Sample records for cell development turning

  1. Precision lens assembly with alignment turning system

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-10-01

    The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  2. The development of alignment turning system for precision len cells

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi

    2017-08-01

    In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.

  3. cdc-25.4, a Caenorhabditis elegans Ortholog of cdc25, Is Required for Male Mating Behavior

    PubMed Central

    Oh, Sangmi; Kawasaki, Ichiro; Park, Jae-Hyung; Shim, Yhong-Hee

    2016-01-01

    Cell division cycle 25 (cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression. Among the four cdc25 orthologs in Caenorhabditis elegans, we found that cdc-25.4 mutant males failed to produce outcrossed progeny. This was not caused by defects in sperm development, but by defects in male mating behavior. The cdc-25.4 mutant males showed various defects during male mating, including contact response, backing, turning, and vulva location. Aberrant turning behavior was the most prominent defect in the cdc-25.4 mutant males. We also found that cdc-25.4 is expressed in many neuronal cells throughout development. The turning defect in cdc-25.4 mutant males was recovered by cdc-25.4 transgenic expression in neuronal cells, suggesting that cdc-25.4 functions in neurons for male mating. However, the neuronal morphology of cdc-25.4 mutant males appeared to be normal, as examined with several neuronal markers. Also, RNAi depletion of wee-1.3, a C. elegans ortholog of Wee1/Myt1 kinase, failed to suppress the mating defects of cdc-25.4 mutant males. These findings suggest that, for successful male mating, cdc-25.4 does not target cell cycles that are required for neuronal differentiation and development. Rather, cdc-25.4 likely regulates noncanonical substrates in neuronal cells. PMID:27770028

  4. cdc-25.4, a Caenorhabditis elegans Ortholog of cdc25, Is Required for Male Mating Behavior.

    PubMed

    Oh, Sangmi; Kawasaki, Ichiro; Park, Jae-Hyung; Shim, Yhong-Hee

    2016-12-07

    Cell division cycle 25 (cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression. Among the four cdc25 orthologs in Caenorhabditis elegans, we found that cdc-25.4 mutant males failed to produce outcrossed progeny. This was not caused by defects in sperm development, but by defects in male mating behavior. The cdc-25.4 mutant males showed various defects during male mating, including contact response, backing, turning, and vulva location. Aberrant turning behavior was the most prominent defect in the cdc-25.4 mutant males. We also found that cdc-25.4 is expressed in many neuronal cells throughout development. The turning defect in cdc-25.4 mutant males was recovered by cdc-25.4 transgenic expression in neuronal cells, suggesting that cdc-25.4 functions in neurons for male mating. However, the neuronal morphology of cdc-25.4 mutant males appeared to be normal, as examined with several neuronal markers. Also, RNAi depletion of wee-1.3, a C. elegans ortholog of Wee1/Myt1 kinase, failed to suppress the mating defects of cdc-25.4 mutant males. These findings suggest that, for successful male mating, cdc-25.4 does not target cell cycles that are required for neuronal differentiation and development. Rather, cdc-25.4 likely regulates noncanonical substrates in neuronal cells. Copyright © 2016 Oh et al.

  5. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    PubMed

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  6. A glial palisade delineates the ipsilateral optic projection in Monodelphis.

    PubMed

    MacLaren, R E

    1998-01-01

    In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.

  7. Turning Perspective in Photoelectrocatalytic Cells for Solar Fuels.

    PubMed

    Perathoner, Siglinda; Centi, Gabriele; Su, Dangsheng

    2016-02-19

    The development of new devices for the use and storage of solar energy is a key step to enable a new sustainable energy scenario. The route for direct solar-to-chemical energy transformation, especially to produce liquid fuels, represents a necessary element to realize transition from the actual energy infrastructure. Photoelectrocatalytic (PECa) devices for the production of solar fuels are a key element to enable this sustainable scenario. The development of PECa devices and related materials is of increasing scientific and applied interest. This concept paper introduces the need to turn the viewpoint of research in terms of PECa cell design and related materials with respect to mainstream activities in the field of artificial photosynthesis and leaves. As an example of a new possible direction, the concept of electrolyte-less cell design for PECa cells to produce solar fuels by reduction of CO2 is presented. The fundamental and applied development of new materials and electrodes for these cells should proceed fully integrated with PECa cell design and systematic analysis. A new possible approach to develop semiconductors with improved performances by using visible light is also shortly presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade

    PubMed Central

    Meng, Lai-Sheng; Wang, Yi-Bo; Loake, Gary J.; Jiang, Ji-Hong

    2016-01-01

    In agriculture, seed mass is one of the most important components related to seed yield. MINISEED3 (MINI3) which encodes the transcriptional activator WRKY10, is thought to be a pivotal regulator of seed mass. In Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with the promoter of MINI3, regulating embryo cell proliferation (both cell division and elongation), which, in turn, modulates seed mass. Furthermore, the recruitment of SHB1 via MINI3 to both its cognate promoter and that of IKU2 implies a two-step amplification for countering the low expression level of IKU2, which is thought to function as a molecular switch for seed cavity enlargement. However, it is largely unknown how embryo cell proliferation, which encompasses both cell division and elongation, is regulated by SHB1 and MINI3 function. Here, we show that a loss of function mutation within the transcriptional coactivator ANGUSTIFOLIA3 (AN3), increases seed mass. Further, AN3 associates with the MINI3 promoter in vivo. Genetic evidence indicates that the absence of MINI3 function suppresses the decrease of cell number observed in an3-4 mutants by regulating cell division and in turn inhibits increased cell size of the an3-4 line by controlling cell elongation. Thus, seed embryo development is modulated via an AN3-MINI3 gene cascade. This regulatory model provides a deeper understanding of seed mass regulation, which may in turn lead to increased crop yields. PMID:27857719

  9. Non-Brownian dynamics and strategy of amoeboid cell locomotion.

    PubMed

    Nishimura, Shin I; Ueda, Masahiro; Sasai, Masaki

    2012-04-01

    Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism, but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance signal. In the complex environment with obstacles, this combined process of persistent motions and random turns drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological advantage for cells to bear the non-Brownian dynamics.

  10. A fluorescent turn-on H2S-responsive probe: design, synthesis and application.

    PubMed

    Zhang, Yufeng; Chen, Haiyan; Chen, Dan; Wu, Di; Chen, Xiaoqiang; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Hydrogen sulfide (H2S) is considered as the third signaling molecule in vivo and it plays an important role in various physiological processes and pathological processes in vivo, such as vasodilation, apoptosis, neurotransmission, ischemia/reperfusion-induced injury, insulin secretion and inflammation. Developing a highly selective and sensitive method that can detect H2S in the biological system is very important. In this work, a colorimetric and "turn-on" fluorescent probe is developed. Furthermore, this probe displays a highly selective response to H2S in aqueous solution and possesses good capability for bioimaging H2S without interference in living cells. The results suggest that a H2S-selective probe has good water-solubility, biocompatibility and cell-penetrability and can serve as an efficient tool for probing H2S in the cell level.

  11. Loss of Citron Kinase Affects a Subset of Progenitor Cells That Alters Late but Not Early Neurogenesis in the Developing Rat Retina

    PubMed Central

    Karunakaran, Devi Krishna Priya; Chhaya, Nisarg; Lemoine, Christopher; Congdon, Sean; Black, Amye; Kanadia, Rahul

    2015-01-01

    Purpose. To understand how loss of citron kinase (CitK) affects retinal progenitor cells (RPCs) in the developing rat retina. Methods. We compared knockout (KO) and wild-type (WT) retinae by immunohistochemistry. The TdT-mediated dUTP terminal nick-end labeling (TUNEL) assay was performed to determine cell death. Pulse-chase experiments using 5-ethynyl-2’-deoxyuridine (EdU) were carried out to interrogate RPC behavior and in turn neurogenesis. Results. Reverse transcription–polymerase chain reaction analysis showed that CitK was expressed at embryonic day (E)12 and was turned off at approximately postnatal day (P)4. Immunohistochemistry showed CitK being localized as puncta at the apical end of the outer neuroblastic layer (ONBL). Analyses during embryonic development showed that the KO retina was of comparable size to that of WT until E13. However, by E14, there was a reduction in the number of S-phase RPCs with a concomitant increase in TUNEL+ cells in the KO retina. Moreover, early neurogenesis, as reflected by retinal ganglion cell production, was not affected. Postnatal analysis of the retina showed that ONBL in the KO retina was reduced to half the size of that in WT and showed further degeneration. Immunohistochemistry revealed absence of Islet1+ bipolar cells at P2, which was further confirmed by EdU pulse-chase experiments. The CitK KO retinae underwent complete degeneration by P14. Conclusions. Our study showed that CitK is not required for a subset of RPCs before E14, but is necessary for RPC survival post E14. This in turn results in normal early embryonic neurogenesis, but severely compromised later embryonic and postnatal neurogenesis. PMID:25593024

  12. [Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise].

    PubMed

    2017-06-18

    To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree of the four turns of hair cells: basal turn>mid turn>top turn. The rats exposed to the above environment for 2 weeks displayed obvious changes in cochlea morphology, and the weightlessness +noise group had the most obvious damage.

  13. Intein-mediated site-specific synthesis of tumor-targeting protein delivery system: Turning PEG dilemma into prodrug-like feature

    PubMed Central

    Chen, Yingzhi; Zhang, Meng; Jin, Hongyue; Tang, Yisi; Wang, Huiyuan; Xu, Qin; Li, Yaping; Li, Feng; Huang, Yongzhuo

    2017-01-01

    Poor tumor-targeted and cytoplasmic delivery is a bottleneck for protein toxin-based cancer therapy. Ideally, a protein toxin drug should remain stealthy in circulation for prolonged half-life and reduced side toxicity, but turn activated at tumor. PEGylation is a solution to achieve the first goal, but creates a hurdle for the second because PEG rejects interaction between the drugs and tumor cells therein. Such PEG dilemma is an unsolved problem in protein delivery. Herein proposed is a concept of turning PEG dilemma into prodrug-like feature. A site-selectively PEGylated, gelatinase-triggered cell-penetrating trichosanthin protein delivery system is developed with three specific aims. The first is to develop an intein-based ligation method for achieving site-specific modification of protein toxins. The second is to develop a prodrug feature that renders protein toxins remaining stealthy in blood for reduced side toxicity and improved EPR effect. The third is to develop a gelatinase activatable cell-penetration strategy for enhanced tumor targeting and cytoplasmic delivery. Of note, site-specific modification is a big challenge in protein drug research, especially for such a complicated, multifunctional protein delivery system. We successfully develop a protocol for constructing a macromolecular prodrug system with intein-mediated ligation synthesis. With an on-column process of purification and intein-mediated cleavage, the site-specific PEGylation then can be readily achieved by conjugation with the activated C-terminus, thus constructing a PEG-capped, cell-penetrating trichosanthin system with a gelatinase-cleavable linker that enables tumor-specific activation of cytoplasmic delivery. It provides a promising method to address the PEG dilemma for enhanced protein drug delivery, and importantly, a facile protocol for site-specific modification of such a class of protein drugs for improving their druggability and industrial translation. PMID:27914267

  14. Future issues in transplantation ethics: ethical and legal controversies in xenotransplantation, stem cell, and cloning research.

    PubMed

    Shapiro, Robyn S

    2008-07-01

    With little prospect of developing a sufficient supply of human transplantable organs to meet the large and growing demand, attention has turned to xenotransplantation, as well as stem cell and cloning research, as possible approaches for alleviating this allograft shortage. This article explores ethical and legal issues that surround developments in these fields.

  15. Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2006-08-01

    Develop an immunohistochemical method for identifying stem cells and stem cell niches, and to use this to determine if in utero estrogenic...overstimulation causes changes in the number of stem cells or their niches. To extend the power of ex vivo stem cell isolation and enumeration by providing a...marginal success due primarily to 1) most antibodies previously reputed to be stem cell specific turned out to be present in differentiated mammary

  16. Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium.

    PubMed

    Chen, Yan; Li, Wenyan; Li, Wen; Chai, Renjie; Li, Huawei

    2016-09-01

    The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.

  17. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging.

    PubMed

    Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin

    2018-01-25

    A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.

  18. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jiamin; Niu, Linqiang; Huang, Jing; Yan, Zhijie; Wang, Jianhong

    2018-03-01

    Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1 min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.

  19. There is more than one way to turn a spherical cellular monolayer inside out: type B embryo inversion in Volvox globator

    PubMed Central

    2011-01-01

    Background Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator. PMID:22206406

  20. Thioredoxin targets in plants: The first 30 years

    USDA-ARS?s Scientific Manuscript database

    The turn of the century welcomed major developments in redox biology. In one development with plants, proteomics made possible the identification of proteins linked to thioredoxin (Trx), initially in chloroplasts and then other cell compartments. Two procedures, one based on thiol specific probes an...

  1. Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry

    NASA Astrophysics Data System (ADS)

    Camley, Brian A.; Zhao, Yanxiang; Li, Bo; Levine, Herbert; Rappel, Wouter-Jan

    2017-01-01

    We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in our model both highly persistent trajectories, in which the cell crawls in a straight line, and turning trajectories, where the cell transitions from crawling in a line to crawling in a circle. We discuss the controlling variables for this turning instability and argue that turning arises from a coupling between the reaction-diffusion mechanism and the shape of the cell. This emphasizes the surprising features that can arise from simple links between cell mechanics and biochemistry. Our results suggest that similar instabilities may be present in a broad class of biochemical descriptions of cell polarity.

  2. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671

  3. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    PubMed

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  4. Could the Outcome of the Genocide in Rwanda be Different with an Operational Planning Cell in the United Nations?

    DTIC Science & Technology

    2012-06-08

    best. The government must work with mainly with them.”11 Belgium developed the Rwandans’ population to be individualist , by introducing taxation...monopoly is turned into an economic and social monopoly…selection in school, the political, economic, and social monopoly turn into a cultural ...Rwanda-Burundi disapproved all political meetings. Because of the creation of all the new political parties, the cultural tension was at its maximum

  5. Modeling Aggressive Medulloblastoma Using Human Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2017-09-01

    and Myc in turn induces expression of AT1R creating a positive feedback loop and development of aggression tumor phenotype. The therapeutic...strengths are the relevant expertise of the applicant and his collaborating team, the novel paracrine positive feedback loop in EC-tumor cell...to as MYC-driven MB. The molecular mechanisms that drive MYC hyper -activation in MB remain incompletely understood. MB cells in actual tumors interact

  6. The Big Bang of tissue growth: Apical cell constriction turns into tissue expansion.

    PubMed

    Janody, Florence

    2018-03-05

    How tissue growth is regulated during development and cancer is a fundamental question in biology. In this issue, Tsoumpekos et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705104) and Forest et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201705107) identify Big bang (Bbg) as an important growth regulator of the Drosophila melanogaster wing imaginal disc. © 2018 Janody.

  7. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    USDA-ARS?s Scientific Manuscript database

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically-programmed s...

  8. Is gravity a morphological determinant in plants at the cellular level

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Steward, F. C.

    1978-01-01

    The present paper deals with the question whether plant development can proceed normally in the weightless state, particularly in the critical stage where single cells produce multicellular units, leading to embryos with the growing regions of shoot and root which, in turn, give rise to all the tissues of the plant body. An experiment that tested whether carrot embryos capable of developing from cultured somatic cells could do so under conditions of weightlessness is described.

  9. Secret handshakes: cell-cell interactions and cellular mimics.

    PubMed

    Cohen, Daniel J; Nelson, W James

    2018-02-01

    Cell-cell junctions, acting as 'secret handshakes', mediate cell-cell interactions and make multicellularity possible. Work over the previous century illuminated key players comprising these junctions including the cadherin superfamily, nectins, CAMs, connexins, notch/delta, lectins, and eph/Ephrins. Recent work has focused on elucidating how interactions between these complex and often contradictory cues can ultimately give rise to large-scale organization in tissues. This effort, in turn, has enabled bioengineering advances such as cell-mimetic interfaces that allow us to better probe junction biology and to develop new biomaterials. This review details exciting, recent developments in these areas as well as providing both historical context and a discussion of some topical challenges and opportunities for the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish

    PubMed Central

    Tallafuss, Alexandra; Gibson, Dan; Morcos, Paul; Li, Yongfu; Seredick, Steve; Eisen, Judith; Washbourne, Philip

    2012-01-01

    To understand the molecular mechanisms of development it is essential to be able to turn genes on and off at will and in a spatially restricted fashion. Morpholino oligonucleotides (MOs) are very common tools used in several model organisms with which it is possible to block gene expression. Recently developed photo-activated MOs allow control over the onset of MO activity. However, deactivation of photo-cleavable MO activity has remained elusive. Here, we describe photo-cleavable MOs with which it is possible to activate or de-activate MO function by UV exposure in a temporal and spatial manner. We show, using several different genes as examples, that it is possible to turn gene expression on or off both in the entire zebrafish embryo and in single cells. We use these tools to demonstrate the sufficiency of no tail expression as late as tailbud stage to drive medial precursor cells towards the notochord cell fate. As a broader approach for the use of photo-cleavable MOs, we show temporal control over gal4 function, which has many potential applications in multiple transgenic lines. We demonstrate temporal manipulation of Gal4 transgene expression in only primary motoneurons and not secondary motoneurons, heretofore impossible with conventional transgenic approaches. In another example, we follow and analyze neural crest cells that regained sox10 function after deactivation of a photo-cleavable sox10-MO at different time points. Our results suggest that sox10 function might not be critical during neural crest formation. PMID:22492359

  11. Reconstructing human pancreatic differentiation by mapping specific cell populations during development.

    PubMed

    Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël

    2017-07-21

    Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.

  12. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-02-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.

  13. Turning behaviors of T cells climbing up ramp-like structures are regulated by myosin light chain kinase activity and lamellipodia formation.

    PubMed

    Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang

    2017-09-14

    T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.

  14. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  15. Fort Monroe Historic Viewsheds

    DTIC Science & Technology

    2010-08-01

    that groups adopted true farming from cultures farther south. Along with the adoption of agriculture, large palisade villages developed. During this...landscape. In a day and age with prominent cell phone towers and searches for alternative energy sources, such as wind turbines, preservationists are...Da- vis’s cell was turned into a museum. The Tuileries (Buildings 17 and 18) were each built to house eight bachelor officers. Robert E. Lee

  16. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells

    NASA Astrophysics Data System (ADS)

    Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang

    2012-10-01

    Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.

  17. Direct observation of frequency modulated transcription in single cells using light activation

    PubMed Central

    Larson, Daniel R; Fritzsch, Christoph; Sun, Liang; Meng, Xiuhau; Lawrence, David S; Singer, Robert H

    2013-01-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single steroid-responsive gene and follow dynamic synthesis of RNA from the activated locus. DOI: http://dx.doi.org/10.7554/eLife.00750.001 PMID:24069527

  18. Dual turn-on fluorescence signal-based controlled release system for real-time monitoring of drug release dynamics in living cells and tumor tissues.

    PubMed

    Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying

    2018-01-01

    Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.

  19. Self-organizing periodicity in development: organ positioning in plants.

    PubMed

    Bhatia, Neha; Heisler, Marcus G

    2018-02-08

    Periodic patterns during development often occur spontaneously through a process of self-organization. While reaction-diffusion mechanisms are often invoked, other types of mechanisms that involve cell-cell interactions and mechanical buckling have also been identified. Phyllotaxis, or the positioning of plant organs, has emerged as an excellent model system to study the self-organization of periodic patterns. At the macro scale, the regular spacing of organs on the growing plant shoot gives rise to the typical spiral and whorled arrangements of plant organs found in nature. In turn, this spacing relies on complex patterns of cell polarity that involve feedback between a signaling molecule - the plant hormone auxin - and its polar, cell-to-cell transport. Here, we review recent progress in understanding phyllotaxis and plant cell polarity and highlight the development of new tools that can help address the remaining gaps in our understanding. © 2018. Published by The Company of Biologists Ltd.

  20. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying

    We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.

  1. Deconstructing (and reconstructing) cell migration.

    PubMed

    Maheshwari, G; Lauffenburger, D A

    1998-12-01

    An overriding objective in cell biology is to be able to relate properties of particular molecular components to cell behavioral functions and even physiology. In the "traditional" mode of molecular cell biology, this objective has been tackled on a molecule-by-molecule basis, and in the "future" mode sometimes termed "functional genomics," it might be attacked in a high-throughput, parallel manner. Regardless of the manner of approach, the relationship between molecular-level properties and cell-level function is exceedingly difficult to elucidate because of the large number of relevant components involved, their high degree of interconnectedness, and the inescapable fact that they operate as physico-chemical entities-according to the laws of kinetics and mechanics-in space and time within the cell. Cell migration is a prominent representative example of such a cell behavioral function that requires increased understanding for both scientific and technological advance. This article presents a framework, derived from an engineering perspective regarding complex systems, intended to aid in developing improved understanding of how properties of molecular components influence the function of cell migration. That is, cell population migration behavior can be deconstructed as follows: first in terms of a mathematical model comprising cell population parameters (random motility, chemotaxis/haptotaxis, and chemokinesis/haptokinesis coefficients), which in turn depend on characteristics of individual cell paths that can be analyzed in terms of a mathematical model comprising individual cell parameters (translocation speed, directional persistence time, chemotactic/haptotactic index), which in turn depend on cell-level physical processes underlying motility (membrane extension and retraction, cell/substratum adhesion, cell contractile force, front-vs.-rear asymmetry), which in turn depend on molecular-level properties of the plethora of components involved in governance and regulation of these processes. Hence, the influence of any molecular component on cell population migration can be understood by reconstructing these relationships from the molecular level to the physical process level to the individual cell path level to the cell population distribution level. This approach requires combining experimental, theoretical, and computational methodologies from molecular biology, biochemistry, biophysics, and bioengineering.

  2. Multi-phasic bi-directional chemotactic responses of the growth cone

    PubMed Central

    Naoki, Honda; Nishiyama, Makoto; Togashi, Kazunobu; Igarashi, Yasunobu; Hong, Kyonsoo; Ishii, Shin

    2016-01-01

    The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone. PMID:27808115

  3. Polydiacetylene liposomes with phenylboronic acid tags: a fluorescence turn-on sensor for sialic acid detection and cell-surface glycan imaging.

    PubMed

    Wang, Dong-En; Yan, Jiahang; Jiang, Jingjing; Liu, Xiang; Tian, Chang; Xu, Juan; Yuan, Mao-Sen; Han, Xiang; Wang, Jinyi

    2018-03-01

    Sialic acid (SA) located at the terminal end of glycans on cell membranes has been shown to play an important yet distinctive role in various biological and pathological processes. Effective methods for the facile, sensitive and in situ analysis of SA on living cell surfaces are of great significance in terms of clinical diagnostics and therapeutics. Here, a new polydiacetylene (PDA) liposome-based sensor system bearing phenylboronic acid (PBA) and 1,8-naphthalimide derived fluorophore moieties was developed as a fluorescence turn-on sensor for the detection of free SA in aqueous solution and the in situ imaging of SA-terminated glycans on living cell surfaces. In the sensor system, three diacetylene monomers, PCDA-pBA, PCDA-Nap and PCDA-EA, were designed and synthesized to construct the composite PDA liposome sensor. The monomer PCDA-pBA modified with PBA molecules was employed as a receptor for SA recognition, while the monomer PCDA-Nap containing a 1,8-naphthalimide derivative fluorophore was used for fluorescence signaling. When the composite PDA liposomes were formed, the energy transfer between the fluorophore and the conjugated backbone could directly quench the fluorescence of the fluorophore. In the presence of additional SA or SA abundant cells, the strong binding of SA with PBA moieties disturbed the pendent side chain conformation, resulting in the fluorescence restoration of the fluorophore. The proposed methods realized the fluorescence turn-on detection of free SA in aqueous solution and the in situ imaging of SA on living MCF-7 cell surfaces. This work provides a new potential tool for simple and selective analysis of SA on living cell membranes.

  4. Reconstructing human pancreatic differentiation by mapping specific cell populations during development

    PubMed Central

    Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël

    2017-01-01

    Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2+ population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3, a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated. DOI: http://dx.doi.org/10.7554/eLife.27564.001 PMID:28731406

  5. Investigation of engineered bacterial adhesins for opportunity to interface cells with abiotic materials

    NASA Astrophysics Data System (ADS)

    Terrell, Jessica L.; Dong, Hong; Holthoff, Ellen L.; Small, Meagan C.; Sarkes, Deborah A.; Hurley, Margaret M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    The convenience of cellular genetic engineering has afforded the power to build `smart' synthetic biological tools with novel applications. Here, we have explored opportunities to hybridize engineered cells with inorganic materials toward the development of 'living' device-compatible systems. Cellular structural biology is engineerable based on the ability to rewrite genetic code to generate recombinant, foreign, or even unnatural proteins. With this capability on the biological end, it should be possible to achieve superior abio-compatibility with the inorganic materials that compose current microfabricated technology. This work investigated the hair-like appendages of Escherichia coli known as Type 1 fimbriae that enable natural adhesion to glycosylated substrates. Sequence alterations within the fimbrial gene cluster were found to be well-tolerated, evidenced by tagging the fimbriae with peptide-based probes. As a further development, fimbriae tips could be reconfigured to, in turn, alter cell binding. In particular, the fimbriae were fused with a genetically optimized peptide-for-inorganics to enable metal binding. This work established methodologies to systematically survey cell adhesion properties across a suite of fimbriae-modified cell types as well as to direct patterned cell adhesion. Cell types were further customized for added complexity including turning on secondary gene expression and binding to gold surfaces. The former demonstrates potential for programmable gene switches and the latter for interfacing biology with inorganic materials. In general, the incorporation of 'programmed' cells into devices can be used to provide the feature of dynamic and automated cell response. The outcomes of this study are foundational toward the critical feature of deliberate positioning of cells as configurable biocomponentry. Overall, cellular integration into bioMEMs will yield advanced sensing and actuation.

  6. Evaluation of comfort in bedridden older adults using an air-cell mattress with an automated turning function: measurement of parasympathetic activity during night sleep.

    PubMed

    Futamura, Megumi; Sugama, Junko; Okuwa, Mayumi; Sanada, Hiromi; Tabata, Keiko

    2008-12-01

    This study objectively evaluated the degree of comfort in bedridden older adults using an air-cell mattress with an automated turning mechanism. The sample included 10 bedridden women with verbal communication difficulties. The high frequency (HF) components of heart rate variability, which reflect parasympathetic nervous activity, were compared for the manual and automated turning periods. No significant differences in the HF component were observed in 5 of the participants. Significant increases in the HF component associated with automated turning were observed in 3 participants; however, the two participants with the lowest body mass index values exhibited a significant reduction in the HF component during the automated turning period. The results revealed that comfort might not be disturbed during the automated turning period.

  7. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9.

    PubMed

    Nguyen, Phuong-Diem; Cong, Vu Thanh; Baek, Changyoon; Min, Junhong

    2017-03-15

    This study introduces the double-ligands stabilizing gold nanoclusters and the fabrication of gold nanocluster/graphene nanocomplex as a "turn-on" fluorescent probe for the detection of cancer-related enzyme matrix metalloproteinase-9. A facile, one-step approach was developed for the synthesis of fluorescent gold nanoclusters using peptides and mercaptoundecanoic acid as co-templating ligands. The peptide was designed to possess a metalloproteinase-9 cleavage site and to act not only as a stabilizer but also as a targeting ligand for the enzyme detection. The prepared gold nanoclusters show an intense red fluorescence with a broad adsorption spectrum. In the presence of the enzyme, due to the excellent quenching properties and the negligible background of graphene oxide, the developed peptide-gold nanocluster/graphene nanocomplex yielded an intense "turn-on" fluorescent response, which strongly correlated with the enzyme concentration. The limit of detection of the nanocomplex was 0.15nM. The sensor was successfully applied for "turn-on" detection of metalloproteinase-9 secreted from human breast adenocarcinoma MCF-7 cells with high sensitivity, selectivity, significant improvement in terms of detection time and simplicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging.

    PubMed

    Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2016-08-15

    Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 3D culture models of tissues under tension.

    PubMed

    Eyckmans, Jeroen; Chen, Christopher S

    2017-01-01

    Cells dynamically assemble and organize into complex tissues during development, and the resulting three-dimensional (3D) arrangement of cells and their surrounding extracellular matrix in turn feeds back to regulate cell and tissue function. Recent advances in engineered cultures of cells to model 3D tissues or organoids have begun to capture this dynamic reciprocity between form and function. Here, we describe the underlying principles that have advanced the field, focusing in particular on recent progress in using mechanical constraints to recapitulate the structure and function of musculoskeletal tissues. © 2017. Published by The Company of Biologists Ltd.

  10. Maturation of neurotransmission in the developing rat cochlea: immunohistochemical evidence from differential expression of synaptophysin and synaptobrevin 2

    PubMed Central

    He, S.; Yang, J.

    2011-01-01

    Synaptophysin and synaptobrevin 2 associate closely with packaging and storage of synaptic vesicles and transmitter release, and both play important roles in the development of rat cochlea. We examined the differential expression of synaptophysin and synaptobrevin 2 in the developing Sprague-Dawley rat cochlea, and investigated the relationship between their expression and auditory development. The expression of synaptophysin and synaptobrevin 2 was not observed in Kolliker's and Corti's organ at postnatal 1 day (P1) and P5, and the top turn of the cochlea at P10. Expression was detected in the outer spiral bundle (OSB), the inner spiral bundle (ISB), and the medial wall of the Deiters' cell of the cochlea at P14, and P28, and in the middle or the basal turn of Corti's organ at P10. Synaptobrevin 2 was expressed in the top of the inner hair cells (IHCs) in Corti's organ of both P14 and P28 rats. All spiral ganglion neurons (SGNs) were stained at all ages examined. The localization of synaptophysin and synaptobrevin 2 in the cochlea was closely associated with the distribution of nerve fibers and neural activity (the docking and release of synaptic vesicles). Synaptophysin and synaptobrevin 2 were expressed in a dynamic manner during the development of rat cochlea. Their expression differences during the development were in favor of the configuration course constructed between nerve endings and target cells. It also played a key role in the formation of the correct coding of auditory information during auditory system development. PMID:21556117

  11. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols.

    PubMed

    Sedgwick, Adam C; Gardiner, Jordan E; Kim, Gyoungmi; Yevglevskis, Maksims; Lloyd, Matthew D; Jenkins, A Toby A; Bull, Steven D; Yoon, Juyoung; James, Tony D

    2018-05-08

    Two 'turn on' TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear 'turn on' with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.

  12. Vaccinating for natural killer cell effector functions.

    PubMed

    Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R

    2018-01-01

    Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.

  13. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  14. Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi

    2012-06-01

    The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.

  15. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  16. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  17. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  18. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. VLA-4 antagonists: potent inhibitors of lymphocyte migration.

    PubMed

    Yang, Ginger X; Hagmann, William K

    2003-05-01

    Circulating lymphocytes normally migrate through extravascular spaces in relatively low numbers as important members of the immunosurveillance process. That is until signals are received by endothelial cells that there is an underlying infection or inflammatory condition. These vascular surface cells in turn overexpress and present ligands to circulating lymphocyte adhesion molecules. Upon encountering this higher density of ligands, lymphocytes, which had been leisurely rolling along the vascular surface, now become more firmly attached, change shape, and migrate through tight junctions to the sites of infection or inflammation. If the initiating events are not resolved and the condition becomes chronic, there can be a sustained extravasation of lymphocytes that can exacerbate the inflammatory condition, which in turn will continue to recruit more inflammatory cells resulting in unwanted tissue destruction. It is for the attenuation of this cycle of sustained inflammatory cell recruitment that very late activating antigen-4 (VLA-4) antagonists are being developed. Most lymphocytes, except neutrophils, express VLA-4 on their surface and they interact with endothelial vascular cell adhesion molecule-1 (VCAM-1). It is this interaction that VLA-4 antagonists are intended to disrupt, thus, putting an end to the cycle of chronic inflammation, which is the hallmark of many diseases. This review will provide an update of VLA-4 antagonists that have appeared since early 2001 and will discuss some of the issues, both positive and negative, that may be encountered in their development. Copyright 2003 Wiley Periodicals, Inc.

  20. Laser-ultraviolet-A-induced ultraweak photon emission in mammalian cells.

    PubMed

    Niggli, Hugo J; Tudisco, Salvatore; Privitera, Giuseppe; Applegate, Lee Ann; Scordino, Agata; Musumeci, Franco

    2005-01-01

    Photobiological research in the last 30 yr has shown the existence of ultraweak photon emission in biological tissue, which can be detected with sophisticated photomultiplier systems. Although the emission of this ultraweak radiation, often termed biophotons, is extremely low in mammalian cells, it can be efficiently increased by ultraviolet light. Most recently it was shown that UV-A (330 to 380 nm) releases such very weak cell radiation in differentiated human skin fibroblasts. Based on these findings, a new and powerful tool in the form of UV-A-laser-induced biophotonic emission of cultured cells was developed with the intention to detect biophysical changes between carcinogenic and normal cells. With suspension densities ranging from 1 to 8 x 10(6) cells/mL, it was evident that an increase of the UV-A-laser-light induced photon emission intensity could be observed in normal as well as melanoma cells. Using this new detection procedure of ultraweak light emission, photons in cell suspensions as low as 100 microL could be determined, which is a factor of 100 lower compared to previous procedures. Moreover, the detection procedure has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of 150 ms, as reported in previous procedures. This improvement leads to measurements of light bursts up 10(7) photons/s instead of several hundred as found with classical designs. Overall, we find decreasing induction ratings between normal and melanoma cells as well as cancer-prone and melanoma cells. Therefore, it turns out that this highly sensitive and noninvasive device enables us to detect high levels of ultraweak photon emission following UV-A-laser-induced light stimulation within the cells, which enables future development of new biophysical strategies in cell research. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  1. Neutropenia caused by hairy cell leukemia in a patient with myelofibrosis secondary to polycythemia vera: a case report.

    PubMed

    Habberstad, Andreas Hanssønn; Tran, Hoa Thi Tuyet; Randen, Ulla; Spetalen, Signe; Dybedal, Ingunn; Tjønnfjord, Geir E; Dahm, Anders Erik Astrup

    2018-04-24

    Polycythemia vera is a myeloproliferative disease that sometimes evolves to myelofibrosis, causing splenomegaly and neutropenia. In this case report, we describe a patient with polycythemia vera and unexplained neutropenia who later turned out to also have hairy cell leukemia. A middle-aged Caucasian man with polycythemia vera presented to our hospital with chronic mouth ulcers. Later he developed leukopenia and pancytopenia. Bone marrow biopsies showed fibrosis. Further morphological analyses of bone marrow and blood smears revealed probable transformation into acute myeloid leukemia. However, there were also cells indicating hairy cell leukemia. Morphological and immunohistochemical analyses later confirmed the presence of hairy cell leukemia in biopsies that had been present for 3 years. Treatment with cladribine temporarily reversed the patient's neutropenia. Hairy cell leukemia may mimic development to myelofibrosis in patients with polycythemia vera.

  2. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2

    PubMed Central

    Onishi, Keisuke

    2017-01-01

    Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142

  3. Temporal Control of Plant Organ Growth by TCP Transcription Factors.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2015-06-29

    The Arabidopsis petal is a simple laminar organ whose development is largely impervious to environmental effects, making it an excellent model for dissecting the regulation of cell-cycle progression and post-mitotic cell expansion that together sculpt organ form. Arabidopsis petals grow via basipetal waves of cell division, followed by a phase of cell expansion. RABBIT EARS (RBE) encodes a C2H2 zinc finger transcriptional repressor and is required for petal development. During the early phase of petal initiation, RBE regulates a microRNA164-dependent pathway that controls cell proliferation at the petal primordium boundaries. The effects of rbe mutations on petal lamina growth suggest that RBE is also required to regulate later developmental events during petal organogenesis. Here, we demonstrate that, early in petal development, RBE represses the transcription of a suite of CIN-TCP genes that in turn act to inhibit the number and duration of cell divisions; the temporal alleviation of that repression results in the transition from cell division to post-mitotic cell expansion and concomitant petal maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A highly selective long-wavelength fluorescent probe for hydrazine and its application in living cell imaging

    NASA Astrophysics Data System (ADS)

    Hao, Yuanqiang; Zhang, Yintang; Ruan, Kehong; Meng, Fanteng; Li, Ting; Guan, Jinsheng; Du, Lulu; Qu, Peng; Xu, Maotian

    2017-09-01

    A highly selective long-wavelength turn-on fluorescent probe has been developed for the detection of N2H4. The probe was prepared by conjugation the tricyanofuran-based D-π-A system with a recognizing moiety of acetyl group. In the presence of N2H4, the probe can be effectively hydrazinolysized and produce a turn-on fluorescent emission at 610 nm as well as a large red-shift in the absorption spectrum corresponding to a color change from yellow to blue. The sensing mechanism was confirmed by HPLC, MS, UV-vis, emission spectroscopic and theoretical calculation studies. The probe displayed high selectivity and sensitivity for N2H4 with a LOD (limit of detection) of 0.16 μM. Moreover, the probe was successfully utilized for the detection of hydrazine in living cells.

  5. ;Turn-on; fluorescent probe detection of Ca2 + ions and applications to bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Huifang; Yin, Caixia; Liu, Tao; Zhang, Yongbin; Huo, Fangjun

    2017-06-01

    Ca2 + is intracellular divalent cation with the largest concentration variations and involved in many biological phenomena and often acted as a second messenger in signaling pathway. Therefore, the development of probes for specific Ca2 + detection is of great importance. Herein, a novel turn-on fluorescent probe for the detection of Ca2 + in MeCN-aqueous medium was designed and synthesized. The probe displayed responses to Ca2 + with a fluorescence enhancement at 525 nm, accompanying with a distinct fluorescence change from nearly colorless to bright yellow-green. Besides, the probe exhibited a rapid signal response time (within 25 s), a good linearity range and a lower detection limit (2.70 × 10- 7 M). In addition, the ability of the probe to detect Ca2 + in living cells (HeLa cells) via an enhancement of the fluorescence has also been demonstrated.

  6. Progression of changes in the sensorial elements of the cochlear and peripheral vestibular systems: The otitis media continuum.

    PubMed

    Monsanto, Rafael da Costa; Schachern, Patricia; Paparella, Michael M; Cureoglu, Sebahattin; Penido, Norma de Oliveira

    2017-08-01

    Our study aimed to evaluate pathologic changes in the cochlear (inner and outer hair cells and stria vascularis) and vestibular (vestibular hair cells, dark, and transitional cells) sensorial elements in temporal bones from donors who had otitis media. We studied 40 temporal bones from such donors, which were categorized in serous otitis media (SOM), serous-purulent otitis media (SPOM), mucoid/mucoid-purulent otitis media (MOM/MPOM), and chronic otitis media (COM); control group comprised 10 nondiseased temporal bones. We found significant loss of inner and outer cochlear hair cells in the basal turn of the SPOM, MOM/MPOM and COM groups; significant loss of vestibular hair cells was observed in the MOM/MPOM and COM groups. All otitis media groups had smaller mean area of the stria vascularis in the basal turn of the cochlea when compared to controls. In conclusion, our study demonstrated more severe pathologic changes in the later stages of the continuum of otitis media (MOM/MPOM and COM). Those changes seem to progress from the basal turn of the cochlea (stria vascularis, then inner and outer hair cells) to the middle turn of the cochlea and to the saccule and utricle in the MOM/MPOM and COM stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Soft skills turned into hard facts: nucleosome remodelling at developmental switches.

    PubMed

    Chioda, M; Becker, P B

    2010-07-01

    Nucleosome remodelling factors are regulators of DNA accessibility in chromatin and lubricators of all major functions of eukaryotic genomes. Their action is transient and reversible, yet can be decisive for irreversible cell-fate decisions during development. In addition to the well-known local actions of nucleosome remodelling factors during transcription initiation, more global and fundamental roles for remodelling complexes in shaping the epigenome during development are emerging.

  8. Phase transitions and size scaling of membrane-less organelles

    PubMed Central

    2013-01-01

    The coordinated growth of cells and their organelles is a fundamental and poorly understood problem, with implications for processes ranging from embryonic development to oncogenesis. Recent experiments have shed light on the cell size–dependent assembly of membrane-less cytoplasmic and nucleoplasmic structures, including ribonucleoprotein (RNP) granules and other intracellular bodies. Many of these structures behave as condensed liquid-like phases of the cytoplasm/nucleoplasm. The phase transitions that appear to govern their assembly exhibit an intrinsic dependence on cell size, and may explain the size scaling reported for a number of structures. This size scaling could, in turn, play a role in cell growth and size control. PMID:24368804

  9. Nickel hydrogen common pressure vessel battery development

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth R.; Zagrodnik, Jeffrey P.

    1992-01-01

    Our present design for a common pressure vessel (CPV) battery, a nickel hydrogen battery system to combine all of the cells into a common pressure vessel, uses an open disk which allows the cell to be set into a shallow cavity; subsequent cells are stacked on each other with the total number based on the battery voltage required. This approach not only eliminates the assembly error threat, but also more readily assures equal contact pressure to the heat fin between each cell, which further assures balanced heat transfer. These heat fin dishes with their appropriate cell stacks are held together with tie bars which in turn are connected to the pressure vessel weld rings at each end of the tube.

  10. Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development

    PubMed Central

    Park, Heon; Tsang, Mark; Iritani, Brian M.; Bevan, Michael J.

    2014-01-01

    Folliculin-interacting protein 1 (Fnip1) is an adaptor protein that physically interacts with AMPK, an energy-sensing kinase that stimulates mitochondrial biogenesis and autophagy in response to low ATP, while turning off energy consumption mediated by mammalian target of rapamycin. Previous studies with Fnip1-null mice revealed that Fnip1 is essential for pre–B-cell development. Here we report a critical role of Fnip1 in invariant natural killer T (iNKT) cell development. Thymic iNKT development in Fnip1−/− mice was arrested at stage 2 (NK1.1−CD44+) but development of CD4, CD8, γδ T-cell, and NK cell lineages proceeded normally. Enforced expression of a Vα14Jα18 iNKT TCR transgene or loss of the proapoptotic protein Bim did not rescue iNKT cell maturation in Fnip1−/− mice. Whereas most known essential transcription factors for iNKT cell development were represented normally, Fnip1−/− iNKT cells failed to down-regulate Promyelocytic leukemia zinc finger compared with their WT counterparts. Moreover, Fnip1−/− iNKT cells contained hyperactive mTOR and reduced mitochondrial number despite lower ATP levels, resulting in increased sensitivity to apoptosis. These results indicate that Fnip1 is vital for iNKT cell development by maintaining metabolic homeostasis in response to metabolic stress. PMID:24785297

  11. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.

  12. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  13. Rootcap structure in wild type and in a starchless mutant of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Sack, F. D.; Kiss, J. Z.

    1989-01-01

    Rootcaps of the wild type (WT) and of a starchless, gravitropic mutant (TC7) of Arabidopsis thaliana L. were examined by electron microscopy to identify cellular polarities with respect to gravity. In columella cells, nuclei are located proximally, and the nuclear envelope is continuous with endoplasmic reticulum (ER) that is in turn connected to nearby plasmodesmata. Impregnation of ER with osmium ferricyanide revealed numerous contacts between columella plastids and ER in both genotypes. ER is present mostly in the outer regions of the columella protoplast except in older columella cells that are developing into peripheral cells. In vertical roots, only columella cells that are intermediate in development (story 2 cells) have a higher surface density (S) of ER in the distal compared to proximal regions of the cell. The distal but not the proximal S of the ER is constant throughout columella development. Plastids are less sedimented in TC7 columella cells compared to those of the WT. It is hypothesized that plastid contact with the ER plays a role in gravity perception in both genotypes.

  14. Integrated, multi-scale, spatial-temporal cell biology--A next step in the post genomic era.

    PubMed

    Horwitz, Rick

    2016-03-01

    New microscopic approaches, high-throughput imaging, and gene editing promise major new insights into cellular behaviors. When coupled with genomic and other 'omic information and "mined" for correlations and associations, a new breed of powerful and useful cellular models should emerge. These top down, coarse-grained, and statistical models, in turn, can be used to form hypotheses merging with fine-grained, bottom up mechanistic studies and models that are the back bone of cell biology. The goal of the Allen Institute for Cell Science is to develop the top down approach by developing a high throughput microscopy pipeline that is integrated with modeling, using gene edited hiPS cell lines in various physiological and pathological contexts. The output of these experiments and models will be an "animated" cell, capable of integrating and analyzing image data generated from experiments and models. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Emerging Imaging and Genomic Tools for Developmental Systems Biology.

    PubMed

    Liu, Zhe; Keller, Philipp J

    2016-03-21

    Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    NASA Astrophysics Data System (ADS)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  17. Molecular imaging of labile iron(II) pools in living cells with a turn-on fluorescent probe.

    PubMed

    Au-Yeung, Ho Yu; Chan, Jefferson; Chantarojsiri, Teera; Chang, Christopher J

    2013-10-09

    Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe(2+) pools in aqueous solution and living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C-O bond cleavage reaction to achieve a selective turn-on response to Fe(2+) over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe(2+) detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development.

  18. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    PubMed

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  19. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Staying Alive: Cancer Cells Expressing Mutant KRas Depend on ERH for Survival | Center for Cancer Research

    Cancer.gov

    The small G-protein KRas acts like a molecular switch, turning on and off pro-growth signaling pathways within cells when appropriate. In a large number of cancers, KRas is permanently turned on by a variety of mutations and drives the constant growth of these tumor cells. KRas itself has proved to be a poor drug target so researchers in the laboratory of Ji Luo, Ph.D., in

  1. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  2. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles

    PubMed Central

    Ma, Jingwei; Zhang, Yi; Tang, Ke; Zhang, Huafeng; Yin, Xiaonan; Li, Yong; Xu, Pingwei; Sun, Yanling; Ma, Ruihua; Ji, Tiantian; Chen, Junwei; Zhang, Shuang; Zhang, Tianzhen; Luo, Shunqun; Jin, Yang; Luo, Xiuli; Li, Chengyin; Gong, Hongwei; Long, Zhixiong; Lu, Jinzhi; Hu, Zhuowei; Cao, Xuetao; Wang, Ning; Yang, Xiangliang; Huang, Bo

    2016-01-01

    Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue of being more deformable than differentiated cancer cells, preferentially take up T-MPs that release anti-tumor drugs after entering cells, which in turn lead to death of TRCs. The underlying mechanisms include interfering with drug efflux and promoting nuclear entry of the drugs. Our findings demonstrate the importance of tumor cell softness in uptake of T-MPs and effectiveness of a novel approach in reversing drug resistance of TRCs with promising clinical applications. PMID:27167569

  3. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    PubMed

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity. Copyright © 2014 by the Genetics Society of America.

  4. Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies.

    PubMed

    Rungarunlert, Sasitorn; Ferreira, Joao N; Dinnyes, Andras

    2016-01-01

    Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering. All these applications would benefit from a reliable bioreactor-based methodology to consistently generate homogenous PSC-derived embryoid bodies (EBs) at a large scale, which can further undergo cardiomyogenic differentiation. The goal of this chapter is to describe a scalable method to consistently generate large amount of homogeneous and synchronized EBs from PSCs. This method utilizes a slow-turning lateral vessel bioreactor to direct the EB formation and their subsequent cardiomyogenic lineage differentiation.

  5. Peptides derived from central turn motifs within integrin αIIb and αV cytoplasmic tails inhibit integrin activation.

    PubMed

    Li, Xinlei; Liu, Yongqing; Haas, Thomas A

    2014-12-01

    We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  7. Gene networks and developmental context: the importance of understanding complex gene expression patterns in evolution.

    PubMed

    Signor, Sarah A; Arbeitman, Michelle N; Nuzhdin, Sergey V

    2016-05-01

    Animal development is the product of distinct components and interactions-genes, regulatory networks, and cells-and it exhibits emergent properties that cannot be inferred from the components in isolation. Often the focus is on the genotype-to-phenotype map, overlooking the process of development that turns one into the other. We propose a move toward micro-evolutionary analysis of development, incorporating new tools that enable cell type resolution and single-cell microscopy. Using the sex determination pathway in Drosophila to illustrate potential avenues of research, we highlight some of the questions that these emerging technologies can address. For example, they provide an unprecedented opportunity to study heterogeneity within cell populations, and the potential to add the dimension of time to gene regulatory network analysis. Challenges still remain in developing methods to analyze this data and to increase the throughput. However this line of research has the potential to bridge the gaps between previously more disparate fields, such as population genetics and development, opening up new avenues of research. © 2016 Wiley Periodicals, Inc.

  8. Characteristics of trajectory in the migration of Amoeba proteus.

    PubMed

    Miyoshi, Hiromi; Masaki, Noritaka; Tsuchiya, Yoshimi

    2003-01-01

    We investigated the behavior of migration of Amoeba proteus in an isotropic environment. We found that the trajectory in the migration of A. proteus is smooth in the observation time of 500-1000 s, but its migration every second (the cell velocity) on the trajectory randomly changes. Stochastic analysis of the cell velocity and the turn angle of the trajectory has shown that the histograms of the both variables well fit to Gaussian curves. Supposing a simple model equation for the cell motion, we have estimated the motive force of the migrating cell, which is of the order of piconewton. Furthermore, we have found that the cell velocity and the turn angle have a negative cross-correlation coefficient, which suggests that the amoeba explores better environment by changing frequently its migrating direction at a low speed and it moves rectilinearly to the best environment at a high speed. On the other hand, the model equation has simulated the negative correlation between the cell velocity and the turn angle. This indicates that the apparently rational behavior comes from intrinsic characteristics in the dynamical system where the motive force is not torquelike.

  9. Reproductive Toxicity of T Cells in Early Life: Abnormal Immune Development and Postnatal Diseases.

    PubMed

    Liu, Han-Xiao; Jiang, Aifang; Chen, Ting; Qu, Wen; Yan, Hui-Yi; Ping, Jie

    2017-01-01

    Immunity is a balanced status with adequate biological defenses to recognize and fight "non-self", as well as adequate tolerance to recognize "self". To maintain this immune homeostasis, a well-organized T cell immune network is required, which in part depends on the well-controlled development of alternative effector T cells, with different cytokine repertoires. Recent researches have pointed that developing fetal T cells network is a remarkably sensitive toxicological target for adverse factors in early life. Epidemiological and experimental studies showed an inseparable relationship between T cell developmental toxicity and immune diseases in adults. Considering that the inflammatory and immune disorders have become a growing health problem worldwide, increasing attention is now being paid to the T cell developmental toxicity. We propose that adverse factors may have programming effects on the crucial functions of immune system during early life which is critical for fetal T cell development and the establishment of the distinct T cell repertoires balance. The permanently disturbed intrathymic or peripheral T cell development may in turn lead to the immune disorders in later life. In this manuscript, we reviewed how adverse factors affected T cell development in early-life with the consequence of the immune dysfunction and immune diseases, and further elucidate the mechanisms. These mechanisms will be helpful in prevention and treatment of the increased prevalence of immune diseases by interfering those pathways. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  11. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds.

    PubMed

    Fourquin, Chloé; Beauzamy, Léna; Chamot, Sophy; Creff, Audrey; Goodrich, Justin; Boudaoud, Arezki; Ingram, Gwyneth

    2016-09-15

    Seed development in angiosperms demands the tightly coordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis, final seed size is determined by early expansion of the coenocytic endosperm, which then cellularises and subsequently undergoes developmental programmed cell death, breaking down as the embryo grows. Endosperm breakdown requires the endosperm-specific basic helix-loop-helix transcription factor ZHOUPI. However, to date, the mechanism underlying the Arabidopsis endosperm breakdown process has not been elucidated. Here, we provide evidence that ZHOUPI does not induce the developmental programmed cell death of the endosperm directly. Instead ZHOUPI indirectly triggers cell death by regulating the expression of cell wall-modifying enzymes, thus altering the physical properties of the endosperm to condition a mechanical environment permitting the compression of the cellularised endosperm by the developing embryo. © 2016. Published by The Company of Biologists Ltd.

  12. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    NASA Astrophysics Data System (ADS)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  13. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response

    USDA-ARS?s Scientific Manuscript database

    Mating of compatible haploid cells of Ustilago maydis is essential for infection and disease development in the host. For mating and subsequent filamentous growth and pathogenicity, the transcription factor, prf1 is necessary. Prf1 is in turn regulated by the cAMP and MAPK pathways and other regul...

  14. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    PubMed

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  15. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells

    NASA Astrophysics Data System (ADS)

    Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying

    2017-06-01

    As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.

  16. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck.

    PubMed

    Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua

    2014-04-09

    JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.

  17. Identification of malaria infected red blood samples by digital holographic quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Patel, Nimit R.; Chhaniwal, Vani K.; Javidi, Bahram; Anand, Arun

    2015-07-01

    Development of devices for automatic identification of diseases is desired especially in developing countries. In the case of malaria, even today the gold standard is the inspection of chemically treated blood smears through a microscope. This requires a trained technician/microscopist to identify the cells in the field of view, with which the labeling chemicals gets attached. Bright field microscopes provide only low contrast 2D images of red blood cells and cell thickness distribution cannot be obtained. Quantitative phase contrast microscopes can provide both intensity and phase profiles of the cells under study. The phase information can be used to determine thickness profile of the cell. Since cell morphology is available, many parameters pertaining to the 3D shape of the cell can be computed. These parameters in turn could be used to decide about the state of health of the cell leading to disease diagnosis. Here the investigations done on digital holographic microscope, which provides quantitative phase images, for comparison of parameters obtained from the 3D shape profile of objects leading to identification of diseased samples is described.

  18. Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit wnt signaling.

    PubMed

    Hunter, C P; Harris, J M; Maloof, J N; Kenyon, C

    1999-02-01

    In Caenorhabditis elegans males, a row of epidermal precursor cells called seam cells generates a pattern of cuticular alae in anterior body regions and neural sensilla called rays in the posterior. The Hox gene mab-5 is required for two posterior seam cells, V5 and V6, to generate rays. In mab-5 mutant males, V5 and V6 do not generate sensory ray lineages but instead generate lineages that lead to alae. Here we show that two independent regulatory pathways can activate mab-5 expression in the V cells. First, the caudal homolog pal-1 turns on mab-5 in V6 during embryogenesis. Second, a Wnt signaling pathway is capable of activating mab-5 in the V cells during postembryonic development; however, during normal development Wnt signaling is inhibited by signals from neighboring V cells. The inhibition of this Wnt signaling pathway by lateral signals between the V cells limits the number of rays in the animal and also determines the position of the boundary between alae and rays.

  19. A mitochondria-targeted turn-on fluorescent probe for the detection of glutathione in living cells.

    PubMed

    Zhang, Jian; Bao, Xiaolong; Zhou, Junliang; Peng, Fangfang; Ren, Hang; Dong, Xiaochun; Zhao, Weili

    2016-11-15

    A novel turn-on red fluorescent BODIPY-based probe (Probe 1) for the detection of glutathione was developed. Such a probe carries a para-dinitrophenoxy benzyl pyridinium moiety at the meso position of a BODIPY dye as self-immolative linker. Probe 1 responds selectively to glutathione with the detection limit of 109nM over other amino acids, common metal ions, reactive oxygen species, reactive nitrogen species, and reactive sulfur species. A novel electrostatic interaction to modulate the SNAr attack of glutathione was believed to play significant role for the observed selective response to glutathione. The cleavage of dinitrophenyl ether by glutathione leads to the production of para-hydroxybenzyl moiety which is able to self-immolate through an intramolecular 1,4-elimination reaction to release the fluorescent BODIPY dye. The low toxic probe has been successfully used to detect mitochondrial glutathione in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Near-Infrared Fluorescent Turn-on Probe with a Remarkable Large Stokes Shift for Imaging Selenocysteine in Living Cells and Animals.

    PubMed

    Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang

    2017-06-06

    Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.

  1. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    PubMed

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  2. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition.

    PubMed

    Ondracka, Andrej; Robbins, Jonathan A; Cross, Frederick R

    2016-01-01

    B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.

  3. Genetic control of Drosophila nerve cord development

    NASA Technical Reports Server (NTRS)

    Skeath, James B.; Thor, Stefan

    2003-01-01

    The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.

  4. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    PubMed Central

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  5. Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility

    PubMed Central

    Qian, Chen; Wong, Chui Ching; Swarup, Sanjay

    2013-01-01

    We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820

  6. Blood vessel crosstalk during organogenesis – Focus on Pancreas

    PubMed Central

    Azizoglu, D. Berfin; Cleaver, Ondine

    2016-01-01

    Blood vessels form a highly branched, interconnected and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are ‘patterned’, and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells (ECs) and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. PMID:27328421

  7. Charge collection microscopy of in-situ switchable PRAM line cells in a scanning electron microscope: Technique development and unique observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oosthoek, J. L. M.; Schuitema, R. W.; Brink, G. H. ten

    2015-03-15

    An imaging method has been developed based on charge collection in a scanning electron microscope (SEM) that allows discrimination between the amorphous and crystalline states of Phase-change Random Access Memory (PRAM) line cells. During imaging, the cells are electrically connected and can be switched between the states and the resistance can be measured. This allows for electrical characterization of the line cells in-situ in the SEM. Details on sample and measurement system requirements are provided which turned out to be crucial for the successful development of this method. Results show that the amorphous or crystalline state of the line cellsmore » can be readily discerned, but the spatial resolution is relatively poor. Nevertheless, it is still possible to estimate the length of the amorphous mark, and also for the first time, we could directly observe the shift of the amorphous mark from one side of the line cell to the other side when the polarity of the applied (50 ns) RESET pulse was reversed.« less

  8. Liquid-Hydrogen-Cooled 450-hp Electric Motor Test Stand Being Developed

    NASA Technical Reports Server (NTRS)

    Kascak, Albert F.; Trudell, Jeffrey J.; Brown, Gerald V.

    2005-01-01

    With growing concerns about global warming, there is a need to develop pollution-free aircraft. One approach is to use hydrogen-fueled airc raft that use fuel cells or turbogenerators to produce electric power to drive the electric motors that turn the aircraft#s propulsive fan s. Hydrogen fuel would be carried as a liquid, stored at its boiling point of 20.5 K (-422.5 ?F). Conventional electric motors, however, are too heavy to use on an aircraft. We need to develop high-power, lig htweight electric motors (high-powerdensity motors).

  9. Staying Alive: Cancer Cells Expressing Mutant KRas Depend on ERH for Survival | Center for Cancer Research

    Cancer.gov

    The small G-protein KRas acts like a molecular switch, turning on and off pro-growth signaling pathways within cells when appropriate. In a large number of cancers, KRas is permanently turned on by a variety of mutations and drives the constant growth of these tumor cells. KRas itself has proved to be a poor drug target so researchers in the laboratory of Ji Luo, Ph.D., in CCR’s Medical Oncology Branch decided to look for other pathways that are essential for the growth of cells expressing mutant KRas. These pathways could present new drug targets, and blocking their activities might selectively affect cells that express mutant KRas.

  10. Ontogenesis of the collapsed layer during haustorium development in the root hemi-parasite Santalum album Linn.

    PubMed

    Yang, X; Zhang, X; Teixeira da Silva, J A; Liang, K; Deng, R; Ma, G

    2014-01-01

    The structure and development of collapsed layers of the haustorium were studied in Santalum album Linn. Through light and transmission electron microscopy, it was shown that the collapsed layers originated from starch-containing cells when the haustorium developed an internal gland, thickened gradually and ultimately developed into the mantle, which, combined with the sucker, buckled the host root. We report on the presence of inter-collapsed layers for the first time. These layers develop after penetration into the host and are located between the intrusive tissues and the vascular meristematic region, gradually linking the collapsed layers and remains around the sucker. The proliferation of cells in the meristematic region and the 'host tropism' of cortical layers contribute to pressure within the haustorium and result in development of the collapsed layers. Besides, starch-containing cells that turn into collapsed layers are vulnerable to pressure as they lack a large vacuole, have uneven cell wall thickness and a loose cell arrangement. We proposed that the functions of collapsed layers are to efficiently assure that cell inclusion and energy concentrate at the inner meristematic region and are recycled to affect penetration, reinforce the physical connection between the sandalwood haustorium and host root, and supply space for haustorial development. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Automated analysis of clonal cancer cells by intravital imaging

    PubMed Central

    Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph

    2013-01-01

    Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895

  12. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    NASA Astrophysics Data System (ADS)

    Patsch, Marek; Čaja, Alexander

    2015-05-01

    Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  13. Cross–dressers turn on T cells

    PubMed Central

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2012-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells. PMID:21455165

  14. Self-assembly of an upconverting nanocomplex and its application to turn-on detection of metalloproteinase-9 in living cells

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong-Diem; Thanh Cong, Vu; Baek, Changyoon; Min, Junhong

    2016-10-01

    Upcoversion nanoparticles are an emerging luminescent nanomaterial with excellent photophysical properties that have great benefits in biological sensing. In this study, a luminescent turn-on biosensor for cell-secreted protease activity assay is established based on resonance energy transfer in an upconversion nanoparticle-graphene oxide nano-assembly. The proposed biosensor consists of a blue-emitting upconversion nanoparticle covered with a quenching complex, comprising gelatin as the proteinase substrate and graphene oxide nanosheets as luminescence acceptors. After enzymatic digestion, the upconversion nanoparticles lose the gelatin cover due to the disassembly of the quenching complex, thus the upconverting luminescence in the blue region is restored (a turn-on response). The recovered upconverting luminescence is proportional to the protease concentration; the limit of detection was 12 ng ml-1. Finally, the upconversion-graphene oxide nanocomplex was successfully applied in the detection of cell-secreted protease-metalloproteinase in MCF-7 cancer cells with high sensitivity and specificity.

  15. Generalized arteriosclerosis and changes of the cochlea in young adults.

    PubMed

    Nomiya, Rie; Nomiya, Shigenobu; Kariya, Shin; Okano, Mitsuhiro; Morita, Norimasa; Cureoglu, Sebahattin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M

    2008-12-01

    To disclose the histopathologic findings of the cochlea in young adults with generalized arteriosclerosis. It is well known that arteriosclerosis begins and progresses during childhood. Although the relationship between arteriosclerosis and auditory function in elderly people was examined in many reports, the histopathologic effect of arteriosclerosis on the cochlea in young adults has not been studied. This study involved quantitative analysis, including the number of spiral ganglion cells, the loss of cochlear outer hair cells, and the areas of stria vascularis and spiral ligament. It included 10 temporal bones from 6 subjects with generalized arteriosclerosis and 10 age-matched normal control temporal bones from 7 subjects. The mean number of spiral ganglion cells in the cochlea with generalized arteriosclerosis was significantly lower than that in normal controls in the basal turn. The mean loss of outer hair cells in the cochlea with generalized arteriosclerosis was significantly greater than that of normal controls in the basal and apical turns. The stria vascularis and spiral ligament were severely atrophic, with generalized arteriosclerosis in the basal turn. There was no significant difference in the thickness of the spiral modiolar artery between generalized arteriosclerosis and normal controls. Degeneration of the cochlea, especially in the basal turn, was already apparent in young adults with generalized arteriosclerosis.

  16. GLP-I secretion in healthy and diabetic Wistar rats in response to aqueous extract of Momordica charantia.

    PubMed

    Bhat, Gulzar Ahmad; Khan, Haseeb A; Alhomida, Abdullah S; Sharma, Poonam; Singh, Rambir; Paray, Bilal Ahmad

    2018-05-18

    Diabetes mellitus is one of the major global health disorders increasing at an alarming rate in both developed and developing countries. The objective of this study was to assess the effect of aqueous extract of Momordica charantia (AEMC) on fasting blood glucose (FBG), tissue glycogen, glycosylated haemoglobin, plasma concentrations of insulin and GLP-1 hormone (glucagon-like peptide 1) in healthy and diabetic wistar rats. Male Wistar rats (both normal and diabetic) were treated with AEMC by gavaging (300 mg/kg body wt/day for 28 days). AEMC was found to increase tissue glycogen, serum insulin and GLP-1 non-significantly (P > 0.05) in normal, significantly (P < 0.01) in diabetic Wistar rats, whereas decrease in FBG and Glycosylated haemoglobin non-significantly (P > 0.05) in normal, significantly (P < 0.01) in diabetic Wistar rats. The elevation of GLP-1 level in normal and diabetic treated groups may be due to the L-cell regeneration and proliferation by binding with L-cell receptors and makes a conformational change, resulting in the activation of a series of signal transducers. The polar molecules of M. charantia also depolarize the L-cell through elevation of intracellular Ca 2+ concentration and which in turn releases GLP-1. GLP-1 in turn elevates beta-cell proliferation and insulin secretion. The findings tend to provide a possible explanation for the hypoglycemic action of M. charantia fruit extracts as alternative nutritional therapy in the management and treatment of diabetes.

  17. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila

    NASA Technical Reports Server (NTRS)

    Nolo, R.; Abbott, L. A.; Bellen, H. J.

    2000-01-01

    The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.

  18. Regional up-regulation of NOX2 contributes to the differential vulnerability of outer hair cells to neomycin.

    PubMed

    Qi, Meihao; Qiu, Yang; Zhou, Xueying; Tian, Keyong; Zhou, Ke; Sun, Fei; Yue, Bo; Chen, Fuquan; Zha, Dingjun; Qiu, Jianhua

    2018-06-02

    In hearing loss induced by aminoglycoside antibiotics, the outer hair cells (OHCs) in the basal turn are always more susceptible than OHCs in the apical turn, while the underlying mechanisms remain unknown. In this study, we reported that NAPDH oxidase 2 (NOX2) played an important role in the OHCs damage preferentially in the basal turn. Normally, NOX2 was evenly expressed in OHCs among different turns, at a relatively low level. However, after neomycin treatment, NOX2 was dominantly induced in OHCs in the basal turn. In vivo and in vitro studies demonstrated that inhibition of NOX2 significantly alleviated neomycin-induced OHCs damages, as seen from both the cleaved caspase-3 and TUNEL staining. Moreover, gp91 ds-tat delivery and DHE staining results showed that NOX2-derived ROS was responsible for neomycin ototoxicity. Taken together, our study shows that regional up-expression of NOX2 and subsequent increase of ROS in OHCs of the basal turn is an important factor contributing to the vulnerability of OHCs there, which should shed light on the prevention of hearing loss induced by aminoglycoside antibiotics. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. In silico platform for predicting and initiating β-turns in a protein at desired locations.

    PubMed

    Singh, Harinder; Singh, Sandeep; Raghava, Gajendra P S

    2015-05-01

    Numerous studies have been performed for analysis and prediction of β-turns in a protein. This study focuses on analyzing, predicting, and designing of β-turns to understand the preference of amino acids in β-turn formation. We analyzed around 20,000 PDB chains to understand the preference of residues or pair of residues at different positions in β-turns. Based on the results, a propensity-based method has been developed for predicting β-turns with an accuracy of 82%. We introduced a new approach entitled "Turn level prediction method," which predicts the complete β-turn rather than focusing on the residues in a β-turn. Finally, we developed BetaTPred3, a Random forest based method for predicting β-turns by utilizing various features of four residues present in β-turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict β-turn types with better performance than other methods available in the literature. In order to improve the quality of prediction of turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this study, a web server has been developed for prediction of β-turns and their types in proteins. This web server also predicts minimum number of mutations required to initiate or break a β-turn in a protein at specified location of a protein. © 2015 Wiley Periodicals, Inc.

  20. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  1. Counter-rotational cell flows drive morphological and cell fate asymmetries in mammalian hair follicles.

    PubMed

    Cetera, Maureen; Leybova, Liliya; Joyce, Bradley; Devenport, Danelle

    2018-05-01

    Organ morphogenesis is a complex process coordinated by cell specification, epithelial-mesenchymal interactions and tissue polarity. A striking example is the pattern of regularly spaced, globally aligned mammalian hair follicles, which emerges through epidermal-dermal signaling and planar polarized morphogenesis. Here, using live-imaging, we discover that developing hair follicles polarize through dramatic cell rearrangements organized in a counter-rotational pattern of cell flows. Upon hair placode induction, Shh signaling specifies a radial pattern of progenitor fates that, together with planar cell polarity, induce counter-rotational rearrangements through myosin and ROCK-dependent polarized neighbour exchanges. Importantly, these cell rearrangements also establish cell fate asymmetry by repositioning radial progenitors along the anterior-posterior axis. These movements concurrently displace associated mesenchymal cells, which then signal asymmetrically to maintain polarized cell fates. Our results demonstrate how spatial patterning and tissue polarity generate an unexpected collective cell behaviour that in turn, establishes both morphological and cell fate asymmetry.

  2. A free-boundary model of a motile cell explains turning behavior.

    PubMed

    Nickaeen, Masoud; Novak, Igor L; Pulford, Stephanie; Rumack, Aaron; Brandon, Jamie; Slepchenko, Boris M; Mogilner, Alex

    2017-11-01

    To understand shapes and movements of cells undergoing lamellipodial motility, we systematically explore minimal free-boundary models of actin-myosin contractility consisting of the force-balance and myosin transport equations. The models account for isotropic contraction proportional to myosin density, viscous stresses in the actin network, and constant-strength viscous-like adhesion. The contraction generates a spatially graded centripetal actin flow, which in turn reinforces the contraction via myosin redistribution and causes retraction of the lamellipodial boundary. Actin protrusion at the boundary counters the retraction, and the balance of the protrusion and retraction shapes the lamellipodium. The model analysis shows that initiation of motility critically depends on three dimensionless parameter combinations, which represent myosin-dependent contractility, a characteristic viscosity-adhesion length, and a rate of actin protrusion. When the contractility is sufficiently strong, cells break symmetry and move steadily along either straight or circular trajectories, and the motile behavior is sensitive to conditions at the cell boundary. Scanning of a model parameter space shows that the contractile mechanism of motility supports robust cell turning in conditions where short viscosity-adhesion lengths and fast protrusion cause an accumulation of myosin in a small region at the cell rear, destabilizing the axial symmetry of a moving cell.

  3. Germline regeneration: the worms' turn.

    PubMed

    Weisblat, David A

    2006-06-20

    Asexual reproduction in the annelid Enchytraeus japonensis entails the regeneration of primordial germ cells from body parts that lack gonads. New primordial germ cells arise from piwi-expressing germline stem cells that are distinct from somatic stem cells.

  4. NEU3 Sialidase Is Activated under Hypoxia and Protects Skeletal Muscle Cells from Apoptosis through the Activation of the Epidermal Growth Factor Receptor Signaling Pathway and the Hypoxia-inducible Factor (HIF)-1α

    PubMed Central

    Scaringi, Raffaella; Piccoli, Marco; Papini, Nadia; Cirillo, Federica; Conforti, Erika; Bergante, Sonia; Tringali, Cristina; Garatti, Andrea; Gelfi, Cecilia; Venerando, Bruno; Menicanti, Lorenzo; Tettamanti, Guido; Anastasia, Luigi

    2013-01-01

    NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system. PMID:23209287

  5. NEU3 sialidase is activated under hypoxia and protects skeletal muscle cells from apoptosis through the activation of the epidermal growth factor receptor signaling pathway and the hypoxia-inducible factor (HIF)-1α.

    PubMed

    Scaringi, Raffaella; Piccoli, Marco; Papini, Nadia; Cirillo, Federica; Conforti, Erika; Bergante, Sonia; Tringali, Cristina; Garatti, Andrea; Gelfi, Cecilia; Venerando, Bruno; Menicanti, Lorenzo; Tettamanti, Guido; Anastasia, Luigi

    2013-02-01

    NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system.

  6. Neocortical neurogenesis in humans is restricted to development

    PubMed Central

    Bhardwaj, Ratan D.; Curtis, Maurice A.; Spalding, Kirsty L.; Buchholz, Bruce A.; Fink, David; Björk-Eriksson, Thomas; Nordborg, Claes; Gage, Fred H.; Druid, Henrik; Eriksson, Peter S.; Frisén, Jonas

    2006-01-01

    Stem cells generate neurons in discrete regions in the postnatal mammalian brain. However, the extent of neurogenesis in the adult human brain has been difficult to establish. We have taken advantage of the integration of 14C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral neocortex. Together with the analysis of the neocortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that, whereas nonneuronal cells turn over, neurons in the human cerebral neocortex are not generated in adulthood at detectable levels but are generated perinatally. PMID:16901981

  7. MiRNAs in β-Cell Development, Identity, and Disease

    PubMed Central

    Martinez-Sanchez, Aida; Rutter, Guy A.; Latreille, Mathieu

    2017-01-01

    Pancreatic β-cells regulate glucose metabolism by secreting insulin, which in turn stimulates the utilization or storage of the sugar by peripheral tissues. Insulin insufficiency and a prolonged period of insulin resistance are usually the core components of type 2 diabetes (T2D). Although, decreased insulin levels in T2D have long been attributed to a decrease in β-cell function and/or mass, this model has recently been refined with the recognition that a loss of β-cell “identity” and dedifferentiation also contribute to the decline in insulin production. MicroRNAs (miRNAs) are key regulatory molecules that display tissue-specific expression patterns and maintain the differentiated state of somatic cells. During the past few years, great strides have been made in understanding how miRNA circuits impact β-cell identity. Here, we review current knowledge on the role of miRNAs in regulating the acquisition of the β-cell fate during development and in maintaining mature β-cell identity and function during stress situations such as obesity, pregnancy, aging, or diabetes. We also discuss how miRNA function could be harnessed to improve our ability to generate β-cells for replacement therapy for T2D. PMID:28123396

  8. NKT cells in leishmaniasis.

    PubMed

    Zamora-Chimal, Jaime; Hernández-Ruiz, Joselín; Becker, Ingeborg

    2017-04-01

    The role of NKT cells in the resistance or susceptibility towards Leishmania infections remains to be defined, since controversial data persist. The response of these cells seems to depend on many variables such as the infection site, the number of infecting parasites, the virulence of the strain and the Leishmania species. We here revise the activation pathways leading to NKT cell activation. NKT cells can be activated by the direct pathway, in which Leishmania glycolipids are presented by CD1d molecules on antigen presenting cells, such as dendritic cells (DC), leading to the secretion of diverse cytokines by NKT. NKT cells can also be activated by the indirect pathway, in which Leishmania glycolipids, such as LPG, stimulate TLR2 in DC, inducing their IL-12 production, which in turn activates NKT cells. The review further analyzes the role of NKT cells in disease development, both in humans as in mouse models. Finally we propose the activation of NKT cells for controlling Leishmania infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Lactate Test

    MedlinePlus

    ... by cells as the body turns food into energy (cell metabolism). Depending on pH , it is sometimes ... level or when the primary way of producing energy in the body's cells is disrupted. Excess lactate ...

  10. Reflectin as a Material for Neural Stem Cell Growth

    PubMed Central

    2015-01-01

    Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760

  11. Lycopene loaded gelatin nanoparticles induces internucleosmal DNA fragmentation and apoptosis in human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Preetha, K. Mary Anne; Devasena, T.

    2018-06-01

    The complex disease, cancer is caused by genetic uncertainty and various molecular alterations. Due to the present ineffective diagnostic and prognostic classifications, the complete heterogeneity of a tumor is not revealed which in turn affects the selection of suitable treatment and patient outcome. Cancer nanotechnology is an emerging interdisciplinary research field that covers important aspects of chemistry, engineering, biology and medicine, leading to the advancement of cancer diagnosis and treatment. Hence the main aim of this study is to develop lycopene loaded gelatin nanoparticles and evaluate its in vitro anticancer activity using breast adenocarcinoma cells.

  12. A novel dicyanoisophorone based red-emitting fluorescent probe with a large Stokes shift for detection of hydrazine in solution and living cells

    NASA Astrophysics Data System (ADS)

    Lv, Hongshui; Sun, Haiyan; Wang, Shoujuan; Kong, Fangong

    2018-05-01

    A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180 nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26 ppb, which was lower than the threshold limit value set by USEPA (10 ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.

  13. Nonlinear Dynamic Modeling of Neuron Action Potential Threshold During Synaptically Driven Broadband Intracellular Activity

    PubMed Central

    Roach, Shane M.; Song, Dong; Berger, Theodore W.

    2012-01-01

    Activity-dependent variation of neuronal thresholds for action potential (AP) generation is one of the key determinants of spike-train temporal-pattern transformations from presynaptic to postsynaptic spike trains. In this study, we model the nonlinear dynamics of the threshold variation during synaptically driven broadband intracellular activity. First, membrane potentials of single CA1 pyramidal cells were recorded under physiologically plausible broadband stimulation conditions. Second, a method was developed to measure AP thresholds from the continuous recordings of membrane potentials. It involves measuring the turning points of APs by analyzing the third-order derivatives of the membrane potentials. Four stimulation paradigms with different temporal patterns were applied to validate this method by comparing the measured AP turning points and the actual AP thresholds estimated with varying stimulation intensities. Results show that the AP turning points provide consistent measurement of the AP thresholds, except for a constant offset. It indicates that 1) the variation of AP turning points represents the nonlinearities of threshold dynamics; and 2) an optimization of the constant offset is required to achieve accurate spike prediction. Third, a nonlinear dynamical third-order Volterra model was built to describe the relations between the threshold dynamics and the AP activities. Results show that the model can predict threshold accurately based on the preceding APs. Finally, the dynamic threshold model was integrated into a previously developed single neuron model and resulted in a 33% improvement in spike prediction. PMID:22156947

  14. Hemin-induced suicidal erythrocyte death.

    PubMed

    Gatidis, Sergios; Föller, Michael; Lang, Florian

    2009-08-01

    Several diseases, such as malaria, sickle cell disease, and ischemia/reperfusion may cause excessive formation of hemin, which may in turn trigger hemolysis. A variety of drugs and diseases leading to hemolysis triggers suicidal erythrocyte death or eryptosis, i.e., cell membrane scrambling and cell shrinkage. Eryptosis is elicited by increased cytosolic Ca(2+) activity and by ceramide. The present study explored whether hemin stimulates eryptosis. Cell membrane scrambling was estimated from annexin V-binding to phosphatidylserine exposed at the cell surface, cell shrinkage from forward scatter in fluorescence-activated cell sorter analysis, cytosolic Ca(2+) activity from Fluo3 fluorescence and ceramide formation from fluorescence-labeled antibody binding. Exposure to hemin (1-10 microM) within 48 h significantly increased annexin V-binding, decreased forward scatter, increased cytosolic Ca(2+) activity, and stimulated ceramide formation. In conclusion, hemin stimulates suicidal cell death, which may in turn contribute to the clearance of circulating erythrocytes and thus to anemia.

  15. Capturing CD4 cells using a functionalized circular microfluidic device and glutaraldehyde as biolinker for tuberculosis detection and diagnosis

    NASA Astrophysics Data System (ADS)

    Shih, Yeu-Farn; Huang, Nien-Tsu; Lee, Chih-Kung

    2015-03-01

    It is estimated that about one-third of the world's population has already been infected by tuberculosis. Mycobacterium tuberculosis, in general, can result in an active case of tuberculosis in approximately 5%-10% of those who suffer from latent tuberculosis and the chance of becoming ill is the highest within one of year of getting the disease. Although a newly developed methods called interferon gamma release assay (IGRA) can monitor CD4 cells secreted cytokine to diagnose tuberculosis (TB) condition. However, it is difficult to count total numbers of cytokine secreted CD4 cells, which make the diagnosis less accurate. Therefore, we develop a functionalized polydimethylsiloxane (PDMS) device using glutaraldehyde to capture CD4 cells. To enhance the capture efficiency, we use COMSOL simulation to optimize the arrangement of PDMS micro pillars to make cells uniformly distributed in the device. Our preliminary data showed the microfluidic configuration in a circular shape with HCP patterned micro pillars turned 30 degrees offers the highest cell capture rate.

  16. CD16+ monocytes control T-cell subset development in immune thrombocytopenia

    PubMed Central

    Zhong, Hui; Bao, Weili; Li, Xiaojuan; Miller, Allison; Seery, Caroline; Haq, Naznin; Bussel, James

    2012-01-01

    Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4+ regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14hiCD16− subpopulation, the CD16+ monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4+IFN-γ+ levels, but negatively with circulating CD4+CD25hiFoxp3+ and IL-17+ Th cells. Using a coculture model, we found that CD16+ ITP monocytes promoted the expansion of IFN-γ+CD4+ cells and concomitantly inhibited the proliferation of Tregs and IL-17+ Th cells. Th-1–polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16+ monocytes, was responsible for the inhibitory effect on Treg and IL-17+CD4+ cell proliferation. Our findings are consistent with ITP CD16+ monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16+ monocytes in the generation of potentially pathogenic Th responses in ITP. PMID:22915651

  17. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    PubMed

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion

    PubMed Central

    Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.

    2017-01-01

    Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793

  19. Sickle Cell Research: Yesterday, Today, and Tomorrow | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Special Section: Sickle Cell Disease Sickle Cell Research: Yesterday, Today, and Tomorrow Past ... live productively. Sickle cell disease (also known as sickle cell anemia) is a serious disease in which the body ...

  20. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  1. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  2. A mathematical applications into the cells.

    PubMed

    Tiwari, Manjul

    2012-01-01

    Biology has become the new "physics" of mathematics, one of the areas of greatest mathematical applications. In turn, mathematics has provided powerful tools and metaphors to approach the astonishing complexity of biological systems. This has allowed the development of sound theoretical frameworks. Here, in this review article, some of the most significant contributions of mathematics to biology, ranging from population genetics, to developmental biology, and to networks of species interactions are summarized.

  3. Should We Turn the Robots Loose?

    DTIC Science & Technology

    2010-05-02

    interference. Potential sources of electromagnetic interference include everyday signals such as cell phones and Wifi , intentional friendly jamming of IED...might even attempt to hack or hijack our robotic warriors. Our current enemies have proven to be very adaptable and have developed simple counters to our...demonstrates the ease with which robot command and control might be hacked . It is reasonable to suspect that a future threat with a more robust

  4. Biological Fuel Cells and Membranes.

    PubMed

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  5. Biological Fuel Cells and Membranes

    PubMed Central

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-01

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells. PMID:28106711

  6. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.

    PubMed

    Tzatzalos, Evangeline; Abilez, Oscar J; Shukla, Praveen; Wu, Joseph C

    2016-01-15

    Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  8. Advanced solar cells for satellite power systems

    NASA Astrophysics Data System (ADS)

    Flood, Dennis J.; Weinberg, Irving

    1994-11-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  9. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  10. Old and New Lymphocyte Players in Inflammatory Bowel Disease.

    PubMed

    Giuffrida, Paolo; Corazza, Gino Roberto; Di Sabatino, Antonio

    2018-02-01

    Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic intestinal inflammatory disorder characterized by diffuse accumulation of lymphocytes in the gut mucosa as a consequence of over-expression of endothelial adhesion molecules. The infiltrating lymphocytes have been identified as subsets of T cells, including T helper (Th)1 cells, Th17 cells, and regulatory T cells. The function of these lymphocyte subpopulations in the development of IBD is well-known, since they produce a number of pro-inflammatory cytokines, such as interferon-γ and interleukin-17A, which in turn activate mucosal proteases, thus leading to the development of intestinal lesions, i.e., ulcers, fistulas, abscesses, and strictures. However, the immune mechanisms underlying IBD are not yet fully understood, and knowledge about the function of newly discovered lymphocytes, including Th9 cells, innate lymphoid cells, mucosal-associated invariant T cells, and natural killer T cells, might add new pieces to the complex puzzle of IBD pathogenesis. This review summarizes the recent advances in the understanding of the role of mucosal lymphocytes in chronic intestinal inflammation and deals with the therapeutic potential of lymphocyte-targeting drugs in IBD patients.

  11. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.

    PubMed

    Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi

    2016-10-04

    Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. GEMINI-TITAN (GT)-III - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA

    NASA Image and Video Library

    1965-03-19

    S65-18766 (March 1965) --- Diagram of experiment planned for the Gemini-Titan 3 mission scheduled on March 23, 1965, to find out if there are effects of weightlessness on individual living cells. The round canister (top) shows the experiment package. It will contain eight identical chambers, each with sections of sperm, eggs and fixative. Cells are eggs of the spiny, black sea animal, the sea urchin. Bottom panel shows the three stages of each chamber. From left in the first stage, sperm, eggs and fixative are separated. By turning the handle, astronauts will fertilize a certain portion of the eggs, which will begin to divide. At 20 minutes after launch, further turns of the handle will force fixative into two chambers and stop cell division. At 70 minutes after launch, cell division in four more chambers will be stopped, and just prior to re-entry, growth of the remaining two chambers will be terminated by a turn of the handle. This system will allow study after the flight of how cells divided after various time periods in weightlessness. Abnormalities would suggest weightlessness effects on living tissue and possible hazard to prolonged manned spaceflight.

  13. Two-photon-based photoactivation in live zebrafish embryos.

    PubMed

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  14. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery.

    PubMed

    Gao, Na; Yang, Wen; Nie, Hailiang; Gong, Yunqian; Jing, Jing; Gao, Loujun; Zhang, Xiaoling

    2017-10-15

    This paper reports a turn-on theranostic fluorescent nanoprobe P-CDs/HA-Dox obtained by electrostatic assembly of polyethylenimine (PEI)-modified carbon dots (P-CDs) and Hyaluronic acid (HA)-conjugated doxorubicin (Dox) for hyaluronidase (HAase) detection, self-targeted imaging and drug delivery. P-CDs/HA-Dox show weak emission in a physiological environment. By utilizing the high affinity of HA to CD44 receptors overexpressed on many cancer cells, P-CDs/HA-Dox are capable of targeting and penetrating into cancer cells, where they are activated by HAase. As a result, HA-Dox can be digested into small fragments, causing the release of Dox and thereby restoring the fluorescence of P-CDs. The theranostic fluorescent nanoprobe can effectively distinguish cancer cells from normal cells. The as-prepared nanoprobe achieves a sensitive assay of HAase with a detection limit of 0.65UmL -1 . Furthermore, upon Dox release, the Dox could efficiently induce apoptosis in HeLa cells, as confirmed by MTT assay. The design of such a turn-on theranostic fluorescent probe provides a new strategy for self-targeted and image-guided chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Actin-based vesicular transport in the first 20 min after dusk is crucial for daily rhabdom synthesis in the compound eye of the grapsid crab Hemigrapsus sanguineus.

    PubMed

    Matsushita, A; Arikawa, K

    1997-09-01

    In the crab Hemigrapsus sanguineus, maintained under a 12 h:12 h light:dark cycle, the amount of vesicular smooth endoplasmic reticulum (vesicular sER) in the photoreceptor cell body increases after the light is turned off. This paper demonstrates that actin filaments in the photoreceptor cell body are involved in the transport of vesicular sER towards the rhabdom. To specify the time of actin contribution to rhabdom synthesis, we disrupted the organization of actin filaments in the cell body with cytochalasin D at various time around dusk. We then measured the rhabdom size and also examined the ultrastructure of the photoreceptor cell body 3 h after extinguishing the light. When cytochalasin D was applied from either 1 h before or immediately after extinguishing the light, the rhabdom size did not increase, whereas vesicular sER accumulated in the cell body. In contrast, cytochalasin D applied to the eyes from 20 min after turning the light off did not inhibit rhabdom synthesis. These results indicate that the first 20 min after the light is turned off is particularly important for the transport of vesicular sER towards the rhabdom by the cell body actin filaments.

  16. Cellular and epigenetic drivers of stem cell ageing.

    PubMed

    Ermolaeva, Maria; Neri, Francesco; Ori, Alessandro; Rudolph, K Lenhard

    2018-06-01

    Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.

  17. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  18. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    PubMed

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  19. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    NASA Astrophysics Data System (ADS)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  20. Serial block face-scanning electron microscopy: a tool for studying embryonic development at the cell-matrix interface.

    PubMed

    Starborg, Tobias; Kadler, Karl E

    2015-03-01

    Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development. © 2015 Wiley Periodicals, Inc.

  1. Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells

    PubMed Central

    Siembab, Valerie C.; Gomez-Perez, Laura; Rotterman, Travis M.; Shneider, Neil A.; Alvarez, Francisco J.

    2015-01-01

    Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, like Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (Er81(−/−) knockout), weakened (Egr3(−/−) knockout) or strengthened (mlcNT3(+/−) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their de-selection and reduces motor axon synaptic density and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells. PMID:26660356

  2. Fuel Cell Development for NASA's Human Exploration Program: Benchmarking with "The Hydrogen Economy"

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2007-01-01

    The theoretically high efficiency and low temperature operation of hydrogen-oxygen fuel cells has motivated them to be the subject of much study since their invention in the 19th Century, but their relatively high life cycle costs kept them as a "solution in search of a problem" for many years. The first problem for which fuel cells presented a truly cost effective solution was that of providing a power source for NASA's human spaceflight vehicles in the 1960 s. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. This development program continues to place its highest priorities on requirements for minimum system mass and maximum durability and reliability. These priorities drive fuel cell power plant design decisions at all levels, even that of catalyst support. However, since the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of commercial applications. This investment is bringing about notable advances in fuel cell technology, but, as these development efforts place their highest priority on requirements for minimum life cycle cost and field safety, these advances are yielding design solutions quite different at almost every level from those needed for spacecraft applications. This environment thus presents both opportunities and challenges for NASA's Human Exploration Program

  3. Environmental Impact on Intestinal Stem Cell Functions in Mucosal Homeostasis and Tumorigenesis.

    PubMed

    Augenlicht, Leonard H

    2017-05-01

    Multiple cell compartments at or near the base of the intestinal crypt have been identified as contributing intestinal stem cells for homeostasis of the rapidly turning over intestinal mucosa and cells that can initiate tumor development upon appropriate genetic changes. There is a strong literature establishing the importance of the frequently dividing Lgr5+ crypt base columnar cells as the fundamental cell in providing these stem cell-associated functions, but there are also clear data that more quiescent cells from other compartments can be mobilized to provide these stem cell functions upon compromise of Lgr5+ cells. We review the data that vitamin D, a pleiotropic hormone, is essential for Lgr5 stem cell functions by signaling through the vitamin D receptor. Moreover, we discuss the implications of this role of vitamin D and its impact on relatively long-lived stem cells in regards to the fact that virtually all the data on normal functioning of mouse Lgr5 stem cells is derived from mice exposed to vitamin D levels well above those that characterize the human population. Thus, there are still many questions regarding how dietary and environmental factors influence the complement of cells providing stem cell functions and the mechanisms by which this is determined, and the importance of this in human colorectal tumor development. J. Cell. Biochem. 118: 943-952, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. [Embryonic stem cells and therapeutic cloning].

    PubMed

    Sunde, A; Eftedal, I

    2001-08-30

    Increased interest in the therapeutic use of human stem cells has emerged following significant progress in ongoing research. The cloning of a sheep, the isolation of human embryonic stem cells, and the discovery that adult stem cells may be reprogrammed taken together give substance to hopes that novel principles of treatment may be developed for a variety of serious conditions. Embryonic stem cells are derived from pre-embryos at the blastocyst stage and may give rise to all bodily tissues and cells. Animal models have demonstrated that embryonic stem cells when transplanted into adult hosts may differentiate and develop into cells and tissues applicable for treatment of a variety of conditions, including Parkinson's disease, multiple sclerosis, spinal injuries, cardiac stroke and cancer. Transplanted embryonic stem cells are exposed to immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient's own cells by means of therapeutic cloning techniques. The nucleus from a somatic cell is transferred into an egg after removal of the egg's own genetic material. Under specific condition the egg will use genetic information from the somatic cell in organising the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of the patient and are suitable for stem cell therapy.

  5. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    PubMed

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.

  6. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  7. Landing Gear/Soil Interaction Development of Criteria for Aircraft Operation on Soil During Turning and High Speed Straight Roll

    DTIC Science & Technology

    1974-01-01

    system and does not permit differential thrust during turning. Turning Geometry and Force Analysis An aircraft with a castered -steerable nose wheel ...instantaneous radius of turn S= caster angle of nose wheel The definition of the turning angle and the development of side loads and longitudinal drag...pneumatic trail distance will vary with the turning angle, 0. It is alao possible that for a castered wheel , that the caster axis is displaced from the

  8. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    PubMed Central

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  9. Preparation of Yellow-Green-Emissive Carbon Dots and Their Application in Constructing a Fluorescent Turn-On Nanoprobe for Imaging of Selenol in Living Cells.

    PubMed

    Wang, Qin; Zhang, Shengrui; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua

    2017-02-07

    Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λ max = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.

  10. Striated Acto-Myosin Fibers Can Reorganize and Register in Response to Elastic Interactions with the Matrix

    PubMed Central

    Friedrich, Benjamin M.; Buxboim, Amnon; Discher, Dennis E.; Safran, Samuel A.

    2011-01-01

    The remarkable striation of muscle has fascinated many for centuries. In developing muscle cells, as well as in many adherent, nonmuscle cell types, striated, stress fiberlike structures with sarcomere-periodicity tend to register: Based on several studies, neighboring, parallel fibers at the basal membrane of cultured cells establish registry of their respective periodic sarcomeric architecture, but, to our knowledge, the mechanism has not yet been identified. Here, we propose for cells plated on an elastic substrate or adhered to a neighboring cell, that acto-myosin contractility in striated fibers close to the basal membrane induces substrate strain that gives rise to an elastic interaction between neighboring striated fibers, which in turn favors interfiber registry. Our physical theory predicts a dependence of interfiber registry on externally controllable elastic properties of the substrate. In developing muscle cells, registry of striated fibers (premyofibrils and nascent myofibrils) has been suggested as one major pathway of myofibrillogenesis, where it precedes the fusion of neighboring fibers. This suggests a mechanical basis for the optimal myofibrillogenesis on muscle-mimetic elastic substrates that was recently observed by several groups in cultures of mouse-, human-, and chick-derived muscle cells. PMID:21641316

  11. In Vivo magnetic resonance imaging of xenografted tumors using FTH1 reporter gene expression controlled by a tet-on switch.

    PubMed

    He, Xiaoya; Cai, Jinhua; Li, Hao; Liu, Bo; Qin, Yong; Zhong, Yi; Wang, Longlun; Liao, Yifan

    2016-11-29

    As a promising magnetic resonance imaging (MRI) reporter, ferritin has been used to track cells in vivo; however, its continuous overexpression can be cytotoxic, which restricts its application. In this study, we aimed to develop a switch to turn this genetic reporter "on" or "off" while monitoring cell grafts via MRI. To accomplish this, we genetically modified the ferritin heavy chain (FTH1) with a Tet-On switch and assessed the expression of FTH1 in transduced neuroblastoma cells (SK-N-SH) in vitro and in xenografted tumors in vivo. We found that FTH1 expression induced by doxycycline (Dox) in SK-N-SH-FTH1 cells depended on treatment dose and duration. We successfully detected T2-weighted MRI contrast in cell grafts after switching "on" the reporter gene using Dox, and this contrast disappeared when we switched it "off". The genetic reporter FTH1 can thus be switched "on" or "off" throughout longitudinal monitoring of cell grafts, limiting expression to when MRI contrast is needed. The controllable imaging system we have developed minimizes risks from constitutive reporter gene overexpression and facilitates tumor cell monitoring in vitro and in vivo.

  12. Diuretics and salt transport along the nephron.

    PubMed

    Bernstein, Paul L; Ellison, David H

    2011-11-01

    The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  14. Formation of Polymer Networks for Fast In-Plane Switching of Liquid Crystals at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Song, Dong Han; Kim, Ki-Han; Wok Park, Byung; Choi, Sun-Wook; Park, Sung Il; Kang, Sung Gu; Yoon, Jeong Hwan; Kim, Byeong Koo; Yoon, Tae-Hoon

    2013-09-01

    We formed a polymer structure to enable fast in-plane switching of liquid crystals at low temperatures. The problem of the inevitable slow response at low temperatures was reduced by the formation of in-cell polymer networks in in-plane switching (IPS) cells. The electro-optic characteristics of polymer-networked IPS cells were measured at temperatures ranging from -10 to 20 °C. The turn-on and turn-off times of an IPS cell were reduced by 44.5 and 47.2% at -10 °C by the formation of polymer networks. We believe that the proposed technology can be applied to emerging display devices such as mobile phones and automotive displays that may be used at low temperatures.

  15. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    NASA Astrophysics Data System (ADS)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  16. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  17. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    PubMed Central

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  18. A novel graphene-based label-free fluorescence `turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells

    NASA Astrophysics Data System (ADS)

    Ke, Yaotang; Garg, Bhaskar; Ling, Yong-Chien

    2016-02-01

    A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.A novel label-free fluorescence `turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti4+-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti4+) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti4+. The as-prepared rGO@PDA-Ti4+-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti4+. The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti4+), leading to an excellent fluorescence `turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07261a

  19. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ting; Phan-Thien, Nhan, E-mail: Nhan@nus.edu.sg; Khoo, Boo Cheong

    In this paper, we report simulation results assessing the deformation and aggregation of mixed healthy and malaria-infected red blood cells (RBCs) in a tube flow. A three dimensional particle model based on Dissipative Particle Dynamics (DPD) is developed to predict the tube flow containing interacting cells. The cells are also modelled by DPD, with a Morse potential to characterize the cell-cell interaction. As validation tests, a single RBC in a tube flow and two RBCs in a static flow are simulated to examine the cell deformation and intercellular interaction, respectively. The study of two cells, one healthy and the othermore » malaria-infected RBCs in a tube flow demonstrates that the malaria-infected RBC (in the leading position along flow direction) has different effects on the healthy RBC (in the trailing position) at the different stage of parasite development or at the different capillary number. With parasitic development, the malaria-infected RBC gradually loses its deformability, and in turn the corresponding trailing healthy RBC also deforms less due to the intercellular interaction. With increasing capillary number, both the healthy and malaria-infected RBCs are likely to undergo an axisymmetric motion. The minimum intercellular distance becomes small enough so that rouleaux is easily formed, i.e., the healthy and malaria-infected RBCs are difficultly disaggregated.« less

  20. Blood vessel crosstalk during organogenesis-focus on pancreas and endothelial cells.

    PubMed

    Azizoglu, D Berfin; Cleaver, Ondine

    2016-09-01

    Blood vessels form a highly branched, interconnected, and largely stereotyped network of tubes that sustains every organ and tissue in vertebrates. How vessels come to take on their particular architecture, or how they are 'patterned,' and in turn, how they influence surrounding tissues are fundamental questions of organogenesis. Decades of work have begun to elucidate how endothelial progenitors arise and home to precise locations within tissues, integrating attractive and repulsive cues to build vessels where they are needed. Conversely, more recent findings have revealed an exciting facet of blood vessel interaction with tissues, where vascular cells provide signals to developing organs and progenitors therein. Here, we discuss the exchange of reciprocal signals between endothelial cells and neighboring tissues during embryogenesis, with a special focus on the developing pancreas. Understanding the mechanisms driving both sides of these interactions will be crucial to the development of therapies, from improving organ regeneration to efficient production of cell based therapies. Specifically, elucidating the interface of the vasculature with pancreatic lineages, including endocrine cells, will instruct approaches such as generation of replacement beta cells for Type I diabetes. WIREs Dev Biol 2016, 5:598-617. doi: 10.1002/wdev.240 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  1. Feast or famine: the host-pathogen battle over amino acids.

    PubMed

    Zhang, Yanjia J; Rubin, Eric J

    2013-07-01

    Intracellular bacterial pathogens often rely on their hosts for essential nutrients. Host cells, in turn, attempt to limit nutrient availability, using starvation as a mechanism of innate immunity. Here we discuss both host mechanisms of amino acid starvation and the diverse adaptations of pathogens to their nutrient-deprived environments. These processes provide both key insights into immune subversion and new targets for drug development. © 2013 John Wiley & Sons Ltd.

  2. A turn-on supramolecular fluorescent probe for sensing benzimidazole fungicides and its application in living cell imaging

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Zhang, Jing; Sun, Tao; Wang, Cheng-Hui; Huang, Ying; Zhou, Qingdi; Wei, Gang

    2018-02-01

    A cucurbit[8]uril-based turn-on supramolecular fluorescent probe between cucurbit[8]uril (Q[8]) and pyronine Y (PyY) (designated 2PyY@Q[8]) in acidic aqueous solution showed a remarkable fluorescence 'turn-on' response to benzimidazole fungicides such as thiabendazole, fuberidazole and carbendazim. The 2PyY@Q[8] fluorescent probe can be used to detect benzimidazole fungicides with high sensitivity and selectivity with a detection limit of 10- 8 mol/L. A good linear relationship of emission intensity at 580 nm for benzimidazole fungicides at concentrations of 0.4-5.0 μmol/L was observed. The proposed sensing mechanism was investigated using 1H NMR spectroscopy combined with density functional theory calculations at the B3LYP/6-31G(d) level. The cell imaging study showed that the 2PyY@Q[8] complex could be used to image benzimidazole fungicide in prostate cancer (PC3) cells, which may help to elucidate relevant biological processes at the molecular level.

  3. A Graphene Oxide-Based Fluorescent Aptasensor for the Turn-on Detection of CCRF-CEM.

    PubMed

    Tan, Jie; Lai, Zongqiang; Zhong, Liping; Zhang, Zhenghua; Zheng, Rong; Su, Jing; Huang, Yong; Huang, Panpan; Song, Hui; Yang, Nuo; Zhou, Sufang; Zhao, Yongxiang

    2018-04-01

    A convenient, low-cost, and highly sensitive fluorescent aptasensor for detection of leukemia has been developed based on graphene oxide-aptamer complex (GO-apt). Graphene oxide (GO) can absorb carboxyfluorescein-labeled Sgc8 aptamer (FAM-apt) by π-π stacking and quench the fluorescence through fluorescence resonance energy transfer (FRET). In the absence of Sgc8 target cell CCRF-CEM, the fluorescence is almost all quenched. Conversely, when the CCRF-CEM cells are added, the quenched fluorescence can be recovered rapidly and significantly. Therefore, based on the change of fluorescence signals, we can detect the number of CCRF-CEM cells in a wide range from 1 × 10 2 to 1 × 10 7  cells/mL with a limit of detection (LOD) of 10 cells/mL. Therefore, this strategy of graphene oxide-based fluorescent aptasensor may be promising for the detection of cancer.

  4. Assessing Chaos in Sickle Cell Anemia Crises

    NASA Astrophysics Data System (ADS)

    Harris, Wesley; Le Floch, Francois

    2006-11-01

    Recent developments in sickle cell research and blood flow modeling allow for new interpretations of the sickle cell crises. With an appropriate set of theoretical and empirical equations describing the dynamics of the red cells in their environment, and the response of the capillaries to major changes in the rheology, a complete mathematical system has been derived. This system of equations is believed to be of major importance to provide new and significant insight into the causes of the disease and related crises. With simulations, it has been proven that the system transition from a periodic solution to a chaotic one, which illustrates the onset of crises from a regular blood flow synchronized with the heart beat. Moreover, the analysis of the effects of various physiological parameters exposes the potential to control chaotic solutions, which, in turn, could lead to the creation of new and more effective treatments for sickle cell anemia. .

  5. Self-organized cell motility

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; Doubrovinski, Konstantin

    2011-03-01

    Cell migration plays a key role in a wide range of biological phenomena, such as morphogenesis, chemotaxis, and wound healing. Cell locomotion relies on the cytoskeleton, a meshwork of filamentous proteins, intrinsically out of thermodynamic equilibrium and cross-linked by molecular motors, proteins that turn chemical energy into mechanical work. In the course of locomotion, cells remain polarized, i.e. they retain a single direction of motion in the absence of external cues. Traditionally, polarization has been attributed to intracellular signaling. However, recent experiments show that polarization may be a consequence of self-organized cytoskeletal dynamics. Our aim is to elucidate the mechanisms by which persistent unidirectional locomotion may arise through simple mechanical interactions of the cytoskeletal proteins. To this end, we develop a simple physical description of cytoskeletal dynamics. We find that the proposed description accounts for a range of phenomena associated with cell motility, including spontaneous polarization, persistent unidirectional motion, and the co-existence of motile and non-motile states.

  6. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  7. Early development of turn-taking with parents shapes vocal acoustics in infant marmoset monkeys

    PubMed Central

    Takahashi, Daniel Y.; Fenley, Alicia R.; Ghazanfar, Asif A.

    2016-01-01

    In humans, vocal turn-taking is a ubiquitous form of social interaction. It is a communication system that exhibits the properties of a dynamical system: two individuals become coupled to each other via acoustic exchanges and mutually affect each other. Human turn-taking develops during the first year of life. We investigated the development of vocal turn-taking in infant marmoset monkeys, a New World species whose adult vocal behaviour exhibits the same universal features of human turn-taking. We find that marmoset infants undergo the same trajectory of change for vocal turn-taking as humans, and do so during the same life-history stage. Our data show that turn-taking by marmoset infants depends on the development of self-monitoring, and that contingent parental calls elicit more mature-sounding calls from infants. As in humans, there was no evidence that parental feedback affects the rate of turn-taking maturation. We conclude that vocal turn-taking by marmoset monkeys and humans is an instance of convergent evolution, possibly as a result of pressures on both species to adopt a cooperative breeding strategy and increase volubility. PMID:27069047

  8. Dendritic polymer imaging systems for the evaluation of conjugate uptake and cleavage

    NASA Astrophysics Data System (ADS)

    Krüger, Harald R.; Nagel, Gregor; Wedepohl, Stefanie; Calderón, Marcelo

    2015-02-01

    Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening.Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA. In the field of polymer therapeutics, these probes can be applied to extend the in vitro characterization of novel conjugates beyond cytotoxicity and cellular uptake studies. This is particularly true in cases in which polymer conjugates contain drugs attached by cleavable linkers. Better information on the intracellular linker cleavage and drug release would allow a faster evaluation and optimization of novel polymer therapeutic concepts. We therefore developed a fluorescent turn-on probe that enables direct monitoring of pH-mediated cleavage processes over time. This is achieved by exploiting the fluorescence resonance energy transfer (FRET) between two dyes that have been coupled to a dendritic polymer. We demonstrate the use of this probe to evaluate polymer uptake and intracellular release of cargo in a cell based microplate assay that is suitable for high throughput screening. Electronic supplementary information (ESI) available: Including detailed synthetic procedures of the dye and conjugate synthesis, as well as cellular uptake and inhibitor studies. See DOI: 10.1039/c4nr04467c

  9. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.

  10. A highly selective fluorescent probe based on coumarin for the imaging of N2H4 in living cells

    NASA Astrophysics Data System (ADS)

    Chen, Song; Hou, Peng; Wang, Jing; Liu, Lei; Zhang, Qi

    2017-02-01

    A turn-on fluorescence probe for highly sensitive and selective detection of N2H4 was developed based on hydrazine-triggered a substitution- cyclization-elimination cascade. Upon the treatment with N2H4, probe 1, 4-methyl-coumarin-7-yl bromobutanoate, displayed a remarkable fluorescence enhancement (25-fold) with a maximum at 450 nm. This probe can quantitatively detect N2H4 with a extremely low detection limit as 7 × 10- 8 M. Moreover, cell imaging experiments have indicated that probe 1 has potential ability to detect and image N2H4 in biological systems.

  11. The rendez-vous of mobile sieve-element and abundant companion-cell proteins.

    PubMed

    De Marco, Federica; Le Hir, Rozenn; Dinant, Sylvie

    2018-06-01

    Thousands of sieve tube exudate proteins (STEP) have now been identified and predicted to fulfill a diversity of functions. However, most STEPs should be considered putative, since methods to collect sieve tube exudates have many technical drawbacks, and advanced functional characterization will be required to distinguish contaminant from bonafide proteins, and determine the latter's location and activity in sieve elements (SE). One major challenge is to develop new approaches to elucidate the function of these SE proteins, which in turn, is expected to shed light on intriguing aspects of SE cell biology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Crosstalk between Hippo signalling and miRNAs in tumour progression.

    PubMed

    Li, Nianshuang; Xie, Chuan; Lu, Nonghua

    2017-04-01

    The Hippo signalling pathway co-ordinately modulates cell regeneration and organ size, and its deregulation contributes to tumorigenesis through many cellular processes, including overproliferation, apoptosis resistance and cell migration. Recent discoveries have shed new light on how microRNAs (miRNAs) are closely linked to the Hippo pathway in tumour progression. Hippo signalling has been reported to affect widespread miRNA biogenesis. In turn, several miRNAs regulate Hippo signalling, which contributes to carcinogenesis. This article will provide an overview of the crosstalk between Hippo signalling and miRNAs in the development of cancer and further appraise potential targets for therapeutic intervention. © 2016 Federation of European Biochemical Societies.

  13. Innovation in stem cell advocacy: you only get what you can measure.

    PubMed

    Jakimo, Alan L; Fernandez, Alan C

    2011-11-01

    We propose that stem cell advocacy must engage in self-analysis to determine how to be maximally effective. For this analysis, eight advocacy elements can be measured: agitation, legislation, regulation, litigation, policy development, collaboration, education and innovation. For several of these elements, we show that stem cell advocates, particularly advocates for human embryonic stem cell research, have been matched by their opponents. This demonstrates the need for combining innovation and collaboration with advocacy-oriented education. To pursue innovative and collaborative education, we propose a 'bench-to-public knowledge' model and present some preliminary observations made with this model for different stem cell types. We also propose development of a semantic web information system to be operated within Internet Cloud/Apps/Social Media. We call this system the 'Stem Cell Information Technology Accelerator Platform'. Toward its construction, we propose formation of a working group to conceive semantic web ontology for stem cell science and its clinical translation into medicine. This ontology would function as a map of the relationships between and among the various informational components comprising discourse on stem cell research and its clinical translation, and would allow various stakeholders to contribute to evolving models of that science and translation. These models could, in turn, support an innovative and collaborative approach to education in furtherance of stem cell advocacy.

  14. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  15. The Bmi-1 helix-turn and ring finger domains are required for Bmi-1 antagonism of (-) epigallocatechin-3-gallate suppression of skin cancer cell survival.

    PubMed

    Balasubramanian, Sivaprakasam; Scharadin, Tiffany M; Han, Bingshe; Xu, Wen; Eckert, Richard L

    2015-07-01

    The Bmi-1 Polycomb group (PcG) protein is an important epigenetic regulator of chromatin status. Elevated Bmi-1 expression is observed in skin cancer and contributes to cancer cell survival. (-) Epigallocatechin-3-gallate (EGCG), an important green tea-derived cancer prevention agent, reduces Bmi-1 level resulting in reduced skin cancer cell survival. This is associated with increased p21(Cip1) and p27(Kip1) expression, reduced cyclin, and cyclin dependent kinase expression, and increased cleavage of apoptotic markers. These EGCG-dependent changes are attenuated by vector-mediated maintenance of Bmi-1 expression. In the present study, we identify Bmi-1 functional domains that are required for this response. Bmi-1 expression reverses the EGCG-dependent reduction in SCC-13 cell survival, but Bmi-1 mutants lacking the helix-turn-helix-turn-helix-turn (Bmi-1ΔHT) or ring finger (Bmi-1ΔRF) domains do not reverse the EGCG impact. The reduction in Ring1B ubiquitin ligase activity, observed in the presence of mutant Bmi-1, is associated with reduced ability of these mutants to interact with and activate Ring1B ubiquitin ligase, the major ligase responsible for the ubiquitination of histone H2A during chromatin condensation. This results in less chromatin condensation leading to increased tumor suppressor gene expression and reduced cell survival; thereby making the cells more susceptible to the anti-survival action of EGCG. We further show that these mutants act in a dominant-negative manner to inhibit the action of endogenous Bmi-1. Our results suggest that the HT and RF domains are required for Bmi-1 ability to maintain skin cancer cell survival in response to cancer preventive agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Predicting turns in proteins with a unified model.

    PubMed

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  17. Predicting Turns in Proteins with a Unified Model

    PubMed Central

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872

  18. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniadis, H.

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less

  19. Sub-cell turning to accomplish micron-level alignment of precision assemblies

    NASA Astrophysics Data System (ADS)

    Kumler, James J.; Buss, Christian

    2017-08-01

    Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.

  20. Development of guidelines for triple left and dual right-turn lanes : technical report.

    DOT National Transportation Integrated Search

    2011-07-01

    Left- or right-turn lanes at intersections improve safety and operations by separating turning and through vehicles. At intersections : with heavy turning demand, it may be necessary to provide multiple turn lanes. Triple left-turn (TLT) and dual rig...

  1. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment

    PubMed Central

    Greim, Helmut; Kaden, Debra A.; Larson, Richard A.; Palermo, Christine M.; Rice, Jerry M.; Ross, David; Snyder, Robert

    2014-01-01

    Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells, which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within hematopoietic progenitor cells and cells within the bone marrow niche, may lead to the development of strategies for prevention of occupational and cancer therapy–induced disease. PMID:24495159

  2. 98. LEAD SCAVENGER CELLS, LOOKING NORTHEAST. NOTE VSHAPED LAUNDER TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. LEAD SCAVENGER CELLS, LOOKING NORTHEAST. NOTE V-SHAPED LAUNDER TO COLLECT CONCENTRATE FROTH THAT SPILLED OVER WIER ALONG EDGE OF CELLS. EACH ELECTRIC MOTOR TURNED AGITATORS IN TWO CELLS VIA BELT DRIVES. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  3. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    NASA Astrophysics Data System (ADS)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed. The experimental data were then used as a benchmark for this model based on a balance of three forces: capillarity force, gravity force and pressure drop induced by the liquid flow.

  4. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging.

    PubMed

    Xue, Mingyue; Zhang, Liangliang; Zhan, Zhihua; Zou, Mengbing; Huang, Yong; Zhao, Shulin

    2016-04-01

    A novel sulfur and nitrogen binary doped carbon dots (S,N-CDs) was synthesized by one-step manner through the hydrothermal treatment of citric acid (CA) and ammonium thiocyanate, and the procedures for biomedical applications, including probing doxycycline in living cells and multicolor cell imaging were developed. The obtained S,N-CDs are stable in aqueous solution, possess a very high quantum yield (QY, 74.15%) and good photostability. The fluorescence of S,N-CDs can be specifically quenched by doxycycline, providing a convenient turn-off assay of doxycycline. This assay shows a wide linear detection range from 0.08 to 60 μM with a low detection limit of 20 nM. The present method also displays a good selectivity. More importantly, the S,N-CDs have an excellent biocompatibility and low cytotoxicity, allowing the multicolor cell imaging and doxycycline detection in living cells. Consequently, the developed doxycycline methods is facile, low-cost, biocompatible, sensitive and selective, which may hold the potential applications in the fields of food safety and environmental monitoring, as well as cancer therapy and related mechanism research. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A novel "Turn-On" fluorescent probe for F(-) detection in aqueous solution and its application in live-cell imaging.

    PubMed

    Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun

    2014-11-07

    A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F(-)) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the "Turn-On" fluorescent response of probe 1 to F(-) was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F(-) in the range of 0.1-1mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of "Turn-On" fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F(-) in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. pH-Sensitive polymer assisted self-aggregation of bis(pyrene) in living cells in situ with turn-on fluorescence

    NASA Astrophysics Data System (ADS)

    Duan, Zhongyu; Gao, Yu-Juan; Qiao, Zeng-Ying; Qiao, Shenglin; Wang, Yongmei; Hou, Chunyuan; Wang, Lei; Wang, Hao

    2015-09-01

    Supramolecular self-assemblies with various nanostructures in organic and aqueous solutions have been prepared with desired functions. However, in situ construction of self-assembled superstructures in physiological conditions to achieve expected biological functions remains a challenge. Here, we report a supramolecular system to realize the in situ formation of nanoaggregates in living cells. The bis(pyrene) monomers were dispersed inside of hydrophobic domains of pH-sensitive polymeric micelles and delivered to the lysosomes of cells. In the acidic lysosomes, the bis(pyrene) monomers were released and self-aggregated with turn-on fluorescence. We envision this strategy for in situ construction of supramolecular nanostructures in living cells will pave the way for molecular diagnostics in the future.

  7. A proposal for a simple and inexpensive therapeutic cancer vaccine.

    PubMed

    Fahrer, Aude M

    2012-03-01

    In this essay, I propose a new method of treating tumours, using an old and inexpensive preparation, that I contend would be of considerable benefit to patients and their cancer management. My rationale for this treatment initially arose from recent advances in the understanding of dendritic cell function. (Dendritic cells are key cells of the immune system that are able to either turn on or turn off T-cell responses.) Evidence to support this approach is found in 100-year-old studies on the immunotherapy of cancer. Also, I draw on some remarkable, but little-known studies from the 1960s-1990s, demonstrating that the preparation has already been trialled in humans (although not intratumourally, as I propose), and is considered sufficiently safe to proceed with clinical trials in cancer volunteers.

  8. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    PubMed

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  9. Mast cells mediate malignant pleural effusion formation.

    PubMed

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  10. Mast cell inflammasome activity in the meninges regulates EAE disease severity.

    PubMed

    Russi, Abigail E; Walker-Caulfield, Margaret E; Brown, Melissa A

    2018-04-01

    Inflammasomes are multiprotein complexes that assemble in response to microbial and other danger signals and regulate the secretion of biologically active IL-1β and IL-18. Although they are important in protective immunity against bacterial, viral and parasitic infections, aberrant inflammasome activity promotes chronic inflammation associated with autoimmune disease. Inflammasomes have been described in many immune cells, but the majority of studies have focused on their activity in macrophages. Here we discuss an important role for mast cell-inflammasome activity in EAE, the rodent model of multiple sclerosis, a CNS demyelinating disease. We review our evidence that mast cells in the meninges, tissues that surround the brain and spinal cord, interact with infiltrating myelin-specific T cells in early disease. This interaction elicits IL-1β expression by mast cells, which in turn, promotes GM-CSF expression by T cells. In view of the essential role that GM-CSF plays in T cell encephalitogenicity, we propose this mast cell-T cell crosstalk in the meninges is critical for EAE disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Endogenous antigen tunes the responsiveness of naive B cells but not T cells

    PubMed Central

    Zikherman, Julie; Parameswaran, Ramya; Weiss, Arthur

    2012-01-01

    In humans up to 75% of newly generated B cells and about 30% of mature B cells exhibit some degree of autoreactivity1. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model BCR transgenic systems have highlighted the critical role played by functional unresponsiveness or ‘anergy’2,3. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B cell tolerance4,5. However, it remains unclear whether the mature diverse B cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which B cell antigen receptor (BCR) signaling rapidly and robustly induces GFP expression under the control of the Nur77 regulatory region, antigen-dependent and – independent BCR signaling events in vivo during B cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure in turn tunes the responsiveness of BCR signaling in B cells at least partly by down-modulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or ‘anergy’ exists in the mature B cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease. PMID:22902503

  12. Clinical Trials in a Dish: A Perspective on the Coming Revolution in Drug Development.

    PubMed

    Fermini, Bernard; Coyne, Shawn T; Coyne, Kevin P

    2018-05-01

    The pharmaceutical industry is facing unprecedented challenges as the cost of developing new drugs has reached unsustainable levels, fueled in large parts by a high attrition rate in clinical development. Strategies to bridge studies between preclinical testing and clinical trials are needed to reduce the knowledge gap and allow earlier decisions to be made on the continuation or discontinuation of further development of drugs. The discovery and development of human induced pluripotent stem cells (hiPSCs) have opened up new avenues that support the concept of screening for cell-based safety and toxicity at the level of a population. This approach, termed "Clinical Trials in a Dish" (CTiD), allows testing medical therapies for safety or efficacy on cells collected from a representative sample of human patients, before moving into actual clinical trials. It can be applied to the development of drugs for specific populations, and it allows predicting not only the magnitude of effects but also the incidence of patients in a population who will benefit or be harmed by these drugs. This, in turn, can lead to the selection of safer drugs to move into clinical development, resulting in a reduction in attrition. The current article offers a perspective of this new model for "humanized" preclinical drug development.

  13. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  14. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  15. Detection of microbial contamination in platelets

    NASA Astrophysics Data System (ADS)

    Berg, Tracy L.; Leparc, German; Huffman, Debra E.; Gennaccaro, Angela L.; Garcia-Lopez, Alicia; Klungness, Greta; Stephans, Christie; Garcia-Rubio, Luis H.

    2005-03-01

    In the United States, approximately 100 patients develop fatal sepsis associated with platelet transfusions every year. Current culture methods take 24-48 hours to acquire results, which in turn decrease the shelf life of platelets. Many of the microorganisms that contaminate platelets can replicate easily at room temperature, which is the necessary storage temperature to keep platelets functional. Therefore, there is a need for in-situ quality control assessment of the platelet quality. For this purpose, a real time spectrophotometric technique has been developed. The Spectral Acquisition Processing Detection (SAPD) method, comprised of a UV-vis spectrophotometer and modeling algorithms, is a rapid method that can be performed prior to platelet transfusion to decrease the risk of bacterial infection to patients. The SAPD method has been used to determine changes in cell suspensions, based on size, shape, chemical composition and internal structure. Changes in these cell characteristics can in turn be used to determine microbial contamination, platelet aging and other physiologic changes. Detection limits of this method for platelet suspensions seeded with bacterial contaminants were identified to be less than 100 cfu/ml of sample. Bacterial counts below 1000 cfu/ml are not considered clinically significant. The SAPD method can provide real-time identification of bacterial contamination of platelets affording patients an increased level of safety without causing undue strain on laboratory budgets or personnel while increasing the time frame that platelets can be used by dramatically shortening contaminant detection time.

  16. Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells.

    PubMed

    Feng, Weiyong; Liu, Dandan; Feng, Shumin; Feng, Guoqiang

    2016-11-01

    Carbon monoxide (CO) is an important gasotransmitter in living systems and its fluorescent detection is of particular interest. However, fluorescent detection of CO in living cells is still challenging due to lack of effective probes. In this paper, a readily available fluorescein-based fluorescent probe was developed for rapid detection of CO. This probe can be used to detect CO in almost wholly aqueous solution under mild conditions and shows high selectivity and sensitivity for CO with colorimetric and remarkable fluorescent turn-on signal changes. The detection limit of this probe for CO is as low as 37 nM with a linear range of 0-30 μM. More importantly, this probe (1 μM dose) can be conveniently used for fluorescent imaging CO in living cells.

  17. Effects of Radiation on Metastasis and Tumor Cell Migration

    PubMed Central

    Vilalta, Marta; Rafat, Marjan; Graves, Edward E.

    2016-01-01

    It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may thereby facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies. PMID:27022944

  18. Ultrasensitive turn-on fluorescence detection of Cu2 + based on p-dimethylaminobenzamide derivative and the application to cell imaging

    NASA Astrophysics Data System (ADS)

    Huang, Peng-Cheng; Fang, Hao; Xiong, Jing-Jing; Wu, Fang-Ying

    2017-02-01

    A new p-dimethylaminobenzamide derivative based compound BDIH has been synthesized. Cu2 + turned on the fluorescence of compound BDIH with a 1:2 binding stoichiometry. The fluorescent color of compound BDIH shows an evident change from colorless to bright blue upon the addition of Cu2 +, which could be visibly detected by the naked eye under UV light at 365 nm. More importantly, the detection limit was found to be 0.64 nM which is far lower than the maximal allowed concentration of the WHO limit (31.5 μM) for drinking water. This selective ;turn-on; fluorescence sensor was used to identify Cu2 + in living cells using confocal fluorescence microscopy, indicating that compound BDIH has a potential application for selective detection of Cu2 + in organism.

  19. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    PubMed

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  20. Dual-Responsive Metabolic Precursor and Light-Up AIEgen for Cancer Cell Bio-orthogonal Labeling and Precise Ablation.

    PubMed

    Hu, Fang; Yuan, Youyong; Wu, Wenbo; Mao, Duo; Liu, Bin

    2018-06-05

    Metabolic glycoengineering of unnatural glycans with bio-orthogonal chemical groups and a subsequent click reaction with fluorescent probes have been widely used in monitoring various bioprocesses. Herein, we developed a dual-responsive metabolic precursor that could specifically generate unnatural glycans with azide groups on the membrane of targeted cancer cells with high selectivity. Moreover, a water-soluble fluorescent light-up probe with aggregation-induced emission (AIE) was synthesized, which turned its fluorescence on upon a click reaction with azide groups on the cancer cell surface, enabling special cancer cell imaging with low background signal. Furthermore, the probe can generate 1 O 2 upon light irradiation, fulfilling its dual role as an imaging and therapeutic agent for cancer cells. Therefore, the concepts of the cancer-cell-specific metabolic precursor cRGD-S-Ac 3 ManNAz and the AIE light-up probe are promising in bio-orthogonal labeling and cancer-specific imaging and therapy.

  1. Tunable cytotoxic aptamer-drug conjugates for the treatment of prostate cancer.

    PubMed

    Powell Gray, Bethany; Kelly, Linsley; Ahrens, Douglas P; Barry, Ashley P; Kratschmer, Christina; Levy, Matthew; Sullenger, Bruce A

    2018-05-01

    Therapies that can eliminate both local and metastatic prostate tumor lesions while sparing normal organ tissue are desperately needed. With the goal of developing an improved drug-targeting strategy, we turned to a new class of targeted anticancer therapeutics: aptamers conjugated to highly toxic chemotherapeutics. Cell selection for aptamers with prostate cancer specificity yielded the E3 aptamer, which internalizes into prostate cancer cells without targeting normal prostate cells. Chemical conjugation of E3 to the drugs monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) yields a potent cytotoxic agent that efficiently kills prostate cancer cells in vitro but does not affect normal prostate epithelial cells. Importantly, the E3 aptamer targets tumors in vivo and treatment with the MMAF-E3 conjugate significantly inhibits prostate cancer growth in mice, demonstrating the in vivo utility of aptamer-drug conjugates. Additionally, we report the use of antidotes to block E3 aptamer-drug conjugate cytotoxicity, providing a safety switch in the unexpected event of normal cell killing in vivo.

  2. [Mesenchymal stem cell therapy, a new hope for eye disease].

    PubMed

    Roubeix, C; Denoyer, A; Brignole-Baudouin, F; Baudouin, C

    2015-10-01

    Mesenchymal stem cells (MSC) are adult stem cells, first identified in skeletal tissues and then found in the entire body. MSC are able to not only differentiate into specialized cells within skeletal tissue - chondrocytes, osteocytes, adipocytes and fibroblasts - but also secrete a large range of soluble mediators defining their secretome and allowing their interaction with a number of cell protagonists. Thus, in a general sense, MSC are involved in tissue homeostasis through their secretome and are specifically responsible for cell turn-over in skeletal tissues. For a decade and a half, safety and efficiency of MSC has led to the development of many clinical trials in various fields. However, results were often disappointing, probably because of difficulties in methods and evaluation. At a time when the first clinical trials using MSC are emerging in ophthalmology, the goal of this literature review is to gather and put into perspective preclinical and clinical results in order to better predict the future of this innovative therapeutic pathway. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.

    PubMed

    Kagoya, Yuki; Nakatsugawa, Munehide; Saso, Kayoko; Guo, Tingxi; Anczurowski, Mark; Wang, Chung-Hsi; Butler, Marcus O; Arrowsmith, Cheryl H; Hirano, Naoto

    2018-05-15

    Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.

  4. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  5. Development of warrants for installation of dual right-turn lanes at signalized intersections.

    DOT National Transportation Integrated Search

    2012-04-01

    Right-turn lanes provide space for the deceleration and storage of right-turn vehicles, and separate turning vehicles : from through movements. Dual right-turn lanes are increasingly used at urban intersections primarily for two : reasons: (1) to acc...

  6. Making quantitative morphological variation from basic developmental processes: where are we? The case of the Drosophila wing

    PubMed Central

    Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle

    2015-01-01

    One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644

  7. Calcium signaling mediates five types of cell morphological changes to form neural rosettes.

    PubMed

    Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man

    2018-02-12

    Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.

  8. Development of an Improved Mammalian Overexpression Method for Human CD62L

    PubMed Central

    Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.

    2014-01-01

    We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402

  9. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study.

    PubMed

    Conserva, Enrico; Menini, Maria; Ravera, Giambattista; Pera, Paolo

    2013-08-01

    The aim of this study was an in vitro comparison of osteoblast adhesion, proliferation and differentiation related to six dental implants with different surface characteristics, and to determine if the interaction between cells and implant is influenced by surface structure and chemical composition. Six types of implants were tested, presenting four different surface treatments: turned, sandblasted, acid-etched, anodized. The implant macro- and microstructure were analyzed using SEM, and the surface chemical composition was investigated using energy-dispersive X-ray analysis. SaOS-2 osteoblasts were used for the evaluation of cell adhesion and proliferation by SEM, and cell viability in contact with the various surfaces was determined using cytotoxicity MTT assays. Alkaline phosphatase (ALP) enzymatic activity in contact with the six surfaces was evaluated. Data relative to MTT assay and ALP activity were statistically analyzed using Kruskal-Wallis not parametric test and Nemenyi-Damico-Wolfe-Dunn post hoc test. All the implants tested supported cell adhesion, proliferation and differentiation, revealing neither organic contaminants nor cytotoxicity effects. The industrial treatments investigated changed the implant surface microscopic aspect and SaOS-2 cell morphology appeared to be influenced by the type of surface treatment at 6, 24, and 72 h of growth. SaOS-2 cells spread more rapidly on sandblasted surfaces. Turned surfaces showed the lowest cell proliferation at SEM observation. Sandblasted surfaces showed the greatest ALP activity values per cell, followed by turned surfaces (P < 0.05). On the base of this in vitro investigation, differently surfaced implants affected osteoblast morphology, adhesion, proliferation, and differentiation. Sandblasted surfaces promoted the most suitable osteoblast behavior. © 2012 John Wiley & Sons A/S.

  10. Cell polarity proteins and spermatogenesis.

    PubMed

    Gao, Ying; Xiao, Xiang; Lui, Wing-Yee; Lee, Will M; Mruk, Dolores; Cheng, C Yan

    2016-11-01

    When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. GLI1, a master regulator of the hallmark of pancreatic cancer.

    PubMed

    Kasai, Kenji

    2016-12-01

    Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  12. Inflammatory Response in Islet Transplantation

    PubMed Central

    Kanak, Mazhar A.; Kunnathodi, Faisal; Lawrence, Michael C.; Levy, Marlon F.

    2014-01-01

    Islet cell transplantation is a promising beta cell replacement therapy for patients with brittle type 1 diabetes as well as refractory chronic pancreatitis. Despite the vast advancements made in this field, challenges still remain in achieving high frequency and long-term successful transplant outcomes. Here we review recent advances in understanding the role of inflammation in islet transplantation and development of strategies to prevent damage to islets from inflammation. The inflammatory response associated with islets has been recognized as the primary cause of early damage to islets and graft loss after transplantation. Details on cell signaling pathways in islets triggered by cytokines and harmful inflammatory events during pancreas procurement, pancreas preservation, islet isolation, and islet infusion are presented. Robust control of pre- and peritransplant islet inflammation could improve posttransplant islet survival and in turn enhance the benefits of islet cell transplantation for patients who are insulin dependent. We discuss several potent anti-inflammatory strategies that show promise for improving islet engraftment. Further understanding of molecular mechanisms involved in the inflammatory response will provide the basis for developing potent therapeutic strategies for enhancing the quality and success of islet transplantation. PMID:24883060

  13. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly

    PubMed Central

    Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel

    2015-01-01

    The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868

  14. Can the 'neuron theory' be complemented by a universal mechanism for generic neuronal differentiation.

    PubMed

    Ernsberger, Uwe

    2015-01-01

    With the establishment of the 'neuron theory' at the turn of the twentieth century, this remarkably powerful term was introduced to name a breathtaking diversity of cells unified by a characteristic structural compartmentalization and unique information processing and propagating features. At the beginning of the twenty-first century, developmental, stem cell and reprogramming studies converged to suggest a common mechanism involved in the generation of possibly all vertebrate, and at least a significant number of invertebrate, neurons. Sox and, in particular, SoxB and SoxC proteins as well as basic helix-loop-helix proteins play major roles, even though their precise contributions to progenitor programming, proliferation and differentiation are not fully resolved. In addition to neuronal development, these transcription factors also regulate sensory receptor and endocrine cell development, thus specifying a range of cells with regulatory and communicative functions. To what extent microRNAs contribute to the diversification of these cell types is an upcoming question. Understanding the transcriptional and post-transcriptional regulation of genes coding for cell type-specific cytoskeletal and motor proteins as well as synaptic and ion channel proteins, which mark differences but also similarities between the three communicator cell types, will provide a key to the comprehension of their diversification and the signature of 'generic neuronal' differentiation. Apart from the general scientific significance of a putative universal core instruction for neuronal development, the impact of this line of research for cell replacement therapy and brain tumor treatment will be of considerable interest.

  15. Suppression of B-cell development genes is key to glucocorticoid efficacy in treatment of acute lymphoblastic leukemia.

    PubMed

    Kruth, Karina A; Fang, Mimi; Shelton, Dawne N; Abu-Halawa, Ossama; Mahling, Ryan; Yang, Hongxing; Weissman, Jonathan S; Loh, Mignon L; Müschen, Markus; Tasian, Sarah K; Bassik, Michael C; Kampmann, Martin; Pufall, Miles A

    2017-06-01

    Glucocorticoids (GCs), including dexamethasone (dex), are a central component of combination chemotherapy for childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). GCs work by activating the GC receptor (GR), a ligand-induced transcription factor, which in turn regulates genes that induce leukemic cell death. Which GR-regulated genes are required for GC cytotoxicity, which pathways affect their regulation, and how resistance arises are not well understood. Here, we systematically integrate the transcriptional response of B-ALL to GCs with a next-generation short hairpin RNA screen to identify GC-regulated "effector" genes that contribute to cell death, as well as genes that affect the sensitivity of B-ALL cells to dex. This analysis reveals a pervasive role for GCs in suppression of B-cell development genes that is linked to therapeutic response. Inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ), a linchpin in the pre-B-cell receptor and interleukin 7 receptor signaling pathways critical to B-cell development (with CAL-101 [idelalisib]), interrupts a double-negative feedback loop, enhancing GC-regulated transcription to synergistically kill even highly resistant B-ALL with diverse genetic backgrounds. This work not only identifies numerous opportunities for enhanced lymphoid-specific combination chemotherapies that have the potential to overcome treatment resistance, but is also a valuable resource for understanding GC biology and the mechanistic details of GR-regulated transcription. © 2017 by The American Society of Hematology.

  16. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens

    PubMed Central

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.

    2018-01-01

    Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444

  17. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science.

    PubMed

    Tremolada, Carlo; Ricordi, Camillo; Caplan, Arnold I; Ventura, Carlo

    2016-01-01

    The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.

  18. Multiple layers of transcriptional regulation by PLZF in NKT-cell development.

    PubMed

    Mao, Ai-Ping; Constantinides, Michael G; Mathew, Rebecca; Zuo, Zhixiang; Chen, Xiaoting; Weirauch, Matthew T; Bendelac, Albert

    2016-07-05

    The transcription factor PLZF [promyelocytic leukemia zinc finger, encoded by zinc finger BTB domain containing 16 (Zbtb16)] is induced during the development of innate and innate-like lymphocytes to direct their acquisition of a T-helper effector program, but the molecular mechanisms involved are poorly understood. Using biotinylation-based ChIP-seq and microarray analysis of both natural killer T (NKT) cells and PLZF-transgenic thymocytes, we identified several layers of regulation of the innate-like NKT effector program. First, PLZF bound and regulated genes encoding cytokine receptors as well as homing and adhesion receptors; second, PLZF bound and activated T-helper-specific transcription factor genes that in turn control T-helper-specific programs; finally, PLZF bound and suppressed the transcription of Bach2, a potent general repressor of effector differentiation in naive T cells. These findings reveal the multilayered architecture of the transcriptional program recruited by PLZF and elucidate how a single transcription factor can drive the developmental acquisition of a broad effector program.

  19. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells

    PubMed Central

    Jones, Russell G.; Pearce, Edward J.

    2017-01-01

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. PMID:28514674

  20. Microglia and neuroprotection: implications for Alzheimer's disease.

    PubMed

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  1. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress.

    PubMed

    Kwak-Kim, Joanne; Bao, Shihua; Lee, Sung Ki; Kim, Joon Woo; Gilman-Sachs, Alice

    2014-08-01

    Inflammatory immune response plays a key role in reproductive failures such as multiple implantation failures (MIF), early pregnancy loss, and recurrent pregnancy losses (RPL). Cellular immune responses particularly mediated by natural killer (NK), and T cells are often dysregulated in these conditions. Excessive or inappropriate recruitment of peripheral blood NK cells to the uterus may lead to cytotoxic environment in utero, in which proliferation and differentiation of trophoblast is hampered. In addition, inadequate angiogenesis by uterine NK cells often leads to abnormal vascular development and blood flow patterns, which, in turn, leads to increased oxidative stress or ischemic changes in the invading trophoblast. T-cell abnormalities with increased Th1 and Th17 immunity, and decreased Th2 and T regulatory immune responses may play important roles in RPL and MIF. A possible role of stress in inflammatory immune response is also reviewed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  3. Jaundice

    MedlinePlus

    ... causes your skin and the whites of your eyes to turn yellow. Too much bilirubin causes jaundice. Bilirubin is a yellow chemical in hemoglobin, the substance that carries oxygen in your red blood cells. As red blood cells break down, your body builds new cells to replace them. The old ones are ...

  4. Get Tested for Cervical Cancer

    MedlinePlus

    ... cervical cancer can help find abnormal (changed) cervical cells before they turn into cervical cancer. There are 2 kinds of screening tests that can find abnormal cervical cells: Pap tests, also called Pap smears HPV (human ...

  5. Programmed cell death 1 inhibits inflammatory helper T-cell development through controlling the innate immune response

    PubMed Central

    Rui, Yuxiang; Honjo, Tasuku; Chikuma, Shunsuke

    2013-01-01

    Programmed cell death 1 (PD-1) is an inhibitory coreceptor on immune cells and is essential for self-tolerance because mice genetically lacking PD-1 (PD-1−/−) develop spontaneous autoimmune diseases. PD-1−/− mice are also susceptible to severe experimental autoimmune encephalomyelitis (EAE), characterized by a massive production of effector/memory T cells against myelin autoantigen, the mechanism of which is not fully understood. We found that an increased primary response of PD-1−/− mice to heat-killed mycobacteria (HKMTB), an adjuvant for EAE, contributed to the enhanced production of T-helper 17 (Th17) cells. Splenocytes from HKMTB-immunized, lymphocyte-deficient PD-1−/− recombination activating gene (RAG)2−/− mice were found to drive antigen-specific Th17 cell differentiation more efficiently than splenocytes from HKMTB-immunized PD-1+/+ RAG2−/− mice. This result suggested PD-1’s involvement in the regulation of innate immune responses. Mice reconstituted with PD-1−/− RAG2−/− bone marrow and PD-1+/+ CD4+ T cells developed more severe EAE compared with the ones reconstituted with PD-1+/+ RAG2−/− bone marrow and PD-1+/+ CD4+ T cells. We found that upon recognition of HKMTB, CD11b+ macrophages from PD-1−/− mice produced very high levels of IL-6, which helped promote naive CD4+ T-cell differentiation into IL-17–producing cells. We propose a model in which PD-1 negatively regulates antimycobacterial responses by suppressing innate immune cells, which in turn prevents autoreactive T-cell priming and differentiation to inflammatory effector T cells. PMID:24043779

  6. Stem cells: intellectual property issues in regenerative medicine.

    PubMed

    Zachariades, Nicholas A

    2013-12-01

    The topic of stem cells for use in regenerative medicine, especially embryonic stem cells, inspires much debate, discussion, and outrage as it slices through the very core moral values of society. These social and moral issues have, in turn, resulted in government policies that have influenced the study of stem cells in regenerative medicine.

  7. CD4+ T Cell Activation and Vascular Normalization: Two Sides of the Same Coin?

    PubMed

    De Palma, Michele; Jain, Rakesh K

    2017-05-16

    Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4 + T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adventures with Cell Phones

    ERIC Educational Resources Information Center

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  9. Bypassing An Open-Circuit Power Cell

    NASA Technical Reports Server (NTRS)

    Wannemacher, Harry E.

    1994-01-01

    Collection of bypass circuits enables battery consisting series string of cells to continue to function when one of its cells fails in open-circuit (high-resistance) condition. Basic idea simply to shunt current around defective cell to prevent open circuit from turning off battery altogether. Bypass circuits dissipate little power and are nearly immune to false activation.

  10. Development of a new family of conformationally restricted peptides as potent nucleators of beta-turns. Design, synthesis, structure, and biological evaluation of a beta-lactam peptide analogue of melanostatin.

    PubMed

    Palomo, Claudio; Aizpurua, Jesus M; Benito, Ana; Miranda, José Ignacio; Fratila, Raluca M; Matute, Carlos; Domercq, Maria; Gago, Federico; Martin-Santamaria, Sonsoles; Linden, Anthony

    2003-12-31

    Novel enantiopure (i)-(beta-lactam)-(Gly)-(i+3) peptide models, defined by the presence of a central alpha-alkyl-alpha-amino-beta-lactam ring placed as the (i+1) residue, have been synthesized in a totally stereocontrolled way by alpha-alkylation of suitable N-[bis(trimethylsilyl)methyl]-beta-lactams. The structural properties of these beta-lactam pseudopeptides have been studied by X-ray crystallography, Molecular Dynamics simulation, and NOESY-restrained NMR simulated annealing techniques, showing a strong tendency to form stable type II or type II' beta-turns either in the solid state or in highly coordinating DMSO solutions. Tetrapeptide models containing syn- or anti-alpha,beta-dialkyl-alpha-amino-beta-lactam rings have also been synthesized and their conformations analyzed, revealing that alpha-alkyl substitution is essential for beta-turn stabilization. A beta-lactam analogue of melanostatin (PLG amide) has also been prepared, characterized as a type-II beta-turn in DMSO-d6 solution, and tested by competitive binding assay as a dopaminergic D2 modulator in rat neuron cultured cells, displaying moderate agonist activity in the micromolar concentration range. On the basis of these results, a novel peptidomimetic design concept, based on the separation of constraint and recognition elements, is proposed.

  11. Cancerous tumor: the high frequency of a rare event.

    PubMed

    Galam, S; Radomski, J P

    2001-05-01

    A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step, local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local rules, which are independent of the overall cancerous cell density. The models unique ingredients are the frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after some age, survival from tumorous cancer becomes random.

  12. Genetic Causes of Human NK Cell Deficiency and Their Effect on NK Cell Subsets

    PubMed Central

    Mace, Emily M.; Orange, Jordan S.

    2016-01-01

    Human NK cells play critical roles in human host defense, particularly the control of viral infection and malignancy, and patients with congenital immunodeficiency affecting NK cell function or number can suffer from severe illness. The importance of NK cell function is particularly underscored in patients with primary immunodeficiency in which NK cells are the primary or sole affected population (NK cell deficiency, NKD). While NKD may lead to the absence of NK cells, we are also gaining an increasing appreciation of the effect that NKD may have on the generation of specific NK cell subsets. In turn, this leads to improved insights into the requirements for human NK cell subset generation, as well as their importance in immune homeostasis. The presence of inherently abnormally developed or functionally impaired NK cells, in particular, appears to be problematic in the way of interfering with normal human host defense and may be more impactful than low numbers of NK cells alone. Here, we review the known genetic causes of NKD and the insight that is derived by these into the requirements for human subset generation and, by extension, for NK cell-mediated immunity. PMID:27994588

  13. Co-existent sickle cell disease and juvenile rheumatoid arthritis. Two cases with delayed diagnosis and severe destructive arthropathy.

    PubMed

    Nistala, K; Murray, K J

    2001-09-01

    We describe 2 pediatric patients with sickle cell disease (SCD) who developed seropositive juvenile rheumatoid arthritis (JRA). Both patients have severe joint damage, the compound effect of both disease processes. The bone and cartilage destruction, which poses serious therapeutic challenges, highlights the difficulty of making a diagnosis of chronic inflammatory disease in the setting of SCD. There may be a correlation between increased levels of tumor necrosis factor-alpha in the synovial tissue of joints damaged by arthritis and local sickling. The resultant ischemia and corresponding inflammatory infiltrates could in turn worsen existing synovial proliferation and cartilage destruction as well as trigger further sickling.

  14. Investigation of the effects of external current systems on the MAGSAT data utilizing grid cell modeling techniques

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M. (Principal Investigator)

    1982-01-01

    The feasibility of modeling magnetic fields due to certain electrical currents flowing in the Earth's ionosphere and magnetosphere was investigated. A method was devised to carry out forward modeling of the magnetic perturbations that arise from space currents. The procedure utilizes a linear current element representation of the distributed electrical currents. The finite thickness elements are combined into loops which are in turn combined into cells having their base in the ionosphere. In addition to the extensive field modeling, additional software was developed for the reduction and analysis of the MAGSAT data in terms of the external current effects. Direct comparisons between the models and the MAGSAT data are possible.

  15. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less

  16. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    PubMed

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Isotope labeling of proteins in insect cells.

    PubMed

    Skora, Lukasz; Shrestha, Binesh; Gossert, Alvar D

    2015-01-01

    Protein targets of contemporary research are often membrane proteins, multiprotein complexes, secreted proteins, or other proteins of human origin. These are difficult to express in the standard expression host used for most nuclear magnetic resonance (NMR) studies, Escherichia coli. Insect cells represent an attractive alternative, since they have become a well-established expression system and simple solutions have been developed for generation of viruses to efficiently introduce the target protein DNA into cells. Insect cells enable production of a larger fraction of the human proteome in a properly folded way than bacteria, as insect cells have a very similar set of cytosolic chaperones and a closely related secretory pathway. Here, the limited and defined glycosylation pattern that insect cells produce is an advantage for structural biology studies. For these reasons, insect cells have been established as the most widely used eukaryotic expression host for crystallographic studies. In the past decade, significant advancements have enabled amino acid type-specific as well as uniform isotope labeling of proteins in insect cells, turning them into an attractive expression host for NMR studies. © 2015 Elsevier Inc. All rights reserved.

  18. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  19. A Hitchhiker’s Guide to Mechanobiology

    PubMed Central

    Eyckmans, Jeroen; Boudou, Thomas; Yu, Xiang; Chen, Christopher S.

    2011-01-01

    More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology. PMID:21763607

  20. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1981-03-01

    slides and core pins which formed the outer diameter and the hollow struts. Inner inserts were used to form the inside surface of the nose cone...ceramic component development. Figure 1 illustrates this by showing, in turn, ready removal in the test cell of a ceramic regenerator core , combusior...objective. This Executive Summary briefly reviews the highlights of the program. VII ■■■ *»W*w»«»^il»^.3«£*a;-^ -,Al^».t, „ . Regenerator Core Removal

  1. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts

    PubMed Central

    Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter

    2015-01-01

    Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465

  2. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    PubMed

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P<0.026) and in the mean percentage of inner hair cells in the basal (P=0.001), middle (P=0.004), and apical (P=0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Stria Vascularis and Cochlear Hair Cell Changes in Syphilis: A Human Temporal Bone Study

    PubMed Central

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis Materials and Methods We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the 2 groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). Results In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis area did not significantly differ, in any turn of the cochlea, between the 2 groups (P > 0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (P < 0.026) and in the mean percentage of inner hair cells in the basal (P = 0.001), middle (P = 0.004), and apical (P = 0.018) turns. In 7 samples in our syphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. Conclusion In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. PMID:26860231

  4. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  5. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency

    NASA Astrophysics Data System (ADS)

    Frusawa, Hiroshi

    2018-06-01

    We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained were in good agreement with those previously reported in the literature.

  6. HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV-positive tumour cells

    PubMed Central

    Van den Bergh, Johan M J; Guerti, Khadija; Willemen, Yannick; Lion, Eva; Cools, Nathalie; Goossens, Herman; Vorsters, Alex; Van Tendeloo, Viggo F I; Anguille, Sébastien; Van Damme, Pierre; Smits, Evelien L J M

    2014-01-01

    Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells. PMID:24979331

  7. Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli.

    PubMed

    Okagaki, Laura H; Wang, Yina; Ballou, Elizabeth R; O'Meara, Teresa R; Bahn, Yong-Sun; Alspaugh, J Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-10-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G(1) cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.

  8. Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli▿†

    PubMed Central

    Okagaki, Laura H.; Wang, Yina; Ballou, Elizabeth R.; O'Meara, Teresa R.; Bahn, Yong-Sun; Alspaugh, J. Andrew; Xue, Chaoyang; Nielsen, Kirsten

    2011-01-01

    The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans. Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens. PMID:21821718

  9. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  10. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  11. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems

    NASA Astrophysics Data System (ADS)

    Cho, Mi Hyeon; Lee, Eun Jung; Son, Mina; Lee, Jae-Hyun; Yoo, Dongwon; Kim, Ji-Wook; Park, Seung Woo; Shin, Jeon-Soo; Cheon, Jinwoo

    2012-12-01

    The regulation of cellular activities in a controlled manner is one of the most challenging issues in fields ranging from cell biology to biomedicine. Nanoparticles have the potential of becoming useful tools for controlling cell signalling pathways in a space and time selective fashion. Here, we have developed magnetic nanoparticles that turn on apoptosis cell signalling by using a magnetic field in a remote and non-invasive manner. The magnetic switch consists of zinc-doped iron oxide magnetic nanoparticles (Zn0.4Fe2.6O4), conjugated with a targeting antibody for death receptor 4 (DR4) of DLD-1 colon cancer cells. The magnetic switch, in its On mode when a magnetic field is applied to aggregate magnetic nanoparticle-bound DR4s, promotes apoptosis signalling pathways. We have also demonstrated that the magnetic switch is operable at the micrometre scale and that it can be applied in an in vivo system where apoptotic morphological changes of zebrafish are successfully induced.

  12. Dysregulation of the Cytokine GM-CSF Induces Spontaneous Phagocyte Invasion and Immunopathology in the Central Nervous System.

    PubMed

    Spath, Sabine; Komuczki, Juliana; Hermann, Mario; Pelczar, Pawel; Mair, Florian; Schreiner, Bettina; Becher, Burkhard

    2017-02-21

    Chronic inflammatory diseases are influenced by dysregulation of cytokines. Among them, granulocyte macrophage colony stimulating factor (GM-CSF) is crucial for the pathogenic function of T cells in preclinical models of autoimmunity. To study the impact of dysregulated GM-CSF expression in vivo, we generated a transgenic mouse line allowing the induction of GM-CSF expression in mature, peripheral helper T (Th) cells. Antigen-independent GM-CSF release led to the invasion of inflammatory myeloid cells into the central nervous system (CNS), which was accompanied by the spontaneous development of severe neurological deficits. CNS-invading phagocytes produced reactive oxygen species and exhibited a distinct genetic signature compared to myeloid cells invading other organs. We propose that the CNS is particularly vulnerable to the attack of monocyte-derived phagocytes and that the effector functions of GM-CSF-expanded myeloid cells are in turn guided by the tissue microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Development of guidelines for operationally effective raised medians and the use of alternative movements on urban roadways.

    DOT National Transportation Integrated Search

    2012-10-01

    The development of raised medians is an important access management technique commonly used in urban settings. It : can be used to control or restrict mid-block left turns, U-turns or crossing maneuvers for implementing of alternative : left-turn/U-t...

  14. Development of guidelines for permitted left-turn phasing using flashing yellow arrows : final report.

    DOT National Transportation Integrated Search

    2015-06-01

    The objective of this project was to develop guidelines for time-of-day use of permitted left-turn phasing, : which can then be implemented using flashing yellow arrows (FYA). This required determining how the risk : for left-turn crashes varied as t...

  15. Gas recombination assembly for electrochemical cells

    DOEpatents

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  16. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection.

    PubMed

    Real, Fernando; Sennepin, Alexis; Ganor, Yonatan; Schmitt, Alain; Bomsel, Morgane

    2018-05-08

    During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4 + T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa. Copyright © 2018. Published by Elsevier Inc.

  17. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  18. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  19. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.

    PubMed

    Ni, Qiang; Mehta, Sohum; Zhang, Jin

    2018-01-01

    Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity. © 2017 Federation of European Biochemical Societies.

  20. Flower Development as an Interplay between Dynamical Physical Fields and Genetic Networks

    PubMed Central

    Barrio, Rafael Ángel; Hernández-Machado, Aurora; Varea, C.; Romero-Arias, José Roberto; Álvarez-Buylla, Elena

    2010-01-01

    In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time. This field provides the information required for the process of cell differentiation to occur by being dynamically coupled to a signal transduction mechanism that, in turn, acts directly upon the gene regulatory network (GRN) underlying cell-fate decisions within cells. We illustrate and test our proposal with a GRN model grounded on experimental data for cell fate specification during organ formation in early Arabidopsis thaliana flower development. We show that our model is able to recover the multigene configurations characteristic of sepal, petal, stamen and carpel primordial cells arranged in concentric rings, in a similar pattern to that observed during actual floral organ determination. Such pattern is robust to alterations of the model parameters and simulated failures predict altered spatio-temporal patterns that mimic those described for several mutants. Furthermore, simulated alterations in the physical fields predict a pattern equivalent to that found in Lacandonia schismatica, the only flowering species with central stamens surrounded by carpels. PMID:21048956

  1. Flower development as an interplay between dynamical physical fields and genetic networks.

    PubMed

    Barrio, Rafael Ángel; Hernández-Machado, Aurora; Varea, C; Romero-Arias, José Roberto; Alvarez-Buylla, Elena

    2010-10-27

    In this paper we propose a model to describe the mechanisms by which undifferentiated cells attain gene configurations underlying cell fate determination during morphogenesis. Despite the complicated mechanisms that surely intervene in this process, it is clear that the fundamental fact is that cells obtain spatial and temporal information that bias their destiny. Our main hypothesis assumes that there is at least one macroscopic field that breaks the symmetry of space at a given time. This field provides the information required for the process of cell differentiation to occur by being dynamically coupled to a signal transduction mechanism that, in turn, acts directly upon the gene regulatory network (GRN) underlying cell-fate decisions within cells. We illustrate and test our proposal with a GRN model grounded on experimental data for cell fate specification during organ formation in early Arabidopsis thaliana flower development. We show that our model is able to recover the multigene configurations characteristic of sepal, petal, stamen and carpel primordial cells arranged in concentric rings, in a similar pattern to that observed during actual floral organ determination. Such pattern is robust to alterations of the model parameters and simulated failures predict altered spatio-temporal patterns that mimic those described for several mutants. Furthermore, simulated alterations in the physical fields predict a pattern equivalent to that found in Lacandonia schismatica, the only flowering species with central stamens surrounded by carpels.

  2. High voltage and current, gate assisted, turn-off thyristor development

    NASA Technical Reports Server (NTRS)

    Nowalk, T. P.; Brewster, J. B.; Kao, Y. C.

    1972-01-01

    An improved high speed power switch with unique turn-off capability was developed. This gate assisted turn-off thyristor (GATT) was rated 1000 volts and 100 amperes with turn-off times of 2 microseconds. Fifty units were delivered for evaluation. In addition, test circuits designed to relate to the series inverter application were built and demonstrated. In the course of this work it was determined that the basic device design is adequate to meet the static characteristics and dynamic turn-off specification. It was further determined that the turn-on specification is critically dependent on the gate drive circuit due to the distributive nature of the cathode-gate geometry. Future work should emphasize design modifications which reduce the gate current required for fast turn-on, thereby opening the way to higher power (current) devices.

  3. An HMGA2-IGF2BP2 Axis Regulates Myoblast Proliferation and Myogenesis

    PubMed Central

    Li, Zhizhong; Gilbert, Jason A.; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K.; Scaramozza, Annarita; Goddeeris, Matthew M.; Kirsch, David G.; Campbell, Kevin P.; Brack, Andrew S.; Glass, David J.

    2013-01-01

    Summary A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. PMID:23177649

  4. Tests of the relative roles of calcium channels and calcium pumps in controlling gravity-directed development in single spore cells of the fern Ceratopteris richardii

    NASA Astrophysics Data System (ADS)

    Roux, Stanley; Porterfield, D. Marshall; Haque, Aeraj Ul; Bushart, Thomas

    The vector of gravity sets the direction of polarized development of single spore cells of the fern Ceratopteris richardii after light initiates their germination. Gravity also sets the direction of a trans-cell calcium current, which enters the cell along its bottom and exits it from its top. The direction of this current predicts the subsequent direction of spore development, and blocking this current with calcium channel blockers randomizes the direction of subsequent development. Recently the laboratory of D. Marshall Porterfield (Purdue University) developed a microchip device that can measure the direction and magnitude of the trans-spore calcium current in real time. Our laboratory in collaboration with Porterfield's recently found that this current inverts rapidly when the cells are turned upside down and that the magnitude of the current rises and falls with the magnitude of the g-force when these cells are tested in parabolic flight on the DC-9 aircraft. We assume that the gravity-directed entry of calcium into these cells is through calcium channels and its exit is through calcium pumps. Here we report our studies of a calcium pump that is highly expressed in the spores during the period when gravity is setting the direction of the calcium current, and we describe pharmacological tests of the relative importance of calcium pumps in maintaining the calcium current and in controlling the direction of subsequent spore development. We found that inhibitors that block the activity of calcium pumps also greatly depress the trans-cell current, but, surprisingly, have little effect on the ability of gravity to set the direction of spore development. These results, in combination with earlier findings, indicate that the gravity-directed opening of calcium channels along the bottom of spore cells plays a more important role in directing subsequent spore development than the activity of calcium pumps, despite the importance of these pumps in maintaining the trans-cell calcium current. Supported by NASA grants NAG2-1586 and NAG10-295 to S. J. R.

  5. Links between metabolism and cancer

    PubMed Central

    Dang, Chi V.

    2012-01-01

    Metabolism generates oxygen radicals, which contribute to oncogenic mutations. Activated oncogenes and loss of tumor suppressors in turn alter metabolism and induce aerobic glycolysis. Aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer. Together with glutamine, glucose via glycolysis provides the carbon skeletons, NADPH, and ATP to build new cancer cells, which persist in hypoxia that in turn rewires metabolic pathways for cell growth and survival. Excessive caloric intake is associated with an increased risk for cancers, while caloric restriction is protective, perhaps through clearance of mitochondria or mitophagy, thereby reducing oxidative stress. Hence, the links between metabolism and cancer are multifaceted, spanning from the low incidence of cancer in large mammals with low specific metabolic rates to altered cancer cell metabolism resulting from mutated enzymes or cancer genes. PMID:22549953

  6. Sensorineural hearing loss and ischemic injury: Development of animal models to assess vascular and oxidative effects.

    PubMed

    Olivetto, E; Simoni, E; Guaran, V; Astolfi, L; Martini, A

    2015-09-01

    Hearing loss may be genetic, associated with aging or exposure to noise or ototoxic substances. Its aetiology can be attributed to vascular injury, trauma, tumours, infections or autoimmune response. All these factors could be related to alterations in cochlear microcirculation resulting in hypoxia, which in turn may damage cochlear hair cells and neurons, leading to deafness. Hypoxia could underlie the aetiology of deafness, but very few data about it are presently available. The aim of this work is to develop animal models of hypoxia and ischemia suitable for study of cochlear vascular damage, characterizing them by electrophysiology and gene/protein expression analyses. The effects of hypoxia in infarction were mimicked in rat by partial permanent occlusion of the left coronary artery, and those of ischemia in thrombosis by complete temporary carotid occlusion. In our models both hypoxia and ischemia caused a small but significant hearing loss, localized at the cochlear apex. A slight induction of the coagulation cascade and of oxidative stress pathways was detected as cell survival mechanism, and cell damages were found on the cuticular plate of outer hair cells only after carotid ischemia. Based on these data, the two developed models appear suitable for in vivo studies of cochlear vascular damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass

    PubMed Central

    Portha, Bernard; Chavey, Audrey; Movassat, Jamileh

    2011-01-01

    A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission. PMID:22110471

  8. The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression

    PubMed Central

    Garay-Arroyo, Adriana; Ortiz-Moreno, Enrique; de la Paz Sánchez, María; Murphy, Angus S; García-Ponce, Berenice; Marsch-Martínez, Nayelli; de Folter, Stefan; Corvera-Poiré, Adriana; Jaimes-Miranda, Fabiola; Pacheco-Escobedo, Mario A; Dubrovsky, Joseph G; Pelaz, Soraya; Álvarez-Buylla, Elena R

    2013-01-01

    Elucidating molecular links between cell-fate regulatory networks and dynamic patterning modules is a key for understanding development. Auxin is important for plant patterning, particularly in roots, where it establishes positional information for cell-fate decisions. PIN genes encode plasma membrane proteins that serve as auxin efflux transporters; mutations in members of this gene family exhibit smaller roots with altered root meristems and stem-cell patterning. Direct regulators of PIN transcription have remained elusive. Here, we establish that a MADS-box gene (XAANTAL2, XAL2/AGL14) controls auxin transport via PIN transcriptional regulation during Arabidopsis root development; mutations in this gene exhibit altered stem-cell patterning, root meristem size, and root growth. XAL2 is necessary for normal shootward and rootward auxin transport, as well as for maintaining normal auxin distribution within the root. Furthermore, this MADS-domain transcription factor upregulates PIN1 and PIN4 by direct binding to regulatory regions and it is required for PIN4-dependent auxin response. In turn, XAL2 expression is regulated by auxin levels thus establishing a positive feedback loop between auxin levels and PIN regulation that is likely to be important for robust root patterning. PMID:24121311

  9. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells.

    PubMed

    Besnard, Anne-Gaelle; Guabiraba, Rodrigo; Niedbala, Wanda; Palomo, Jennifer; Reverchon, Flora; Shaw, Tovah N; Couper, Kevin N; Ryffel, Bernhard; Liew, Foo Y

    2015-02-01

    Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.

  10. IL-33-Mediated Protection against Experimental Cerebral Malaria Is Linked to Induction of Type 2 Innate Lymphoid Cells, M2 Macrophages and Regulatory T Cells

    PubMed Central

    Besnard, Anne-Gaelle; Guabiraba, Rodrigo; Niedbala, Wanda; Palomo, Jennifer; Reverchon, Flora; Shaw, Tovah N.; Couper, Kevin N.; Ryffel, Bernhard; Liew, Foo Y.

    2015-01-01

    Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs. PMID:25659095

  11. CancerDR: cancer drug resistance database.

    PubMed

    Kumar, Rahul; Chaudhary, Kumardeep; Gupta, Sudheer; Singh, Harinder; Kumar, Shailesh; Gautam, Ankur; Kapoor, Pallavi; Raghava, Gajendra P S

    2013-01-01

    Cancer therapies are limited by the development of drug resistance, and mutations in drug targets is one of the main reasons for developing acquired resistance. The adequate knowledge of these mutations in drug targets would help to design effective personalized therapies. Keeping this in mind, we have developed a database "CancerDR", which provides information of 148 anti-cancer drugs, and their pharmacological profiling across 952 cancer cell lines. CancerDR provides comprehensive information about each drug target that includes; (i) sequence of natural variants, (ii) mutations, (iii) tertiary structure, and (iv) alignment profile of mutants/variants. A number of web-based tools have been integrated in CancerDR. This database will be very useful for identification of genetic alterations in genes encoding drug targets, and in turn the residues responsible for drug resistance. CancerDR allows user to identify promiscuous drug molecules that can kill wide range of cancer cells. CancerDR is freely accessible at http://crdd.osdd.net/raghava/cancerdr/

  12. In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered Lxra DNA methylation.

    PubMed

    Martínez, Débora; Pentinat, Thais; Ribó, Sílvia; Daviaud, Christian; Bloks, Vincent W; Cebrià, Judith; Villalmanzo, Nuria; Kalko, Susana G; Ramón-Krauel, Marta; Díaz, Rubén; Plösch, Torsten; Tost, Jörg; Jiménez-Chillarón, Josep C

    2014-06-03

    Obesity and type 2 diabetes have a heritable component that is not attributable to genetic factors. Instead, epigenetic mechanisms may play a role. We have developed a mouse model of intrauterine growth restriction (IUGR) by in utero malnutrition. IUGR mice developed obesity and glucose intolerance with aging. Strikingly, offspring of IUGR male mice also developed glucose intolerance. Here, we show that in utero malnutrition of F1 males influenced the expression of lipogenic genes in livers of F2 mice, partly due to altered expression of Lxra. In turn, Lxra expression is attributed to altered DNA methylation of its 5' UTR region. We found the same epigenetic signature in the sperm of their progenitors, F1 males. Our data indicate that in utero malnutrition results in epigenetic modifications in germ cells (F1) that are subsequently transmitted and maintained in somatic cells of the F2, thereby influencing health and disease risk of the offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Computational Modeling of Tissue Self-Assembly

    NASA Astrophysics Data System (ADS)

    Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor

    As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.

  14. Cervical Cancer

    MedlinePlus

    ... for a long time, or have HIV infection. Cervical cancer may not cause any symptoms at first. Later, you may have pelvic pain or bleeding from the vagina. It usually takes several years for normal cells in the cervix to turn into cancer cells. ...

  15. Endocrine hormones and local signals during the development of the mouse mammary gland.

    PubMed

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  16. Investigation of the flow turning loss in unstable solid propellant rocket motors

    NASA Astrophysics Data System (ADS)

    Matta, Lawrence Mark

    The goal of this study was to improve the understanding of the flow turning loss, which contributes to the damping of axial acoustic instabilities in solid propellant rocket motors. This understanding is needed to develop practical methods for designing motors that do not exhibit such instabilities. The flow turning loss results from the interaction of the flow of combustion products leaving the surface of the propellant with the acoustic field in an unstable motor. While state of the art solid rocket stability models generally account for the flow turning loss, its magnitude and characteristics have never been fully investigated. This thesis describes a combined theoretical, numerical, and experimental investigation of the flow turning loss and its dependence upon various motor design and operating parameters. First, a one dimensional acoustic stability equation that verifies the existence of the flow turning loss was derived for a chamber with constant mean pressure and temperature. The theoretical development was then extended to include the effects of mean temperature gradients to accommodate combustion systems in which mean temperature gradients and heat losses are significant. These analyses provided the background and expressions necessary to guide an experimental study. The relevant equations were then solved for the developed experimental setup to predict the behavior of the flow turning loss and the other terms of the developed acoustic stability equation. This was followed by and experimental study in which the flow turning region of an unstable solid propellant rocket motor was simulated. The setup was used, with and without combustion, to determine the dependence of the flow turning loss upon operating conditions. These studies showed that the flow turning loss strongly depends upon the gas velocity at the propellant surface and the location of the flow turning region relative to the standing acoustic wave. The flow turning loss measured in the experiment was found to be small relative to other mechanisms. This, however, was characteristic of the experimental setup and is not representative of actual rocket motors, in which the flow turning loss is often a significant part of the overall stability.

  17. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  18. Effect of Chimaerins, Novel Receptors for Phorbol Esters, on Breast Cancer Cell Proliferation and Cell Cycle Progression

    DTIC Science & Technology

    2006-07-01

    that is responsible for the phosphorylation of DAG to generate phosphatidic acid . DGKs might be key molecules in a negative feedback aimed at turning off...C2 Neurotransmitter release KinaseT PH PKCs EF DAG Phosphatidic acid EF C1 KinaseC2 C1 C1 KinaseC2C1 C1 C1 C1 C1 C1 C1 C1 C1 Rac–GTP Rac–GDP Protein...generate phosphatidic acid , and thus it decreases DAG levels. It is possible that DAG-regulated DGKs might serve as negative feedback molecules that turn

  19. A novel fluorescein-based "turn-on" probe for the detection of hydrazine and its application in living cells

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Zhi; Liu, Wei-Yan; Zhou, Ting-Ting; Yang, Yu-Tao; Li, Wei

    2018-03-01

    We constructed a novel probe for hydrazine detection based on ICT and PET mechanism. Phthalimide and acetyl ester groups were used as the recognition units. Addition of hydrazine produced a turn-on fluorescence at 525 nm along with the fluorescent color change from dark to yellow. The probe could selectively detect hydrazine over other related interfering species. The detection limit of the probe for hydrazine was calculated to be 0.057 μM which was lower than the EPA standard (0.320 μM). Furthermore, the probe could also be applied for the imaging of hydrazine in living cells.

  20. Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans.

    PubMed

    Feng, Guoxin; Zhu, Zhiwen; Li, Wen-Jun; Lin, Qirong; Chai, Yongping; Dong, Meng-Qiu; Ou, Guangshuo

    2017-02-01

    Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2 S139 Live imaging analysis of genome-edited animals indicates that MIG-2 S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility. © 2016 The Authors.

  1. Prediction of pi-turns in proteins using PSI-BLAST profiles and secondary structure information.

    PubMed

    Wang, Yan; Xue, Zhi-Dong; Shi, Xiao-Hong; Xu, Jin

    2006-09-01

    Due to the structural and functional importance of tight turns, some methods have been proposed to predict gamma-turns, beta-turns, and alpha-turns in proteins. In the past, studies of pi-turns were made, but not a single prediction approach has been developed so far. It will be useful to develop a method for identifying pi-turns in a protein sequence. In this paper, the support vector machine (SVM) method has been introduced to predict pi-turns from the amino acid sequence. The training and testing of this approach is performed with a newly collected data set of 640 non-homologous protein chains containing 1931 pi-turns. Different sequence encoding schemes have been explored in order to investigate their effects on the prediction performance. With multiple sequence alignment and predicted secondary structure, the final SVM model yields a Matthews correlation coefficient (MCC) of 0.556 by a 7-fold cross-validation. A web server implementing the prediction method is available at the following URL: http://210.42.106.80/piturn/.

  2. Teaching Generation Text: Using Cell Phones to Enhance Learning

    ERIC Educational Resources Information Center

    Nielsen, Lisa; Webb, Willyn

    2011-01-01

    "Teaching Generation Text" shows how teachers can turn cell phones into an educational opportunity instead of an annoying distraction. With a host of innovative ideas, activities, lessons, and strategies, Nielsen and Webb offer a unique way to use students' preferred method of communication in the classroom. Cell phones can remind students to…

  3. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Treesearch

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  4. Dynamic expression of Lgr6 in the developing and mature mouse cochlea

    PubMed Central

    Zhang, Yanping; Chen, Yan; Ni, Wenli; Guo, Luo; Lu, Xiaoling; Liu, Liman; Li, Wen; Sun, Shan; Wang, Lei; Li, Huawei

    2015-01-01

    The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea. PMID:26029045

  5. Interleukin-1β and cyclic AMP mediate the invasion of sheared chondrosarcoma cells via a matrix metalloproteinase-1-dependent mechanism.

    PubMed

    Wang, Pu; Guan, Pei-Pei; Wang, Tao; Yu, Xin; Guo, Jian-Jun; Konstantopoulos, Konstantinos; Wang, Zhan-You

    2014-05-01

    Matrix metalloproteinase-1 (MMP-1) is a potential biomarker for chondrosarcoma that is overexpressed at the invading edges of articular cartilage, and its expression correlates with poor survival rates. However, the molecular mechanisms of MMP-1 regulation and its potential contribution to chondrosarcoma cell invasion have yet to be elucidated, especially in shear-activated cells. Using molecular biology tools and an in vitro fluid shear model, we report that shear stress upregulates cyclic AMP (cAMP) and interleukin-1β (IL-1β) release, which in turn promotes the invasion of chondrosarcoma cells via the induction of MMP-1 in a phosphoinositide 3-kinase (PI3-K)- and ERK1/2-dependent manner. Activated PI3-K and ERK1/2 signaling pathways phosphorylate c-Jun, which in turn transactivates MMP-1 in human chondrosarcoma cells. Collectively, fluid shear stress upregulates matrix MMP-1 expression, which is responsible for the enhanced invasion of human chondrosarcoma cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    DTIC Science & Technology

    2013-10-01

    the brightest GFP+ cells by flow cytometry and compared these with GFP- cells (Figure 1A-C). The transfected cells showed robust GFP expression even...al., 2011), but no normative data were provided on SGN loss by cochlear turn and, in contrast to our results, those authors reported no impact on...A) Flow cytometry analysis to identify GFP+ and GFP- cells. The large cluster of cells on the left represent the GFP- cells and exhibited similar

  7. Cytomics - importance of multimodal analysis of cell function and proliferation in oncology.

    PubMed

    Tárnok, A; Bocsi, J; Brockhoff, G

    2006-12-01

    Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.

  8. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine.

    PubMed

    Rathod, Reena; Surendran, Harshini; Battu, Rajani; Desai, Jogin; Pal, Rajarshi

    2018-02-12

    Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Parallel computing techniques for rotorcraft aerodynamics

    NASA Astrophysics Data System (ADS)

    Ekici, Kivanc

    The modification of unsteady three-dimensional Navier-Stokes codes for application on massively parallel and distributed computing environments is investigated. The Euler/Navier-Stokes code TURNS (Transonic Unsteady Rotor Navier-Stokes) was chosen as a test bed because of its wide use by universities and industry. For the efficient implementation of TURNS on parallel computing systems, two algorithmic changes are developed. First, main modifications to the implicit operator, Lower-Upper Symmetric Gauss Seidel (LU-SGS) originally used in TURNS, is performed. Second, application of an inexact Newton method, coupled with a Krylov subspace iterative method (Newton-Krylov method) is carried out. Both techniques have been tried previously for the Euler equations mode of the code. In this work, we have extended the methods to the Navier-Stokes mode. Several new implicit operators were tried because of convergence problems of traditional operators with the high cell aspect ratio (CAR) grids needed for viscous calculations on structured grids. Promising results for both Euler and Navier-Stokes cases are presented for these operators. For the efficient implementation of Newton-Krylov methods to the Navier-Stokes mode of TURNS, efficient preconditioners must be used. The parallel implicit operators used in the previous step are employed as preconditioners and the results are compared. The Message Passing Interface (MPI) protocol has been used because of its portability to various parallel architectures. It should be noted that the proposed methodology is general and can be applied to several other CFD codes (e.g. OVERFLOW).

  10. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  11. Hair Follicle-Derived Smooth Muscle Cells and Small Intestinal Submucosa for Engineering Mechanically Robust and Vasoreactive Vascular Media

    PubMed Central

    Peng, Hao-Fan; Liu, Jin Yu

    2011-01-01

    Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418

  12. Adrenaline promotes epithelial-to-mesenchymal transition via HuR-TGFβ regulatory axis in pancreatic cancer cells and the implication in cancer prognosis.

    PubMed

    Pu, Jun; Zhang, Xiaorui; Luo, Huiwen; Xu, Lijuan; Lu, Xiaozhao; Lu, Jianguo

    2017-11-25

    Psychological stress has recently been described as a risk factor in the development of pancreatic cancer. Here, we reported that increased neurotransmitter adrenaline was associated with the poor survival in pancreatic cancer patients. Moreover, in the cell model study, we found adrenaline promoted pancreatic cell PANC-1 migration in a dose dependent manner. Block of the β2-adrenoreceptor with ICI118,551, significantly reduced cell migration. Further study found that adrenaline induced a cytoplasmic translocation of RNA binding protein HuR, which in turn activated TGFβ, as shown by the SBE luciferase assay and phosphorylation of Smad2/3. Either HuR knockdown or TGFβ inhibition reduced cell migration induced by adrenaline. Taken together, our study here revealed that adrenaline-HuR-TGFβ regulatory axis at least partially contributes to the psychological stress induced metastasis in PANC-1 cells, shedding light on therapeutic targeting psychological stress in improving the prognosis of pancreatic cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Turn-Taking, Turn-Giving, and Alzheimer's Disease.

    ERIC Educational Resources Information Center

    Sabat, Steven R.

    1991-01-01

    Analysis of a conversation with an Alzheimer's disease sufferer with word-finding problems revealed that social context, speaker characteristics, and awareness of the other speaker's perspective governed such conversational aspects of turn taking and turn giving, which allowed full development of both speakers' personas. (23 references) (CB)

  14. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    PubMed

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Urothelium muscarinic activation phosphorylates CBSSer227 via cGMP/PKG pathway causing human bladder relaxation through H2S production

    PubMed Central

    d’Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-01-01

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser227 following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders. PMID:27509878

  16. Urothelium muscarinic activation phosphorylates CBS(Ser227) via cGMP/PKG pathway causing human bladder relaxation through H2S production.

    PubMed

    d'Emmanuele di Villa Bianca, Roberta; Mitidieri, Emma; Fusco, Ferdinando; Russo, Annapina; Pagliara, Valentina; Tramontano, Teresa; Donnarumma, Erminia; Mirone, Vincenzo; Cirino, Giuseppe; Russo, Giulia; Sorrentino, Raffaella

    2016-08-11

    The urothelium modulates detrusor activity through releasing factors whose nature has not been clearly defined. Here we have investigated the involvement of H2S as possible mediator released downstream following muscarinic (M) activation, by using human bladder and urothelial T24 cell line. Carbachol stimulation enhances H2S production and in turn cGMP in human urothelium or in T24 cells. This effect is reversed by cysthationine-β-synthase (CBS) inhibition. The blockade of M1 and M3 receptors reverses the increase in H2S production in human urothelium. In T24 cells, the blockade of M1 receptor significantly reduces carbachol-induced H2S production. In the functional studies, the urothelium removal from human bladder strips leads to an increase in carbachol-induced contraction that is mimicked by CBS inhibition. Instead, the CSE blockade does not significantly affect carbachol-induced contraction. The increase in H2S production and in turn of cGMP is driven by CBS-cGMP/PKG-dependent phosphorylation at Ser(227) following carbachol stimulation. The finding of the presence of this crosstalk between the cGMP/PKG and H2S pathway downstream to the M1/M3 receptor in the human urothelium further implies a key role for H2S in bladder physiopathology. Thus, the modulation of the H2S pathway can represent a feasible therapeutic target to develop drugs for bladder disorders.

  17. Measurement Frontiers in Molecular Biology

    NASA Astrophysics Data System (ADS)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  18. Perception of conversations: the importance of semantics and intonation in children's development.

    PubMed

    Keitel, Anne; Prinz, Wolfgang; Friederici, Angela D; von Hofsten, Claes; Daum, Moritz M

    2013-10-01

    In conversations, adults readily detect and anticipate the end of a speaker's turn. However, little is known about the development of this ability. We addressed two important aspects involved in the perception of conversational turn taking: semantic content and intonational form. The influence of semantics was investigated by testing prelinguistic and linguistic children. The influence of intonation was tested by presenting participants with videos of two dyadic conversations: one with normal intonation and one with flattened (removed) intonation. Children of four different age groups--two prelinguistic groups (6- and 12-month-olds) and two linguistic groups (24- and 36-month-olds)--and an adult group participated. Their eye movements were recorded, and the frequency of anticipated turns was analyzed. Our results show that (a) the anticipation of turns was reliable only in 3-year-olds and adults, with younger children shifting their gaze between speakers regardless of the turn taking, and (b) only 3-year-olds anticipated turns better if intonation was normal. These results indicate that children anticipate turns in conversations in a manner comparable (but not identical) to adults only after they have developed a sophisticated understanding of language. In contrast to adults, 3-year-olds rely more strongly on prosodic information during the perception of conversational turn taking. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths.

    PubMed

    Olariu, Victor; Manesso, Erica; Peterson, Carsten

    2017-06-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.

  20. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells

    PubMed Central

    Incontro, Salvatore; Ciruela, Francisco; Ziff, Edward; Hofmann, Franz; Sánchez-Prieto, José; Torres, Magdalena

    2014-01-01

    Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity. PMID:23545413

  1. Cholesterol-directed nanoparticle assemblies based on single amino acid peptide mutations activate cellular uptake and decrease tumor volume† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02616a Click here for additional data file.

    PubMed Central

    Li, Shang; Zou, Rongfeng; Tu, Yaoquan

    2017-01-01

    Peptide drugs have been difficult to translate into effective therapies due to their low in vivo stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides. One cholesterol-modified peptide self-assembles into stable nanoparticles with considerable α-helix propensity stabilized by intermolecular van der Waals interactions between inter-peptide cholesterol molecules, and shows 68.3% stability after incubation with serum for 16 h. The nanoparticles in turn interact with cell membrane cholesterols that are disproportionately present in cancer cell membranes, inducing lipid raft-mediated endocytosis and cancer cell death. Our results introduce a strategy to identify peptide nanoparticles that can effectively reduce tumor volumes when administered to in in vivo mice models. Our results also provide a simple platform for developing peptide-based anticancer drugs. PMID:29163910

  2. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths

    PubMed Central

    Olariu, Victor; Manesso, Erica

    2017-01-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis–Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming. PMID:28680655

  3. Dancing with Mobile Devices: The LAIT Application System in Performance and Educational Settings

    ERIC Educational Resources Information Center

    Toenjes, John; Beck, Ken; Reimer, M. Anthony; Mott, Erica

    2016-01-01

    At most any performance today, you will be notified to turn off your cell phone. The smartphone has become such an integral tool in our daily lives that turning it off is tantamount to severing our connection to our community and challenging the way we view and negotiate the world. Many audience members, particularly young ones, will be looking at…

  4. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  5. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  6. The up side of decidual natural killer cells: new developments in immunology of pregnancy.

    PubMed

    Jabrane-Ferrat, Nabila; Siewiera, Johan

    2014-04-01

    Early phases of human pregnancy are associated with the accumulation of a unique subset of natural killer (NK) cells in the maternal decidua. Decidual NK (dNK) cells that are devoid of cytotoxicity play a pivotal role in successful pregnancy. By secreting large amounts of cytokines/chemokines and angiogenic factors, dNK cells participate in all steps of placentation including trophoblast invasion into the maternal endometrium and vascular remodelling. In this review, we summarize some of dNK cell features and discuss more recent exciting data that challenge the conventional view of these cells. Our new data demonstrate that dNK cells undergo fine tuning or even subvert their classical inhibitory machinery and turn into a real defence force in order to prevent the spread of viruses to fetal tissue. Today it is not clear how these phenotypic and functional adaptations impact cellular cross-talk at the fetal-maternal interface and tissue homeostasis. Ultimately, precise understanding of the molecular mechanisms that govern dNK cell plasticity during congenital human cytomegalovirus infection should lead to the design of more robust strategies to reverse immune escape during viral infection and cancer. © 2013 John Wiley & Sons Ltd.

  7. Novel spirobicyclic artemisinin analogues (artemalogues): Synthesis and antitumor activities.

    PubMed

    Liu, Gang; Song, Shanshan; Shu, Shiqi; Miao, Zehong; Zhang, Ao; Ding, Chunyong

    2015-10-20

    The sesquiterpene lactone framework of artemisinin was used as a drug repositioning prototype for the development of novel antitumor drugs. Several series of novel artemisinin analogues (artemalogues) were designed and synthesized through 1,3-dipolar cycloaddition of artemisitene with nitrile oxides or nitrones. The isoxazolidine-containing spirobicyclic artemalogue 11b turns out to be the most potent with low micromolar IC₅₀ values against all three tumor cells, which were at least 4- to 14-fold more potent than the parent artemisinin. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Novel Method Developed to Further the Understanding of DNA Palindromes | Poster

    Cancer.gov

    Editor's note: Platinum Highlight articles are noteworthy publications selected periodically by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications. When Alison Rattray and colleagues in the Gene Regulation and Chromosome Biology Laboratory (GRCBL) examined a mutant yeast cell they had isolated in a screen, they noticed something strange. The DNA exhibited a “very specific, but weird, rearrangement,” she explained. The arrangement turned out to be a DNA palindrome, “opening the door to studying these elusive DNA motifs,” she said.

  9. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    PubMed

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  10. A journey from reductionist to systemic cell biology aboard the schooner Tara.

    PubMed

    Karsenti, Eric

    2012-07-01

    In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells-hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.

  11. The path from student to mentor and from chromosomes to replication to genomics.

    PubMed

    Gerbi, Susan A

    2016-11-01

    The American Society for Cell Biology Women in Cell Biology Sandra Masur Senior Award recognizes leadership in scientific accomplishments and in mentoring, which are intertwined. My development as a scientist reflects important mentors in my life, including my father and Joe Gall, who is my "Doktor Vater." In turn, as an established investigator, my scientific successes in researching 1) chromosomes, their replication and genomics, and 2) ribosomes, their structure, evolution, and biogenesis, reflects the hard work of my students and postdocs, for whom I act as a mentor, guiding them in their research and along their career paths. © 2016 Gerbi. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. A rhodamine-based fluorescent probe for colorimetric and fluorescence lighting-up determination of toxic thiophenols in environmental water and living cells.

    PubMed

    Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming

    2018-05-01

    Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Cell-autonomous sex determination outside of the gonad

    PubMed Central

    Arnold, Arthur P.; Chen, Xuqi; Link, Jenny C.; Itoh, Yuichiro; Reue, Karen

    2013-01-01

    The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms. PMID:23361913

  14. Recent advances in Echinococcus genomics and stem cell research.

    PubMed

    Koziol, U; Brehm, K

    2015-10-30

    Alveolar and cystic echinococcosis, caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively, are life-threatening diseases and very difficult to treat. The introduction of benzimidazole-based chemotherapy, which targets parasite β-tubulin, has significantly improved the life-span and prognosis of echinococcosis patients. However, benzimidazoles show only parasitostatic activity, are associated with serious adverse side effects and have to be administered for very long time periods, underlining the need for new drugs. Very recently, the nuclear genomes of E. multilocularis and E. granulosus have been characterised, revealing a plethora of data for gaining a deeper understanding of host-parasite interaction, parasite development and parasite evolution. Combined with extensive transcriptome analyses of Echinococcus life cycle stages these investigations also yielded novel clues for targeted drug design. Recent years also witnessed significant advancements in the molecular and cellular characterisation of the Echinococcus 'germinative cell' population, which forms a unique stem cell system that differs from stem cells of other organisms in the expression of several genes associated with the maintenance of pluripotency. As the only parasite cell type capable of undergoing mitosis, the germinative cells are central to all developmental transitions of Echinococcus within the host and to parasite expansion via asexual proliferation. In the present article, we will briefly introduce and discuss recent advances in Echinococcus genomics and stem cell research in the context of drug design and development. Interestingly, it turns out that benzimidazoles seem to have very limited effects on Echinococcus germinative cells, which could explain the high recurrence rates observed after chemotherapeutic treatment of echinococcosis patients. This clearly indicates that future efforts into the development of parasitocidal drugs should also target the parasite's stem cell system. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Understanding familial and non-familial renal cell cancer.

    PubMed

    Bodmer, Daniëlle; van den Hurk, Wilhelmina; van Groningen, Jan J M; Eleveld, Marc J; Martens, Gerard J M; Weterman, Marian A J; van Kessel, Ad Geurts

    2002-10-01

    Molecular genetic analysis of familial and non-familial cases of conventional renal cell carcinoma (RCC) revealed a critical role(s) for multiple genes on human chromosome 3. For some of these genes, e.g. VHL, such a role has been firmly established, whereas for others, definite confirmation is still pending. Additionally, a novel role for constitutional chromosome 3 translocations as risk factors for conventional RCC development is rapidly emerging. Also, several candidate loci have been mapped to other chromosomes in both familial and non-familial RCCs of distinct histologic subtypes. The MET gene on chromosome 7, for example, was found to be involved in both forms of papillary RCC. A PRCC-TFE3 fusion gene is typically encountered in t(X;1)-positive non-familial papillary RCCs and results in abrogation of the cell cycle mitotic spindle checkpoint in a dominant-negative fashion, thus leading to RCC. Together, these data turn human RCC into a model system in which different aspects of both familial and non-familial syndromes may act as novel paradigms for cancer development.

  16. Emerging IL-12 family cytokines in the fight against fungal infections.

    PubMed

    Thompson, Aiysha; Orr, Selinda J

    2018-05-21

    Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus. Copyright © 2018. Published by Elsevier Ltd.

  17. Protecting and Diversifying the Germline

    PubMed Central

    Gleason, Ryan J.; Anand, Amit; Kai, Toshie; Chen, Xin

    2018-01-01

    Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development—a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development. PMID:29378808

  18. Fast gray-to-gray switching of a hybrid-aligned liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Hoon; Kim, Jung-Wook; Yoon, Tae-Hoon

    2015-03-01

    We demonstrate fast gray-to-gray (GTG) switching of a hybrid-aligned liquid crystal cell by applying both vertical and inplane electric fields to liquid crystals (LCs) using a four-terminal electrode structure. The LCs are switched to the bright state through downward tilting and twist deformation initiated by applying an in-plane electric field, whereas they are switched back to the initial dark state through optically hidden relaxation initiated by applying a vertical electric field for a short duration. The top electrode in the proposed device is grounded, which requires a much higher voltage to be applied for in-plane rotation of LCs. Thus, ultrafast turn-on switching of the device is achieved, whereas the turn-off switching of the proposed device is independent of the elastic constants and the viscosity of the LCs so that fast turn-off switching can be achieved. We experimentally obtained a total response time of 0.75 ms. Furthermore, fast GTG response within 3 ms could be achieved.

  19. 15 CFR 738.4 - Determining whether a license is required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AT Column 1. Turning to the Country Chart, I locate my specific destination, India, and see that an “X” appears in the NS Column 2 cell for India, but not in the AT Column 1 cell. I understand that a...

  20. Immunotherapy against cancer-related viruses

    PubMed Central

    Tashiro, Haruko; Brenner, Malcolm K

    2017-01-01

    Approximately 12% of all cancers worldwide are associated with viral infections. To date, eight viruses have been shown to contribute to the development of human cancers, including Epstein-Barr virus (EBV), Hepatitis B and C viruses, and Human papilloma virus, among others. These DNA and RNA viruses produce oncogenic effects through distinct mechanisms. First, viruses may induce sustained disorders of host cell growth and survival through the genes they express, or may induce DNA damage response in host cells, which in turn increases host genome instability. Second, they may induce chronic inflammation and secondary tissue damage favoring the development of oncogenic processes in host cells. Viruses like HIV can create a more permissive environment for cancer development through immune inhibition, but we will focus on the previous two mechanisms in this review. Unlike traditional cancer therapies that cannot distinguish infected cells from non-infected cells, immunotherapies are uniquely equipped to target virus-associated malignancies. The targeting and functioning mechanisms associated with the immune response can be exploited to prevent viral infections by vaccination, and can also be used to treat infection before cancer establishment. Successes in using the immune system to eradicate established malignancy by selective recognition of virus-associated tumor cells are currently being reported. For example, numerous clinical trials of adoptive transfer of ex vivo generated virus-specific T cells have shown benefit even for established tumors in patients with EBV-associated malignancies. Additional studies in other virus-associated tumors have also been initiated and in this review we describe the current status of immunotherapy for virus-associated malignancies and discuss future prospects. PMID:28008927

  1. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae.

    PubMed

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-03-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae

    PubMed Central

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-01-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. PMID:26826497

  3. Emotional Development: 1 Year Olds

    MedlinePlus

    ... mode Turn off more accessible mode Skip Ribbon Commands Skip to main content Turn off Animations Turn ... her regain her composure is to give her attention and reassurance when she needs it. Snapping at ...

  4. Advancing pluripotent stem cell culture: it is a matter of setting the standard.

    PubMed

    Sartipy, Peter

    2013-04-15

    Human pluripotent stem cells (hPSCs), defined by their ability to proliferate indefinitely and the capacity to differentiate into all tissue cell types of the adult, represent a platform for the realization of breakthrough technologies for industrial and regenerative medicine applications. We have witnessed tremendous developments over the last decade related to methods for establishment, maintenance, differentiation, and applications of hPSCs and their derivatives. Despite all progress made in the hPSC field, there are still fundamental issues yet to be resolved. For example, our understanding of the pluripotent state remains limited, which in turn may have substantial consequences on how we interpret and communicate scientific data concerning hPSCs. This brief commentary aims to highlight recent important findings that demonstrate additional levels of complexity to the current assessment of pluripotent stem cell cultures. In addition, these data may help to provide some explanations for the challenges in reproducing hPSC differentiation protocols across laboratories.

  5. Investigation of Effective Material Properties of Stony Meteorites

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  6. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    PubMed

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  7. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    PubMed Central

    Hawkins, Kate E.; Joy, Shona; Delhove, Juliette M.K.M.; Kotiadis, Vassilios N.; Fernandez, Emilio; Fitzpatrick, Lorna M.; Whiteford, James R.; King, Peter J.; Bolanos, Juan P.; Duchen, Michael R.; Waddington, Simon N.; McKay, Tristan R.

    2016-01-01

    Summary The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. PMID:26904936

  8. Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Kato, Yukinari

    2018-07-01

    The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375-394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377- RGDSFTHTPP -386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.

  9. Targeting of Cancer Stem Cells and Their Microenvironment in Early-Stage Mutant K-ras Lung Cancer

    DTIC Science & Technology

    2016-12-01

    Aldefluor reagent. (B) A549 control lung cancer cells were incubated with Alde- fluor regent and DEAB, an inhibitor of aldehyde dehydro- genase. (C...increase in liquid colony formation or in cell proliferation compared to SHH- cells. Therefore, we turned to identify aldehyde dehydrogenase (ALDH...in which a green fluorescent BODIPY moiety is linked to aminoacetaldehyde, an aldehyde dehydrogenase substrate, and thus, cells expressing ALDH

  10. Quantitative Kinetic Study of the Actin-Bundling Protein L-Plastin and of Its Impact on Actin Turn-Over

    PubMed Central

    Al Tanoury, Ziad; Schaffner-Reckinger, Elisabeth; Halavatyi, Aliaksandr; Hoffmann, Céline; Moes, Michèle; Hadzic, Ermin; Catillon, Marie; Yatskou, Mikalai; Friederich, Evelyne

    2010-01-01

    Background Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. Methodology/Principal Findings To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. Conclusions/Significance Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity binding to the cytoskeleton. In carcinoma cells, PKC-δ signaling pathways appear to link L-plastin phosphorylation to actin polymerization and invasion. PMID:20169155

  11. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    PubMed

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  12. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells

    PubMed Central

    Guo, Yongfeng; Flegel, Kerry; Kumar, Jayashree; McKay, Daniel J.

    2016-01-01

    ABSTRACT During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. PMID:27737823

  13. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    PubMed

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  15. Geometric constraints during epithelial jamming

    NASA Astrophysics Data System (ADS)

    Atia, Lior; Bi, Dapeng; Sharma, Yasha; Mitchel, Jennifer A.; Gweon, Bomi; Koehler, Stephan A.; DeCamp, Stephen J.; Lan, Bo; Kim, Jae Hun; Hirsch, Rebecca; Pegoraro, Adrian F.; Lee, Kyu Ha; Starr, Jacqueline R.; Weitz, David A.; Martin, Adam C.; Park, Jin-Ah; Butler, James P.; Fredberg, Jeffrey J.

    2018-06-01

    As an injury heals, an embryo develops or a carcinoma spreads, epithelial cells systematically change their shape. In each of these processes cell shape is studied extensively whereas variability of shape from cell to cell is regarded most often as biological noise. But where do cell shape and its variability come from? Here we report that cell shape and shape variability are mutually constrained through a relationship that is purely geometrical. That relationship is shown to govern processes as diverse as maturation of the pseudostratified bronchial epithelial layer cultured from non-asthmatic or asthmatic donors, and formation of the ventral furrow in the Drosophila embryo. Across these and other epithelial systems, shape variability collapses to a family of distributions that is common to all. That distribution, in turn, is accounted for by a mechanistic theory of cell-cell interaction, showing that cell shape becomes progressively less elongated and less variable as the layer becomes progressively more jammed. These findings suggest a connection between jamming and geometry that spans living organisms and inert jammed systems, and thus transcends system details. Although molecular events are needed for any complete theory of cell shape and cell packing, observations point to the hypothesis that jamming behaviour at larger scales of organization sets overriding geometric constraints.

  16. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance.

    PubMed

    Seebacher, Nicole; Lane, Darius J R; Richardson, Des R; Jansson, Patric J

    2016-07-01

    Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues.

    PubMed

    Li, Cheri Y; Stevens, Kelly R; Schwartz, Robert E; Alejandro, Brian S; Huang, Joanne H; Bhatia, Sangeeta N

    2014-08-01

    Drug-induced liver injury is a major cause of drug development failures and postmarket withdrawals. In vitro models that incorporate primary hepatocytes have been shown to be more predictive than model systems which rely on liver microsomes or hepatocellular carcinoma cell lines. Methods to phenotypically stabilize primary hepatocytes ex vivo often rely on mimicry of hepatic microenvironmental cues such as cell-cell interactions and cell-matrix interactions. In this work, we sought to incorporate phenotypically stable hepatocytes into three-dimensional (3D) microtissues, which, in turn, could be deployed in drug-screening platforms such as multiwell plates and diverse organ-on-a-chip devices. We first utilize micropatterning on collagen I to specify cell-cell interactions in two-dimensions, followed by collagenase digestion to produce well-controlled aggregates for 3D encapsulation in polyethylene glycol (PEG) diacrylate. Using this approach, we examined the influence of homotypic hepatocyte interactions and composition of the encapsulating hydrogel, and achieved the maintenance of liver-specific function for over 50 days. Optimally preaggregated structures were subsequently encapsulated using a microfluidic droplet-generator to produce 3D microtissues. Interactions of engineered hepatic microtissues with drugs was characterized by flow cytometry, and yielded both induction of P450 enzymes in response to prototypic small molecules and drug-drug interactions that give rise to hepatotoxicity. Collectively, this study establishes a pipeline for the manufacturing of 3D hepatic microtissues that exhibit stabilized liver-specific functions and can be incorporated into a wide array of emerging drug development platforms.

  18. Computational and Theoretical Study of the Physical Constraints on Chemotaxis

    NASA Astrophysics Data System (ADS)

    Varennes, Julien

    Cell chemotaxis is crucial to many biological functions including development, wound healing, and cancer metastasis. Chemotaxis is the process in which cells migrate in response to chemical concentration gradients. Recent experiments show that cells are capable of detecting shallow gradients as small as a 1% concentration difference, and multicellular groups can improve on this by an additional order of magnitude. Examples from morphogenesis and metastasis demonstrate collective response to gradients equivalent to a 1 molecule difference in concentration across a cell body. While the physical constraints to cell gradient sensing are well understood, how the sensory information leads to cell migration, and coherent multicellular movement in the case of collectives, remains poorly understood. Here we examine how extrinsic sensory noise leads to error in chemotactic performance. First, we study single cell chemotaxis and use both simulations and analytical models to place physical constraints on chemotactic performance. Next we turn our attention to collective chemotaxis. We examine how collective cell interactions can improve chemotactic performance. We develop a novel model for quantifying the physical limit to chemotactic precision for two stereotypical modes of collective chemotaxis. Finally, we conclude by examining the effects of intercellular communication on collective chemotaxis. We use simulations to test how well collectives can chemotax through very shallow gradients with the help of communication. By studying these computational and theoretical models of individual and collective chemotaxis, we address the gap in knowledge between chemical sensing and directed migration.

  19. Training strategies and materials.

    DOT National Transportation Integrated Search

    2008-08-01

    TxDOT project 0-5840 Development of Left-Turn Operations Guidelines at Signalized Intersections has developed : guidelines for recommending the most appropriate left-turn phasing treatments at signalized intersections by investigating all : asp...

  20. Effects of surgical lesions on choline acetyltransferase activity in the cat cochlea.

    PubMed

    Frilling, Mark J; Wiet, Gregory J; Godfrey, Donald A; Parli, Judy A; Dunn, Jon D; Ross, C David

    2017-12-01

    Although it is well established that the choline acetyltransferase (ChAT, the enzyme for acetylcholine synthesis) in the mammalian cochlea is associated with its olivocochlear innervation, the distribution of this innervation in the cochlea varies somewhat among mammalian species. The quantitative distribution of ChAT activity in the cochlea has been reported for guinea pigs and rats. The present study reports the distribution of ChAT activity within the organ of Corti among the three turns of the cat cochlea and the effects of removing olivocochlear innervation either by a lateral cut aimed to totally transect the left olivocochlear bundle or a more medial cut additionally damaging the superior olivary complex on the same side. Similarly to results for guinea pig and rat, the distribution of ChAT activity in the cat outer hair cell region showed a decrease from base to apex, but, unlike in the guinea pig and rat, the cat inner hair cell region did not. As in the rat, little ChAT activity was measured in the outer supporting cell region. As previously reported for whole cat cochlea and for rat cochlear regions, transection of the olivocochlear bundle resulted in almost total loss of ChAT activity in the hair cell regions of the cat cochlea. Lesions of the superior olivary complex resulted in loss of ChAT activity in the inner hair cell region of all cochlear turns only on the lesion side but bilateral losses in the outer hair cell region of all turns. The results are consistent with previous evidence that virtually all cholinergic synapses in the mammalian cochlea are associated with its olivocochlear innervation, that the olivocochlear innervation to the inner hair cell region is predominantly ipsilateral, and that the olivocochlear innervation to the outer hair cells is bilateral. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Changes in the inner ear structures in cystic fibrosis patients.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Kurata, Natsuko; Paparella, Michael M; Cureoglu, Sebahattin

    2017-01-01

    Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal's canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Changes in the Inner Ear Structures in Cystic Fibrosis Patients

    PubMed Central

    Pauna, Henrique F.; Monsanto, Rafael C.; Kurata, Natsuko; Paparella, Michael M.; Cureoglu, Sebahattin

    2016-01-01

    Objective Although prolonged use of antibiotics is very common in cystic fibrosis (CF) patients, no studies have assessed the changes in both cochlear and peripheral vestibular systems in this population. Methods We used human temporal bones to analyze the density of vestibular dark, transitional, and hair cells in specimens from CF patients who were exposed to several types of antibiotics, as compared with specimens from an age-matched control group with no history of ear disease or antibiotic use. Additionally, we analyzed the changes in the elements of the cochlea (hair cells, spiral ganglion neurons, and the area of the stria vascularis). Data was gathered using differential interference contrast microscopy and light microscopy. Results In the CF group, 83% of patients were exposed to some ototoxic drugs, such as aminoglycosides. As compared with the control group, the density of both type I and type II vestibular hair cells was significantly lower in all structures analyzed; the number of dark cells was significantly lower in the lateral and posterior semicircular canals. We noted a trend toward a lower number of both inner and outer cochlear hair cells at all turns of the cochlea. The number of spiral ganglion neurons in Rosenthal’s canal at the apical turn of the cochlea was significantly lower; furthermore, the area of the stria vascularis at the apical turn of the cochlea was significantly smaller. Conclusions Deterioration of cochlear and vestibular structures in CF patients might be related to their exposure to ototoxic antibiotics. Well-designed case-control studies are necessary to rule out the effect of CF itself. PMID:28012509

  3. Development of highly sensitive cell-based AKT kinase ELISA for monitoring PI3K beta activity and compound efficacy.

    PubMed

    Yanamandra, Mahesh; Kole, Labanyamoy; Giri, Archana; Mitra, Sayan

    2017-01-01

    Phosphatidylinositol-3 kinase (PI3K) pathway regulates multiple cellular functions involving cell survival, growth, motility proliferation, apoptosis, and adhesion. These are deregulated in various diseases such as cancer, atherosclerosis, and inflammation. PI3Ks phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2) yielding phosphatidylinositol 3, 4, 5 triphosphate (PIP3) which in turn activate AKT kinase (serine/threonine kinase), the central enzyme in regulation of metabolic functions. Due to their implications in disease pathophysiology, PI3K/AKT inhibitors became attractive targets for pharmaceutical industries. In order to assess the functional response generated by PI3K inhibitors, an appropriate cell-based screening system is essential in any screening cascade. Here we report the development of highly sensitive in-vitro cell-based kinase ELISA which quantifies the phosphorylated AKT kinase (serine 473) and total AKT kinase directly within the cells upon compound treatment. PI3Kβ overexpressing NIH3T3 cells stimulated by lysophosphatidic acid was used for PI3K/Akt pathway activation. Assay performance reliability and robustness were determined by percentage coefficient of variation (%CV) and Z factor which demonstrated an excellent agreement with assay guidelines. This 96-well plate medium throughput assay methodology was used to screen novel molecules and proved a commendable tool to study the mechanism of action property and target engagement of novel PI3K inhibitors in drug discovery.

  4. Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis.

    PubMed

    Wattanathamsan, Onsurang; Treesuwan, Surassawadee; Sritularak, Boonchoo; Pongrakhananon, Varisa

    2018-03-01

    The life-threatening potential of lung cancer has increased over the years due to its acquisition of chemotherapeutic resistance, especially to cisplatin, a first-line therapy. In response to this development, researchers have turned their attention to several compounds derived from natural origins, including cypripedin (CYP), a phenanthrenequinone substance extracted from Dendrobium densiflorum. The aim of the present study was to investigate the ability of CYP to induce apoptosis and enhance cisplatin-mediated death of human lung cancer NCI-H460 cells using cell viability and apoptosis assays. The induction of apoptosis by CYP was observed at a concentration of > 50 μM with the appearance of morphological changes, including DNA condensation and chromatin fragmentation. Together with, CYP was able to activate caspase-3 and downregulate the anti-apoptotic proteins Bcl-2 and Bcl-xL. Also, a non-cytotoxic dose of CYP synergistically potentiated the effect of cisplatin in non-small cell lung cancer line H460 cells, which clearly exhibited the apoptotic phenotype. Western blot analysis revealed that the underlying mechanism involved the downregulation of anti-apoptotic Bcl-xL, whereas the levels of other apoptotic regulatory proteins were not altered. This study provides interesting information on the potent effect of CYP as a chemotherapeutic sensitizer that could be further developed to improve the clinical outcomes of lung cancer patients.

  5. Cell Phones for Science

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Christmann, Edwin P.; Wighting, Mervyn J.

    2010-01-01

    Although in some schools cell phones have to be turned off or perhaps kept in lockers to avoid misuse, the authors hope to demonstrate in this article how they can be used under supervision to assist learning. This ubiquitous device can be a powerful classroom tool. (Contains 2 figures.)

  6. 14-3-3ζ turns TGF-β’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2

    PubMed Central

    Xu, Jia; Acharya, Sunil; Sahin, Ozgur; Zhang, Qingling; Saito, Yohei; Yao, Jun; Wang, Hai; Li, Ping; Zhang, Lin; Lowery, Frank J; Kuo, Wen-Ling; Xiao, Yi; Ensor, Joe; Sahin, Aysegul A; Zhang, Xiang H.-F.; Hung, Mien-Chie; Zhang, Jitao David; Yu, Dihua

    2015-01-01

    Summary Transforming growth factor-β (TGF-β) functions as a tumor suppressor in pre-malignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effectors Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in pre-malignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β’s tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression. PMID:25670079

  7. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  8. Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Galpha11-dependent, PLC-beta-mediated pathway.

    PubMed

    Bueno, Clara; Lemke, Caitlin D; Criado, Gabriel; Baroja, Miren L; Ferguson, Stephen S G; Rahman, A K M Nur-Ur; Tsoukas, Constantine D; McCormick, John K; Madrenas, Joaquin

    2006-07-01

    The paradigm to explain antigen-dependent T cell receptor (TCR) signaling is based on the activation of the CD4 or CD8 coreceptor-associated kinase Lck. It is widely assumed that this paradigm is also applicable to signaling by bacterial superantigens. However, these bacterial toxins can activate human T cells lacking Lck, suggesting the existence of an additional pathway of TCR signaling. Here we showed that this alternative pathway operates in the absence of Lck-dependent tyrosine-phosphorylation events and was initiated by the TCR-dependent activation of raft-enriched heterotrimeric Galpha11 proteins. This event, in turn, activated a phospholipase C-beta and protein kinase C-mediated cascade that turned on the mitogen-activated protein kinases ERK-1 and ERK-2, triggered Ca(2+) influx, and translocated the transcription factors NF-AT and NF-kappaB to the nucleus, ultimately inducing the production of interleukin-2 in Lck-deficient T cells. The triggering of this alternative pathway by superantigens suggests that these toxins use a G protein-coupled receptor as a coreceptor on T cells.

  9. Topological side-chain classification of beta-turns: ideal motifs for peptidomimetic development.

    PubMed

    Tran, Tran Trung; McKie, Jim; Meutermans, Wim D F; Bourne, Gregory T; Andrews, Peter R; Smythe, Mark L

    2005-08-01

    Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.

  10. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    DTIC Science & Technology

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  11. Improvement of electroporation to deliver plasmid DNA into dental follicle cells

    PubMed Central

    Yao, Shaomian; Rana, Samir; Liu, Dawen; Wise, Gary E.

    2010-01-01

    Electroporation DNA transfer is a simple and versatile approach to deliver genes. To develop an optimal electroporation protocol to deliver DNA into cells, we conducted square wave electroporation experiments with using rat dental follicle cells as follows: 1) the cells were electroporated at different electric field strengths with lac Z plasmid; 2) plasmid concentrations were tested to determine the optimal doses; 3) various concentrations of bovine serum albumin or fetal bovine serum were added to the pulsing buffer; and, 4) the pulsing durations were studied to determine the optimal duration. These experiments indicated that the optimal electroporation electric field strength was 375 V/cm, and that plasmid concentrations greater than 0.18 μg/μl were required to achieve high transfection efficiency. BSA or FBS in the pulsing buffer significantly improved cell survival and increased the number of transfected cells. The optimal pulsing duration was in the range of 45 to 120 milliseconds (ms) at 375 V/cm. Thus, an improved electroporation protocol was established by optimizing the above parameters. In turn, this electroporation protocol can be used to deliver DNA into dental follicle cells to study the roles of candidate genes in regulating tooth eruption. PMID:19830717

  12. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity

    PubMed Central

    Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.

    2016-01-01

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088

  13. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  14. The osteoblastic niche in the context of multiple myeloma.

    PubMed

    Toscani, Denise; Bolzoni, Marina; Accardi, Fabrizio; Aversa, Franco; Giuliani, Nicola

    2015-01-01

    The osteoblastic niche has a critical role in the regulation of hemopoietic stem cell (HSC) quiescence and self-renewal and in the support of hematopoiesis. Several mechanisms are involved in the crosstalk between stem cells and osteoblasts, including soluble cytokines, adhesion molecules, and signal pathways such as the wingless-Int (Wnt), Notch, and parathyroid hormone pathways. According to the most recent evidence, there is an overlap between osteoblastic and perivascular niches that affects HSC function involving mesenchymal stromal and endothelial cells and a gradient of oxygen regulated by hypoxia inducible factor (HIF)-1α. Derived from plasma cells, multiple myeloma (MM) is a hematopoietic malignancy characterized by a peculiar dependency on the bone microenvironment. Quiescent MM cells may reside in the osteoblastic niche for protection from apoptotic stimuli; in turn, MM cells suppress osteoblast formation and function, leading to impairment of bone formation and the development of osteolytic lesions. Several recent studies have investigated the mechanisms involved in the relationship between osteoblasts and MM cells and identified potential therapeutic targets in the osteoblastic niche, including the HIF-1α, Runx2, and Wnt (both canonical and noncanonical) signaling pathways. © 2014 New York Academy of Sciences.

  15. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C.elegans excretory system

    PubMed Central

    Abdus-Saboor, Ishmail; Stone, Craig E.; Murray, John I.; Sundaram, Meera V.

    2012-01-01

    Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C.elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape. PMID:22537498

  16. The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system.

    PubMed

    Abdus-Saboor, Ishmail; Stone, Craig E; Murray, John I; Sundaram, Meera V

    2012-06-15

    Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C. elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications.

    PubMed

    Katona, Robert L

    2015-02-01

    Mammalian artificial chromosomes (MACs) are non-integrating, autonomously replicating natural chromosome-based vectors that may carry a vast amount of genetic material, which in turn enable potentially prolonged, safe, and regulated therapeutic transgene expression and render MACs as attractive genetic vectors for "gene replacement" or for controlling differentiation pathways in target cells. Satellite-DNA-based artificial chromosomes (SATACs) can be made by induced de novo chromosome formation in cells of different mammalian and plant species. These artificially generated accessory chromosomes are composed of predictable DNA sequences, and they contain defined genetic information. SATACs have already passed a number of obstacles crucial to their further development as gene therapy vectors, including large-scale purification, transfer of purified artificial chromosomes into different cells and embryos, generation of transgenic animals and germline transmission with purified SATACs, and the tissue-specific expression of a therapeutic gene from an artificial chromosome in the milk of transgenic animals. SATACs could be used in cell therapy protocols. For these methods, the most versatile target cell would be one that was pluripotent and self-renewing to address multiple disease target cell types, thus making multilineage stem cells, such as adult derived early progenitor cells and embryonic stem cells, as attractive universal host cells.

  18. Stem cells and bone: a historical perspective.

    PubMed

    Bianco, Paolo

    2015-01-01

    Bone physiology and stem cells were tightly intertwined with one another, both conceptually and experimentally, long before the current explosion of interest in stem cells and so-called regenerative medicine. Bone is home to the two best known and best characterized systems of postnatal stem cells, and it is the only organ in which two stem cells and their dependent lineages coordinate the overall adaptive responses of two major physiological systems. All along, the nature and the evolutionary significance of the interplay of bone and hematopoiesis have remained a major scientific challenge, but also allowed for some of the most spectacular developments in cell biology-based medicine, such as hematopoietic stem cell transplantation. This question recurs in novel forms at multiple turning points over time: today, it finds in the biology of the "niche" its popular phrasing. Entirely new avenues of investigation emerge as a new view of bone in physiology and medicine is progressively established. Looking at bone and stem cells in a historical perspective provides a unique case study to highlight the general evolution of science in biomedicine since the end of World War II to the present day. A paradigm shift in science and in its relation to society and policies occurred in the second half of the XXth century, with major implications thereof for health, industry, drug development, market and society. Current interest in stem cells in bone as in other fields is intertwined with that shift. New opportunities and also new challenges arise. This article is part of a Special Issue entitled "Stem cells and bone". Copyright © 2014. Published by Elsevier Inc.

  19. SHOX triggers the lysosomal pathway of apoptosis via oxidative stress.

    PubMed

    Hristov, Georgi; Marttila, Tiina; Durand, Claudia; Niesler, Beate; Rappold, Gudrun A; Marchini, Antonio

    2014-03-15

    The SHOX gene encodes for a transcription factor important for normal bone development. Mutations in the gene are associated with idiopathic short stature and are responsible for the growth failure and skeletal defects found in the majority of patients with Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia. SHOX is expressed in growth plate chondrocytes where it is supposed to modulate the proliferation, differentiation and cell death of these cells. Supporting this hypothesis, in vitro studies have shown that SHOX expression induces cell cycle arrest and apoptosis in both transformed and primary cells. In this study, we further characterized the cell death mechanisms triggered by SHOX and compared them with the effects induced by one clinically relevant mutant form of SHOX, detected in LWD patients (SHOX R153L) and a SHOX C-terminally truncated version (L185X). We show that SHOX expression in U2OS osteosarcoma cells leads to oxidative stress that, in turn, induces lysosomal membrane rupture with release of active cathepsin B to the cytosol and subsequent activation of the intrinsic apoptotic pathway characterized by mitochondrial membrane permeabilization and caspase activation. Importantly, cells expressing SHOX R153L or L185X did not display any of these features. Given the fact that many of the events observed in SHOX-expressing cells also characterize the complex cell death process occurring in the growth plate during endochondral ossification, our findings further support the hypothesis that SHOX may play a central role in the regulation of the cell death pathways activated during long bone development.

  20. Understanding dynamic changes in live cell adhesion with neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Junghans, Ann

    Understanding the structure and functionality of biological systems on a nanometer-resolution and short temporal scales is important for solving complex biological problems, developing innovative treatment, and advancing the design of highly functionalized biomimetic materials. For example, adhesion of cells to an underlying substrate plays a crucial role in physiology and disease development, and has been investigated with great interest for several decades. In the talk, we would like to highlight recent advances in utilizing neutron scattering to study bio-related structures in dynamic conditions (e . g . under the shear flow) including in-situ investigations of the interfacial properties of living cells. The strength of neutron reflectometry is its non-pertubative nature, the ability to probe buried interfaces with nanometer resolution and its sensitivity to light elements like hydrogen and carbon. That allows us to study details of cell - substrate interfaces that are not accessible with any other standard techniques. We studied the adhesion of human brain tumor cells (U251) to quartz substrates and their responses to the external mechanical forces. Such cells are isolated within the central nervous system which makes them difficult to reach with conventional therapies and therefore making them highly invasive. Our results reveal changes in the thickness and composition of the adhesion layer (a layer between the cell lipid membrane and the quartz substrate), largely composed of hyaluronic acid and associated proteoglycans, when the cells were subjected to shear stress. Further studies will allow us to determine more conditions triggering changes in the composition of the bio-material in the adhesion layer. This, in turn, can help to identify changes that correlate with tumor invasiveness, which can have significant medical impact for the development of targeted anti-invasive therapies.

  1. A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.

    PubMed

    Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen

    2014-03-26

    Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.

  2. Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines.

    PubMed

    Zhang, Xinyuan; Zheng, Nan; Rosania, Gus R

    2008-09-01

    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.

  3. Hsa-Let-7g miRNA Targets Caspase-3 and Inhibits the Apoptosis Induced by ox-LDL in Endothelial Cells

    PubMed Central

    Zhang, Yefei; Chen, Naiyun; Zhang, Jihao; Tong, Yaling

    2013-01-01

    It has been well confirmed ox-LDL plays key roles in the development of atherosclerosis via binding to LOX-1 and inducing apoptosis in vascular endothelial cells. Recent studies have shown ox-LDL can suppress microRNA has-let-7g, which in turn inhibits the ox-LDL induced apoptosis. However, details need to be uncovered. To determine the anti-atherosclerosis effect of microRNA has-let-7g, and to evaluate the possibility of CASP3 as an anti-atherosclerotic drug target by has-let-7g, the present study determined the role of hsa-let-7g miRNA in ox-LDL induced apoptosis in the vascular endothelial cells. We found that miRNA has-let-7g was suppressed during the ox-LDL-induced apoptosis in EAhy926 endothelial cells. In addition, overexpression of has-let-7g negatively regulated apoptosis in the endothelial cells by targeting caspase-3 expression. Therefore, miRNA let-7g may play important role in endothelial apoptosis and atherosclerosis. PMID:24252910

  4. Pedestrian Safety Treatments for Signalized Intersections : Training Course Development

    DOT National Transportation Integrated Search

    2017-11-01

    When drivers make left turns during a permissive turn phase, they must yield to pedestrians as well as oncoming through vehicles. Left-turning drivers sometimes overlook pedestrians in the crosswalk while watching the opposing intersection approach. ...

  5. Work Station For Inverting Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.

  6. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  7. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    PubMed

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Micro-magnetic Structures for Biological Applications

    NASA Astrophysics Data System (ADS)

    Howdyshell, Marci L.

    Developments in single-molecule and single-cell experiments over the past century have provided researchers with many tools to probe the responses of cells to stresses such as physical force or to the injection of foreign genes. Often these techniques target the cell membrane, although many are now advancing to probe within the cell. As these techniques are improved upon and the investigations advance toward clinical applications, it has become more critical to achieve high-throughput outcomes which in turn lead to statistically significant results. The technologies developed in this thesis are targeted at transfecting large populations of cells with controlled doses of specific exogenic material without adversely affecting cell viability. Underlying this effort is a platform of lithographically patterned ferromagnetic thin films capable of remotely manipulating and localizing magnetic microbeads attached to biological entities. A novel feature of this approach, as demonstrated here with both DNA and cells, is the opportunity for multiplexed operations on targeted biological specimens. This thesis includes two main thrusts: (1) the advancement of the trapping platforms through experimental verification of mathematical models providing the energy landscapes associated with the traps and (2) implementation of the platform as a basis for rapid and effective high-throughput microchannel and nanochannel cell electroporation devices. The electroporation devices have, in our studies, not only been demonstrated to sustain cell viability with extremely low cell mortality rates, but are also found to be effective for various types of cells. The advances over current electroporation technologies that are achieved in these efforts demonstrate the potential for detection of mRNA expression in heterogeneous cell populations and probing intracellular responses to the introduction of foreign genes into cells.

  9. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    PubMed

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  10. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    PubMed

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging

    NASA Astrophysics Data System (ADS)

    Manjunath, Rangasamy; Hrishikesan, Elango; Kannan, Palaninathan

    2015-04-01

    A new rhodamine-based fluorescent turn-on chemosensor (L) for selective detection of Al3+ ion has been developed and characterized. The fluorescent chemosensor L was synthesized by the reaction of intermediate (4) with 2,5-bis (4-phenylacyl chloride)-1,3,4-oxadiazole (3). The chemosensor L displays an excellent selective and sensitive response to Al3+ ion over other metal ions, in which the spirocyclic (non-fluorescent) to ring opened amide (fluorescent) process was utilized and a 1:2 stoichiometry for L-Al3+ complex was formed with an association constant of 2.03 × 103 M-1. Furthermore, chemosensor L can be applied as a fluorescent probe for monitoring Al3+ in living cells by performing cell imaging studies.

  12. Role of notochord cells and sclerotome-derived cells in vertebral column development in fugu, Takifugu rubripes: histological and gene expression analyses.

    PubMed

    Kaneko, Takamasa; Freeha, Khalid; Wu, Xiaoming; Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2016-10-01

    Despite the common structure of vertebrates, the development of the vertebral column differs widely between teleosts and tetrapods in several respects, including the ossification of the centrum and the function of the notochord. In contrast to tetrapods, vertebral development in teleosts is not fully understood, particularly for large fish with highly ossified bones. We therefore examined the histology and gene expression profile of vertebral development in fugu, Takifugu rubripes, a model organism for genomic research. Ossification of the fugu centrum is carried out by outer osteoblasts expressing col1a1, col2a1, and sparc, and the growing centra completely divide the notochord into double cone-shaped segments that function as intercentral joints. In this process, the notochord basal cells produce a thick notochord sheath exhibiting Alcian-blue-reactive cartilaginous properties and composing the intercentral ligament in cooperation with the external ligament connective tissue. Synthesis of the matrix by the basal cells was ascertained by an in vitro test. Expression of twist2 indicates that this connective tissue is descended from the embryonic sclerotome. Notochord basal cells express sox9, ihhb, shh, and col2a1a, suggesting that the signaling system involved in chondrocyte proliferation and matrix production also functions in notochord cells for notochord sheath formation. We further found that the notochord expression of both ntla and shh is maintained in the fugu vertebral column, whereas it is turned off after embryogenesis in zebrafish. Thus, our results demonstrate that, in contrast to zebrafish, a dynamic morphogenesis and molecular network continues to function in fugu until the establishment of the adult vertebral column.

  13. Fraudsters operate and officialdom turns a blind eye: a proposal for controlling stem cell therapy in China.

    PubMed

    Jiang, Li; Dong, Bing He

    2016-09-01

    Stem cell tourism-the flow of patients from home countries to destination countries to obtain stem cell treatment-is a growing business in China. Many concerns have been raised regarding fraudsters that operate unsafe stem cell therapies and an officialdom that turns a blind eye to the questionable technology. The Chinese regulatory approach to stem cell research is based on Guidelines and Administrative Measures, rather than legislation, and may have no binding force on certain institutions, such as military hospitals. There is no liability and traceability system and no visible set of penalties for non-compliance in the stem cell legal framework. In addition to the lack of safety and efficacy systems in the regulations, no specific expert authority has been established to monitor stem cell therapy to date. Recognizing the global nature of stem cell tourism, this article argues that resolving stem cell tourism issues may require not only the Chinese government but also an international mechanism for transparency and ethical oversight. A stringent set of international regulations that govern stem cell therapies can encourage China to improve stem cell regulation and enforcement to fulfill its obligations. Through an international consensus, a minimum standard for clinical stem cell research and a central enforcement system will be provided. As a result, rogue clinics that conduct unauthorized stem cell therapies can be penalized, and countries that are reluctant to implement the reconciled regulations should be sanctioned.

  14. The Educative Potential of Cell Phones in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Maguth, Brad M.

    2013-01-01

    Over 75 percent of teens have a cell phone, and today's youth are increasingly turning to their cell phones to communicate and access information (Pew Internet 2009). As teens gain access and use mobile devices outside of the classroom, there's been a growing movement for teachers to enlist the digital tools students really use and are…

  15. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  16. Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos.

    PubMed

    Shiokawa, K; Kai, M; Higo, T; Kaito, C; Yokoska, J; Yasuhiko, Y; Kajita, E; Nagano, M; Yamada, Y; Shibata, M; Muto, T; Shinga, J; Hara, H; Takayama, E; Fukamachi, H; Yaoita, Y; Igarashi, K

    2000-06-01

    When we studied polyamine metabolism in Xenopus embryos, we cloned the cDNA for Xenopus S-adenosylmethionine decarboxylase (SAMDC), which converts SAM (S-adenosylmethionine), the methyl donor, into decarboxylated SAM (dcSAM), the aminopropyl donor, and microinjected its in vitro transcribed mRNA into Xenopus fertilized eggs. We found here that the mRNA injection induces a SAM deficient state in early embryos due to over-function of the overexpressed SAMDC, which in turn induces inhibition of protein synthesis. Such embryos developed quite normally until blastula stage, but stopped development at the early gastrula stage, due to induction of massive cell dissociation and cell autolysis, irrespective of the dosage and stage of the mRNA injection. We found that the dissociated cells were TUNEL-positive, contained fragmented nuclei with ladder-forming DNA, and furthermore, rescued completely by coinjection of Bcl-2 mRNA. Thus, overexpression of SAMDC in Xenopus embryos appeared to switch on apoptotic program, probably via inhibition of protein synthesis. Here, we briefly review our results together with those reported from other laboratories. After discussing the general importance of this newly discovered apoptotic program, we propose that the maternal program of apoptosis serves as a surveillance mechanism to eliminate metabolically severely-damaged cells and functions as a 'fail-safe' mechanism for normal development in Xenopus embryos.

  17. Turning Oscillations Into Opportunities: Lessons from a Bacterial Decision Gate

    NASA Astrophysics Data System (ADS)

    Schultz, Daniel; Lu, Mingyang; Stavropoulos, Trevor; Onuchic, Jose'; Ben-Jacob, Eshel

    2013-04-01

    Sporulation vs. competence provides a prototypic example of collective cell fate determination. The decision is performed by the action of three modules: 1) A stochastic competence switch whose transition probability is regulated by population density, population stress and cell stress. 2) A sporulation timer whose clock rate is regulated by cell stress and population stress. 3) A decision gate that is coupled to the timer via a special repressilator-like loop. We show that the distinct circuit architecture of this gate leads to special dynamics and noise management characteristics: The gate opens a time-window of opportunity for competence transitions during which it generates oscillations that are turned into a chain of transition opportunities - each oscillation opens a short interval with high transition probability. The special architecture of the gate also leads to filtering of external noise and robustness against internal noise and variations in the circuit parameters.

  18. Turning Oscillations Into Opportunities: Lessons from a Bacterial Decision Gate

    PubMed Central

    Schultz, Daniel; Lu, Mingyang; Stavropoulos, Trevor; Onuchic, Jose'; Ben-Jacob, Eshel

    2013-01-01

    Sporulation vs. competence provides a prototypic example of collective cell fate determination. The decision is performed by the action of three modules: 1) A stochastic competence switch whose transition probability is regulated by population density, population stress and cell stress. 2) A sporulation timer whose clock rate is regulated by cell stress and population stress. 3) A decision gate that is coupled to the timer via a special repressilator-like loop. We show that the distinct circuit architecture of this gate leads to special dynamics and noise management characteristics: The gate opens a time-window of opportunity for competence transitions during which it generates oscillations that are turned into a chain of transition opportunities – each oscillation opens a short interval with high transition probability. The special architecture of the gate also leads to filtering of external noise and robustness against internal noise and variations in the circuit parameters. PMID:23591544

  19. An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull

    PubMed Central

    McCarthy, Neil; Sidik, Alfire; Bertrand, Julien Y.; Eberhart, Johann K.

    2016-01-01

    The neurocranium generates most of the craniofacial skeleton and consists of prechordal and postchordal regions. Although development of the prechordal is well studied, little is known of the postchordal region. Here we characterize a signaling hierarchy necessary for postchordal neurocranial development involving Fibroblast growth factor (Fgf) signaling for early specification of mesodermally-derived progenitor cells. The expression of hyaluron synthetase 2 (has2) in the cephalic mesoderm requires Fgf signaling and Has2 function, in turn, is required for postchordal neurocranial development. While Hedgehog (Hh)-deficient embryos also lack a postchordal neurocranium, this appears primarily due to a later defect in chondrocyte differentiation. Inhibitor studies demonstrate that postchordal neurocranial development requires early Fgf and later Hh signaling. Collectively, our results provide a mechanistic understanding of early postchordal neurocranial development and demonstrate a hierarchy of signaling between Fgf and Hh in the development of this structure. PMID:27060628

  20. Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood.

    PubMed

    Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela

    2011-02-04

    p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.

    PubMed

    Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan

    2016-07-20

    Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.

  2. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection.

    PubMed

    Carvalho, A K; Carvalho, K; Passero, L F D; Sousa, M G T; da Matta, V L R; Gomes, C M C; Corbett, C E P; Kallas, G E; Silveira, F T; Laurenti, M D

    2016-01-01

    Leishmania (L.) amazonensis (La) and L. (V.) braziliensis (Lb) are responsible for a large clinical and immunopathological spectrum in human disease; while La may be responsible for anergic disease, Lb infection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by these Leishmania species, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course of La and Lb infection in BALB/c mice. Our results demonstrated a high involvement of DCs in La infection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely, Lb infection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4(+) T-cells was observed in Lb infection. Interleukin- (IL-) 4- and IL-10-producing CD4(+)and CD8(+) T-cells were present in both La and Lb infection; however, interferon- (IFN-) γ-producing CD4(+)and CD8(+) T-cells were detected only in Lb infection. The results suggest that during Lb infection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrast La infection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.

  3. Downmodulation of the Inflammatory Response to Bacterial Infection by γδ T Cells Cytotoxic for Activated Macrophages

    PubMed Central

    Egan, Paul J.; Carding, Simon R.

    2000-01-01

    Although γδ T cells are involved in the regulation of inflammation after infection, their precise function is not known. Intraperitoneal infection of T cell receptor (TCR)-δ−/− mice with the intracellular bacterium Listeria monocytogenes resulted in the development of necrotic foci in the livers. In contrast, the peritoneal cavities of infected TCR-δ−/− mice contained an accumulation of low density activated macrophages and a reduced percentage of macrophages undergoing apoptosis. γδ T cell hybridomas derived from mice infected with Listeria were preferentially stimulated by low density macrophages from peritoneal exudates of infected mice. Furthermore, primary splenic γδ T cells isolated from Listeria-infected mice were cytotoxic for low density macrophages in vitro, and cytotoxicity was inhibited in the presence of antibodies to the γδ TCR. These results demonstrate a novel interaction between γδ T cells and activated macrophages in which γδ T cells are stimulated by terminally differentiated macrophages to acquire cytotoxic activity and which, in turn, induce macrophage cell death. This interaction suggests that γδ T cells regulate the inflammatory response to infection with intracellular pathogens by eliminating activated macrophages at the termination of the response. PMID:10859339

  4. Investing in Training and Development. Turning Interest into Capital.

    ERIC Educational Resources Information Center

    Pont, Tony

    This book, which is intended for individuals responsible for human resource development (HRD) programs, examines a number of issues in turning investments in training and development into human capital and examines ways of making the workplace an arena for development. The following topics are discussed: the nature and role of training and…

  5. Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis

    PubMed Central

    Qian, Bi-Feng; Tonkonogy, Susan L; Hoentjen, Frank; Dieleman, Levinus A; Sartor, R Balfour

    2005-01-01

    HLA-B27/β2 microglobulin transgenic (TG) rats spontaneously develop T-cell-mediated colitis when colonized with normal commensal bacteria, but remain disease-free under germ-free conditions. We investigated regulation of in vitro T-cell responses to enteric bacterial components. Bacterial lysates prepared from the caecal contents of specific pathogen-free (SPF) rats stimulated interferon-γ (IFN-γ) production by TG but not non-TG mesenteric lymph node (MLN) cells. In contrast, essentially equivalent amounts of interleukin-10 (IL-10) were produced by TG and non-TG cells. However, when cells from MLNs of non-TG rats were cocultured with TG MLN cells, no suppression of IFN-γ production was noted. Both non-TG and TG antigen-presenting cells (APC) pulsed with caecal bacterial lysate were able to induce IFN-γ production by TG CD4+ cells, although non-TG APC were more efficient than TG APC. Interestingly, the addition of exogenous IL-10 inhibited non-TG APC but not TG APC stimulation of IFN-γ production by cocultured TG CD4+ lymphocytes. Conversely, in the presence of exogenous IFN-γ, production of IL-10 was significantly lower in the supernatants of TG compared to non-TG APC cultures. We conclude that commensal luminal bacterial components induce exaggerated in vitro IFN-γ responses in HLA-B27 TG T cells, which may in turn inhibit the production of regulatory molecules, such as IL-10. Alterations in the production of IFN-γ, and in responses to this cytokine, as well as possible resistance of TG cells to suppressive regulation could together contribute to the development of chronic colitis in TG rats. PMID:16108823

  6. HTLV-1-infected thymic epithelial cells convey the virus to CD4+ T lymphocytes.

    PubMed

    Carvalho Barros, Luciana Rodrigues; Linhares-Lacerda, Leandra; Moreira-Ramos, Klaysa; Ribeiro-Alves, Marcelo; Machado Motta, Maria Cristina; Bou-Habib, Dumith Chequer; Savino, Wilson

    2017-12-01

    The human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD4 + T cells are the main target of HTLV-1, but other cell types are known to be infected, including immature lymphocytes. Developing T cells undergo differentiation in the thymus, through migration and interaction with the thymic microenvironment, in particular with thymic epithelial cells (TEC) the major component of this three dimensional meshwork of non-lymphoid cells. Herein, we show that TEC express the receptors for HTLV-1 and can be infected by this virus through cell-cell contact and by cell-free virus suspensions. The expression of anti-apoptosis, chemokine and adhesion molecules genes are altered in HTLV-1-infected TEC, although gene expression of antigen presentation molecules remained unchanged. Furthermore, HTLV-1-infected TEC transmitted the virus to a CD4 + T cell line and to CD4 + T cells from healthy donors, during in vitro cellular co-cultures. Altogether, our data point to the possibility that the human thymic epithelial cells play a role in the establishment and progression of HTLV-1 infection, functioning as a reservoir and transmitting the virus to maturing CD4 + T lymphocytes, which in turn will cause disease in the periphery. Copyright © 2017. Published by Elsevier GmbH.

  7. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  8. Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins.

    PubMed

    Stone, Jacquelyn A; Vemulapati, Bhadra M; Bradel-Tretheway, Birgit; Aguilar, Hector C

    2016-12-01

    The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G) and fusion (F) glycoproteins. Binding of G to the ephrinB2 or ephrinB3 cell receptors triggers conformational changes in G that in turn cause F to undergo conformational changes that result in virus-host cell membrane fusion and viral entry. It is currently unknown, however, which specific regions of G and F interact during membrane fusion. Past efforts to determine the interacting regions have relied mainly on coimmunoprecipitation, a technique with some pitfalls. We developed a flow-cytometric assay to study membrane protein-protein interactions, and using this assay we report a bidentate interaction whereby both the head and stalk regions of NiV G interact with NiV F, a new finding for the paramyxovirus family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Development and preliminary testing of an automatic turning movements identification system : final report, February 2010.

    DOT National Transportation Integrated Search

    2010-02-01

    It is important for many applications, such as intersection delay estimation and adaptive signal : control, to obtain vehicle turning movement information at signalized intersections. However, : vehicle turning movement information is very time consu...

  10. MULTISCALE MODELS OF TAXIS-DRIVEN PATTERNING IN BACTERIAL POPULATIONS

    PubMed Central

    XUE, CHUAN; OTHMER, HANS G.

    2009-01-01

    Spatially-distributed populations of various types of bacteria often display intricate spatial patterns that are thought to result from the cellular response to gradients of nutrients or other attractants. In the past decade a great deal has been learned about signal transduction, metabolism and movement in E. coli and other bacteria, but translating the individual-level behavior into population-level dynamics is still a challenging problem. However, this is a necessary step because it is computationally impractical to use a strictly cell-based model to understand patterning in growing populations, since the total number of cells may reach 1012 - 1014 in some experiments. In the past phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling the cell movement that is involved in the formation of such patterns, but the question remains as to how the microscopic behavior can be correctly described by a macroscopic equation. Significant progress has been made for bacterial species that employ a “run-and-tumble” strategy of movement, in that macroscopic equations based on simplified schemes for signal transduction and turning behavior have been derived [14, 15]. Here we extend previous work in a number of directions: (i) we allow for time-dependent signals, which extends the applicability of the equations to natural environments, (ii) we use a more general turning rate function that better describes the biological behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in close proximity to a surface. We also develop a new approach to solving the moment equations derived from the transport equation that does not involve closure assumptions. Numerical examples show that the solution of the lowest-order macroscopic equation agrees well with the solution obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for the signal. We also apply the method to derive equations of chemotactic movement that are governed by multiple chemotactic signals. PMID:19784399

  11. RABBIT EARS regulates the transcription of TCP4 during petal development in Arabidopsis.

    PubMed

    Li, Jing; Wang, Yanzhi; Zhang, Yongxia; Wang, Weiyao; Irish, Vivian F; Huang, Tengbo

    2016-12-01

    Plant organ growth requires the proper transition from cell proliferation to cell expansion and differentiation. The CIN-TCP transcription factor gene TCP4 and its post-transcriptional regulator microRNA319 play a pivotal role in this process. In this study, we identified a pathway in which the product of the C2H2 zinc finger gene RABBIT EARS (RBE) regulates the transcription of TCP4 during Arabidopsis (Arabidopsis thaliana) petal development. RBE directly represses TCP4 during the early stages of petal development; this contributes to the role of RBE in controlling the growth of petal primordia. We also found that the rbe-1 mutant strongly enhanced the petal phenotypes of tcp4soj6 and mir319a, two mutants with compromised miR319 regulation of TCP4 Our results show that transcriptional and post-transcriptional regulation function together to pattern the spatial and temporal expression of TCP4 This in turn controls petal size and shape in Arabidopsis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    PubMed

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    PubMed Central

    López-Escobar, Beatriz; Cano, David A.; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A.; Henderson, Deborah; Ybot-González, Patricia

    2015-01-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. PMID:25540130

  14. [SKIN PATHOLOGY IN DIABETES MELLITUS: CLINICAL AND PATHOPHYSIOLOGICAL CORRELATIONS (REVIEW)].

    PubMed

    Kochet, K; Lytus, I; Svistunov, I; Sulaieva, O

    2017-12-01

    Skin pathology is registered in vast majority of patients with diabetes mellitus (DM). Despite the abundance of publications on dermatological problems in DM, there is still a number of gaps to be discussed in terms of pathophysiological mechanisms. The goal of this review was to assess the mechanisms of development of different skin pathologies under DM. One of the key pathogenic mechanisms of skin lesions in diabetes is hyperglycemia and the effects of the advanced glycation end products, inducing oxidative stress, endothelial dysfunction and inflammation; that in its turn can accelerate the mechanisms of skin aging, the development of diabetic dermopathy and scleredema diabeticorum. Imbalance of growth factors, cytokines and hormones under insulin resistance, is associated with increased proliferation of keratinocytes, fibroblasts and sebocytes, mast cell dysfunction and melanogenesis disorders in acanthosis nigricans, acrochordons, acne and inflammatory dermatitis in diabetic patients. In addition, authors discuss the role of dendritic cells and macrophages dysfunction in impairment of peripheral tolerance and diabetic wounds pathogenesis in patients with DM.

  15. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

    PubMed Central

    Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610

  16. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis.

    PubMed

    Li, Zhizhong; Gilbert, Jason A; Zhang, Yunyu; Zhang, Minsi; Qiu, Qiong; Ramanujan, Krishnan; Shavlakadze, Tea; Eash, John K; Scaramozza, Annarita; Goddeeris, Matthew M; Kirsch, David G; Campbell, Kevin P; Brack, Andrew S; Glass, David J

    2012-12-11

    A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Hippi is essential for node cilia assembly and Sonic hedgehog signaling

    PubMed Central

    Houde, Caroline; Dickinson, Robin J.; Houtzager, Vicky M.; Cullum, Rebecca; Montpetit, Rachel; Metzler, Martina; Simpson, Elizabeth M.; Roy, Sophie; Hayden, Michael R.; Hoodless, Pamela A.; Nicholson, Donald W.

    2016-01-01

    Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left–right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi−/− embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions. PMID:17027958

  18. Kinematic properties of the helicopter in coordinated turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Jeske, J. A.

    1981-01-01

    A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.

  19. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis

    PubMed Central

    Matsui, Takaaki; Thitamadee, Siripong; Murata, Tomoko; Kakinuma, Hisaya; Nabetani, Takuji; Hirabayashi, Yoshio; Hirate, Yoshikazu; Okamoto, Hitoshi; Bessho, Yasumasa

    2011-01-01

    The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left–right asymmetric body plan in zebrafish, is generated from a cluster of ∼20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left–right asymmetric body plan. PMID:21628557

  20. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans

    PubMed Central

    Li, Pengpeng; Collins, Kevin M; Koelle, Michael R; Shen, Kang

    2013-01-01

    The diverse cell types and the precise synaptic connectivity between them are the cardinal features of the nervous system. Little is known about how cell fate diversification is linked to synaptic target choices. Here we investigate how presynaptic neurons select one type of muscles, vm2, as a synaptic target and form synapses on its dendritic spine-like muscle arms. We found that the Notch-Delta pathway was required to distinguish target from non-target muscles. APX-1/Delta acts in surrounding cells including the non-target vm1 to activate LIN-12/Notch in the target vm2. LIN-12 functions cell-autonomously to up-regulate the expression of UNC-40/DCC and MADD-2 in vm2, which in turn function together to promote muscle arm formation and guidance. Ectopic expression of UNC-40/DCC in non-target vm1 muscle is sufficient to induce muscle arm extension from these cells. Therefore, the LIN-12/Notch signaling specifies target selection by selectively up-regulating guidance molecules and forming muscle arms in target cells. DOI: http://dx.doi.org/10.7554/eLife.00378.001 PMID:23539368

  1. Cytotoxic effects of dillapiole on MDA-MB-231 cells involve the induction of apoptosis through the mitochondrial pathway by inducing an oxidative stress while altering the cytoskeleton network.

    PubMed

    Ferreira, Adilson Kleber; de-Sá-Júnior, Paulo Luiz; Pasqualoto, Kerly Fernanda Mesquita; de Azevedo, Ricardo Alexandre; Câmara, Diana Aparecida Dias; Costa, André Santos; Figueiredo, Carlos Rogério; Matsuo, Alisson Leonardo; Massaoka, Mariana Hiromi; Auada, Aline Vivian Vatti; Lebrun, Ivo; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Magri, Fátima Maria Motter; Kerkis, Irina; Parise Filho, Roberto

    2014-04-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Here, we have demonstrated for the first time that dillapiole has broad cytotoxic effects against a variety tumor cells. For instance, we found that it can act as a pro-oxidant compound through the induction of reactive oxygen species (ROS) release in MDA-MB-231 cells. We also demonstrated that dillapiole exhibits anti-proliferative properties, arresting cells at the G0/G1 phase and its antimigration effects can be associated with the disruption of actin filaments, which in turn can prevent tumor cell proliferation. Molecular modeling studies corroborated the biological findings and suggested that dillapiole may present a good pharmacokinetic profile, mainly because its hydrophobic character, which can facilitate its diffusion through tumor cell membranes. All these findings support the fact that dillapiole is a promising anticancer agent. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells.

    PubMed

    Zhang, Jingtuo; Li, Cong; Dutta, Colina; Fang, Mingxi; Zhang, Shuwei; Tiwari, Ashutosh; Werner, Thomas; Luo, Fen-Tair; Liu, Haiying

    2017-05-22

    A novel near-infrared fluorescent probe for β-galactosidase has been developed based on a hemicyanine skeleton, which is conjugated with a d-galactose residue via a glycosidic bond. The probe serves as a substrate of β-galactosidase and displays rapid and sensitive turn-on fluorescent responses to β-galactosidase in aqueous solution. A 12.8-fold enhancement of fluorescence intensity at 703 nm was observed after incubation of 10 nM of β-galactosidase with 5 μM probe for 10 min. The probe can sensitively detect as little as 0.1 nM of β-galactosidase and shows linear responses to the enzyme concentration below 1.4 nM. The kinetic study showed that the probe has high binding affinity to β-galactosidase with K m  = 3.6 μM. The probe was used to detect β-galactosidase in living cells by employing the premature cell senescence model. The probe exhibited strong fluorescent signals in senescent cells but not in normal cells, which demonstrates that the probe is able to detect the endogenous senescence-associated β-galactosidase in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DAPT mediates atoh1 expression to induce hair cell-like cells.

    PubMed

    Ren, Hongmiao; Guo, Weiwei; Liu, Wei; Gao, Weiqiang; Xie, Dinghua; Yin, Tuanfang; Yang, Shiming; Ren, Jihao

    2016-01-01

    Hearing loss is currently an incurable degenerative disease characterized by a paucity of hair cells (HCs), which cannot be spontaneously replaced in mammals. Recent technological advancements in gene therapy and local drug delivery have shed new light for hearing loss. Atoh1, also known as Math1, Hath1, and Cath1, is a proneural basic helix-loop-helix (bHLH) transcription factor that is essential for HC differentiation. At various stages in development, Atoh1 activity is sufficient to drive HC differentiation in the cochlea. Thus, Atoh1 related gene therapy is the most promising option for HC induction. DAPT, an inhibitor of Notch signaling, enhances the expression of Atoh1 indirectly, which in turn promotes the induction of a HC fate. Here, we show that DAPT cooperates with Atoh1 to synergistically promote HC fate in ependymal cells in vitro and promote hair cell regeneration in the cultured basilar membrane (BM) which mimics the microenvironment in vivo. Taken together, our findings demonstrated that DAPT is sufficient to induce HC-like cells via enhancing of the expression of Atoh1 to inhibit the progression of HC apoptosis and to induce new HC formation.

  4. Dysregulated IL-1β Secretion in Autoinflammatory Diseases: A Matter of Stress?

    PubMed Central

    Carta, Sonia; Semino, Claudia; Sitia, Roberto; Rubartelli, Anna

    2017-01-01

    Infectious and sterile inflammation is induced by activation of innate immune cells. Triggering of toll-like receptors by pathogen-associated molecular pattern or damage-associated molecular pattern (PAMP or DAMP) molecules generates reactive oxygen species that in turn induce production and activation of pro-inflammatory cytokines such as IL-1β. Recent evidence indicates that cell stress due to common events, like starvation, enhanced metabolic demand, cold or heat, not only potentiates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. Stress-mediated inflammation is also a common feature of many hereditary disorders, due to the proteotoxic effects of mutant proteins. We propose that harmful mutant proteins can induce dysregulated IL-1β production and inflammation through different pathways depending on the cell type involved. When expressed in professional inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous way the onset of inflammation and mediates its aberrant development, resulting in the explosive responses that hallmark autoinflammatory diseases. When expressed in non-immune cells, the mutant protein may cause the release of transcellular stress signals that trigger and propagate inflammation. PMID:28421072

  5. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  6. B cell biology: implications for treatment of systemic lupus erythematosus.

    PubMed

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.

  7. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    PubMed

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  8. Development of pedestrian safety based warrants for permissive left-turn control

    DOT National Transportation Integrated Search

    2010-12-01

    At the intersections with permissive only signal control, pedestrians will move at the permissive phase with the parallel through vehicular movement and left-turn vehicles, the left-turn vehicles have to yield to both opposing through vehicles and pe...

  9. A single-molecule view of gene regulation in cancer

    NASA Astrophysics Data System (ADS)

    Larson, Daniel

    2013-03-01

    Single-cell analysis has revealed that transcription is dynamic and stochastic, but tools are lacking that can determine the mechanism operating at a single gene. Here we utilize single-molecule observations of RNA in fixed and living cells to develop a single-cell model of steroid-receptor mediated gene activation. Steroid receptors coordinate a diverse range of responses in higher eukaryotes and are involved in a wide range of human diseases, including cancer. Steroid receptor response elements are present throughout the human genome and modulate chromatin remodeling and transcription in both a local and long-range fashion. As such, steroid receptor-mediated transcription is a paradigm of genetic control in the metazoan nucleus. Moreover, the ligand-dependent nature of these transcription factors makes them appealing targets for therapeutic intervention, necessitating a quantitative understanding of how receptors control output from target genes. We determine that steroids drive mRNA synthesis by frequency modulation of transcription. This digital behavior in single cells gives rise to the well-known analog dose response across the population. To test this model, we developed a light-activation technology to turn on a single gene and follow dynamic synthesis of RNA from the activated locus. The response delay is a measure of time required for chromatin remodeling at a single gene.

  10. Role of innate lymphoid cells in obesity and metabolic disease

    PubMed Central

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  11. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    PubMed Central

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  12. Coaching for Career Development and Leadership Development: An Intelligent Career Approach

    ERIC Educational Resources Information Center

    Parker, Polly; Arthur, Michael B.

    2004-01-01

    Change, ambiguity and shifting relationships are recurrent themes in contemporary career development. In turn, personal success in the unfolding knowledge economy calls for self-awareness, adaptability and the ability to work with others. A challenge in career coaching is to help people better develop these kinds of skills, and in turn to help…

  13. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  14. Apoptosis-inducing and apoptosis-preventing functions of poliovirus.

    PubMed Central

    Tolskaya, E A; Romanova, L I; Kolesnikova, M S; Ivannikova, T A; Smirnova, E A; Raikhlin, N T; Agol, V I

    1995-01-01

    Data showing that an apoptotic reaction (the exit into the cytoplasm and nucleolytic internucleosomal degradation of chromosomal DNA, compaction and fragmentation of chromatin, cellular shrinkage, and cytoplasmic blebbing) developed in a subline of HeLa-S3 cells upon nonpermissive poliovirus infection with either a guanidine-sensitive poliovirus in the presence of guanidine, a guanidine-dependent mutant in the absence of guanidine, or certain temperature-sensitive mutants at a restrictive temperature are presented. Essentially, no apoptotic reaction occurred upon permissive infection of these cells. Both permissive and nonpermissive infections resulted in the inhibition of host protein synthesis. Actinomycin D or cycloheximide also elicited a rapid apoptotic reaction in uninfected cells. However, preinfection or coinfection with poliovirus prevented the apoptotic response to the addition of actinomycin D, and preinfection blocked cycloheximide-induced apoptosis as well. These data fit a model in which the cells used are prepared to develop apoptosis, with their viability due to the presence of certain short-lived mRNA and protein species. Poliovirus infection turns on two oppositely directed sets of reactions. On the one hand, the balance is driven toward apoptosis, probably via the shutoff of host macromolecular synthesis. On the other hand, viral protein exhibits antiapoptotic activity, thereby preventing premature cell death. To our knowledge, this is the first description of an antiapoptotic function for an RNA virus. PMID:7529330

  15. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease

    PubMed Central

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD. PMID:26587989

  16. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease.

    PubMed

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer's disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.

  17. Analysis of Chatter Stability in Facing

    NASA Astrophysics Data System (ADS)

    Kebdani, S.; Sahli, A.; Rahmani, O.; Boutchicha, D.; Belarbi, A.

    This study attempts to develop a chatter model for predicting chatter stability conditions in hard turning. A linear model is developed by introducing non-uniform load distribution on a tool tip to account for the flank wear effect. Stability analysis based on the root locus method and the harmonic balance method is conducted to determine a critical stability parameter. To validate the model, a series of experiment is carried out to determine the stability limits as well as certain characteristic parameters for facing and straight turning. Chatter in hard turning has the feature that the critical stability limits increase very rapidly when the cutting speed is higher than 13 rev sec-1 for all feed directions. The main contributions of the study are threefold. First, chatter-free cutting conditions are predicted and can be used as a guideline for designing tools and machines. Second, the characteristics of chatter in hard turning, which is observed for the first time, helps to broaden our physical understanding of the interactions between the tool and the workpiece in hard turning. Third, experimental stability limits for different flank wear can contribute to lead more reasonable ways to consider the flank wear effect in chatter models of hard turning. Based on these contributions, the proposed linear chatter model will support to improve the productivity in many manufacturing processes. In addition, the chatter experimental data will be useful to develop other chatter models in hard turning.

  18. Improving the Cell Viability and Isolating Precision of Laser-induced Forward Transfer Process by Maintaining a Proper Environment with a Microchip.

    PubMed

    Deng, Yu; Huang, Zhigang; Wang, Wenbing; Chen, Yinghuai; Guo, Zhongning; Chen, Ying

    2017-01-01

    Aiming to improve the laser-induced forward transfer (LIFT) cell isolation process, a polydimethylsiloxane (PDMS) layer with micro-hole arrays was employed to improve the cell separation precision, and a microchip with heater was developed to maintain the working area at 100% humidity and 37°C with the purpose to preserve the viability of the isolated cells. A series of experiments were conducted to verify the contributions of the optimization to LIFT cell isolation process as well as to study the effect of laser pulse energy, laser spot size and the titanium thickness on cell isolation. With 40µm laser spot size and 40nm thick of titanium, laser energy threshold for 100% single cell isolating succeed ratio is 7µJ. According to the staining images and proliferation ratios, the chip did help to improve the cell availability and the cells can recover from the juries at least a day earlier comparing to the samples processed without the chip. With a Lattice Boltzmann model, the cell isolation process is numerically studied and it turns out that the micro-hole makes the isolation process shift to a micro-syringe injection model leading to the lower laser energy threshold for cell separation and fewer injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Challenging metastatic breast cancer with the natural defensin PvD1.

    PubMed

    Figueira, Tiago N; Oliveira, Filipa D; Almeida, Inês; Mello, Érica O; Gomes, Valdirene M; Castanho, Miguel A R B; Gaspar, Diana

    2017-11-09

    Metastatic breast cancer is a very serious life threatening condition that poses many challenges for the pharmaceutical development of effective chemotherapeutics. As the therapeutics targeted to the localized masses in breast improve, metastatic lesions in the brain slowly increase in their incidence compromising successful treatment outcomes overall. The blood-brain-barrier (BBB) is one important obstacle for the management of breast cancer brain metastases. New therapeutic approaches are in demand for overcoming the BBB's breaching by breast tumor cells. In this work we demonstrate the potential dual role of a natural antimicrobial plant defensin, PvD 1 : it interferes with the formation of solid tumors in the breast and concomitantly controls adhesion of breast cancer cells to human brain endothelial cells. We have used a combination of techniques that probe PvD 1 's effect at the single cell level and reveal that this peptide can effectively damage breast tumor cells, leaving healthy breast and brain cells unaffected. Results suggest that PvD1 quickly internalizes in cancer cells but remains located in the membrane of normal cells with no significant damage to its structure and biomechanical properties. These interactions in turn modulate cell adhesiveness between tumor and BBB cells. PvD 1 is a potential template for the design of innovative pharmacological approaches for metastatic breast cancer treatment: the manipulation of the biomechanical properties of tumor cells that ultimately prevent their attachment to the BBB.

  20. Transformer current sensor for superconducting magnetic coils

    DOEpatents

    Shen, Stewart S.; Wilson, C. Thomas

    1988-01-01

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  1. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  2. Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum.

    PubMed

    Vitale, Stefania; Partida-Hanon, Angélica; Serrano, Soraya; Martínez-Del-Pozo, Álvaro; Di Pietro, Antonio; Turrà, David; Bruix, Marta

    2017-03-03

    During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central β-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly 6 -Gln 7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central β-turn but instead required two conserved Trp 1 -Cys 2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Evaluating safety performance and developing guidelines for the use of right turn on red (RTOR).

    DOT National Transportation Integrated Search

    2012-12-01

    This research project investigates the safety performance of Right Turn on Red (RTOR) at intersections. Also, new design alternatives, such as dual right-turn lanes and guidelines incorporating the use of RTOR at intersections are evaluated. To this ...

  4. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells

    PubMed Central

    Ezeh, Peace C.; Xu, Huan; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.

    2016-01-01

    Our previously published data show that As+3 in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As+3 metabolite, monomethylarsonous acid (MMA+3), was responsible for the observed pre-B cell toxicity caused by As+3. Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA+3 inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As+3 occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA+3, and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA+3 at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA+3. Since 2E8 cells lack the enzymes responsible for the conversion of As+3 to MMA+3 in vitro, the results of these studies suggest that As+3 induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA+3 which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells. PMID:26518055

  5. FGF-dependent metabolic control of vascular development

    PubMed Central

    Yu, Pengchun; Alves, Tiago C.; Fang, Jennifer S.; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G.; Hirschi, Karen K.; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W.; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-01-01

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development. PMID:28467822

  6. FGF-dependent metabolic control of vascular development.

    PubMed

    Yu, Pengchun; Wilhelm, Kerstin; Dubrac, Alexandre; Tung, Joe K; Alves, Tiago C; Fang, Jennifer S; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G; Hirschi, Karen K; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-05-11

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.

  7. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    PubMed

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  8. Numerical Methods for Nonlinear Fokker-Planck Collision Operator in TEMPEST

    NASA Astrophysics Data System (ADS)

    Kerbel, G.; Xiong, Z.

    2006-10-01

    Early implementations of Fokker-Planck collision operator and moment computations in TEMPEST used low order polynomial interpolation schemes to reuse conservative operators developed for speed/pitch-angle (v, θ) coordinates. When this approach proved to be too inaccurate we developed an alternative higher order interpolation scheme for the Rosenbluth potentials and a high order finite volume method in TEMPEST (,) coordinates. The collision operator is thus generated by using the expansion technique in (v, θ) coordinates for the diffusion coefficients only, and then the fluxes for the conservative differencing are computed directly in the TEMPEST (,) coordinates. Combined with a cut-cell treatment at the turning-point boundary, this new approach is shown to have much better accuracy and conservation properties.

  9. Anaplasma marginale major surface protein 1a: a marker of strain diversity with implications for control of bovine anaplasmosis.

    PubMed

    Cabezas-Cruz, Alejandro; de la Fuente, José

    2015-04-01

    Classification of bacteria is challenging due to the lack of a theory-based framework. In addition, the adaptation of bacteria to ecological niches often results in selection of strains with diverse virulence, pathogenicity and transmission characteristics. Bacterial strain diversity presents challenges for taxonomic classification, which in turn impacts the ability to develop accurate diagnostics and effective vaccines. Over the past decade, the worldwide diversity of Anaplasma marginale, an economically important tick-borne pathogen of cattle, has become apparent. The extent of A. marginale strain diversity, formerly underappreciated, has contributed to the challenges of classification which, in turn, likely impacts the design and development of improved vaccines. Notably, the A. marginale surface protein 1a (MSP1a) is a model molecule for these studies because it serves as a marker for strain identity, is both an adhesin necessary for infection of cells and an immuno-reactive protein and is also an indicator of the evolution of strain diversity. Herein, we discuss a molecular taxonomic approach for classification of A. marginale strain diversity. Taxonomic analysis of this important molecule provides the opportunity to understand A. marginale strain diversity as it relates geographic and ecological factors and to the development of effective vaccines for control of bovine anaplasmosis worldwide. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Immunomodulation: the future cure for allergic diseases.

    PubMed

    Tsitoura, Daphne C; Tassios, Yannis

    2006-11-01

    Allergies are the result of aberrant immune reactivity against common innocuous environmental proteins (allergens). A pivotal component of allergic pathogenesis is the generation of allergen-specific Th cells with an effector phenotype. These Th cells activate a complex immune cascade that triggers the release of potent mediators and enhances the mobilization of several inflammatory cells types, which in turn elicit the acute allergic reactions and promote the development of chronic inflammation. The current therapies for allergic diseases focus primarily on pharmacological control of symptoms and suppression of inflammation. This approach is beneficial, but not curative, since the underlying immune pathology is not inhibited. In an attempt to develop more effective therapeutic strategies, the scientific interest has been directed toward methods down-modulating the immune mechanisms that initiate and maintain the allergic cascade. Today, the only widely used disease-modifying form of allergy treatment is the specific immunotherapy with allergen extracts. More recently the use of anti-IgE has been approved for patients with allergic asthma. Other immunomodulatory methods being currently explored are the administration of microbial adjuvants that inhibit Th2 reactivity and the design of molecules that interrupt the activity of key allergic cytokines, chemokines, or other Th2 effector mediators.

  11. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  12. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.

    PubMed

    Berninger, Teresa; González López, Óscar; Bejarano, Ana; Preininger, Claudia; Sessitsch, Angela

    2018-03-01

    The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. 14-3-3ζ turns TGF-β's function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2.

    PubMed

    Xu, Jia; Acharya, Sunil; Sahin, Ozgur; Zhang, Qingling; Saito, Yohei; Yao, Jun; Wang, Hai; Li, Ping; Zhang, Lin; Lowery, Frank J; Kuo, Wen-Ling; Xiao, Yi; Ensor, Joe; Sahin, Aysegul A; Zhang, Xiang H-F; Hung, Mien-Chie; Zhang, Jitao David; Yu, Dihua

    2015-02-09

    Transforming growth factor β (TGF-β) functions as a tumor suppressor in premalignant cells but as a metastasis promoter in cancer cells. The dichotomous functions of TGF-β are proposed to be dictated by different partners of its downstream effector Smads. However, the mechanism for the contextual changes of Smad partners remained undefined. Here, we demonstrate that 14-3-3ζ destabilizes p53, a Smad partner in premalignant mammary epithelial cells, by downregulating 14-3-3σ, thus turning off TGF-β's tumor suppression function. Conversely, 14-3-3ζ stabilizes Gli2 in breast cancer cells, and Gli2 partners with Smads to activate PTHrP and promote TGF-β-induced bone metastasis. The 14-3-3ζ-driven contextual changes of Smad partners from p53 to Gli2 may serve as biomarkers and therapeutic targets of TGF-β-mediated cancer progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  15. The large-scale ionospheric transient current system response to upstream solar wind IMF Bz north-south and south-north turnings as seen by the WIND satellite and the full SuperMAG network of ground based magnetometers

    NASA Astrophysics Data System (ADS)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2017-04-01

    We characterise the response of the quiet-time (no substorms or storms) large scale ionospheric convection system to north-south and south-north IMF turnings by using a dynamical network of ground-based magnetometers. Canonical correlation between all pairs of SuperMAG magnetometer stations in the northern hemisphere (MLat 50-82°) is used to establish the extent of near-simultaneous magnetic response between regions of MLT-MLat. Parameters and maps that describe spatial-temporal correlation are used to characterise the system and its response to the turnings aggregated over several hundred events. We find that regions that experience large increases in correlation post-turning coincide with typical locations of a two cell convection system and are influenced by the IMF By. The time between the turnings reaching the magnetopause and a network response is found to be ˜8-10 minutes and correlation in the dayside occurs 2-8 mins before that in the nightside.

  16. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining

    NASA Astrophysics Data System (ADS)

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M.

    2016-10-01

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain “SYTO RNA-Select”. Here, a new multifunctional salen type ligand (L1) and its Al3+ complex (1) are designed and synthesized. L1 acts as a chemosensor for Al3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining.

  17. Characterization of selected elementary motion detector cells to image primitives.

    PubMed

    Benson, Leslie A; Barrett, Steven F; Wright, Cameron H G

    2008-01-01

    Developing a visual sensing system, complete with motion processing hardware and software would have many applications to current technology. It could be mounted on many autonomous vehicles to provide information about the navigational environment, as well as obstacle avoidance features. Incorporating the motion processing capabilities into the sensor requires a new approach to the algorithm implementation. This research, and that of many others, have turned to nature for inspiration. Elementary motion detector (EMD) cells are involved in a biological preprocessing network to provide information to the motion processing lobes of the house degrees y Musca domestica. This paper describes the response of the photoreceptor inputs to the EMDs. The inputs to the EMD components are tested as they are stimulated with varying image primitives. This is the first of many steps in characterizing the EMD response to image primitives.

  18. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining.

    PubMed

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M

    2016-10-10

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain "SYTO RNA-Select". Here, a new multifunctional salen type ligand (L 1 ) and its Al 3+ complex (1) are designed and synthesized. L 1 acts as a chemosensor for Al 3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining.

  19. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  20. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.

    PubMed

    Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin

    2017-10-01

    Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Prevent Cervical Cancer

    MedlinePlus

    ... Spanish) Recommend on Facebook Tweet Share Compartir Prevent Cervical Cancer with the Right Test at the Right Time Screening tests can find abnormal cells so they can be treated before they turn ...

  2. Synthetic biology for pharmaceutical drug discovery

    PubMed Central

    Trosset, Jean-Yves; Carbonell, Pablo

    2015-01-01

    Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. PMID:26673570

  3. Use of NASA Bioreactor in Engineering Tissue for Bone Repair

    NASA Technical Reports Server (NTRS)

    Duke, Pauline

    1998-01-01

    This study was proposed in search for a new alternative for bone replacement or repair. Because the systems commonly used in repair of bony defects form bone by going through a cartilaginous phase, implantation of a piece of cartilage could enhance the healing process by having a more advanced starting point. However, cartilage has seldom been used to replace bone due, in part, to the limitations in conventional culture systems that did not allow production of enough tissue for implants. The NASA-developed bioreactors known as STLV (Slow Turning Lateral Vessel) provide homogeneous distribution of cells, nutrients, and waste products, with less damaging turbulence and shear forces than conventional systems. Cultures under these conditions have higher growth rates, viability, and longevity, allowing larger "tissue-like" aggregates to form, thus opening the possibilities of producing enough tissue for implantation, along with the inherent advantages of in vitro manipulations. To assure large numbers of cells and to eliminate the use of timed embryos, we proposed to use an immortalized mouse limb bud cell line as the source of cells.

  4. More on Grandmother Cells and the Biological Implausibility of PDP Models of Cognition: A Reply to Plaut and McClelland (2010) and Quian Quiroga and Kreiman (2010)

    ERIC Educational Resources Information Center

    Bowers, Jeffrey S.

    2010-01-01

    Plaut and McClelland (2010) and Quian Quiroga and Kreiman both challenged my characterization of localist and distributed representations. They also challenged the biological plausibility of grandmother cells on conceptual and empirical grounds. This reply addresses these issues in turn. The premise of my argument is that grandmother cells in…

  5. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  6. Landing Gear/Soil Interaction Development of Criteria for Aircraft Operation on Soil During Turning and Multipass Operations

    DTIC Science & Technology

    1975-10-01

    AFFDL-TR-75-78 LANDING GEAR/ SOIL INTERACTION DEVELOPMENT OF CRITERIA FOR AIRCRAFT "OPERATION ON SOIL DURING TURNING #"q AND MULTIPASS OPERATIONS cc...braking. Limited start-up force data were examined to determine a preliminary estimate of start-up drag ratios. A soft tire/ soil computer program was...distance, landing rollout, turning perfor nance, and number of allowable passes for a particular vehicle and select soil . .. 4 UNCLASSIFIED -i SECURITY

  7. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    PubMed

    Davila, Juanmahel; Laws, Mary J; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N; Bagchi, Milan K; Bagchi, Indrani C

    2015-08-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal-endothelial and stromal-trophoblast crosstalk critical for placenta development and establishment of pregnancy.

  8. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.

    PubMed

    Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori; Wolf, Denise M; Lazar, Alexander J; Drill, Esther; Shen, Ronglai; Taylor, Alison M; Cherniack, Andrew D; Thorsson, Vésteinn; Akbani, Rehan; Bowlby, Reanne; Wong, Christopher K; Wiznerowicz, Maciej; Sanchez-Vega, Francisco; Robertson, A Gordon; Schneider, Barbara G; Lawrence, Michael S; Noushmehr, Houtan; Malta, Tathiane M; Stuart, Joshua M; Benz, Christopher C; Laird, Peter W

    2018-04-05

    We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. New Insights Into “Plant Memories”

    ScienceCinema

    Sanbonmatsu, Karissa

    2018-01-16

    A special stretch of ribonucleic acid (RNA) called COOLAIR is revealing its inner structure and function to scientists, displaying a striking resemblance to an RNA molecular machine, territory previously understood to be limited to the cells’ protein factory (the ‘ribosome’) and not a skill set given to mere strings of RNA. “We are uncovering the nuts and bolts of plant memories,” said Karissa Sanbonmatsu of Los Alamos National Laboratory, lead author on a new article this week in the journal Cell Reports. In the past 5 years or so, material in the cell known as “junk DNA” had actually turned out not to be junk at all. Instead, it was shown to produce RNA molecules that play key roles in the development of organs in the embryo, as well as affecting cancer, brain function and plant biology.

  10. Dynein-Based Accumulation of Membranes Regulates Nuclear Expansion in Xenopus laevis Egg Extracts.

    PubMed

    Hara, Yuki; Merten, Christoph A

    2015-06-08

    Nuclear size changes dynamically during development and has long been observed to correlate with the space surrounding the nucleus, as well as with the volume of the cell. Here we combine an in vitro cell-free system of Xenopus laevis egg extract with microfluidic devices to systematically analyze the effect of spatial constraints. The speed of nuclear expansion depended on the available space surrounding the nucleus up to a threshold volume in the nanoliter range, herein referred to as the nuclear domain. Under spatial constraints smaller than this nuclear domain, the size of microtubule-occupied space surrounding the nucleus turned out to be limiting for the accumulation of membranes around the nucleus via the motor protein dynein, therefore determining the speed of nuclear expansion. This mechanism explains how spatial information surrounding the nucleus, such as the positioning of the nucleus inside the cell, can control nuclear expansion. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation

    PubMed Central

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H.; Chun, Jerold; Aoki, Junken

    2016-01-01

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation. PMID:27005960

  12. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network.

    PubMed

    McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M

    2017-04-28

    Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.

  13. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    PubMed

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  14. ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation.

    PubMed

    Nishioka, Tatsuji; Arima, Naoaki; Kano, Kuniyuki; Hama, Kotaro; Itai, Eriko; Yukiura, Hiroshi; Kise, Ryoji; Inoue, Asuka; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Moolenaar, Wouter H; Chun, Jerold; Aoki, Junken

    2016-03-23

    The lipid mediator lysophosphatidic acid (LPA) signals via six distinct G protein-coupled receptors to mediate both unique and overlapping biological effects, including cell migration, proliferation and survival. LPA is produced extracellularly by autotaxin (ATX), a secreted lysophospholipase D, from lysophosphatidylcholine. ATX-LPA receptor signaling is essential for normal development and implicated in various (patho)physiological processes, but underlying mechanisms remain incompletely understood. Through gene targeting approaches in zebrafish and mice, we show here that loss of ATX-LPA1 signaling leads to disorganization of chondrocytes, causing severe defects in cartilage formation. Mechanistically, ATX-LPA1 signaling acts by promoting S-phase entry and cell proliferation of chondrocytes both in vitro and in vivo, at least in part through β1-integrin translocation leading to fibronectin assembly and further extracellular matrix deposition; this in turn promotes chondrocyte-matrix adhesion and cell proliferation. Thus, the ATX-LPA1 axis is a key regulator of cartilage formation.

  15. Melanogenesis in dermal melanocytes of Japanese Silky chicken embryos.

    PubMed

    Ortolani-Machado, C F; Freitas, P F; Faraco, C D

    2009-08-01

    The Japanese Silky chicken (SK) shows dermal and visceral hyperpigmentation. This study characterizes ultrastructurally the melanin granules developing in dermal melanocytes of the dorsal skin of SK, in an attempt to better understand the processes of melanogenesis in these permanently ectopic cells. The steps of melanogenesis are similar to those described for epidermal melanocytes, with melanosomes going from stage I to IV but, in SK, the maturation occurs in the cell body, as well as in the cytoplasmic processes. At stage III, the deposition of melanin is cumulative and can aggregate in rounded structures, which combine to turn into the mature granule. The final destiny of mature melanosomes is still unclear, although it was observed that dermal macrophages can accumulate melanin granules in their phagosomes. Even with the close proximity between melanocytes and other dermal cells, the transference of melanosomes was not observed. Our findings indicate that melanogenesis in dermal melanocytes in SK has the same morphological characteristics found in epidermal melanocytes, but the functional aspect still remains to be elucidated.

  16. A coordinated sequence of distinct flagellar waveforms enables a sharp flagellar turn mediated by squid sperm pH-taxis.

    PubMed

    Iida, Tomohiro; Iwata, Yoko; Mohri, Tatsuma; Baba, Shoji A; Hirohashi, Noritaka

    2017-10-11

    Animal spermatozoa navigate by sensing ambient chemicals to reach the site of fertilization. Generally, such chemicals derive from the female reproductive organs or cells. Exceptionally, squid spermatozoa mutually release and perceive carbon dioxide to form clusters after ejaculation. We previously identified the pH-taxis by which each spermatozoon can execute a sharp turn, but how flagellar dynamics enable this movement remains unknown. Here, we show that initiation of the turn motion requires a swim down a steep proton gradient (a theoretical estimation of ≥0.025 pH/s), crossing a threshold pH value of ~5.5. Time-resolved kinematic analysis revealed that the turn sequence results from the rhythmic exercise of two flagellar motions: a stereotypical flagellar 'bent-cane' shape followed by asymmetric wave propagation, which enables a sharp turn in the realm of low Reynolds numbers. This turning episode is terminated by an 'overshoot' trajectory that differs from either straight-line motility or turning. As with bidirectional pH-taxes in some bacteria, squid spermatozoa also showed repulsion from strong acid conditions with similar flagellar kinematics as in positive pH-taxis. These findings indicate that squid spermatozoa might have a unique reorientation mechanism, which could be dissimilar to that of classical egg-guided sperm chemotaxis in other marine invertebrates.

  17. Studies on mimicry of naturally occurring annonaceous acetogenins: non-THF analogues leading to remarkable selective cytotoxicity against human tumor cells.

    PubMed

    Zeng, Bu-Bing; Wu, Yikang; Jiang, Sheng; Yu, Qian; Yao, Zhu-Jun; Liu, Zhong-Hai; Li, Hong-Yan; Li, Yan; Chen, Xiao-Guang; Wu, Yu-Lin

    2003-01-03

    A class of structurally simplified analogues of the naturally occurring annonaceous acetogenins were developed, amongst which some non-THF analogues showed remarkable cytotoxicities against tumor cell lines, as well as good selectivity between human tumor cells and normal cells. The synthetic routes were significantly shortened because of the removal of the chiral centers bearing the THF rings on the natural templates. This simplification also provides access to the parallel synthesis of these mimics by a combinatorial strategy. The remaining stereogenic centers at the positions alpha to the ethereal links were introduced by the Chiron approach from the easily accessible chiral building blocks 6a and/or 6b, made in turn from L-ascorbic acid or D-mannitol, while the one in the butenolide segment was taken from L-lactate. All four diastereomeric non-THF analogues 2a-2d showed remarkable activity against the HCT-8 cell line, and better differentiation was found when testing against the HT-29 cell line. It was also discovered that both the butenolide and ethylene glycol subunits play essential roles in the cytotoxicities against tumor cell lines, while the 10-substituted hydroxy group and the absolute configuration of methyl group at the butenolide moiety are less important for their activity.

  18. Activin A Modulates CRIPTO-1/HNF4α+ Cells to Guide Cardiac Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Duelen, Robin; Gilbert, Guillaume; Patel, Abdulsamie; de Schaetzen, Nathalie; De Waele, Liesbeth; Roderick, Llewelyn; Sipido, Karin R.; Verfaillie, Catherine M.; Buyse, Gunnar M.

    2017-01-01

    The use of human pluripotent stem cells in basic and translational cardiac research requires efficient differentiation protocols towards cardiomyocytes. In vitro differentiation yields heterogeneous populations of ventricular-, atrial-, and nodal-like cells hindering their potential applications in regenerative therapies. We described the effect of the growth factor Activin A during early human embryonic stem cell fate determination in cardiac differentiation. Addition of high levels of Activin A during embryoid body cardiac differentiation augmented the generation of endoderm derivatives, which in turn promoted cardiomyocyte differentiation. Moreover, a dose-dependent increase in the coreceptor expression of the TGF-β superfamily member CRIPTO-1 was observed in response to Activin A. We hypothesized that interactions between cells derived from meso- and endodermal lineages in embryoid bodies contributed to improved cell maturation in early stages of cardiac differentiation, improving the beating frequency and the percentage of contracting embryoid bodies. Activin A did not seem to affect the properties of cardiomyocytes at later stages of differentiation, measuring action potentials, and intracellular Ca2+ dynamics. These findings are relevant for improving our understanding on human heart development, and the proposed protocol could be further explored to obtain cardiomyocytes with functional phenotypes, similar to those observed in adult cardiac myocytes. PMID:28163723

  19. Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks.

    PubMed

    Cantini, Marco; Gomide, Karina; Moulisova, Vladimira; González-García, Cristina; Salmerón-Sánchez, Manuel

    2017-09-01

    Surface functionalization strategies of synthetic materials for regenerative medicine applications comprise the development of microenvironments that recapitulate the physical and biochemical cues of physiological extracellular matrices. In this context, material-driven fibronectin (FN) nanonetworks obtained from the adsorption of the protein on poly(ethyl acrylate) provide a robust system to control cell behavior, particularly to enhance differentiation. This study aims at augmenting the complexity of these fibrillar matrices by introducing vitronectin, a lower-molecular-weight multifunctional glycoprotein and main adhesive component of serum. A cooperative effect during co-adsorption of the proteins is observed, as the addition of vitronectin leads to increased fibronectin adsorption, improved fibril formation, and enhanced vitronectin exposure. The mobility of the protein at the material interface increases, and this, in turn, facilitates the reorganization of the adsorbed FN by cells. Furthermore, the interplay between interface mobility and engagement of vitronectin receptors controls the level of cell fusion and the degree of cell differentiation. Ultimately, this work reveals that substrate-induced protein interfaces resulting from the cooperative adsorption of fibronectin and vitronectin fine-tune cell behavior, as vitronectin micromanages the local properties of the microenvironment and consequently short-term cell response to the protein interface and higher order cellular functions such as differentiation.

  20. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.

    PubMed

    Malavazi, Iran; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2014-11-01

    In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin

    In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.

  2. Turning Points in the Development of Classical Musicians

    ERIC Educational Resources Information Center

    Gabor, Elena

    2011-01-01

    This qualitative study investigated the vocational socialization turning points in families of classical musicians. I sampled and interviewed 20 parent-child dyads, for a total of 46 interviews. Data analysis revealed that classical musicians' experiences were marked by 11 turning points that affected their identification with the occupation:…

  3. Guidelines for improving the reproducibility of quantitative multiparameter immunofluorescence measurements by laser scanning cytometry on fixed cell suspensions from human solid tumors.

    PubMed

    Shackney, Stanley; Emlet, David R; Pollice, Agnese; Smith, Charles; Brown, Kathryn; Kociban, Deborah

    2006-01-01

    Laser scanning Cytometry (LSC) is a versatile technology that makes it possible to perform multiple measurements on individual cells and correlate them cell by cell with other cellular features. It would be highly desirable to be able to perform reproducible, quantitative, correlated cell-based immunofluorescence studies on individual cells from human solid tumors. However, such studies can be challenging because of the presence of large numbers of cell aggregates and other confounding factors. Techniques have been developed to deal with cell aggregates in data sets collected by LSC. Experience has also been gained in addressing other key technical and methodological issues that can affect the reproducibility of such cell-based immunofluorescence measurements. We describe practical aspects of cell sample collection, cell fixation and staining, protocols for performing multiparameter immunofluorescence measurements by LSC, use of controls and reference samples, and approaches to data analysis that we have found useful in improving the accuracy and reproducibility of LSC data obtained in human tumor samples. We provide examples of the potential advantages of LSC in examining quantitative aspects of cell-based analysis. Improvements in the quality of cell-based multiparameter immunofluorescence measurements make it possible to extract useful information from relatively small numbers of cells. This, in turn, permits the performance of multiple multicolor panels on each tumor sample. With links among the different panels that are provided by overlapping measurements, it is possible to develop increasingly more extensive profiles of intracellular expression of multiple proteins in clinical samples of human solid tumors. Examples of such linked panels of measurements are provided. Advances in methodology can improve cell-based multiparameter immunofluorescence measurements on cell suspensions from human solid tumors by LSC for use in prognostic and predictive clinical applications. Copyright (c) 2005 Wiley-Liss, Inc.

  4. Melanine value in the stria vascularis of pigmented guinea-pigs treated by kanamycin.

    PubMed

    Attard, A; Gratacap, B; Charachon, R; Stoebner, P; Laurent, A

    1988-01-01

    In a previous report, kanamycin (400 mg/kg/d) seemed to increase the number of melanine granulations in intermediate cells of the stria vascularis, especially in the second and third turns. To precise these data, melanine was studied in those turns by ultrastructural morphometry in a control group with 12 animals. We observed a large intra-individual and inter-individual variation before intoxication. Thus, the meaning of melanine modifications by kanamycin must be carefully evaluated.

  5. Biofuel cell based self-powered sensing platform for L-cysteine detection.

    PubMed

    Hou, Chuantao; Fan, Shuqin; Lang, Qiaolin; Liu, Aihua

    2015-03-17

    L-cysteine (L-Cys) detection is of great importance because of its crucial roles in physiological and clinical diagnoses. In this study, a glucose/O2 biofuel cell (BFC) was assembled by using flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH)-based bioanode and laccase-based biocathode. Interestingly, the open circuit potential (OCP) of the BFC could be inhibited by Cu(2+) and subsequently activated by L-Cys, by which a BFC-based self-powered sensing platform for the detection of L-Cys was proposed. The FAD-GDH activity can be inhibited by Cu(2+) and, in turn, subsequent reversible activation by L-Cys because of the binding preference of L-Cys toward Cu(2+) by forming the Cu-S bond. The preferential interaction between L-Cys and Cu(2+) facilitated Cu(2+) to remove from the surface of the bioanode, and thus, the OCP of the system could be turned on. Under optimized conditions, the OCP of the BFC was systematically increased upon the addition of the L-Cys. The OCP increment (ΔOCP) was linear with the concentration of L-Cys within 20 nM to 3 μM. The proposed sensor exhibited lower detection limit of 10 nM L-Cys (S/N = 3), which is significantly lower than those values for other methods reported so far. Other amino acids and glutathione did not affect L-Cys detection. Therefore, this developed approach is sensitive, facile, cost-effective, and environmental-friendly, and could be very promising for the reliable clinically detecting of L-Cys. This work would trigger the interest of developing BFCs based self-powered sensors for practical applications.

  6. Modeling and optimal designs for dislocation and radiation tolerant single and multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2011-02-01

    Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.

  7. Turning One Cell Type into Another.

    PubMed

    Slack, Jonathan M W

    2016-01-01

    The nature of cells in early embryos may be respecified simply by exposure to inducing factors. In later stage embryos, determined cell populations do not respond to inducing factors but may be respecified by other stimuli, especially the introduction of specific transcription factors. Fully differentiated cell types are hard to respecify by any method, but some degree of success can be achieved using selected combinations of transcription factors, and this may have clinical significance in the future. © 2016 Elsevier Inc. All rights reserved.

  8. Ick Ciliary Kinase Is Essential for Planar Cell Polarity Formation in Inner Ear Hair Cells and Hearing Function.

    PubMed

    Okamoto, Shio; Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Kubo, Shun; Sakaguchi, Hirofumi; Furukawa, Takahisa

    2017-02-22

    Cellular asymmetries play crucial roles in development and organ function. The planar cell polarity (PCP) signaling pathway is involved in the establishment of cellular asymmetry within the plane of a cell sheet. Inner ear sensory hair cells (HCs), which have several rows of staircase-like stereocilia and one kinocilium located at the vertex of the stereocilia protruding from the apical surface of each HC, exhibit a typical form of PCP. Although connections between cilia and PCP signaling in vertebrate development have been reported, their precise nature is not well understood. During inner ear development, several ciliary proteins are known to play a role in PCP formation. In the current study, we investigated a functional role for intestinal cell kinase (Ick), which regulates intraflagellar transport (IFT) at the tip of cilia, in the mouse inner ear. A lack of Ick in the developing inner ear resulted in PCP defects in the cochlea, including misorientation or misshaping of stereocilia and aberrant localization of the kinocilium and basal body in the apical and middle turns, leading to auditory dysfunction. We also observed abnormal ciliary localization of Ift88 in both HCs and supporting cells. Together, our results show that Ick ciliary kinase is essential for PCP formation in inner ear HCs, suggesting that ciliary transport regulation is important for PCP signaling. SIGNIFICANCE STATEMENT The cochlea in the inner ear is the hearing organ. Planar cell polarity (PCP) in hair cells (HCs) in the cochlea is essential for mechanotransduction and refers to the asymmetric structure consisting of stereociliary bundles and the kinocilium on the apical surface of the cell body. We reported previously that a ciliary kinase, Ick, regulates intraflagellar transport (IFT). Here, we found that loss of Ick leads to abnormal localization of the IFT component in kinocilia, PCP defects in HCs, and hearing dysfunction. Our study defines the association of ciliary transport regulation with PCP formation in HCs and hearing function. Copyright © 2017 the authors 0270-6474/17/372073-13$15.00/0.

  9. Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators.

    PubMed

    Wilson, Rory P; Griffiths, Iwan W; Mills, Michael G L; Carbone, Chris; Wilson, John W; Scantlebury, David M

    2015-08-07

    The dynamics of predator-prey pursuit appears complex, making the development of a framework explaining predator and prey strategies problematic. We develop a model for terrestrial, cursorial predators to examine how animal mass modulates predator and prey trajectories and affects best strategies for both parties. We incorporated the maximum speed-mass relationship with an explanation of why larger animals should have greater turn radii; the forces needed to turn scale linearly with mass whereas the maximum forces an animal can exert scale to a 2/3 power law. This clarifies why in a meta-analysis, we found a preponderance of predator/prey mass ratios that minimized the turn radii of predators compared to their prey. It also explained why acceleration data from wild cheetahs pursuing different prey showed different cornering behaviour with prey type. The outcome of predator prey pursuits thus depends critically on mass effects and the ability of animals to time turns precisely.

  10. Mesothelial cell proliferation in the scala tympani: a reaction to the rupture of the round window membrane.

    PubMed

    Sone, M

    1998-10-01

    The inner layer of the round window membrane is composed of mesothelial cells and this mesothelial cell layer extends to the scala tympani. This study describes the histopathologic findings of temporal bone analysis from a patient with bilateral perilymphatic fistula of the round window membrane. The left ear showed proliferation of mesothelial cells in the scala tympani of the basal turn adjoining the round window membrane. This cell proliferation is thought to be a reaction to the rupture of the round window membrane.

  11. Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture

    PubMed Central

    Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan

    2013-01-01

    In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032

  12. Paul Ehrlich and the Early History of Granulocytes.

    PubMed

    Kay, A Barry

    2016-08-01

    Paul Ehrlich's techniques, published between 1879 and 1880, for staining blood films using coal tar dyes, and his method of differential blood cell counting, ended years of speculation regarding the classification of white cells. Acidic and basic dyes had allowed him to recognize eosinophil and basophil granules, respectively, work that was a direct continuation of his discovery of the tissue mast cell described in his doctoral thesis. Ehrlich went on to develop neutral dyes that identified epsilon granules in neutrophils ("cells with polymorphous nuclei"). He also speculated, for the most part correctly, on the formation, function, and fate of blood neutrophils and eosinophils. Before Ehrlich, a number of important observations had been made on white cells and their role in health and disease. Among the most notable were William Hewson's studies of blood and lymph; the early descriptions of leukemia by Alfred Donné, John Hughes Bennett, Rudolf Virchow, and others; as well as seminal observations on inflammation by William Addison, Friedrich von Recklinghausen, and Julius Cohnheim. Eosinophils were almost certainly recognized previously by others. In 1846, Thomas Wharton Jones (1808-1891) described "granule blood-cells" in several species including humans. The term "granule cell" had also been used by Julius Vogel (1814-1880), who had previously observed similar cells in inflammatory exudates. Vogel, in turn, was aware of the work of Gottlieb Gluge (1812-1898), who had observed "compound inflammatory globules" in pus and serum that resembled eosinophils. Almost 20 years before Ehrlich developed his staining methods, Max Johann Schultze (1825-1874) performed functional experiments on fine and coarse granular cells using a warm stage microscopic technique and showed they had amoeboid movement and phagocytic abilities. Despite these earlier observations, it was Ehrlich's use of stains that heralded the modern era of studies of leukocyte biology and pathology.

  13. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    PubMed

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. Force-activatable coating enables high-resolution cellular force imaging directly on regular cell culture surfaces.

    PubMed

    Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng

    2018-06-25

    Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.

  15. Caenorhabditis elegans histone deacetylase hda-1 is required for morphogenesis of the vulva and LIN-12/Notch-mediated specification of uterine cell fates.

    PubMed

    Ranawade, Ayush Vasant; Cumbo, Philip; Gupta, Bhagwati P

    2013-08-07

    Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1, a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections (i.e., no uterine-seam cell). We characterized the vulval defects by using cell fate-specific markers and found that hda-1 is necessary for the specification of all seven vulval cell types. The analysis of the vulval-uterine connection defect revealed that hda-1 is required for the differentiation of the gonadal anchor cell (AC), which in turn induces ventral uterine granddaughters to adopt π fates, leading to the formation of the uterine-seam cell. Consistent with these results, hda-1 is expressed in the vulva and AC. A search for hda-1 target genes revealed that fos-1 (fos proto-oncogene family) acts downstream of hda-1 in vulval cells, whereas egl-43 (evi1 proto-oncogene family) and nhr-67 (tailless homolog, NHR family) mediate hda-1 function in the AC. Furthermore, we showed that AC expression of hda-1 plays a crucial role in the regulation of the lin-12/Notch ligand lag-2 to specify π cell fates. These results demonstrate the pivotal role of hda-1 in the formation of the vulva and the vulval-uterine connection. Given that hda-1 homologs are conserved across the phyla, our findings are likely to provide a better understanding of HDAC1 function in development and disease.

  16. Caenorhabditis elegans Histone Deacetylase hda-1 Is Required for Morphogenesis of the Vulva and LIN-12/Notch-Mediated Specification of Uterine Cell Fates

    PubMed Central

    Ranawade, Ayush Vasant; Cumbo, Philip; Gupta, Bhagwati P.

    2013-01-01

    Chromatin modification genes play crucial roles in development and disease. In Caenorhabditis elegans, the class I histone deacetylase family member hda-1, a component of the nucleosome remodeling and deacetylation complex, has been shown to control cell proliferation. We recovered hda-1 in an RNA interference screen for genes involved in the morphogenesis of the egg-laying system. We found that hda-1 mutants have abnormal vulva morphology and vulval-uterine connections (i.e., no uterine-seam cell). We characterized the vulval defects by using cell fate-specific markers and found that hda-1 is necessary for the specification of all seven vulval cell types. The analysis of the vulval-uterine connection defect revealed that hda-1 is required for the differentiation of the gonadal anchor cell (AC), which in turn induces ventral uterine granddaughters to adopt π fates, leading to the formation of the uterine-seam cell. Consistent with these results, hda-1 is expressed in the vulva and AC. A search for hda-1 target genes revealed that fos-1 (fos proto-oncogene family) acts downstream of hda-1 in vulval cells, whereas egl-43 (evi1 proto-oncogene family) and nhr-67 (tailless homolog, NHR family) mediate hda-1 function in the AC. Furthermore, we showed that AC expression of hda-1 plays a crucial role in the regulation of the lin-12/Notch ligand lag-2 to specify π cell fates. These results demonstrate the pivotal role of hda-1 in the formation of the vulva and the vulval-uterine connection. Given that hda-1 homologs are conserved across the phyla, our findings are likely to provide a better understanding of HDAC1 function in development and disease. PMID:23797102

  17. Future materials requirements for the high-energy-intensity production of aluminum

    NASA Astrophysics Data System (ADS)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  18. A brief history of numbers and statistics with cytometric applications.

    PubMed

    Watson, J V

    2001-02-15

    A brief history of numbers and statistics traces the development of numbers from prehistory to completion of our current system of numeration with the introduction of the decimal fraction by Viete, Stevin, Burgi, and Galileo at the turn of the 16th century. This was followed by the development of what we now know as probability theory by Pascal, Fermat, and Huygens in the mid-17th century which arose in connection with questions in gambling with dice and can be regarded as the origin of statistics. The three main probability distributions on which statistics depend were introduced and/or formalized between the mid-17th and early 19th centuries: the binomial distribution by Pascal; the normal distribution by de Moivre, Gauss, and Laplace, and the Poisson distribution by Poisson. The formal discipline of statistics commenced with the works of Pearson, Yule, and Gosset at the turn of the 19th century when the first statistical tests were introduced. Elementary descriptions of the statistical tests most likely to be used in conjunction with cytometric data are given and it is shown how these can be applied to the analysis of difficult immunofluorescence distributions when there is overlap between the labeled and unlabeled cell populations. Copyright 2001 Wiley-Liss, Inc.

  19. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2more » and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.« less

  20. Turning the Moon into a Solar Photovoltaic Paradise

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

Top