. Hence, we studied the effect of ibrutinib treatment on TLR-4 mediated activation of bone marrow derived dendritic cell culture (DCs). Upon ibrutinib treatment, LPS-treated DCs displayed lower synthesis of TNF-α and nitric oxide (NO) and higher induction of IL-6, TGF-β, IL-10 and IL-18. While ibrutinib dampened MHC-II and CD86 expression on DCs, CD80 expression was upregulated. Further, ibrutinib-treated DCs promoted T cell proliferation and enhanced IL-17 production upon co-culture with nylon wool enriched T cells. Taken together, our results indicate that ibrutinib modulates TLR-4 mediated DC activation to promote an IL-17 response. We describe a novel mode of action for ibrutinib on DCs which should be explored to treat other forms of cancer besides B cell malignancies.
Kim, Kwan-Woo; Kim, Hye Jin; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol
2018-02-01
In the course of searching for anti-neuroinflammatory metabolites from marine-derived fungi, three fungal metabolites, 6,8,1'-tri-O-methylaverantin, 6,8-di-O-methylaverufin, and 5-methoxysterigmatocystin were isolated from a marine-derived fungal strain Aspergillus sp. SF-6796. Among these, 6,8,1'-tri-O-methylaverantin induced the expression of heme oxygenase (HO)-1 protein in BV2 microglial cells. The induction of HO-1 protein was mediated by the activation of nuclear transcription factor erythroid-2 related factor 2 (Nrf2), and was regulated by the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Furthermore, 6,8,1'-tri-O-methylaverantin suppressed the overproduction of pro-inflammatory mediators, such as nitric oxide, prostaglandin E 2 , inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. These anti-neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B-α, translocation into the nucleus of p65/p50 heterodimer, and DNA-binding activity of p65 subunit. The anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin was partially blocked by a selective HO-1 inhibitor, suggesting that its anti-neuroinflammatory effect is at least partly mediated by HO-1 induction. In this study, 6,8,1'-tri-O-methylaverantin also induced HO-1 protein expression in primary microglial cells, and this correlated with anti-neuroinflammatory effects observed in LPS-stimulated primary microglial cells. In conclusion, 6,8,1'-tri-O-methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toda, Noboru; Okamura, Tomio
2016-08-01
Cerebral blood flow is mainly regulated by nitrergic (parasympathetic, postganglionic) nerves and nitric oxide (NO) liberated from endothelial cells in response to shear stress and stretch of vasculature, whereas sympathetic vasoconstrictor control is quite weak. On the other hand, peripheral vascular resistance and blood flow are mainly controlled by adrenergic vasoconstrictor nerves; endothelium-derived NO and nitrergic nerves play some roles as vasodilator factors. Cigarette smoking impairs NO synthesis in cerebral vascular endothelial cells and nitrergic nerves leading to interference with cerebral blood flow and glucose metabolism in the brain. Smoking-induced cerebral hypoperfusion is induced by impairment of synthesis and actions of NO via endothelial nitric oxide synthase (eNOS)/neuronal NOS (nNOS) inhibition and by increased production of oxygen radicals, resulting in decreased actions of NO on vascular smooth muscle. Nicotine acutely and chronically impairs the action of endothelial NO and also inhibits nitrergic nerve function in chronic use. Impaired cerebral blood supply promotes the synthesis of amyloid β that accelerates blood flow decrease. This vicious cycle is thought to be one of the important factors involving in Alzheimer's disease (AD). Quitting smoking is undoubtedly one of the important ways to prevent and delay the genesis or slow the progress of impaired cognitive function and AD. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard
2013-07-15
The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.
Gonano, Luis Alberto; Morell, Malena; Burgos, Juan Ignacio; Dulce, Raul Ariel; De Giusti, Verónica Celeste; Aiello, Ernesto Alejandro; Hare, Joshua Michael; Vila Petroff, Martin
2014-01-01
Aims Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. Methods and results Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca2+ transient, and increased NO-sensitive 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca2+ wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca2+ release. Conclusions Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling. PMID:25344365
Hung, Chiung-Yu; Castro-Lopez, Natalia; Cole, Garry T
2016-04-01
Coccidioidomycosis is a potentially life-threatening respiratory disease which is endemic to the southwestern United States and arid regions of Central and South America. It is responsible for approximately 150,000 infections annually in the United States alone. Almost every human organ has been reported to harbor parasitic cells of Coccidioides spp. in collective cases of the disseminated form of this mycosis. Current understanding of the mechanisms of protective immunity against lung infection has been largely derived from murine models of pulmonary coccidioidomycosis. However, little is known about the nature of the host response to Coccidioides in extrapulmonary tissue. Primary subcutaneous coccidioidal infection is rare but has been reported to result in disseminated disease. Here, we show that activation of MyD88 and Card9 signal pathways are required for resistance to Coccidioides infection following subcutaneous challenge of C57BL/6 mice, which correlates with earlier findings of the protective response to pulmonary infection. MyD88(-/-) andCard9(-/-) mice recruited reduced numbers of T cells, B cells, and neutrophils to the Coccidioides-infected hypodermis com pared to wild-type mice; however, neutrophils were dispensable for resistance to skin infection. Further studies have shown that gamma interferon (IFN-γ) production and activation of Th1 cells characterize resistance to subcutaneous infection. Furthermore, activation of a phagosomal enzyme, inducible nitric oxide synthase, which is necessary for NO production, is a requisite for fungal clearance in the hypodermis. Collectively, our data demonstrate that MyD88- and Card9-mediated IFN-γ and nitric oxide production is essential for protection against subcutaneous Coccidioides infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Mossalayi, M Djavad
2004-03-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide derivatives. In the present study, quercetin (3,3',4',5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-alpha and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis.
Prolo, Carolina; Álvarez, María Noel; Ríos, Natalia; Peluffo, Gonzalo; Radi, Rafael; Romero, Natalia
2015-10-01
Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (•)NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected. Copyright © 2015. Published by Elsevier Inc.
Nitric Oxide and Peroxynitrite in Health and Disease
PACHER, PÁL; BECKMAN, JOSEPH S.; LIAUDET, LUCAS
2008-01-01
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review. PMID:17237348
Nitric oxide in red blood cell adaptation to hypoxia.
Zhao, Yajin; Wang, Xiang; Noviana, Milody; Hou, Man
2018-06-01
Nitric oxide (NO) appears to be involved in virtually every aspect of cardiovascular biology. Most attention has been focused on the role of endothelial-derived NO in basal blood flow regulation by relaxing vascular smooth muscle; however, it is now known that NO derived from red blood cells (RBCs) plays a fundamental role in vascular homeostasis by enhancing oxygen (O2) release at the cellular and physiological level. Hypoxia is an often seen problem in diverse conditions; systemic adaptations to hypoxia permit people to adjust to the hypoxic environment at high altitudes and to disease processes. In addition to the cardiopulmonary and hematologic adaptations that support systemic O2 delivery in hypoxia, RBCs assist through newly described NO-based mechanisms, in line with their vital role in O2 transport and delivery. Furthermore, to increase the local blood flow in proportion to metabolic demand, NO regulates membrane mechanical properties thereby modulating RBC deformability and O2 carrying-releasing function. In this review article, we focus on the effect of NO bioactivity on RBC-based mechanisms that regulate blood flow and RBC deformability. RBC adaptations to hypoxia are summarized, with particular attention to NO-dependent S-nitrosylation of membrane proteins and hemoglobin (S-nitrosohemoglobin). The NO/S-nitrosylation/RBC vasoregulatory cascade contributes fundamentally to the molecular understanding of the role of NO in human adaptation to hypoxia and may inform novel therapeutic strategies.
Trulsson, Lena M; Gasslander, Thomas; Svanvik, Joar
2004-10-01
The background of cholecystokinin-8 (CCK-8)-induced hypoplasia in the pancreas is not known. In order to increase our understanding we studied the roles of nitric oxide and NF-kappaB in rats. CCK-8 was injected for 4 days, in a mode known to cause hypoplasia, and the nitric oxide formation was either decreased by means of N(omega)-nitro-L-arginine (L-NNA) or increased by S-nitroso-N-acetylpencillamine (SNAP). The activation of NF-kappaB was quantified by ELISA detection, apoptosis with caspase-3 and histone-associated DNA-fragmentation and mitotic activity in the acinar, centroacinar and ductal cells were visualized by the incorporation of [(3)H]-thymidine. Pancreatic histology and weight as well as protein- and DNA contents were also studied. Intermittent CCK injections reduced pancreatic weight, protein and DNA contents and increased apoptosis, acinar cell proliferation and nuclear factor kappaB (NF-kappaB) activation. It also caused vacuolisation of acinar cells. The inhibition of endogenous nitric oxide formation by L-NNA further increased apoptosis and NF-kappaB activation but blocked the increased proliferation and vacuolisation of acinar cells. The DNA content was not further reduced. SNAP given together with CCK-8 increased apoptosis and other pathways of cell death, raised proliferation of acinar cells and strongly reduced the DNA content in the pancreas. Histological examination showed no inflammation in any group. We conclude that during CCK-8-induced pancreatic hypoplasia, endogenously formed nitric oxide suppresses apoptosis but increases cell death along non-apoptotic pathways and stimulates regeneration of acinar cells. Exogenous nitric oxide enhances the acinar cell turnover by increasing both apoptotic and non-apoptotic cell death and cell renewal. In this situation NF-kappaB activation seems not to inhibit apoptosis nor promote cell proliferation.
Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.
Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu
2016-07-01
In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida
2015-01-01
Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619
Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2010-09-01
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J
2015-03-03
Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.
Puttarak, Panupong; Brantner, Adelheid; Siripongvutikorn, Sunisa
2018-01-01
Ricegrass juice (Oryza sativa L.) was introduced as a functional food as the consumption of sprouts or seedlings has been claimed to provide high nutritive value. Selenium (Se) is a trace mineral that plays a key role in the human antioxidation scheme. Supplementation of Se into plants is one strategy to enhance plant bioactivities, and the consumption of Se plant foods may confer superior health benefits. In this study, ricegrass juice extract was analyzed for its major phenolic components. The effect of ricegrass juice extracts bio-fortified with 0, 10 and 40 mg Se/L named as RG0, RG10, and RG40, respectively, were investigated for a percentage of cell viability, changes of endogenous antioxidant enzymes, lipid peroxidation, and nitric oxide inhibition in RAW264.7 macrophage cells. Flavone glycosides, namely chrysoeriol arabinosyl arabinoside derivatives, were found to be the foremost bioactive components in ricegrass juice extract indicated by UHPLC-MS. The results of cell culture assessment revealed that RG40 showed an ability to promote macrophage cell proliferation at low concentration. Ricegrass juice extract in all treatments possessed the ability to reduce malondialdehyde content, which may be regarded as the bioactivity of phenolic compounds. Moreover, Se also played a role in this effect since RG40 showed the greatest ability via increasing the level of GPx enzyme. It was also discovered that phenolic compounds in the extracts played a role in inhibiting nitric oxide in LPS-induced RAW264.7 cells. Furthermore, RG40 expressed significantly higher NO inhibition properties at IC50 118.76 µg/mL compared to RG0 and RG10, at 147.02 and 147.73 µg/mL, respectively. Se bio-fortified ricegrass juice could be considered as a new potent functional food that can lower the risk of oxidative stress and chronic inflammation diseases. PMID:29652839
Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.
2012-01-01
Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerstroem, Sara; Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Solna; Gunalan, Vithiagaran
Nitric oxide is an important molecule playing a key role in a broad range of biological process such as neurotransmission, vasodilatation and immune responses. While the anti-microbiological properties of nitric oxide-derived reactive nitrogen intermediates (RNI) such as peroxynitrite, are known, the mechanism of these effects are as yet poorly studied. Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) belongs to the family Coronaviridae, was first identified during 2002-2003. Mortality in SARS patients ranges from between 6 to 55%. We have previously shown that nitric oxide inhibits the replication cycle of SARS-CoV in vitro by an unknown mechanism. In this study, we havemore » further investigated the mechanism of the inhibition process of nitric oxide against SARS-CoV. We found that peroxynitrite, an intermediate product of nitric oxide in solution formed by the reaction of NO with superoxide, has no effect on the replication cycle of SARS-CoV, suggesting that the inhibition is either directly effected by NO or a derivative other than peroxynitrite. Most interestingly, we found that NO inhibits the replication of SARS-CoV by two distinct mechanisms. Firstly, NO or its derivatives cause a reduction in the palmitoylation of nascently expressed spike (S) protein which affects the fusion between the S protein and its cognate receptor, angiotensin converting enzyme 2. Secondly, NO or its derivatives cause a reduction in viral RNA production in the early steps of viral replication, and this could possibly be due to an effect on one or both of the cysteine proteases encoded in Orf1a of SARS-CoV.« less
Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar
2014-01-01
Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.
The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2003-01-01
Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.
Effect of rottlerin, a PKC-{delta} inhibitor, on TLR-4-dependent activation of murine microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Chan; Division of Research and Development, Neuronex, Inc., San31, Hyoja-dong, Nam-gu, Pohang 790-784; Kim, Sun-Hee
2005-11-11
In microglia, Toll-like receptors have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. The effect of rottlerin, a PKC-{delta} specific inhibitor, on TLR-4-mediated signaling was investigated in murine microglia stimulated with lipopolysaccharide and taxol. Pretreatment of microglia cells with rottlerin decreased LPS- and taxol-induced nitric oxide production in a concentration-dependent manner (IC{sub 50} = 99.1 {+-} 1.5 nM). Through MTT and FACS analysis, we found that the inhibition effect of rottlerin was not due to microglial cell death. Rottlerin pretreatment also attenuated LPS-induced phosphorylation of I{kappa}B-{alpha}, nuclear translocation of NF-{kappa}B, andmore » expression of type II nitric oxide synthase. In addition, microglial phagocytosis in response to TLR-4 activation was diminished in which rottlerin was pretreated. Together, these data raise the possibility that certain PKC-{delta} specific inhibitors can modulate TLR-4-derived signaling and inflammatory target gene expression, and can alter susceptibility to microbial infection and chronic inflammatory diseases in central nervous system.« less
Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation
Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.
2016-01-01
Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023
Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan
The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlyingmore » the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR and phosphorylation of ERK.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taki-Nakano, Nozomi; Advanced Drug Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50, Kawagishi, Toda, Saitama 335-8505; Kotera, Jun
Jasmonates are plant lipid–derived oxylipins that act as key signaling compounds in plant immunity, germination, and development. Although some physiological activities of natural jasmonates in mammalian cells have been investigated, their anti-inflammatory actions in mammalian cells remain unclear. Here, we investigated whether jasmonates protect mouse microglial MG5 cells against lipopolysaccharide (LPS)–induced inflammation. Among the jasmonates tested, only 12-oxo-phytodienoic acid (OPDA) suppressed LPS-induced expression of the typical inflammatory cytokines interleukin-6 and tumor necrosis factor α. In addition, only OPDA reduced LPS-induced nitric oxide production through a decrease in the level of inducible nitric oxide synthase. Further mechanistic studies showed that OPDAmore » suppressed neuroinflammation by inhibiting nuclear factor κB and p38 mitogen-activated protein kinase signaling in LPS-activated MG5 cells. In addition, OPDA induced expression of suppressor of cytokine signaling-1 (SOCS-1), a negative regulator of inflammation, in MG5 cells. Finally, we found that the nuclear factor erythroid 2-related factor 2 signaling cascade induced by OPDA is not involved in the anti-inflammatory effects of OPDA. These results demonstrate that OPDA inhibited LPS-induced cell inflammation in mouse microglial cells via multiple pathways, including suppression of nuclear factor κB, inhibition of p38, and activation of SOCS-1 signaling. -- Highlights: •OPDA attenuates LPS-induced inflammatory cytokines such as IL-6 and TNF-α. •OPDA reduces LPS-induced iNOS expression and NO production. •OPDA suppresses NF-κB and p38 pathways and activates SOCS-1 signaling.« less
Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity
NASA Astrophysics Data System (ADS)
Jiang, Shan; Cheng, Rui; Wang, Xiang; Xue, Teng; Liu, Yuan; Nel, Andre; Huang, Yu; Duan, Xiangfeng
2013-07-01
Real-time monitoring of nitric oxide concentrations is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems and immune responses. Here we report a new design of nitric oxide sensors based on hemin-functionalized graphene field-effect transistors. With its single atom thickness and the highest carrier mobility among all materials, graphene holds the promise for unprecedented sensitivity for molecular sensing. The non-covalent functionalization through π-π stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with a sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their practical functionality in complex biological systems.
Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony
1999-01-01
An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.
Friend, Danielle M.; Son, Jong H.; Keefe, Kristen A.
2013-01-01
Nitric oxide is implicated in methamphetamine (METH)-induced neurotoxicity; however, the source of the nitric oxide has not been identified. Previous work has also revealed that animals with partial dopamine loss induced by a neurotoxic regimen of methamphetamine fail to exhibit further decreases in striatal dopamine when re-exposed to methamphetamine 7–30 days later. The current study examined nitric oxide synthase expression and activity and protein nitration in striata of animals administered saline or neurotoxic regimens of methamphetamine at postnatal days 60 and/or 90, resulting in four treatment groups: Saline:Saline, METH:Saline, Saline:METH, and METH:METH. Acute administration of methamphetamine on postnatal day 90 (Saline:METH and METH:METH) increased nitric oxide production, as evidenced by increased protein nitration. Methamphetamine did not, however, change the expression of endothelial or inducible isoforms of nitric oxide synthase, nor did it change the number of cells positive for neuronal nitric oxide synthase mRNA expression or the amount of neuronal nitric oxide synthase mRNA per cell. However, nitric oxide synthase activity in striatal interneurons was increased in the Saline:METH and METH:METH animals. These data suggest that increased nitric oxide production after a neurotoxic regimen of methamphetamine results from increased nitric oxide synthase activity, rather than an induction of mRNA, and that constitutively expressed neuronal nitric oxide synthase is the most likely source of nitric oxide after methamphetamine administration. Of interest, animals rendered resistant to further methamphetamine-induced dopamine depletions still show equivalent degrees of methamphetamine-induced nitric oxide production, suggesting that nitric oxide production alone in response to methamphetamine is not sufficient to induce acute neurotoxic injury. PMID:23230214
Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd
2010-07-01
Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.
Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma
2008-01-01
Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025
Nitric oxide functions as a signal in plant disease resistance.
Delledonne, M; Xia, Y; Dixon, R A; Lamb, C
1998-08-06
Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
Pedroso, M C; Magalhaes, J R; Durzan, D
2000-06-01
Leaves and callus of Kalanchoë daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalanchoë and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.
Danelli, Luca; Frossi, Barbara; Gri, Giorgia; Mion, Francesca; Guarnotta, Carla; Bongiovanni, Lucia; Tripodo, Claudio; Mariuzzi, Laura; Marzinotto, Stefania; Rigoni, Alice; Blank, Ulrich; Colombo, Mario P; Pucillo, Carlo E
2015-01-01
Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response. ©2014 American Association for Cancer Research.
Choi, Hyukjae; Mascuch, Samantha J.; Villa, Francisco A.; Byrum, Tara; Teasdale, Margaret E.; Smith, Jennifer E.; Preskitt, Linda B.; Rowley, David C.; Gerwick, Lena; Gerwick, William H.
2012-01-01
SUMMARY Honaucins A–C were isolated from the cyanobacterium Leptolyngbya crossbyana which was found overgrowing corals on the Hawaiian coast. Honaucin A consists of (S)-3-hydroxy-γ-butyrolactone and 4-chlorocrotonic acid which are connected via an ester linkage. Honaucin A and its two natural analogs exhibit potent inhibition of bioluminescence, a quorum sensing-dependent phenotype, in Vibrio harveyi BB120 as well as of lipopolysaccharide-stimulated nitric oxide production in the murine macrophage cell line RAW264.7. The decrease in nitric oxide production was accompanied by a decrease in the transcripts of several pro-inflammatory cytokines, most dramatically interleukin-1β. Synthesis of honaucin A as well as a number of analogs and subsequent evaluation in anti-inflammation and quorum sensing inhibition bioassays revealed the essential structural features for activity in this chemical class, and provided analogs with greater potency in both assays. PMID:22633410
Nitric Oxide in the Offensive Strategy of Fungal and Oomycete Plant Pathogens
Arasimowicz-Jelonek, Magdalena; Floryszak-Wieczorek, Jolanta
2016-01-01
In the course of evolutionary changes pathogens have developed many invasion strategies, to which the host organisms responded with a broad range of defense reactions involving endogenous signaling molecules, such as nitric oxide (NO). There is evidence that pathogenic microorganisms, including two most important groups of eukaryotic plant pathogens, also acquired the ability to synthesize NO via non-unequivocally defined oxidative and/or reductive routes. Although the both kingdoms Chromista and Fungi are remarkably diverse, the experimental data clearly indicate that pathogen-derived NO is an important regulatory molecule controlling not only developmental processes, but also pathogen virulence and its survival in the host. An active control of mitigation or aggravation of nitrosative stress within host cells seems to be a key determinant for the successful invasion of plant pathogens representing different lifestyles and an effective mode of dispersion in various environmental niches. PMID:26973690
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Djavad Mossalayi, M.
2004-01-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-α and nitric oxide derivatives. In the present study, quercetin (3,3′,4′,5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-α and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis. PMID:14982785
The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells.
Xiao, Hao; Zeng, Liming; Shao, Fangyuan; Huang, Bo; Wu, Miaomiao; Tan, Bie; Yin, Yulong
2017-05-02
L-Arginine itself and its metabolite-nitric oxide play great roles in intestinal physiology. However, the molecular mechanism underlying nitric oxide pathway regulating L-Arginine transport and cell growth is not yet fully understood. We report that inhibition of nitric oxide synthase (NOS) significantly induced cell apoptosis (p < 0.05), and promoted the rate of Arginine uptake and the expressions of protein for CAT-2 and y+LAT-1 (p < 0.05), while reduced protein expression of CAT-1. And NOS inhibition markedly decreased the activation of mammalian target of rapamycin (mTOR) and PI3K-Akt pathways by Arginine in the IPEC-1 cells (p < 0.05). Taken together, these data suggest that inhibition of NO pathway by L-NAME induces a negative feedback increasing of Arginine uptake and CAT-2 and y+LAT-1 protein expression, but promotes cell apoptosis which involved inhibiting the activation of mTOR and PI3K-Akt pathways.
Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.
2013-01-01
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900
Xu, Bei; Bobek, Gabriele; Makris, Angela; Hennessy, Annemarie
2017-03-01
Medications used to control hypertension in pregnancy also improve trophoblast and endothelial cellular interaction in vitro. Tumour necrosis factor-α (TNF-α) inhibits trophoblast and endothelial cellular interactions and simultaneously decreases endothelial nitric oxide synthase (eNOS) expression. This study investigated whether antihypertensive medications improved these cellular interactions by modulating eNOS and inducible nitric oxide synthase (iNOS) expression. Human uterine myometrial microvascular endothelial cells (UtMVECs) were pre-incubated with (or without) low dose TNF-α (0.5 ng/mL) or TNF-α plus soluble fms-like tyrosine kinase-1 (sFlt-1) (100 ng/mL). The endothelial cells were cultured on Matrigel. After endothelial cellular networks appeared, trophoblast derived HTR-8/SVneo cells were co-cultured in the presence of clinically relevant doses of methyldopa, labetalol, hydralazine or clonidine for 24 hours. Cells were retrieved from the Matrigel to extract mRNA and eNOS and iNOS expression were examined by quantitative PCR. Methyldopa, labetalol, hydralazine and clonidine reversed the inhibitory effect of TNF-α on eNOS mRNA expression. After pre-incubating endothelial cells with TNF-α and sFlt-1, all the medications except methyldopa lost their effect on eNOS mRNA expression. In the absence of TNF-α, antihypertensive medications did not change eNOS expression. The mRNA expression of iNOS was not affected by TNF-α or any medications. This study shows that selected antihypertensive medications used in the treatment of hypertension in pregnancy increase eNOS expression in vitro when induced by the inflammatory TNF-α. The anti-angiogenic molecule sFlt-1 may antagonise the potential benefit of these medications by interfering with the NOS pathway. © 2016 John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lino dos Santos Franco, Adriana; Damazo, Amilcar Sabino; Post-Graduation in Morphology, UNIFESP, EPM, Sao Paulo
2006-07-01
We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also,more » FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. On the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects.« less
Wang, Yiping; Hu, Zhaohui; Sun, Bing; Xu, Jiahong; Jiang, Jinfa; Luo, Ming
2015-06-01
Previous studies have suggested that ginsenoside Rg3 (GSRg3) extract from the medicinal plant Panax ginseng, may increase nitric oxide production via increases in the phosphorylation and expression of endothelial nitric oxide synthase (eNOS). The present study used an in vitro neonatal rat cardiomyocyte (NRC) model of anoxia‑reoxygenation injury and an in vivo rat model of myocardial ischemia/reperfusion (MI/R) injury. Hemodynamic, histopathological and biochemical assessment of the myocardial injury was performed and the expression levels of lactate dehydrogenase (LDH), superoxide dismutase and creatine kinase (CK) were measured in serum from the animal model, which may reflect myocardial injury. NRC injury was determined using a Cell Counting kit‑8. The GSRg3 anti‑apoptotic effects were assessed using flow cytometry to investigate the number of early‑late apoptotic cells and western blot analysis was performed to analyze the protein expression levels of caspase‑3, caspase‑9, B‑cell lymphoma‑2 (Bcl‑2), phosphorylated (p‑)Akt and eNOS. The results suggested that pretreatment with GSRg3 (60 mg/kg) significantly improved rat cardiac function, as demonstrated by increased left ventricular systolic pressure, heart rate and first derivative of left ventricular pressure. GSRg3 also reduced the size of the myocardial infarct and LDH/CK levels in the blood following MI/R. In vitro investigations revealed that GSRg3 (10 mM) decreased NRC apoptosis through inhibiting the activation of caspase‑3 and caspase‑9, and increasing the expression levels of p‑Akt, eNOS and the ratio of Bcl‑2/Bcl‑2‑associated X protein (Bax). Overall, the present study revealed that GSRg3 mediated a cardioprotective effect against MI/R‑induced apoptosis via Akt/eNOS signaling and the Bcl‑2/Bax pathway.
Armour, K E; Armour, K J; Gallagher, M E; Gödecke, A; Helfrich, M H; Reid, D M; Ralston, S H
2001-02-01
Nitric oxide (NO) is a pleiotropic signaling molecule that is produced by bone cells constitutively and in response to diverse stimuli such as proinflammatory cytokines, mechanical strain, and sex hormones. Endothelial nitric oxide synthase (eNOS) is the predominant NOS isoform expressed in bone, but its physiological role in regulating bone metabolism remains unclear. Here we studied various aspects of bone metabolism in female mice with targeted disruption of the eNOS gene. Mice with eNOS deficiency (eNOS KO) had reduced bone mineral density, and cortical thinning when compared with WT controls and histomorphometric analysis of bone revealed profound abnormalities of bone formation, with reduced osteoblast numbers, surfaces and mineral apposition rate. Studies in vitro showed that osteoblasts derived from eNOS KO mice had reduced rates of growth when compared with WT and were less well differentiated as reflected by lower levels of alkaline phosphatase activity. Mice with eNOS deficiency lost bone normally following ovariectomy but exhibited a significantly blunted anabolic response to high dose exogenous estrogen. We conclude that the eNOS pathway plays an essential role in regulating bone mass and bone turnover by modulating osteoblast function.
Statins and nitric oxide donors affect thrombospondin 1-induced chemotaxis.
Seymour, Keri; Stein, Jeffrey; Han, Xuan; Maier, Kristopher G; Gahtan, Vivian
2014-01-01
Thrombospondin 1 (TSP-1) induces vascular smooth muscle cell (VSMC) migration and intimal hyperplasia. Statins and nitric oxide (NO) donors decrease intimal hyperplasia. We previously showed that statins (long-term exposure) and NO donors inhibit TSP-1-induced VSMC chemotaxis. (1) Pretreatment with short-term statin will inhibit TSP-1-induced VSMC chemotaxis and (2) NO donors will enhance statin inhibition of TSP-1-induced or platelet-derived growth factor (PDGF)-induced VSMC chemotaxis. We examined these treatment effects on TSP-1-induced VSMC chemotaxis: (1) long-term (20 hours) versus short-term (20 minutes) pravastatin, (2) diethylenetriamine NONOate (DETA/NO) or S-nitroso-N-acetylpenicillamine (SNAP) in combination with pravastatin, and (3) comparison of TSP-1 to PDGF as a chemoattractant. Pravastatin (long term or short term) inhibited TSP-1-induced chemotaxis. Diethylenetriamine NONOate and SNAP impeded statin inhibition of TSP-1-induced chemotaxis. Platelet-derived growth factor and TSP-1 had opposite effects on DETA/NO-pravastatin treatment. Short-term statin pretreatment inhibited TSP-1-induced VSMC chemotaxis, suggesting a pleiotropic effect. High-dose NO reversed statin inhibition of TSP-1-induced chemotaxis, suggesting NO and statin combination therapies warrant further study. © The Author(s) 2014.
Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.
1999-06-15
An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.
Choi, Eun-Young; Choe, So-Hui; Hyeon, Jin-Yi; Park, Hae Ryoun; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo
2015-12-05
In this study, the effects and underlying mechanisms of NCX 4040, a nitric oxide (NO)-donating aspirin derivative, on the production of proinflammatory mediators were examined using murine macrophages exposed to lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in the etiology of periodontal disease. NCX 4040 significantly reduced P. intermedia LPS-induced production of inducible NO synthase (iNOS)-derived NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. Notably, NCX 4040 was much more effective than the parental compound aspirin in reducing LPS-induced production of inflammatory mediators. NCX 4040 induced the expression of heme oxygenase-1 (HO-1) in cells treated with P. intermedia LPS, and the suppressive effect of NCX 4040 on LPS-induced NO production was significantly reversed by SnPP, a competitive HO-1 inhibitor. NCX 4040 did not influence LPS-induced phosphorylation of JNK and p38. IκB-α degradation as well as nuclear translocation and DNA-binding activities of NF-κB p65 and p50 subunits induced by P. intermedia LPS were significantly reduced by NCX 4040. Besides, LPS-induced phosphorylation of STAT1 and STAT3 was significantly down-regulated by NCX 4040. Further, NCX 4040 elevated the SOCS1 mRNA in cells stimulated with LPS. This study indicates that NCX 4040 inhibits P. intermedia LPS-induced production of NO, IL-1β and IL-6 in murine macrophages through anti-inflammatory HO-1 induction and suppression of NF-κB, STAT1 and STAT3 activation, which is associated with the activation of SOCS1 signaling. NCX 4040 could potentially be a promising tool in the treatment of periodontal disease, although further studies are required to verify this. Copyright © 2015 Elsevier B.V. All rights reserved.
Kiziltepe, Tanyel; Hideshima, Teru; Ishitsuka, Kenji; Ocio, Enrique M; Raje, Noopur; Catley, Laurence; Li, Chun-Qi; Trudel, Laura J; Yasui, Hiroshi; Vallet, Sonia; Kutok, Jeffery L; Chauhan, Dharminder; Mitsiades, Constantine S; Saavedra, Joseph E; Wogan, Gerald N; Keefer, Larry K; Shami, Paul J; Anderson, Kenneth C
2007-07-15
Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO(*)) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K-induced cytotoxicity was mediated via NO(*) in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH(2)-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K-induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K-induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.
Weigert, Andreas; von Knethen, Andreas; Fuhrmann, Dominik; Dehne, Nathalie; Brüne, Bernhard
2018-01-11
Macrophages are known for their versatile role in biology. They sense and clear structures that contain exogenous or endogenous pathogen-associated molecular patterns. This process is tightly linked to the production of a mixture of potentially harmful oxidants and cytokines. Their inherent destructive behavior is directed against foreign material or structures of 'altered self', which explains the role of macrophages during innate immune reactions and inflammation. However, there is also another side of macrophages when they turn into a tissue regenerative, pro-resolving, and healing phenotype. Phenotype changes of macrophages are termed macrophage polarization, representing a continuum between classical and alternative activation. Macrophages as the dominating producers of superoxide/hydrogen peroxide and nitric oxide are not only prone to oxidative modifications but also to more subtle signaling properties of redox-active molecules conveying redox regulation. We review basic concepts of the enzymatic nitric oxide and superoxide production within macrophages, refer to their unique chemical reactions and outline biological consequences not only for macrophage biology but also for their communication with cells in the microenvironment. These considerations link hypoxia to the NO system, addressing feedforward as well as feedback circuits. Moreover, we summarize the role of redox-signaling affecting epigenetics and reflect the central role of mitochondrial-derived oxygen species in inflammation. To better understand the diverse functions of macrophages during initiation as well as resolution of inflammation and to decode their versatile roles during innate and adaptive immunity with the entire spectrum of cell protective towards cell destructive activities we need to appreciate the signaling properties of redox-active species. Herein we discuss macrophage responses in terms of nitric oxide and superoxide formation with the modulating impact of hypoxia. Copyright © 2018. Published by Elsevier Ltd.
Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases
Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine
2016-01-01
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855
Huang, Ai-Ling; Zhang, Yi-Long; Ding, Hai-Wen; Li, Bo; Huang, Cheng; Meng, Xiao-Ming; Li, Jun
2018-05-28
Hesperetin has been known to exert several activities such as anti-oxidant, antitumor and anti-inflammatory. To find hesperetin derivatives showing better activity, sixteen novel hesperetin derivatives were designed and synthesized. The new obtained compounds were investigated for their anti-inflammatory activity by inhibiting interleukin-1β (IL-1β), interleukin-6 (IL-6) and production of nitric oxide (NO) in mouse RAW264.7 macrophages, and the structure-activity relationship of them was discussed. Among them, the compound 1l, 2c demonstrated more effective inhibitory activity of IL-1β and IL-6, meanwhile, the compound 1l showed the best inhibition of NO production. The results of NO inhibition study were basically accord with the molecular docking results of inducible nitric oxide synthase (iNOS). Furthermore, the expression of LPS-induced iNOS and components of NF-κB signaling pathway were reduced by compound 1l. Our results suggest that the inhibitory effect of compound 1l on LPS-stimulated inflammatory mediator production in RAW 264.7 cells is associated with the suppression of NF-κB signaling pathway and inhibition of iNOS protein and iNOS activity. From in vivo study, it was also observed that compound 1l had hepato-protective and anti-inflammatory effects in CCl 4 -induced acute liver injury mouse models. Copyright © 2018 Elsevier B.V. All rights reserved.
Endothelium-derived relaxing factor (nitric oxide) has protective actions in the stomach
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNaughton, W.K.; Wallace, J.L.; Cirino, G.
1989-01-01
The role that nitric oxide, an endothelium-derived relaxing factor, may play in the regulation of gastric mucosal defense was investigated by assessing the potential protective actions of this factor against the damage caused by ethanol in an ex vivo chamber preparation of the rat stomach. Topical application of glyceryl trinitrate and sodium nitroprusside, which have been shown to release nitric oxide, markedly reduced the area of 70% ethanol-induced hemorrhagic damage. Topical application of a 0.01% solution of authentic nitric oxide also significantly reduced the severity of mucosal damage. Pretreatment with indomethacin precluded the involvement of endogenous prostaglandins in the protectivemore » effects of these agents. The protective effects of NO were transient, since a delay of 5 minutes between NO administration and ethanal administration resulted in a complete loss of the protective activity. The protection against ethanol afforded by 10 ug/ml nitroprusside could be completely reversed by intravenous infusion of either 1% methylene blue or 1 mM hemoglobin, both of which inhibit vasodilation induced by nitric oxide. Intravenous infusion of 1% methylene blue significantly increased the susceptibility of the mucosa to damage induced by topical 20% ethanol.« less
N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.
Creager, M A; Roddy, M A; Boles, K; Stamler, J S
1997-02-01
Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol contributes to endothelium-derived relaxing factor bioactivity in plasma and vascular smooth muscle. Potentiation of the effects of nitroglycerin by N-acetylcysteine can be attributed to its enhanced biotransformation to an endothelium-derived relaxing factor equivalent, such as nitrosothiol. These observations support the notion of an equilibrium between nitric oxide and nitrosothiol in biological systems that may be influenced by redox state.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-06-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-01-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073
Nitric oxide (NO) in normal and hypoxic vascular regulation of the spiny dogfish, Squalus acanthias.
Swenson, Kai E; Eveland, Randy L; Gladwin, Mark T; Swenson, Erik R
2005-02-01
Nitric oxide (NO) is a potent vasodilator in terrestrial vertebrates, but whether vascular endothelial-derived NO plays a role in vascular regulation in fish remains controversial. To explore this issue, a study was made of spiny dogfish sharks (Squalus acanthias) in normoxia and acute hypoxia (60 min exposure to seawater equilibrated with 3% oxygen) with various agents known to alter NO metabolism or availability. In normoxia, nitroprusside (a NO donor) reduced blood pressure by 20%, establishing that vascular smooth muscle responds to NO. L-arginine, the substrate for NO synthase, had no hemodynamic effect. Acetylcholine, which stimulates endothelial NO and prostaglandin production in mammals, reduced blood pressure, but also caused marked bradycardia. L-NAME, an inhibitor of all NO synthases, caused a small 10% rise in blood pressure, but cell-free hemoglobin (a potent NO scavenger and hypertensive agent in mammals) had no effect. Acute hypoxia caused a 15% fall in blood pressure, which was blocked by L-NAME and cell-free hemoglobin. Serum nitrite, a marker of NO production, rose with hypoxia, but not with L-NAME. Results suggest that NO is not an endothelial-derived vasodilator in the normoxic elasmobranch. The hypertensive effect of L-NAME may represent inhibition of NO production in the CNS and nerves regulating blood pressure. In acute hypoxia, there is a rapid up-regulation of vascular NO production that appears to be responsible for hypoxic vasodilation.
Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A
2011-05-17
Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.
The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.
Arnold, Robyn E; Weigent, Douglas A
2003-05-01
A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.
Gu, Mingxia; Mordwinkin, Nicholas M.; Kooreman, Nigel G.; Lee, Jaecheol; Wu, Haodi; Hu, Shijun; Churko, Jared M.; Diecke, Sebastian; Burridge, Paul W.; He, Chunjiang; Barron, Frances E.; Ong, Sang-Ging; Gold, Joseph D.; Wu, Joseph C.
2015-01-01
Aims High-fat diet-induced obesity (DIO) is a major contributor to type II diabetes and micro- and macro-vascular complications leading to peripheral vascular disease (PVD). Metabolic abnormalities of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from obese individuals could potentially limit their therapeutic efficacy for PVD. The aim of this study was to compare the function of iPSC-ECs from normal and DIO mice using comprehensive in vitro and in vivo assays. Methods and results Six-week-old C57Bl/6 mice were fed with a normal or high-fat diet. At 24 weeks, iPSCs were generated from tail tip fibroblasts and differentiated into iPSC-ECs using a directed monolayer approach. In vitro functional analysis revealed that iPSC-ECs from DIO mice had significantly decreased capacity to form capillary-like networks, diminished migration, and lower proliferation. Microarray and ELISA confirmed elevated apoptotic, inflammatory, and oxidative stress pathways in DIO iPSC-ECs. Following hindlimb ischaemia, mice receiving intramuscular injections of DIO iPSC-ECs had significantly decreased reperfusion compared with mice injected with control healthy iPSC-ECs. Hindlimb sections revealed increased muscle atrophy and presence of inflammatory cells in mice receiving DIO iPSC-ECs. When pravastatin was co-administered to mice receiving DIO iPSC-ECs, a significant increase in reperfusion was observed; however, this beneficial effect was blunted by co-administration of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methyl ester. Conclusion This is the first study to provide evidence that iPSC-ECs from DIO mice exhibit signs of endothelial dysfunction and have suboptimal efficacy following transplantation in a hindlimb ischaemia model. These findings may have important implications for future treatment of PVD using iPSC-ECs in the obese population. PMID:25368203
Cho, Yun-Jung
2013-01-01
Purpose Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory κB (IκB)-α degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of IκB-α induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-κB and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease. PMID:24040572
Cho, Yun-Jung; Kim, Sung-Jo
2013-08-01
Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory κB (IκB)-α degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of IκB-α induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-κB and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.
Kasaai, Bahar; Caolo, Vincenza; Peacock, Hanna M.; Lehoux, Stephanie; Gomez-Perdiguero, Elisa; Luttun, Aernout; Jones, Elizabeth A. V.
2017-01-01
Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development. PMID:28272478
Ledford, Kelly J; Murphy, Nikki; Zeigler, Frank; Bartel, Ronnda L; Tubo, Ross
2015-03-13
Bone marrow derived cellular therapies are an emerging approach to promoting therapeutic angiogenesis in ischemic cardiovascular disease. However, the percentage of regenerative cells in bone marrow mononuclear cells (BMMNCs) is small, and large amounts of BMMNCs are required. Ixmyelocel-T, an expanded autologous multicellular therapy, is manufactured from a small sample of bone marrow aspirate. Ixmyelocel-T contains expanded populations of mesenchymal stromal cells (MSCs) and M2-like macrophages, as well as many of the CD45+ cells found in the bone marrow. It is hypothesized that this expanded multi-cellular therapy would induce angiogenesis and endothelial repair. A rat model of hind limb ischemia was used to determine the effects of ixmyelocel-T on blood flow recovery. To further determine the effects on endothelial cells, ixmyelocel-T was co-cultured with human umbilical vein endothelial cells (HUVEC) in non-contacting Transwell® inserts. Co-culture of HUVECs with ixmyelocel-T resulted secretion of a variety of pro-angiogenic factors. HUVECs stimulated by ixmyelocel-T exhibited enhanced migration, proliferation, and branch formation. Ixmyelocel-T co-culture also resulted in increased endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. In tumor necrosis factor alpha (TNFα)-stimulated HUVECs, ixmyelocel-T co-culture decreased apoptosis and reactive oxygen species generation, increased super oxide dismutase activity, and decreased nuclear factor kappa B (NFκB) activation. Treatment with ixmyelocel-T in a rat model of hind limb ischemia resulted in significantly increased blood flow perfusion and capillary density, gene expression and plasma levels of the anti-inflammatory cytokine interleukin (IL)-10, plasma nitrates, plasma platelet-derived growth factor (PDGF)-BB, vascular endothelial growth factor (VEGF) expression, and significantly decreased plasma thiobarbituric acid reactive substances (TBARS). This work demonstrates that ixmyelocel-T interacts with endothelial cells in a paracrine manner, resulting in angiogenesis and endothelial protection. This data suggests that ixmyelocel-T could be useful for promoting of angiogenesis and tissue repair in ischemic cardiovascular diseases. In conclusion, ixmyelocel-T therapy may provide a new aspect of therapeutic angiogenesis in this patient population where expanded populations of regenerative cells might be required.
Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia
2017-04-11
Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.
Gamma Interferon-Induced T-Cell Loss in Virulent Mycobacterium avium Infection
Flórido, Manuela; Pearl, John E.; Solache, Alejandra; Borges, Margarida; Haynes, Laura; Cooper, Andrea M.; Appelberg, Rui
2005-01-01
Infection by virulent Mycobacterium avium caused progressive severe lymphopenia in C57BL/6 mice due to increased apoptosis rates. T-cell depletion did not occur in gamma interferon (IFN-γ)-deficient mice which showed increased T-cell numbers and proliferation; in contrast, deficiency in nitric oxide synthase 2 did not prevent T-cell loss. Although T-cell loss was IFN-γ dependent, expression of the IFN-γ receptor on T cells was not required for depletion. Similarly, while T-cell loss was optimal if the T cells expressed IFN-γ, CD8+ T-cell depletion could occur in the absence of T-cell-derived IFN-γ. Depletion did not require that the T cells be specific for mycobacterial antigen and was not affected by deficiencies in the tumor necrosis factor receptors p55 or p75, the Fas receptor (CD95), or the respiratory burst enzymes or by forced expression of bcl-2 in hematopoietic cells. PMID:15908387
Peng, Zhao Feng; Chen, Minghui Jessica; Manikandan, Jayapal; Melendez, Alirio J; Shui, Guanghou; Russo-Marie, Françoise; Whiteman, Matthew; Beart, Philip M; Moore, Philip K; Cheung, Nam Sang
2012-01-01
Abstract Nitric oxide is implicated in the pathogenesis of various neuropathologies characterized by oxidative stress. Although nitric oxide has been reported to be involved in the exacerbation of oxidative stress observed in several neuropathologies, existent data fail to provide a holistic description of how nitrergic pathobiology elicits neuronal injury. Here we provide a comprehensive description of mechanisms contributing to nitric oxide induced neuronal injury by global transcriptomic profiling. Microarray analyses were undertaken on RNA from murine primary cortical neurons treated with the nitric oxide generator DETA-NONOate (NOC-18, 0.5 mM) for 8–24 hrs. Biological pathway analysis focused upon 3672 gene probes which demonstrated at least a ±1.5-fold expression in a minimum of one out of three time-points and passed statistical analysis (one-way anova, P < 0.05). Numerous enriched processes potentially determining nitric oxide mediated neuronal injury were identified from the transcriptomic profile: cell death, developmental growth and survival, cell cycle, calcium ion homeostasis, endoplasmic reticulum stress, oxidative stress, mitochondrial homeostasis, ubiquitin-mediated proteolysis, and GSH and nitric oxide metabolism. Our detailed time-course study of nitric oxide induced neuronal injury allowed us to provide the first time a holistic description of the temporal sequence of cellular events contributing to nitrergic injury. These data form a foundation for the development of screening platforms and define targets for intervention in nitric oxide neuropathologies where nitric oxide mediated injury is causative. PMID:21352476
Payne, W. J.; Riley, P. S.; Cox, C. D.
1971-01-01
Pseudomonas perfectomarinus was found to grow anaerobically at the expense of nitrate, nitrite, or nitrous oxide but not chlorate or nitric oxide. In several repetitive experiments, anaerobic incubation in culture media containing nitrate revealed that an average of 82% of the cells in aerobically grown populations were converted to the capacity for respiration of nitrate. Although they did not form colonies under these conditions, the bacteria synthesized the denitrifying enzymes within 3 hr in the absence of oxygen or another acceptable inorganic oxidant. This was demonstrated by the ability, after anaerobic incubation, of cells and of extracts to reduce nitrite, nitric oxide, and nitrous oxide to nitrogen. From crude extracts of cells grown on nitrate, nitrite, or nitrous oxide, separate complex fractions were obtained that utilized reduced nicotinamide adenine dinucleotide as the source of electrons for the reduction of (i) nitrite to nitric oxide, (ii) nitric oxide to nitrous oxide, and (iii) nitrous oxide to nitrogen. Gas chromatographic analyses revealed that each of these fractions reduced only one of the nitrogenous oxides. PMID:4324803
Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej
2015-04-01
There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that endogenously inhibited pyruvate dehydrogenase complex (PDHC), aconitase, and α-ketoglutarate dehydrogenase complex. However, it caused none or small suppressions of acetyl-CoA and microglial viability, respectively. Microglia-derived NO inhibited same enzymes in cholinergic neuronal cells causing marked viability loss because of acetyl-CoA deficits evoked by its competitive consumption by energy producing and acetylcholine/N-acetyl-l-aspartate (NAA) synthesizing pathways. © 2014 International Society for Neurochemistry.
Nitric oxide synthase inhibition reduces muscle inflammation and necrosis in modified muscle use
NASA Technical Reports Server (NTRS)
Pizza, F. X.; Hernandez, I. J.; Tidball, J. G.
1998-01-01
The objective of this study was to determine the role of nitric oxide in muscle inflammation, fiber necrosis, and apoptosis of inflammatory cells in vivo. The effects of nitric oxide synthase (NOS) inhibition on the concentrations of neutrophils, ED1+ and ED2+ macrophages, apoptotic inflammatory cells, and necrotic muscle fibers in rats subjected to 10 days of hindlimb unloading and 2 days of reloading were determined. Administration of NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly reduced the concentrations of neutrophils, ED1+ and ED2+ macrophages, and necrotic fibers in soleus muscle relative to water-treated controls. The concentration of apoptotic inflammatory cells was also significantly lower for L-NAME-treated animals compared with water-treated controls. However, the proportion of the inflammatory cell population that was apoptotic did not differ between L-NAME-treated and control animals, suggesting that L-NAME treatment did not decrease inflammatory cell populations by increasing the frequency of apoptosis. Thus, nitric oxide or one of its intermediates promotes muscle inflammation and fiber necrosis during modified muscle use and plays no more than a minor role in the resolution of muscle inflammation by inducing apoptosis of inflammatory cells.
Espinosa-Cueto, Patricia; Escalera-Zamudio, Marina; Magallanes-Puebla, Alejandro; López-Marín, Luz María; Segura-Salinas, Erika; Mancilla, Raúl
2015-06-23
Tuberculosis (TB) remains a serious human health problem that affects millions of people in the world. Understanding the biology of Mycobacterium tuberculosis (Mtb) is essential for tackling this devastating disease. Mtb possesses a very complex cell envelope containing a variety of lipid components that participate in the establishment of the infection. We have previously demonstrated that di-O-acylated trehalose (DAT), a non-covalently linked cell wall glycolipid, inhibits the proliferation of T lymphocytes and the production of cytokines. In this work we show that DAT and the closely related tri-O-acylated trehalose (TAT) inhibits nitric oxide (NO) production and the inducible nitric oxide synthase (iNOS) expression in macrophages (MØ). These findings show that DAT and TAT are cell-wall located virulence factors that downregulate an important effector of the immune response against mycobacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing
Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to suchmore » injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.« less
Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.
2010-01-01
Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717
Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon
2015-12-01
In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature. Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering. © 2015 American Heart Association, Inc.
Damoulis, Petros D; Drakos, Dimitrios E; Gagari, Eleni; Kaplan, David L
2007-11-01
Bone marrow-derived mesenchymal stem cells (BMSC) are a powerful tool for tissue engineering and can be used in the regeneration of bone and other tissues. Nitric oxide (NO) produced by the endothelial NO synthase (eNOS) plays an important role in bone development and healing. We hypothesized that NO plays a role in osteogenic differentiation of BMSC cultured in three-dimensional silk scaffolds. eNOS protein was measured by Western Analysis and its activity was assessed by measuring nitrite in culture supernatants. Mineralization was evaluated through calcium deposition and the expression of genes associated with osteogenic differentiation (collagen I, RUNX2, and osteocalcin) was quantified using real-time RT-PCR. eNOS was consistently expressed with minor fluctuations, but NO production significantly increased at later time points (weeks 4 and 5). Addition of a competitive NOS inhibitor (L-NAME) resulted in a modest decrease in calcium deposition, which became statistically significant in week 5. This was preceded by a dramatic decrease in RUNX2 and osteocalcin expression in week 4. These results support our hypothesis and implicate NO as an important player in bone tissue engineering.
Gene therapy strategies for urological dysfunction.
Chancellor, M B; Yoshimura, N; Pruchnic, R; Huard, J
2001-07-01
Novel molecular techniques such as conventional and ex vivo gene therapy, and tissue engineering have only recently been introduced to the field of urology. The lower urinary tract is ideally suited for minimally invasive therapy, and also ex vivo approaches would limit the risk of systemic side effects. Muscle-derived stem cells have been used successfully to treat stress incontinence, and rats with diabetic bladder dysfunction benefited from nerve growth factor (NGF)-based gene therapy. Nitric oxide synthase and capase-7 might provide suitable gene therapy targets for erectile dysfunction and benign prostatic hyperplasia, respectively.
Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco
2016-05-01
(-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.
Calcium mobilization in HeLa cells induced by nitric oxide.
Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen
2014-01-01
Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.
Wang, Pei; Yang, Xi; Zhang, Zheng; Song, Jie; Guan, Yun-Feng; Zou, Da-Jin; Miao, Chao-Yu
2016-06-01
The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood EPCs number in healthy individuals. At last, we found that the EPC intracellular NAMPT and NAD(+) levels were reduced in T2DM patients and enhancing NAD pool elevated the circulating blood EPCs number in T2DM patients. Our results indicate that the depletion of NAD pool may contribute to the impairment of EPCs mobilization in diabetic condition, and imply the potential therapeutic value of nicotinamide in the prevention and treatment for cardiovascular complications of diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease.
Esposito, Giuseppe; Cirillo, Carla; Sarnelli, Giovanni; De Filippis, Daniele; D'Armiento, Francesco Paolo; Rocco, Alba; Nardone, Gerardo; Petruzzelli, Raffaella; Grosso, Michela; Izzo, Paola; Iuvone, Teresa; Cuomo, Rosario
2007-09-01
Enteric glia participates to the homeostasis of the gastrointestinal tract. In the central nervous system, increased expression of astroglial-derived S100B protein has been associated with the onset and maintaining of inflammation. The role of enteric glial-derived S100B protein in gastrointestinal inflammation has never been investigated in humans. In this study, we evaluated the expression of S100B and its relationship with nitric oxide production in celiac disease. Duodenal biopsy specimens from untreated and on gluten-free diet patients with celiac disease and controls were respectively processed for S100B and inducible nitric oxide synthase (iNOS) protein expression and nitrite production. To evaluate the direct involvement of S100B in the inflammation, control biopsy specimens were exposed to exogenous S100B, and iNOS protein expression and nitrite production were measured. We also tested gliadin induction of S100B-dependent inflammation in cultured biopsy specimens deriving from on gluten-free diet patients in the absence or presence of the specific S100B antibody. S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production were significantly increased in untreated patients but not in on gluten-free diet patients vs controls. Addition of S100B to control biopsy specimens resulted in a significant increase of iNOS protein expression and nitrite production. In celiac disease patients but not in controls biopsy specimens, gliadin challenge significantly increased S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production, but these effects were completely inhibited by S100B antibody. Enteric glial-derived S100B is increased in the duodenum of patients with celiac disease and plays a role in nitric oxide production.
Yue, Rui-Qi; Dong, Cai-Xia; Chan, Chung-Lap; Ko, Chun-Hay; Cheung, Wing-Shing; Luo, Ke-Wang; Dai, Hui; Wong, Chun-Kwok; Leung, Ping-Chung; Han, Quan-Bin
2014-01-01
A polysaccharide named GSP-2 with a molecular size of 32 kDa was isolated from the fruiting bodies of Ganoderma sinense. Its structure was well elucidated, by a combined utilization of chemical and spectroscopic techniques, to be a β-glucan with a backbone of (1→4)– and (1→6)–Glcp, bearing terminal- and (1→3)–Glcp side-chains at O-3 position of (1→6)–Glcp. Immunological assay exhibited that GSP-2 significantly induced the proliferation of BALB/c mice splenocytes with target on only B cells, and enhanced the production of several cytokines in human peripheral blood mononuclear cells and derived dendritic cells. Besides, the fluorescent labeled GSP-2 was phagocytosed by the RAW 264.7 cells and induced the nitric oxide secretion from the cells. PMID:25014571
Comparison of the toxicities, activities and chemical profiles of raw and processed Xanthii Fructus.
Su, Tao; Cheng, Brian Chi-Yan; Fu, Xiu-Qiong; Li, Ting; Guo, Hui; Cao, Hui-Hui; Kwan, Hiu-Yee; Tse, Anfernee Kai-Wing; Yu, Hua; Cao, Hui; Yu, Zhi-Ling
2016-01-22
Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking (a processing method) can reduce the toxicity and enhance the efficacy of XF. Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method. SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular formulae and mass fragments, as well as literature data. Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical profiles. Further studies are warranted to establish the relationship between the alteration of chemical profiles and the changes of medicinal properties caused by stir-baking.
The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation
Edin, Nina Jeppesen; Sandvik, Joe Alexander; Vollan, Hilde Synnøve; Reger, Katharina; Görlach, Agnes; Pettersen, Erik Olai
2013-01-01
In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2–0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. PMID:23685670
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallmann, B.; Burkart, V.; Kolb, H.
1992-01-01
Previous studies have indicated that nitric oxide is involved in the lysis of pancreatic islet cells by inflammatory macrophages. Here the authors show that the incubation of islet cells with chemical NO-donors leads to cell lysis in a concentration and time dependent way. Islet cell death could be prevented by nicotinamide and 3-aminobenzamide, which are known to inhibit ADP-ribosylation, while several scavengers of oxygen radicals, N-acetylcysteine, dihydrolipoic acid, dimethylthiourea and citiolone, provided no protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica
Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries.more » The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.« less
Amour, Julien; Brzezinska, Anna K.; Weihrauch, Dorothee; Billstrom, Amie R.; Zielonka, Jacek; Krolikowski, John G.; Bienengraeber, Martin W.; Warltier, David C.; Pratt, Philip F.; Kersten, Judy R.
2009-01-01
Background Nitric oxide is known to be essential for early anesthetic (APC) and ischemic (IPC) preconditioning of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, we tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Methods Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning with 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pre-treatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or NG-nitro-L-arginine methylester, a non-specific NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or NG-nitro-L-arginine methylester. Interactions between Hsp90 and eNOS, and eNOS activation were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. Results APC and IPC decreased infarct size (50% and 59%, respectively) and this action was abolished by Hsp90 inhibitors. NG-nitro-L-arginine methylester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells, concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes and eNOS was below the level of detection. Conclusion The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signalling during APC. PMID:19194158
Nitric oxide signaling: systems integration of oxygen balance in defense of cell integrity.
Gong, Li; Pitari, Giovanni M; Schulz, Stephanie; Waldman, Scott A
2004-01-01
Nitric oxide has emerged as a ubiquitous signaling molecule subserving diverse pathophysiologic processes, including cardiovascular homeostasis and its decompensation in atherogenesis. Recent insights into molecular mechanisms regulating nitric oxide generation and the rich diversity of mechanisms by which it propagates signals reveal the role of this simple gas as a principle mediator of systems integration of oxygen balance. The molecular lexicon by which nitric oxide propagates signals encompasses the elements of posttranslational modification of proteins by redox-based nitrosylation of transition metal centers and free thiols. Spatial and temporal precision and specificity of signal initiation, amplification, and propagation are orchestrated by dynamic assembly of supramolecular complexes coupling nitric oxide production to upstream and downstream components in specific subcellular compartments. The concept of local paracrine signaling by nitric oxide over subcellular distances for short durations has expanded to include endocrine-like effects over anatomic spatial and temporal scales. From these insights emerges a role for nitric oxide in integrating system responses controlling oxygen supply and demand to defend cell integrity in the face of ischemic challenge. In this context, nitric oxide coordinates the respiratory cycle to acquire and deliver oxygen to target tissues by regulating hemoglobin function and vascular smooth muscle contractility and matches energy supply and demand by down-regulating energy-requiring functions while shifting metabolism to optimize energy production. Insights into mechanisms regulating nitric oxide production and signaling and their integration into responses mediating homeostasis place into specific relief the role of those processes in pathophysiology. Indeed, endothelial dysfunction associated with altered production of nitric oxide regulating tissue integrity contributes to the pathogenesis underlying atherogenesis. Moreover, this central role in pathophysiology identifies nitric oxide signaling as a key target for novel therapeutic interventions to minimize irreversible tissue damage associated with ischemic cardiovascular disease.
Long-term adaptation of breast tumor cell lines to high concentrations of nitric oxide.
Vesper, Benjamin J; Elseth, Kim M; Tarjan, Gabor; Haines, G Kenneth; Radosevich, James A
2010-08-01
Nitric oxide (NO), a free radical, has been implicated in the biology of human cancers, including breast cancer, yet it is still unclear how NO affects tumor development and propagation. We herein gradually adapted four human breast adenocarcinoma cell lines (BT-20, Hs578T, T-47D, and MCF-7) to increasing concentrations of the NO donor DETA-NONOate up to 600 muM. The resulting model system consisted of a set of fully adapted high nitric oxide ("HNO") cell lines that are biologically different from the "parent" cell lines from which they originated. Although each of the four parent and HNO cell lines had identical morphologic appearance, the HNO cells grew faster than their corresponding parent cells and were resistant to both nitrogen- and oxygen-based free radicals. These cell lines serve as a novel tool to study the role of NO in breast cancer progression and potentially can be used to predict the therapeutic response leading to more efficient therapeutic regimens.
Filipović, Milos R; Stanić, Dragana; Raicević, Smiljana; Spasić, Mihajlo; Niketić, Vesna
2007-01-01
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (*NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed *NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO-) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to *NO, MnSOD-derived NO- species initiate the formation of peroxynitrite (ONOO-) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO- decomposition and ONOO(-)-dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO- is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of *NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of *NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of *NO.
Sharifpanah, Fatemeh; Behr, Sascha; Wartenberg, Maria; Sauer, Heinrich
2016-12-01
Differentiation of embryonic stem (ES) cells may be regulated by mechanical strain. Herein, signaling molecules underlying mechanical stimulation of vasculogenesis and expression of angiogenesis guidance cues were investigated in ES cell-derived embryoid bodies. Treatment of embryoid bodies with 10% static mechanical strain using a Flexercell strain system significantly increased CD31-positive vascular structures and the angiogenesis guidance molecules plexinB1, ephrin B2, neuropilin1 (NRP1), semaphorin 4D (sem4D) and robo4 as well as vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and platelet-derived growth factor-BB (PDGF-BB) as evaluated by Western blot and real time RT-PCR. In contrast ephrin type 4 receptor B (EphB4) expression was down-regulated upon mechanical strain, indicating an arterial-type differentiation. Robo1 protein expression was modestly increased with no change in mRNA expression. Mechanical strain increased intracellular calcium as well as reactive oxygen species (ROS) and nitric oxide (NO). Mechanical strain-induced vasculogenesis was abolished by the NOS inhibitor L-NAME, the NADPH oxidase inhibitor VAS2870, upon chelation of intracellular calcium by BAPTA as well as upon siRNA inactivation of ephrin B2, NRP1 and robo4. BAPTA blunted the strain-induced expression of angiogenic growth factors, the increase in NO and ROS as well as the expression of NRP1, sem4D and plexinB1, whereas ephrin B2, EphB4 as well as robo1 and robo4 expression were not impaired. Mechanical strain stimulates vasculogenesis of ES cells by the intracellular messengers ROS, NO and calcium as well as by upregulation of angiogenesis guidance molecules and the angiogenic growth factors VEGF, FGF-2 and PDGF-BB. Copyright © 2016 Elsevier B.V. All rights reserved.
Romero, Angel H; López, Simón E
2017-09-01
Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar
2016-11-01
In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.
Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca
2017-01-01
Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877
Cho, Dong-Im; Koo, Na-Youn; Chung, Woon Jae; Kim, Tae-Sung; Ryu, Shi Yong; Im, Suhn Young; Kim, Kyeong-Man
2002-09-13
NF-kappaB that plays an important role in iNOS expression is one of the targets of various potential anti-inflammatory agents including resveratrol. Resveratrol contains a structural similarity with estrogen, and there has been speculation about resveratrol as estrogen agonist. In this study, the mechanism and structural requirements of resveratrol and related hydroxystilbenes for the inhibition of LPS-induced nitric oxide production were studied in macrophage cells (RAW 264.7 and J774) by comparing its effect on LPS-induced NF-kappaB translocation and nitric oxide production, and by considering the possibility of involvement of an estrogen receptor. LPS-induced nitric oxide production was inhibited only when cells were treated with resveratrol prior to stimulation with LPS, suggesting that resveratrol does not affect the enzyme itself. A higher concentration of resveratrol than needed for the inhibition of nitric oxide production was required for the inhibition of NF-kappaB mobilization or iNOS expression. Estrogen and diethylstilbesterol, an estrogen agonist, caused only weak inhibition of nitric oxide production, and the effects of resveratrol were not noticeably blocked by ICI-182780, an estrogen antagonist. Structure-activity analysis of resveratrol and nine hydroxystilbenes suggests that the structural balance between oxygen functional groups on the benzene rings is important for their activity. Our results suggest that resveratrol might act on other cellular targets as well as NF-kappaB at the initial stage of gene expression. Unique structural features of hydroxystilbenes are needed for suppression of nitric oxide production and it is unlikely that estrogen receptor is involved in it.
Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose
2015-10-14
In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.
Simon, Krzysztof Adam; Pazgan-Simon, Monika
2015-01-01
Aim of the study To determine plausible associations between liver cirrhosis and circulating endothelial cell-derived microparticles (EMPs), vascular endothelial growth factor (VEGF) levels and plasma nitric oxide (NO) metabolites. Material and methods Sixty patients with cirrhosis and 20 healthy control subjects were enrolled in the study. Circulating EMPs from platelet-poor plasma samples were examined by flow cytometry. These microparticles were categorized into endothelial cell-derived activated MPs (EMP-ac) (CD31+ CD42b– AN-V–) and endothelial cell-derived apoptotic MPs (EMP-ap) (CD31+ CD42b– AN-V+). Plasma VEGF levels were measured by enzyme-linked immunosorbent assay. Plasma NO metabolites (NOx–) levels were determined using a Greiss reaction method. Results Compared with the healthy control subjects, the patients with cirrhosis showed a significant increase in plasma levels of both phenotypes of EMPs. When the presence of ascites was considered, the plasma levels of EMP-ap were higher (p < 0.01), as well as NOx– (p < 0.05). EMP-ap positively correlated with VEGF level in all cirrhotic patients and this correlation was stronger in decompensated cirrhotic patients. In multivariate logistic regression analysis, the independent factors associated with the presence of ascites were high EMP-ap levels and elevated VEGF levels. Conclusions Elevated plasma levels of EMP-ap in addition to high levels of VEGF might be considered as valuable parameters for predicting the occurrence of ascites in cirrhotic patients. PMID:28856256
Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige
2014-03-24
Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.
Subedi, Lalita; Venkatesan, Ramu; Kim, Sun Yeou
2017-07-03
Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration.
Subedi, Lalita
2017-01-01
Allyl isothiocyanate (AITC), present in Wasabia japonica (wasabi), is an aliphatic isothiocyanate derived from the precursor sinigrin, which is a glucosinolate present in vegetables of the Brassica family. Traditionally, it has been used to treat rheumatic arthralgia, blood circulation, and pain. This study focuses on its anti-apoptotic activity through the regulation of lipopolysaccharide (LPS)-induced neuroinflammation. Furthermore, we assessed its neuroprotective efficacy, which it achieves through the upregulation of nerve growth factor (NGF) production. Pretreatment with AITC significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) production in activated microglia, and increased the nerve growth factor (NGF) and neurite outgrowth in neuroblastoma cells. AITC inhibited the nuclear factor (NF-κB-mediated transcription by modulating mitogen activated protein kinase (MAPK) signaling, particularly downregulating c-Jun N-terminal kinase (JNK) phosphorylation, which was followed by a reduction in the TNF-α expression in activated microglia. This promising effect of AITC in controlling JNK/NF-κB/TNF-α cross-linking maintains the Bcl-2 gene family and protects neuroblastoma cells from activated microglia-induced toxicity. These findings provide novel insights into the anti-neuroinflammatory effects of AITC on microglial cells, which may have clinical significance in neurodegeneration. PMID:28671636
Mechanisms of β-Cell Death in Response to Double-Stranded (ds) RNA and Interferon-γ
Scarim, Anna L.; Arnush, Marc; Blair, Libby A.; Concepcion, Josephine; Heitmeier, Monique R.; Scheuner, Donalyn; Kaufman, Randal J.; Ryerse, Jan; Buller, R. Mark; Corbett, John A.
2001-01-01
Viral infection is one environmental factor that has been implicated as a precipitating event that may initiate β-cell damage during the development of diabetes. This study examines the mechanisms by which the viral replicative intermediate, double-stranded (ds) RNA impairs β-cell function and induces β-cell death. The synthetic dsRNA molecule polyinosinic-polycytidylic acid (poly IC) stimulates β-cell DNA damage and apoptosis without impairing islet secretory function. In contrast, the combination of poly IC and interferon (IFN)-γ stimulates DNA damage, apoptosis, and necrosis of islet cells, and this damage is associated with the inhibition of glucose-stimulated insulin secretion. Nitric oxide mediates the inhibitory and destructive actions of poly IC + IFN-γ on insulin secretion and islet cell necrosis. Inhibitors of nitric oxide synthase, aminoguanidine, and NG-monomethyl-l-arginine, attenuate poly IC + IFN-γ-induced DNA damage to levels observed in response to poly IC alone, prevent islet cell necrosis, and prevent the inhibitory actions on glucose-stimulated insulin secretion. NG-monomethyl-l-arginine fails to prevent poly IC- and poly IC + IFN-γ-induced islet cell apoptosis. PKR, the dsRNA-dependent protein kinase that mediates the antiviral response in infected cells, is required for poly IC- and poly IC + IFN-γ-induced islet cell apoptosis, but not nitric oxide-mediated islet cell necrosis. Alone, poly IC fails to stimulate DNA damage in islets isolated from PKR-deficient mice; however, nitric oxide-dependent DNA damage induced by the combination of poly IC + IFN-γ is not attenuated by the genetic absence of PKR. These findings indicate that dsRNA stimulates PKR-dependent islet cell apoptosis, an event that is associated with normal islet secretory function. In contrast, poly IC + IFN-γ-induced inhibition of glucose-stimulated insulin secretion and islet cell necrosis are events that are mediated by islet production of nitric oxide. These findings suggest that at least one IFN-γ-induced antiviral response (islet cell necrosis) is mediated through a PKR-independent pathway. PMID:11438474
Yeh, Feng-Ching; Wu, Su-Hua; Lai, Chi-Yung; Lee, Chi-Ying
2006-05-01
We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.
Chen, Chen; Jiang, Peng; Xue, Haipeng; Peterson, Suzanne E.; Tran, Ha T.; McCann, Anna E.; Parast, Mana M.; Li, Shenglan; Pleasure, David E.; Laurent, Louise C.; Loring, Jeanne F.; Liu, Ying; Deng, Wenbin
2014-01-01
Down’s syndrome (DS), caused by trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Here we use induced pluripotent stem cells (iPSCs) derived from DS patients to identify a role for astrocytes in DS pathogenesis. DS astroglia exhibit higher levels of reactive oxygen species and lower levels of synaptogenic molecules. Astrocyte-conditioned medium collected from DS astroglia causes toxicity to neurons, and fails to promote neuronal ion channel maturation and synapse formation. Transplantation studies show that DS astroglia do not promote neurogenesis of endogenous neural stem cells in vivo. We also observed abnormal gene expression profiles from DS astroglia. Finally, we show that the FDA-approved antibiotic drug, minocycline, partially corrects the pathological phenotypes of DS astroglia by specifically modulating the expression of S100B, GFAP, inducible nitric oxide synthase, and thrombospondins 1 and 2 in DS astroglia. Our studies shed light on the pathogenesis and possible treatment of DS by targeting astrocytes with a clinically available drug. PMID:25034944
Nuriel, Tal; Deeb, Ruba S.; Hajjar, David P.; Gross, Steven S.
2008-01-01
Nitration of tyrosine residues by nitric oxide (NO)-derived species results in the accumulation of 3-nitrotyrosine in proteins, a hallmark of nitrosative stress in cells and tissues. Tyrosine nitration is recognized as one of the multiple signaling modalities used by NO-derived species for the regulation of protein structure and function in health and disease. Various methods have been described for the quantification of protein 3-nitrotyrosine residues, and several strategies have been presented toward the goal of proteome-wide identification of protein tyrosine modification sites. This chapter details a useful protocol for the quantification of 3-nitrotyrosine in cells and tissues using high-pressure liquid chromatography with electrochemical detection. Additionally, this chapter describes a novel biotin-tagging strategy for specific enrichment of 3-nitrotyrosine-containing peptides. Application of this strategy, in conjunction with high-throughput MS/MS-based peptide sequencing, is anticipated to fuel efforts in developing comprehensive inventories of nitrosative stress-induced protein-tyrosine modification sites in cells and tissues. PMID:18554526
James, S. Jill; Rose, Shannon; Melnyk, Stepan; Jernigan, Stefanie; Blossom, Sarah; Pavliv, Oleksandra; Gaylor, David W.
2009-01-01
Research into the metabolic phenotype of autism has been relatively unexplored despite the fact that metabolic abnormalities have been implicated in the pathophysiology of several other neurobehavioral disorders. Plasma biomarkers of oxidative stress have been reported in autistic children; however, intracellular redox status has not yet been evaluated. Lymphoblastoid cells (LCLs) derived from autistic children and unaffected controls were used to assess relative concentrations of reduced glutathione (GSH) and oxidized disulfide glutathione (GSSG) in cell extracts and isolated mitochondria as a measure of intracellular redox capacity. The results indicated that the GSH/GSSG redox ratio was decreased and percentage oxidized glutathione increased in both cytosol and mitochondria in the autism LCLs. Exposure to oxidative stress via the sulfhydryl reagent thimerosal resulted in a greater decrease in the GSH/GSSG ratio and increase in free radical generation in autism compared to control cells. Acute exposure to physiological levels of nitric oxide decreased mitochondrial membrane potential to a greater extent in the autism LCLs, although GSH/GSSG and ATP concentrations were similarly decreased in both cell lines. These results suggest that the autism LCLs exhibit a reduced glutathione reserve capacity in both cytosol and mitochondria that may compromise antioxidant defense and detoxification capacity under prooxidant conditions.—James, S. J., Rose, S., Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O., Gaylor, D. W. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. PMID:19307255
Role of Nitric Oxide Signaling in Endothelial Differentiation of Embryonic Stem Cells
Huang, Ngan F.; Fleissner, Felix; Sun, John
2010-01-01
Signaling pathways that govern embryonic stem cell (ESCs) differentiation are not well characterized. Nitric oxide (NO) is a potent vasodilator that modulates other signaling pathways in part by activating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Because of its importance in endothelial cell (EC) growth in the adult, we hypothesized that NO may play a critical role in EC development. Accordingly, we assessed the role of NO in ESC differentiation into ECs. Murine ESCs differentiated in the presence of NO synthase (NOS) inhibitor NG-nitroarginine methyl ester (l-NAME) for up to 11 days were not significantly different from vehicle-treated cells in EC markers. However, by 14 days, l-NAME-treated cells manifested modest reduction in EC markers CD144, FLK1, and endothelial NOS. ESC-derived ECs generated in the presence of l-NAME exhibited reduced tube-like formation in Matrigel. To understand the discrepancy between early and late effects of l-NAME, we assessed the NOS machinery and observed low mRNA expression of NOS and sGC subunits in ESCs, compared to differentiating cells after 14 days. In response to NO donors or activation of NOS or sGC, cellular cGMP levels were undetectable in undifferentiated ESCs, at low levels on day 7, and robustly increased in day 14 cells. Production of cGMP upon NOS activation at day 14 was inhibited by l-NAME, confirming endogenous NO dependence. Our data suggest that NOS elements are present in ESCs but inactive until later stages of differentiation, during which period NOS inhibition reduces expression of EC markers and impairs angiogenic function. PMID:20064011
Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu
2013-01-01
Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.
Filgueira, Daza de Moraes Vaz Batista; Guterres, Laís Pereira; Votto, Ana Paula de Souza; Vargas, Marcelo Alves; Boyle, Robert Tew; Trindade, Gilma Santos; Nery, Luiz Eduardo Maia
2010-01-01
The purpose of this study was to verify the occurrence of pigment dispersion in retinal pigment cells exposed to UVA and UVB radiation, and to investigate the possible participation of a nitric oxide (NO) pathway. Retinal pigment cells from Neohelice granulata were obtained by cellular dissociation. Cells were analyzed for 30 min in the dark (control) and then exposed to 1.1 and 3.3 J cm(-2) UVA, 0.07 and 0.9 J cm(-2) UVB, 20 nmβ-PDH (pigment dispersing hormone) or 10 μm SIN-1 (NO donor). Histological analyses were performed to verify the UV effect in vivo. Cultured cells were exposed to 250 μm L-NAME (NO synthase blocker) and afterwards were treated with UVA, UVB or β-PDH. The retinal cells in culture displayed significant pigment dispersion in response to UVA, UVB and β-PDH. The same responses to UVA and UVB were observed in vivo. SIN-1 did not induce pigment dispersion in the cell cultures. L-NAME significantly decreased the pigment dispersion induced by UVA and UVB but not by β-PDH. All retinal cells showed an immunopositive reaction against neuronal nitric oxide synthases. Therefore, UVA and UVB radiation are capable of inducing pigment dispersion in retinal pigment cells of Neohelice granulata and this dispersion may be nitric oxide synthase dependent. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.
Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice.
Cui, X; Chopp, M; Zacharek, A; Zhang, C; Roberts, C; Chen, J
2009-03-17
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (P<0.05; n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke.
Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu
2006-11-15
Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less
Endothelial function in pigs transgenic for human complement regulating factor.
Warnecke, Gregor; Severson, Sandra R; Ugurlu, Mustafa M; Taner, Cemal B; Logan, John S; Diamond, Lisa E; Miller, Virginia M; McGregor, Christopher G A
2002-04-15
Expression of human complement regulating factor (hCRF) in porcine organs prevents hyperacute rejection of these organs after xenotransplantation to nonhuman primates. Experiments were designed to characterize endothelial and smooth muscle function of arteries from pigs transgenic for hCD46. Arterial blood from outbred pigs transgenic for hCD46 expression and nontransgenic animals of the same lineage was analyzed for angiotensin-converting enzyme (ACE), C-type natriuretic peptide (CNP), and nitric oxide. Aortic endothelial cells were prepared for measurement of mRNA or activity for nitric oxide synthase (NOS). Rings cut from femoral and pulmonary arteries were suspended in organ chambers for measurement of isometric tension. CNP was significantly greater, ACE was similar, and nitric oxide was significantly less in plasma from transgenic compared with nontransgenic pigs. Neither mRNA nor activity of NOS differed between the groups. Endothelium-dependent relaxations to bradykinin and acetylcholine but not the calcium ionophore were shifted significantly to the left in femoral and pulmonary arteries from hCD46 transgenic pigs compared with nontransgenic pigs. The ACE-inhibitor captopril augmented relaxations similarly in both groups, but NG-monomethyl-L-arginine (L-NMMA) did not inhibit relaxations in rings from transgenic pigs. Data suggest that expression of hCD46 on endothelium of pigs selectively augments endothelium-dependent relaxations to bradykinin by increased release of endothelium-derived factors other than nitric oxide. There does not seem to be any change in activity of ACE or NOS with expression of the human protein. Increased relaxations to bradykinin may be beneficial in lowering vascular resistance when transgenic organs are used for xenotransplantation.
Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.
2013-01-01
Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660
Khemais-Benkhiat, Sonia; Idris-Khodja, Noureddine; Ribeiro, Thais Porto; Silva, Grazielle Caroline; Abbas, Malak; Kheloufi, Marouane; Lee, Jung-Ok; Toti, Florence; Auger, Cyril; Schini-Kerth, Valérie B
2016-12-01
Endothelial senescence, characterized by an irreversible cell cycle arrest, oxidative stress, and downregulation of endothelial nitric oxide synthase (eNOS), has been shown to promote endothelial dysfunction leading to the development of age-related vascular disorders. This study has assessed the possibility that the local angiotensin system promotes endothelial senescence in coronary artery endothelial cells and also the protective effect of the Crataegus extract WS1442, a quantified hawthorn extract. Serial passaging from P1 to P4 (replicative senescence) and treatment of P1 endothelial cells with the eNOS inhibitor L-NAME (premature senescence) promoted acquisition of markers of senescence, enhanced ROS formation, decreased eNOS expression, and upregulation of angiotensin-converting enzyme (ACE) and AT1 receptors. Increased SA-β-gal activity and the upregulation of ACE and AT1R in senescent cells were prevented by antioxidants, an ACE inhibitor, and by an AT1 receptor blocker. WS1442 prevented SA-β-gal activity, the downregulation of eNOS, and oxidative stress in P3 cells. These findings indicate that the impairment of eNOS-derived nitric oxide formation favors a pro-oxidant response triggering the local angiotensin system, which, in turn, promotes endothelial senescence. Such a sequence of events can be effectively inhibited by a standardized polyphenol-rich extract mainly by targeting the oxidative stress. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium
Tso, Colin; Rye, Kerry-Anne; Barter, Philip
2012-01-01
Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904
Zhang, Bo; Yan, Lingdi; Zhou, Peilan; Dong, Zhaoqi; Feng, Siliang; Liu, Keliang; Gong, Zehui
2013-02-01
Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action. Copyright © 2012 Elsevier B.V. All rights reserved.
Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.
Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M
2018-06-14
Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.
Yang, Zhi-Gang; Wen, Xiu-Feng; Li, Yong-Hai; Matsuzaki, Keiichi; Kitanaka, Susumu
2013-01-01
Three new flavonol glycosides, hippophaeosides A-C (1-3), together with 27 known constituents, were isolated from Hippophae rhamnoides L. leaves. Their structures were determined by spectroscopic analyses. Their inhibitory activities on 3T3-L1 preadipocyte differentiation and triglyceride accumulation in maturing adipocytes, and nitric oxide production in RAW264.7 cells were examined.
Photodynamic therapy in Argentina.
Casas, Adriana; Batlle, Alcira
2006-12-01
The use of endogenous Protoporphyrin IX generated through the heme biosynthetic pathway after administration of 5-aminolevulinic acid (ALA) has led to many applications in photodynamic therapy (PDT). In Buenos Aires, Argentina, the Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), reported for the first time, in 1975, porphyrin synthesis from ALA in highly dividing plant tissues. Increased porphyrin synthesis in tumours as well as cell photosensitisation was reported soon after. Our group is also interested in studying the use of new synthetic lipophilic derivatives of ALA as well as ALA delivery in liposomes. We have elucidated the mechanism of ALA transport in mammalian and yeast cells. The interactions between ALA-PDT and nitric oxide were investigated in three murine adenocarcinoma cell lines. In the National University of Río Cuarto, Córdoba, a group is devoted to the synthesis of new porphyrin-derived photosensitisers to study their effects on photoinactivation of bacterial and mammalian cells death by PDT. At the Centre of Electron Microscopy of the Cordoba National University, a prototype of a 630nm noncoherent light source was designed and constructed. Cost of the light source and scarce knowledge of the benefits of PDT by physicians limit the spread of the treatment throughout the country.
Park, Kwan Hee; Yoon, Kyu Hyeong; Yin, Jun; Le, Thi Tam; Ahn, Hye Sin; Yoon, Seong Hye
2017-01-01
Chromatographic isolation of the 80% MeOH extract of Acer ginnala (AG) yielded seven galloyl derivatives: gallic acid (1), ginnalin B (2), acertannin (3), maplexin D (4), maplexin E (5), quercetin-3-O-(2′′-galloyl)-α-L-rhamnopyranoside (6), and kaempferol-3-O-(2′′-galloyl)-α-L-rhamnopyranoside (7). This is the first study to report the isolation of compounds 4 and 5 from AG. Galloyl derivatives 3–7 exhibited potent radical scavenging activities, with 5 and 7 showing particularly strong inhibitory activities against nitric oxide production in lipopolysaccharides- (LPS-) stimulated RAW264.7 cells. In addition, oral administration of AG extract (500 mg/kg b.w.) improved symptoms of hyperglycemia and blunted the increases in serum GOT/GPT levels in a rat model of streptozotocin-induced diabetes. These results suggest that galloyl derivatives (1–7) are antioxidant and anti-inflammatory agents and that AG extract has potential as a functional material or novel herbal medicine for treating diabetes mellitus. PMID:28348624
Modulation of opioid actions by nitric oxide signaling.
Toda, Noboru; Kishioka, Shiroh; Hatano, Yoshio; Toda, Hiroshi
2009-01-01
Nitric oxide (NO) plays pivotal roles in controlling physiological functions, participates in pathophysiological intervention, and is involved in mechanisms underlying beneficial or untoward actions of therapeutic agents. Endogenous nitric oxide is formed by three isoforms of nitric oxide synthase: endothelial, neurogenic and inducible. The former two are constitutively present mainly in the endothelium and nervous system, respectively, and the latter one is induced by lipopolysaccharides or cytokines mainly in mitochondria and glial cells. Constitutively formed nitric oxide modulates the actions of morphine and related analgesics by either enhancing or reducing antinociception. Tolerance to and dependence on morphine or its withdrawal syndrome are likely prevented by nitric oxide synthase inhibition. Information concerning modulation of morphine actions by nitric oxide is undoubtedly useful in establishing new strategies for efficient antinociceptive treatment and for minimizing noxious and unintended reactions.
Huang, Ke-Jing; Wang, Hong; Ma, Ming; Zhang, Xian; Zhang, Hua-Shan
2007-02-01
Although the importance of nitric oxide (NO) as a signalling molecule in many biological processes is becoming increasingly evident, many proposed and potential biological functions of NO still remain unclear. Bioimaging is a good technique to visualize observation of nitric oxide in biological samples. In this report, a fluorescent probe, 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence (TMDCDABODIPY), has been first applied to real-time image NO produced in PC12 cells, Sf9 cells and human vascular endothelial cells at the presence of l-arginine with inverted fluorescence microscope. NO production in the cells is successfully captured and imaged with fine temporal and spatial resolution. The results prove that the probe combined with inverted fluorescence microscope can be developed into a sensitive and selective method for further study of NO release from cells.
Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik
2016-01-01
Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1–5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016
Qiu, Hongming; Orr, F.William; Jensen, Derrek; Wang, Hui Helen; McIntosh, Alan R.; Hasinoff, Brian B.; Nance, Dwight M.; Pylypas, Susan; Qi, Ke; Song, Chun; Muschel, Ruth J.; Al-Mehdi, Abu-Bakr
2003-01-01
Metastatic cancer cells seed the lung via blood vessels. Because endothelial cells generate nitric oxide (NO) in response to shear stress, we postulated that the arrest of cancer cells in the pulmonary microcirculation causes the release of NO in the lung. After intravenous injection of B16F1 melanoma cells, pulmonary NO increased sevenfold throughout 20 minutes and approached basal levels by 4 hours. NO induction was blocked by NG-nitro-l-arginine methyl ester (L-NAME) and was not observed in endothelial nitric oxide synthase (eNOS)-deficient mice. NO production, visualized ex vivo with the fluorescent NO probe diaminofluorescein diacetate, increased rapidly at the site of tumor cell arrest, and continued to increase throughout 20 minutes. Arrested tumor cells underwent apoptosis with apoptotic counts more than threefold over baseline at 8 and 48 hours. Neither the NO signals nor increased apoptosis were seen in eNOS knockout mice or mice pretreated with L-NAME. At 48 hours, 83% of the arrested cells had cleared from the lungs of wild-type mice but only ∼55% of the cells cleared from eNOS-deficient or L-NAME pretreated mice. eNOS knockout and L-NAME-treated mice had twofold to fivefold more metastases than wild-type mice, measured by the number of surface nodules or by histomorphometry. We conclude that tumor cell arrest in the pulmonary microcirculation induces eNOS-dependent NO release by the endothelium adjacent to the arrested tumor cells and that NO is one factor that causes tumor cell apoptosis, clearance from the lung, and inhibition of metastasis. PMID:12547699
Kelley, T J; Drumm, M L
1998-01-01
It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054
Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng
2016-01-01
We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008
Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.
Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R
2017-07-01
The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9
Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert
2007-01-01
The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554
Zhang, Yongping; Jiao, Guangling; Song, Cai; Gu, Shelly; Brown, Richard E.; Zhang, Junzeng; Zhang, Pingcheng; Gagnon, Jacques; Locke, Steven; Stefanova, Roumiana; Pelletier, Claude; Zhang, Yi; Lu, Hongyu
2017-01-01
Increased evidence suggests that marine unsaturated fatty acids (FAs) can protect neurons from amyloid-β (Aβ)-induced neurodegeneration. Nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and gas chromatography (GC) assays showed that the acetone extract 4-2A obtained from shrimp Pandalus borealis industry processing wastes contained 67.19% monounsaturated FAs and 16.84% polyunsaturated FAs. The present study evaluated the anti-oxidative and anti-inflammatory effects of 4-2A in Aβ25–35-insulted differentiated SH-SY5Y cells. Cell viability and cytotoxicity were measured by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Quantitative PCR and Western blotting were used to study the expression of neurotrophins, pro-inflammatory cytokines and apoptosis-related genes. Administration of 20 μM Aβ25–35 significantly reduced SH-SY5Y cell viability, the expression of nerve growth factor (NGF) and its tyrosine kinase TrkA receptor, as well as the level of glutathione, while increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aβ25–35 also increased the Bax/Bcl-2 ratio and Caspase-3 expression. Treatment with 4-2A significantly attenuated the Aβ25–35-induced changes in cell viability, ROS, GSH, NGF, TrkA, TNF-α, the Bax/Bcl-2 ratio and Caspase-3, except for nitric oxide, BDNF and TrKB. In conclusion, 4-2A effectively protected SH-SY5Y cells against Aβ-induced neuronal apoptosis/death by suppressing inflammation and oxidative stress and up-regulating NGF and TrKA expression. PMID:28327516
Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng
2011-07-01
3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo. Copyright © 2010 Elsevier B.V. All rights reserved.
Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N.; Epling- Burnette, Pearlie; Dong, Jingcheng; Djeu, Julie Y.; Wei, Sheng
2011-01-01
3, 5, 7-Trihydroxy-4'-methoxy-8-(3-hydroxy-3- methylbutyl)–flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo. PMID:21244860
Zhu, Z G; Li, H H; Zhang, B R
1997-11-01
It has long been speculated that increased blood flow shear stress might be one of the major factors affecting the patency of grafted saphenous vein in coronary artery bypass operations. The underlying cellular and molecular mechanisms for so-called "shear stress damage" have not yet been well elucidated. Endothelial cells harvested from human saphenous vein were cultured in vitro and then exposed to a high arterial level flow shear stress in the parallel flow chamber. The expression levels of endothelin-1 and constitutional nitric oxide synthase by the endothelial cells were evaluated semiquantitatively at the gene transcription (messenger RNA) level using reverse transcription polymerase chain reaction. After 7 hours of exposure to arterial level shear stress, the expression of constitutional nitric oxide synthase messenger RNA by saphenous vein endothelial cells was significantly reduced, whereas the expression of endothelin-1 messenger RNA was substantially increased. These changes were more predominant at 24 hours. Arterial level flow shear stress could cause important changes in the gene transcription level in saphenous vein endothelial cells within a short period of time. The functional alterations of saphenous vein endothelial cells, as manifested by the increased expression of endothelin-1 and decreased expression of nitric oxide synthase messenger RNA, might play a crucial role in the vein graft remodeling process.
Shi, Yi; Lüscher, Thomas F.; Camici, Giovanni G.
2014-01-01
Background The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Methods and Results Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2 -). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2 - production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. Conclusions The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease. PMID:25247687
Shi, Yi; Lüscher, Thomas F; Camici, Giovanni G
2014-01-01
The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This study was designed to elucidate the regulatory role of the eNOS/NO pathway on p66Shc activation. Incubation of HAEC with oxidized low density lipoprotein (oxLDL) led to phosphorylation of p66Shc at Ser-36, resulting in an enhanced production of superoxide anion (O2-). In the absence of oxLDL, inhibition of eNOS by small interfering RNA or L-NAME, induced p66Shc phosphorylation, suggesting that basal NO production inhibits O2- production. oxLDL-induced, p66Shc-mediated O2- was prevented by eNOS inhibition, suggesting that when cells are stimulated with oxLDL eNOS is a source of reactive oxygen species. Endogenous or exogenous NO donors, prevented p66Shc activation and reduced O2- production. Treatment with tetrahydrobiopterin, an eNOS cofactor, restored eNOS uncoupling, prevented p66Shc activation, and reduced O2- generation. However, late treatment with tetrahydropterin did not yield the same result suggesting that eNOS uncoupling is the primary source of reactive oxygen species. The present study reports that in primary cultured HAEC treated with oxLDL, p66Shc-mediated oxidative stress is derived from eNOS uncoupling. This finding contributes novel information on the mechanisms of p66Shc activation and its dual interaction with eNOS underscoring the importance eNOS uncoupling as a putative antioxidant therapeutical target in endothelial dysfunction as observed in cardiovascular disease.
Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
Cobley, James N; McHardy, Helen; Morton, James P; Nikolaidis, Michalis G; Close, Graeme L
2015-07-01
The exogenous antioxidants vitamin C (ascorbate) and vitamin E (α-tocopherol) often blunt favorable cell signaling responses to exercise, suggesting that redox signaling contributes to exercise adaptations. Current theories posit that this antioxidant paradigm interferes with redox signaling by attenuating exercise-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. The well-documented in vitro antioxidant actions of ascorbate and α-tocopherol and characterization of the type and source of the ROS/RNS produced during exercise theoretically enable identification of redox-dependent mechanisms responsible for the blunting of favorable cell signaling responses to exercise. This review aimed to apply this reasoning to determine how the aforementioned antioxidants might attenuate exercise-induced ROS/RNS production. The principal outcomes of this analysis are (1) neither antioxidant is likely to attenuate nitric oxide signaling either directly (reaction with nitric oxide) or indirectly (reaction with derivatives, e.g., peroxynitrite); (2) neither antioxidant reacts appreciably with hydrogen peroxide, a key effector of redox signaling; (3) ascorbate but not α-tocopherol has the capacity to attenuate exercise-induced superoxide generation; and (4) alternate mechanisms, namely pro-oxidant side reactions and/or reduction of bioactive oxidized macromolecule adducts, are unlikely to interfere with exercise-induced redox signaling. Out of all the possibilities considered, ascorbate-mediated suppression of superoxide generation with attendant implications for hydrogen peroxide signaling is arguably the most cogent explanation for blunting of favorable cell signaling responses to exercise. However, this mechanism is dependent on ascorbate accumulating at sites rich in NADPH oxidases, principal contributors to contraction-mediated superoxide generation, and outcompeting nitric oxide and superoxide dismutase isoforms. The major conclusions of this review are: (1) direct evidence for interference of ascorbate and α-tocopherol with exercise-induced ROS/RNS production is lacking; (2) theoretical analysis reveals that both antioxidants are unlikely to have a major impact on exercise-induced redox signaling; and (3) it is worth considering alternate redox-independent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Nitric oxide averts hypoxia-induced damage during reoxygenation in rat heart.
Rus, Alma; Molina, Francisco; Peinado, M Ángeles; Del Moral, M Luisa
2011-12-01
Nitric oxide (NO), synthesized by the hemoproteins NO synthases (NOS), is known to play important roles in physiological and pathological conditions in the heart, including hypoxia/reoxygenation (H/R). This work investigates the role that endogenous NO plays in the cardiac H/R-induced injury. A follow-up study was conducted in Wistar rats subjected to 30 min of hypoxia, with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analysing parameters of cell, and tissue damage (lipid peroxidation, apoptosis, and protein nitration), as well as in situ NOS activity and NO production (NOx). The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated in all the experimental groups, and consequently, NOx levels fell. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. These results reveal that NOS inhibition exacerbates the peroxidative and apoptotic damage observed before the treatment with L-NAME in the hypoxic heart, pointing to a cardioprotective role of NOS-derived NO against H/R-induced injury. These findings could open the possibility of future studies to design new therapies for H/R-dysfunctions based on NO-pharmacology. Copyright © 2011 Wiley Periodicals, Inc.
Nadjafi, S; Ebrahimi, S-A; Rahbar-Roshandel, N
2015-12-01
This study was carried out to evaluate the effects of noscapine, a benzylisoquinoline alkaloid from opium poppy, on oligodendrocyte during ischemia/reperfusion-induced excitotoxic injury. Changes in intracellular calcium levels due to chemical ischemia and nitric oxide (NO) production during ischemia/reperfusion were evaluated as the hallmarks of ischemia-derived excitotoxic event. OLN-93 cell line (a permanent immature rat oligodendrocyte) was used as a model of oligodendrocyte. 30- or 60-minute-oxygen-glucose deprivation/24 hours reperfusion were used to induce excitotoxicity. MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to evaluate cell viability. Ratiometric fluorescence microscopy using Ca(2+)-sensitive indicator Fura-2/AM was utilized to assess intracellular calcium levels. NO production was evaluated by Griess method. Noscapine (4 μM) significantly attenuated intracellular Ca(2+) elevation (P < 0.001). Also, noscapine significantly decreased NO production during a 30-minute oxygen-glucose deprivation/reperfusion (P < 0.01). The inhibitory effect of noscapine (4 μM) on intracellular Ca(2+) was greater than ionotropic glutamate receptors antagonists. Noscapine is protective against ischemia/reperfusion-induced excitotoxic injury in OLN-93 oligodendrocyte. This protective effect seems to be related to attenuation of intracellular Ca(2+) overload and NO production.
Bastianetto, Stéphane; Zheng, Wen-Hua; Quirion, Rémi
2000-01-01
Animal and epidemiological studies suggest that polyphenol constituents of red wine possess antioxidant activities that favour protection against cardiovascular disease – the so-called. ‘French paradox' – and possibly, central nervous system disorders such as Alzheimer's disease (AD) and ischaemia. In the present study, the potential of three major red wine derived-polyphenols to protect against toxicity induced by the nitric oxide free radical donors sodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1) was examined in cultured rat hippocampal cells. Both co- and post-treatments with either the stilbene resveratrol (5–25 μM) or the flavonoids quercetin (5–25 μM) and (+)-catechin (1–10 μM) were capable of attenuating hippocampal cell death and intracellular reactive oxygen species accumulation produced by SNP (100 μM and 1 mM, respectively). However, among the phenolic compounds tested, only the flavonoids afforded significant protection against 5 mM SIN-1-induced toxicity. The effects of phenolic constituents were shared by Trolox (100 μM), a vitamin E analogue, but not by selective inhibitors of cyclo-oxygenases (COX) and lipoxygenases (LOX). Among the phenolic compounds tested, only quercetin (10 μM) inhibited 100 μM SNP-stimulated protein kinase C (PKC) activation, whereas none of them were able to attenuate nitrite accumulation caused by SNP (100 μM). Taken together, these data suggest that the neuroprotective abilities of quercetin, resveratrol, and (+)-catechin result from their antioxidant properties rather than their purported inhibitory effects on intracellular enzymes such as COX, LOX, or nitric oxide synthase. Quercetin, however, may also act via PKC to produce its protective effects. PMID:11030720
[Role of nitric oxide as a regulator of cell processes in the formation of multiple organ failure].
Riabov, G A; Azisov, Iu M
2001-01-01
Main aspects of functional activity of nitric oxide (NO) are discussed. Physicochemical properties of NO, routes of its formation in man, and mechanism of its effects on physiological processes are described. In human body NO is formed as a result of activity of a specific enzyme, nitric oxide synthase. Three isoforms of the enzyme are known: neuronal, inducible, and endothelial. NO regulates vascular tone, cell adhesion, neurotransmission, bronchodilatation, and platelet aggregation. NO can protect and damage cells under different conditions. The effect of NO can be direct and mediated. Mechanisms of vasodilating effect of NO and of its effect on apoptosis are discussed. The role of NO in regulation of the functional activity of hepatocytes is described. Regulation of NO level in human organism is discussed.
Effect of Thalidomide on Nitric Oxide Production in Lipopolysaccharide-Activated RAW 264.7 Cells
Park, Eunkyue; Levis, WR; Greig, NH; Euisun, Jung; Schuller-Levis, G
2016-01-01
Thalidomide is anti-inflammatory under some conditions, yet has been reported to up regulate TH1 immunity measured by increased IL-2 and gamma interferon. We have assessed the effect of thalidomide and analogues, di- and tri-thiothalidomide, on a lipopolysaccharide (LPS) activated macrophage cell line (RAW 246.7 cells). Our findings showed that nitric oxide (NO) was significantly inhibited by thalidomide (15%) and its analogues (di-thiothalidomide; 15%, tri-thiothalidomide; 32%). The proinflammatory molecules TNF-α and IL-6 were not significantly inhibited. Pretreatment with thalidomide and analogues before activation was not different from simultaneous treatment. Inhibition of inducible nitric oxide synthase (iNOS) may prove to be an important target for the anti-inflammatory and anti-cancer effects of thalidomide and related immunomodulatory drugs (IMIDs). PMID:20514789
Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei
2015-01-01
Four new ambuic acid derivatives (1–4), and four known derivatives (5–8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively. PMID:25989228
Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei
2015-05-19
Four new ambuic acid derivatives (1-4), and four known derivatives (5-8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively.
Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie
2012-05-01
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.
Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.
2017-01-01
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927
Inducible nitric oxide synthase inhibits oxygen consumption in collateral-dependent myocardium.
Chen, Yingjie; Zhang, Ping; Li, Jingxin; Xu, Xin; Bache, Robert J
2014-02-01
Following coronary artery occlusion growth of collateral vessels can provide an effective blood supply to the dependent myocardium. The ischemia, which results in growth of collateral vessels, recruits an inflammatory response with expression of cytokines and growth factors, upregulation of endothelial nitric oxide (NO) synthase (eNOS) in vascular endothelial cells, and expression of inducible nitric oxide synthase (iNOS) in both vessels and cardiac myocytes. Because NO is a potent collateral vessel dilator, this study examined whether NO derived from iNOS or constitutive NOS regulates myocardial blood flow (MBF) in the collateral region. Nonselective NOS inhibition with N(G)-nitro-l-arginine (LNA) caused vasoconstriction with a significant decrease in MBF to the collateral region during exercise. In contrast, the highly selective iNOS inhibitor 1400W caused a 21 ± 5% increase of MBF in the collateral region. This increase in MBF following selective iNOS blockade was proportionate to an increase in myocardial O2 consumption (MVo2). The results suggest that NO produced by iNOS inhibits MVo2 in the collateralized region, so that the increase in MBF following iNOS blockade was the result of metabolic vasodilation secondary to an increase in MVo2. Thus the coordinated expression of iNOS to restrain MVo2 and eNOS to maintain collateral vasodilation act to optimize the O2 supply-demand relationship and protect the collateralized myocardium from ischemia.
Deniz, Erhan; Kandoth, Noufal; Fraix, Aurore; Cardile, Venera; Graziano, Adriana C E; Lo Furno, Debora; Gref, Ruxandra; Raymo, Françisco M; Sortino, Salvatore
2012-12-03
A viable strategy to encapsulate a fluorophore/photochrome dyad and a nitric oxide photodonor within supramolecular assemblies of a cyclodextrin-based polymer in water was developed. The two photoresponsive guests do not interact with each other within their supramolecular container and can be operated in parallel under optical control. Specifically, the dyad permits the reversible switching of fluorescence on a microsecond timescale for hundreds of cycles, and the photodonor enables the irreversible release of nitric oxide. Furthermore, these supramolecular assemblies cross the membrane of human melanoma cancer cells and transport their cargo in the cytosol. The fluorescence of one component allows the visualization of the labeled cells, and its switchable character could, in principle, be used to acquire super-resolution images, while the release of nitric oxide from the other induces significant cell mortality. Thus, our design logic for the construction of biocompatible nanoparticles with dual functionality might evolve into the realization of valuable photoresponsive probes for imaging and therapeutic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vázquez-Torres, Andrés; Bäumler, Andreas
2016-01-01
The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528
Sheng, P; Cerruti, C; Ali, S; Cadet, J L
1996-10-31
METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.
Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives.
Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek
2017-11-20
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold has gained considerable scientific interest in medicinal chemistry owing to its simple chemistry, ease in synthesizing a variety of derivatives and exhibiting a broad range of promising pharmacological activities by modulating several molecular targets. A number of natural and (semi-) synthetic chalcone derivatives have demonstrated admirable anti-inflammatory activity due to their inhibitory potential against various therapeutic targets like Cyclooxygenase (COX), Lipooxygenase (LOX), Interleukins (IL), Prostaglandins (PGs), Nitric Oxide Synthase (NOS), Leukotriene D4 (LTD4), Nuclear Factor-κB (NF- κB), Intracellular Cell Adhesion Molecule-1 (ICAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1), Monocyte Chemoattractant Protein-1 (MCP-1) and TLR4/MD-2, etc. The chalcone scaffold with hydroxyl, methoxyl, carboxyl, prenyl group and/or heterocyclic ring substitution like thiophene/furan/indole showed promising anti-inflammatory activity. In this review, a comprehensive study (from the year 1991 to 2016) on multi-targets of inflammatory interest, related inflammation reactions and their treatment by chalcone-based inhibitors acting on various molecular targets entailed in inflammation, Structure-Activity Relationships (SARs), Mechanism of Actions (MOAs), and patents are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nitric oxide-induced interstrand cross-links in DNA.
Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R
2003-05-01
The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.
Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P
2016-01-01
Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.
Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.
2016-01-01
Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913
The discovery of nitric oxide and its role in vascular biology
Moncada, S; Higgs, E A
2006-01-01
Nitric oxide (NO) is a relative newcomer to pharmacology, as the paper which initiated the field was published only 25 years ago. Nevertheless its impact is such that to date more than 31,000 papers have been published with NO in the title and more than 65,000 refer to it in some way. The identification of NO with endothelium-derived relaxing factor and the discovery of its synthesis from L-arginine led to the realisation that the L-arginine: NO pathway is widespread and plays a variety of physiological roles. These include the maintenance of vascular tone, neurotransmitter function in both the central and peripheral nervous systems, and mediation of cellular defence. In addition, NO interacts with mitochondrial systems to regulate cell respiration and to augment the generation of reactive oxygen species, thus triggering mechanisms of cell survival or death. This review will focus on the role of NO in the cardiovascular system where, in addition to maintaining a vasodilator tone, it inhibits platelet aggregation and adhesion and modulates smooth muscle cell proliferation. NO has been implicated in a number of cardiovascular diseases and virtually every risk factor for these appears to be associated with a reduction in endothelial generation of NO. Reduced basal NO synthesis or action leads to vasoconstriction, elevated blood pressure and thrombus formation. By contrast, overproduction of NO leads to vasodilatation, hypotension, vascular leakage, and disruption of cell metabolism. Appropriate pharmacological or molecular biological manipulation of the generation of NO will doubtless prove beneficial in such conditions. PMID:16402104
Lourenço, Cátia F; Ledo, Ana; Barbosa, Rui M; Laranjinha, João
2017-07-01
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O 2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide ( • NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which • NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of • NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which • NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert • NO bioactivity from regulation to dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Schupp, Peter J; Kohlert-Schupp, Claudia; Whitefield, Susanna; Engemann, Anna; Rohde, Sven; Hemscheidt, Thomas; Pezzuto, John M; Kondratyuk, Tamara P; Park, Eun-Jung; Marler, Laura; Rostama, Bahman; Wright, Anthony D
2009-12-01
The cancer chemopreventive and cytotoxic properties of 50 extracts derived from Twilight Zone (50-150 m) sponges, gorgonians and associated bacteria, together with 15 extracts from shallow water hard corals, as well as 16 fractions derived from the methanol solubles of the Twilight Zone sponge Suberea sp, were assessed in a series of bioassays. These assays included: Induction of quinone reductase (QR), inhibition of TNF-alpha activated nuclear factor kappa B (NFkappaB), inhibition of aromatase, interaction with retinoid X receptor (RXR), inhibition of nitric oxide (NO) synthase, inhibition 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), and inhibition of HL-60 and MCF-7 cell proliferation. The results of these assays showed that at least 10 extracts and five fractions inhibited NFkappaB by greater than 60%, two extracts and two fractions inhibited DPPH by more than 50%, nine extracts and two fractions affected the survival of HL-60 cells, no extracts or fractions affected RXR, three extracts and six fractions affected quinone reductase (QR), three extracts and 12 fractions significantly inhibited aromatase, four extracts and five fractions inhibited nitric oxide synthase, and one extract and no fractions inhibited the growth of MCF-7 cells by more than 95%. These data revealed the tested samples to have many and varied activities, making them, as shown with the extract of the Suberea species, useful starting points for further fractionation and purification. Moreover, the large number of samples demonstrating activity in only one or sometimes two assays accentuates the potential of the Twilight Zone, as a largely unexplored habitat, for the discovery of selectively bioactive compounds. The overall high hit rate in many of the employed assays is considered to be a significant finding in terms of "normal" hit rates associated with similar samples from shallower depths.
Nitric oxide in adaptation to altitude
Laskowski, Daniel; Erzurum, Serpil C.
2012-01-01
This review summarizes published information on levels of nitric oxide gas (NO) in the lungs and NO-derived liquid phase molecules in the acclimatization of visitors newly arrived at altitudes of 2500m or more and adaptation of populations whose ancestors arrived thousands of years ago. Studies of acutely exposed visitors to high altitude focus on the first 24–48 hours with just a few extending to days or weeks. Among healthy visitors, NO levels in the lung, plasma and/or red blood cells fell within three hours, but then returned toward baseline or slightly higher by 48 hours, and increased above baseline by 5 days. Among visitors ill with high-altitude pulmonary edema at the time of the study or in the past, NO levels were lower than their healthy counterparts. As for highland populations, Tibetans had NO levels in the lung, plasma and red blood cells that were at least double and in some cases orders of magnitude greater than other populations regardless of altitude. Red blood cell associated nitrogen oxides were more than two hundred times higher. Other highland populations had generally higher levels although not to the degree showed by Tibetans. Overall, responses of those acclimatized and those presumed to be adapted are in the same direction although the Tibetans have much larger responses. Missing are long-term data on lowlanders at altitude showing how similar they become to the Tibetan phenotype. Also missing are data on Tibetans at low altitude to see the extent to which their phenotype is a response to the immediate environment or expressed constitutively. The mechanisms causing the visitors’ and the Tibetans’ high levels of NO and NO-derived molecules at altitude remain unknown. Limited data suggest processes including hypoxic upregulation of NO synthase gene expression, hemoglobin-NO reactions and genetic variation. Gains in understanding will require integrating appropriate methods and measurement techniques with indicators of adaptive function under hypoxic stress. PMID:22300645
Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto
2015-01-01
Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356
Harizi, Hedi; Gualde, Norbert
2006-08-01
Exposure to pathogens induces antigen-presenting cells (APC) such as macrophages and dendritic cells (DC) to produce various endogenous mediators, including arachidonic acid (AA)-derived eicosanoids, cytokines, and nitric oxide (NO). Many secreted products of activated APC can act by themselves in an autocrine manner and modulate their function. Moreover, the cross-interaction between endogenous bioactive molecules regulates the function of professional APC with important consequences for their ability to activate and sustain immune and inflammatory responses, and to regulate immune homeostasis. Although neglected for many years when compared to their role in cardiovascular homeostasis, cancer and inflammation, the importance of eicosanoids in immunology is becoming more defined. The role of prostaglandin (PG) E2 (PGE2), one of the best known and most well studied eicosanoids, is of particular interest. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. Uniquely among haematopoietic cytokines, interleukin-10 (IL-10) is a pleiotropic molecule that displays both immunostimulatory and immunoregulatory activities. IL-10 has attached much attention because of its anti-inflammatory properties. It modulates expression of cytokines, soluble mediators and cell surface molecules by cells of myeloid origin, particularly macrophages and DC. We previously reported that PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. BM-DC may be considered as an important model to study complex interactions between endogenous mediators, and autocrine IL-10 plays a pivotal role in the crossregulation of AA-derived lipid mediators, cytokines, and NO, with critical effects on immune and inflammatory responses.
Nitric Oxide Synthase and Neuronal NADPH Diaphorase are Identical in Brain and Peripheral Tissues
NASA Astrophysics Data System (ADS)
Dawson, Ted M.; Bredt, David S.; Fotuhi, Majid; Hwang, Paul M.; Snyder, Solomon H.
1991-09-01
NADPH diaphorase staining neurons, uniquely resistant to toxic insults and neurodegenerative disorders, have been colocalized with neurons in the brain and peripheral tissue containing nitric oxide synthase (EC 1.14.23.-), which generates nitric oxide (NO), a recently identified neuronal messenger molecule. In the corpus striatum and cerebral cortex, NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in medium to large aspiny neurons. These same neurons colocalize with somatostatin and neuropeptide Y immunoreactivity. NO synthase immunoreactivity and NADPH diaphorase staining are colocalized in the pedunculopontine nucleus with choline acetyltransferase-containing cells and are also colocalized in amacrine cells of the inner nuclear layer and ganglion cells of the retina, myenteric plexus neurons of the intestine, and ganglion cells of the adrenal medulla. Transfection of human kidney cells with NO synthase cDNA elicits NADPH diaphorase staining. The ratio of NO synthase to NADPH diaphorase staining in the transfected cells is the same as in neurons, indicating that NO synthase fully accounts for observed NADPH staining. The identity of neuronal NO synthase and NADPH diaphorase suggests a role for NO in modulating neurotoxicity.
Regulation of type 17 helper T-cell function by nitric oxide during inflammation
Niedbala, Wanda; Alves-Filho, Jose C.; Fukada, Sandra Y.; Vieira, Silvio Manfredo; Mitani, Akio; Sonego, Fabiane; Mirchandani, Ananda; Nascimento, Daniele C.; Cunha, Fernando Q.; Liew, Foo Y.
2011-01-01
Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2−/−) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants. PMID:21576463
Hege, Marianne; Jung, Finn; Sellmann, Cathrin; Jin, Chengjun; Ziegenhardt, Doreen; Hellerbrand, Claus; Bergheim, Ina
2018-01-01
Results of in vitro and in vivo studies suggest that consumption of beer is less harmful for the liver than consumption of spirits. It also has been suggested that secondary plant compounds derived from hops such as xanthohumol or iso-α-acids may have beneficial effects on the development of liver diseases of various etiologies. The aim of this study was to determine whether iso-α-acids consumed in doses achieved by "normal" beer consumption have beneficial effects on health. Female C57 Bl/6 J mice, pretreated for 4 d with an iso-α-acid-rich extract (∼30% iso-α-acids from hops, 0.75 mg/kg body weight), were fed one bolus of ethanol (6 g/kg body weight intragastric) or an iso-caloric maltodextrin solution. Markers of liver damage, toll-like receptor-4 signaling, and lipid peroxidation were determined. Furthermore, the effect of isohumulone on the lipopolysaccharide-dependent activation of J774 A.1 macrophages, used as a model of Kupffer cells, was determined. In the liver, acute ethanol administration led to a significant accumulation of fat (∼10-fold), which was accompanied by significantly higher inducible nitric oxide synthase protein level, elevated nitric oxide production, and increased plasminogen activator inhibitor 1 protein concentration when compared to controls. In mice pretreated with iso-α-acids, these effects of alcohol were markedly attenuated. Pretreatment of J774 A.1 macrophages with isohumulone significantly attenuated lipopolysaccharide-induced mRNA expression of inducible nitric oxide synthase and interleukin-6 as well as the release of nitric oxide. Taken together, iso-α-acids markedly attenuated the development of acute alcohol-induced damage in mice. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Wenzhu; Zhang, Jingmei; Zhang, Hailei; Cao, Liyan; Zhang, Run; Ye, Zhiqiang; Yuan, Jingli
2013-11-15
A ruthenium(II) complex, [Ru(bpy)2(DA-phen)](PF6)2 (bpy: 2,2'-bipyridine; DA-phen: 5,6-diamino-1,10-phenanthroline), has been developed as a photoluminescent (PL) and electrochemiluminescent (ECL) dual-signaling probe for the highly sensitive and selective detection of nitric oxide (NO) in aqueous and biological samples. Due to the presence of electron transfer process from diamino group to the excited-state of the Ru(II) complex, the PL and ECL intensities of the probe are very weak. After the probe was reacted with NO in physiological pH aqueous media under aerobic conditions to afford its triazole derivative, [Ru(bpy)2(TA-phen)](2+) (TA-phen: 5,6-triazole-1,10-phenanthroline), the electron transfer process was inhibited, so that the PL and ECL efficiency of the Ru(II) complex was remarkably increased. The PL and ECL responses of the probe to NO in physiological pH media are highly sensitive with the detection limits at low micromolar concentration level, and highly specific without the interferences of other reactive oxygen/nitrogen species (ROS/RNS) and metal ions. Moreover, the probe has good cell-membrane permeability, and can be rapidly transferred into living cells for trapping the intracellular NO molecules. These features enabled the probe to be successfully used for the monitoring of the endogenous NO production in living biological cell and tissue samples with PL and ECL dual-modes. Copyright © 2013 Elsevier B.V. All rights reserved.
Nagl, Florian; Schönhofer, Katrin; Seidler, Barbara; Mages, Jörg; Allescher, Hans-Dieter; Schmid, Roland M; Schneider, Günter; Saur, Dieter
2009-11-01
Neuronal nitric oxide synthase (nNOS)-derived nitric oxide (NO) acts as a neurotransmitter and intracellular signaling molecule in the central and peripheral nervous system. NO regulates multiple processes like neuronal development, plasticity, and differentiation and is a mediator of neurotoxicity. The nNOS gene is highly complex with 12 alternative first exons, exon 1a-1l, transcribed from distinct promoters, leading to nNOS variants with different 5'-untranslated regions. Transcriptional control of the nNOS gene is not understood in detail. To investigate regulation of nNOS gene expression by retinoic acid (RA), we used the human neuroblastoma cell line TGW-nu-I as a model system. We show that RA induces nNOS transcription in a protein synthesis-dependent fashion. We identify the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the atypical orphan nuclear receptor DAX1 (NR0B1) as critical mediators involved in RA-induced nNOS gene transcription. RA treatment increases DAX1 expression via PI3K/Akt signaling. Upregulation of DAX1 expression in turn induces nNOS transcription in response to RA. These results identify nNOS as a target gene of a novel RA/PI3K/Akt/DAX1-dependent pathway in human neuroblastoma cells and stress the functional importance of the transcriptional regulator DAX1 for nNOS gene expression in response to RA treatment.
Tomato ( Lycopersicon esculentum ) seeds: new flavonols and cytotoxic effect.
Ferreres, Federico; Taveira, Marcos; Pereira, David M; Valentão, Patrícia; Andrade, Paula B
2010-03-10
In this study, seeds of Lycopersicon esculentum Mill. were analyzed by HPLC/UV-PAD/MS(n)-ESI. Fourteen flavonoids were identified, including quercetin, kaempferol, and isorhamnetin derivatives, with 13 of them being reported for the first time in tomato seeds. The major identified compounds were quercetin-3-O-sophoroside, kaempferol-3-O-sophoroside, and isorhamnetin-3-O-sophoroside. A significant cell proliferation inhibition (>80%), against rat basophile leukemia (RBL-2H3) cell line, was observed with this extract (IC(50) = 5980 microg/mL). For acetylcholinesterase inhibitory activity, a concentration-dependent effect was verified (IC(20) = 2400 microg/mL). The same behavior was noted regarding antioxidant capacity, evaluated against DPPH (IC(10) = 284 microg/mL), nitric oxide (IC(25) = 396 microg/L), and superoxide radicals (IC(25) = 3 microg/mL).
Caffeine's Vascular Mechanisms of Action
Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica
2010-01-01
Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209
Trulsson, Lena M; Gasslander, Thomas; Sundqvist, Tommy; Svanvik, Joar
2002-06-15
Nitric oxide (NO) is formed by different cell types in the pancreas. In this study, inhibition of endogenous nitric oxide by N(omega)-nitro-L-arginine (L-NNA) reduced the urinary excretion of NO(2)/NO(3) and raised serum L-arginine and the NO donator S-nitroso-N-acetylpenicillamine (SNAP) increased the urinary excretion of NO(2)/NO(3). The peptide cholecystokinin-8 (CCK-8) has a strong influence on exocrine pancreatic proliferation. Rat pancreas was excised and studied with regard to tissue weight, protein and DNA contents after 3 days of treatment with saline, L-NNA or SNAP given separately or combined with CCK-8. Further, proliferation of different pancreatic cells was studied with [3H]-thymidine incorporation and apoptotic activity was studied by analysing caspase-3 activity and histone-associated DNA fragments. The effects of L-NNA indicate that endogenous nitric oxide formation has a tonic inhibition on apoptosis in the pancreas during both basal condition and growth stimulation by CCK-8. In CCK-induced hyperplasia, NO inhibits the proliferation of acinar cells but stimulates ductal cells. Endogenous NO may regulate the balance between proliferation and apoptosis and in a situation of growth stimulation by CCK-8, it has a tonic inhibition on both mitogenesis and apoptosis thus slowing down the acinar cell turnover in the pancreas.
Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B.
2013-01-01
Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role. PMID:23792682
The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.
Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote
2017-07-01
Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carvalho, Cristiano Marcelo Espinola; Silverio, Jaline Coutinho; da Silva, Andrea Alice; Pereira, Isabela Resende; Coelho, Janice Mery Chicarino; Britto, Constança Carvalho; Moreira, Otacílio Cruz; Marchevsky, Renato Sergio; Xavier, Sergio Salles; Gazzinelli, Ricardo Tostes; da Glória Bonecini-Almeida, Maria; Lannes-Vieira, Joseli
2012-01-01
Background The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO) levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2) is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2 −/−) mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. Methodology Rhesus monkeys and C57BL/6 and Nos2 −/− mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG), echocardiogram (ECHO), creatine kinase heart isoenzyme (CK-MB) activity levels in serum and connexin 43 (Cx43) expression in the cardiac tissue. Results Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC). Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2 −/− mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. Conclusion T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute to CCC severity, mainly disturbing of the molecular pathway involved in electrical synchrony. These findings open a new avenue for therapeutic tools in Chagas' heart disease. PMID:22590660
Maccallini, Cristina; Pietrangelo, Tiziana; Mancinelli, Rosa; Amoroso, Rosa; Bettoni, Giancarlo; Fulle, Stefania
2008-05-01
The excitation-contraction coupling in skeletal muscle is modulated by nitric oxide via redox status modification of ryanodine receptor on sarcoplasmic reticulum during events that lead to muscle contraction. We have synthesized a derivative of antilipidemic drug, gemfibrozil, in which a NO-donor furoxan moiety is joined to the fibrate by an ester linkage. Aim of the present study was to determine if the NO released from the above compound is capable of influencing the NO-sensible E-C coupling steps in skeletal muscle and if this effect could be potentially utilised for physiopathological studies and pharmaceutical applications. To obtain this goal we decided to study some of the excitation-contraction mechanisms in the presence of NO-releasing derivative of gemfibrozil in skeletal muscle C2C12 cell line.
Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness.
Hjoberg, Josephine; Shore, Stephanie; Kobzik, Lester; Okinaga, Shoji; Hallock, Arlene; Vallone, Joseph; Subramaniam, Venkat; De Sanctis, George T; Elias, Jack A; Drazen, Jeffrey M; Silverman, Eric S
2004-07-01
Individuals with asthma have increased levels of nitric oxide in their exhaled air. To explore its role, we have developed a regulatable transgenic mouse capable of overexpressing inducible nitric oxide synthase in a lung-specific fashion. The CC10-rtTA-NOS-2 mouse contains two transgenes, a reverse tetracycline transactivator under the control of the Clara cell protein promoter and the mouse nitric oxide synthase-2 (NOS-2) coding region under control of a tetracycline operator. Addition of doxycycline to the drinking water of CC10-rtTA-NOS-2 mice causes an increase in nitric oxide synthase-2 that is largely confined to the airway epithelium. The fraction of expired nitric oxide increases over the first 24 h from approximately 10 parts per billion to a plateau of approximately 20 parts per billion. There were no obvious differences between CC10-rtTA-NOS-2 mice, with or without doxycycline, and wild-type mice in lung histology, bronchoalveolar protein, total cell count, or count differentials. However, airway resistance was lower in CC10-rtTA-NOS-2 mice with doxycycline than in CC10-rtTA-NOS-2 mice without doxycycline or wild-type mice with doxycycline. Moreover, doxycycline-treated CC10-rtTA-NOS-2 mice were hyporesponsive to methacholine compared with other groups. These data suggest that increased nitric oxide in the airways has no proinflammatory effects per se and may have beneficial effects on pulmonary function.
Activity of nitric oxide-generating compounds against encephalomyocarditis virus.
Guillemard, E; Geniteau-Legendre, M; Kergot, R; Lemaire, G; Petit, J F; Labarre, C; Quero, A M
1996-01-01
Nitric oxide (NO) generated by two NO donors (sodium nitroprusside or S-nitroso-L-glutathione) was shown to exert a dose-dependent inhibition of encephalomyocarditis virus growth in L-929 cells. This activity was not due to the cytotoxic or direct virucidal effects of NO donors. L-929 cells were shown to produce NO endogenously, but this low level of production did not counter encephalomyocarditis virus replication. PMID:8849231
Rhenals, Maricela Viola; Strasberg-Rieber, Mary; Rieber, Manuel
2010-02-25
In contrast to other metal-dithiocarbamate [DEDTC] complexes, the copper-DEDTC complex is highly cytotoxic, inducing oxidative stress, preferentially in tumor cells. Because nitric oxide (NO) forms adducts with Cu[DEDTC](2), we investigated whether NO donors like S-nitroso-N-acetyl penicillamine (SNAP) or sodium nitroprusside (SNP), and nitrite, a NO decomposition product, modulate Cu[DEDTC](2) cytotoxicity against human tumor cells. We show that apoptosis-associated PARP cleavage and inducible nitric oxide synthase (iNOS) down-regulation induced by nanomolar Cu[DEDTC](2), are counteracted by 50 muM SNAP, SNP, or CoCl(2), an inducer of hypoxia and NO signaling. Nitrite was stochiometrically effective in antagonizing Cu[DEDTC](2) cytotoxicity and inducing shifts in the absorption spectrum of the binary complex in the 280 and 450 nm regions. Subtoxic concentrations of Cu[DEDTC](2) became lethal when tumor cells were pretreated with c-PTIO, a membrane-impermeable scavenger for extracellular NO. Our results suggest that: (a) reactive oxygen species induced by Cu[DEDTC](2) are scavenged by nitrite released from NO, (b) the extent of lethality of Cu[DEDTC](2) is dependent on the reciprocal formation of an inactive ternary Cu[DEDTC](2)NO copper-nitrosyl complex.
Montoya, Tatiana; Aparicio-Soto, Marina; Castejón, María Luisa; Rosillo, María Ángeles; Sánchez-Hidalgo, Marina; Begines, Paloma; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina
2018-03-18
The present study was designed to investigate the anti-inflammatory effects of a new derivative of hydroxytyrosol (HTy), peracetylated hydroxytyrosol (Per-HTy), compared with its parent, HTy, on lipopolysaccharide (LPS)-stimulated murine macrophages as well as potential signaling pathways involved. In particular, we attempted to characterize the role of the inflammasome underlying Per-HTy possible anti-inflammatory effects. Isolated murine peritoneal macrophages were treated with HTy or its derivative in the presence or absence of LPS (5 μg/ml) for 18 h. Cell viability was determined using sulforhodamine B (SRB) assay. Nitric oxide (NO) production was analyzed by Griess method. Production of pro-inflammatory cytokines was evaluated by enzyme-linked immunosorbent assay (ELISA) and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway (STAT3), haem oxigenase 1 (HO1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and mitogen-activated protein kinases (MAPKs) activation was determined by Western blot. Per-HTy significantly reduced the levels of NO and pro-inflammatory cytokines as well as both COX-2 and iNOS expressions. Furthermore, Per-HTy treatment inhibited STAT3 and increased Nrf2 and HO1 protein levels in murine macrophages exposed to LPS. In addition, Per-HTy anti-inflammatory activity was related with an inhibition of non-canonical nucleotide binding domain (NOD)-like receptor (NLRP3) inflammasome pathways by decreasing pro-inflammatory interleukin (IL)-1β and IL-18 cytokine levels as consequence of regulation of cleaved caspase-11 enzyme. These results support that this new HTy derivative may offer a new promising nutraceutical therapeutic strategy in the management of inflammatory-related pathologies. Copyright © 2018. Published by Elsevier Inc.
Neal, April P.; Stansfield, Kirstie H.; Guilarte, Tomás R.
2012-01-01
We have previously reported that lead (Pb2+) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-D-aspartate receptor (NMDAR). NMDAR inhibition by Pb2+ during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb2+ on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb2+ exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb2+ exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb2+ exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb2+-exposed neurons. PMID:22265330
Tiscornia, Adriana; Cairoli, Ernesto; Marquez, Maria; Denicola, Ana; Pritsch, Otto; Cayota, Alfonso
2009-03-15
Nitric oxide ((*)NO) has been implicated in multiple physiological and pathological immune processes. Different methods have been developed to detect and quantify (*)NO, where one of the principal difficulties are the accurately detection in cellular system with low levels of (*)NO production. The choice of the (*)NO detection method to be used depends on the characteristics of the experimental system and the levels of (*)NO production which depend on either the organism source of samples or the experimental conditions. Recently, high sensitive methods to detect and image (*)NO have been reported using 4,5-diaminofluorescein-based fluorescent probes (DAF) and its derivate 4,5-diaminofluorescein diacetate (DAF-2 DA). This work was aimed to adapt and optimize the use of DAF probes to detect and quantify the (*)NO production in systems of high, moderate and low out-put production, especially in human PBMC and their subpopulations. Here, we report an original experimental design which is useful to detect and estimate (*)NO fluxes in human PBMC and their subpopulations with high specificity and sensitivity.
Hochheiser, Julia; Haase, Tobias; Busker, Mareike; Sömmer, Anne; Kreienkamp, Hans-Jürgen; Behrends, Sönke
2016-12-15
Nitric oxide-sensitive guanylyl cyclase is a heterodimeric enzyme consisting of an α and a β subunit. Two different α subunits (α 1 and α 2 ) give rise to two heterodimeric enzymes α 1 /β 1 and α 2 /β 1 . Both coexist in a wide range of tissues including blood vessels and the lung, but expression of the α 2 /β 1 form is generally much lower and approaches levels similar to the α 1 /β 1 form in the brain only. In the present paper, we show that the α 2 /β 1 form interacts with Lin7a in mouse brain synaptosomes based on co-precipitation analysis. In HEK293 cells, we found that the overexpressed α 2 /β 1 form, but not the α 1 /β 1 form is directed to calcium-insensitive cell-cell contacts. The isolated PDZ binding motif of an amino-terminally truncated α 2 subunit was sufficient for cell-cell contact localization. For the full length α 2 subunit with the PDZ binding motif this was only the case in the heterodimer configuration with the β 1 subunit, but not as isolated α 2 subunit. We conclude that the PDZ binding motif of the α 2 subunit is only accessible in the heterodimer conformation of the mature nitric oxide-sensitive enzyme. Interaction with Lin7a, a small scaffold protein important for synaptic function and cell polarity, can direct this complex to nectin based cell-cell contacts via MPP3 in HEK293 cells. We conclude that heterodimerization is a prerequisite for further protein-protein interactions that direct the α 2 /β 1 form to strategic sites of the cell membrane with adjacent neighbouring cells. Drugs increasing the nitric oxide-sensitivity of this specific form may be particularly effective. Copyright © 2016 Elsevier Inc. All rights reserved.
Cui, Jiasen; Zhuang, Shunjiu; Qi, Shaohong; Li, Li; Zhou, Junwen; Zhang, Wan; Zhao, Yun; Qi, Ning; Yin, Yangjun; Huang, Lu
2017-11-01
Angiotensin II (Ang II) has been reported as key in inducing endothelial cell injury, and endothelial cells may produce nitric oxide (NO) to protect themselves. However, the underlying mechanism remains elusive. Human umbilical vein endothelial cells (HUVECs) were divided into five treatment groups as follows: Normal control, Ang II, Ang II + sodium hydrosulfide [NaHS; hydrogen sulfide (H2S) donor], Ang II + Akt inhibitors + NaHS, and Ang II + endothelial nitric oxide synthases (eNOS) inhibitors + NaHS. Subsequently, cell viability, apoptosis, migration, proliferation and adhesion ability were determined. In addition, tubular structure formation was observed, and the NO and phosphorylation levels of Akt and eNOS were evaluated. Compared with the normal control group, Ang II treatment reduced the viability of HUVECs and increased the level of cell apoptosis (P<0.05). Furthermore, Ang II treatment inhibited the phosphorylation level of eNOS and Akt, as well as the generation of NO (P<0.05). H2S reversed the above‑mentioned effects significantly and increased cell proliferation, adhesion ability and promoted tubular structure formation (P<0.05); however, H2S did not reverse the impact of eNOS and Akt phosphorylation levels after being processed with Akt and eNOS inhibitors, which indicates that H2S is capable of protecting HUVECs via the eNOS/Akt signaling pathway (P<0.05). Thus, H2S stimulates the production of NO and protects HUVECs via inducing the Akt/eNOS signaling pathway.
Park, Min Young; Jeong, Yeon Jin; Kang, Gi Chang; Kim, Mi-Hwa; Kim, Sun Hun; Chung, Hyun-Ju
2014-01-01
Nitric oxide (NO) is recognized as a mediator and regulator of inflammatory responses. NO is produced by nitric oxide synthase (NOS), and NOS is abundantly expressed in the human dental pulp cells (HDPCs). NO produced by NOS can be cytotoxic at higher concentrations to HDPCs. However, the mechanism by which this cytotoxic pathway is activated in cells exposed to NO is not known. The purpose of this study was to elucidate the NO-induced cytotoxic mechanism in HDPCs. Sodium nitroprusside (SNP), a NO donor, reduced the viability of HDPCs in a dose- and time-dependent manner. We investigated the in vitro effects of nitric oxide on apoptosis of cultured HDPCs. Cells showed typical apoptotic morphology after exposure to SNP. Besides, the number of Annexin V positive cells was increased among the SNP-treated HDPCs. SNP enhanced the production of reactive oxygen species (ROS), and N-acetylcysteine (NAC) ameliorated the decrement of cell viability induced by SNP. However, a soluble guanylate cyclase inhibitor (ODQ) did not inhibited the decrement of cell viability induced by SNP. SNP increased cytochrome c release from the mitochondria to the cytosol and the ratio of Bax/Bcl-2 expression levels. Moreover, SNP-treated HDPCs elevated activities of caspase-3 and caspase-9. While pretreatment with inhibitors of caspase (z-VAD-fmk, z-DEVD-fmk) reversed the NO-induced apoptosis of HDPCs. From these results, it can be suggested that NO induces apoptosis of HDPCs through the mitochondria-dependent pathway mediated by ROS and Bcl-2 family, but not by the cyclic GMP pathway. PMID:24634593
Yi, Hongjie; Huang, Guoyang; Zhang, Kun; Liu, Shulin; Xu, Weigang
2018-05-01
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J
2007-09-01
This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.
Opländer, Christian; Volkmar, Christine M; Paunel-Görgülü, Adnana; Fritsch, Thomas; van Faassen, Ernst E; Mürtz, Manfred; Grieb, Gerrit; Bozkurt, Ahmet; Hemmrich, Karsten; Windolf, Joachim; Suschek, Christoph V
2012-02-15
Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
Study of the nitric oxide system in the rat cerebellum during aging.
Blanco, Santos; Molina, Francisco J; Castro, Lourdes; Del Moral, Maria L; Hernandez, Raquel; Jimenez, Ana; Rus, Alma; Martinez-Lara, Esther; Siles, Eva; Peinado, Maria A
2010-06-24
The cerebellum is the neural structure with the highest levels of nitric oxide, a neurotransmitter that has been proposed to play a key role in the brain aging, although knowledge concerning its contribution to cerebellar senescence is still unclear, due mainly to absence of integrative studies that jointly evaluate the main factors involved in its cell production and function. Consequently, in the present study, we investigate the expression, location, and activity of nitric oxide synthase isoenzymes; the protein nitration; and the production of nitric oxide in the cerebellum of adult and old rats. Our results show no variation in the expression of nitric oxide synthase isoforms with aging, although, we have detected some changes in the cellular distribution pattern of the inducible isoform particularly in the cerebellar nuclei. There is also an increase in nitric oxide synthase activity, as well as greater protein-nitration levels, and maintenance of nitrogen oxides (NOx) levels in the senescent cerebellum. The nitric oxide/nitric oxide synthases system suffers from a number of changes, mainly in the inducible nitric oxide synthase distribution and in overall nitric oxide synthases activity in the senescent cerebellum, which result in an increase of the protein nitration. These changes might be related to the oxidative damage detected with aging in the cerebellum.
Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.
Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu
2017-01-05
In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Park, Jeongyeon; Lee, Hyunyoung; Lee, Hae June; Kim, Gyoo Cheon; Kim, Do Young; Han, Sungbum; Song, Kiwon
2016-01-01
Non-thermal atmospheric pressure plasma (NTAPP) is defined as a partially ionized gas with electrically charged particles at atmospheric pressure. Our study showed that exposure to NTAPP generated in a helium-based dielectric barrier discharge (DBD) device increased the proliferation of adipose tissue-derived stem cells (ASCs) by 1.57-fold on an average, compared with untreated cells at 72 h after initial NTAPP exposure. NTAPP-exposed ASCs maintained their stemness, capability to differentiate into adipocytes but did not show cellular senescence. Therefore, we suggested that NTAPP can be used to increase the proliferation of ASCs without affecting their stem cell properties. When ASCs were exposed to NTAPP in the presence of a nitric oxide (NO) scavenger, the proliferation-enhancing effect of NTAPP was not obvious. Meanwhile, the proliferation of NTAPP-exposed ASCs was not much changed in the presence of scavengers for reactive oxygen species (ROS). Also, Akt, ERK1/2, and NF-κB were activated in ASCs after NTAPP exposure. These results demonstrated that NO rather than ROS is responsible for the enhanced proliferation of ASCs following NTAPP exposure. Taken together, this study suggests that NTAPP would be an efficient tool for use in the medical application of ASCs both in vitro and in vivo. PMID:27991548
Immenschuh, S; Tan, M; Ramadori, G
1999-01-01
Heme oxygenase catalyzes the rate-limiting enzymatic step of heme degradation. The inducible isoform of heme oxygenase, heme oxygenase-1, is expressed at a low level in most tissues and is upregulated by its substrate heme and various stress stimuli. Kupffer cells which represent the largest population of the body's tissue macrophages serve physiological functions in the defense against various pathogens such as lipopolysaccharide. The goal of the present study was to investigate the heme oxygenase-1 gene expression in Kupffer cells of rat liver and in isolated Kupffer cell cultures during treatment with lipopolysaccharide. Cryostat sections of normal rat liver were investigated by immunofluorescence double-staining using specific antibodies for rat heme oxygenase-1 and ED2. Isolation and cell culture of Kupffer cells and primary hepatocytes from rat liver, as well as Northern and Western blot analysis, were performed with standard protocols. Heme oxygenase-1 protein was highly expressed in large sinusoidal cells of normal rat liver, which were identified as Kupffer cells by staining with the macrophage surface marker ED2. By contrast, no expression of heme oxygenase-1 was detected in liver parenchymal cells. High expression of heme oxygenase-1 was also found in isolated Kupffer cells in culture by immunocytochemical staining as well as by Western and Northern blot analysis. After treatment of Kupffer cells cultures with lipopolysaccharide, heme oxygenase-1 was upregulated on the protein and mRNA level in a time- and dose-dependent manner. This increase in heme oxygenase-1 expression by lipopolysaccharide was prevented by the nitric oxide inhibitor N(G)-monomethyl-L-arginine which was reversed by an excess of L-arginine. Various nitric oxide donors up-regulated heme oxygenase-1 mRNA expression in Kupffer cells. The lipopolysaccharide-dependent upregulation of the heme oxygenase-1 gene which is highly expressed in Kupffer cells is mediated by a nitric oxide-dependent mechanism.
Wang, Myeong-Hyeon; Jeong, Su-Hyeon; Guo, Huifang; Park, Jun-Beom
2016-01-01
Angelicae Dahuricae Radix has been used for the treatment of headaches, rhinitis, and colds in traditional medicine. Methanol, ethanol, and water extracts of Angelicae Dahuricae Radix were collected. A statistically significant reduction in the cellular viability of the mouse leukemic monocyte macrophage cell line was noted after treatment with water extracts of Angelicae Dahuricae Radix. Stimulation with lipopolysaccharides (LPS) for 24 h led to a robust increase in nitric oxide production, but Angelicae Dahuricae Radix at 400 μg/mL concentration significantly suppressed nitric oxide produced by the LPS-stimulated RAW 264.7 cells in 70% ethanol, absolute ethanol, 70% methanol, absolute methanol, and boiling water groups (P < 0.05). Pretreatment with absolute ethanol extract of Angelicae Dahuricae Radix suppressed the LPS-stimulated inducible nitric oxide synthase, interleukin-1β, and cycloxygenase-2 expression. Angelicae Dahuricae Radix showed significant cytotoxic effects on the human adenocarcinoma cell line and keratin-forming cell line. (J Oral Sci 58, 125-131, 2016).
Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P
1999-10-01
Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.
Nitric oxide synthesis in patients with advanced HIV infection.
Evans, T G; Rasmussen, K; Wiebke, G; Hibbs, J B
1994-01-01
The discovery that humans produce nitric oxide and that this molecule plays an important role in cell communication, host resistance to infection, and perhaps in host defence to neoplastic disease, has created much interest in further research on its function in the body. A cytokine-inducible high output L-arginine/nitric oxide pathway was recently detected in patients with advanced malignancy treated with IL-2. The production of nitric oxide was thus examined in patients with advanced HIV infection and in intensive care unit control patients. Extrinsic nitrate and nitrite consumption were carefully controlled in the diet or through the use of total parenteral nutrition. Seven of eight HIV+ patients were placed into positive nitrogen balance. Nitric oxide synthesis was found to be within the normal human range. In contrast, nitric oxide synthesis in extremely ill intensive care unit patients was low normal to depressed. PMID:8033424
Yarmolyuk, Yaroslav R; Vesper, Benjamin J; Paradise, William A; Elseth, Kim M; Tarjan, Gabor; Haines, G Kenneth; Radosevich, James A
2011-02-01
The free radical nitric oxide (NO) is over-expressed in many tumors, including head and neck squamous cell carcinomas (HNSCC); however, the role NO plays in tumor pathophysiology is still not well understood. We, herein, report the development of an in vitro model system which can be used to probe the role of NO in the carcinogenesis of HNSCC. Five HNSCC cell lines were adapted to a high NO (HNO) environment by gradually introducing increasing concentrations of DETA-NONOate, a nitrogen-based NO donor, to cell media. The adaptation process was carried out until a sufficiently high enough donor concentration was reached which enabled the HNO cells to survive and grow, but which was lethal to the original, unadapted ("parent") cells. The adapted HNO cells exhibited analogous morphology to the parent cells, but grew better than their corresponding parent cells in normal media, on soft agar, and in the presence of hydrogen peroxide, an oxygen-based free radical donor. These results indicate that the HNO cell lines are unique and possess biologically different properties than the parent cell lines from which they originated. The HNO/parent cell lines developed herein may be used as a model system to better understand the role NO plays in HNSCC carcinogenesis.
Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K
2017-10-01
Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Heng; Verovski, Valeri N.; Leonard, Wim
2013-03-01
Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assessmore » hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.« less
Effect of thalidomide on nitric oxide production in lipopolysaccharide-activated RAW 264.7 cells.
Park, Eunkyue; Levis, William R; Greig, Nigel; Jung, Euisun; Schuller-Levis, Georgia
2010-04-01
Thalidomide is anti-inflammatory under some conditions, yet has been reported to up-regulate Th1 (T helper 1) immunity measured by increased IL-2 (Interleukin-2) and gamma interferon. The authors have assessed the effect of thalidomide and analogues, di- and tri-thiothalidomide, on a lipopolysaccharide (LPS) activated macrophage cell line (RAW 246.7 cells). The authors' findings showed that nitric oxide (NO) was significantly inhibited by thalidomide (15%) and its analogues (di-thiothalidomide; 15%, tri-thiothalidomide; 32%). The proinflammatory molecules TNF-alpha (tumor necrosis factor-alpha) and IL-6 were not significantly inhibited. Pretreatment with thalidomide and analogues before activation was not different from simultaneous treatment. Inhibition of inducible nitric oxide synthase (iNOS) may prove to be an important target for the anti-inflammatory and anti-cancer effects of thalidomide and related immunomodulatory drugs (IMiDs).
In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases
NASA Astrophysics Data System (ADS)
Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard
1993-04-01
The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.
Haddad, George; Belosevic, Miodrag
2009-02-01
We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.
Nitric oxide synthase expression in foetal placentas of cows with retained fetal membranes.
Shixin, Fu; Li, Zhang; Chunhai, Luo; Chuang, Xu; Cheng, Xia; Zhe, Wang; Xiaobing, Li
2011-10-01
The objectives of this study were to investigate relationship of retained fetal membranes (RFM) to expression of NOS and NOS mRNA and to analyze pathohistological changes and the distribution of nitric oxide synthase (NOS) in foetal placentas of cows with RFM. Twenty cows were assigned to two groups, a control group (no retained fetal membranes, NRFM, n = 10) and a diseased group (RFM, n = 10). The endpoint method was used to detect the nitric oxide (NO) content and nitric oxide synthase (NOS) activity in foetal placental tissue fluid and the fluorescent quantitation PCR was used to measure the expression of NOS mRNA. Immunohistochemistry and hematoxylin-eosin staining were used to observe pathohistological changes. Tissue from RFM cows showed fibronecrosis of the chorionic villi, and a decreased number of trophoblastic cells. The majority of trophoblastic cells displayed vacuolar degeneration. Interstitium vessels were distended and congested. Expression of induced nitric oxide synthase (iNOS) protein and iNOS mRNA was significantly higher (P < 0.05) in the cytoplasm of placental villus trophoblastic cells in the RFM group. But expression of endothelial nitric oxide synthase (eNOS) protein and eNOS mRNA was significantly lower (P<0.05) in the RFM group. The NO content and NOS activity of cows with RFM were significantly higher (P < 0.05). A high expression of iNOS protein and iNOS mRNA in the cow foetal placenta could produce high content of NO, which might inhibit uterine contraction. So over expression of iNOS protein and iNOS mRNA might be an important agent of retained fetal membranes in cows, and it may be a potential diagnosis biomarker. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neuropeptide Y stimulates retinal neural cell proliferation--involvement of nitric oxide.
Alvaro, Ana Rita; Martins, João; Araújo, Inês M; Rosmaninho-Salgado, Joana; Ambrósio, António F; Cavadas, Cláudia
2008-06-01
Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y(1), Y(2), Y(4) and Y(5) receptors [Alvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10-1000 nM) stimulated cell proliferation through the activation of NPY Y(1), Y(2) and Y(5) receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU(+)/nestin(+) cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by L-nitroarginine-methyl-esther (L-NAME; 500 microM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 microM), a soluble guanylyl cyclase inhibitor or U0126 (1 microM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide-cyclic GMP and ERK 1/2 pathways.
Monoclonal L-citrulline immunostaining reveals nitric oxide-producing vestibular neurons
NASA Technical Reports Server (NTRS)
Holstein, G. R.; Friedrich, V. L. Jr; Martinelli, G. P.
2001-01-01
Nitric oxide is an unstable free radical that serves as a novel messenger molecule in the central nervous system (CNS). In order to understand the interplay between classic and novel chemical communication systems in vestibular pathways, the staining obtained using a monoclonal antibody directed against L-citrulline was compared with the labeling observed using more traditional markers for the presence of nitric oxide. Brainstem tissue from adult rats was processed for immunocytochemistry employing a monoclonal antibody directed against L-citrulline, a polyclonal antiserum against neuronal nitric oxide synthase, and/or NADPH-diaphorase histochemistry. Our findings demonstrate that L-citrulline can be fixed in situ by vascular perfusion, and can be visualized in fixed CNS tissue sections by immunocytochemistry. Further, the same vestibular regions and cell types are labeled by NADPH-diaphorase histochemistry, by the neuronal nitric oxide synthase antiserum, and by our anti-L-citrulline antibody. Clusters of L-citrulline-immunoreactive neurons are present in subregions of the vestibular nuclei, including the caudal portion of the inferior vestibular nucleus, the magnocellular portion of the medial vestibular nucleus, and the large cells in the ventral tier of the lateral vestibular nucleus. NADPH-diaphorase histochemical staining of these neurons clearly demonstrated their multipolar, fusiform and globular somata and long varicose dendritic processes. These results provide support for the suggestion that nitric oxide serves key roles in both vestibulo-autonomic and vestibulo-spinal pathways.
Discovery of phenylsulfonylfuroxan derivatives as gamma globin inducers by histone acetylation.
Melo, Thais Regina Ferreira de; Kumkhaek, Chutima; Fernandes, Guilherme Felipe Dos Santos; Lopes Pires, Maria Elisa; Chelucci, Rafael Consolin; Barbieri, Karina Pereira; Coelho, Fernanda; Capote, Ticiana Sidorenko de Oliveira; Lanaro, Carolina; Carlos, Iracilda Zeppone; Marcondes, Sisi; Chegaev, Konstantin; Guglielmo, Stefano; Fruttero, Roberta; Chung, Man Chin; Costa, Fernando Ferreira; Rodgers, Griffin P; Dos Santos, Jean Leandro
2018-05-28
N-oxide derivatives 5(a-b), 8(a-b), and 11(a-c) were designed, synthesized and evaluated in vitro and in vivo as potential drugs that are able to ameliorate sickle cell disease (SCD) symptoms. All of the compounds demonstrated the capacity to releasing nitric oxide at different levels ranging from 0.8 to 30.1%, in vivo analgesic activity and ability to reduce TNF-α levels in the supernatants of monocyte cultures. The most active compound (8b) protected 50.1% against acetic acid-induced abdominal constrictions, while dipyrone, which was used as a control only protected 35%. Compounds 8a and 8b inhibited ADP-induced platelet aggregation by 84% and 76.1%, respectively. Both compounds increased γ-globin in K562 cells at 100 μM. The mechanisms involved in the γ-globin increase are related to the acetylation of histones H3 and H4 that is induced by these compounds. In vitro, the most promising compound (8b) was not cytotoxic, mutagenic and genotoxic. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
The Role of YY1 in Prostate Cancer
2010-03-01
Inhibiting YY1 translation [57] DETANONOate (nitric oxide donor) Inhibiting YY1 mRNA synthesis and YY1-DNA association [109,110...overexpression increases tumor cell sensitivity to TRAIL via blocking YY1 expression. YY1 expression can also be inhibited by DETANONOate (a nitric
Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J
2015-04-25
We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.
Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M
2010-09-10
Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.
Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M
2013-01-01
Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Wang, Hongying; Zhang, Rui; Wen, Shoubin; McCafferty, Donna-Marie; Beck, Paul L; MacNaughton, Wallace K
2009-04-01
Nitric oxide (NO) derived from the inducible NO synthase (iNOS) is an important and complex mediator of inflammation in the intestine. Wnt-inducible secreted protein (WISP)-1 (CCN4), a member of the connective tissue growth factor family, is involved in tissue repair. We sought to determine the relationship between iNOS and WISP-1 in colitis. By analyzing human colonic biopsy samples, we showed that the expression of mRNA for both iNOS and WISP-1 was significantly higher in ulcerative colitis samples compared with control tissue. The upregulation of WISP-1 was positively correlated with iNOS expression in two models of colitis, induced by intrarectal trinitrobenzenesulfonic acid (TNBS) or occurring spontaneously in IL-10 deficient mice. Loss of iNOS, studied using iNOS(-/-) mice in both TNBS-induced and IL-10(-/-) colitis models, significantly attenuated the colitis-related WISP-1 increase. In human colonic epithelial cell lines, the NO donor, DETA-NONOate, elevated WISP-1 mRNA and protein expression through a beta-catenin and CREB-dependent, but Wnt-1-independent, pathway. In addition, NO-induced WISP-1 directly induced secretion of soluble collagen in colonic fibroblast cells. NO increases WISP-1 expression both in vitro and in vivo, suggesting a new role for iNOS and NO in colitis.
Amrouche-Mekkioui, Ilhem; Djerdjouri, Bahia
2012-09-15
The effect of N-acetylcysteine (NAC), a pharmacological antioxidant was investigated in a murine model of chronic colitis. Male NMRI mice were given 5% dextran sulfate sodium (DSS) in drinking water for 5 days followed by 10 days of water, three times. Compared to control mice given water, DSS-treated mice displayed severe imbalanced redox status with decreased glutathione and catalase, but increased malondialdehyde, protein carbonyls, nitric oxide and myeloperoxidase levels, at days 35th (active colitis) and 45th (recovery period). It also resulted in mitochondrial dysfunction, mucosal ulcers, mucin-depleted crypts and epithelial cell apoptosis. Crypt abscesses and glandular hyperplasia occurred selectively in distal colon. NAC (150 mg/kg) given in drinking water for 45 days along with 3 DSS cycles improved the hallmarks of DSS-colitis. Interestingly, the moderate impact of NAC on lipids and proteins oxidation correlated with myeloperoxidase and nitric oxide levels.NAC as a mucoregulator and a thiol restoring agent is protective on oxidative crypt alterations, mucin depletion, epithelial cell hyperplasia and apoptosis. Taken together, our results highlight the role of NAC as a scavenger of phagocytes-derived reactive oxygen species in mice DDS-colitis, suggesting that a long term NAC diet might be beneficial in inflammatory bowel diseases and colorectal cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying
2009-09-01
Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.
Batista, Aline Carvalho; Soares, Cleverson Teixeira; Lara, Vanessa Soares
2005-01-01
Paracoccidioidomycosis is a chronic granulomatous disease that induces a specific inflammatory and immune response. The participation of nitric oxide (NO), a product of the inducible nitric oxide synthase enzyme (iNOS), as an important fungicidal molecule against Paracoccidioides brasiliensis has been demonstrated. In order to further characterize the Oral Paracoccidioidomycosis (OP), we undertook an immunohistochemical study of iNOS+, CD45RO+, CD3+, CD8+, CD20+, CD68+ cells and mast cells. The samples were distributed in groups according to the number of viable fungi per mm2. Our results showed weak immunolabeling for iNOS in the multinucleated giant cells (MNGC) and in most of the mononuclear (MN) cells, and the proportion of iNOS+ MN/MNGC cells in the OP were comparable to Control (clinically healthy oral tissues). Additionally, our analysis revealed a similarity in the number of CD4+ cells between the Control and the OP groups with higher numbers of fungi. These findings suggest that a low expression of iNOS and a decrease in the CD4+ T cells in OP may represent possible mechanisms that permit the local fungal multiplication and maintenance of active oral lesions.
Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.
Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus
2015-07-25
Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.
Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina
2010-12-01
Barrett's oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pH(i)) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett's oesophagus (CP-A). Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium-hydrogen exchanger (NHE). Nitric oxide (NO), pH(i) and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett's oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. A dose dependent decrease in pH(i) was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pH(i). The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett's oesophagus but an absence of NHE1 in normal epithelium. The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett's oesophagus.
Effect of nitric acid treatment on activated carbon derived from oil palm shell
NASA Astrophysics Data System (ADS)
Allwar, Allwar; Hartati, Retno; Fatimah, Is
2017-03-01
The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.
Propofol restores TRPV1 sensitivity via a TRPA1-, nitric oxide synthase-dependent activation of PKCε
Sinharoy, Pritam; Zhang, Hongyu; Sinha, Sayantani; Prudner, Bethany C; Bratz, Ian N; Damron, Derek S
2015-01-01
We previously demonstrated that the intravenous anesthetic, propofol, restores the sensitivity of transient receptor potential vanilloid channel subtype-1 (TRPV1) receptors via a protein kinase C epsilon (PKCε)-dependent and transient receptor potential ankyrin channel subtype-1 (TRPA1)-dependent pathway in sensory neurons. The extent to which the two pathways are directly linked or operating in parallel has not been determined. Using a molecular approach, our objectives of the current study were to confirm that TRPA1 activation directly results in PKCε activation and to elucidate the cellular mechanism by which this occurs. F-11 cells were transfected with complimentary DNA (cDNA) for TRPV1 only or both TRPV1 and TRPA1. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. An immunoblot analysis of the total and phosphorylated forms of PKCε, nitric oxide synthase (nNOS), and TRPV1 was also performed. In F-11 cells containing both channels, PKCε inhibition prevented the propofol- and allyl isothiocyanate (AITC)-induced restoration of TRPV1 sensitivity to agonist stimulation as well as increased phosphorylation of PKCε and TRPV1. In cells containing TRPV1 only, neither agonist induced PKCε or TRPV1 phosphorylation. Moreover, NOS inhibition blocked propofol-and AITC-induced restoration of TRPV1 sensitivity and PKCε phosphorylation, and PKCε inhibition prevented the nitric oxide donor, SNAP, from restoring TRPV1 sensitivity. Also, propofol-and AITC-induced phosphorylation of nNOS and nitric oxide (NO) production were blocked with the TRPA1-antagonist, HC-030031. These data indicate that the AITC- and propofol-induced restoration of TRPV1 sensitivity is mediated by a TRPA1-dependent, nitric oxide synthase-dependent activation of PKCε. PMID:26171233
Razali, Faizan Naeem; Ismail, Amirah; Abidin, Nurhayati Zainal; Shuib, Adawiyah Suriza
2014-01-01
The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth. PMID:25299340
Inducible nitric oxide synthase inhibits oxygen consumption in collateral-dependent myocardium
Chen, Yingjie; Zhang, Ping; Li, Jingxin; Xu, Xin
2013-01-01
Following coronary artery occlusion growth of collateral vessels can provide an effective blood supply to the dependent myocardium. The ischemia, which results in growth of collateral vessels, recruits an inflammatory response with expression of cytokines and growth factors, upregulation of endothelial nitric oxide (NO) synthase (eNOS) in vascular endothelial cells, and expression of inducible nitric oxide synthase (iNOS) in both vessels and cardiac myocytes. Because NO is a potent collateral vessel dilator, this study examined whether NO derived from iNOS or constitutive NOS regulates myocardial blood flow (MBF) in the collateral region. Nonselective NOS inhibition with NG-nitro-l-arginine (LNA) caused vasoconstriction with a significant decrease in MBF to the collateral region during exercise. In contrast, the highly selective iNOS inhibitor 1400W caused a 21 ± 5% increase of MBF in the collateral region. This increase in MBF following selective iNOS blockade was proportionate to an increase in myocardial O2 consumption (MV̇o2). The results suggest that NO produced by iNOS inhibits MV̇o2 in the collateralized region, so that the increase in MBF following iNOS blockade was the result of metabolic vasodilation secondary to an increase in MV̇o2. Thus the coordinated expression of iNOS to restrain MV̇o2 and eNOS to maintain collateral vasodilation act to optimize the O2 supply-demand relationship and protect the collateralized myocardium from ischemia. PMID:24322607
Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina; Görlach, Agnes
2015-11-10
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. FA might serve as a novel therapeutic option combating PH.
Chung, Hwan-Suck; Kim, Hyunseong; Bae, Hyunsu
2012-10-01
Phenelzine is a potent monoamine oxidase inhibitor that is used in patients with depression. It is also well known that nitric oxide (NO) synthase inhibitors show preclinical antidepressant-like properties, which suggests that NO is involved in the pathogenesis of depression. The purpose of this study was to determine if phenelzine affects the production of NO and tumor necrosis factor-alpha (TNF-α) in activated microglia cells. BV-2 microglia cells and primary microglia cells were cultured in DMEM and DMEM/F12 and then cells were treated with LPS or LPS plus phenelzine for 24 h. The culture medium was collected for determination of NO, TNF-α, and IL-6 and cells were harvested by lysis buffer for Western blot analysis. Phenelzine increased the lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS), as well as the release of TNF-α and IL-6 in BV-2 microglia cells. It is also confirmed that phenelzine increased the levels of NO, TNF-α and IL-6 in LPS-activated primary microglia cells. Phenelzine increased nuclear translocation of NF-κB by phosphorylation of IκB-α in LPS-activated microglia cells. These findings suggest that high doses of phenelzine could aggravate inflammatory responses in microglia cells that are mediated by NO and TNF-α.
Nitric oxide, antioxidants and prooxidants in plant defence responses
Groß, Felicitas; Durner, Jörg; Gaupels, Frank
2013-01-01
In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione—the latter alone or in conjunction with S-nitrosoglutathione reductase—in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD). PMID:24198820
Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed
2016-01-01
Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases.
Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed
2016-01-01
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Methods: Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results: Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Conclusion: Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases. PMID:26459398
Effects of endogenous nitric oxide and of DETA NONOate in arteriogenesis.
Troidl, Kerstin; Tribulova, Silvia; Cai, Wei-Jun; Rüding, Inka; Apfelbeck, Hanna; Schierling, Wilma; Troidl, Christian; Schmitz-Rixen, Thomas; Schaper, Wolfgang
2010-02-01
Previous studies showed that targeted endothelial nitric oxide synthase (eNOS) disruption in mice with femoral artery occlusion does not impede and transgenic eNOS overexpression does not stimulate collateral artery growth after femoral artery occlusion, suggesting that nitric oxide from eNOS does not play a role in arteriogenesis. However, pharmacologic nitric oxide synthase inhibition with L-NAME markedly blocks arteriogenesis, suggestive of an important role of nitric oxide. To solve the paradox, we studied targeted deletion of eNOS and of inducible nitric oxide synthase (iNOS) in mice and found that only iNOS knockout could partially inhibit arteriogenesis. However, the combination of eNOS knockout and treatment with the iNOS inhibitor L-NIL completely abolished arteriogenesis. mRNA transcription studies (reverse transcriptase-polymerase chain reaction) performed on collateral arteries of rats showed that eNOS and especially iNOS (but not neural nitric oxide synthase) become upregulated in shear stress-stimulated collateral vessels, which supports the hypothesis that nitric oxide is necessary for arteriogenesis but that iNOS plays an important part. This was strengthened by the observation that the nitric oxide donor DETA NONOate strongly stimulated collateral artery growth, activated perivascular monocytes, and increased proliferation markers. Shear stress-induced nitric oxide may activate the innate immune system and activate iNOS. In conclusion, arteriogenesis is completely dependent on the presence of nitric oxide, a large part of it coming from mononuclear cells.
Ali, Elham H.A.; Ahmed-Farid, Omar A.; Osman, Amany A. E.
2017-01-01
Sodium nitrite (NaNO2) is an inorganic salt used broadly in chemical industry. NaNO2 is highly reactive with hemoglobin causing hypoxia. Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissue specific cells and MSC therapy is a potential method for improving brain functions. This work aims to investigate the possible therapeutic role of bone marrow-derived MSCs against NaNO2 induced hypoxic brain injury. Rats were divided into control group (treated for 3 or 6 weeks), hypoxic (HP) group (subcutaneous injection of 35 mg/kg NaNO2 for 3 weeks to induce hypoxic brain injury), HP recovery groups N-2wR and N-3wR (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by 4-week or 3-week self-recovery respectively), and MSCs treated groups N-2wSC and N-3wSC (treated with the same dose of NaNO2 for 2 and 3 weeks respectively, followed by one injection of 2 × 106 MSCs via the tail vein in combination with 4 week self-recovery or intravenous injection of NaNO2 for 1 week in combination with 3 week self-recovery). The levels of neurotransmitters (norepinephrine, dopamine, serotonin), energy substances (adenosine monophosphate, adenosine diphosphate, adenosine triphosphate), and oxidative stress markers (malondialdehyde, nitric oxide, 8-hydroxy-2′-deoxyguanosine, glutathione reduced form, and oxidized glutathione) in the frontal cortex and midbrain were measured using high performance liquid chromatography. At the same time, hematoxylin-eosin staining was performed to observe the pathological change of the injured brain tissue. Compared with HP group, pathological change of brain tissue was milder, the levels of malondialdehyde, nitric oxide, oxidized glutathione, 8-hydroxy-2′-deoxyguanosine, norepinephrine, serotonin, glutathione reduced form, and adenosine triphosphate in the frontal cortex and midbrain were significantly decreased, and glutathione reduced form/oxidized glutathione and adenosine monophosphate/adenosine triphosphate ratio were significantly increased in the MSCs treated groups. These findings suggest that bone marrow-derived MSCs exhibit neuroprotective effects against NaNO2-induced hypoxic brain injury through exerting anti-oxidative effects and providing energy to the brain. PMID:29323037
Robb, Tiffany M; Rogers, Michael J; Woodward, Suann S; Wong, Simon S; Witten, Mark L
2010-07-01
This study was designed to characterize and compare the effects of jet propellant-8 (JP-8) fuel and synthetic-8 (S-8) on cell viability and nitric oxide synthesis in cultured alveolar type II epithelial cells of rats. Exposure times varied from 0.25, 0.5, 1, and 6 hours at the following concentrations of jet fuel: 0.0, 0.1, 0.4, and 2.0 microg/mL. Data indicate that JP-8 presents a gradual decline in cell viability and steady elevation in nitric oxide release as exposure concentrations increase. At a 2.0 microg/mL concentration of JP-8, nearly all of the cells are not viable. Moreover, S-8 exposure to rat type II lung cells demonstrated an abrupt fall in percentage cell viability and increases in nitric oxide measurement, particularly after the 2.0 microg/mL was reached at 1 and 6 hours. At 0.0, 0.2, and 0.4 microg/mL concentrations of S-8, percentage viability was sustained at steady concentrations. The results suggest different epithelial toxicity and mechanistic effects of S-8 and JP-8, providing further insight concerning the impairment imposed at specific levels of lung function and pathology induced by the different fuels.
Cavernous nerve repair with allogenic adipose matrix and autologous adipose-derived stem cells.
Lin, Guiting; Albersen, Maarten; Harraz, Ahmed M; Fandel, Thomas M; Garcia, Maurice; McGrath, Mary H; Konety, Badrinath R; Lue, Tom F; Lin, Ching-Shwun
2011-06-01
To investigate whether adipose-derived matrix seeded with adipose-derived stem cells (ADSC) can facilitate the repair of injured cavernous nerves (CNs). Human and rat adipose tissues were decellularized and fabricated into various forms, including adipose tissue-derived acellular matrix thread (ADMT). ADMT seeded with ADSC were transplanted into subcutaneous space and examined for signs of inflammation. ADSC-seeded ADMTs were then used to repair CN injury in rats, followed by assessment of histology and erectile function. Adipose tissue can be fabricated into acellular matrices of various shapes and sizes, including threads and sheets. Seeding of ADMT occurred rapidly: within 24 hours, 55% of the surface was covered with ADSC and within 1 week, 90% was covered. Transplantation of the seeded ADMT into the subcutaneous space of an allogenic host showed no signs of inflammatory reaction. At 3 months after grafting into CN injury rats, approximately twice as many cells were found on seeded ADMT as on unseeded ADMT. The seeded ADMT also had various degrees of S100 and neuronal nitric oxide synthase expression, suggesting CN axonal ingrowth. Rats grafted with seeded ADMT overall had the best erectile function recovery when compared with those grafted with unseeded ADMT and those ungrafted. However, as a result of large variations, the differences did not reach statistic significance (P = .07). Grafting of ADSC-seeded matrix resulted in a substantial recovery of erectile function and improvement of histology. However, further refinement of the matrix architecture is needed to improve the success rate. Copyright © 2011 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) is a highly mobile and potent signaling molecule, yet as a free radical it can also cause nitrosative stress to cells. To alleviate negative effects from excessive accumulation of endogenous NO or from potential exogenous sources, flavohemoglobin proteins can convert NO into nonto...
Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B
2017-03-01
The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.
An improved method to measure nitrate/nitrite with an NO-selective electrochemical sensor
Boo, Yong Chool; Tressel, Sarah L.; Jo, Hanjoong
2007-01-01
Nitric oxide produced from nitric oxide synthase(s) is an important cell signaling molecule in physiology and pathophysiology. In the present study, we describe a very sensitive and convenient analytical method to measure NOx (nitrite plus nitrate) in culture media by employing an ultra-sensitive nitric oxide-selective electrochemical sensor which became commercially available recently. An aliquot of conditioned culture media was first treated with nitrate reductase/NADPH/glucose-6-phosphate dehydrogenase/glucose-6-phosphate to convert nitrate to nitrite quantitatively. The nitrite (that is present originally plus the reduced nitrate) was then reduced to equimolar NO in an acidic iodide bath while NO was being detected by the sensor. This analytical method appears to be very useful to assess basal and stimulated NO release from cultured cells. PMID:17056288
Role of inducible nitric oxide synthase in transplant arteriosclerosis.
Lee, P C; Shears, L L; Billiar, T R
1999-12-01
1. Transplant arteriosclerosis is a major obstacle to long-term allograft survival. Nitric oxide (NO) has been implicated as a mediator in the development of this disease. 2. We and others have shown that inducible nitric oxide synthase (iNOS) is up-regulated in allografts with transplant arteriosclerosis. Despite the acute cytotoxic effects produced by high levels of NO, a chronic increase in NO availability is protective against neointimal hyperplasia, mainly by suppressing the inflammatory cell recruitment and neointimal smooth muscle cell accumulation. 3. Currently, we have the technology to directly transfer the iNOS gene to allografts. We have demonstrated that this exciting strategy is feasible and therapeutic and may improve the long-term survival and function of allografts. Future challenges include optimizing the methods and the vectors of gene delivery.
NASA Technical Reports Server (NTRS)
Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.
1982-01-01
The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.
Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.
Manucha, Walter
Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Da Silva, Daniel; Lachaud, Christophe; Cotelle, Valérie; Brière, Christian; Grat, Sabine; Mazars, Christian; Thuleau, Patrice
2011-05-01
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium dependent programmed cell death (PCD) in tobacco BY-2 cells. In addition, we have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction.
Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system.
Silva, Bruno R; Paula, Tiago D; Paulo, Michele; Bendhack, Lusiane M
2016-12-28
This review provides an overview of the cellular signaling of nitric oxide (NO) and prostanoids in vascular cells and the possible cross talk between their pathways, mainly in hypertension, since the imbalance of these two systems has been attributed to development of some cardiovascular diseases. It also deals with the modulation of vasodilation induced by NO donors. NO is a well-known second messenger involved in many cellular functions. In the vascular system, the NO produced by endothelial NO-synthase (eNOS) or released by NO donors acts in vascular smooth muscle cells, the binding of NO to Fe2+-heme of soluble guanylyl-cyclase (sGC) activates sGC and the production of cyclic guanosine-3-5-monophosphate (cGMP). The second messenger (cGMP) activates protein kinase G and the signaling cascade, including K+ channels. Activation of K+ channels leads to cell membrane hyperpolarization and Ca2+ channels blockade, which induce vascular relaxation. Moreover, the enzyme cyclooxygenase (COX) is also an important regulator of the vascular function by prostanoids production such as thromboxane A2 (TXA2) and prostacyclin (PGI2), which classically induce contraction and relaxation, respectively. Additionaly, studies indicate that the activity of both enzymes can be modulated by their products and reactive oxygen species (ROS) in cardiovascular diseases such as hypertension. The interaction of NO with cellular molecules, particularly the reaction of NO with ROS, determines the biological mechanisms of action and short half-life of NO. We have been working on the vascular effects of ruthenium-derived complexes that release NO. Our research group has published works on the vasodilating effects of ruthenium-derived NO donors and the mechanisms of vascular cells involved in the relaxation of the vascular smooth muscle in health and hypertensive rats. In our previous studies, we have compared the new NO donors synthesized by our group to SNP. It shows the cellular signaling of NO in the endothelial and vascular smooth muscle cells. This work focuses on the cellular mechanisms involved in the vasodilation induced by NO and the role of prostanoids in contractile or relaxing vascular responses. Since the NO is produced by NO-synthase (NOS) or released from NO donors we also discussed the perspectives to cross talk between NO and COX pathways on the vascular tone control.
Köstlin, Natascha; Vogelmann, Margit; Spring, Bärbel; Schwarz, Julian; Feucht, Judith; Härtel, Christoph; Orlikowsky, Thorsten W; Poets, Christian F; Gille, Christian
2017-09-01
Infections are a leading cause of perinatal morbidity and mortality. The outstandingly high susceptibility to infections early in life is mainly attributable to the compromised state of the neonatal immune system. One important difference to the adult immune system is a bias towards T helper type 2 (Th2) responses in newborns. However, mechanisms regulating neonatal T-cell responses are incompletely understood. Granulocytic myeloid-derived suppressor cells (GR-MDSC) are myeloid cells with a granulocytic phenotype that suppress various functions of other immune cells and accumulate under physiological conditions during pregnancy in maternal and fetal blood. Although it has been hypothesized that GR-MDSC accumulation during fetal life could be important for the maintenance of maternal-fetal tolerance, the influence of GR-MDSC on the immunological phenotype of neonates is still unclear. Here, we investigated the impact of GR-MDSC isolated from cord blood (CB-MDSC) on the polarization of Th cells. We demonstrate that CB-MDSC inhibit Th1 responses and induced Th2 responses and regulatory T (Treg) cells. Th1 inhibition was cell-contact dependent and occurred independent of other cell types, while Th2 induction was mediated independently of cell contact through expression of ArgI and reactive oxygen species by CB-MDSC and partially needed the presence of monocytes. Treg cell induction by CB-MDSC also occurred cell-contact independently but was partially mediated through inducible nitric oxide synthase. These results point towards a role of MDSC in regulating neonatal immune responses. Targeting MDSC function in neonates could be a therapeutic opportunity to improve neonatal host defence. © 2017 John Wiley & Sons Ltd.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro
2015-03-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro
2015-01-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922
New transmitters and new targets in the autonomic nervous system.
Barajas-López, C; Huizinga, J D
1993-12-01
Several recent findings have made research into the autonomic nervous system even more exciting, such as the revelation that nitric oxide is a major neurotransmitter, the delineation of the physiological roles for purines and vasoactive intestinal peptide, and the discovery that the interstitial cells of Cajal are major target cells for enteric innervation. Nitric oxide is probably the major neurotransmitter evoking inhibitory junction potentials in smooth muscle. ATP is a mediator of non-adrenergic non-cholinergic enteric innervation, as well as being a fast neurotransmitter in peripheral and autonomic neuro-neuronal synapses. The interactions between enteric nerves and both immune cells and interstitial cells of Cajal (as pacemaker cells of gut smooth muscle) are forcing a rethink of many aspects of gut physiology.
Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes.
Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Jablonski, Jakub; Marcinczyk, Magdalena
2009-01-01
The aim of this study was to assess the influence of N-nitrosodimethylamine (NDMA) on expression of inducible nitric oxide synthase (iNOS), as well as production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by human neutrophils (PMN) and peripheral blood mononuclear cells (PBMC), and the participation of the p38 MAPK kinase in this process. Furthermore, the ability of neutrophils to release superoxide anion was determined. The influence of N-nitrosodimethylamine on iNOS expression was determined in isolated PMN and PBMC cells from peripheral blood of healthy individuals. The mononuclear cells showed higher sensitivity to NDMA. Moreover, cytotoxic effect of NDMA can be influenced in some way by the impact of this xenobiotic on nitric oxide and superoxide anion release from human leukocytes. Furthermore, increased generation of these radicals by human leukocytes suggest that neutrophils and mononuclear cells that are exposed to NDMA activity can play a key role in endogenous NDMA generation. However the relationship between iNOS expression and phospho-p38 MAPK in neutrophils and mononuclear cells shows that p38 MAPK pathway participates in induction of iNOS expression in the presence of NDMA.
Gray, Elizabeth; Ginty, Mark; Kemp, Kevin; Scolding, Neil; Wilkins, Alastair
2011-04-01
Inflammation is known to cause significant neuronal damage and axonal injury in many neurological disorders. Among the range of inflammatory mediators, nitric oxide is a potent neurotoxic agent. Recent evidence has suggested that cellular peroxisomes may be important in protecting neurons from inflammatory damage. To assess the influence of peroxisomal activation on nitric oxide-mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator-activated receptor (PPAR)-α agonist fenofibrate on cortical neurons exposed to a nitric oxide donor or co-cultured with activated microglia. Fenofibrate protected neurons and axons against both nitric oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in gene expression of ABCD3 (the gene encoding for peroxisomal membrane protein-70), with a concomitant increase in protein levels of PPAR-α and catalase, which was associated with a functional increase in the activity of this enzyme. Collectively, these observations provide evidence that modulation of PPAR-α activity and peroxisomal function by fenofibrate attenuates nitric oxide-mediated neuronal and axonal damage, suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O
2007-01-01
We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.
Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria
1997-01-01
Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302
Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T
2000-02-01
The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.
Chemiluminescence detection of peroxynitrite with flow injection
NASA Astrophysics Data System (ADS)
Kang, Dai; Evmiridis, Nick P.; Vlessidis, Athanasios; Zhou, Yikai
2001-09-01
Peroxynitrite is an important derivative made by nitric oxide in vivo. It can make damages in many kinds of tissue and cells. Its research value in heart disease and cancer is a very high. A sensitive, specific method for analysis of peroxynitrite is described. In this method, chemiluminescence reaction between perodynitrite and luminol was used to detect with flow injection system. The assay has a detection limit of 2 by 10-8 mol L-1, and linear range of 5 by 10-8 mol L-1 to 5 by 10-5 mol L-1. The application o f flow injection system offers the possibility to establish biosensor for real-time detection of perodynitrite.
Olfactory ensheathing cells: nitric oxide production and innate immunity.
Harris, Julie A; West, Adrian K; Chuah, Meng Inn
2009-12-01
Olfactory nerves extend from the nasal cavity to the central nervous system and provide therefore, a direct route for pathogenic infection of the brain. Since actual infection by this route remains relatively uncommon, powerful endogenous mechanisms for preventing microbial infection must exist, but these remain poorly understood. Our previous studies unexpectedly revealed that the unique glial cells that ensheath olfactory nerves, olfactory ensheathing cells (OECs), expressed components of the innate immune response. In this study, we show that OECs are able to detect and respond to bacterial challenge via the synthesis of nitric oxide. In vitro studies revealed that inducible nitric oxide synthase (iNOS) mRNA and protein were present in Escherichia coli- and Staphylococcus aureus-incubated OECs, but were barely detectable in untreated OECs. Neuronal NOS and endothelial NOS were not expressed by OECs pre- and post-bacterial incubation. Nuclear translocation of nuclear factor kappa B (NFkappaB), detectable in the majority of OECs 1 h following bacterial incubation, preceded iNOS induction which resulted in the production of nitric oxide. N(G)-methyl-L-arginine significantly attenuated nitric oxide (P < 0.001) and nitrite production (P < 0.001) by OECs. In rat olfactory mucosa which was compromised by irrigation with 0.17M zinc sulfate or 0.7% Triton X-100 to facilitate bacterial infiltration, OECs contributed to a robust synthesis of iNOS. These data strongly support the hypothesis that OECs are an essential component of the innate immune response against bacterial invasion of the central nervous system via olfactory nerves.
Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio
NASA Astrophysics Data System (ADS)
Wang, Yongjun; Zhang, Shicui; Sawant, M. S.
2004-12-01
Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.
Efficacy of surface-generated nitric oxide against Candida albicans adhesion and biofilm formation.
Privett, Benjamin J; Nutz, Steven T; Schoenfisch, Mark H
2010-11-01
This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm(-2) s(-1) were sufficient to reduce fungal adhesion by ∼49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.
Beltran-Povea, Amparo; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Martín, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R; Cahuana, Gladys M
2015-01-01
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness. PMID:25914767
Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.
Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin
2017-07-05
The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Huiwen; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701; Mollica, Molly Y.
A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1)more » by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shan; Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong; Wong, Siu Ling
Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation,more » migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.« less
Yomogin, an inhibitor of nitric oxide production in LPS-activated macrophages.
Ryu, J H; Lee, H J; Jeong, Y S; Ryu, S Y; Han, Y N
1998-08-01
In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.
Ribatti, D; Nico, B; Pezzolo, A; Vacca, A; Meazza, R; Cinti, R; Carlini, B; Parodi, F; Pistoia, V; Corrias, M V
2006-01-01
Tumour progression in neuroblastoma (NB) patients correlates with high vascular index. We have previously shown that the ACN NB cell line is tumorigenic and angiogenic in immunodeficient mice, and that interferon-γ (IFN-γ) gene transfer dampens ACN tumorigenicity. As IFN-γ represses lymphocyte-induced tumour angiogenesis in various murine models and inhibits proliferation and migration of human endothelial cells, we have investigated the antiangiogenic activity of tumour-derived IFN-γ and the underlying mechanism(s). In addition, we characterised the tumour vasculature of the ACN xenografts, using the chick embryo chorioallantoic membrane assay. We show that the ACN/IFN-γ xenografts had a lower microvessel density and less in vivo angiogenic potential than the vector-transfected ACN/neo. The vascular channels of both xenografts were formed by a mixed endothelial cell population of murine and human origin, as assessed by the FICTION (fluorescence immunophenotyping and interphase cytogenetics) technique. With respect to ACN/neo, the ACN/IFN-γ xenografts showed more terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling-positive human and murine endothelial cells, suggesting that inhibition of angiogenesis by IFN-γ was dependent on the induction of apoptosis, likely mediated by nitric oxide. Once the dual origin of tumour vasculature is confirmed in NB patients, the xenograft model described here will prove useful in testing the efficacy of different antiangiogenic compounds. PMID:16721359
Bubbling cell death: A hot air balloon released from the nucleus in the cold.
Chang, Nan-Shan
2016-06-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.
Bubbling cell death: A hot air balloon released from the nucleus in the cold
2016-01-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as “formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death.” When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. PMID:27075929
Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid.
Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham
2015-01-01
It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) inhibits these responses. HCF, HCE cells, peripheral blood mononuclear cells (PBMCs) and co-culture of HCF and PBMC were treated with different combinations of inflammatory inducers, including interleukin)IL- (6, tumor necrosis factors (TNF)-α, interferon (IFN)- γ and IL-1β and LPS. Nitrite levels were measured in cell supernatants with and without ALA by the Griess reaction test at 24, 48 and 72 h respectively. Expression of nitric oxide synthase 2 (NOS-2) was evaluated by real-time PCR. All cytokine combinations had an inducible effect on nitrite secretion in HCF, PBMC and co-cultured PBMC and HCF, but not in HCE cells. Treatment with a combination of IL-6, LPS, TNF-α, IFN- γ and IL-1β induced the highest nitrite secretion (2.91 fold, P < 0.01) as compared to cells incubated in medium alone. nitrite secretion was reduced by 38.9 % (P < 0.05) after treatment with ALA alone. Co-culturing PBMC with HCF with and without ALA treatment demonstrated similar results in nitrite level as,compared to PBMC alone. In addition, ALA significantly decreased NOS-2 expression in HCF by 48.9 % (P < 0. 001) after 72 h. The decrease in nitrite release and inhibition of NOS-2 expression indicate that ALA may have an anti-inflammatory effect both on HCF and on peripheral immune cells. This indicates that ALA may serve as a potent anti-inflammatory agent in ocular surface inflammation.
Neal, April P; Stansfield, Kirstie H; Guilarte, Tomás R
2012-02-23
We have previously reported that lead (Pb(2+)) exposure results in both presynaptic and postsynaptic changes in developing neurons as a result of inhibition of the N-methyl-d-aspartate receptor (NMDAR). NMDAR inhibition by Pb(2+) during synaptogenesis disrupts downstream trans-synaptic signaling of brain-derived neurotrophic factor (BDNF) and exogenous addition of BDNF can recover the effects of Pb(2+) on both presynaptic protein expression and presynaptic vesicular release. NMDAR activity can modulate other trans-synaptic signaling pathways, such as nitric oxide (NO) signaling. Thus, it is possible that other trans-synaptic pathways in addition to BDNF signaling may be disrupted by Pb(2+) exposure. The current study investigated whether exogenous addition of NO could recover the presynaptic vesicular proteins lost as a result of Pb(2+) exposure during synaptogenesis, namely Synaptophysin (Syn) and Synaptobrevin (Syb). We observed that exogenous addition of NO during Pb(2+) exposure results in complete recovery of whole-cell Syn levels and partial recovery of Syn and Syb synaptic targeting in Pb(2+)-exposed neurons. Copyright © 2011 Elsevier B.V. All rights reserved.
Seynhaeve, Ann L B; Oostinga, Douwe; van Haperen, Rien; Eilken, Hanna M; Adams, Susanne; Adams, Ralf H; Ten Hagen, Timo L M
2018-06-25
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen
2014-02-01
Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Martins, Solange C; Lazarin-Bidóia, Danielle; Desoti, Vânia C; Falzirolli, Hugo; da Silva, Cleuza C; Ueda-Nakamura, Tania; Silva, Sueli de O; Nakamura, Celso V
2016-12-01
This work evaluated the in vitro and in vivo activity of TDZ 2 on Trypanosoma cruzi amastigotes and determined the possible mechanism of action of this compound on T. cruzi death. TDZ 2 inhibited T. cruzi proliferation in vitro and had low haemolytic potential. It also induced morphological and ultrastructural alterations. We observed a reduction of cell volume, the depolarization of the mitochondrial membrane, an increase in ROS production, lipoperoxidation of the cell membrane, lipid bodies formation and production of nitric oxide, a decrease in reduced thiols levels and, presence of autophagic vacuoles. The in vivo study found a reduction of parasitemia in animals treated with TDZ 2 alone or combined with benznidazole. Altogether, the alterations induced by TDZ 2 point to an oxidative stress condition that lead to T. cruzi cell death. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Endothelial dysfunction: the early predictor of atherosclerosis.
Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans
2012-05-01
Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.
Basudhar, Debashree; Bharadwaj, Gaurav; Cheng, Robert Y.; Jain, Sarthak; Shi, Sa; Heinecke, Julie L.; Holland, Ryan J.; Ridnour, Lisa A.; Caceres, Viviane M.; Spadari-Bratfisch, Regina C.; Paolocci, Nazareno; Velázquez-Martínez, Carlos A.; Wink, David A.; Miranda, Katrina M.
2013-01-01
Structural modifications of non-steroidal anti-inflammatory drugs (NSAIDs) have successfully reduced the side effect of gastrointestinal ulceration without affecting anti-inflammatory activity, but may increase risk of myocardial infarction with chronic use. That nitroxyl (HNO) reduces platelet aggregation, preconditions against myocardial infarction and enhances contractility led us to synthesize a diazeniumdiolate-based HNO releasing aspirin and to compare it to an NO-releasing analogue. Here, the decomposition mechanisms are described for these compounds. In addition to protection against stomach ulceration, these prodrugs also exhibited significantly enhanced cytotoxcity compared to either aspirin or the parent diazeniumdiolate toward non-small cell lung carcinoma cells (A549) but were not appreciably toxic toward endothelial cells (HUVECs). The HNO-NSAID prodrug inhibited cylcooxgenase-2 and glyceraldehyde 3-phosphate dehydrogenase activity and triggered significant sarcomere shortening compared to control on murine ventricular myocytes. Together, these anti-inflammatory, anti-neoplasic and contractile properties suggest the potential of HNO-NSAIDs in the treatment of inflammation, cancer or heart failure. PMID:24102516
Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N
2012-08-01
Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.
Bai, Chengfeng; Xue, Rongfang; Wu, Jianbing; Lv, Tian; Luo, Xiaojun; Huang, Yun; Gong, Yan; Zhang, Honghua; Zhang, Yihua; Huang, Zhangjian
2017-05-02
The new nitric oxide (NO) donor O 2 -(6-oxocyclohex-1-en-1-yl)methyl diazen-1-ium-1,2-diolate 3c could simultaneously liberate NO as well as an active 3-glutathionyl-2-exomethylene-cyclohexanone 2 in the presence of GSH/GSTπ; exhibit potent antiproliferative activity; repress migration, invasion, and lateral migration of metastatic B16-BL6 cells; and significantly decrease hetero-adhesion of B16-BL6 cells to human umbilical vein endothelial cells.
Zhou, Minglong; Widmer, R. Jay; Xie, Wei; Jimmy Widmer, A.; Miller, Matthew W.; Schroeder, Friedhelm; Parker, Janet L.
2010-01-01
Exercise training enhances agonist-mediated relaxation in both control and collateral-dependent coronary arteries of hearts subjected to chronic occlusion, an enhancement that is mediated in part by nitric oxide. The purpose of the present study was to elucidate exercise training-induced adaptations in specific cellular mechanisms involved in the regulation of endothelial nitric oxide synthase (eNOS) in coronary arteries of ischemic hearts. Ameroid constrictors were surgically placed around the proximal left circumflex coronary artery (LCX) of adult female Yucatan miniature swine. Eight weeks postoperatively, animals were randomized into sedentary (pen-confined) or exercise training (treadmill run; 5 days/wk; 14 wk) protocols. Coronary artery segments (∼1.0 mm luminal diameter) were isolated from collateral-dependent (LCX) and control (nonoccluded left anterior descending) arteries 22 wk after ameroid placement. Endothelial cells were enzymatically dissociated, and intracellular Ca2+ responses (fura 2) to bradykinin stimulation were studied. Immunofluorescence and laser scanning confocal microscopy were used to quantify endothelial cell eNOS and caveolin-1 cellular distribution under basal and bradykinin-stimulated conditions. Immunoblot analysis was used to determine eNOS, phosphorylated (p)-eNOS, protein kinase B (Akt), pAkt, and caveolin-1 protein levels. Bradykinin-stimulated nitrite plus nitrate (NOx; nitric oxide metabolites) levels were assessed via HPLC. Exercise training resulted in significantly enhanced bradykinin-mediated increases in endothelial Ca2+ levels, NOx levels, and the distribution of eNOS-to-caveolin-1 ratio at the plasma membrane in endothelial cells of control and collateral-dependent arteries. Exercise training also significantly increased total eNOS and phosphorylated levels of eNOS (pSer1179) in collateral-dependent arteries. Total eNOS protein levels were also significantly increased in collateral-dependent arteries of sedentary animals. These data provide new insights into exercise training-induced adaptations in cellular mechanisms of nitric oxide regulation in collateral-dependent coronary arteries of chronically occluded hearts that contribute to enhanced nitric oxide production. PMID:20363881
Panda, Koustubh; Chawla-Sarkar, Mamta; Santos, Cecile; Koeck, Thomas; Erzurum, Serpil C; Parkinson, John F; Stuehr, Dennis J
2005-07-19
The study of nitric-oxide synthase (NOS) physiology is constrained by the lack of suitable probes to detect NOS in living cells or animals. Here, we characterized a fluorescent inducible NOS (iNOS) inhibitor called PIF (pyrimidine imidazole FITC) and examined its utility for microscopic imaging of iNOS in living cells. PIF binding to iNOS displayed high affinity, isoform selectivity, and heme specificity, and was essentially irreversible. PIF was used to successfully image iNOS expressed in RAW264.7 cells, HEK293T cells, human A549 epithelial cells, and freshly obtained human lung epithelium. PIF was used to estimate a half-life for iNOS of 1.8 h in HEK293T cells. Our work reveals that fluorescent probes like PIF will be valuable for studying iNOS cell biology and in understanding the pathophysiology of diseases that involve dysfunctional iNOS expression.
Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P
2016-03-01
Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.
Laser absorption of nitric oxide for thermometry in high-enthalpy air
NASA Astrophysics Data System (ADS)
Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.
2014-12-01
The design and demonstration of a laser absorption sensor for thermometry in high-enthalpy air is presented. The sensor exploits the highly temperature-sensitive and largely pressure-independent concentration of nitric oxide in air at chemical equilibrium. Temperature is thus inferred from an in situ measurement of nascent nitric oxide. The strategy is developed by utilizing a quantum cascade laser source for access to the strong fundamental absorption band in the mid-infrared spectrum of nitric oxide. Room temperature measurements in a high-pressure static cell validate the suitability of the Voigt lineshape model to the nitric oxide spectra at high gas densities. Shock-tube experiments enable calibration of a collision-broadening model for temperatures between 1200-3000 K. Finally, sensor performance is demonstrated in a high-pressure shock tube by measuring temperature behind reflected shock waves for both fixed-chemistry experiments where nitric oxide is seeded, and for experiments involving nitric oxide formation in shock-heated mixtures of N2 and O2. Results show excellent performance of the sensor across a wide range of operating conditions from 1100-2950 K and at pressures up to 140 atm.
Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion
NASA Technical Reports Server (NTRS)
Reid, Ian A.
1994-01-01
Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric oxide donors in vitro and in vivo has variable effects on vasopressin secretion, but the most common one is inhibition. Blockade of nitric oxide synthesis has been reported to increase vasopressin secretion, but again variable results have been obtained. An attractive working hypothesis is that nitric oxide serves a neuromodulatory role as an inhibitor of vasopressin secretion.
Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons.
Mandal, Shyamali; Stanco, Amelia; Buys, Emmanuel S; Enikolopov, Grigori; Rubenstein, John L R
2013-10-23
Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.
Figueroa-Valverde, Lauro; Diaz-Cedillo, Francisco; Garcia-Cervera, Elodia; Gomez, Eduardo Pool; Lopez-Ramos, Maria
2014-01-01
The present study was designed to investigate the effects of progesterone-carbachol derivative on perfusion pressure and coronary resistance in rats. An additional aim was to identify the molecular mechanisms involved. The Langendorff model was used to measure perfusion pressure and coronary resistance changes in isolated rat heart after progesterone-carbachol derivative alone and after the following compounds; mifepristone (progesterone receptor blocker), yohimbine (α2 adreno-receptor antagonist), ICI 118,551 (selective β2 receptor blocker), atropine (non-selective muscarinic receptor antagonist), methoctramine (antagonist of M2 receptor) and L-NAME (inhibitor of nitric oxide synthase). The results show that progesterone-carbachol derivative [10(-9) mM] significantly decreased perfusion pressure (P=0.005) and coronary resistance (P=0.006) in isolated rat heart. Additionally, the effect of progesterone-carbachol on perfusion pressure [10(-9) to 10(-4) mM] was only blocked in the presence of methoctramine and L-NAME. These data suggest that progesterone derivative exert its effect on perfusion pressure via activation of the M2 muscarinic. In addition, this phenomenon involves stimulation of nitric oxide synthase (NOS).
Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols.
Hussain, Adil; Yun, Byung-Wook; Loake, Gary J
2018-01-01
Nitric oxide (NO) is a small diatomic molecule that regulates multiple physiological processes in animals, plants, and microorganisms. In animals, it is involved in vasodilation and neurotransmission and is present in exhaled breath. In plants, it regulates both plant immune function and numerous developmental programs. The high reactivity and short half-life of NO and cross-reactivity of its various derivatives make its quantification difficult. Different methods based on calorimetric, fluorometric, and chemiluminescent detection of NO and its derivatives are available, but all of them have significant limitations. Here we describe a method for the chemiluminescence-based quantification of NO using ozone-chemiluminescence technology in plants. This approach provides a sensitive, robust, and flexible approach for determining the levels of NO and its signaling products, protein S-nitrosothiols.
Caruso, Giuseppe; Fresta, Claudia G; Siegel, Joseph M; Wijesinghe, Manjula B; Lunte, Susan M
2017-07-01
It is well known that excessive production of reactive oxygen and nitrogen species is linked to the development of oxidative stress-driven disorders. In particular, nitric oxide (NO) and superoxide (O 2 •- ) play critical roles in many physiological and pathological processes. This article reports the use of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and MitoSOX Red in conjunction with microchip electrophoresis and laser-induced fluorescence detection for the simultaneous detection of NO and O 2 •- in RAW 264.7 macrophage cell lysates following different stimulation procedures. Cell stimulations were performed in the presence and absence of cytosolic (diethyldithiocarbamate) and mitochondrial (2-methoxyestradiol) superoxide dismutase (SOD) inhibitors. The NO/O 2 •- ratios in macrophage cell lysates under physiological and proinflammatory conditions were determined. The NO/O 2 •- ratios were 0.60 ± 0.07 for unstimulated cells pretreated with SOD inhibitors, 1.08 ± 0.06 for unstimulated cells in the absence of SOD inhibitors, and 3.14 ± 0.13 for stimulated cells. The effect of carnosine (antioxidant) or Ca 2+ (intracellular messenger) on the NO/O 2 •- ratio was also investigated. Graphical Abstract Simultaneous detection of nitric oxide and superoxide in macrophage cell lysates.
Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells
Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu
2017-01-01
Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104
Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B
2014-09-01
Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.
NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION
Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras
2007-01-01
T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531
Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease
Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing
2017-01-01
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480
Zídek, Zdeněk; Kverka, Miloslav; Dusilová, Adéla; Kmoníčková, Eva; Jansa, Petr
2016-07-01
The present in vitro experiments demonstrate inhibitory effects of polysubstituted 2-aminopyrimidines on high output production of nitric oxide (NO) and prostaglandin E2 (PGE2) stimulated by interferon-γ and lipopolysaccharide (LPS) in peritoneal macrophages of mouse and rat origin. PGE2 production was inhibited also in LPS-activated human peripheral blood mononuclear cells. A tight dependence of the suppressive activities on chemical structure of pyrimidines was observed. Derivatives containing hydroxyl groups at the C-4 and C-6 positions of pyrimidine ring were devoid of any influence on NO and PGE2. Remarkable inhibitory potential was acquired by the replacement of hydroxyl groups with chlorine, the 4,6-dichloro derivatives being more effective than the monochloro analogues. The effects were further intensified by modification of the amino group at the C-2 position, changing it to the (N,N-dimethylamino)methyleneamino or the formamido ones. There was no substantial difference in the expression of NO-inhibitory effects among derivatives containing distinct types of substituents at the C-5 position (hydrogen, methyl, ethyl, propyl, butyl, phenyl, and benzyl). In contrast to NO, larger substituents then methyl were required to inhibit PGE2 production. Overall, no significant correlation between the extent of NO and PGE2 suppression was observed. The IC50s of derivatives with the strongest effects on both NO and PGE2 were within the range of 2-10 μM. Their NO-inhibitory potential of pyrimidines was stronger than that of non-steroidal anti-inflammatory drugs (NSAIDs) aspirin and indomethacin. The PGE2-inhibitory effectiveness of pyrimidines was about the same as that of aspirin, but weaker as compared to indomethacin. The NO- and PGE2-inhibitory activity of tested pyrimidines has been found associated with decreased expression of iNOS mRNA and COX-2 mRNA, respectively, and with post-translation interactions. Selected NO-/PGE2-inhibitory derivatives decreased severity of intestinal inflammation in murine model of ulcerative colitis. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Jian; Chen, Caiyu; Ren, Hongmei; Han, Yu; He, Duofen; Zhou, Lin; Hopfer, Ulrich; Jose, Pedro A.; Zeng, Chunyu
2013-01-01
Background The renin–angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT1) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT2) receptor produces the opposite effect. We hypothesized that the AT2 receptor regulates AT1 receptor expression and function in the kidney. Methods and results In immortalized renal proximal tubule (RPT) cells from Wistar–Kyoto rats, CGP42112, an AT2 receptor agonist, decreased AT1 receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT2 receptor on AT1 receptor expression was blocked by the AT2 receptor antagonist, PD123319 (10−6 mol/l), the nitric oxide synthase inhibitor Nw-nitro-l-arginine methyl ester (10−4 mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10−5 mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT1 receptor DNA. Stimulation with Ang II (10−11 mol/l per 30 min) enhanced Na+-K+-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10−7 mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT2 receptor knockout mice; AT1 receptor expression and Ang II-stimulated Na+-K+-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT1/AT2 receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10−7 mol/l per 30 min) treatment increased AT1/AT2 receptor co-immunoprecipitation (P < 0.05). Conclusions These results indicate that the renal AT2 receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT1 receptor expression and function, which may be important in the regulation of sodium excretion and blood pressure. PMID:22504846
Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli
2015-11-03
Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.
Rahaman, Md. Mizanur; Reinders, Fabio G.; Koes, David; Nguyen, Anh T.; Mutchler, Stephanie M.; Sparacino-Watkins, Courtney; Alvarez, Roger A.; Miller, Megan P.; Cheng, Dongmei; Chen, Bill B.; Jackson, Edwin K.; Camacho, Carlos J.; Straub, Adam C.
2015-01-01
NADH cytochrome b5 reductase 3 (CYB5R3) is critical for reductive reactions such as fatty acid elongation, cholesterol biosynthesis, drug metabolism, and methemoglobin reduction. Although the physiological and metabolic importance of CYB5R3 has been established in hepatocytes and erythrocytes, emerging investigations suggest that CYB5R3 is critical for nitric oxide signaling and vascular function. However, advancement toward fully understanding CYB5R3 function has been limited due to a lack of potent small molecule inhibitors. Because of this restriction, we modeled the binding mode of propylthiouracil, a weak inhibitor of CYB5R3 (IC50 = ∼275 μm), and used it as a guide to predict thiouracil-biased inhibitors from the set of commercially available compounds in the ZINC database. Using this approach, we validated two new potent derivatives of propylthiouracil, ZINC05626394 (IC50 = 10.81 μm) and ZINC39395747 (IC50 = 9.14 μm), both of which inhibit CYB5R3 activity in cultured cells. Moreover, we found that ZINC39395747 significantly increased NO bioavailability in renal vascular cells, augmented renal blood flow, and decreased systemic blood pressure in response to vasoconstrictors in spontaneously hypertensive rats. These compounds will serve as a new tool to examine the biological functions of CYB5R3 in physiology and disease and also as a platform for new drug development. PMID:26001785
Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong
2015-06-01
Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.
Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea.
Chen, Xiu-Min; Hu, Chun; Raghubeer, Errol; Kitts, David D
2010-09-01
High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P < 0.01) reduced microbial contamination in both roots and flowers without affecting the phytochemical retention of chicoric and chlorogenic acids, and total alkamide contents. The antioxidant activity of E. purpurea methanol-derived extracts, evaluated in both chemical (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) [ABTS] and oxygen radical absorption capacity [ORAC] assay) and in cell culture models (RAW264, 7 macrophage, H(2)O(2)-induced intracellular oxidation, and lipopolysaccharide [LPS]-induced nitric oxide production), was not adversely affected by the application of HHP at both 2 and 5 min at 600 mPa. Furthermore, HHP did not affect the capacity of E. purpurea extracts to suppress nitric oxide production in LPS-activated macrophage cells. Therefore, our results show that HHP is an effective pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.
[The Nobel Prize for nitric oxide. The unjust exclusion of Dr. Salvador Moncada].
de Berrazueta, J R
1999-04-01
The 1998 Nobel Prize in Physiology and Medicine has been awarded jointly to North-American scientists, Dr Robert F. Furchgott, Louis J. Ignarro and Ferid Murad, for their discoveries in relation to "nitric oxide as a signalling molecule in the cardiovascular system". This has raised an important polemic because of the exclusion the South-American scientist, now nationalized British, Dr. Salvador Moncada. This short historical review examines some of the fundamental contributions to the knowledge in this field. It shows the sequence of the discoveries and the communication of them to the scientific community by the rewarded scientists and by Dr. Moncada. It is based on some fundamental publications in order to better understand this story, which does not coincide with the writing in 1996 by the Lasker Prize Committee, and which in 1998 was re-written again by the Nobel Committee of the Swedish Academy. More than 90 universities, academies and societies have acknowledged Dr. Moncada up to now with priority in the discovery of the fact that nitric oxide is released by endothelial cells, and the revealing of its metabolic way. More than 20,000 citations of their fundamental papers endorse in the scientific community his primacy in this field. Even Robert Furchgott, author of the brilliant discovery of the endothelium derived relaxing factor, that opened this field to the science, declared about the award of the 1998 Nobel Prize: "I feel that the Nobel Prize Committee could have made an exception this year and chosen a fourth person, Salvador Moncada (to share the prize)".
Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina
2015-01-01
Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244
Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm
2013-01-01
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841
USDA-ARS?s Scientific Manuscript database
In this study, the effect of the 80 percent ethanolic extract of corn bran (EECB) on inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells was investigated. The EECB inhibited LPS induced NO production...
Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio
2015-04-30
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj
2010-08-01
We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less
microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3.
Qin, Ji-Zheng; Wang, Shao-Jie; Xia, Chun
2018-06-13
Endothelial nitric oxide synthase (eNOS) encoded by nitric oxide synthase 3 (NOS3), can generate nitric oxide (NO) which serves as an important deterrent to the pathogenesis of thrombosis by modulating the activation, adhesion and aggregate formation of platelets. Three serum miRNAs (miR-195, miR-532 and miR-582) have been suggested as biomarkers for the diagnosis of deep vein thrombosis (DVT), however their potential roles in DVT is not clear. The effect of miRNAs inhibiting the expression of NOS3 was evaluated in vitro. miR-195, miR-532 and miR-582 mimic, inhibitor, and control miRNAs were transfected into endothelial cells. The roles of miR-195, miR-532 and miR-582 regulating the expression of eNOS were evaluated by real-time quantitative PCR, Western Blotting and luciferase reporter assays. NO release was measured by Griess method. We confirmed NOS3 as a direct target of miR-195 and miR-582, which binds to the 3'-UTR of NOS3 mRNA in endothelial cells. A significantly inverse correlation between these two miRNAs and eNOS expression was detected. NO release from endothelial cells was decreased when the expression level of miR-195 and miR-582 was up-regulated. These findings indicated that miR-195 and miR-582 regulated NO release by targeting 3'-UTR of NOS3 post-transcriptionally in endothelial cells. Therefore, miR-195 and miR-582 might play an important role in maintaining endothelial NO bioavailability and could be a novel target for treatment of thrombotic diseases.
Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant
2003-07-11
The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.
Tarjan, Gabor; Haines, G Kenneth; Vesper, Benjamin J; Xue, Jiaping; Altman, Michael B; Yarmolyuk, Yaroslav R; Khurram, Huma; Elseth, Kim M; Roeske, John C; Aydogan, Bulent; Radosevich, James A
2011-02-01
It is not understood why some head and neck squamous cell carcinomas, despite having identical morphology, demonstrate different tumor aggressiveness, including radioresistance. High levels of the free radical nitric oxide (NO) and increased expression of the NO-producing enzyme nitric oxide synthase (NOS) have been implicated in tumor progression. We previously adapted three human tongue cancer cell lines to high NO (HNO) levels by gradually exposing them to increasing concentrations of an NO donor; the HNO cells grew faster than their corresponding untreated ("parent") cells, despite being morphologically identical. Herein we initially characterize the HNO cells and compare the biological properties of the HNO and parent cells. HNO/parent cell line pairs were analyzed for cell cycle distribution, DNA damage, X-ray and ultraviolet radiation response, and expression of key cellular enzymes, including NOS, p53, glutathione S-transferase-pi (GST-pi), apurinic/apyrimidinic endonuclease-1 (APE1), and checkpoint kinases (Chk1, Chk2). While some of these properties were cell line-specific, the HNO cells typically exhibited properties associated with a more aggressive behavior profile than the parent cells (greater S-phase percentage, radioresistance, and elevated expression of GST-pi/APE1/Chk1/Chk2). To correlate these findings with conditions in primary tumors, we examined the NOS, GST-pi, and APE1 expression in human tongue squamous cell carcinomas. A majority of the clinical samples exhibited elevated expression levels of these enzymes. Together, the results herein suggest cancer cells exposed to HNO levels can develop resistance to free radicals by upregulating protective mechanisms, such as GST-pi and APE1. These upregulated defense mechanisms may contribute to their aggressive expression profile.
Laschak, Martin; Spindler, Klaus-Dieter; Schrader, Andres J; Hessenauer, Andrea; Streicher, Wolfgang; Schrader, Mark; Cronauer, Marcus V
2012-03-30
Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Our results suggest that small molecules able to inhibit WNT- and AR-signaling via NO-release represent a promising platform for the development of new compounds for the treatment of CRPC.
2012-01-01
Background Nitric oxide (NO) and its oxidative reaction products have been repeatedly shown to block steroid receptor function via nitrosation of zinc finger structures in the DNA-binding domain (DBD). In consequence NO-donors could be of special interest for the treatment of deregulated androgen receptor(AR)-signaling in castration resistant prostate cancer (CRPC). Methods Prostate cancer (PCa) cells were treated with JS-K, a diazeniumdiolate derivate capable of generating large amounts of intracellular NO following activation by glutathione S-transferase. Generation of NO was determined indirectly by the detection of nitrate in tissue culture medium or by immunodetection of nitrotyrosine in the cytoplasm. Effects of JS-K on intracellular AR-levels were determined by western blotting. AR-dimerization was analyzed by mammalian two hybrid assay, nuclear translocation of the AR was visualized in PCa cells transfected with a green fluorescent AR-Eos fusion protein using fluorescence microscopy. Modulation of AR- and WNT-signalling by JS-K was investigated using reporter gene assays. Tumor cell proliferation following JS-K treatment was measured by MTT-Assay. Results The NO-releasing compound JS-K was shown to inhibit AR-mediated reporter gene activity in 22Rv1 CRPC cells. Inhibition of AR signaling was neither due to an inhibition of nuclear import nor to a reduction in AR-dimerization. In contrast to previously tested NO-donors, JS-K was able to reduce the intracellular concentration of functional AR. This could be attributed to the generation of extremely high intracellular levels of the free radical NO as demonstrated indirectly by high levels of nitrotyrosine in JS-K treated cells. Moreover, JS-K diminished WNT-signaling in AR-positive 22Rv1 cells. In line with these observations, castration resistant 22Rv1 cells were found to be more susceptible to the growth inhibitory effects of JS-K than the androgen dependent LNCaP which do not exhibit an active WNT-signaling pathway. Conclusions Our results suggest that small molecules able to inhibit WNT- and AR-signaling via NO-release represent a promising platform for the development of new compounds for the treatment of CRPC. PMID:22462810
Irizarry, Kristopher J L; Downs, Eileen; Bryden, Randall; Clark, Jory; Griggs, Lisa; Kopulos, Renee; Boettger, Cynthia M; Carr, Thomas J; Keeler, Calvin L; Collisson, Ellen; Drechsler, Yvonne
2017-01-01
Discovering genetic biomarkers associated with disease resistance and enhanced immunity is critical to developing advanced strategies for controlling viral and bacterial infections in different species. Macrophages, important cells of innate immunity, are directly involved in cellular interactions with pathogens, the release of cytokines activating other immune cells and antigen presentation to cells of the adaptive immune response. IFNγ is a potent activator of macrophages and increased production has been associated with disease resistance in several species. This study characterizes the molecular basis for dramatically different nitric oxide production and immune function between the B2 and the B19 haplotype chicken macrophages.A large-scale RNA sequencing approach was employed to sequence the RNA of purified macrophages from each haplotype group (B2 vs. B19) during differentiation and after stimulation. Our results demonstrate that a large number of genes exhibit divergent expression between B2 and B19 haplotype cells both prior and after stimulation. These differences in gene expression appear to be regulated by complex epigenetic mechanisms that need further investigation.
Astashkin, Andrei V; Feng, Changjian
2015-11-12
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum.
Lin, Yuan; Wang, Fei; Yang, Li-Juan; Chun, Ze; Bao, Jin-Ku; Zhang, Guo-Lin
2013-11-01
Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kanugula, Anantha Koteswararao; Gollavilli, Paradesi Naidu; Vasamsetti, Sathish Babu; Karnewar, Santosh; Gopoju, Raja; Ummanni, Ramesh; Kotamraju, Srigiridhar
2014-08-01
Accumulating evidence from in vitro, in vivo, clinical and epidemiological studies shows promising results for the use of statins against many cancers including breast carcinoma. However, the molecular mechanisms responsible for the anti-proliferative and anti-invasive properties of statins still remain elusive. In this study, we investigated the involvement of nitric oxide, iron homeostasis and antioxidant defence mechanisms in mediating the anti-proliferative and anti-invasive properties of hydrophobic statins in MDA-MB-231, MDA-MB-453 and BT-549 metastatic triple negative breast cancer cells. Fluvastatin and simvastatin significantly increased cytotoxicity which was reversed with mevalonate. Interestingly, fluvastatin downregulated transferrin receptor (TfR1), with a concomitant depletion of intracellular iron levels in these cells. Statin-induced effects were mimicked by geranylgeranyl transferase inhibitor (GGTI-298) but not farnesyl transferase inhibitor (FTI-277). Further, it was observed that TfR1 downregulation is mediated by increased nitric oxide levels via inducible nitric oxide synthase (iNOS) expression. NOS inhibitors (asymmetric dimethylarginine and 1400W) counteracted and sepiapterin, a precursor of tetrahydrobiopterin, exacerbated statin-induced depletion of intracellular iron levels. Notably, fluvastatin increased manganese superoxide dismutase (by repressing the transcription factor DNA damage-binding protein 2), catalase and glutathione which, in turn, diminished H2 O2 levels. Fluvastatin-induced downregulation of TfR1, matrix metalloproteinase-2, -9 and inhibition of invasion were reversed in the presence of aminotriazole, a specific inhibitor of catalase. Finally, we conclude that fluvastatin, by altering iron homeostasis, nitric oxide generation and antioxidant defence mechanisms, induces triple negative breast cancer cell death. © 2014 FEBS.
Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi
2018-04-01
The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A.; Byrd, John C.; Carson, William E.
2016-01-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells that expand in tumor bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wildtype mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo. Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. PMID:26880800
Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A; Byrd, John C; Carson, William E
2016-04-15
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR. ©2016 American Association for Cancer Research.
Mo, Xuanrong; Chen, Jie; Wang, Xinjuan; Pan, Zhenyu; Ke, Yuping; Zhou, Zhidong; Xie, Jiangwen; Lv, Guoju; Luo, Xinjing
2018-01-01
Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, has been implicated in the inflammation mediated by macrophages and endothelial cells by regulating the expression of inflammatory mediators. Here, we investigated whether KLF4 affects the expression of inducible nitric oxide synthase (iNOS), an important inflammatory mediator, in the human RA fibroblast-like synovial cell line MH7A. A pcDNA3.1-KLF4 plasmid or short interfering RNA KLF4 was transfected into MH7A cells, and the iNOS expression and nitric oxide (NO) production were analyzed by quantitative PCR, immunoblotting, and nitrite measurement. The iNOS promoter activity was determined by luciferase assay. The results showed overexpression of KLF4 increased iNOS expression and NO production in the presence or absence of TNF-α. Conversely, KLF4 knockdown markedly reduced iNOS expression and NO production induced by TNF-α. KLF4 activated the transcription activity of iNOS promoter in MH7A cells stimulated by TNF-α. This study indicates that KLF4 is important for regulating the expression of iNOS by TNF-α in human synoviocytes.
Feedback inhibition of nitric oxide synthase activity by nitric oxide.
Assreuy, J.; Cunha, F. Q.; Liew, F. Y.; Moncada, S.
1993-01-01
1. A murine macrophage cell line, J774, expressed nitric oxide (NO) synthase activity in response to interferon-gamma (IFN-gamma, 10 u ml-1) plus lipopolysaccharide (LPS, 10 ng ml-1). The enzyme activity was first detectable 6 h after incubation, peaked at 12 h and became undetectable after 48 h. 2. The decline in the NO synthase activity was not due to inhibition by stable substances secreted by the cells into the culture supernatant. 3. The decline in the NO synthase activity was significantly slowed down in cells cultured in a low L-arginine medium or with added haemoglobin, suggesting that NO may be involved in a feedback inhibitory mechanism. 4. The addition of NO generators, S-nitroso-acetyl-penicillamine (SNAP) or S-nitroso-glutathione (GSNO) markedly inhibited the NO synthase activity in a dose-dependent manner. The effect of NO on the enzyme was not due to the inhibition of de novo protein synthesis. 5. SNAP directly inhibited the inducible NO synthase extracted from activated J774 cells, as well as the constitutive NO synthase extracted from the rat brain. 6. The enzyme activity of J774 cells was not restored after the removal of SNAP by gel filtration, suggesting that NO inhibits NO synthase irreversibly. PMID:7682140
Role of TGF-β1 and nitric oxide in the bystander response of irradiated glioma cells
Shao, C; Folkard, M; Prise, KM
2010-01-01
The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor β1 (anti-TGF-β1), indicating that NO and TGF-β1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF-β1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF-β1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF-β1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF-β1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF-β1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells. PMID:17621264
Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production.
Long, Jodi H D; Lira, Vitor A; Soltow, Quinlyn A; Betters, Jenna L; Sellman, Jeff E; Criswell, David S
2006-01-01
The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.
Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C
1999-10-01
Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.
Zhou, Jingran; Wu, Ruiqiong; High, Anthony A; Slaughter, Clive A; Finkelstein, David; Rehg, Jerold E; Redecke, Vanessa; Häcker, Hans
2011-11-01
Toll-like receptors (TLRs) are expressed on innate immune cells and trigger inflammation upon detection of pathogens and host tissue injury. TLR-mediated proinflammatory-signaling pathways are counteracted by partially characterized anti-inflammatory mechanisms that prevent exaggerated inflammation and host tissue damage as manifested in inflammatory diseases. We biochemically identified a component of TLR-signaling pathways, A20-binding inhibitor of NF-κB (ABIN1), which recently has been linked by genome-wide association studies to the inflammatory diseases systemic lupus erythematosus and psoriasis. We generated ABIN1-deficient mice to study the function of ABIN1 in vivo and during TLR activation. Here we show that ABIN1-deficient mice develop a progressive, lupus-like inflammatory disease characterized by expansion of myeloid cells, leukocyte infiltrations in different parenchymatous organs, activated T and B lymphocytes, elevated serum Ig levels, and the appearance of autoreactive antibodies. Kidneys develop glomerulonephritis and proteinuria, reflecting tissue injury. Surprisingly, ABIN1-deficient macrophages exhibit normal regulation of major proinflammatory signaling pathways and mediators but show selective deregulation of the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) and its target genes, such as colony-stimulating factor 3 (Csf3), nitric oxide synthase, inducible (Nos2), and S100 calcium-binding protein A8 (S100a8). Their gene products, which are intimately linked to innate immune cell expansion (granulocyte colony-stimulating factor), cytotoxicity (inducible nitric oxide synthase), and host factor-derived inflammation (S100A8), may explain, at least in part, the inflammatory phenotype observed. Together, our data reveal ABIN1 as an essential anti-inflammatory component of TLR-signaling pathways that controls C/EBPβ activity.
Hamed, Saher; Alshiek, Jonia; Aharon, Anat; Brenner, Benjamin; Roguin, Ariel
2010-07-01
Endothelial progenitor cells (EPCs) contribute to the maintenance of vascular endothelial function. The moderate consumption of red wine provides cardiovascular protection. We investigated the underlying molecular mechanism of EPC migration in young, healthy individuals who drank red wine. Fourteen healthy volunteers consumed 250 mL red wine daily for 21 consecutive days. Vascular endothelial function, plasma stromal cell-derived factor 1alpha (SDF1alpha) concentrations, and the number, migration, and nitric oxide production of EPCs were determined before and after the daily consumption of red wine. EPCs were glucose stressed to study the effect of red wine on EPC migration, proliferation, and senescence and to study the expressions of CXC chemokine receptor 4 (CXCR4) and members of the Pi3K/Akt/eNOS (phosphatidylinositol 3-kinase/protein kinase B/endothelial nitric oxide synthase) signaling pathway by Western blotting. Daily red wine consumption for 21 consecutive days significantly enhanced vascular endothelial function. Although plasma SDF1alpha concentrations were unchanged, EPC count and migration were significantly increased after this 21-d consumption period. Red wine increased the migration, proliferation, CXCR4 expression, and activity of the Pi3K/Akt/eNOS signaling pathway and decreased the extent of apoptosis in glucose-stressed EPCs. The results of the present study indicate that red wine exerts its effect through the up-regulation of CXCR4 expression and activation of the SDF1alpha/CXCR4/Pi3K/Akt/eNOS signaling pathway, which results in increased EPC migration and proliferation and decreased extent of apoptosis. Our findings suggest that these effects could be linked to the mechanism of cardiovascular protection that is associated with the regular consumption of red wine.
Effect of streptavidin-biotin on endothelial vasoregulation and leukocyte adhesion.
Chan, Bernard P; Reichert, William M; Truskey, George A
2004-08-01
The current study examines whether the adhesion promoting arginine-glycine-aspartate-streptavidin mutant (RGD-SA) also affects two important endothelial cell (EC) functions in vitro: vasoregulation and leukocyte adhesion. EC adherent to surfaces via fibronectin (Fn) or Fn plus RGD-SA were subjected to laminar shear flow and media samples were collected over a period of 4h to measure the concentration of nitric oxide (NO), prostacyclin (PGI(2)), and endothelin-1 (ET-1). Western blot analysis was used to quantify the levels of endothelial-derived nitric oxide synthase (eNOS) and cyclooxygenase II (COX II). In a separate set of experiments, fluorescent polymorphonuclear leukocyte (PMN) adhesion to EC was quantified for EC with and without exposure to flow preconditioning. When cell adhesion was supplemented with the SA-biotin system, flow-induced production of NO and PGI(2) increased significantly relative to cells adherent on Fn alone. Previous exposure of EC to shear flow also significantly decreased PMN attachment to SA-biotin supplemented EC, but only after 2h of exposure to shear flow. The observed decrease in PMN-EC adhesion was negated by NG-nitro-L-arginine methyl ester (L-NAME), an antagonist of NO synthesis, but not by indomethacin, an inhibitor to PGI(2) synthesis, indicating the induced effect of PMN-EC interaction is primarily NO-dependent. Results from this study suggest that the use of SA-biotin to supplement EC adhesion encourages vasodilation and PMN adhesion in vitro under physiological shear-stress conditions. We postulate that the presence of SA-biotin more efficiently transmits the shear-stress signal and amplifies the downstream events including the NO and PGI(2) release and leukocyte-EC inhibition. These results may have ramifications for reducing thrombus-induced vascular graft failure.
Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng
2016-01-01
For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526
Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3
NASA Astrophysics Data System (ADS)
Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang
2016-09-01
An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.
Cancer cell metabolism and the modulating effects of nitric oxide.
Chang, Ching-Fang; Diers, Anne R; Hogg, Neil
2015-02-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. Copyright © 2015. Published by Elsevier Inc.
Kato, Gregory J.
2009-01-01
A hemolysis-linked subphenotype of sickle cell disease (SCD), characterized by pulmonary hypertension, stroke, priapism and leg ulcers, is associated with decreased nitric oxide bioavailability and vasculopathy. Vasculopathy appears to have a multifactorial etiology, including mechanisms primarily that involve deficient nitric oxide (NO) signaling, but also involving altered function of NO synthase related to substrate availability and cooperating factors such as apolipoproteins. Improved understanding of the vascular pathophysiology of SCD has led to new vascular targets for translational research in SCD. This growing vascular therapeutics field in SCD is complementary to the ongoing efforts to reduce the morbidity of vaso-occlusive pain crisis. This presentation will review the current biology and translational clinical development of novel small molecules targeting sickle cell vasculopathy. Strategies targeting the heme-oxygenase-carbon monoxide pathway, the arginine-NO synthase-cGMP-phosphodiesterase 5 pathway, the nitrate-nitrite-NO pathway, and the apolipoprotein A-I pathways will be reviewed. In this context, current clinical trials of inhaled NO, CO, nitrite, sildenafil and apoA-I mimetics will be discussed. PMID:19074079
Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.
2016-01-01
K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864
Cancer Cell Metabolism and the Modulating Effects of Nitric Oxide
Chang, Ching-Fang; Diers, Anne R.; Hogg, Neil
2016-01-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. PMID:25464273
Bai, Fan; Makino, Toshiaki; Kono, Keiko; Nagatsu, Akito; Ono, Takahiko; Mizukami, Hajime
2013-10-01
Nitric oxide (NO) is a crucial vasodilator produced by nitric oxide synthase (NOS). Asymmetric dimethylarginine (ADMA) is an endogenous NOS inhibitor and mainly catabolized by dimethylarginine dimethylaminohydrolase (DDAH). As we reported, the antihypertensive effect of shichimotsukokato (SKT), a formula of Japanese traditional kampo medicine consisting of 7 crude drugs, in 5/6 nephrectomized rats, is mediated by the DDAH-ADMA-NO pathway. Our present study aimed to explore the effective compounds of SKT using Madin Darby Canine Kidney (MDCK) II cells. We isolated two isoflavones, calycosin and formononetin from astragalus root, one of the components of SKT, which can promote DDAH2 protein and mRNA expressions in MDCK II cells. The neuronal NOS levels were also upregulated by the treatment of calycosin and formononetin. These results suggest that calycosin and formononetin could be the active ingredients of astragalus root and SKT that cause antihypertensive effects. The increased levels of DDAH2 and NOS may enhance NO production, decrease ADMA level and improve endothelial and cardiovascular dysfunction.
Nitric Oxide as a Mediator of Oxidant Lung Injury Due to Paraquat
NASA Astrophysics Data System (ADS)
Berisha, Hasan I.; Pakbaz, Hedayatollah; Absood, Afaf; Said, Sami I.
1994-08-01
At low concentrations, nitric oxide is a physiological transmitter, but in excessive concentrations it may cause cell and tissue injury. We report that in acute oxidant injury induced by the herbicide paraquat in isolated guinea pig lungs, nitric oxide synthesis was markedly stimulated, as evidenced by increased levels of cyclic GMP in lung perfusate and of nitrite and L-citrulline production in lung tissue. All signs of injury, including increased airway and perfusion pressures, pulmonary edema, and protein leakage into the airspaces, were dose-dependently attenuated or totally prevented by either N^G-nitro-L-arginine methyl ester or N^ω-nitro-L-arginine, selective and competitive inhibitors of nitric oxide synthase. Protection was reversed by excess L-arginine but not by its enantiomer D-arginine. When blood was added to the lung perfusate, the paraquat injury was moderated or delayed as it was when paraquat was given to anesthetized guinea pigs. The rapid onset of injury and its failure to occur in the absence of Ca2+ suggest that constitutive rather than inducible nitric oxide synthase was responsible for the stimulated nitric oxide synthesis. The findings indicate that nitric oxide plays a critical role in the production of lung tissue injury due to paraquat, and it may be a pathogenetic factor in other forms of oxidant tissue injury.
Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam
2016-01-01
The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.
Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan
2017-06-01
Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender
2018-03-01
Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Red blood cells serve as intravascular carriers of myeloperoxidase.
Adam, Matti; Gajdova, Silvie; Kolarova, Hana; Kubala, Lukas; Lau, Denise; Geisler, Anne; Ravekes, Thorben; Rudolph, Volker; Tsao, Philip S; Blankenberg, Stefan; Baldus, Stephan; Klinke, Anna
2014-09-01
Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ostera, Graciela; Tokumasu, Fuyuki; Oliveira, Fabiano; Sa, Juliana; Furuya, Tetsuya; Teixeira, Clarissa; Dvorak, James
2008-01-01
Nitric oxide (NO) has diverse biological functions. Numerous studies have documented NO’s biosynthetic pathway in a wide variety of organisms. Little is known, however, about NO production in intraerythrocytic Plasmodium falciparum. Using diaminorhodamine-4-methyl acetoxymethylester (DAR-4M AM), a fluorescent indicator, we obtained direct evidence of NO and NO-derived reactive nitrogen species (RNS) production in intraerythrocytic P. falciparum parasites, as well as in isolated food vacuoles from trophozoite stage parasites. We preliminarily identified two gene sequences that might be implicated in NO synthesis in intraerythrocytic P. falciparum. We showed localization of the protein product of one of these two genes, a molecule that is structurally similar to a plant nitrate reductase, in trophozoite food vacuole membranes. We confirmed previous reports on the antiproliferative effect of NOS (nitric oxide synthase) inhibitors in P.falciparum cultures; however, we did not obtain evidence that NOS inhibitors had the ability to inhibit RNS production or that there is an active NOS in mature forms of the parasite. We concluded that a nitrate reductase activity produce NO and NO-derived RNS in or around the food vacuole in P. falciparum parasites. The food vacuole is a critical parasitic compartment involved in hemoglobin degradation, heme detoxification and a target for antimalarial drug action. Characterization of this relatively unexplored synthetic activity could provide important clues into poorly understood metabolic processes of the malaria parasite, PMID:18504040
Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying
2013-05-22
A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.
Guan, Na N.; Thor, Anna; Hallén, Katarina; Wiklund, N. Peter; Gustafsson, Lars E.
2014-01-01
Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1–5 µM in the presence of scopolamine 5–30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor. PMID:25084114
Guan, Na N; Thor, Anna; Hallén, Katarina; Wiklund, N Peter; Gustafsson, Lars E
2014-01-01
Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1-5 µM in the presence of scopolamine 5-30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor.
Romanowicz, Genevieve E.; He, Weilue; Nielsen, Matthew; Frost, Megan C.
2013-01-01
Nitric oxide (NO) is an ubiquitous signaling molecule of intense interest in many physiological processes. Nitric oxide is a highly reactive free radical gas that is difficult to deliver with precise control over the level and timing that cells actually experience. We describe and characterize a device that allows tunable fluxes and patterns of NO to be generated across the surface upon which cells are cultured. The system is based on a quartz microscope slide that allows for controlled light levels to be applied to a previously described photosensitive NO-releasing polydimethylsiloxane (PDMS). Cells are cultured in separate wells that are either NO-releasing or a chemically similar PDMS that does not release NO. Both wells are then top coated with DowCorning RTV-3140 PDMS and a polydopamine/gelatin layer to allow cells to grow in the culture wells. When the waveguide is illuminated, the surface of the quartz slide propagates light such that the photosensitive polymer is evenly irradiated and generates NO across the surface of the cell culture well and no light penetrates into the volume of the wells where cells are growing. Mouse smooth muscle cells (MOVAS) were grown in the system in a proof of principle experiment, whereby 60% of the cells were present in the NO-releasing well compared to control wells after 17 h. The compelling advantage of illuminating the NO-releasing polymers with the waveguide system is that light can be used to tunably control NO release while avoiding exposing cells to optical radiation. This device provides means to quantitatively control the surface flux, timing and duration of NO cells experience and allows for systematic study of cellular response to NO generated at the cell/surface interface in a wide variety of studies. PMID:24024168
Xue, Yang; Chen, Qingqing; Ding, Tingting; Sun, Jiao
2014-01-01
The liver has been shown to be a primary target organ for SiO2 nanoparticles in vivo, and may be highly susceptible to damage by these nanoparticles. However, until now, research focusing on the potential toxic effects of SiO2 nanoparticles on mitochondria-associated energy metabolism in hepatocytes has been lacking. In this work, SiO2 nanoparticles 20 nm in diameter were evaluated for their ability to induce dysfunction of mitochondrial energy metabolism. First, a buffalo rat liver (BRL) cell line was directly exposed to SiO2 nanoparticles, which induced cytotoxicity and mitochondrial damage accompanied by decreases in mitochondrial dehydrogenase activity, mitochondrial membrane potential, enzymatic expression in the Krebs cycle, and activity of the mitochondrial respiratory chain complexes I, III and IV. Second, the role of rat-derived Kupffer cells was evaluated. The supernatants from Kupffer cells treated with SiO2 nanoparticles were transferred to stimulate BRL cells. We observed that SiO2 nanoparticles had the ability to activate Kupffer cells, leading to release of tumor necrosis factor-α, nitric oxide, and reactive oxygen species from these cells and subsequently to inhibition of mitochondrial respiratory chain complex I activity in BRL cells. PMID:24959077
Otero, Miguel; Lago, Rocío; Lago, Francisca; Reino, Juan Jesús Gomez; Gualillo, Oreste
2005-01-01
The objective of the present study was to investigate the effect of leptin, alone or in combination with IL-1, on nitric oxide synthase (NOS) type II activity in vitro in human primary chondrocytes, in the mouse chondrogenic ATDC5 cell line, and in mature and hypertrophic ATDC5 differentiated chondrocytes. For completeness, we also investigated the signalling pathway of the putative synergism between leptin and IL-1. For this purpose, nitric oxide production was evaluated using the Griess colorimetric reaction in culture medium of cells stimulated over 48 hours with leptin (800 nmol/l) and IL-1 (0.025 ng/ml), alone or combined. Specific pharmacological inhibitors of NOS type II (aminoguanidine [1 mmol/l]), janus kinase (JAK)2 (tyrphostin AG490 and Tkip), phosphatidylinositol 3-kinase (PI3K; wortmannin [1, 2.5, 5 and 10 μmol/l] and LY294002 [1, 2.5, 5 and 10 μmol/l]), mitogen-activated protein kinase kinase (MEK)1 (PD098059 [1, 5, 10, 20 and 30 μmol/l]) and p38 kinase (SB203580 [1, 5, 10, 20 and 30 μmol/l]) were added 1 hour before stimulation. Nitric oxide synthase type II mRNA expression in ATDC5 chondrocytes was investigated by real-time PCR and NOS II protein expression was analyzed by western blot. Our results indicate that stimulation of chondrocytes with IL-1 results in dose-dependent nitric oxide production. In contrast, leptin alone was unable to induce nitric oxide production or expression of NOS type II mRNA or its protein. However, co-stimulation with leptin and IL-1 resulted in a net increase in nitric oxide concentration over IL-1 challenge that was eliminated by pretreatment with the NOS II specific inhibitor aminoguanidine. Pretreatment with tyrphostin AG490 and Tkip (a SOCS-1 mimetic peptide that inhibits JAK2) blocked nitric oxide production induced by leptin/IL-1. Finally, wortmannin, LY294002, PD098059 and SB203580 significantly decreased nitric oxide production. These findings were confirmed in mature and hypertrophic ATDC5 chondrocytes, and in human primary chondrocytes. This study indicates that leptin plays a proinflammatory role, in synergy with IL-1, by inducing NOS type II through a signalling pathway that involves JAK2, PI3K, MEK-1 and p38 kinase. PMID:15899045
Kim, Hyung Sik; Lee, Jin Woo; Jang, Hari; Le, Thi Phuong Linh; Kim, Jun Gu; Lee, Moon Soon; Hong, Jin Tae; Lee, Mi Kyeong; Hwang, Bang Yeon
2018-02-01
A new phenolic amide, named cis-terrestriamide (7), together with ten known compounds (1-6, 8-11), were isolated from the methanolic extract of the fruits of Tribulus terrestris. The structure of 7 was elucidated on the basis of extensive analyses of 1D and 2D nuclear magnetic resonance spectroscopic and high resolution mass spectrometry data. Compounds 1, 2, 5, 6, 8, 9, and 11 exhibited inhibitory effects on the lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 cells, with IC 50 values of 18.7-49.4 μM.
NASA Technical Reports Server (NTRS)
Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M.
1999-01-01
Nitric oxide (NO) is an inter- and intracellular messenger involved in a variety of physiologic and pathophysiologic conditions. The effect of two NO donors, sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) and their effect on myoblast proliferation was examined. Both donors stimulated an increase in myoblast cell number over a range (1-10 microM) of donor concentrations. However, 50 microM SNAP inhibited myoblast proliferation. Cell numbers from cultures treated with degraded 10 microM SNAP were equivalent to the control. Therefore, it appears NO can stimulate as well as inhibit myoblast proliferation.
Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro
2017-02-01
Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.
Ried, Karin; Fakler, Peter
2014-01-01
Garlic supplements have shown promise in the treatment of uncontrolled hypertension, lowering blood pressure (BP) by about 10 mmHg systolic and 8 mmHg diastolic, similar to standard BP medication. Aged garlic extract, which contains S-allylcysteine as the bioactive sulfur compound, in particular is standardizable and highly tolerable, with little or no known harmful interaction when taken with other BP-reducing or blood-thinning medication. Here we describe biologically plausible mechanisms of garlic’s BP-lowering effect. Garlic-derived polysulfides stimulate the production of the vascular gasotransmitter hydrogen sulfide (H2S) and enhance the regulation of endothelial nitric oxide (NO), which induce smooth muscle cell relaxation, vasodilation, and BP reduction. Several dietary and genetic factors influence the efficiency of the H2S and NO signaling pathways and may contribute to the development of hypertension. Sulfur deficiency might play a part in the etiology of hypertension, and could be alleviated with supplementation of organosulfur compounds derived from garlic. PMID:25525386
Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong
2015-01-01
In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315
Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi
2003-01-01
Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.
[Antiplatelet properties of nitrogen monoxide].
Adrie, C
1996-11-01
Nitric (correction of nitrous) oxide (NO) plays a fundamental part in the haemostatic equilibrium between the endothelium and platelets, an equilibrium of established clinical importance in cardiovascular disease. NO stimulates the enzyme guanylate cyclase which is responsible for synthesis of GMPc, the increase of which results in platelet inhibition. Synthesis of NO may have endogenous auto or paracrine origine from platelets or endothelial cells and participates in the local regulation of platelet function in association with other products of endothelial or platelet synthesis. Exogenous administration is common in therapeutics either in molecules which release NO (nitrate derivatives, sodium nitropruside, molsidomine, etc) or by NO gas administered by inhalation. The antiplatelet effect of NO has been clearly demonstrated in vitro, in vivo or ex vivo, in animals and humans, and probably explains, at least partially, the efficacy of nitrate derivatives in ischaemic coronary artery disease. Nevertheless, the platelet inhibition observed with intravenous NO releasing drugs is associated with potentially harmful systemic hypotension. Platelet inhibition by inhalation of NO could be an alternative means of avoiding this unwanted effect.
Nitric oxide enhances Th9 cell differentiation and airway inflammation.
Niedbala, Wanda; Besnard, Anne-Gaelle; Nascimento, Daniele Carvalho; Donate, Paula Barbim; Sonego, Fabiane; Yip, Edwin; Guabiraba, Rodrigo; Chang, Hyun-Dong; Fukada, Sandra Y; Salmond, Robert J; Schmitt, Edgar; Bopp, Tobias; Ryffel, Bernhard; Liew, Foo Y
2014-08-07
Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody. Nos2(-/-) mice had less Th9 cells and developed attenuated eosinophilia during OVA-induced airway inflammation compared with wild-type mice. Our data demonstrate that NO is an important endogenous inducer of Th9 cells and provide a hitherto unrecognized mechanism for NO-mediated airway inflammation via the expansion of Th9 cells.
Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc
2016-09-15
We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.
Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao
2017-03-11
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Inhibition of neuronal nitric oxide synthase in ovine model of acute lung injury*
Enkhbaatar, Perenlei; Connelly, Rhykka; Wang, Jianpu; Nakano, Yoshimitsu; Lange, Matthias; Hamahata, Atsumori; Horvath, Eszter; Szabo, Csaba; Jaroch, Stefan; Hölscher, Peter; Hillmann, Margrit; Traber, Lillian D.; Schmalstieg, Frank C.; Herndon, David N.; Traber, Daniel L.
2013-01-01
Objective Acute respiratory distress syndrome/acute lung injury is a serious complication of burn patients with concomitant smoke inhalation injury. Nitric oxide has been shown to play a major role in pulmonary dysfunction from thermal damage. In this study, we have tested the hypothesis that inhibition of neuronal nitric oxide synthase could ameliorate the severity of acute lung injury using our well-established ovine model of cutaneous burn and smoke inhalation. Design Prospective, randomized, controlled, experimental animals study. Setting Investigational intensive care unit at university hospital. Subjects Adult female sheep Interventions Female sheep (n = 16) were surgically prepared for the study. Seven days after surgery, all sheep were randomly allocated into three study groups: sham (noninjured, nontreated, n = 6); control (injured, treated with saline, n = 6); and neuronal nitric oxide synthase (injured, treated with specific neuronal nitric oxide synthase inhibitor, ZK 234238 (n = 4). Control and neuronal nitric oxide synthase groups were given a cutaneous burn (40% of total body surface, third degree) and insufflated with cotton smoke (48 breaths, <40°C) under halothane anesthesia. Animals in sham group received fake injury also under halothane anesthesia. After injury or fake injury procedure, all sheep were placed on ventilators and resuscitated with lactated Ringer's solution. Neuronal nitric oxide synthase group was administered with continuous infusion of ZK 234238 started 1 hr postinjury with a dose of 100 μg/kg/hr. Sham and control groups received same amount of saline. Measurements and Main Results Cardiopulmonary hemodynamics monitored during the 24-hr experimental time period was stable in the sham group. Control sheep developed multiple signs of acute lung injury. This pathophysiology included decreased pulmonary gas exchange and lung compliance, increased pulmonary edema, and inflammatory indices, such as interleukin-8. Treatment of injured sheep with neuronal nitric oxide synthase inhibitor attenuated all the observed pulmonary pathophysiology. Conclusions The results provide definitive evidence that inhibition of neuronal nitric oxide synthase-derived excessive nitric oxide may be a novel and beneficial treatment strategy for pulmonary pathology in burn victims with smoke inhalation injury. PMID:19050603
Abbas, Malak; Jesel, Laurence; Auger, Cyril; Amoura, Lamia; Messas, Nathan; Manin, Guillaume; Rumig, Cordula; León-González, Antonio J; Ribeiro, Thais P; Silva, Grazielle C; Abou-Merhi, Raghida; Hamade, Eva; Hecker, Markus; Georg, Yannick; Chakfe, Nabil; Ohlmann, Patrick; Schini-Kerth, Valérie B; Toti, Florence; Morel, Olivier
2017-01-17
Microparticles (MPs) have emerged as a surrogate marker of endothelial dysfunction and cardiovascular risk. This study examined the potential of MPs from senescent endothelial cells (ECs) or from patients with acute coronary syndrome (ACS) to promote premature EC aging and thrombogenicity. Primary porcine coronary ECs were isolated from the left circumflex coronary artery. MPs were prepared from ECs and venous blood from patients with ACS (n=30) and from healthy volunteers (n=4) by sequential centrifugation. The level of endothelial senescence was assessed as senescence-associated β-galactosidase activity using flow cytometry, oxidative stress using the redox-sensitive probe dihydroethidium, tissue factor activity using an enzymatic Tenase assay, the level of target protein expression by Western blot analysis, platelet aggregation using an aggregometer, and shear stress using a cone-and-plate viscometer. Senescence, as assessed by senescence-associated β-galactosidase activity, was induced by the passaging of porcine coronary artery ECs from passage P1 to P4, and was associated with a progressive shedding of procoagulant MPs. Exposure of P1 ECs to MPs shed from senescent P3 cells or circulating MPs from ACS patients induced increased senescence-associated β-galactosidase activity, oxidative stress, early phosphorylation of mitogen-activated protein kinases and Akt, and upregulation of p53, p21, and p16. Ex vivo, the prosenescent effect of circulating MPs from ACS patients was evidenced only under conditions of low shear stress. Depletion of endothelial-derived MPs from ACS patients reduced the induction of senescence. Prosenescent MPs promoted EC thrombogenicity through tissue factor upregulation, shedding of procoagulant MPs, endothelial nitric oxide synthase downregulation, and reduced nitric oxide-mediated inhibition of platelet aggregation. These MPs exhibited angiotensin-converting enzyme activity and upregulated AT1 receptors and angiotensin-converting enzyme in P1 ECs. Losartan, an AT1 receptor antagonist, and inhibitors of either mitogen-activated protein kinases or phosphoinositide 3-kinase prevented the MP-induced endothelial senescence. These findings indicate that endothelial-derived MPs from ACS patients induce premature endothelial senescence under atheroprone low shear stress and thrombogenicity through angiotensin II-induced redox-sensitive activation of mitogen-activated protein kinases and phosphoinositide 3-kinase/Akt. They further suggest that targeting endothelial-derived MP shedding and their bioactivity may be a promising therapeutic strategy to limit the development of an endothelial dysfunction post-ACS. © 2016 American Heart Association, Inc.
MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.
Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia
2017-12-02
Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Yen-Ta; Yang, Chih-Chau; Zhen, Yen-Yi; Wallace, Christopher Glenn; Yang, Jenq-Lin; Sun, Cheuk-Kwan; Tsai, Tzu-Hsien; Sheu, Jiunn-Jye; Chua, Sarah; Chang, Chia-Lo; Cho, Chung-Lung; Leu, Steve; Yip, Hon-Kan
2013-05-31
This study tested the hypothesis that cyclosporine (CsA)-supported syngeneic adipose-derived mesenchymal stem cell (ADMSC) therapy offered superior attenuation of acute ischemia-reperfusion (IR) kidney injury to either therapy alone. Adult Sprague-Dawley rats (n = 40) were equally divided into group 1 (sham controls), group 2 (IR injury), group 3 (IR + CsA (20 mg/kg at 1 and 24 hours after procedure)), group 4 (syngeneic ADMSC (1.2×106) at 1, 6 and 24 hours after procedure), and group 5 (IR + CsA-ADMSC). By 72 hours after the IR procedure, the creatinine level and the ratio of urine protein to creatinine were highest in group 2 and lowest in group 1, and significantly higher in groups 3 and 4 than in group 5 (all P <0.05 for inter-group comparisons), but showed no differences between groups 3 and 4 (P >0.05). The inflammatory biomarkers at mRNA (matrix metalloproteinase-9, RANTES, TNF-α), protein (TNF-α, NF-κB, intercellular adhesion molecule-1, platelet-derived growth factor), and cellular (CD68+) levels of IR kidney showed a similar pattern compared with that of creatinine in all groups (all P <0.05 for inter-group comparisons). The protein expressions of oxidative stress (oxidized protein), reactive oxygen species (NADPH oxidases NOX-1, NOX-2), apoptosis (Bcl-2-associated X protein, caspase-3 and poly(ADP-ribose) polymerase) and DNA damage (phosphorylated H2A histone family member X-positive, proliferating cell nuclear antigen-positive cells) markers exhibited a pattern similar to that of inflammatory mediators amongst all groups (all P <0.05 for inter-group comparisons). Expressions of antioxidant biomarkers at cellular (glutathione peroxidase, glutathione reductase, heme oxygenase-1 (HO-1)) and protein (NADPH dehydrogenase (quinone)-1, HO-1, endothelial nitric oxide synthase) levels, and endothelial progenitor cell markers (C-X-C chemokine receptor type 4-positive, stromal cell-derived factor-1α-positive) were lowest in groups 1 and 2, higher in groups 3 and 4, and highest in group 5 (all P <0.05 for inter-group comparisons). Combination therapy using CsA plus ADMSCs offers improved protection against acute IR kidney injury.
Zhou, Feng; Hui, Yu; Xin, Hua; Xu, Yong-De; Lei, Hong-En; Yang, Bi-Cheng; Guan, Rui-Li; Li, Meng; Hou, Jian-Quan; Xin, Zhong-Cheng
2017-01-01
This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors. PMID:27345005
Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai
2017-09-01
Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Real time and in vivo monitoring of nitric oxide by electrochemical sensors--from dream to reality.
Zhang, Xueji
2004-09-01
Nitric oxide is a key intercellular messenger in the human and animal bodies. The identification of nitric oxide (NO) as the endothelium-derived relaxing factor (EDRF) has driven an enormous effort to further elucidate the chemistry, biology and therapeutic actions of this important molecule. It has found that nitric oxide is involved in many disease states such as such as chronic heart failure, stroke, impotent (erectile dysfunction). The bioactivity of nitric oxide intrinsically linked to its diffusion from its site production to the sites of action. Accurate reliable in real time detection of NO in various biological systems is therefore crucial to understanding its biological role. However, the instability of NO in aqueous solution and its high reactivity with other molecules can cause difficulties for its measurement depending on the detection method employed. Although a variety of methods have been described to measure NO in aqueous environments, it is now generally accepted that electrochemical (amperometric) detection using NO-specific electrodes is the most reliable and sensitive technique available for real-time in situ detection of NO. In 1992 the first commercial NO electrode-based amperometric detection system was developed by WPI. The system has been used successfully for a number of years in a wide range of research applications, both in vitro and in vivo. Recently, many new electrochemical nitric sensors have been invented and commercialized. Here we describe some of the background principles in NO sensors design, methodology and their applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkina, Svetlana I.; Molotkovsky, Julian G.; Ullrich, Volker
2005-04-01
We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester,more » neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.« less
Warke, Vishal G; Nambiar, Madhusoodana P; Krishnan, Sandeep; Tenbrock, Klaus; Geller, David A; Koritschoner, Nicolas P; Atkins, James L; Farber, Donna L; Tsokos, George C
2003-04-25
Nitric oxide is a ubiquitous free radical that plays a key role in a broad spectrum of signaling pathways in physiological and pathophysiological processes. We have explored the transcriptional regulation of inducible nitric-oxide synthase (iNOS) by Krüppel-like factor 6 (KLF6), an Sp1-like zinc finger transcription factor. Study of serial deletion constructs of the iNOS promoter revealed that the proximal 0.63-kb region can support a 3-6-fold reporter activity similar to that of the full-length 16-kb promoter. Within the 0.63-kb region, we identified two CACCC sites (-164 to -168 and -261 to -265) that bound KLF6 in both electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutation of both these sites abrogated the KLF6-induced enhancement of the 0.63-kb iNOS promoter activity. The binding of KLF6 to the iNOS promoter was significantly increased in Jurkat cells, primary T lymphocytes, and COS-7 cells subjected to NaCN-induced hypoxia, heat shock, serum starvation, and phorbol 12-myristate 13-acetate/ ionophore stimulation. Furthermore, in KLF6-transfected and NaCN-treated COS-7 cells, there was a 3-4-fold increase in the expression of the endogenous iNOS mRNA and protein that correlated with increased production of nitric oxide. These findings indicate that KLF6 is a potential transactivator of the human iNOS promoter in diverse pathophysiological conditions.
Treatment of sunitinib-induced hypertension in solid tumor by nitric oxide donors☆
León-Mateos, L.; Mosquera, J.; Antón Aparicio, L.
2015-01-01
Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) are overexpressed in the majority of renal cell carcinomas. This characteristic has supported the rationale of targeting VEGF-driven tumour vascularization, especially in clear cell RCC. VEGF-inhibiting strategies include the use of tyrosine kinase inhibitors (sunitinib, axitinib, pazopanib, and sorafenib) and neutralizing antibodies such as bevacizumab. Hypertension (HTN) is one of the most common adverse effects of angiogenesis inhibitors. HTN observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of HTN. Although the exact mechanism by tyrosine kinase inhibitors induce HTN has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS) and nitric oxide (NO) production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction) occurs upon VEGF signaling inhibition. NO donors could be successfully used not only for the treatment of developed angiogenesis-inhibitor-induced hypertension but also for preventive effects. PMID:26386874
Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
2014-01-01
Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D
2014-06-01
Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simulation.
Raczyński, Przemysław; Górny, Krzysztof; Dawid, Aleksander; Gburski, Zygmunt
2014-07-15
Computer simulations have been performed to study the nanoindentation of phospholipid bilayer by the single-walled armchair carbon nanotube, filled with the nitric oxide molecules. The process has been simulated by means of molecular dynamics (MD) technique at physiological temperature T = 310 K with a constant pulling velocity of the nanotube. The force acting on the nanotube during membrane penetration has been calculated. We show that the indentation by carbon nanotube does not permanently destroy the membrane structure (self-sealing of the membrane occurs). The mobility of nitric oxide molecules during the membrane nanoindentation is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Bratasz, Anna; Weir, Nathan M.; Parinandi, Narasimham L.; Zweier, Jay L.; Sridhar, Rajagopalan; Ignarro, Louis J.; Kuppusamy, Periannan
2006-01-01
Ovarian cancer is a gynecological malignancy that is commonly treated by cytoreductive surgery followed by cisplatin treatment. However, the cisplatin treatment, although successful initially, is not effective in the treatment of the recurrent disease that invariably surfaces within a few months of the initial treatment. The refractory behavior is attributed to the increased levels of cellular thiols apparently caused by the cisplatin treatment. This observation prompted us to choose a cytotoxic drug whose activity is potentiated by cellular thiols with enhanced specificity toward the thiol-rich cisplatin-resistant cells. We used NCX-4016 [2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester], a derivative of aspirin containing a nitro group that releases nitric oxide in a sustained fashion for several hours in cells and in vivo, and we studied its cytotoxic efficacy against human ovarian cancer cells (HOCCs). Cisplatin-sensitive and cisplatin-resistant (CR) HOCCs were treated with 100 μM NCX-4016 for 6 h, and/or 0.5 μg/ml cisplatin for 1 h and assayed for clonogenecity. NCX-4016 significantly reduced the surviving fractions of cisplatin-sensitive (63 ± 6%) and CR (70 ± 10%) HOCCs. NCX-4016 also caused a 50% reduction in the levels of cellular glutathione in CR HOCCs. Treatment of cells with NCX-4016 followed by cisplatin showed a significantly greater extent of toxicity when compared with treatment of cells with NCX-4016 or cisplatin alone. In conclusion, this study showed that NCX-4016 is a potential inhibitor of the proliferation of CR HOCCs and thus might specifically kill cisplatin-refractory cancer cells in patients with recurrent ovarian cancer. PMID:16497833
Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E
2009-01-01
Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.
Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C
2012-07-27
Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.
Uncaria rhynchophylla (miq) Jack plays a role in neuronal protection in kainic acid-treated rats.
Tang, Nou-Ying; Liu, Chung-Hsiang; Su, Shan-Yu; Jan, Ya-Min; Hsieh, Ching-Tou; Cheng, Chin-Yi; Shyu, Woei-Cherng; Hsieh, Ching-Liang
2010-01-01
Uncaria rhynchophylla (Miq) Jack (UR) is one of many Chinese herbs. Our previous studies have shown that UR has both anticonvulsive and free radical-scavenging activities in kainic acid (KA)-treated rats. The aim of the present study was to use the effect of UR on activated microglia, nitric oxide synthase, and apoptotic cells to investigate its function in neuroproction in KA-treated rats. UR of 1.0 or 0.5 g/kg was orally administered for 3 days (first day, second day, and 30 min prior to KA administration on the third day), or 10 mg/kg (intraperitoneal injection, i.p.) N-nitro-L-arginine methyl ester (L-NAME) 30 min prior to KA (2 microg/2 microl) was injected into the right hippocampus region of Sprague-Dawly rats. ED1 (mouse anti rat CD68), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) immunoreactive cells and apoptotic cells were observed in the hippocampus region. The results indicated that 1.0 g/kg, 0.5 g/kg of UR and 10 mg/kg of L-NAME reduced the counts of ED1, nNOS, iNOS immunoreactive cells and apoptotic cells in KA-treated rats. This study demonstrates that UR can reduce microglia activation, nNOS, iNOS and apoptosis, suggesting that UR plays a neuro-protective role against neuronal damage in KA-treated rats.
Venkatasubramanian, Sambasivan; Tripathi, Deepak; Tucker, Torry; Paidipally, Padmaja; Cheekatla, Satyanarayana; Welch, Elwyn; Raghunath, Anjana; Jeffers, Ann; Tvinnereim, Amy R; Schechter, Melissa E; Andrade, Bruno B; Mackman, Nizel; Idell, Steven; Vankayalapati, Ramakrishna
2016-02-01
Tissue factor (TF) is a transmembrane glycoprotein that plays an essential role in hemostasis by activating coagulation. TF is also expressed by monocytes/macrophages as part of the innate immune response to infections. In the current study, we determined the role of TF expressed by myeloid cells during Mycobacterium tuberculosis (M. tb) infection by using mice lacking the TF gene in myeloid cells (TF(Δ) ) and human monocyte derived macrophages (MDMs). We found that during M. tb infection, a deficiency of TF in myeloid cells was associated with reduced inducible nitric oxide synthase (iNOS) expression, enhanced arginase 1 (Arg1) expression, enhanced IL-10 production and reduced apoptosis in infected macrophages, which augmented M. tb growth. Our results demonstrate that a deficiency of TF in myeloid cells promotes M2-like phenotype in M .tb infected macrophages. A deficiency in TF expression by myeloid cells was also associated with reduced fibrin deposition and increased matrix metalloproteases (MMP)-2 and MMP-9 mediated inflammation in M. tb infected lungs. Our studies demonstrate that TF expressed by myeloid cells has newly recognized abilities to polarize macrophages and to regulate M. tb growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bor-Ren; Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Tsai, Cheng-Fang
We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK,more » and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.« less
Ueda, Nobuo; Richards, Gemma S.; Degnan, Bernard M.; Kranz, Alexandrea; Adamska, Maja; Croll, Roger P.; Degnan, Sandie M.
2016-01-01
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa. PMID:27874071
Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H.R.; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo
2015-01-01
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding “bystander” cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca2+-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy. PMID:25868859
Control of cell respiration by nitric oxide in Ataxia Telangiectasia lymphoblastoid cells.
Masci, Alessandra; Mastronicola, Daniela; Arese, Marzia; Piane, Maria; De Amicis, Andrea; Blanck, Thomas J J; Chessa, Luciana; Sarti, Paolo
2008-01-01
Ataxia Telangiectasia (AT) patients are particularly sensitive to oxidative-nitrosative stress. Nitric oxide (NO) controls mitochondrial respiration via the reversible inhibition of complex IV. The mitochondrial response to NO of AT lymphoblastoid cells was investigated. Cells isolated from three patients and three intrafamilial healthy controls were selected showing within each group a normal diploid karyotype and homogeneous telomere length. Different complex IV NO-inhibition patterns were induced by varying the electron flux through the respiratory chain, using exogenous cell membrane permeable electron donors. Under conditions of high electron flux the mitochondrial NO inhibition of respiration was greater in AT than in control cells (P< or =0.05). This property appears peculiar to AT, and correlates well to the higher concentration of cytochrome c detected in the AT cells. This finding is discussed on the basis of the proposed mechanism of reaction of NO with complex IV. It is suggested that the peculiar response of AT mitochondria to NO stress may be relevant to the mitochondrial metabolism of AT patients.
Westphal, Martin; Enkhbaatar, Perenlei; Wang, Jianpu; Pazdrak, Konrad; Nakano, Yoshimitsu; Hamahata, Atsumori; Jonkam, Collette C.; Lange, Matthias; Connelly, Rhykka L.; Kulp, Gabriela A.; Cox, Robert A.; Hawkins, Hal K.; Schmalstieg, Frank C.; Horvath, Eszter; Szabo, Csaba; Traber, Lillian D.; Whorton, Elbert; Herndon, David N.; Traber, Daniel L.
2010-01-01
Neuronal nitric oxide synthase is critically involved in the pathogenesis of acute lung injury resulting from combined burn and smoke inhalation injury. We hypothesized that 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, blocks central molecular mechanisms involved in the pathophysiology of this double-hit insult. Twenty-five adult ewes were surgically prepared and randomly allocated to 1) an uninjured, untreated sham group (n = 7), 2) an injured control group with no treatment (n = 7), 3) an injury group treated with 7-nitroindazole from 1-h postinjury to the remainder of the 24-h study period (n = 7), or 4) a sham-operated group subjected only to 7-nitroindazole to judge the effects in health. The combination injury was associated with twofold increased activity of neuronal nitric oxide synthase and oxidative/nitrosative stress, as indicated by significant increases in plasma nitrate/nitrite concentrations, 3-nitrotyrosine (an indicator of peroxynitrite formation), and malondialdehyde lung tissue content. The presence of systemic inflammation was evidenced by twofold, sixfold, and threefold increases in poly(ADP-ribose) polymerase, IL-8, and myeloperoxidase lung tissue concentrations, respectively (each P < 0.05 vs. sham). These molecular changes were linked to tissue damage, airway obstruction, and pulmonary shunting with deteriorated gas exchange. 7-Nitroindazole blocked, or at least attenuated, all these pathological changes. Our findings suggest 1) that nitric oxide formation derived from increased neuronal nitric oxide synthase activity represents a pivotal reactive agent in the patho-physiology of combined burn and smoke inhalation injury and 2) that selective neuronal nitric oxide synthase inhibition represents a goal-directed approach to attenuate the degree of injury. PMID:19965980
2011-01-01
Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378
In vitro evaluation of cytotoxicity and leishmanicidal activity of phthalimido-thiazole derivatives.
Aliança, Amanda Silva Dos Santos; Oliveira, Arsênio Rodrigues; Feitosa, Ana Paula Sampaio; Ribeiro, Karla Raíza Cardoso; de Castro, Maria Carolina Accioly Brelaz; Leite, Ana Cristina Lima; Alves, Luiz Carlos; Brayner, Fábio André
2017-07-15
It is estimated that the worldwide prevalence of leishmaniasis is around 12 million individuals in 80 countries, with 400,000new cases per year. In the search for new leishmanicidal agents, the hybrid phthalimido-thiazoles have been identified as an important scaffold for drug design and discovery. The present study thus reports the in vitro activity of a series of phthalimido-thiazole derivatives. Cytotoxicity against a strain of L. infantum, Vero cells, J774 macrophages and peritoneal macrophages was evaluated, as well as nitric oxide (NO) production. Activity against amastigote and promastigote forms of L. infantum and microscopic changes in the parasite and intracellular targets of the parasite were achieved. The results show that the compounds arising from hybridization of phthalimide and 1,3-thiazole exhibit promising leishmanicidal activity. Compounds 2j and 2m were the most potent of the series tested and the parasites treated with these compounds exhibited ultrastructural changes, such as cell body shrinkage, loss of cellular membrane integrity, vacuolization of cytoplasm, membrane profiles surrounding organelles and swelling of mitochondria. The data showed that these compounds reduced the survival of intracellular amastigotes and presented low toxicity for mammalian cells. The compounds produced increased NO production compared to untreated cells in non-infected macrophages. Treated promastigote forms showed an increase in the number of cells stained with propidium iodide. The compounds brought about significant changes in mitochondrial membrane potential. According to the present study, phthalimido-thiazole compounds exhibit leishmanicidal activity and could be used to develop novel antileishmaniasis drugs and explore potential molecular targets. Copyright © 2017 Elsevier B.V. All rights reserved.
Human Vascular Microphysiological System for in vitro Drug Screening.
Fernandez, C E; Yen, R W; Perez, S M; Bedell, H W; Povsic, T J; Reichert, W M; Truskey, G A
2016-02-18
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.
Ruggiero, Marco; Ward, Emma; Smith, Rodney; Branca, Jacopo J V; Noakes, David; Morucci, Gabriele; Taubmann, Margit; Thyer, Lynda; Pacini, Stefania
2014-07-01
Oleic Acid (OA) has been shown to have anticancer properties mediated by interaction with proteins such as α-lactalbumin and lactoferrins. Therefore, we synthesized complexes of OA and Gc protein-derived macrophage activating factor (GcMAF) that inhibits per se cancer cell proliferation and metastatic potential. We hypothesised that OA-GcMAF complexes could exploit the anticancer properties of both OA and GcMAF in a synergistic manner. We postulated that the stimulating effects of GcMAF on macrophages might lead to release of nitric oxide (NO). Patients with advanced cancer were treated at the Immuno Biotech Treatment Centre with OA-GcMAF-based integrative immunotherapy in combination with a low-carbohydrate, high-protein diet, fermented milk products containing naturally-produced GcMAF, Vitamin D3, omega-3 fatty acids and low-dose acetylsalicylic acid. Measuring the tumour by ultrasonographic techniques, we observed a decrease of tumour volume of about 25%. These observations demonstrate that OA, GcMAF and NO can be properly combined and specifically delivered to advanced cancer patients with significant effects on immune system stimulation and tumour volume reduction avoiding harmful side-effects. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
He, Haihong; Liu, Yuxin; Zhou, Zhongneng; Guo, Chunlei; Wang, Hong-Yin; Wang, Zhuang; Wang, Xueli; Zhang, Ziqian; Wu, Fu-Gen; Wang, Haolu; Chen, Daijie; Yang, Dahai; Liang, Xiaowen; Chen, Jinquan; Zhou, Shengmin; Liang, Xin; Qian, Xuhong; Yang, Youjun
2018-04-27
Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532 nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Mechanisms of Improved Aortic Stiffness by Arotinolol in Spontaneously Hypertensive Rats
Zhou, Wugang; Hong, Mona; Zhang, Ke; Chen, Dongrui; Han, Weiqing; Shen, Weili; Zhu, Dingliang; Gao, Pingjin
2014-01-01
Objectives This study investigates the effects on aortic stiffness and vasodilation by arotinolol and the underlying mechanisms in spontaneously hypertensive rats (SHR). Methods The vasodilations of rat aortas, renal and mesenteric arteries were evaluated by isometric force recording. Nitric oxide (NO) was measured in human aortic endothelial cells (HAECs) by fluorescent probes. Sixteen-week old SHRs were treated with metoprolol (200 mg·kg-1·d-1), arotinolol (30 mg·kg-1·d-1) for 8 weeks. Central arterial pressure (CAP) and pulse wave velocity (PWV) were evaluated via catheter pressure transducers. Collagen was assessed by immunohistochemistry and biochemistry assay, while endothelial nitric oxide synthase (eNOS) and eNOS phosphorylation (p-eNOS) of HAECs or aortas were analyzed by western blotting. Results Arotinolol relaxed vascular rings and the relaxations were attenuated by Nω-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor) and the absence of endothelium. Furthermore, arotinolol-induced relaxations were attenuated by 4-aminopyridine (4-AP, Kv channels blocker). Arotinolol produced more nitric oxide compared to metoprolol and increased the expression of p-eNOS in HAECs. These results indicated that arotinolol-induced vasodilation involves endothelium-derived NO and Kv channels. The treatement with arotinolol in 8 weeks, but not metoprolol, markedly decreased CAP and PWV. Biochemistry assay and immunohistochemistry showed that aortic collagen depositions in the arotinolol groups were reduced compared with SHRs with metoprolol. Moreover, eNOS phosphorylation was significantly increased in aortinolol-treated SHR compared with SHRs with metoprolol. Conclusions Arotinolol improves arterial stiffness in SHR, which involved in increasing NO and decreasing collagen contents in large arteries. PMID:24533142
Hyun, Eric; Bolla, Manlio; Steinhoff, Martin; Wallace, John L; Soldato, Piero del; Vergnolle, Nathalie
2004-01-01
The concept that nitric oxide (NO) release can be beneficial in inflammatory conditions has raised more attention in the recent years, particularly with the development of nitric oxide-releasing anti-inflammatory drugs. There is considerable evidence that NO is capable of enhancing the anti-inflammatory benefits of conventional anti-inflammatory drugs. Since hydrocortisone is the most widely used anti-inflammatory drug for the treatment of skin inflammation, we compared the anti-inflammatory effects of hydrocortisone to an NO-releasing derivative of hydrocortisone, NCX 1022, in a murine model of irritant contact dermatitis, induced by epidermal application of benzalkonium chloride. Topical pre- and post-treatment with NCX 1022 (3 nmol) in C57BL6 mice not only reduced ear oedema formation in a dose-dependent manner, but also was significantly more effective than the parent compound during the initial stages of inflammation (from 1 to 5 h). NCX 1022, but not hydrocortisone, significantly inhibited granulocyte recruitment (tissue myeloperoxidase activity). Histological samples of mouse ears treated with NCX 1022 showed significant reduction in both the number of infiltrated cells and disruption of the tissue architecture compared to hydrocortisone-treated tissues. With intravital microscopy, we observed that both pre- and post-treatments with NCX 1022 were more effective than hydrocortisone in terms of inhibiting benzalkonium chloride-induced leukocyte adhesion to the endothelium, without affecting the flux of rolling leukocytes or venule diameter. These results suggest that by releasing NO, NCX 1022 modulates one of the early events of skin inflammation: the recruitment of leukocytes to the site of inflammation. Overall, we have shown that NO-hydrocortisone provided faster and greater protective effects, reducing major inflammatory parameters (leukocyte adhesion and recruitment, oedema formation, tissue disruption) compared to its parental compound. PMID:15313880
Mechanism of Inducible Nitric-oxide Synthase Dimerization Inhibition by Novel Pyrimidine Imidazoles*
Nagpal, Latika; Haque, Mohammad M.; Saha, Amit; Mukherjee, Nirmalya; Ghosh, Arnab; Ranu, Brindaban C.; Stuehr, Dennis J.; Panda, Koustubh
2013-01-01
Overproduction of nitric oxide (NO) by inducible nitric-oxide synthase (iNOS) has been etiologically linked to several inflammatory, immunological, and neurodegenerative diseases. As dimerization of NOS is required for its activity, several dimerization inhibitors, including pyrimidine imidazoles, are being evaluated for therapeutic inhibition of iNOS. However, the precise mechanism of their action is still unclear. Here, we examined the mechanism of iNOS inhibition by a pyrimidine imidazole core compound and its derivative (PID), having low cellular toxicity and high affinity for iNOS, using rapid stopped-flow kinetic, gel filtration, and spectrophotometric analysis. PID bound to iNOS heme to generate an irreversible PID-iNOS monomer complex that could not be converted to active dimers by tetrahydrobiopterin (H4B) and l-arginine (Arg). We utilized the iNOS oxygenase domain (iNOSoxy) and two monomeric mutants whose dimerization could be induced (K82AiNOSoxy) or not induced (D92AiNOSoxy) with H4B to elucidate the kinetics of PID binding to the iNOS monomer and dimer. We observed that the apparent PID affinity for the monomer was 11 times higher than the dimer. PID binding rate was also sensitive to H4B and Arg site occupancy. PID could also interact with nascent iNOS monomers in iNOS-synthesizing RAW cells, to prevent their post-translational dimerization, and it also caused irreversible monomerization of active iNOS dimers thereby accomplishing complete physiological inhibition of iNOS. Thus, our study establishes PID as a versatile iNOS inhibitor and therefore a potential in vivo tool for examining the causal role of iNOS in diseases associated with its overexpression as well as therapeutic control of such diseases. PMID:23696643
Hyun, Eric; Bolla, Manlio; Steinhoff, Martin; Wallace, John L; Soldato, Piero Del; Vergnolle, Nathalie
2004-11-01
1 The concept that nitric oxide (NO) release can be beneficial in inflammatory conditions has raised more attention in the recent years, particularly with the development of nitric oxide-releasing anti-inflammatory drugs. There is considerable evidence that NO is capable of enhancing the anti-inflammatory benefits of conventional anti-inflammatory drugs. 2 Since hydrocortisone is the most widely used anti-inflammatory drug for the treatment of skin inflammation, we compared the anti-inflammatory effects of hydrocortisone to an NO-releasing derivative of hydrocortisone, NCX 1022, in a murine model of irritant contact dermatitis, induced by epidermal application of benzalkonium chloride. 3 Topical pre- and post-treatment with NCX 1022 (3 nmol) in C57BL6 mice not only reduced ear oedema formation in a dose-dependent manner, but also was significantly more effective than the parent compound during the initial stages of inflammation (from 1 to 5 h). NCX 1022, but not hydrocortisone, significantly inhibited granulocyte recruitment (tissue myeloperoxidase activity). Histological samples of mouse ears treated with NCX 1022 showed significant reduction in both the number of infiltrated cells and disruption of the tissue architecture compared to hydrocortisone-treated tissues. 4 With intravital microscopy, we observed that both pre- and post-treatments with NCX 1022 were more effective than hydrocortisone in terms of inhibiting benzalkonium chloride-induced leukocyte adhesion to the endothelium, without affecting the flux of rolling leukocytes or venule diameter. 5 These results suggest that by releasing NO, NCX 1022 modulates one of the early events of skin inflammation: the recruitment of leukocytes to the site of inflammation. Overall, we have shown that NO-hydrocortisone provided faster and greater protective effects, reducing major inflammatory parameters (leukocyte adhesion and recruitment, oedema formation, tissue disruption) compared to its parental compound.