Wang, Michael F Z; Hunter, Miranda V; Wang, Gang; McFaul, Christopher; Yip, Christopher M; Fernandez-Gonzalez, Rodrigo
2017-04-01
Embryos extend their anterior-posterior (AP) axis in a conserved process known as axis elongation. Drosophila axis elongation occurs in an epithelial monolayer, the germband, and is driven by cell intercalation, cell shape changes, and oriented cell divisions at the posterior germband. Anterior germband cells also divide during axis elongation. We developed image analysis and pattern-recognition methods to track dividing cells from confocal microscopy movies in a generally applicable approach. Mesectoderm cells, forming the ventral midline, divided parallel to the AP axis, while lateral cells displayed a uniform distribution of division orientations. Mesectoderm cells did not intercalate and sustained increased AP strain before cell division. After division, mesectoderm cell density increased along the AP axis, thus relieving strain. We used laser ablation to isolate mesectoderm cells from the influence of other tissues. Uncoupling the mesectoderm from intercalating cells did not affect cell division orientation. Conversely, separating the mesectoderm from the anterior and posterior poles of the embryo resulted in uniformly oriented divisions. Our data suggest that mesectoderm cells align their division angle to reduce strain caused by mechanical forces along the AP axis of the embryo. © 2017. Published by The Company of Biologists Ltd.
Alignment of cell division axes in directed epithelial cell migration
NASA Astrophysics Data System (ADS)
Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens
2014-11-01
Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.
Mechanical Forces Program the Orientation of Cell Division during Airway Tube Morphogenesis.
Tang, Zan; Hu, Yucheng; Wang, Zheng; Jiang, Kewu; Zhan, Cheng; Marshall, Wallace F; Tang, Nan
2018-02-05
Oriented cell division plays a key role in controlling organogenesis. The mechanisms for regulating division orientation at the whole-organ level are only starting to become understood. By combining 3D time-lapse imaging, mouse genetics, and mathematical modeling, we find that global orientation of cell division is the result of a combination of two types of spindles with distinct spindle dynamic behaviors in the developing airway epithelium. Fixed spindles follow the classic long-axis rule and establish their division orientation before metaphase. In contrast, rotating spindles do not strictly follow the long-axis rule and determine their division orientation during metaphase. By using both a cell-based mechanical model and stretching-lung-explant experiments, we showed that mechanical force can function as a regulatory signal in maintaining the stable ratio between fixed spindles and rotating spindles. Our findings demonstrate that mechanical forces, cell geometry, and oriented cell division function together in a highly coordinated manner to ensure normal airway tube morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Oriented cell division: new roles in guiding skin wound repair and regeneration
Yang, Shaowei; Ma, Kui; Geng, Zhijun; Sun, Xiaoyan; Fu, Xiaobing
2015-01-01
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration. PMID:26582817
Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives.
Siedlik, Michael J; Manivannan, Sriram; Kevrekidis, Ioannis G; Nelson, Celeste M
2017-06-06
Collective cell migration underlies many biological processes, including embryonic development, wound healing, and cancer progression. In the embryo, cells have been observed to move collectively in vortices using a mode of collective migration known as coherent angular motion (CAM). To determine how CAM arises within a population and changes over time, here, we study the motion of mammary epithelial cells within engineered monolayers, in which the cells move collectively about a central axis in the tissue. Using quantitative image analysis, we find that CAM is significantly reduced when mitosis is suppressed. Particle-based simulations recreate the observed trends, suggesting that cell divisions drive the robust emergence of CAM and facilitate switches in the direction of collective rotation. Our simulations predict that the location of a dividing cell, rather than the orientation of the division axis, facilitates the onset of this motion. These predictions agree with experimental observations, thereby providing, to our knowledge, new insight into how cell divisions influence CAM within a tissue. Overall, these findings highlight the dynamic nature of CAM and suggest that regulating cell division is crucial for tuning emergent collective migratory behaviors, such as vortical motions observed in vivo. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mechanical signals in plant development: a new method for single cell studies
NASA Technical Reports Server (NTRS)
Lynch, T. M.; Lintilhac, P. M.
1997-01-01
Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.
Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R
2013-05-01
In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.
NASA Technical Reports Server (NTRS)
Vasilenko, A.; McDaniel, J. K.; Conger, B. V.
2000-01-01
Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.
Gravity and the orientation of cell division
NASA Technical Reports Server (NTRS)
Helmstetter, C. E.
1997-01-01
A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90 degrees to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.
Houk, Andrew R.; Millius, Arthur; Weiner, Orion D.
2010-01-01
How cells generate a single axis of polarity for mating, division, and movement is unknown. In this issue, Howell et al. (2009) use a synthetic biology approach to demonstrate that rapid competition for a soluble signaling component (Bem1) is essential to ensure a unique axis of polarity in budding yeast. PMID:19914160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, A.A.
1989-09-01
In Caenorhabditis elegans embryos, early blastomeres of the P cell lineage divide successively on the same axis. This axis is a consequence of the specific rotational movement of the pair of centrosomes and nucleus. A laser has been used to perturb the centrosome movements that determine the pattern of early embryonic divisions. The results support a previously proposed model in which a centrosome rotates towards its correct position by shortening of connections, possibly microtubules, between a centrosome and a defined site on the cortex of the embryo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de
2014-11-01
Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Lossmore » of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.« less
Fontanet, Pilar; Vicient, Carlos M
2008-01-01
Plant embryo development is a complex process that includes several coordinated events. Maize mature embryos consist of a well-differentiated embryonic axis surrounded by a single massive cotyledon called scutellum. Mature embryo axis also includes lateral roots and several developed leaves. In contrast to Arabidopsis, in which the orientation of cell divisions are perfectly established, only the first planes of cell division are predictable in maize embryos. These distinctive characteristics joined to the availability of a large collection of embryo mutants, well-developed molecular biology and tissue culture tools, an established genetics and its economical importance make maize a good model plant for grass embryogenesis. Here, we describe basic concepts and techniques necessary for studying maize embryo development: how to grow maize in greenhouses and basic techniques for in vitro embryo culture, somatic embryogenesis and in situ hybridization.
Cyclin D regulation of a sexually dimorphic asymmetric cell division
Tilmann, Christopher; Kimble, Judith
2006-01-01
SUMMARY The C. elegans somatic gonadal precursor cell (SGP) divides asymmetrically to establish gonad-specific coordinates in both sexes. In addition, the SGP division is sexually dimorphic and initiates sex-specific programs of gonadogenesis. Wnt/MAPK signaling determines the gonadal axes, and the FKH-6 transcription factor specifies the male mode of SGP division. In this paper, we demonstrate that C. elegans cyclin D controls POP-1/TCF asymmetry in the SGP daughters as well as fkh-6 and rnr expression in the SGPs. Although cyclin D mutants have delayed SGP divisions, the cyclin D defects are not mimicked by other methods of retarding the SGP division. We find that EFL-1/E2F has an antagonistic effect on fkh-6 expression and gonadogenesis, which is relieved by cyclin D activity. We propose that cyclin D and other canonical regulators of the G1/S transition coordinate key regulators of axis formation and sex determination with cell cycle progression to achieve the sexually dimorphic SGP asymmetric division. PMID:16198291
Dumollard, Rémi; Minc, Nicolas; Salez, Gregory; Aicha, Sameh Ben; Bekkouche, Faisal; Hebras, Céline; Besnardeau, Lydia; McDougall, Alex
2017-01-01
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI: http://dx.doi.org/10.7554/eLife.19290.001 PMID:28121291
Cell genealogies in a plant meristem deduced with the aid of a 'bootstrap' L-system.
Lück, J; Barlow, P W; Lück, H B
1994-01-01
The primary root meristem of maize (Zea mays L.) contains longitudinal files of cells arranged in groups of familial descent (sisters, cousins, etc.). These groups, or packets, show ordered sequences of cell division which are transverse with respect to the apico-basal axis of the root. The sequences have been analysed in three zones of the meristem during the course of the first four cell generations following germination. In this period, the number of cells in the packets increases from one to 16. Theoretically, there are 48 possible division pathways that lead to the eight-cell stage, and nearly 2 x 10(6) that lead to the 16-cell stage. However, analysis shows that only a few of all the possible pathways are used in any particular zone of the root. This restriction of pathways results from inherited sequences of asymmetric cell divisions which lead to sister cells of unequal length. All possible division pathways can be generated by deterministic 'bootstrap' L-systems which assign different lifespans to sister cells of successive generations and hence specify their subsequent sequence of divisions. These systems simulate propagating patterns of cell divisions which agree with those actually found within the growing packets that comprise the root meristem. The patterns of division are specific to cells originating in various regions of the meristem of the germinating root. The importance of such systems is that they simulate patterns of cellular proliferation where there is ancestral dependency. They can therefore be applied in other growing and proliferating systems where this is suspected.
NASA Astrophysics Data System (ADS)
Nam, Sungmin; Chaudhuri, Ovijit
2018-06-01
During mitosis, or cell division, mammalian cells undergo extensive morphological changes, including elongation along the mitotic axis, which is perpendicular to the plane that bisects the two divided cells. Although much is known about the intracellular dynamics of mitosis, it is unclear how cells are able to divide in tissues, where the changes required for mitosis are mechanically constrained by surrounding cells and extracellular matrix. Here, by confining cells three dimensionally in hydrogels, we show that dividing cells generate substantial protrusive forces that deform their surroundings along the mitotic axis, clearing space for mitotic elongation. When forces are insufficient to create space for mitotic elongation, mitosis fails. We identify one source of protrusive force as the elongation of the interpolar spindle, an assembly of microtubules aligned with the mitotic axis. Another source of protrusive force is shown to be contraction of the cytokinetic ring, the polymeric structure that cleaves a dividing cell at its equator, which drives expansion along the mitotic axis. These findings reveal key functions for the interpolar spindle and cytokinetic ring in protrusive extracellular force generation, and explain how dividing cells overcome mechanical constraints in confining microenvironments, including some types of tumour.
Du, Yujuan
2017-01-01
Plant development is characterized by repeated initiation of meristems, regions of dividing cells that give rise to new organs. During lateral root (LR) formation, new LR meristems are specified to support the outgrowth of LRs along a new axis. The determination of the sequential events required to form this new growth axis has been hampered by redundant activities of key transcription factors. Here, we characterize the effects of three PLETHORA (PLT) transcription factors, PLT3, PLT5, and PLT7, during LR outgrowth. In plt3plt5plt7 triple mutants, the morphology of lateral root primordia (LRP), the auxin response gradient, and the expression of meristem/tissue identity markers are impaired from the “symmetry-breaking” periclinal cell divisions during the transition between stage I and stage II, wherein cells first acquire different identities in the proximodistal and radial axes. Particularly, PLT1, PLT2, and PLT4 genes that are typically expressed later than PLT3, PLT5, and PLT7 during LR outgrowth are not induced in the mutant primordia, rendering “PLT-null” LRP. Reintroduction of any PLT clade member in the mutant primordia completely restores layer identities at stage II and rescues mutant defects in meristem and tissue establishment. Therefore, all PLT genes can activate the formative cell divisions that lead to de novo meristem establishment and tissue patterning associated with a new growth axis. PMID:29078398
Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2013-12-01
In contrast to seed plants, the roots of most ferns have a single apical cell which is the ultimate source of all cells in the root. The apical cell has a tetrahedral shape and divides asymmetrically. The root cap derives from the distal division face, while merophytes derived from three proximal division faces contribute to the root proper. The merophytes are produced sequentially forming three sectors along a helix around the root axis. During development, they divide and differentiate in a predictable pattern. Such growth causes cell pattern of the root apex to be remarkably regular and self-perpetuating. The nature of this regularity remains unknown. This paper shows the 2D simulation model for growth of the root apex with the apical cell in application to Azolla pinnata. The field of growth rates of the organ, prescribed by the model, is of a tensor type (symplastic growth) and cells divide taking principal growth directions into account. The simulations show how the cell pattern in a longitudinal section of the apex develops in time. The virtual root apex grows realistically and its cell pattern is similar to that observed in anatomical sections. The simulations indicate that the cell pattern regularity results from cell divisions which are oriented with respect to principal growth directions. Such divisions are essential for maintenance of peri-anticlinal arrangement of cell walls and coordinated growth of merophytes during the development. The highly specific division program that takes place in merophytes prior to differentiation seems to be regulated at the cellular level.
Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells.
Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro
2015-01-01
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.
Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.
Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie
2018-06-08
Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.
A set of simple cell processes is sufficient to model spiral cleavage.
Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac
2017-01-01
During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.
Strand, Marie; Micchelli, Craig A
2013-01-01
Adult stem cells vary widely in their rates of proliferation. Some stem cells are constitutively active, while others divide only in response to injury. The mechanism controlling this differential proliferative set point is not well understood. The anterior-posterior (A/P) axis of the adult Drosophila midgut has a segmental organization, displaying physiological compartmentalization and region-specific epithelia. These distinct midgut regions are maintained by defined stem cell populations with unique division schedules, providing an excellent experimental model with which to investigate this question. Here, we focus on the quiescent gastric stem cells (GSSCs) of the acidic copper cell region (CCR), which exhibit the greatest period of latency between divisions of all characterized gut stem cells, to define the molecular basis of differential stem cell activity. Our molecular genetic analysis demonstrates that the mitogenic EGF signaling pathway is a limiting factor controlling GSSC proliferation. We find that under baseline conditions, when GSSCs are largely quiescent, the lowest levels of EGF ligands in the midgut are found in the CCR. However, acute epithelial injury by enteric pathogens leads to an increase in EGF ligand expression in the CCR and rapid expansion of the GSSC lineage. Thus, the unique proliferative set points for gut stem cells residing in physiologically distinct compartments are governed by regional control of niche signals along the A/P axis.
Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells
Akita, Kae; Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro
2015-01-01
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells. PMID:26039484
Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis
Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns
2017-01-01
The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796
Wrischnik, L A; Kenyon, C J
1997-08-01
In C. elegans, six lateral epidermal stem cells, the seam cells V1-V6, are located in a row along the anterior-posterior (A/P) body axis. Anterior seam cells (V1-V4) undergo a fairly simple sequence of stem cell divisions and generate only epidermal cells. Posterior seam cells (V5 and V6) undergo a more complicated sequence of cell divisions that include additional rounds of stem cell proliferation and the production of neural as well as epidermal cells. In the wild type, activity of the gene lin-22 allows V1-V4 to generate their normal epidermal lineages rather than V5-like lineages. lin-22 activity is also required to prevent additional neurons from being produced by one branch of the V5 lineage. We find that the lin-22 gene exhibits homology to the Drosophila gene hairy, and that lin-22 activity represses neural development within the V5 lineage by blocking expression of the posterior-specific Hox gene mab-5 in specific cells. In addition, in order to prevent anterior V cells from generating V5-like lineages, wild-type lin-22 gene activity must inhibit (directly or indirectly) at least five downstream regulatory gene activities. In anterior body regions, lin-22(+) inhibits expression of the Hox gene mab-5. It also inhibits the activity of the achaete-scute homolog lin-32 and an unidentified gene that we postulate regulates stem cell division. Each of these three genes is required for the expression of a different piece of the ectopic V5-like lineages generated in lin-22 mutants. In addition, lin-22 activity prevents two other Hox genes, lin-39 and egl-5, from acquiring new activities within their normal domains of function along the A/P body axis. Some, but not all, of the patterning activities of lin-22 in C. elegans resemble those of hairy in Drosophila.
Boman, Bruce M.; Fields, Jeremy Z.
2013-01-01
APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156
Patterning C. elegans: homeotic cluster genes, cell fates and cell migrations.
Salser, S J; Kenyon, C
1994-05-01
Despite its simple body form, the nematode C. elegans expresses homeotic cluster genes similar to those of insects and vertebrates in the patterning of many cell types and tissues along the anteroposterior axis. In the ventral nerve cord, these genes program spatial patterns of cell death, fusion, division and neurotransmitter production; in migrating cells they regulate the direction and extent of movement. Nematode development permits an analysis at the cellular level of how homeotic cluster genes interact to specify cell fates, and how cell behavior can be regulated to assemble an organism.
Shimizu, H; Bode, P M; Bode, H R
1995-12-01
In an adult hydra, the tissue of the body column is in a dynamic state. The epithelial cells of both layers are constantly in the mitotic cycle. As the tissue expands, it is continuously displaced along the body axis in either an apical or basal direction, but not in a circumferential direction. Using a modified whole mount method we examined the orientation of mitotic spindles to determine what role the direction of cell division plays in axial displacement. Surprisingly, the direction of cell division was found to differ in the two epithelial layers. In the ectoderm it was somewhat biased in an axial direction. In the endoderm it was strongly biased in a circumferential direction. For both layers, the directional biases occurred throughout the length of the body column, with some regional variation in its extent. As buds developed into adults, the bias in each layer increased from an almost random distribution to the distinctly different orientations of the adult. Thus, to maintain the observed axial direction of tissue displacement, rearrangement of the epithelial cells of both layers must occur continuously in the adult as well as in developing animals. How the locomotory and contractile behavior of the muscle processes of the epithelial cells may effect changes in cell shape, and thereby influence the direction of cell division in each layer, is discussed.
Dielectric modelling of cell division for budding and fission yeast
NASA Astrophysics Data System (ADS)
Asami, Koji; Sekine, Katsuhisa
2007-02-01
The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast.
Formation and early development of tetraspores of Polysiphonia urceolata (Rhodomelaceae, Rhodophyta)
NASA Astrophysics Data System (ADS)
Yao, Jianting; Li, Dapeng; Yu, Shenhui; Liu, Jidong; Duan, Delin
2009-05-01
Polysiphonia urceolata is one type of potential commercial red seaweeds used for breeding and cultivation, because of its significant biochemical and biomedical application. However, the information of breeding and seedling incubation for cultivation is limited, especially the early development. In this study, tetrasporohyte and gametophyte of P. urceolata were taken as the study materials in Huiquan Bay, Qingdao, China. The cleaned and sterilized tetrasporophytes and gametophytes were pre-cultured in sterilized seawater, then nurtured at 18°C, 25 μmol photons m-2 s-1 in 12:12 h (light:dark) photoperiod. Continuous observation under microscope showed that the early development consists of bipolar division stage and seedling stage. In the division stage, tetraspores germinate into bipolar sporelings that further differentiate into a colorless rhizoidal portion and a lightly pigmented upright shoot. The lightly pigmented rhizoidal cell develops to a rhizoid and the larger pigmented cell transforms to an erect axis. In the seedling stage, several quasi-protuberances appear on the erect axis and form juvenile seedlings. The results demonstrate the culture of P. urceolata from tetraspores under laboratory conditions.
Rover, Ticiane; Simioni, Carmen; Hable, Whitney; Bouzon, Zenilda L
2015-03-01
This study investigates the pattern and performance of cellular structures during the early development of zygotes and embryos of Sargassum cymosum. The early development S. cymosum germlings has already been characterized and compared with the pattern of development established for all fucoid algae, in which the zygote remains attached to the receptacle by mucilage during the establishment of polarity and early cell division. As in the algae Fucus and Silvetia, the first division is transverse across the longer axis of the zygote of S. cymosum. However, the cell that will give rise to the rhizoids is not determined in the first division; rather, the formation of this cell occurs with the second division, forming a small cell in the embryo shaded site. Stabilizing polarity during the process of forming a multicellular embryo occurs rapidly. During development, significant cytoplasmic alterations take place. Initially, the cytoplasm shows large clusters of phenolic compounds located in specific parts, but later, in the course of development, these compounds are dispersed in the cytoplasm, although a significant amount remains confined to the nucleus. Moreover, to produce more zygotes and higher growth rates for the germlings, the best conditions found for the species S. cymosum were 22 and 26 °C, respectively.
Cell wall peptidoglycan architecture in Bacillus subtilis
Hayhurst, Emma J.; Kailas, Lekshmi; Hobbs, Jamie K.; Foster, Simon J.
2008-01-01
The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 μm, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with ≈50 nm-wide peptidoglycan cables [average 53 ± 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 ± 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer. PMID:18784364
The Echinoid Mitotic Gradient: Effect of Cell Size on the Micromere Cleavage Cycle
Langelan Duncan, Rosalie E.; Whiteley, Arthur H.
2012-01-01
SUMMARY Like other euechinoids, the fertilized eggs of the sand dollar Dendraster excentricus proceed through cleavages that produce a pattern of macromeres, mesomeres, and micromeres at the 4th division. The 8 cells of the macro-mesomere lineage proceed through 6 additional cleavages before hatching. At the fifth overall division, the 4 micromeres produce a lineage of large micromeres that will divide 3 additional times, and a lineage of small micromeres that will divide once more before hatching. Irrespective of lineage, the length of the cell cycles is closely related to the size of the blastomere; cells of the same size have the same cell cycle time. A consequence is that at the fourth cleavage, there is a gradient of mitotic activity from the fastest dividers at the animal pole and the slowest cleacing micromeres at the vegetal pole. By the time of hatching, which is the 10th division of meso-macromeres, all cells are the same small size, the metachronic pattern of division gives way to asynchrony, and the mitotic gradient along the polar axis is lost. Experimental pre-exposure to sodium dodecyl sulfate (SDS), however, blocks the appearance of the gradients in cell size, the mitotic gradient, and the differential in cell cycle times. It is proposed that the mitotic gradients, cell cycle times, and attainment of a state of asynchrony are functions of cell size. Developmental consequences of the transition are large, and include coordinated activation of transcriptions, synthesis of new patterns of proteins, alterations of metabolism, and onset of morphogenesis. PMID:22006441
Baffet, Alexandre D.; Benoit, Béatrice; Januschke, Jens; Audo, Jennifer; Gourhand, Vanessa; Roth, Siegfried; Guichet, Antoine
2012-01-01
Microtubules (MTs) are essential for cell division, shape, intracellular transport, and polarity. MT stability is regulated by many factors, including MT-associated proteins and proteins controlling the amount of free tubulin heterodimers available for polymerization. Tubulin-binding cofactors are potential key regulators of free tubulin concentration, since they are required for α-β–tubulin dimerization in vitro. In this paper, we show that mutation of the Drosophila tubulin-binding cofactor B (dTBCB) affects the levels of both α- and β-tubulins and dramatically destabilizes the MT network in different fly tissues. However, we find that dTBCB is dispensable for the early MT-dependent steps of oogenesis, including cell division, and that dTBCB is not required for mitosis in several tissues. In striking contrast, the absence of dTBCB during later stages of oogenesis causes major defects in cell polarity. We show that dTBCB is required for the polarized localization of the axis-determining mRNAs within the oocyte and for the apico-basal polarity of the surrounding follicle cells. These results establish a developmental function for the dTBCB gene that is essential for viability and MT-dependent cell polarity, but not cell division. PMID:22855530
Liro, Małgorzata J; Rose, Lesilee S
2016-11-01
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism. Copyright © 2016 by the Genetics Society of America.
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA
Liro, Małgorzata J.; Rose, Lesilee S.
2016-01-01
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism. PMID:27672093
Motion of single MreB bacterial actin proteins in Caulobacter show treadmilling in vivo
NASA Astrophysics Data System (ADS)
Moerner, W. E.; Kim, Soyeon; Gitai, Zemer; Kinkhabwala, Anika; McAdams, Harley; Shapiro, Lucy
2006-03-01
Ensemble imaging of a bacterial actin homologue, the MreB protein, suggests that the MreB proteins form a dynamic filamentous spiral along the long axis of the cell in Caulobacter crescentus. MreB contracts and expands along the cell axis and plays an important role in cell shape and polarity maintenance, as well as chromosome segregation and translocation of the origin of replication during cell division. In this study we investigated the real-time polymerization of MreB in Caulobacter crescentus using single-molecule fluorescence imaging. With time-lapse imaging, polymerized MreB could be distinguished from cytoplasmic MreB monomers, because single monomeric MreB showed fast motion characteristic of Brownian diffusion, while single polymerized MreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer implies that treadmilling is the predominant mechanism in MreB filament formation. These single-molecule imaging experiments provide the first available information on the velocity of bacterial actin polymerization in a living cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, N.N.; Kirby, C.M.; Kemphues, K.J.
1995-02-01
Polarized asymmetric divisions play important roles in the development of plants and animals. The first two embryonic cleavages of Caenorhabditis elegans provide an opportunity to study the mechanisms controlling polarized asymmetric divisions. The first cleavage is unequal, producing daughters with different sizes and fates. The daughter blastomeres divide with different orientations at the second cleavage; the anterior blastomere divides equally across the long axis of the egg, whereas the posterior blastomere divides unequally along the long axis. We report here the results of our analysis of the genes par-2 and par-3 with respect to their contribution to the polarity ofmore » these divisions. Strong loss-of-function mutations in both genes lead to an equal first cleavage and an altered second cleavage. Interestingly, the mutations exhibit striking gene-specific differences at the second cleavage. The par-2 mutations lead to transverse spindle orientations in both blastomeres, whereas par-3 mutations lead to longitudinal spindle orientations in both blastomeres. The spindle orientation defects correlate with defects in centrosome movements during both the first and the second cell cycle. Temperature shift experiments with par-2 (it5ts) indicate that the par-2(+) activity is not required after the two-cell stage. Analysis of double mutants shows that par-3 is epistatic to par-2. We propose a model wherein par-2(+) and par-3(+) act in concert during the first cell cycle to affect asymmetric modification of the cytoskeleton. This polar modification leads to different behaviors of centrosomes in the anterior and posterior and leads ultimately to blastomere-specific spindle orientations at the second cleavage. 44 refs., 5 figs., 5 tabs.« less
Albert, Philipp J.; Schwarz, Ulrich S.
2016-01-01
The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before. PMID:27054883
Aigner, M; Robert Lukas, J; Denk, M; Ziya-Ghazvini, F; Kaider, A; Mayr, R
2000-04-01
Apart from the somatotopic organization of the trigeminal ganglion (TG) into the ophthalmic, maxillary and mandibular divisions along the mediolateral axis, there exist further somatotopic organizations within these three divisions. According to literature, the cell organization in the TG and the somatotopy in the brainstem develop together, formed by naturally occurring cell death in the TG. Thus, the somatotopy of the primary afferent trigeminal perikarya is of special interest. The aim of this study was to investigate the location of the primary afferent perikarya of the extraocular muscles (EOMs) in the TG of guinea-pig. The primary afferent perikarya were labeled by post-mortem application of the carbocyanine DiI on the oculomotor nerve branches near their entrance into the single EOMs. The DiI-positive perikarya were found musculo-somatically organized in the ipsilateral ophthalmic part of the TG at a wide range along the dorsoventral axis, expressing an overlap of the representation areas. The primary afferent perikarya of the superior rectus and the superior oblique muscles were mainly localized in the dorsal part of the ganglion while those of the inferior rectus and the inferior oblique muscle mainly in ventral part. The lateral and the medial rectus were predominantly represented in between. An organization along the mediolateral axis of the TG was not observed. Although guinea-pigs lack classical EOM proprioceptors, the somatotopic representation of the extraocular muscle primary afferent perikarya in the TG found in this study is in line with findings in species with well known encapsulated proprioceptors within the EOMs.
Lateral root initiation in Marsilea quadrifolia. I. Origin and histogensis of lateral roots
NASA Technical Reports Server (NTRS)
Lin, B. L.; Raghavan, V.
1991-01-01
In Marsilea quadrifolia, lateral roots arise from modified single cells of the endodermis located opposite the protoxylem poles within the meristematic region of the parent root. The initial cell divides in four specific planes to establish a five-celled lateral root primordium, with a tetrahedral apical cell in the centre and the oldest merophytes and the root cap along the sides. The cells of the merophyte divide in a precise pattern to give rise to the cells of the cortex, endodermis, pericycle, and vascular tissues of the emerging lateral root. Although the construction of the parent root is more complicated than that of lateral roots, patterns of cell division and tissue formation are similar in both types of roots, with the various tissues being arranged in similar positions in relation to the central axis. Vascular connection between the lateral root primordium and the parent root is derived from the pericycle cells lying between the former and the protoxylem members of the latter. It is proposed that the central axis of the root is not only a geometric centre, but also a physiological centre which determines the fate of the different cell types.
Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival
Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.
2016-01-01
The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663
Ikegami, Keisuke; Yoshimura, Takashi
2017-10-01
Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Xiaoju; Ewald, Erin R.; Huo, Yuqing; Tamashiro, Kellie L.; Salvatori, Roberto; Sawa, Akira; Wand, Gary S.; Lee, Richard S.
2012-01-01
Glucocorticoids may play a significant role in the etiology of neuropsychiatric illnesses. Abnormalities in plasma cortisol levels, glucocorticoid sensitivity, and HPA-axis function often accompany clinical symptoms of stress-related illnesses such as PTSD and depression. Of particular interest are genetic association studies that link single nucleotide polymorphisms of HPA-axis genes with illnesses only in the context of an early-life trauma exposure such as child abuse. These studies suggest that dysregulation of HPA-axis function can have lasting repercussions in shaping mood and anxiety, long after termination of the traumatic experience. As persistent glucocorticoid-induced loss of DNA methylation in Fkbp5 was previously observed in the hippocampus and blood and in the neuronal cell line HT-22, we asked whether these epigenetic alterations occur in non-neuronal, HPA-axis relevant cells. We used the pituitary adenoma cell line AtT-20 to demonstrate that the intronic enhancer region of Fkbp5 undergoes loss of DNA methylation in response to dexamethasone treatment in a dose-dependent manner. We also focused on the mouse hippocampal dentate gyrus to test whether these changes would be enriched in a region implicated in the HPA-axis stress response, neurogenesis, and synaptic plasticity. We observed an increase in enrichment of DNA methylation loss in the dentate gyrus, as compared to whole hippocampal tissues that were similarly treated with glucocorticoids. We then asked whether Dnmt1, a methyltransferase enzyme involved in maintaining DNA methylation following cell division, is involved in the observed epigenetic alterations. We found a dose-dependent decrease of Dnmt1 expression in the AtT-20 cells following dexamethasone treatment, and a similar decrease in corticosterone-treated mouse hippocampus. Taken together, we provide evidence that these glucocorticoid-induced epigenetic alterations have a broader validity in non-neuronal cells and that they may involve the DNA methylation machinery. PMID:22445894
Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K
2014-09-22
In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.
Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae)
NASA Technical Reports Server (NTRS)
Conger, B. V.; Tomaszewski, Z. Jr; McDaniel, J. K.; Vasilenko, A.
1998-01-01
Somatic embryos initiate and develop from single mesophyll cells in in vitro cultured leaf segments of orchard-grass (Dactylis glomerata L.). Segments were plated at time periods ranging from 21 to 0.9 d (21 h) prior to launch on an 11 d spaceflight (STS-64). Using a paired t-test, there was no significant difference in embryogenesis from preplating periods of 14 d and 21 d. However, embryogenesis was reduced by 70% in segments plated 21 h before launch and this treatment was significant at P=0.0001. The initial cell divisions leading to embryo formation would be taking place during flight in this treatment. A higher ratio of anticlinal:periclinal first cell divisions observed in the flight compared to the control tissue suggests that microgravity affects axis determination and embryo polarity at a very early stage. A similar reduction in zygotic embryogenesis would reduce seed formation and have important implications for long-term space flight or colonization where seeds would be needed either for direct consumption or to grow another generation of plants.
Regulating positioning and orientation of mitotic spindles via cell size and shape
NASA Astrophysics Data System (ADS)
Li, Jingchen; Jiang, Hongyuan
2018-01-01
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Establishment of segment polarity in the ectoderm of the leech Helobdella
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2001-01-01
The segmented ectoderm and mesoderm of the leech arise via a stereotyped cell lineage from embryonic stem cells called teloblasts. Each teloblast gives rise to a column of primary blast cell daughters, and the blast cells generate descendant clones that serve as the segmental repeats of their particular teloblast lineage. We have examined the mechanism by which the leech primary blast cell clones acquire segment polarity - i.e. a fixed sequence of positional values ordered along the anteroposterior axis of the segmental repeat. In the O and P teloblast lineages, the earliest divisions of the primary blast cell segregate anterior and posterior cell fates along the anteroposterior axis. Using a laser microbeam, we ablated single cells from both o and p blast cell clones at stages when the clone was two to four cells in length. The developmental fate of the remaining cells was characterized with rhodamine-dextran lineage tracer. Twelve different progeny cells were ablated, and in every case the ablation eliminated the normal descendants of the ablated cell while having little or no detectable effect on the developmental fate of the remaining cells. This included experiments in which we specifically ablated those blast cell progeny that are known to express the engrailed gene, or their lineal precursors. These findings confirm and extend a previous study by showing that the establishment of segment polarity in the leech ectoderm is largely independent of cell interactions conveyed along the anteroposterior axis. Both intercellular signaling and engrailed expression play an important role in the segment polarity specification of the Drosophila embryo, and our findings suggest that there may be little or no conservation of this developmental mechanism between those two organisms.
Mathematical modeling and numerical simulation of the mitotic spindle orientation system.
Ibrahim, Bashar
2018-05-21
The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Seaver, E. C.; Shankland, M.
2000-01-01
We have investigated whether the development of segmental repeats is autonomous in the embryo of the leech Helobdella robusta. The segmental tissues of the germinal band arise from progeny of five stem cells called teloblasts. Asymmetric divisions of the teloblasts form chains of segment founder cells (called primary blast cells) that divide in a stereotypical manner to produce differentiated descendants. Using two distinct techniques, we have looked for potential interactions between neighboring blast cell clones along the anterior-posterior axis. In one technique, we prevented the birth of primary blast cells by injection of DNase I into the teloblast, thereby depriving the last blast cell produced before the ablation of its normal posterior neighbors. We also ablated single blast cells with a laser microbeam, which allowed us to assess potential signals acting on either more anterior or more posterior primary blast cell clones. Our results suggest that interactions along the anterior-posterior axis between neighboring primary blast cell clones are not required for development of normal segmental organization within the blast cell clone. We also examined the possibility that blast cells receive redundant signals from both anterior and posterior neighboring clones and that either is sufficient for normal development. Using double blast cell laser ablations to isolate a primary blast cell clone by removal of both its anterior and its posterior neighbor, we found that the isolated clone still develops normally. These results reveal that the fundamental segmental repeat in the leech embryo, the primary blast cell clone, can develop normally in the apparent absence of signals from adjacent repeats along the anterior-posterior axis.
Sausedo, R A; Schoenwolf, G C
1993-09-01
Formation and extension of the notochord is one of the earliest and most obvious events of axis development in vertebrate embryos. In birds, prospective notochord cells arise from Hensen's node and come to lie beneath the midline of the neural plate, where they assist in the process of neurulation and initiate the dorsoventral patterning of the neural tube through sequential inductive interactions. In the present study, we examined notochord development in avian embryos with quantitative and immunological procedures. Extension of the notochord occurs principally through accretion, that is, the addition of cells to its caudal end, a process that involves considerable cell rearrangement at the notochord-Hensen's node interface. In addition, cell division and cell rearrangement within the notochord proper contribute to notochord extension. Thus, extension of the notochord occurs in a manner that is significantly different from that of the adjacent, overlying, midline region of the neural plate (i.e., the median hinge-point region or future floor plate of the neural tube), which as shown in one of the previous studies from our laboratory (Schoenwolf and Alvarez: Development 106:427-439, 1989), extends caudally as its cells undergo two rounds of mediolateral cell-cell intercalation and two-three rounds of cell division.
NASA Astrophysics Data System (ADS)
Roos, U.-P.
1984-03-01
Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.
Kurihara, Daisuke; Kimata, Yusuke; Higashiyama, Tetsuya; Ueda, Minako
2017-09-11
In most flowering plants, the zygote and embryo are hidden deep in the mother tissue, and thus it has long been a mystery of how they develop dynamically; for example, how the zygote polarizes to establish the body axis and how the embryo specifies various cell fates during organ formation. This manuscript describes an in vitro ovule culture method to perform live-cell imaging of developing zygotes and embryos of Arabidopsis thaliana. The optimized cultivation medium allows zygotes or early embryos to grow into fertile plants. By combining it with a poly(dimethylsiloxane) (PDMS) micropillar array device, the ovule is held in the liquid medium in the same position. This fixation is crucial to observe the same ovule under a microscope for several days from the zygotic division to the late embryo stage. The resulting live-cell imaging can be used to monitor the real-time dynamics of zygote polarization, such as nuclear migration and cytoskeleton rearrangement, and also the cell division timing and cell fate specification during embryo patterning. Furthermore, this ovule cultivation system can be combined with inhibitor treatments to analyze the effects of various factors on embryo development, and with optical manipulations such as laser disruption to examine the role of cell-cell communication.
Stochasticity and stereotypy in the Ciona notochord.
Carlson, Maia; Reeves, Wendy; Veeman, Michael
2015-01-15
Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. Copyright © 2014 Elsevier Inc. All rights reserved.
Stochasticity and Stereotypy in the Ciona Notochord
Carlson, Maia; Reeves, Wendy; Veeman, Michael
2015-01-01
Fate mapping with single cell resolution has typically been confined to embryos with completely stereotyped development. The lineages giving rise to the 40 cells of the Ciona notochord are invariant, but the intercalation of those cells into a single-file column is not. Here we use genetic labeling methods to fate map the Ciona notochord with both high resolution and large sample sizes. We find that the ordering of notochord cells into a single column is not random, but instead shows a distinctive signature characteristic of mediolaterally-biased intercalation. We find that patterns of cell intercalation in the notochord are somewhat stochastic but far more stereotyped than previously believed. Cell behaviors vary by lineage, with the secondary notochord lineage being much more constrained than the primary lineage. Within the primary lineage, patterns of intercalation reflect the geometry of the intercalating tissue. We identify the latest point at which notochord morphogenesis is largely stereotyped, which is shortly before the onset of mediolateral intercalation and immediately after the final cell divisions in the primary lineage. These divisions are consistently oriented along the AP axis. Our results indicate that the interplay between stereotyped and stochastic cell behaviors in morphogenesis can only be assessed by fate mapping experiments that have both cellular resolution and large sample sizes. PMID:25459659
Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.
Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich
2016-06-01
In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
2013-10-01
Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the...cleavage plane during cytokinesis (15). The anteroposterior (AP) axis of the one- cell embryo is determined at fertilization by the sperm entry point, which...demarcates the posterior pole of the embryo (16). Upon sperm entry, the anteriorly-localized maternal nucleus undergoes two meiotic divisions to
Zhang, Lixia; Kendrick, Christina; Jülich, Dörthe; Holley, Scott A.
2010-01-01
Summary Cell division, differentiation and morphogenesis are coordinated during embryonic development and frequently in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and utilize the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is substantially driven by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1−/−. The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for normal segmental arrangement of epithelial borders and internal mesenchymal cells. PMID:18480162
Dynamic quantitative analysis of adherent cell cultures by means of lens-free video microscopy
NASA Astrophysics Data System (ADS)
Allier, C.; Vincent, R.; Navarro, F.; Menneteau, M.; Ghenim, L.; Gidrol, X.; Bordy, T.; Hervé, L.; Cioni, O.; Bardin, S.; Bornens, M.; Usson, Y.; Morales, S.
2018-02-01
We present our implementation of lens-free video microscopy setup for the monitoring of adherent cell cultures. We use a multi-wavelength LED illumination together with a dedicated holographic reconstruction algorithm that allows for an efficient removal of twin images from the reconstructed phase image for densities up to those of confluent cell cultures (>500 cells/mm2). We thereby demonstrate that lens-free video microscopy, with a large field of view ( 30 mm2) can enable us to capture the images of thousands of cells simultaneously and directly inside the incubator. It is then possible to trace and quantify single cells along several cell cycles. We thus prove that lens-free microscopy is a quantitative phase imaging technique enabling estimation of several metrics at the single cell level as a function of time, for example the area, dry mass, maximum thickness, major axis length and aspect ratio of each cell. Combined with cell tracking, it is then possible to extract important parameters such as the initial cell dry mass (just after cell division), the final cell dry mass (just before cell division), the average cell growth rate, and the cell cycle duration. As an example, we discuss the monitoring of a HeLa cell cultures which provided us with a data-set featuring more than 10 000 cell cycle tracks and more than 2x106 cell morphological measurements in a single time-lapse.
New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
Martik, Megan L; McClay, David R
2017-12-01
Gastrulation is a complex orchestration of movements by cells that are specified early in development. Until now, classical convergent extension was considered to be the main contributor to sea urchin archenteron extension, and the relative contributions of cell divisions were unknown. Active migration of cells along the axis of extension was also not considered as a major factor in invagination. Cell transplantations plus live imaging were used to examine endoderm cell morphogenesis during gastrulation at high-resolution in the optically clear sea urchin embryo. The invagination sequence was imaged throughout gastrulation. One of the eight macromeres was replaced by a fluorescently labeled macromere at the 32 cell stage. At gastrulation those patches of fluorescent endoderm cell progeny initially about 4 cells wide, released a column of cells about 2 cells wide early in gastrulation and then often this column narrowed to one cell wide by the end of archenteron lengthening. The primary movement of the column of cells was in the direction of elongation of the archenteron with the narrowing (convergence) occurring as one of the two cells moved ahead of its neighbor. As the column narrowed, the labeled endoderm cells generally remained as a contiguous population of cells, rarely separated by intrusion of a lateral unlabeled cell. This longitudinal cell migration mechanism was assessed quantitatively and accounted for almost 90% of the elongation process. Much of the extension was the contribution of Veg2 endoderm with a minor contribution late in gastrulation by Veg1 endoderm cells. We also analyzed the contribution of cell divisions to elongation. Endoderm cells in Lytechinus variagatus were determined to go through approximately one cell doubling during gastrulation. That doubling occurs without a net increase in cell mass, but the question remained as to whether oriented divisions might contribute to archenteron elongation. We learned that indeed there was a biased orientation of cell divisions along the plane of archenteron elongation, but when the impact of that bias was analyzed quantitatively, it contributed a maximum 15% to the total elongation of the gut. The major driver of archenteron elongation in the sea urchin, Lytechinus variagatus, is directed movement of Veg2 endoderm cells as a narrowing column along the plane of elongation. The narrowing occurs as cells in the column converge as they migrate, so that the combination of migration and the angular convergence provide the major component of the lengthening. A minor contributor to elongation is oriented cell divisions that contribute to the lengthening but no more than about 15%. Copyright © 2017 Elsevier B.V. All rights reserved.
Ackley, Brian D
2014-08-01
During the development of the nervous system, neurons encounter signals that inform their outgrowth and polarization. Understanding how these signals combinatorially function to pattern the nervous system is of considerable interest to developmental neurobiologists. The Wnt ligands and their receptors have been well characterized in polarizing cells during asymmetric cell division. The planar cell polarity (PCP) pathway is also critical for cell polarization in the plane of an epithelium. The core set of PCP genes include members of the conserved Wnt-signaling pathway, such as Frizzled and Disheveled, but also the cadherin-domain protein Flamingo. In Drosophila, the Fat and Dachsous cadherins also function in PCP, but in parallel to the core PCP components. C. elegans also have two Fat-like and one Dachsous-like cadherins, at least one of which, cdh-4, contributes to neural development. In C. elegans Wnt ligands and the conserved PCP genes have been shown to regulate a number of different events, including embryonic cell polarity, vulval morphogenesis, and cell migration. As is also observed in vertebrates, the Wnt and PCP genes appear to function to primarily provide information about the anterior to posterior axis of development. Here, we review the recent work describing how mutations in the Wnt and core PCP genes affect axon guidance and synaptogenesis in C. elegans. © 2013 Wiley Periodicals, Inc.
Orienting Paramecium with intense static magnetic fields
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl
2004-03-01
Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).
Hippo Signaling Suppresses Cell Ploidy and Tumorigenesis through Skp2.
Zhang, Shihao; Chen, Qinghua; Liu, Qingxu; Li, Yuxi; Sun, Xiufeng; Hong, Lixin; Ji, Suyuan; Liu, Chengyan; Geng, Jing; Zhang, Weiji; Lu, Zhonglei; Yin, Zhen-Yu; Zeng, Yuanyuan; Lin, Kwang-Huei; Wu, Qiao; Li, Qiyuan; Nakayama, Keiko; Nakayama, Keiich I; Deng, Xianming; Johnson, Randy L; Zhu, Liang; Gao, Daming; Chen, Lanfen; Zhou, Dawang
2017-05-08
Polyploidy can lead to aneuploidy and tumorigenesis. Here, we report that the Hippo pathway effector Yap promotes the diploid-polyploid conversion and polyploid cell growth through the Akt-Skp2 axis. Yap strongly induces the acetyltransferase p300-mediated acetylation of the E3 ligase Skp2 via Akt signaling. Acetylated Skp2 is exclusively localized to the cytosol, which causes hyper-accumulation of the cyclin-dependent kinase inhibitor p27, leading to mitotic arrest and subsequently cell polyploidy. In addition, the pro-apoptotic factors FoxO1/3 are overly degraded by acetylated Skp2, resulting in polyploid cell division, genomic instability, and oncogenesis. Importantly, the depletion or inactivation of Akt or Skp2 abrogated Hippo signal deficiency-induced liver tumorigenesis, indicating their epistatic interaction. Thus, we conclude that Hippo-Yap signaling suppresses cell polyploidy and oncogenesis through Skp2. Copyright © 2017 Elsevier Inc. All rights reserved.
Calibrated mitotic oscillator drives motile ciliogenesis.
Al Jord, Adel; Shihavuddin, Asm; Servignat d'Aout, Raphaël; Faucourt, Marion; Genovesio, Auguste; Karaiskou, Anthi; Sobczak-Thépot, Joëlle; Spassky, Nathalie; Meunier, Alice
2017-11-10
Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
[Generation continuity and integration].
Zakhvatkin, Iu A
2008-01-01
Transformation of the cyclic morphoprocesses in Protista toward the terminal-cyclic morphoprocesses in Metazoa had lead to integration of the fomer's life circles into the latter's ontogenesis and began to supply the newly emerging ecosystems with the regular income of mortomasses. According to the palintomic hypothesis of A.A. Zakhvatkin, it was the egg that became a means of the metazoan generation continuity, and not the half set of organells acquired by descendants of a divided maternal cell in Protozoa. Origin of Metazoa and of their ontogenesis was accomplished by hypetrophic distomy and subsequent palintomic division of the protist parental cell, these processes being comparable to the ovogenesis and ovocyte division in the Metazoa. Division process in the most primitive metazoans, Leptolida and Calcarea, retained certains features of its palintomic nature that are clear in the Ctenophora, the latter though specific being most similar in this respect to the spongs and not to the Coelenterata whith whom they were united in the same phylum formerly. The ovogenesis perfection controlled by the maternal organism and leading to an increment of the nuclear-plasmic tension due to enrichment of egg with the yolk, promoted the embrionization of development and formation of the egg morphogenetic environment providing for the earlier formation processes without participation of the parental recombined genotypes. With all this, far earlier appearence of symmetry elements of definitive forms is embriogenesis along the ascending trend from the lower Metazoa to the most advanced insects. The unordered correspondence of the polarity axis of egg and the oral-aboral axis of blastula-like larva (1) is replaced by protaxony (2) in which these axes coincide, all formation processes reaching their perfection in the homoquadrant spiral division of annelids, which became a means of ovoplasma segregation. Afterward, a herequadrant division and plagioxony are developed in the course of emergence of bilateral symmetry and embrionization in Clitellata (3), in which principal morphological axes become intersected. With the transition to arthropodes, the spiral division degenerates in a variaty of forms (desintegrative variaiton) and losts its connection with the ovoplasma segregation, which occurs beforehand in the ovogenesis. Connection between parental organism and its progeny becomes more close. Transformation of the ovary into ovariol and villogenesis intensification appeared to be of prime importance in the evoluiton of insects. Their eggs elongated and more or less bilateral symmetrical. The nuclear-plasmic interrelation becomes even more tense, and the enormous yolk store makes the developing embryo to the orientational blasokyneses. An orthoplagioaxony (4) and lastly orhoaxony (5) emerge in the higher Diptera and Hymenoptera, in which morphological axes of the egg, the embryo, and the larva coincide. This is accomplished by the maximal integration of generations, as far as all germs of the organs of larvae and even emagoes appeared to be preformed in the ovogenesis.
Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9.
Katakowski, Mark; Charteris, Nicholas; Chopp, Michael; Khain, Evgeniy
2016-12-01
The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.
Sausedo, R A; Schoenwolf, G C
1994-05-01
Formation and extension of the notochord (i.e., notogenesis) is one of the earliest and most obvious events of axis development in vertebrate embryos. In birds and mammals, prospective notochord cells arise from Hensen's node and come to lie beneath the midline of the neural plate. Throughout the period of neurulation, the notochord retains its close spatial relationship with the developing neural tube and undergoes rapid extension in concert with the overlying neuroepithelium. In the present study, we examined notochord development quantitatively in mouse embryos. C57BL/6 mouse embryos were collected at 8, 8.5, 9, 9.5, and 10 days of gestation. They were then embedded in paraffin and sectioned transversely. Serial sections from 21 embryos were stained with Schiff's reagent according to the Feulgen-Rossenbeck procedure and used for quantitative analyses of notochord extension. Quantitative analyses revealed that extension of the notochord involves cell division within the notochord proper and cell rearrangement within the notochordal plate (the immediate precursor of the notochord). In addition, extension of the notochord involves cell accretion, that is, the addition of cells to the notochord's caudal end, a process that involves considerable cell rearrangement at the notochordal plate-node interface. Extension of the mouse notochord occurs similarly to that described previously for birds (Sausedo and Schoenwolf, 1993 Anat. Rec. 237:58-70). That is, in both birds (i.e., quail and chick) and mouse embryos, notochord extension involves cell division, cell rearrangement, and cell accretion. Thus higher vertebrates utilize similar morphogenetic movements to effect notogenesis.
Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis.
Monteiro, João M; Pereira, Ana R; Reichmann, Nathalie T; Saraiva, Bruno M; Fernandes, Pedro B; Veiga, Helena; Tavares, Andreia C; Santos, Margarida; Ferreira, Maria T; Macário, Vânia; VanNieuwenhze, Michael S; Filipe, Sérgio R; Pinho, Mariana G
2018-02-22
Peptidoglycan is the main component of the bacterial wall and protects cells from the mechanical stress that results from high intracellular turgor. Peptidoglycan biosynthesis is very similar in all bacteria; bacterial shapes are therefore mainly determined by the spatial and temporal regulation of peptidoglycan synthesis rather than by the chemical composition of peptidoglycan. The form of rod-shaped bacteria, such as Bacillus subtilis or Escherichia coli, is generated by the action of two peptidoglycan synthesis machineries that act at the septum and at the lateral wall in processes coordinated by the cytoskeletal proteins FtsZ and MreB, respectively. The tubulin homologue FtsZ is the first protein recruited to the division site, where it assembles in filaments-forming the Z ring-that undergo treadmilling and recruit later divisome proteins. The rate of treadmilling in B. subtilis controls the rates of both peptidoglycan synthesis and cell division. The actin homologue MreB forms discrete patches that move circumferentially around the cell in tracks perpendicular to the long axis of the cell, and organize the insertion of new cell wall during elongation. Cocci such as Staphylococcus aureus possess only one type of peptidoglycan synthesis machinery, which is diverted from the cell periphery to the septum in preparation for division. The molecular cue that coordinates this transition has remained elusive. Here we investigate the localization of S. aureus peptidoglycan biosynthesis proteins and show that the recruitment of the putative lipid II flippase MurJ to the septum, by the DivIB-DivIC-FtsL complex, drives peptidoglycan incorporation to the midcell. MurJ recruitment corresponds to a turning point in cytokinesis, which is slow and dependent on FtsZ treadmilling before MurJ arrival but becomes faster and independent of FtsZ treadmilling after peptidoglycan synthesis activity is directed to the septum, where it provides additional force for cell envelope constriction.
Deconstructing transcriptional heterogeneity in pluripotent stem cells
Shalek, Alex K.; Satija, Rahul; DaleyKeyser, AJay; Li, Hu; Zhang, Jin; Pardee, Keith; Gennert, David; Trombetta, John J.; Ferrante, Thomas C.; Regev, Aviv; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Pluripotent stem cells (PSCs) are capable of dynamic interconversion between distinct substates, but the regulatory circuits specifying these states and enabling transitions between them are not well understood. We set out to characterize transcriptional heterogeneity in PSCs by single-cell expression profiling under different chemical and genetic perturbations. Signaling factors and developmental regulators show highly variable expression, with expression states for some variable genes heritable through multiple cell divisions. Expression variability and population heterogeneity can be influenced by perturbation of signaling pathways and chromatin regulators. Strikingly, either removal of mature miRNAs or pharmacologic blockage of signaling pathways drives PSCs into a low-noise ground state characterized by a reconfigured pluripotency network, enhanced self-renewal, and a distinct chromatin state, an effect mediated by opposing miRNA families acting on the c-myc / Lin28 / let-7 axis. These data illuminate the nature of transcriptional heterogeneity in PSCs. PMID:25471879
Storlazzi, Aurora; Tessé, Sophie; Gargano, Silvana; James, Françoise; Kleckner, Nancy; Zickler, Denise
2003-01-01
Chromosomal processes related to formation and function of meiotic chiasmata have been analyzed in Sordaria macrospora. Double-strand breaks (DSBs), programmed or γ-rays-induced, are found to promote four major events beyond recombination and accompanying synaptonemal complex formation: (1) juxtaposition of homologs from long-distance interactions to close presynaptic coalignment at midleptotene; (2) structural destabilization of chromosomes at leptotene/zygotene, including sister axis separation and fracturing, as revealed in a mutant altered in the conserved, axis-associated cohesin-related protein Spo76/Pds5p; (3) exit from the bouquet stage, with accompanying global chromosome movements, at zygotene/pachytene (bouquet stage exit is further found to be a cell-wide regulatory transition and DSB transesterase Spo11p is suggested to have a new noncatalytic role in this transition); (4) normal occurrence of both meiotic divisions, including normal sister separation. Functional interactions between DSBs and the spo76-1 mutation suggest that Spo76/Pds5p opposes local destabilization of axes at developing chiasma sites and raise the possibility of a regulatory mechanism that directly monitors the presence of chiasmata at metaphase I. Local chromosome remodeling at DSB sites appears to trigger an entire cascade of chromosome movements, morphogenetic changes, and regulatory effects that are superimposed upon a foundation of DSB-independent processes. PMID:14563680
Calcium in Gravitropism of the Moss Pohlia nutans (Hedw.) Lindb. protonemata
NASA Astrophysics Data System (ADS)
Khorkavtsiv, O. Ya; Demkiv, O. T.; Khorkavtsiv, Ya. D.
Protonemata of mosses of Pohlia nutans grow both by extension and division of single apical cells which are negatively gravitropic in darkness. The fluorescence of Ca2+ increased in the tip of apical cells from the first hours of gravitropism stimulation. Cytochemical investigations confirmed the existence of a well pronounced tip-to-base Ca2+-gradient, its formation being favoured by localization of calcium influx in the tip of the apical cell. Measurement of the cytochemical reaction intensity showed that the level of Ca2+-ATFase activity is low in apex and increases towards the base of the apical cell. The gravitropic protonemata and filaments which grew on the clinostat showed similar distributions of the Ca2+ and Ca2+-ATFase activity along the apical cell axis. Thus, these data demonstrate that growing apical cells of gravitropic protonemata have a high tip-to-base Ca2+ gradient, the Ca2+ transport being afforded by Ca2+-ATFase.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Metamorphosis of Magnetospirillum magneticum AMB-1 cells
NASA Astrophysics Data System (ADS)
Zhang, Fengli; Yu-Zhang, Kui; Zhao, Sanjun; Xiao, Tian; Denis, Michel; Wu, Longfei
2010-03-01
Magnetospirillum magneticum strain AMB-1 belongs to the family of magnetotactic bacteria. It possesses a magnetosome chain aligning, with the assistance of cytoskeleton filaments MamK, along the long axis of the spiral cells. Most fresh M. magneticum AMB-1 cells exhibit spiral morphology. In addition, other cell shapes such as curved and spherical were also observed in this organism. Interestingly, the spherical cell shape increased steadily with prolonged incubation time. As the actin-like cytoskeleton protein MreB is involved in maintenance of cell shapes in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, the correlation between MreB protein levels and cell shape was investigated in this study. Immunoblotting analysis showed that the quantity of MreB decreased when the cell shape changed along with incubation time. As an internal control, the quantity of MamA was not obviously changed under the same conditions. Cell shape directs cell-wall synthesis during growth and division. MreB is required for maintaining the cell shape. Thus, MreB might play an essential role in maintaining the spiral shape of M. magneticum AMB-1 cells.
Regulation of cell-fate determination in Dictyostelium.
Brown, J M; Firtel, R A
1999-12-15
A key step in the development of all multicellular organisms is the differentiation of specialized cell types. The eukaryotic microorganism Dictyostelium discoideum provides a unique experimental system for studying cell-type determination and spatial patterning in a developing multicellular organism. Unlike metazoans, which become multicellular by undergoing many rounds of cell division after fertilization of an egg, the social amoeba Dictyostelium achieves multicellularity by the aggregation of approximately 10(5) cells in response to nutrient depletion. Following aggregation, cell-type differentiation and morphogenesis result in a multicellular organism with only a few cell types that exhibit a defined patterning along the anterior-posterior axis of the organism. Analysis of the mechanisms that control these processes is facilitated by the relative simplicity of Dictyostelium development and the availability of molecular, genetic, and cell biological tools. Interestingly, analysis has shown that many molecules that play integral roles in the development of higher eukaryotes, such as PKA, STATs, and GSK-3, are also essential for cell-type differentiation and patterning in Dictyostelium. The role of these and other signaling pathways in the induction, maintenance, and patterning of cell types during Dictyostelium development is discussed.
NASA Astrophysics Data System (ADS)
Yang, Ruonan; Sen, Pratik; O'Connor, B. T.; Kudenov, M. W.
2017-08-01
An intrinsic coincident full-Stokes polarimeter is demonstrated by using stain-aligned polymer-based organic photovoltaics (OPVs) which can preferentially absorb certain polarized states of incident light. The photovoltaic-based polarimeter is capable of measuring four stokes parameters by cascading four semitransparent OPVs in series along the same optical axis. Two wave plates were incorporated into the system to modulate the S3 stokes parameter so as to reduce the condition number of the measurement matrix. The model for the full-Stokes polarimeter was established and validated, demonstrating an average RMS error of 0.84%. The optimization, based on minimizing the condition number of the 4-cell OPV design, showed that a condition number of 2.4 is possible. Performance of this in-line polarimeter concept was compared to other polarimeter architectures, including Division of Time (DoT), Division of Amplitude (DoAm), Division of Focal Plane (DoFP), and Division of Aperture (DoA) from signal-to-noise ratio (SNR) perspective. This in-line polarimeter concept has the potential to enable both high temporal (as compared with a DoT polarimeter) and high spatial resolution (as compared with DoFP and DoA polarimeters). We conclude that the intrinsic design has the same √2 SNR advantage as the DoAm polarimeter, but with greater compactness.
The birth of embryonic pluripotency
Boroviak, Thorsten; Nichols, Jennifer
2014-01-01
Formation of a eutherian mammal requires concurrent establishment of embryonic and extraembryonic lineages. The functions of the trophectoderm and primitive endoderm are to enable implantation in the maternal uterus, axis specification and delivery of nutrients. The pluripotent epiblast represents the founding cell population of the embryo proper, which is protected from ectopic and premature differentiation until it is required to respond to inductive cues to form the fetus. While positional information plays a major role in specifying the trophoblast lineage, segregation of primitive endoderm from epiblast depends upon gradual acquisition of transcriptional identity, directed but not initiated by fibroblast growth factor (FGF) signalling. Following early cleavage divisions and formation of the blastocyst, cells of the inner cell mass lose totipotency. Developing epiblast cells transiently attain the state of naive pluripotency and competence to self-renew in vitro as embryonic stem cells and in vivo by means of diapause. This property is lost after implantation as the epiblast epithelializes and becomes primed in preparation for gastrulation and subsequent organogenesis. PMID:25349450
Campanoni, Prisca; Nick, Peter
2005-01-01
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation. PMID:15734918
Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.
Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua
2017-05-01
Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.
Stamataki, Evangelia; Harich, Benjamin; Guignard, Léo; Preibisch, Stephan; Shorte, Spencer; Keller, Philipp J
2018-01-01
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. PMID:29595475
Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
Lee, Yoonjin; Dominy, John E; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I; Puigserver, Pere
2014-06-26
Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3β (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.
Regulation of early Xenopus development by ErbB signaling
Nie, Shuyi; Chang, Chenbei
2008-01-01
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939
Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio
2011-10-02
Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.
Kovacevic, Ismar; Bao, Zhirong
2018-01-01
C. elegans cell divisions that produce an apoptotic daughter cell exhibit Daughter Cell Size Asymmetry (DCSA), producing a larger surviving daughter cell and a smaller daughter cell fated to die. Genetic screens for mutants with defects in apoptosis identified several genes that are also required for the ability of these divisions to produce daughter cells that differ in size. One of these genes, ham-1, encodes a putative transcription factor that regulates a subset of the asymmetric cell divisions that produce an apoptotic daughter cell. In a survey of C. elegans divisions, we found that ham-1 mutations affect primarily anterior/posterior divisions that produce a small anterior daughter cell. The affected divisions include those that generate an apoptotic cell as well as those that generate two surviving cells. Our findings suggest that HAM-1 primarily promotes DCSA in a certain class of asymmetric divisions. PMID:29668718
Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division
NASA Astrophysics Data System (ADS)
Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.
2011-10-01
Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.
Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli
Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose
2016-01-01
ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194
Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi
2014-12-20
In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.
Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats
NASA Technical Reports Server (NTRS)
Maklad, A.; Fritzsch, B.
1999-01-01
The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.
Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes
Asan, Alparsan; Raiders, Stephan A.; Priess, James R.
2016-01-01
Genetic and molecular studies have provided considerable insight into how various tissue progenitors are specified in early embryogenesis, but much less is known about how those progenitors create three-dimensional tissues and organs. The C. elegans intestine provides a simple system for studying how a single progenitor, the E blastomere, builds an epithelial tube of 20 cells. As the E descendants divide, they form a primordium that transitions between different shapes over time. We used cell contours, traced from confocal optical z-stacks, to build a 3D graphic reconstruction of intestine development. The reconstruction revealed several new aspects of morphogenesis that extend and clarify previous observations. The first 8 E descendants form a plane of four right cells and four left cells; the plane arises through oriented cell divisions and VANG-1/Van Gogh-dependent repositioning of any non-planar cells. LIN-12/Notch signaling affects the left cells in the E8 primordium, and initiates later asymmetry in cell packing. The next few stages involve cell repositioning and intercalation events that shuttle cells to their final positions, like shifting blocks in a Rubik’s cube. Repositioning involves breaking and replacing specific adhesive contacts, and some of these events involve EFN-4/Ephrin, MAB-20/semaphorin-2a, and SAX-3/Robo. Once cells in the primordium align along a common axis and in the correct order, cells at the anterior end rotate clockwise around the axis of the intestine. The anterior rotation appears to align segments of the developing lumen into a continuous structure, and requires the secreted ligand UNC-6/netrin, the receptor UNC-40/DCC, and an interacting protein called MADD-2. Previous studies showed that rotation requires a second round of LIN-12/Notch signaling in cells on the right side of the primordium, and we show that MADD-2-GFP appears to be downregulated in those cells. PMID:27035721
Concerted control of Escherichia coli cell division
Osella, Matteo; Nugent, Eileen; Cosentino Lagomarsino, Marco
2014-01-01
The coordination of cell growth and division is a long-standing problem in biology. Focusing on Escherichia coli in steady growth, we quantify cell division control using a stochastic model, by inferring the division rate as a function of the observable parameters from large empirical datasets of dividing cells. We find that (i) cells have mechanisms to control their size, (ii) size control is effected by changes in the doubling time, rather than in the single-cell elongation rate, (iii) the division rate increases steeply with cell size for small cells, and saturates for larger cells. Importantly, (iv) the current size is not the only variable controlling cell division, but the time spent in the cell cycle appears to play a role, and (v) common tests of cell size control may fail when such concerted control is in place. Our analysis illustrates the mechanisms of cell division control in E. coli. The phenomenological framework presented is sufficiently general to be widely applicable and opens the way for rigorous tests of molecular cell-cycle models. PMID:24550446
Huang, Xinxin; Tian, E; Xu, Yanhua; Zhang, Hong
2009-09-15
Stem cells undergo symmetric and asymmetric division to maintain the dynamic equilibrium of the stem cell pool and also to generate a variety of differentiated cells. The homeostatic mechanism controlling the choice between self-renewal and differentiation of stem cells is poorly understood. We show here that ceh-16, encoding the C. elegans ortholog of the transcription factor Engrailed, controls symmetric and asymmetric division of stem cell-like seam cells. Loss of function of ceh-16 causes certain seam cells, which normally undergo symmetric self-renewal expansion division with both daughters adopting the seam cell fate, to divide asymmetrically with only one daughter retaining the seam cell fate. The human engrailed homolog En2 functionally substitutes the role of ceh-16 in promoting self-renewal expansion division of seam cells. Loss of function of apr-1, encoding the C. elegans homolog of the Wnt signaling component APC, results in transformation of self-renewal maintenance seam cell division to self-renewal expansion division, leading to seam cell hyperplasia. The apr-1 mutation suppresses the seam cell division defect in ceh-16 mutants. Our study reveals that ceh-16 interacts with the Wnt signaling pathway to control the choice between self-renewal expansion and maintenance division and also demonstrates an evolutionarily conserved function of engrailed in promoting cell proliferation.
Quantitative regulation of B cell division destiny by signal strength.
Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D
2008-07-01
Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.
Griffith, Megan E.; Mayer, Ulrike; Capron, Arnaud; Ngo, Quy A.; Surendrarao, Anandkumar; McClinton, Regina; Jürgens, Gerd; Sundaresan, Venkatesan
2007-01-01
Embryogenesis in Arabidopsis thaliana is marked by a predictable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arrested embryos that appear not to have established normal patterning. The defects in toz mutants differ from previously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are frequently replaced by transverse divisions and less frequently by oblique divisions, while divisions of the suspensor cells, which divide only transversely, appear generally unaffected. Expression patterns of selected embryo patterning genes are altered in the mutant embryos, implying that the positional cues required for their proper expression are perturbed by the misoriented divisions. The TOZ gene encodes a nucleolar protein containing WD repeats. Putative TOZ orthologs exist in other eukaryotes including Saccharomyces cerevisiae, where the protein is predicted to function in 18S rRNA biogenesis. We find that disruption of the Sp TOZ gene results in cell division defects in Schizosaccharomyces pombe. Previous studies in yeast and animal cells have identified nucleolar proteins that regulate the exit from M phase and cytokinesis, including factors involved in pre-rRNA processing. Our study suggests that in plant cells, nucleolar functions might interact with the processes of regulated cell divisions and influence the selection of longitudinal division planes during embryogenesis. PMID:17616738
Polarized Cell Division of Chlamydia trachomatis
Abdelrahman, Yasser; Ouellette, Scot P.; Belland, Robert J.; Cox, John V.
2016-01-01
Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments. PMID:27505160
New frontiers: discovering cilia-independent functions of cilia proteins.
Vertii, Anastassiia; Bright, Alison; Delaval, Benedicte; Hehnly, Heidi; Doxsey, Stephen
2015-10-01
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders. © 2015 The Authors.
SLK-dependent activation of ERMs controls LGN–NuMA localization and spindle orientation
Machicoane, Mickael; de Frutos, Cristina A.; Fink, Jenny; Rocancourt, Murielle; Lombardi, Yannis; Garel, Sonia; Piel, Matthieu
2014-01-01
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation. PMID:24958772
Mechanical stretch triggers rapid epithelial cell division through Piezo1.
Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J
2017-03-02
Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.
Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal
Ito, Kyoko; Ito, Keisuke
2016-01-01
Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603
Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal.
Ito, Kyoko; Ito, Keisuke
2016-10-06
Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.
Asymmetric cell division of stem cells in the lung and other systems
Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.
2014-01-01
New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740
Cell and plastid division are coordinated through the prereplication factor AtCDT1
Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine
2005-01-01
The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083
Long-range ordered vorticity patterns in living tissue induced by cell division
NASA Astrophysics Data System (ADS)
Rossen, Ninna S.; Tarp, Jens M.; Mathiesen, Joachim; Jensen, Mogens H.; Oddershede, Lene B.
2014-12-01
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range dynamics induced by cell division in an endothelial monolayer under non-flow conditions, mimicking the conditions during vessel formation or around blood clots. Cell divisions induce long-range, well-ordered vortex patterns extending several cell diameters away from the division site, in spite of the system’s low Reynolds number. Our experimental results are reproduced by a hydrodynamic continuum model simulating division as a local pressure increase corresponding to a local tension decrease. Such long-range physical communication may be crucial for embryonic development and for healing tissue, for instance around blood clots.
Targeted Approaches to Overcoming Endocrine Resistance in Breast Cancer
2011-08-01
NM_001012271 BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog AF053305 CDC20 Cell division cycle 20 homolog BG256659 CDC25B Cell division cycle...by benzimidazoles 1 homolog), BIRC5/ Survivin, CDCA8 (cell division cycle-associated protein 8), AURKB (aurora kinase B), CDC25B (cell division cycle
Izoré, Thierry; van den Ent, Fusinita
2017-01-01
A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.
Rivkin, Richard B.
1986-01-01
Silicon is an essential element for diatom frustule synthesis and is usually taken up only by dividing cells. With 68Ge, a radioactive analog of Si, the cell cycle marker event of frustule formation was identified for individual species of diatom. The frequency of cells within a population undergoing this division event was estimated, and the cell division rate was calculated. In laboratory cultures, these rates of cell division and those calculated from changes in cell numbers were similar. By dual labeling with 68Ge(OH)4 and NaH14CO3, rates of cell division and photosynthesis were coincidently measured for diatoms both in laboratory cultures and when isolated from natural populations in estuarine, offshore, and polar environments. These techniques permit the coupling between photosynthesis and cell division to be examined in situ for individual species of diatom. PMID:16347039
Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D
2015-01-01
Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118
NASA Astrophysics Data System (ADS)
Shimizu, Takashi; Eguchi, Kentaro; Nishida, Ikuo; Laukens, Kris; Witters, Erwin; van Onckelen, Harry; Nagata, Toshiyuki
2006-06-01
Effects of auxin as plant hormones are widespread; in fact in almost all aspects of plant growth and development auxin plays a pivotal role. Although auxin is required for propagating cell division in plant cells, its effect upon cell division is least understood. If auxin is depleted from the culture medium, cultured cells cease to divide. It has been demonstrated in this context that the addition of auxin to auxin-starved nondividing tobacco BY-2 cells induced semisynchronous cell division. On the other hand, there are some cell lines, named habituated cells, that can grow without auxin. The cause and reason for the habituated cells have not been clarified. A habituated cell line named 2B-13 is derived from the tobacco BY-2 cell line, which has been most intensively studied among plant cell lines. When we tried to find the difference between two cell lines of BY-2 and 2B-13 cells, we found that the addition of culture filtrated from the auxin-habituated 2B-13 cells induced semisynchronous cell division in auxin-starved BY-2 cells. The cell division factor (CDF) that is responsible for inducing cell division in auxin-starved BY-2 cells was purified to near-homogeneity by sequential passage through a hydroxyapatite column, a ConA Sepharose column and a Sephadex gel filtration column. The resulting purified fraction appeared as a single band of high molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels by silver staining and was able to induce cell division in auxin-starved BY-2 cells. Identification of the protein by MALD-TOF-MS/MS revealed that it is structurally related to P-glycoprotein from Gossypioides kirkii, which belongs to ATP-binding cassette (ABC)-transporters. The significance of CDF as a possible ABC-transporter is discussed in relationship to auxin-autotrophic growth and auxin-signaling pathway.
Division Planes Alternate in Spherical Cells of Escherichia coli
Begg, K. J.; Donachie, W. D.
1998-01-01
In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213
The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.
Juanes, Maria Angeles; Piatti, Simonetta
2016-08-01
Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.
Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie
2014-01-01
Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016
Halogenated auxins affect microtubules and root elongation in Lactuca sativa
NASA Technical Reports Server (NTRS)
Zhang, N.; Hasenstein, K. H.
2000-01-01
We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.
Quantifying cell turnover using CFSE data.
Ganusov, Vitaly V; Pilyugin, Sergei S; de Boer, Rob J; Murali-Krishna, Kaja; Ahmed, Rafi; Antia, Rustom
2005-03-01
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based "Smith-Martin" model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by using the Gett-Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates during different stages of the cell cycle.
A single-cell pedigree analysis of alternative stochastic lymphocyte fates
Hawkins, E. D.; Markham, J. F.; McGuinness, L. P.; Hodgkin, P. D.
2009-01-01
In contrast to most stimulated lymphocytes, B cells exposed to Toll-like receptor 9 ligands are nonself-adherent, allowing individual cells and families to be followed in vitro for up to 5 days. These B cells undergo phases typical of an adaptive response, dividing up to 6 times before losing the impetus for further growth and division and eventually dying by apoptosis. Using long-term microscopic imaging, accurate histories of individual lymphocyte fates were collected. Quantitative analysis of family relationships revealed that times to divide of siblings were strongly related but these correlations were progressively lost through consecutive divisions. A weaker, but significant, correlation was also found for death times among siblings. Division cessation is characterized by a loss of cell growth and the division in which this occurs is strongly inherited from the original founder cell and is related to the size this cell reaches before its first division. Thus, simple division-based dilution of factors synthesized during the first division may control the maximum division reached by stimulated cells. The stochastic distributions of times to divide, times to die, and divisions reached are also measured. Together, these results highlight the internal cellular mechanisms that control immune responses and provide a foundation for the development of new mathematical models that are correct at both single-cell and population levels. PMID:19633185
The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.
Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica
2016-01-01
Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.
The stem cell division theory of cancer.
López-Lázaro, Miguel
2018-03-01
All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the disease and has important implications for cancer prevention and therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Huang, S; Law, P; Francis, K; Palsson, B O; Ho, A D
1999-10-15
We have developed a time-lapse camera system to follow the replication history and the fate of hematopoietic stem cells (HSC) at a single-cell level. Combined with single-cell culture, we correlated the early replication behavior with colony development after 14 days. The membrane dye PKH26 was used to monitor cell division. In addition to multiple, synchronous, and symmetric divisions, single-sorted CD34(+)/CD38(-) cells derived from fetal liver (FLV) also gave rise to a daughter cell that remained quiescent for up to 8 days, whereas the other daughter cell proliferated exponentially. Upon separation and replating as single cells onto medium containing a cytokine cocktail, 60.6% +/- 9.8% of the initially quiescent cells (PKH26 bright) gave rise again to colonies and 15.8% +/- 7.8% to blast colonies that could be replated. We have then determined the effects of various regulatory molecules on symmetry of initial cell divisions. After single-cell sorting, the CD34(+)/CD38(-) cells derived from FLV were exposed to flt3-ligand, thrombopoietin, stem cell factor (SCF), or medium containing a cytokine cocktail (with SCF, interleukin-3, interleukin-6, granulocyte-macrophage colony-stimulating factor, and erythropoietin). Whereas mitotic rate, colony efficiency, and asymmetric divisions could be altered using various regulatory molecules, the asymmetric division index, defined as the number of asymmetric divisions versus the number of dividing cells, was not altered significantly. This observation suggests that, although lineage commitment and cell proliferation can be skewed by extrinsic signaling, symmetry of early divisions is probably under the control of intrinsic factors.
Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua
2017-06-01
Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.
Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang
2016-01-01
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332
Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.
Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek
2017-01-01
Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.
Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP.
Beilharz, Katrin; Nováková, Linda; Fadda, Daniela; Branny, Pavel; Massidda, Orietta; Veening, Jan-Willem
2012-04-10
How the human pathogen Streptococcus pneumoniae coordinates cell-wall synthesis during growth and division to achieve its characteristic oval shape is poorly understood. The conserved eukaryotic-type Ser/Thr kinase of S. pneumoniae, StkP, previously was reported to phosphorylate the cell-division protein DivIVA. Consistent with a role in cell division, GFP-StkP and its cognate phosphatase, GFP-PhpP, both localize to the division site. StkP localization depends on its penicillin-binding protein and Ser/Thr-associated domains that likely sense uncross-linked peptidoglycan, because StkP and PhpP delocalize in the presence of antibiotics that target the latest stages of cell-wall biosynthesis and in cells that have stopped dividing. Time-lapse microscopy shows that StkP displays an intermediate timing of recruitment to midcell: StkP arrives shortly after FtsA but before DivIVA. Furthermore, StkP remains at midcell longer than FtsA, until division is complete. Cells mutated for stkP are perturbed in cell-wall synthesis and display elongated morphologies with multiple, often unconstricted, FtsA and DivIVA rings. The data show that StkP plays an important role in regulating cell-wall synthesis and controls correct septum progression and closure. Overall, our results indicate that StkP signals information about the cell-wall status to key cell-division proteins and in this way acts as a regulator of cell division.
Chromosome segregation drives division site selection in Streptococcus pneumoniae.
van Raaphorst, Renske; Kjos, Morten; Veening, Jan-Willem
2017-07-18
Accurate spatial and temporal positioning of the tubulin-like protein FtsZ is key for proper bacterial cell division. Streptococcus pneumoniae (pneumococcus) is an oval-shaped, symmetrically dividing opportunistic human pathogen lacking the canonical systems for division site control (nucleoid occlusion and the Min-system). Recently, the early division protein MapZ was identified and implicated in pneumococcal division site selection. We show that MapZ is important for proper division plane selection; thus, the question remains as to what drives pneumococcal division site selection. By mapping the cell cycle in detail, we show that directly after replication both chromosomal origin regions localize to the future cell division sites, before FtsZ. Interestingly, Z-ring formation occurs coincidently with initiation of DNA replication. Perturbing the longitudinal chromosomal organization by mutating the condensin SMC, by CRISPR/Cas9-mediated chromosome cutting, or by poisoning DNA decatenation resulted in mistiming of MapZ and FtsZ positioning and subsequent cell elongation. Together, we demonstrate an intimate relationship between DNA replication, chromosome segregation, and division site selection in the pneumococcus, providing a simple way to ensure equally sized daughter cells.
Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G
2016-01-01
Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111
A crucial step in cell division identified | Center for Cancer Research
When cell division doesn’t go according to plan, the resulting daughter cells can become unstable or even cancerous. A team of CCR investigators has now discovered a crucial step required for normal cell division to occur. Read more...
All Tumor Cells Are Not Created Equal | Center for Cancer Research
Cell division is commonly thought of as a process whereby one cell gives rise to two identical daughter cells. However, rare cell divisions are asymmetric, generating daughter cells that may differ in size, developmental potential, or even DNA content. The ability of stem cells to undergo asymmetric division allows them to self-renew while simultaneously generate daughter
The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus
Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.
2014-01-01
The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333
Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast
Bohnert, K. Adam; Gould, Kathleen L.
2012-01-01
The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state. PMID:23093943
Cell division plane orientation based on tensile stress in Arabidopsis thaliana
Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier
2016-01-01
Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson–Dumais rule generalizes Errera’s rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson–Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson–Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908
All Tumor Cells Are Not Created Equal | Center for Cancer Research
Cell division is commonly thought of as a process whereby one cell gives rise to two identical daughter cells. However, rare cell divisions are asymmetric, generating daughter cells that may differ in size, developmental potential, or even DNA content. The ability of stem cells to undergo asymmetric division allows them to self-renew while simultaneously generate daughter cells committed to differentiating into specialized cell types.
Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.
Moore, Darcie L; Jessberger, Sebastian
2017-01-01
Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.
2016-10-01
Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.
Universal rule for the symmetric division of plant cells
Besson, Sébastien; Dumais, Jacques
2011-01-01
The division of eukaryotic cells involves the assembly of complex cytoskeletal structures to exert the forces required for chromosome segregation and cytokinesis. In plants, empirical evidence suggests that tensional forces within the cytoskeleton cause cells to divide along the plane that minimizes the surface area of the cell plate (Errera’s rule) while creating daughter cells of equal size. However, exceptions to Errera’s rule cast doubt on whether a broadly applicable rule can be formulated for plant cell division. Here, we show that the selection of the plane of division involves a competition between alternative configurations whose geometries represent local area minima. We find that the probability of observing a particular division configuration increases inversely with its relative area according to an exponential probability distribution known as the Gibbs measure. Moreover, a comparison across land plants and their most recent algal ancestors confirms that the probability distribution is widely conserved and independent of cell shape and size. Using a maximum entropy formulation, we show that this empirical division rule is predicted by the dynamics of the tense cytoskeletal elements that lead to the positioning of the preprophase band. Based on the fact that the division plane is selected from the sole interaction of the cytoskeleton with cell shape, we posit that the new rule represents the default mechanism for plant cell division when internal or external cues are absent. PMID:21383128
Beemster, Gerrit T.S.; Baskin, Tobias I.
1998-01-01
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement. PMID:9536070
The distinctive cell division interactome of Neisseria gonorrhoeae.
Zou, Yinan; Li, Yan; Dillon, Jo-Anne R
2017-12-12
Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsA Ng were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.
Sasaki, Hiroshi
2015-12-01
During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fenton, Andrew K; Gerdes, Kenn
2013-07-03
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.
Fenton, Andrew K; Gerdes, Kenn
2013-01-01
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB. PMID:23756461
Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli
Männik, Jaana; O’Neill, Jordan C.
2017-01-01
Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. PMID:28234902
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N; Alonso, Jose M; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.
Ondracka, Andrej; Dudin, Omaya; Ruiz-Trillo, Iñaki
2018-06-18
Coordination of the cell division cycle with the growth of the cell is critical to achieve cell size homeostasis [1]. Mechanisms coupling the cell division cycle with cell growth have been described across diverse eukaryotic taxa [2-4], but little is known about how these processes are coordinated in organisms that undergo more complex life cycles, such as coenocytic growth. Coenocytes (multinucleate cells formed by sequential nuclear divisions without cytokinesis) are commonly found across the eukaryotic kingdom, including in animal and plant tissues and several lineages of unicellular eukaryotes [5]. Among the organisms that form coenocytes are ichthyosporeans, a lineage of unicellular holozoans that are of significant interest due to their phylogenetic placement as one of the closest relatives of animals [6]. Here, we characterize the coenocytic cell division cycle in the ichthyosporean Sphaeroforma arctica. We observe that, in laboratory conditions, S. arctica cells undergo a uniform and easily synchronizable coenocytic cell cycle, reaching up to 128 nuclei per cell before cellularization and release of daughter cells. Cycles of nuclear division occur synchronously within the coenocyte and in regular time intervals (11-12 hr). We find that the growth of cell volume is dependent on concentration of nutrients in the media; in contrast, the rate of nuclear division cycles is constant over a range of nutrient concentrations. Together, the results suggest that nuclear division cycles in the coenocytic growth of S. arctica are driven by a timer, which ensures periodic and synchronous nuclear cycles independent of the cell size and growth. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grula, E.A.; Grula, M.M.
Inhibition of cell division in an Erwinia sp. occurs in the presence of any of six D-amino acids, penicillin, or ultraviolet light. Cell-division inhibition caused by D-amino acids is pH-dependent; however, elongation caused by penicillin occurs over a wide range of pH. Bulging and spheroplast formation in the presence of penicillin occurs only at pH values below 7.6; however, division continues to be inhibited at higher pH levels. Reversal of cell-division inhibition caused by two D-amino acids (phenylalanine and histidine) can be partially overcome by their respective L-isomers. Divalent cations (Zn, Ca, Mn) cause varying amounts of reversal of divisionmore » inhibition in all systems studied; each system appears to have an individual requirement. All induced division inhibitions, including that caused by penicillin, can be reversed by pantoyl lactone or omega methylpantoyl lactone. Evidence is presented and discussed concerning the possible importance of pantoyl lactone and divalent cations in terminal steps of the cell-division process in this organism. (auth)« less
Grinenko, Tatyana; Eugster, Anne; Thielecke, Lars; Ramasz, Beáta; Krüger, Anja; Dietz, Sevina; Glauche, Ingmar; Gerbaulet, Alexander; von Bonin, Malte; Basak, Onur; Clevers, Hans; Chavakis, Triantafyllos; Wielockx, Ben
2018-05-15
Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67 RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.
Kvitko, O V; Koneva, I I; Sheiko, Y I; Anisovich, M V
2005-12-01
The causes of the indefinite propagation of immortalized cell populations remain insufficiently understood, that hinders the research of such fundamental processes as ageing and cancer. In this study the interrelations between clonal proliferation and abnormalities of mitotic divisions in the immortalized cell line established from the mouse embryo were investigated with the aid of computerized microscopy of living cells. 3 mitoses with three daughter cells and 7 asymmetric mitoses which generated two daughter cells of conspicuously different sizes were registered among 71 mitotic divisions in the individual cell genealogy. Abnormal mitotic divisions either did not slow the proliferation in cell clones compared with progenies of cells that divided by means of normal mitoses or were followed by the acceleration of divisions in consecutive cell generations. These data suggest that abnormal mitotic divisions may contribute to the maintenance of the immortalized state of cell populations by means of generating chromosomal instability.
Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli
Clark, Michelle W.; Yie, Anna M.; Eder, Elizabeth K.; Dennis, Richard G.; Basting, Preston J.; Martinez, Keith A.; Jones, Brian D.; Slonczewski, Joan L.
2015-01-01
Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2–7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress. PMID:26713733
Two distinct cytokinesis pathways drive trypanosome cell division initiation from opposite cell ends
Zhou, Qing; Gu, Jianhua; Lun, Zhao-Rong; Ayala, Francisco J.; Li, Ziyin
2016-01-01
Cytokinesis in Trypanosoma brucei, an early branching protozoan, occurs along its longitudinal axis uni-directionally from the anterior tip of the new flagellum attachment zone filament toward the cell’s posterior end. However, the underlying mechanisms remain elusive. Here we report that cytokinesis in T. brucei is regulated by a concerted action of Polo-like kinase, Aurora B kinase, and a trypanosome-specific protein CIF1. Phosphorylation of CIF1 by Polo-like kinase targets it to the anterior tip of the new flagellum attachment zone filament, where it subsequently recruits Aurora B kinase to initiate cytokinesis. Consistent with its role, CIF1 depletion inhibits cytokinesis initiation from the anterior end of the cell, but, surprisingly, triggers cytokinesis initiation from the posterior end of the cell, suggesting the activation of an alternative cytokinesis from the opposite cell end. Our results reveal the mechanistic roles of CIF1 and Polo-like kinase in cytokinesis initiation and elucidate the mechanism underlying the recruitment of Aurora B kinase to the cytokinesis initiation site at late anaphase. These findings also delineate a signaling cascade controlling cytokinesis initiation from the anterior end of the cell and uncover a backup cytokinesis that is initiated from the posterior end of the cell when the typical anterior-to-posterior cytokinesis is compromised. PMID:26929336
Quantitative Analysis of Statics and Dynamics of Actin Cables in Fission Yeast
NASA Astrophysics Data System (ADS)
Yusuf, Eddy; Wu, Jian-Qiu; Vavylonis, Dimitrios
2010-03-01
The assembly of actin and tubulin proteins into long filaments and bundles, i.e. closely-packed filaments, underlies important cellular processes such as cell motility, intracellular transport, and cell division. Recent theoretical and experimental work has addressed the nonequilibrium dynamics of single microtubules within live cells [1]. Actin filaments usually form dense networks that prevents microscopic imaging of individual filaments or bundles. Here, we studied actin dynamics using fission yeast that has low-density actin cytoskeleton consisting of actin cables (actin bundles aligned along the long axis of the cell) and ``actin patches.'' Yeast cells expressing GFP-CHD were imaged by 3D confocal microscopy. Stretching open active contours [2] were used to segment and track individual actin cables. We analyzed their curvature distribution, the tangent correlation, and the temporal bending amplitude fluctuations. We contrast our findings to equilibrium fluctuating semiflexible polymers and to microtubules in cells. We calculate the important time and length scales for the actin cables. We also discuss our findings within the broad context of understanding actin assembly in cells. [1] C. P. Brangwynne et. al., Phys. Rev. Lett. 100, 118104 (2008) [2] H. Li et. al., Proc. of the IEEE Int'l Symposium on Biomedical Imaging: From Nano to Macro, ISBI'09
Yabe, Taijiro; Ge, Xiaoyan; Pelegri, Francisco
2007-12-01
A female-sterile zebrafish maternal-effect mutation in cellular atoll (cea) results in defects in the initiation of cell division starting at the second cell division cycle. This phenomenon is caused by defects in centrosome duplication, which in turn affect the formation of a bipolar spindle. We show that cea encodes the centriolar coiled-coil protein Sas-6, and that zebrafish Cea/Sas-6 protein localizes to centrosomes. cea also has a genetic paternal contribution, which when mutated results in an arrested first cell division followed by normal cleavage. Our data supports the idea that, in zebrafish, paternally inherited centrosomes are required for the first cell division while maternally derived factors are required for centrosomal duplication and cell divisions in subsequent cell cycles. DNA synthesis ensues in the absence of centrosome duplication, and the one-cycle delay in the first cell division caused by cea mutant sperm leads to whole genome duplication. We discuss the potential implications of these findings with regards to the origin of polyploidization in animal species. In addition, the uncoupling of developmental time and cell division count caused by the cea mutation suggests the presence of a time window, normally corresponding to the first two cell cycles, which is permissive for germ plasm recruitment.
Zhang, Tao; Paulson, James R; Bakhrebah, Muhammed; Kim, Ji Hun; Nowell, Cameron; Kalitsis, Paul; Hudson, Damien F
2016-05-01
Condensin is an integral component of the mitotic chromosome condensation machinery, which ensures orderly segregation of chromosomes during cell division. In metazoans, condensin exists as two complexes, condensin I and II. It is not yet clear what roles these complexes may play outside mitosis, and so we have examined their behaviour both in normal interphase and in premature chromosome condensation (PCC). We find that a small fraction of condensin I is retained in interphase nuclei, and our data suggests that this interphase nuclear condensin I is active in both gene regulation and chromosome condensation. Furthermore, live cell imaging demonstrates condensin II dramatically increases on G1 nuclei following completion of mitosis. Our PCC studies show condensins I and II and topoisomerase II localise to the chromosome axis in G1-PCC and G2/M-PCC, while KIF4 binding is altered. Individually, condensins I and II are dispensable for PCC. However, when both are knocked out, G1-PCC chromatids are less well structured. Our results define new roles for the condensins during interphase and provide new information about the mechanism of PCC.
Using stochastic cell division and death to probe minimal units of cellular replication
NASA Astrophysics Data System (ADS)
Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund
2018-03-01
The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.
RanGAP1 is a continuous marker of the Arabidopsis cell division plane
Xu, Xianfeng Morgan; Zhao, Qiao; Rodrigo-Peiris, Thushani; Brkljacic, Jelena; He, Chao Sylvia; Müller, Sabine; Meier, Iris
2008-01-01
In higher plants, the plane of cell division is faithfully predicted by the preprophase band (PPB). The PPB, a cortical ring of microtubules and F-actin, disassembles upon nuclear-envelope breakdown. During cytokinesis, the expanding cell plate fuses with the plasma membrane at the cortical division site, the site of the former PPB. The nature of the “molecular memory” that is left behind by the PPB and is proposed to guide the cell plate to the cortical division site is unknown. RanGAP is the GTPase activating protein of the small GTPase Ran, which provides spatial information for nucleocytoplasmic transport and various mitotic processes in animals. Here, we show that, in dividing root cells, Arabidopsis RanGAP1 concentrates at the PPB and remains associated with the cortical division site during mitosis and cytokinesis, requiring its N-terminal targeting domain. In a fass/ton2 mutant, which affects PPB formation, RanGAP1 recruitment to the PPB site is lost, while its PPB retention is microtubule-independent. RanGAP1 persistence at the cortical division site, but not its initial accumulation at the PPB requires the 2 cytokinesis-regulating kinesins POK1 and POK2. Depletion of RanGAP by inducible RNAi leads to oblique cell walls and cell-wall stubs in root cell files, consistent with cytokinesis defects. We propose that Arabidopsis RanGAP, a continuous positive protein marker of the plant division plane, has a role in spatial signaling during plant cell division. PMID:19011093
Cell division and endoreduplication: doubtful engines of vegetative growth.
John, Peter C L; Qi, Ruhu
2008-03-01
Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.
Dynamic self-organisation of haematopoiesis and (a)symmetric cell division.
Måløy, Marthe; Måløy, Frode; Jakobsen, Per; Olav Brandsdal, Bjørn
2017-02-07
A model of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still, the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and regenerate undifferentiated and differentiated cells when necessary, due to self-organisation. As far as we know, no previous model implements symmetric and asymmetric division as the result of self-organisation. The model presented in this paper is inspired by experiments on the Drosophila germline stem cell, which imply that under normal conditions, the stem cells typically divide asymmetrically, whereas during regeneration, the rate of symmetric division increases. Moreover, the model can reproduce several of the results from experiments on female Safari cats. In particular, the model can explain why significant fluctuation in the phenotypes of haematopoietic cells was observed in some cats, when the haematopoietic system had reached normal population level after regeneration. To our knowledge, no previous model of haematopoiesis in Safari cats has captured this phenomenon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.
Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo
2013-07-15
We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.
Estimating division and death rates from CFSE data
NASA Astrophysics Data System (ADS)
de Boer, Rob J.; Perelson, Alan S.
2005-12-01
The division tracking dye, carboxyfluorescin diacetate succinimidyl ester (CFSE) is currently the most informative labeling technique for characterizing the division history of cells in the immune system. Gett and Hodgkin (Nat. Immunol. 1 (2000) 239-244) have proposed to normalize CFSE data by the 2-fold expansion that is associated with each division, and have argued that the mean of the normalized data increases linearly with time, t, with a slope reflecting the division rate p. We develop a number of mathematical models for the clonal expansion of quiescent cells after stimulation and show, within the context of these models, under which conditions this approach is valid. We compare three means of the distribution of cells over the CFSE profile at time t: the mean, [mu](t), the mean of the normalized distribution, [mu]2(t), and the mean of the normalized distribution excluding nondivided cells, .In the simplest models, which deal with homogeneous populations of cells with constant division and death rates, the normalized frequency distribution of the cells over the respective division numbers is a Poisson distribution with mean [mu]2(t)=pt, where p is the division rate. The fact that in the data these distributions seem Gaussian is therefore insufficient to establish that the times at which cells are recruited into the first division have a Gaussian variation because the Poisson distribution approaches the Gaussian distribution for large pt. Excluding nondivided cells complicates the data analysis because , and only approaches a slope p after an initial transient.In models where the first division of the quiescent cells takes longer than later divisions, all three means have an initial transient before they approach an asymptotic regime, which is the expected [mu](t)=2pt and . Such a transient markedly complicates the data analysis. After the same initial transients, the normalized cell numbers tend to decrease at a rate e-dt, where d is the death rate.Nonlinear parameter fitting of CFSE data obtained from Gett and Hodgkin to ordinary differential equation (ODE) models with first-order terms for cell proliferation and death gave poor fits to the data. The Smith-Martin model with an explicit time delay for the deterministic phase of the cell cycle performed much better. Nevertheless, the insights gained from analysis of the ODEs proved useful as we showed by generating virtual CFSE data with a simulation model, where cell cycle times were drawn from various distributions, and then computing the various mean division numbers.
Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.
Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene
2017-01-01
The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness.
Cerulus, Bram; New, Aaron M; Pougach, Ksenia; Verstrepen, Kevin J
2016-05-09
The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions.
Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D; Prasad, Brinda C; Clark, Scott G; Garriga, Gian
2011-06-07
During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Primary Cilia Are Not Calcium-Responsive Mechanosensors
Delling, M.; Indzhykulian, A. A.; Liu, X.; Liu, Y.; Xie, T.; Corey, D. P.; Clapham, D. E.
2016-01-01
Primary cilia are solitary, generally non-motile, hair-like protrusions that extend from the surface of cells between cell divisions. Their antenna-like structure leads naturally to the assumption that they sense the surrounding environment, the most common hypothesis being sensation of mechanical force through calcium-permeable ion channels within the cilium1. This Ca2+- Responsive MechanoSensor (CaRMS) hypothesis for primary cilia has been invoked to explain a large range of biological responses, from control of left-right axis determination in embryonic development to adult progression of polycystic kidney disease and some cancers2,3. Here, we report the complete lack of mechanically induced calcium increases in primary cilia, in tissues upon which this hypothesis has been based. First, we developed a transgenic mouse, Arl13b-mCherry-GECO1.2, expressing a ratiometric genetically encoded calcium indicator (GECI) in all primary cilia. We then measured responses to flow in primary cilia of cultured kidney epithelial cells, kidney thick ascending tubules, crown cells of the embryonic node, kinocilia of inner ear hair cells, and several cell lines. Cilia-specific Ca2+ influxes were not observed in physiological or even highly supraphysiological levels of fluid flow. We conclude that mechanosensation, if it originates in primary cilia, is not via calcium signaling. PMID:27007841
Characterization of dependencies between growth and division in budding yeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.
Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less
Characterization of dependencies between growth and division in budding yeast
Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.
2017-02-01
Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less
Characterization of dependencies between growth and division in budding yeast
Iversen, Edwin S.; Hartemink, Alexander J.
2017-01-01
Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G2/M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. PMID:28228543
Characterization of dependencies between growth and division in budding yeast.
Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J
2017-02-01
Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).
LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae
Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel
2014-01-01
ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321
Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus
2013-01-01
The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534
Asymmetric cell division requires specific mechanisms for adjusting global transcription.
Mena, Adriana; Medina, Daniel A; García-Martínez, José; Begley, Victoria; Singh, Abhyudai; Chávez, Sebastián; Muñoz-Centeno, Mari C; Pérez-Ortín, José E
2017-12-01
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Teaching Cell Division: Basics and Recommendations.
ERIC Educational Resources Information Center
Smith, Mike U.; Kindfield, Ann C. H.
1999-01-01
Presents a concise overview of cell division that includes only the essential concepts necessary for understanding genetics and evolution. Makes recommendations based on published research and teaching experiences that can be used to judge the merits of potential activities and materials for teaching cell division. Makes suggestions regarding the…
2018-01-01
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814
Symmetric vs. Asymmetric Stem Cell Divisions: An Adaptation against Cancer?
Shahriyari, Leili; Komarova, Natalia L.
2013-01-01
Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two “hits”, and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed) stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate) mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common. PMID:24204602
A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans.
O'Connell, K F; Leys, C M; White, J G
1998-01-01
A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle. PMID:9649522
Rohn, Jennifer L; Patel, Jigna V; Neumann, Beate; Bulkescher, Jutta; Mchedlishvili, Nunu; McMullan, Rachel C; Quintero, Omar A; Ellenberg, Jan; Baum, Buzz
2014-11-03
During animal cell division, an actin-based ring cleaves the cell into two. Problems with this process can cause chromosome missegregation and defects in cytoplasmic inheritance and the partitioning of organelles, which in turn are associated with human diseases. Although much is known about how chromosome segregation is coupled to cell division, the way organelles coordinate their inheritance during partitioning to daughter cells is less well understood. Here, using a high-content live-imaging small interfering RNA screen, we identify Myosin-XIX (Myo19) as a novel regulator of cell division. Previously, this actin-based motor was shown to control the interphase movement of mitochondria. Our analysis shows that Myo19 is indeed localized to mitochondria and that its silencing leads to defects in the distribution of mitochondria within cells and in mitochondrial partitioning at division. Furthermore, many Myo19 RNAi cells undergo stochastic division failure--a phenotype that can be mimicked using a treatment that blocks mitochondrial fission and rescued by decreasing mitochondrial fusion, implying that mitochondria can physically interfere with cytokinesis. Strikingly, using live imaging we also observe the inappropriate movement of mitochondria to the poles of spindles in cells depleted for Myo19 as they enter anaphase. Since this phenocopies the results of an acute loss of actin filaments in anaphase, these data support a model whereby the Myo19 actin-based motor helps to control mitochondrial movement to ensure their faithful segregation during division. The presence of DNA within mitochondria makes their inheritance an especially important aspect of symmetrical cell division. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A 34-meter VAWT (Vertical Axis Wind Turbine) point design
NASA Astrophysics Data System (ADS)
Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.
The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.
Cell division is dispensable but not irrelevant in Streptomyces.
McCormick, Joseph R
2009-12-01
In part, members of the genus Streptomyces have been studied because they produce many important secondary metabolites with antibiotic activity and for the interest in their relatively elaborate life cycle. These sporulating filamentous bacteria are remarkably synchronous for division and genome segregation in specialized aerial hyphae. Streptomycetes share some, but not all, of the division genes identified in the historic model rod-shaped organisms. Curiously, normally essential cell division genes are dispensable for growth and viability of Streptomyces coelicolor. Mainly, cell division plays a more important role in the developmental phase of life than during vegetative growth. Dispensability provides an advantageous genetic system to probe the mechanisms of division proteins, especially those with functions that are poorly understood.
Functional redundancy of division specific penicillin-binding proteins in Bacillus subtilis.
Sassine, Jad; Xu, Meizhu; Sidiq, Karzan R; Emmins, Robyn; Errington, Jeff; Daniel, Richard A
2017-10-01
Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of β-lactams. © 2017 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division
Jordan, Shawn N.; Davies, Tim; Zhuravlev, Yelena; Dumont, Julien; Shirasu-Hiza, Mimi
2016-01-01
Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation. PMID:26728855
High frame-rate resolution of cell division during Candida albicans filamentation
Thomson, Darren D.; Berman, Judith; Brand, Alexandra C.
2016-01-01
The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division. PMID:26854071
A role for the ESCRT system in cell division in archaea.
Samson, Rachel Y; Obita, Takayuki; Freund, Stefan M; Williams, Roger L; Bell, Stephen D
2008-12-12
Archaea are prokaryotic organisms that lack endomembrane structures. However, a number of hyperthermophilic members of the Kingdom Crenarchaea, including members of the Sulfolobus genus, encode homologs of the eukaryotic endosomal sorting system components Vps4 and ESCRT-III (endosomal sorting complex required for transport-III). We found that Sulfolobus ESCRT-III and Vps4 homologs underwent regulation of their expression during the cell cycle. The proteins interacted and we established the structural basis of this interaction. Furthermore, these proteins specifically localized to the mid-cell during cell division. Overexpression of a catalytically inactive mutant Vps4 in Sulfolobus resulted in the accumulation of enlarged cells, indicative of failed cell division. Thus, the archaeal ESCRT system plays a key role in cell division.
Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.
Xu, Peng; Johnson, Tamara L; Stoller-Conrad, Jessica R; Schulz, Robert A
2012-01-01
The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.
Kamran, Mohammad; Sinha, Swati; Dubey, Priyanka; Lynn, Andrew M; Dhar, Suman K
2016-07-01
Cell division in bacteria is initiated by FtsZ, which forms a Z ring at the middle of the cell, between the nucleoids. The Z ring is stabilized by Z ring-associated proteins (Zaps), which crosslink the FtsZ filaments and provide strength. The deletion of Zaps leads to the elongation phenotype with an abnormal Z ring. The components of cell division in Helicobacter pylori are similar to other gram negative bacteria except for the absence of few components including Zaps. Here, we used HHsearch to identify homologs of the missing cell division proteins and got potential hits for ZapA and ZapB, as well as for few other cell division proteins. We further validated the function of the putative ZapA homolog by genetic complementation, immuno-colocalization and biochemical analysis. © 2016 Federation of European Biochemical Societies.
Prüss, B M
1998-09-01
Carbon sources that can be converted to acetate were added to the growth medium of Escherichia coli wild-type cells. Cells responded with an increased cell division rate. The addition of acetate also caused a decreased synthesis of flagella. Mutants in phosphotransacetylase, which are incapable of synthesizing acetyl phosphate, and mutants in the osmoregulator OmpR divided at a lower rate than did wild-type cells. The mutants did not increase their cell division rate upon the addition of serine, as observed for wild-type cells. These data are consistent with the idea that the previously described effect of serine upon the cell division rate is mediated by acetyl phosphate and phosphorylation of OmpR.
Katayama, T; Takata, M; Sekimizu, K
1997-11-01
We isolated and characterized a new gene related to the control of cell division regulation in Escherichia coli. At 30 degrees C, the dnaAcos mutant causes over-replication of the chromosome, and colony formation is inhibited. We found that, at this temperature, the dnaAcos cells form filaments; therefore, septum formation is inhibited. This inhibition was independent of SfiA, an inhibitor of the septum-forming protein, FtsZ. To identify factors involved in this pathway of inhibition, we isolated seven multicopy suppressors for the cold-sensitive phenotype of the dnaAcos mutant. One of these proved to be a previously unknown gene, which we named cedA. This gene encoded a 12 kDa protein and resided at 38.9min on the E. coli genome map. A multicopy supply of the cedA gene to the dnaAcos cells did not repress over-replication of the chromosome but did stimulate cell division of the host, the result being growth of cells with an abnormally elevated chromosomal copy number. Therefore, the expression level of the cedA gene seems to be important for inhibiting cell division of the dnaAcos mutant at 30 degrees C. We propose that over-replication of the chromosome activates a pathway for inhibiting cell division and that the cedA gene modulates this division control. In the dnaA+ background, cedA also seems to affect cell division.
Takemura, Masahiko; Nakato, Hiroshi
2017-01-15
Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.
2017-01-01
ABSTRACT Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. PMID:27888216
A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.
Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy
2017-01-01
The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.
Using "Chromosomal Socks" to Demonstrate Ploidy in Mitosis and Meiosis
ERIC Educational Resources Information Center
Chinnici, Joseph P.; Neth, Somalin Zaroh; Sherman, Leah R.
2006-01-01
Today, many biology instructors use visual models to help students understand abstract concepts like cell division. For all biology instructors, dealing with student misconceptions of cell division may seem hopeless at times--even after using visual models. Although student errors in cell division are built around the three key events of cell…
Pilhofer, Martin; Rappl, Kristina; Eckl, Christina; Bauer, Andreas Peter; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Petroni, Giulio
2008-01-01
In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes, Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also support a monophyletic grouping and their branching order—this grouping is significant for understanding cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings from their last common ancestor with Verrucomicrobia. PMID:18310338
Fujita, Miki; Wasteneys, Geoffrey O
2014-05-01
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.
NASA Technical Reports Server (NTRS)
Honda, Shuji; Nelson, Gregory; Schubert, Wayne
1993-01-01
Intestinal cells when subjected to oxidative stress or radiation exhibit abnormal nuclear divisions observed as: 1) supernumerary cell divisions in anterior intestinal cells or 2) incomplete nuclear division and the persistence of anaphase bridges between daughter nuclei. Two oxygen sensitive mutants, mev-1 and rad-8 were observed to exhibit spontaneous supernumerary nuclear divisions at low frequency. N2 can be induced to undergo these divisions by treatment with the superoxide dismutase (SOD) inhibitor diethyl dithicarbamate or with the free radical generator methyl viologen. By contrast, the free radical generator bleomycin produces anaphase bridges in N2 intestinal nuclei at high frequency. Intestinal anaphase bridges can be induced by ionizing radiation and their formation is dependent on dose and radiation type.
Time-Lapse Cinemicrographic Studies of X-Irradiated HeLa S3 Cells
Hurwitz, Camilla; Tolmach, L. J.
1969-01-01
Analysis of time-lapse cinemicrographs of X-irradiated HeLa S3 cells has shown that the incidence of cell fusion was increased from 0.9% (following 1267 divisions) in control cells to an average of 22% (following 655 divisions) in cells irradiated with 500 rad doses of 220 kv X-rays. The incidence depended on the stage of the generation cycle at which the parent cells were irradiated. It was nearly constant in the first three postirradiation generations. Fusion occurred at all stages of the generation cycle, but preferentially during the first 20%. Cells undergoing fusion progressed more slowly through the generation cycle and had a higher probability of disintegrating than did irradiated cells that did not fuse. The occurrence of fusion was clonally distributed in the population. It took place only between sister (or closely related) cells. Protoplasmic bridges were often visible between sister cells prior to fusion. Giant cells arose only as a result of fusion. The incidence of multipolar divisions, though higher than in unirradiated cells, was only 5.5% in cultures irradiated with 500 rads. Fusion occurred following 85% of the multipolar divisions and was often followed by a multipolar division. ImagesFigure 1 PMID:5807221
Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T S; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven
2011-08-01
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.
Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven
2011-01-01
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673
Division of Labor in Biofilms: the Ecology of Cell Differentiation.
van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto
2015-04-01
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Molecular coordination of Staphylococcus aureus cell division
Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon
2018-01-01
The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-06-15
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.
Host-Polarized Cell Growth in Animal Symbionts.
Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia
2018-04-02
To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Unified quantitative characterization of epithelial tissue development
Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru
2015-01-01
Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285
Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures
Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio
2013-01-01
The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168
Jacq, Maxime; Arthaud, Christopher; Manuse, Sylvie; Mercy, Chryslène; Bellard, Laure; Peters, Katharina; Gallet, Benoit; Galindo, Jennifer; Doan, Thierry; Vollmer, Waldemar; Brun, Yves V; VanNieuwenhze, Michael S; Di Guilmi, Anne Marie; Vernet, Thierry; Grangeasse, Christophe; Morlot, Cecile
2018-05-15
Bacterial division is intimately linked to synthesis and remodeling of the peptidoglycan, a cage-like polymer that surrounds the bacterial cell, providing shape and mechanical resistance. The bacterial division machinery, which is scaffolded by the cytoskeleton protein FtsZ, includes proteins with enzymatic, structural or regulatory functions. These proteins establish a complex network of transient functional and/or physical interactions which preserve cell shape and cell integrity. Cell wall hydrolases required for peptidoglycan remodeling are major contributors to this mechanism. Consistent with this, their deletion or depletion often results in morphological and/or division defects. However, the exact function of most of them remains elusive. In this work, we show that the putative lysozyme activity of the cell wall hydrolase Pmp23 is important for proper morphology and cell division in the opportunistic human pathogen Streptococcus pneumoniae. Our data indicate that active Pmp23 is required for proper localization of the Z-ring and the FtsZ-positioning protein MapZ. In addition, Pmp23 localizes to the division site and interacts directly with the essential peptidoglycan synthase PBP2x. Altogether, our data reveal a new regulatory function for peptidoglycan hydrolases.
Peterson, Kylee M; Torii, Keiko U
2012-12-31
Imaging in vivo dynamics of cellular behavior throughout a developmental sequence can be a powerful technique for understanding the mechanics of tissue patterning. During animal development, key cell proliferation and patterning events occur very quickly. For instance, in Caenorhabditis elegans all cell divisions required for the larval body plan are completed within six hours after fertilization, with seven mitotic cycles(1); the sixteen or more mitoses of Drosophila embryogenesis occur in less than 24 hr(2). In contrast, cell divisions during plant development are slow, typically on the order of a day (3,4,5) . This imposes a unique challenge and a need for long-term live imaging for documenting dynamic behaviors of cell division and differentiation events during plant organogenesis. Arabidopsis epidermis is an excellent model system for investigating signaling, cell fate, and development in plants. In the cotyledon, this tissue consists of air- and water-resistant pavement cells interspersed with evenly distributed stomata, valves that open and close to control gas exchange and water loss. Proper spacing of these stomata is critical to their function, and their development follows a sequence of asymmetric division and cell differentiation steps to produce the organized epidermis (Fig. 1). This protocol allows observation of cells and proteins in the epidermis over several days of development. This time frame enables precise documentation of stem-cell divisions and differentiation of epidermal cells, including stomata and epidermal pavement cells. Fluorescent proteins can be fused to proteins of interest to assess their dynamics during cell division and differentiation processes. This technique allows us to understand the localization of a novel protein, POLAR(6), during the proliferation stage of stomatal-lineage cells in the Arabidopsis cotyledon epidermis, where it is expressed in cells preceding asymmetric division events and moves to a characteristic area of the cell cortex shortly before division occurs. Images can be registered and streamlined video easily produced using public domain software to visualize dynamic protein localization and cell types as they change over time.
BASL and EPF2 act independently to regulate asymmetric divisions during stomatal development
Hunt, Lee
2010-01-01
The initiation of stomatal development in the developing Arabidopsis epidermis is characterized by an asymmetric ‘entry’ division in which a small cell, known as a meristemoid, and a larger daughter cell is formed. The meristemoid may undergo further asymmetric divisions, regenerating a meristemoid each time, before differentiating into a guard mother cell which divides symmetrically to form a pair of guard cells surrounding a stomatal pore. Recently EPF2 and BASL have emerged as regulators of these asymmetric divisions and here we present results indicating that these two factors operate independently to control stomatal development PMID:20220310
Huang, Lei; Jiang, Xiaoxiao; Gong, Longlong; Xing, Da
2015-08-01
Promotion of insulin-secreting β-cell regeneration in patients with diabetes is a promising approach for diabetes therapy, which can contribute to rescue the uncontrolled hyperglycemia. Low-power laser irradiation (LPLI) has been demonstrated to regulate multiple physiological processes both in vitro and in vivo through activation of various signaling pathways. In the present study, we showed that LPLI promoted β-cell replication and cell cycle progression through activation of Akt1/GSK3β isoform-specific signaling axis. Inhibition of PI3-K/Akt or GSK3 with specific inhibitors dramatically reduced or increased LPLI-induced β-cell replication, revealing Akt/GSK3 signaling axis was involved in β-cell replication and survival upon LPLI treatment. Furthermore, the results of shRNA-mediated knock down of Akt/GSK3 isoforms revealed that Akt1/GSK3β isoform-specific signaling axis regulated β-cell replication and survival in response to LPLI, but not Akt2/GSK3α. The mechanism by which LPLI promoted β-cell replication through Akt1/GSK3β signaling axis involved activation of β-catenin and down-regulation of p21. Taken together, these observations suggest that Akt1/GSK3β isoform signaling axis play a key role in β-cell replication and survival induced by LPLI. Moreover, our findings suggest that activation of Akt1/GSK3β isoform signaling axis by LPLI may provide guidance in practical applications for β-cell regenerative therapies. © 2015 Wiley Periodicals, Inc.
Tissue damage-induced intestinal stem cell division in Drosophila
Amcheslavsky, Alla; Jiang, Jin; Ip, Y. Tony
2009-01-01
SUMMARY Stem cell division is essential for tissue integrity during growth, aging, and pathogenic assaults. Adult gastrointestinal tract encounters numerous stimulations and impaired tissue regeneration may lead to inflammatory diseases and cancer. Intestinal stem cells in adult Drosophila have recently been identified and shown to replenish the various cell types within the midgut. However, it is not known whether these intestinal stem cells can respond to environmental challenges. By feeding dextran sulfate sodium and bleomycin to flies and by expressing apoptotic proteins, we show that Drosophila intestinal stem cells can increase the rate of division in response to tissue damage. Moreover, if tissue damage results in epithelial cell loss, the newly formed enteroblasts can differentiate into mature epithelial cells. By using this newly established system of intestinal stem cell proliferation and tissue regeneration, we find that the insulin receptor signaling pathway is required for intestinal stem cell division. PMID:19128792
NASA Technical Reports Server (NTRS)
Parker, Peter A. (Inventor)
2003-01-01
A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.
Cell Division and Evolution of Biological Tissues
NASA Astrophysics Data System (ADS)
Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun
A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter
Cytokinesis: breaking the ties that bind.
McCollum, Dannel
2005-12-20
It has been unclear how cells complete cell division and resolve membrane connections to bring about cell separation. Recent work has shown that targeted secretion to the midbody is required to complete cell division.
ERIC Educational Resources Information Center
Kara, Yilmaz; Yesilyurt, Selami
2008-01-01
The purpose of this study was to investigate the effects of tutorial and edutainment design of instructional software programs related to the "cell division" topic on student achievements, misconceptions and attitudes. An experimental research design including the cell division achievement test (CAT), the cell division concept test (CCT) and…
Honda, Takashi; Morimoto, Daichi; Sako, Yoshihiko; Yoshida, Takashi
2018-05-17
Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN 3 GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.
A theory of germinal center B cell selection, division, and exit.
Meyer-Hermann, Michael; Mohr, Elodie; Pelletier, Nadége; Zhang, Yang; Victora, Gabriel D; Toellner, Kai-Michael
2012-07-26
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-01-01
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486
Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.
Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu
2015-03-16
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.
Chlamydia co-opts the rod shape-determining proteins MreB and Pbp2 for cell division.
Ouellette, Scot P; Karimova, Gouzel; Subtil, Agathe; Ladant, Daniel
2012-07-01
Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium. © 2012 Blackwell Publishing Ltd.
Late Maturation of Adult-Born Neurons in the Temporal Dentate Gyrus
Snyder, Jason S.; Ferrante, Sarah C.; Cameron, Heather A.
2012-01-01
Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1–2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses. PMID:23144957
CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division.
Galgano, Alessia; Barinov, Aleksandr; Vasseur, Florence; de Villartay, Jean-Pierre; Rocha, Benedita
2015-01-01
Immune responses are efficient because the rare antigen-specific naïve cells are able to proliferate extensively and accumulate upon antigen stimulation. Moreover, differentiation into memory cells actually increases T cell accumulation, indicating improved productive division in secondary immune responses. These properties raise an important paradox: how T cells may survive the DNA lesions necessarily induced during their extensive division without undergoing transformation. We here present the first data addressing the DNA damage responses (DDRs) of CD8 T cells in vivo during exponential expansion in primary and secondary responses in mice. We show that during exponential division CD8 T cells engage unique DDRs, which are not present in other exponentially dividing cells, in T lymphocytes after UV or X irradiation or in non-metastatic tumor cells. While in other cell types a single DDR pathway is affected, all DDR pathways and cell cycle checkpoints are affected in dividing CD8 T cells. All DDR pathways collapse in secondary responses in the absence of CD4 help. CD8 T cells are driven to compulsive suicidal divisions preventing the propagation of DNA lesions. In contrast, in the presence of CD4 help all the DDR pathways are up regulated, resembling those present in metastatic tumors. However, this up regulation is present only during the expansion phase; i.e., their dependence on antigen stimulation prevents CD8 transformation. These results explain how CD8 T cells maintain genome integrity in spite of their extensive division, and highlight the fundamental role of DDRs in the efficiency of CD8 immune responses.
Bridging the Timescales of Single-Cell and Population Dynamics
NASA Astrophysics Data System (ADS)
Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya
2018-04-01
How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.
Analysis of cell division patterns in the Arabidopsis shoot apical meristem
Shapiro, Bruce E.; Tobin, Cory; Mjolsness, Eric; ...
2015-03-30
The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here in this paper we present a quantitative model of these rules that incorporates different observed features of cell division.more » Each feature is incorporated into a "potential function" that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay
2011-07-01
Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, theirmore » exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.« less
Duranthon, Véronique
2018-01-01
ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671
Diel Variations in Optical Properties of Micromonas pusilla, a Prasinophyte
NASA Technical Reports Server (NTRS)
DuRand, Michele D.; Green, Rebecca E.; Sosik, Heidi M.; Olson, Robert J.
2001-01-01
A laboratory experiment was conducted on cultures of Micromonas pusilla, a marine prasinophyte, to investigate how cell growth and division affect the optical properties over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric light scattering (in forward and side directions), chlorophyll and carbon content. Refractive index was calculated using the anomalous diffraction approximation Cells were about 1.5 micrometers in diameter and exhibited phased division, with the major division burst occurring during the night. Typical diel variations were observed, with cells increasing in size and light scattering during the day as they photosynthesize and decreasing at night upon division. The cells were in ultradian growth, with more than one division per day, at a light level of 120 Mu-mol photons m/sq/sec. Since these cells are similar in size to small phytoplankton that are typically abundant in field samples, these results can be used in the interpretation of diel variations in light scattering in natural populations of phytoplankton.
Ong, Lee-Ling S; Xinghua Zhang; Kundukad, Binu; Dauwels, Justin; Doyle, Patrick; Asada, H Harry
2016-08-01
An approach to automatically detect bacteria division with temporal models is presented. To understand how bacteria migrate and proliferate to form complex multicellular behaviours such as biofilms, it is desirable to track individual bacteria and detect cell division events. Unlike eukaryotic cells, prokaryotic cells such as bacteria lack distinctive features, causing bacteria division difficult to detect in a single image frame. Furthermore, bacteria may detach, migrate close to other bacteria and may orientate themselves at an angle to the horizontal plane. Our system trains a hidden conditional random field (HCRF) model from tracked and aligned bacteria division sequences. The HCRF model classifies a set of image frames as division or otherwise. The performance of our HCRF model is compared with a Hidden Markov Model (HMM). The results show that a HCRF classifier outperforms a HMM classifier. From 2D bright field microscopy data, it is a challenge to separate individual bacteria and associate observations to tracks. Automatic detection of sequences with bacteria division will improve tracking accuracy.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.
1990-01-01
A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.
ERIC Educational Resources Information Center
Oztap, Haydar; Ozay, Esra; Oztap, Fulya
2003-01-01
This study examines the difficulties biology teachers face when teaching cell division in the secondary schools of the central part of the Erzurum province in Turkey. During this research, a questionnaire was distributed to a total of 36 secondary school biology teachers. Findings of the study indicate biology teachers perceive cell division as…
Phytoplankton division rates in light-limited environments: two adaptations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkin, R.B.; Voytek, M.A.; Seliger, H.H.
1982-02-26
Red tide-forming dinoflagellates maximize cell numbers during periods of low light intensities in two ways. For short-term exposures to suboptimal light intensities such as might occur during recirculation in frontal convergences, cell division rates can be maintained at the expense of stored carbon for up to two generation times. During longer periods, corresponding to subsurface transport below a pycnocline, cell division rates eventually decrease as a portion of the fixed carbon is diverted to replenishing stored carbon. As a result, maximum rates of cell division can be resumed rapidly upon advection into surface waters where light intensities are optimal formore » growth.« less
Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat
USDA-ARS?s Scientific Manuscript database
Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...
Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M
2015-03-20
Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.
Li, Yuwei; Li, Ang; Junge, Jason; Bronner, Marianne
2017-10-10
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Li, Yuwei; Li, Ang; Junge, Jason
2017-01-01
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton. PMID:28994649
Optimizing homeostatic cell renewal in hierarchical tissues
Fider, Nicole A.
2018-01-01
In order to maintain homeostasis, mature cells removed from the top compartment of hierarchical tissues have to be replenished by means of differentiation and self-renewal events happening in the more primitive compartments. As each cell division is associated with a risk of mutation, cell division patterns have to be optimized, in order to minimize or delay the risk of malignancy generation. Here we study this optimization problem, focusing on the role of division tree length, that is, the number of layers of cells activated in response to the loss of terminally differentiated cells, which is related to the balance between differentiation and self-renewal events in the compartments. Using both analytical methods and stochastic simulations in a metapopulation-style model, we find that shorter division trees are advantageous if the objective is to minimize the total number of one-hit mutants in the cell population. Longer division trees on the other hand minimize the accumulation of two-hit mutants, which is a more likely evolutionary goal given the key role played by tumor suppressor genes in cancer initiation. While division tree length is the most important property determining mutant accumulation, we also find that increasing the size of primitive compartments helps to delay two-hit mutant generation. PMID:29447149
Electron tomography study of isolated human centrioles.
Ibrahim, Rana; Messaoudi, Cédric; Chichon, Francisco Javier; Celati, Claude; Marco, Sergio
2009-01-01
Centrioles are components of the centrosome, which is present in most eukaryotic cells (from protozoa to mammals). They organize the microtubule skeleton during interphase and the mitotic spindle during cell division. In ciliate cells, centrioles form basal bodies that are involved in cellular motility. Despite their important roles in biology, the detailed structure of centrioles remains obscure. This work contributes to a more complete model of centriole structure. The authors used electron tomography of isolated centrosomes from the human lymphoblast KE37 to explore the details of subdistal appendages and centriole lumen organization in mother centrioles. Their results reveal that each of the nine subdistal appendages is composed of two halves (20 nm diameter each) fused in a 40 nm tip that extends 100 nm from where it anchors to microtubules. The centriole lumen is filled at the distal domain by a 45 nm periodic stack of rings. Each ring has a 30 nm diameter, is 15 nm thick, and appears to be tilted at 53 degrees perpendicular to the centriole axis. The rings are anchored to microtubules by arms. Based on their results, the authors propose a model of the mother centriole distal structure. Copyright 2008 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, P.D.
Experiments are described that examine the role of penicillin-binding proteins (PBPs) in the regulation of cell division in Caulobacter crescentus; and the spatial localization of methyl-accepting chemotaxis proteins (MCPs) in C. crescentus swarmer and predivisional cells. In the analysis of PBP function, in vivo and in vitro assays are used to directly label C. crescentus PBPs with (/sup 3/H) penicillin G in wild type strain CB15, in a series of conditional cell division mutants and in new temperature sensitive cephalosporin C resistant mutants PC8002 and PC8003. 14 PBPs are characterized and a high molecular weight PBP (PBP 1B) that ismore » required for cell division is identified. PBP 1B competes for ..beta..-lactams that induce filament formation and may be a high affinity binding protein. A second high molecular weight PBP (PBP 1C) is also associated with defective cell division. The examination of PBP patterns in synchronous swarmer cells reveals that the in vivo activity of PBP 1B and PBP 1C increases at the time that the cell division pathway is initiated. None of the PBPs, however, appear to be differentially localized in the C. crescentus cell. In the analysis of MCP localization, in vivo and in vitro assays are used to directly label C. crescentus MCPs with methyl-/sup 3/H. MCPs are examined in flagellated and non-flagellated vesicles prepared from cells by immunoaffinity chromatography.« less
Division of labour in the yeast: Saccharomyces cerevisiae.
Wloch-Salamon, Dominika M; Fisher, Roberta M; Regenberg, Birgitte
2017-10-01
Division of labour between different specialized cell types is a central part of how we describe complexity in multicellular organisms. However, it is increasingly being recognized that division of labour also plays an important role in the lives of predominantly unicellular organisms. Saccharomyces cerevisiae displays several phenotypes that could be considered a division of labour, including quiescence, apoptosis and biofilm formation, but they have not been explicitly treated as such. We discuss each of these examples, using a definition of division of labour that involves phenotypic variation between cells within a population, cooperation between cells performing different tasks and maximization of the inclusive fitness of all cells involved. We then propose future research directions and possible experimental tests using S. cerevisiae as a model organism for understanding the genetic mechanisms and selective pressures that can lead to the evolution of the very first stages of a division of labour. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Magalhães, Thiago Alves; de Oliveira, Denis Coelho; Suzuki, Aline Yasko Marinho; Isaias, Rosy Mary dos Santos
2014-07-01
Cell redifferentiation, division, and elongation are recurrent processes, which occur during gall development, and are dependent on the cellulose microfibrils reorientation. We hypothesized that changes in the microfibrils orientation from non-galled tissues to galled ones occur and determine the final gall shape. This determination is caused by a new tissue zonation, its hyperplasia, and relative cell hypertrophy. The impact of the insect's activity on these patterns of cell development was herein tested in Baccharopelma dracunculifoliae-Baccharis dracunculifolia system. In this system, the microfibrils are oriented perpendicularly to the longest cell axis in elongated cells and randomly in isodiametric ones, either in non-galled or in galled tissues. The isodiametric cells of the abaxial epidermis in non-galled tissues divided and elongated periclinally, forming the outer gall epidermis. The anticlinally elongated cells of the abaxial palisade layer and the isodiametric cells of the spongy parenchyma originated the gall outer cortex with hypertrophied and periclinally elongated cells. The anticlinally elongated cells of the adaxial palisade layer originated the inner cortex with hypertrophied and periclinally elongated cells in young and mature galls and isodiametric cells in senescent galls. The isodiametric cells of the adaxial epidermis elongated periclinally in the inner gall epidermis. The current investigation demonstrates the role of cellulose microfibril reorientation for gall development. Once many factors other than this reorientation act on gall development, it should be interesting to check the possible relationship of the new cell elongation patterns with the pectic composition of the cell walls.
Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita
2014-02-25
Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.
Wölwer, Christina B.; Gödde, Nathan; Pase, Luke B.; Elsum, Imogen A.; Lim, Krystle Y. B.; Sacirbegovic, Faruk; Walkley, Carl R.; Ellis, Sarah; Ohno, Shigeo; Matsuzaki, Fumio; Russell, Sarah M.; Humbert, Patrick O.
2017-01-01
Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD), by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation. PMID:28095473
Nobusawa, Takashi; Okushima, Yoko; Nagata, Noriko; Kojima, Mikiko; Sakakibara, Hitoshi; Umeda, Masaaki
2013-01-01
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body. PMID:23585732
Adebonojo, Festus O.
1975-01-01
In an effort to test the adipose hyperplasia theory of obesity in humans, adipose cells, derived from anterior abdominal walls of human infants and children, were grown in synthetic medium (McCoy's 5A Medium) supplemented with 20% fetal calf serum. Adipose cells which became delipidinized in culture were found to be capable of division and the rate and number of cell divisions was age dependent. Cells of infants under 1 yr of age and cells derived from early adolescent children divided to varying degrees in culture. Adipose cells from children aged 1-10 yr showed no cell division. Cell division was never observed in a lipid-laden adipocyte. Measurements of cell diameter showed that after the first year of life, cell size increased progressively with age. During the first year adipose cell size appeared to reflect the rapid hyperplasia of the first 3 mo, reaching smallest size at 3-12 mo but increasing thereafter. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:124114
Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.
1974-01-01
Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352
Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae
Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D; Alessi Wolken, Dana M; Boldogh, Istvan R; Pon, Liza A
2014-01-01
Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates. PMID:25263578
Cell lineages of the embryo of the nematode Caenorhabditis elegans.
Deppe, U; Schierenberg, E; Cole, T; Krieg, C; Schmitt, D; Yoder, B; von Ehrenstein, G
1978-01-01
Embryogenesis of the free-living soil nematode Caenorhabditis elegans produces a juvenile having about 550 cells at hatching. We have determined the lineages of 182 cells by tracing the divisions of individual cells in living embryos. An invariant pattern of cleavage divisions of the egg generates a set of stem cells. These stem cells are the founders of six stem cell lineages. Each lineage has its own clock--i.e., an autonomous rhythm of synchronous cell divisions. The rhythms are maintained in spite of extensive cellular rearrangement. The rate and the orientation of the cell divisions of the cell lineages are essentially invariant among individuals. Thus, the destiny of cells seems to depend primarily on their lineage history. The anterior position of the site of origin of the stem cells in the egg relates to the rate of the cell cycle clock, suggesting intracellular preprogramming of the uncleaved egg. We used a technique that allows normal embryogenesis, from the fertilized egg to hatching, outside the parent under a cover glass. Embryogenesis was followed microscopically with Nomarski interference optics and high-resolution video recording.
Modeling Cytoskeletal Active Matter Systems
NASA Astrophysics Data System (ADS)
Blackwell, Robert
Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.
Wavefront division digital holography
NASA Astrophysics Data System (ADS)
Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan
2018-05-01
Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.
Functional Division of Hippocampal Area CA1 Via Modulatory Gating of Entorhinal Cortical Inputs
Ito, Hiroshi T.; Schuman, Erin M.
2013-01-01
The hippocampus receives two streams of information, spatial and nonspatial, via major afferent inputs from the medial (MEC) and lateral entorhinal cortexes (LEC). The MEC and LEC projections in the temporoammonic pathway are topographically organized along the transverse-axis of area CA1. The potential for functional segregation of area CA1, however, remains relatively unexplored. Here, we demonstrated differential novelty-induced c-Fos expression along the transverse-axis of area CA1 corresponding to topographic projections of MEC and LEC inputs. We found that, while novel place exposure induced a uniform c-Fos expression along the transverse-axis of area CA1, novel object exposure primarily activated the distal half of CA1 neurons. In hippocampal slices, we observed distinct presynaptic properties between LEC and MEC terminals, and application of either DA or NE produced a largely selective influence on one set of inputs (LEC). Finally, we demonstrated that differential c-Fos expression along the transverse axis of area CA1 was largely abolished by an antagonist of neuromodulatory receptors, clozapine. Our results suggest that neuromodulators can control topographic TA projections allowing the hippocampus to differentially encode new information along the transverse axis of area CA1. PMID:21240920
Helicobacter pylori shows asymmetric and polar cell divisome assembly associated with DNA replisome.
Kamran, Mohammad; Dubey, Priyanka; Verma, Vijay; Dasgupta, Santanu; Dhar, Suman K
2018-05-09
DNA replication and cell division are two fundamental processes in the life cycle of a cell. The majority of prokaryotic cells undergo division by means of binary fission in coordination with replication of the genome. Both processes, but especially their coordination, are poorly understood in Helicobacter pylori. Here, we studied the cell divisome assembly and the subsequent processes of membrane and peptidoglycan synthesis in the bacterium. To our surprise, we found the cell divisome assembly to be polar, which was well-corroborated by the asymmetric membrane and peptidoglycan synthesis at the poles. The divisome components showed its assembly to be synchronous with that of the replisome and the two remained associated throughout the cell cycle, demonstrating a tight coordination among chromosome replication, segregation and cell division in H. pylori. To our knowledge, this is the first report where both DNA replication and cell division along with their possible association have been demonstrated for this pathogenic bacterium. © 2018 Federation of European Biochemical Societies.
The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.
Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M
2016-05-19
Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.
Moving with the flow: what transport laws reveal about cell division and expansion.
Silk, Wendy Kuhn
2006-01-01
This material was presented as a keynote talk for the symposium, "Crosstalk between cell division and expansion," organized by G.T.S. Beemster and H. Tsukaya at the International Botanical Congress, Vienna in July, 2005. The review focuses on the utility of continuity equations to understand relationships among cell size, division and expansion; insights from Lagrangian or cell-specific descriptions of developmental variables; and a growth-diffusion equation to show effects of root growth zones on the surrounding soil.
Asymmetric T lymphocyte division in the initiation of adaptive immune responses.
Chang, John T; Palanivel, Vikram R; Kinjyo, Ichiko; Schambach, Felix; Intlekofer, Andrew M; Banerjee, Arnob; Longworth, Sarah A; Vinup, Kristine E; Mrass, Paul; Oliaro, Jane; Killeen, Nigel; Orange, Jordan S; Russell, Sarah M; Weninger, Wolfgang; Reiner, Steven L
2007-03-23
A hallmark of mammalian immunity is the heterogeneity of cell fate that exists among pathogen-experienced lymphocytes. We show that a dividing T lymphocyte initially responding to a microbe exhibits unequal partitioning of proteins that mediate signaling, cell fate specification, and asymmetric cell division. Asymmetric segregation of determinants appears to be coordinated by prolonged interaction between the T cell and its antigen-presenting cell before division. Additionally, the first two daughter T cells displayed phenotypic and functional indicators of being differentially fated toward effector and memory lineages. These results suggest a mechanism by which a single lymphocyte can apportion diverse cell fates necessary for adaptive immunity.
Activity and Accumulation of Cell Division-Promoting Phenolics in Tobacco Tissue Cultures 1
Teutonico, Rita A.; Dudley, Matthew W.; Orr, John D.; Lynn, David G.; Binns, Andrew N.
1991-01-01
Dehydrodiconiferyl alcohol glucosides (DCGs) are derivatives of the phenylpropanoid pathway that have been isolated from Catharansus roseus L. (Vinca rosea) crown gall tumors. Fractions containing purified DCGs have been shown previously to promote the growth of cytokinin-requiring tissues of tobacco in the absence of exogenous cytokinins. In this study, we utilized synthetic DCG isomers to confirm the cell division-promoting activity of DCG isomers A and B and show that they neither promote shoot meristem initiation on Nicotiana tabacum L., cv Havana 425, leaf explants nor induce betacyanin synthesis in amaranth seedlings. Analysis of cultured tobacco pith tissue demonstrated that DCG accumulation was stimulated by cytokinin treatment and correlated with cytokinin-induced cell division. Thus, the accumulation of metabolites that could replace cytokinin in cell division bioassays is stimulated by cytokinins. These data support the model that DCGs are a component of a cytokinin-mediated regulatory circuit controlling cell division. ImagesFigure 2 PMID:16668384
NASA Astrophysics Data System (ADS)
Manuse, Sylvie; Jean, Nicolas L.; Guinot, Mégane; Lavergne, Jean-Pierre; Laguri, Cédric; Bougault, Catherine M.; Vannieuwenhze, Michael S.; Grangeasse, Christophe; Simorre, Jean-Pierre
2016-06-01
Accurate placement of the bacterial division site is a prerequisite for the generation of two viable and identical daughter cells. In Streptococcus pneumoniae, the positive regulatory mechanism involving the membrane protein MapZ positions precisely the conserved cell division protein FtsZ at the cell centre. Here we characterize the structure of the extracellular domain of MapZ and show that it displays a bi-modular structure composed of two subdomains separated by a flexible serine-rich linker. We further demonstrate in vivo that the N-terminal subdomain serves as a pedestal for the C-terminal subdomain, which determines the ability of MapZ to mark the division site. The C-terminal subdomain displays a patch of conserved amino acids and we show that this patch defines a structural motif crucial for MapZ function. Altogether, this structure-function analysis of MapZ provides the first molecular characterization of a positive regulatory process of bacterial cell division.
Symmetry breaking in human neuroblastoma cells
Izumi, Hideki; Kaneko, Yasuhiko
2014-01-01
Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367
Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-Ichi; Kiyonari, Hiroshi; Niwa, Hiroshi; Sasaki, Hiroshi
2015-10-01
In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par-aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE-specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16-cell stage embryos. Similar to 32-cell stage embryos, disruption of the Par-aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32-cell stage embryos, 16-cell stage embryos with a disrupted Par-aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p-ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16-cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8-cell stage embryos form polar-apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16-cell stage is regulated by both Par-aPKC-dependent and -independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling. © The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.
Are There Really Animals Like That? No Cell Division.
ERIC Educational Resources Information Center
Blackwelder, R. E.; Garoian, G. S.
1984-01-01
Provides examples of animals in which growth occurs without cell division. Indicates that this phenomenon (called cell constancy or eutely) is an oddity of development that has arisen independently in several animal groups. (JN)
Cell division in Escherichia coli cultures monitored at single cell resolution
Roostalu, Johanna; Jõers, Arvi; Luidalepp, Hannes; Kaldalu, Niilo; Tenson, Tanel
2008-01-01
Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP) upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular organisms other than E. coli. PMID:18430255
Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.
Mukherjee, Subhas; Brat, Daniel J
2017-01-01
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Rodilla, V
1993-08-01
It has recently been described that cisplatin is an agent able to induce binucleated cells (BC) in cultured CHO cells. Both the origin and the significance of those cells within a population are unknown although several hypothesis have been suggested such as blocking of cytokinesis or cell fusion. Using interval photography we have found that at least two mechanisms are involved in the production of BC. These cells can arise in a culture as a result of an incomplete process of cell division, i.e. karyokinesis with incomplete cytokinesis or as a result of the mitotic division of a pre-existent BC. The mitotic division of a BC can give rise to different types of daughter cells. These BC sometimes enter mitosis but fail to divide and as a consequence they remain BC. When the process of division is successful (in the vast majority of cases), the results that have been found are either two mononucleated cells or one mononucleated and one binucleated cell. The possible implications and significance of BC and BC with micronuclei in a given population are discussed.
1975-01-01
A wide variety of inhibitors (drugs, antibiotics, and antimetabolites) will block cell division within an ongoing cell cycle in autotrophic cultures of Chlamydomonas reinhardtii. To determine when during the cell cycle a given inhibitor is effective in preventing cell division, a technique is described which does not rely on the use of synchronous cultures. The technique permits the measurement of transition points, the cell cycle stage at which the subsequent cell division becomes insensitive to the effects of an inhibitor. A map of transition points in the cell cycle reveals that they are grouped into two broad periods, the second and fourth quarters. In general, inhibitors which block organellar DNA, RNA, and protein synthesis have second-quarter transition points, while those which inhibit nuclear cytoplasmic macromolecular synthesis have fourth-quarter transition points. The specific grouping of these transition points into two periods suggests that the synthesis of organellar components is completed midway through the cell cycle and that the synthesis of nonorganellar components required for cell division is not completed until late in the cell cycle. PMID:1176526
Logsdon, Michelle M; Aldridge, Bree B
2018-01-01
Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
Winquist, Raymond J; Hall, Amy B; Eustace, Brenda K; Furey, Brinley F
2014-09-15
Stem cells subserve repair functions for the lifetime of the organism but, as a consequence of this responsibility, are candidate cells for accumulating numerous genetic and/or epigenetic aberrations leading to malignant transformation. However, given the importance of this guardian role, stem cells likely harbor some process for maintaining their precious genetic code such as non-random segregation of chromatid strands as predicted by the Immortal Strand Hypothesis (ISH). Discerning such non-random chromosomal segregation and asymmetric cell division in normal or cancer stem cells has been complicated by methodological shortcomings but also by differing division kinetics amongst tissues and the likelihood that both asymmetric and symmetric cell divisions, dictated by local extrinsic factors, are operant in these cells. Recent data suggest that cancer stem cells demonstrate a higher incidence of symmetric versus asymmetric cell division with both daughter cells retaining self-renewal characteristics, a profile which may underlie poorly differentiated morphology and marked clonal diversity in tumors. Pathways and targets are beginning to emerge which may provide opportunities for preventing such a predilection in cancer stem cells and that will hopefully translate into new classes of chemotherapeutics in oncology. Thus, although the existence of the ISH remains controversial, the shift of cell division dynamics to symmetric random chromosome segregation/self-renewal, which would negate any likelihood of template strand retention, appears to be a surrogate marker for the presence of highly malignant tumorigenic cell populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Kopecká, Marie
2014-01-01
Cryptococcus neoformans is one of the most important human fungal pathogens. Its cells contain rich microtubules required for nuclear division and rich F-actin cytoskeletons for cell division. Disruption of microtubules by a microtubule inhibitor should block nuclear division, and disruption of F-actin by an actin inhibitor should block cell division. We investigated the effects of microtubule and actin inhibitors to find out whether the cytoskeletons of C. neoformans can become a new anti-fungal target for the inhibition of cell division, when examined at the ultrastructural level. Cells treated with the microtubule inhibitors vincristine (VIN) and methyl benzimidazole-2-ylcarbamate (BCM) and the actin inhibitor latrunculin A (LA), in yeast extract peptone dextrose medium, were examined by scanning (SEM) and transmission electron microscopy (TEM), and the cell number was counted using a Bürker chamber. After 2 days of inhibition with VIN, BCM or LA, the cells did not divide, but later, resistant, proliferating cells appeared in all samples. With combined microtubule and actin inhibitors (VIN + LA or BCM + LA), cells did not divide during 6 or even 14 days, and no resistant cells originated. TEM showed that the inhibited cells were without cytoplasm and were dead; only empty cell walls persisted with reduced capsules, shown on SEM. Combined microtubule and actin inhibitors (VIN + LA or BCM + LA), have lethal effects on C. neoformans cells and no resistant cells originate. © 2015 S. Karger AG, Basel
Genome organization during the cell cycle: unity in division.
Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton
2017-09-01
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.
TfVPS32 Regulates Cell Division in the Parasite Tritrichomonas foetus.
Iriarte, Lucrecia S; Midlej, Victor; Frontera, Lorena S; Moros Duarte, Daniel; Barbeito, Claudio G; de Souza, Wanderley; Benchimol, Marlene; de Miguel, Natalia; Coceres, Veronica M
2018-01-01
The flagellated protist Tritrichomonas foetus is a parasite that causes bovine trichomonosis, a major sexually transmitted disease in cattle. Cell division has been described as a key player in controlling cell survival in other cells, including parasites but there is no information on the regulation of this process in T. foetus. The regulation of cytokinetic abscission, the final stage of cell division, is mediated by members of the ESCRT (endosomal sorting complex required for transport) machinery. VPS32 is a subunit within the ESCRTIII complex and here, we report that TfVPS32 is localized on cytoplasmic vesicles and a redistribution of the protein to the midbody is observed during the cellular division. In concordance with its localization, deletion of TfVPS32 C-terminal alpha helices (α5 helix and/or α4-5 helix) leads to abnormal T. foetus growth, an increase in the percentage of multinucleated parasites and cell cycle arrest at G2/M phase. Together, these results indicate a role of this protein in controlling normal cell division. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.
Z ring as executor of bacterial cell division.
Dajkovic, Alex; Lutkenhaus, Joe
2006-01-01
It has become apparent that bacteria possess ancestors of the major eukaryotic cytoskeletal proteins. FtsZ, the ancestral homologue of tubulin, assembles into a cytoskeletal structure associated with cell division, designated the Z ring. Formation of the Z ring represents a major point of both spatial and temporal regulation of cell division. Here we discuss findings concerning the structure and the formation of the ring as well as its spatial and temporal regulation.
Zupan, John R.; Cameron, Todd A.; Anderson-Furgeson, James; Zambryski, Patricia C.
2013-01-01
Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes. PMID:23674672
NASA Astrophysics Data System (ADS)
Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert
2010-05-01
Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.
The price of independence: cell separation in fission yeast.
Martín-García, Rebeca; Santos, Beatriz
2016-04-01
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.
High channel density wavelength division multiplexer with defined diffracting means positioning
Jannson, T.P.; Jannson, J.L.; Yeung, P.C.
1990-05-15
A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.
GEMINI-TITAN (GT)-3 - WEIGHTLESSNESS EXPERIMENT - AMES RESEARCH CENTER (ARC), CA
1965-03-01
S65-18762 (March 1965) --- Effects of the weightless environment on cell division, the basic growth process for living tissue, will be studied during the Gemini-Titan 3 flight scheduled for March 23, 1965. A spiny black sea urchin (upper left) is stimulated by mild electric shock or potassium chloride. As a result it sheds many thousands of eggs. When fertilized, these eggs become actively dividing cells very similar in basic processes to cells of other animals, including humans. These pictures show stages of cell division. At upper right is a single cell; at lower right cell divisions have produced many cells. Cell photos are magnified about 700 times, and all cells shown are too small to be seen by the naked eye. (Photos at upper right and lower left are of sea urchin eggs. Group of cells at lower right are from a sand dollar, which like the sea urchin, is an Echinoderm. Its eggs are virtually identical and are used interchangeably with those of the sea urchin in NASA Ames Center weightlessness experiments.) The Gemini experiment will involve cell division like that shown here. This will take place during several hours of weightlessness aboard the Gemini spacecraft. The experiment will be flown back to laboratories at Cape Kennedy after spacecraft recovery. It has been designed so that any abnormal cell division found by postflight analysis should suggest that the weightless environment has effects on individual cells. This might mean hazards for prolonged periods of manned spaceflight.
Dorca-Fornell, Carmen; Pajor, Radoslaw; Lehmeier, Christoph; Pérez-Bueno, Marísa; Bauch, Marion; Sloan, Jen; Osborne, Colin; Rolfe, Stephen; Sturrock, Craig; Mooney, Sacha; Fleming, Andrew
2013-01-01
The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression. PMID:24118480
NASA Technical Reports Server (NTRS)
Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.
2002-01-01
Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no proliferating lineages "reserved" to make particular laminae or cell types. Copyright 2002 Wiley-Liss, Inc.
Ianzini, Fiorenza; Kosmacek, Elizabeth A.; Nelson, Elke S.; Napoli, Eleonora; Erenpreisa, Jekaterina; Kalejs, Martins; Mackey, Michael A.
2009-01-01
Cancer is frequently characterized histologically by the appearance of large cells that are either aneuploid or polyploid. Aneuploidy and polyploidy are hallmarks of radiation-induced mitotic catastrophe (MC), a common phenomenon occurring in tumor cells with impaired p53 function exposed to various cytotoxic and genotoxic agents. MC is characterized by altered expression of mitotic regulators, untimely and abnormal cell division, delayed DNA damage, and changes in morphology. We report here that cells undergoing radiation-induced MC are more plastic with regards to ploidy and that this plasticity allows them to reorganize their genetic material through reduction divisions to produce smaller cells morphologically indistinguishable from control cells. Experiments conducted with the Large Scale Digital Cell Analysis System (LSDCAS) are discussed that show that a small fraction of polyploid cancer cells formed via radiation-induced MC can survive and start a process of depolyploidization that yields various outcomes. While most multipolar divisions failed and cell fusion occurred; some of these divisions were successful and originated a variety of cell progeny characterized by different ploidy. Among these ploidy phenotypes, a progeny of small mononucleated cells, indistinguishable from the untreated control cells, is often seen. We report here evidence that meiosis-specific genes are expressed in the polyploid cells during depolyploidization. Tumor cells might take advantage of the temporary change from a pro-mitotic to a pro-meiotic division regimen to facilitate depolyploidization and restore the proliferative state of the tumor cell population. These events might be mechanisms by which tumor progression and resistance to treatment occur in vivo. PMID:19258501
Cell cycles and cell division in the archaea.
Samson, Rachel Y; Bell, Stephen D
2011-06-01
Until recently little was known about the cell cycle parameters and division mechanisms of archaeal organisms. Although this is still the case for the majority of archaea, significant advances have been made in some model species. The information that has been gleaned thus far points to a remarkable degree of diversity within the archaeal domain of life. More specifically, members of distinct phyla have very different chromosome copy numbers, replication control systems and even employ distinct machineries for cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fuel cell stack with passive air supply
Ren, Xiaoming; Gottesfeld, Shimshon
2006-01-17
A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.
Studying cytokinesis in Drosophila epithelial tissues.
Pinheiro, D; Bellaïche, Y
2017-01-01
Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Study of the mechanism of diatom cell division by means of 29Si isotope tracing
NASA Astrophysics Data System (ADS)
Audinot, J.-N.; Guignard, C.; Migeon, H.-N.; Hoffmann, L.
2006-07-01
Diatoms are delicate unicellular organisms enclosed in a silica frustule, that is made up of two valves. Multiplication of the diatoms occurs by ordinary mitotic cell division. During cell division each cell produces two daughter cells, each of them keeping one of the two valves of the mother cell and producing a new valve by absorbing the silicon present in the environment. The NanoSIMS 50 allows ion imaging to be performed on diatoms in order to determine the site of fixation of silicon. The aim of this study was to observe and compare the mechanism of the construction of the new valve after cell division. To this end, different types of diatoms have been transferred in a culture medium enriched with 29Si and after several days, the distribution of the different isotopes of silicon has been determined by NanoSIMS50 imaging. The construction of new valves has been observed and the isotopic ratio has been determined.
FORMATION OF INTRACYTOPLASMIC MEMBRANE SYSTEM OF MYCOBACTERIA RELATED TO CELL DIVISION
Imaeda, Tamotsu; Ogura, Mituo
1963-01-01
Imaeda, Tamotsu (Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela) and Mitua Ogura. Formation of intracytoplasmic membrane system of mycobacteria related to cell division. J. Bacteriol. 85:150–163. 1963.—Mycobacterium leprae, M. lepraemurium, and a Mycobacterium sp. were observed with an electron microscope. In these bacilli, the three-dimensional structure of the intracytoplasmic membrane system consists of tubular infoldings of the invaginated plasma membrane. The moderately dense substance, presumably representing the cell-wall precursor, is found in the membranous system, especially in the rapid growth phase of mycobacteria. This system always shows an intimate relationship with cell division. A low-density zone, probably corresponding to the low-density substance which coats the cell wall, appears in the connecting regions of the system and in the longitudinal portion of the cell wall. These zones extend centripetally, and the separation of the cell wall occurs after the two zones meet. Based on these results, we hypothesize that the intracytoplasmic membrane system may produce cell-wall material during cell division of mycobacteria. Images PMID:13956365
Nijhout, H Frederik; Cinderella, Margaret; Grunert, Laura W
2014-03-01
The wings of butterflies and moths develop from imaginal disks whose structure is always congruent with the final adult wing. It is therefore possible to map every point on the imaginal disk to a location on the adult wing throughout ontogeny. We studied the growth patterns of the wings of two distantly related species with very different adult wing shapes, Junonia coenia and Manduca sexta. The shape of the wing disks change throughout their growth phase in a species-specific pattern. We measured mitotic densities and mitotic orientation in successive stages of wing development approximately one cell division apart. Cell proliferation was spatially patterned, and the density of mitoses was highly correlated with local growth. Unlike other systems in which the direction of mitoses has been viewed as the primary determinant of directional growth, we found that in these two species the direction of growth was only weakly correlated with the orientation of mitoses. Directional growth appears to be imposed by a constantly changing spatial pattern of cell division coupled with a weak bias in the orientation of cell division. Because growth and cell division in imaginal disk require ecdysone and insulin signaling, the changing spatial pattern of cell division may due to a changing pattern of expression of receptors or downstream elements in the signaling pathways for one or both of these hormones. Evolution of wing shape comes about by changes in the progression of spatial patterns of cell division. © 2014 Wiley Periodicals, Inc.
Role of A-Kinase anchor protein (AKAP4) in growth and survival of ovarian cancer cells.
Kumar, Vikash; Jagadish, Nirmala; Suri, Anil
2017-08-08
Ovarian cancer represents one of the most common malignancies among women with very high mortality rate worldwide. A-kinase anchor protein 4 (AKAP4), a unique cancer testis (CT) antigen has been shown to be associated with various malignant properties of cancer cells. However, its involvement in various molecular pathways in ovarian cancer remains unknown. In present investigation, employing gene silencing approach, we examined the role of AKAP4 in cell cycle, apoptosis and epithelial-mesenchymal transition (EMT). Further, we also investigated the effect of ablation of AKAP4 on tumor growth in SCID mice ovarian cancer xenograft mouse model. Our results showed that ablation of AKAP4 resulted in increased reactive oxygen species (ROS) generation, DNA damage, cell cycle arrest and apoptosis in ovarian cancer cells. AKAP4 knockdown lead to degradation of protien kinase A (PKA) which was rescued by proteosome inhibitor MG-132. ROS quencher N-acetyl cysteine (NAC) treatment rescued cell cycle arrest and resumed cell division. Subsequently, increased expression of pro-apoptotic molecules and decreased expression of pro-survival/anti-apoptotic factors was observed. As a result of AKAP4 depletion, DNA damage response proteins p-γH2AX, p-ATM and p21 were upregulated. Also, knockdown of CREB resulted in similar findings. Further, PKA inhibitor (H89) and oxidative stress resulted in similar phenotype of ovarian cancer cells as observed in AKAP4 ablated cells. Collectively, for the first time our data showed the involvement of AKAP4 in PKA degradation and perturbed signaling through PKA-CREB axis in AKAP4 ablated ovarian cancer cells.
Stoynova-Bakalova, E; Petrov, P; Gigova, L; Ivanova, N
2011-01-01
The effect of endogenous cytokinins on the pattern of palisade cell division post-germination does not depend on the conditions of cotyledon development -in planta (attached to seedlings) or in vitro (isolated from dry zucchini seeds and cultured on water). In cotyledons originating from 4-day-old seedlings (experimental system 1), exogenous cytokinin temporarily (in the first 2 day of cultivation) enhanced post-mitotic cell enlargement of palisade cells, mainly due to enhanced water uptake and use of cell storage compounds, all of which lead to cotyledon senescence. Cytokinin is not able to resume the completed palisade cell division on day 5. As a result, the number of cells and the final areas of treated and control cotyledons are quite similar. By contrast, the effects of cytokinin on cotyledons isolated from dry seeds (experimental system 2) are better expressed, promoting an increase in number of palisade cells accompanied by additional cotyledon area enlargement. However, the prolonged post-mitotic cell expansion in control cotyledons compensates for the reduced speed of cell growth and division activity and decreases differences in final cotyledon area between treatments. The results define cell division as the primary target of cytokinin stimulation in cotyledon tissues competent for division, and determine the temporal patterns of palisade cell cycling related to cotyledon age. This knowledge permits a better choice of experimental system to study effects on cell proliferation and cell growth, as well as cell enlargement and senescence-related events using physiologically homogeneous material. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
He, Zongze; You, Chao; Zhao, Dongdong
2018-06-07
Glioblastoma (GB) is the most common and deadliest malignant primary brain tumor with a high recurrence. In this study, lncRNA UCA1/miR-182 axis has been regarded as a nodal driver of glioma invasion mediated by GB-associated stromal cells (GASCs) and GASC-secreted chemokine CXCL14. In clinical specimens, CXCL14 upregulation in GASCs also correlated with poor prognosis. Notably, CXCL14-high GASCs mediated lncRNA UCA1 upregulation and miR-182 downregulation in glioma cells. Moreover, miR-182 directly bound to the fructose-2,6-biphosphatase PFKFB2; UCA1/miR-182 axis thereby modulated GASC-induced glycolysis in glioma cells. Overall, UCA1/miR-182/PFKFB2 axis modulates chemokine CXCL14 secretion, glycolysis and invasion of glioma cells in GASCs. Copyright © 2018 Elsevier Inc. All rights reserved.
Flagellation of Pseudomonas aeruginosa in newly divided cells
NASA Astrophysics Data System (ADS)
Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard
2015-03-01
For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.
Regulation of Asymmetric Division and CD8+ T Lymphocyte Fate Specification by PKCζ and PKCλ/ι
Metz, Patrick J.; Arsenio, Janilyn; Kakaradov, Boyko; Kim, Stephanie H.; Remedios, Kelly A.; Oakley, Katherine; Akimoto, Kazunori; Ohno, Shigeo; Yeo, Gene W.; Chang, John T.
2015-01-01
During an immune response against a microbial pathogen, activated naïve T lymphocytes give rise to effector cells that provide acute host defense and memory cells that provide long-lived immunity. It has been shown that T lymphocytes can undergo asymmetric division, enabling the daughter cells to inherit unequal amounts of fate-determining proteins and thereby acquire distinct fates from their inception. Here, we show that the absence of the atypical protein kinase C (aPKC) isoforms, PKCζ and PKCλ/ι, disrupts asymmetric CD8+ T lymphocyte division. These alterations were associated with aberrant acquisition of a ‘pre-effector’ transcriptional program, detected by single-cell gene expression analyses, in lymphocytes that had undergone their first division in vivo and enhanced differentiation toward effector fates at the expense of memory fates. Together, these results demonstrate a role for aPKC in regulating asymmetric division and the specification of divergent CD8+ T lymphocyte fates early during an immune response. PMID:25617472
Cell-Division Behavior in a Heterogeneous Swarm Environment.
Erskine, Adam; Herrmann, J Michael
2015-01-01
We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions.
Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro
2016-01-01
Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine.
CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions
Lee, Yong-Uk; Son, Miseol; Kim, Jiyoung; Shim, Yhong-Hee; Kawasaki, Ichiro
2016-01-01
ABSTRACT Intestinal divisions in Caenorhabditis elegans take place in 3 stages: (1) cell divisions during embryogenesis, (2) binucleations at the L1 stage, and (3) endoreduplications at the end of each larval stage. Here, we report that CDC-25.2, a C. elegans ortholog of Cdc25, is required for these specialized division cycles between the 16E cell stage and the onset of endoreduplication. Results of our genetic analyses suggest that CDC-25.2 regulates intestinal cell divisions and binucleations by counteracting WEE-1.3 and by activating the CDK-1/CYB-1 complex. CDC-25.2 activity is then repressed by LIN-23 E3 ubiquitin ligase before the onset of intestinal endoreduplication, and this repression is maintained by LIN-35, the C. elegans ortholog of Retinoblastoma (Rb). These findings indicate that timely regulation of CDC-25.2 activity is essential for the progression of specialized division cycles and development of the C. elegans intestine. PMID:27104746
Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.
NASA Astrophysics Data System (ADS)
Garlea, Ovidiu
Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.
Problems and potentialities of cultured plant cells in retrospect and prospect
NASA Technical Reports Server (NTRS)
Steward, F. C.; Krikorian, A. D.
1979-01-01
The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.
Jiang, Dan; Fang, Jingjing; Lou, Lamei; Zhao, Jinfeng; Yuan, Shoujiang; Yin, Liang; Sun, Wei; Peng, Lixiang; Guo, Baotai; Li, Xueyong
2015-01-01
Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1) show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1), nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogenous expression of NAL1 in fission yeast (Schizosaccharomyces pombe) further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division. PMID:25658704
Pluskal, Tomáš; Hayashi, Takeshi; Saitoh, Shigeaki; Fujisawa, Asuka; Yanagida, Mitsuhiro
2011-01-01
Glucose as a source of energy is centrally important to our understanding of life. We investigated the cell division–quiescence behavior of the fission yeast Schizosaccharomyces pombe under a wide range of glucose concentrations (0–111 mm). The mode of S. pombe cell division under a microfluidic perfusion system was surprisingly normal under highly diluted glucose concentrations (5.6 mm, 1/20 of the standard medium, within human blood sugar levels). Division became stochastic, accompanied by a curious division-timing inheritance, in 2.2–4.4 mm glucose. A critical transition from division to quiescence occurred within a narrow range of concentrations (2.2–1.7 mm). Under starvation (1.1 mm) conditions, cells were mostly quiescent and only a small population of cells divided. Under fasting (0 mm) conditions, division was immediately arrested with a short chronological lifespan (16 h). When cells were first glucose starved prior to fasting, they possessed a substantially extended lifespan (∼14 days). We employed a quantitative metabolomic approach for S. pombe cell extracts, and identified specific metabolites (e.g. biotin, trehalose, ergothioneine, S-adenosyl methionine and CDP-choline), which increased or decreased at different glucose concentrations, whereas nucleotide triphosphates, such as ATP, maintained high concentrations even under starvation. Under starvation, the level of S-adenosyl methionine increased sharply, accompanied by an increase in methylated amino acids and nucleotides. Under fasting, cells rapidly lost antioxidant and energy compounds, such as glutathione and ATP, but, in fasting cells after starvation, these and other metabolites ensuring longevity remained abundant. Glucose-starved cells became resistant to 40 mm H2O2 as a result of the accumulation of antioxidant compounds. PMID:21306563
The role of backward cell migration in two-hit mutants' production in the stem cell niche.
Bollas, Audrey; Shahriyari, Leili
2017-01-01
It has been discovered that there are two stem cell groups in the intestinal crypts: central stem cells (CeSCs), which are at the very bottom of the crypt, and border stem cells (BSCs), which are located between CeSCs and transit amplifying cells (TAs). Moreover, backward cell migration from BSCs to CeSCs has been observed. Recently, a bi-compartmental stochastic model, which includes CeSCs and BSCs, has been developed to investigate the probability of two-hit mutant production in the stem cell niche. In this project, we improve this stochastic model by adding the probability of backward cell migration to the model. The model suggests that the probability of two-hit mutant production increases when the frequency of backward cell migration increases. Furthermore, a small non-zero probability of backward cell migration leads to the largest range of optimal values for the frequency of symmetric divisions and the portion of divisions at each stem cell compartment in terms of delaying 2-hit mutant production. Moreover, the probability of two-hit mutant production is more sensitive to the probability of symmetric divisions than to the rate of backward cell migrations. The highest probability of two-hit mutant production corresponds to the case when all stem cell's divisions are asymmetric.
Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.
2012-01-01
SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603
Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A; Kiebler, Michael; Temple, Sally
2012-10-05
Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function. Copyright © 2012 Elsevier Inc. All rights reserved.
Kusek, Gretchen; Campbell, Melissa; Doyle, Frank; Tenenbaum, Scott A.; Kiebler, Michael; Temple, Sally
2012-01-01
Summary Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2+ neuroblast daughter, taking with it a sub-set of RNAs. Knockdown of Stau2 stimulates differentiation and over-expression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified novel candidates, including a subset involved in primary cilium function. PMID:22902295
DELAY OF CLEAVAGE OF THE ARBACIA EGG BY ULTRAVIOLET RADIATION
Blum, Harold F.; Price, Judith P.
1950-01-01
While our data do not permit us to state the exact locus or mode of action of ultraviolet radiation in the Arbacia egg, certain general conclusions may be reached. The amount of delay of cleavage of these eggs is determined by two principal factors: (1) The extent of an effect, resulting from photochemical action induced by ultraviolet radiation, which is reversible in a biological sense, the reversibility not being directly dependent upon the process of cell division. (2) The sensitivity of the cell division process to the effects of the ultraviolet-induced photochemical reaction. This factor varies with the stage of cell division, the cell being insensitive during a period corresponding to most of mitosis. It seems likely that these findings may apply to cell division in general, but, since the quantitative relationships observed must, in this case, reflect the integration of two semi-independent factors, the over-all picture may appear quite different for different kinds of cells. PMID:15410486
Lipid Cell Biology: A Focus on Lipids in Cell Division.
Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S
2018-06-20
Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.
Asymmetric cell division during T cell development controls downstream fate
Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min
2015-01-01
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500
Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai
2016-01-01
Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771
Localization of FtsZ in Helicobacter pylori and Consequences for Cell Division
Specht, Mara; Dempwolff, Felix; Schätzle, Sarah; Thomann, Ralf
2013-01-01
Of the various kinds of cell division, the most common mode is binary fission, the division of a cell into two morphologically identical daughter cells. However, in the case of asymmetric cell division, Caulobacter crescentus produces two morphologically and functionally distinct cell types. Here, we have studied cell cycle progression of the human pathogen Helicobacter pylori using a functional green fluorescent protein (GFP) fusion of FtsZ protein and membrane staining. In small cells, representing newly divided cells, FtsZ localizes to a single cell pole. During the cell cycle, spiral intermediates are formed until an FtsZ ring is positioned with very little precision, such that central as well as acentral rings can be observed. Daughter cells showed considerably different sizes, suggesting that H. pylori divides asymmetrically. Fluorescence recovery after photobleaching (FRAP) analyses demonstrate that the H. pylori FtsZ ring is about as dynamic as that of Escherichia coli but that polar assemblies show less turnover. Strikingly, our results demonstrate that H. pylori cell division follows a different route from that in E. coli and Bacillus subtilis. It is also different from that in C. crescentus, where cytokinesis regulation proteins like MipZ play a role. Therefore, this report provides the first cell-biological analysis of FtsZ dynamics in the human pathogen H. pylori and even in epsilonproteobacteria to our knowledge. In addition, analysis of the filament architecture of H. pylori and E. coli FtsZ filaments in the heterologous system of Drosophila melanogaster S2 Schneider cells revealed that both have different filamentation properties in vivo, suggesting a unique intrinsic characteristic of each protein. PMID:23335414
The role of backward cell migration in two-hit mutants’ production in the stem cell niche
Bollas, Audrey
2017-01-01
It has been discovered that there are two stem cell groups in the intestinal crypts: central stem cells (CeSCs), which are at the very bottom of the crypt, and border stem cells (BSCs), which are located between CeSCs and transit amplifying cells (TAs). Moreover, backward cell migration from BSCs to CeSCs has been observed. Recently, a bi-compartmental stochastic model, which includes CeSCs and BSCs, has been developed to investigate the probability of two-hit mutant production in the stem cell niche. In this project, we improve this stochastic model by adding the probability of backward cell migration to the model. The model suggests that the probability of two-hit mutant production increases when the frequency of backward cell migration increases. Furthermore, a small non-zero probability of backward cell migration leads to the largest range of optimal values for the frequency of symmetric divisions and the portion of divisions at each stem cell compartment in terms of delaying 2-hit mutant production. Moreover, the probability of two-hit mutant production is more sensitive to the probability of symmetric divisions than to the rate of backward cell migrations. The highest probability of two-hit mutant production corresponds to the case when all stem cell’s divisions are asymmetric. PMID:28931019
Lipka, Elisabeth; Gadeyne, Astrid; Stöckle, Dorothee; Zimmermann, Steffi; De Jaeger, Geert; Ehrhardt, David W.; Kirik, Viktor; Van Damme, Daniel; Müller, Sabine
2014-01-01
The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers. PMID:24972597
Wikramanayake, Athula H.; Huang, Ling; Klein, William H.
1998-01-01
In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal–vegetal axis in sea urchin embryos are largely unknown. Nuclear β-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that β-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that β-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal–vegetal axis. Our results also reveal similarities between the sea urchin animal–vegetal axis and the vertebrate dorsal–ventral axis, suggesting that these axes share a common evolutionary origin. PMID:9689082
Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V
2017-01-01
Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.
Ma, Xiaolan; Ehrhardt, David W.; Margolin, William
1996-01-01
In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring. PMID:8917533
Mei, Yuzhen; Yang, Xiuling; Huang, Changjun
2018-01-01
The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689
Poloz, Yekaterina; Catalano, Andrew
2012-01-01
Bestatin methyl ester (BME) is an inhibitor of Zn2+-binding aminopeptidases that inhibits cell proliferation and induces apoptosis in normal and cancer cells. We have used Dictyostelium as a model organism to study the effects of BME. Only two Zn2+-binding aminopeptidases have been identified in Dictyostelium to date, puromycin-sensitive aminopeptidase A and B (PsaA and PsaB). PSA from other organisms is known to regulate cell division and differentiation. Here we show that PsaA is differentially expressed throughout growth and development of Dictyostelium, and its expression is regulated by developmental morphogens. We present evidence that BME specifically interacts with PsaA and inhibits its aminopeptidase activity. Treatment of cells with BME inhibited the rate of cell growth and the frequency of cell division in growing cells and inhibited spore cell differentiation during late development. Overexpression of PsaA-GFP (where GFP is green fluorescent protein) also inhibited spore cell differentiation but did not affect growth. Using chimeras, we have identified that nuclear versus cytoplasmic localization of PsaA affects the choice between stalk or spore cell differentiation pathway. Cells that overexpressed PsaA-GFP (primarily nuclear) differentiated into stalk cells, while cells that overexpressed PsaAΔNLS2-GFP (cytoplasmic) differentiated into spores. In conclusion, we have identified that BME inhibits cell growth, division, and differentiation in Dictyostelium likely through inhibition of PsaA. PMID:22345351
Wang, Yunfang; Lanzoni, Giacomo; Carpino, Guido; Cui, Cai-Bin; Dominguez-Bendala, Juan; Wauthier, Eliane; Cardinale, Vincenzo; Oikawa, Tsunekazu; Pileggi, Antonello; Gerber, David; Furth, Mark E.; Alvaro, Domenico; Gaudio, Eugenio; Inverardi, Luca; Reid, Lola M.
2013-01-01
Peribiliary glands (PBGs) in bile duct walls, and pancreatic duct glands (PDGs) associated with pancreatic ducts, in humans of all ages, contain a continuous, ramifying network of cells in overlapping maturational lineages. We show that proximal (PBGs)-to-distal (PDGs) maturational lineages start near the duodenum with cells expressing markers of pluripotency (NANOG,OCT4,SOX2), proliferation (Ki67), self-replication (SALL4), and early hepato-pancreatic commitment (SOX9,SOX17,PDX1,LGR5), transitioning to PDG cells with no expression of pluripotency or self-replication markers, maintenance of pancreatic genes (PDX1), and expression of markers of pancreatic endocrine maturation (NGN3,MUC6,insulin). Radial-axis lineages start in PBGs near the ducts’ fibromuscular layers with stem cells and end at the ducts’ lumens with cells devoid of stem cell traits and positive for pancreatic endocrine genes. Biliary tree-derived cells behaved as stem cells in culture under expansion conditions, culture plastic and serum-free Kubota’s Medium, proliferating for months as undifferentiated cells, whereas pancreas-derived cells underwent only ∼8-10 divisions, then partially differentiated towards an islet fate. Biliary tree-derived cells proved precursors of pancreas’ committed progenitors. Both could be driven by 3-dimensional conditions, islet-derived matrix components and a serum-free, hormonally defined medium for an islet fate (HDM-P), to form spheroids with ultrastructural, electrophysiological and functional characteristics of neoislets, including glucose regulatability. Implantation of these neoislets into epididymal fat pads of immuno-compromised mice, chemically rendered diabetic, resulted in secretion of human C-peptide, regulatable by glucose, and able to alleviate hyperglycemia in hosts. The biliary tree-derived stem cells and their connections to pancreatic committed progenitors constitute a biological framework for life-long pancreatic organogenesis. PMID:23847135
Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates
Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko
2016-01-01
As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with limited resources, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms. PMID:27749898
A plant cell division algorithm based on cell biomechanics and ellipse-fitting.
Abera, Metadel K; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L A T M; Carmeliet, Jan; Nicolai, Bart M
2014-09-01
The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico.
Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns.
von Wangenheim, Daniel; Fangerau, Jens; Schmitz, Alexander; Smith, Richard S; Leitte, Heike; Stelzer, Ernst H K; Maizel, Alexis
2016-02-22
Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1→S transition.
Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P; Nath, Utpal
2011-07-01
The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1→S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1→S arrest is discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Huerta Zepeda, Alejandra; Torres Padilla, María Elena; Guerra López, Rodrigo
2008-01-01
The development of the mammalian embryo begins with the fertilization of the mature oocyte by the sperm. However, many processes that lead to the production of functional gametes precede this event. First of all, both male and female germ cells form during gametogenesis. The gametogenesis comprises four different steps: a) the specification and migration of primordial germ cells, b) the increase in the number of germ cells through mitotic divisions, c) the reduction in chromosomal number through meiosis, and d) a final structural and functional maturation of the oocyte and the sperm. Once the oocyte and the sperm have matured, the newly formed gametes are released from the gonads upon the appropriate hormonal stimulus and are subsequently transported to the oviduct, where the oocyte awaits to be fertilized by the sperm. The fertilized oocyte, now called zygote, undergoes the maternal-to-zygotic transition, characterized by the degradation of maternal transcripts and the concomitant synthesis of transcripts by the newly formed zygote. The production of these new transcripts is the result of the genome activation of the zygote. At the same time, the sperm and egg's chromatin experience a series of changes that will result in the formation of the male and female pronuclei. In the male pronucleus an exchange of protamines for histones takes place. Furthermore, the parental genomes are subject to modification through DNA demethylation, and the proteins, around which the DNA is 'packed', the histones, are also subject to covalent modifications. These modifications constitute some of the most prominent changes involved in the epigenetic reprogramming of the two gametes. Finally, the animal-vegetal poles that will begin the first divisions or 'cleavage' to give rise to the blastocyst, where we can already distinguish an embryonic-abembryonic axis. The blastocyst will then implant in the uterus previously prepared for implantation.
Cell division and the ESCRT complex: A surprise from the archaea.
Ettema, Thijs Jg; Bernander, Rolf
2009-01-01
The Archaea constitute the third domain of life, a separate evolutionary lineage together with the Bacteria and the Eukarya.1 Species belonging to the Archaea contain a surprising mix of bacterial (metabolism, life style, genomic organization) and eukaryotic (replication, transcription, translation) features.2 The archaeal kingdom comprises two main phyla, the Crenarchaeota and the Euryarchaeota. Regarding the cell division process in archaeal species (reviewed in ref. 3), members of the Euryarchaeota rely on an FtsZ-based cell division mechanism4 whereas, previously, no division genes had been detected in the crenarchaea. However, we recently reported the discovery of the elusive cell division machinery in crenarchaea from the genus Sulfolobus.5 The minimal machinery consists of three genes, which we designated cdvA, B and C (for cell division), organized into an operon that is widely conserved among crenarchaea. The gene products polymerize between segregating nucleoids at the early mitotic stage, forming a complex that remains associated with the leading edge of constriction throughout cytokinesis. Interestingly, CdvB and CdvC were shown to be related to the eukaryotic ESCRT-III protein sorting machinery (reviewed in ref. 6), indicating shared common ancestry and mechanistic similarities to endosomal vesicle formation and viral (HIV) budding in eukaryotes. We also demonstrated that the cdv operon is subject to checkpoint-like regulation, and that the genes display a complementary phylogenetic distribution within the Archaea domain relative to FtsZ-dependent division systems.5 Here, the findings are further explored and discussed, and topics for further investigation are suggested.
Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François
2015-04-20
During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shibusawa, Yoichi; Ito, Yoichiro
2014-01-01
This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182
Howell, Matthew; Aliashkevich, Alena; Salisbury, Anne K.; Cava, Felipe; Bowman, Grant R.
2017-01-01
ABSTRACT Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens. Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division. IMPORTANCE A. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies. PMID:28630123
Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M
2013-05-01
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.
Gorrepati, Lakshmi; Thompson, Kenneth W.; Eisenmann, David M.
2013-01-01
The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development. PMID:23633508
Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation
Markus, Steven M.; Lee, Wei-Lih
2011-01-01
During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells. PMID:22754610
A dendritic cell-stromal axis maintains immune responses in lymph nodes
Kumar, Varsha; Dasoveanu, Dragos C.; Chyou, Susan; Tzeng, Te-Chen; Rozo, Cristina; Liang, Yong; Stohl, William; Fu, Yang-Xin; Ruddle, Nancy; Lu, Theresa T.
2015-01-01
Summary Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases. PMID:25902483
Mitosis-Specific Mechanosensing and Contractile Protein Redistribution Control Cell Shape
Effler, Janet C.; Kee, Yee-Seir; Berk, Jason M.; Tran, Minhchau N.; Iglesias, Pablo A.; Robinson, Douglas N.
2008-01-01
Summary Because cell division failure is deleterious, promoting tumorigenesis in mammals [1], cells utilize numerous mechanisms to control their cell-cycle progression [2–4]. Though cell division is considered a well-ordered sequence of biochemical events [5], cytokinesis, an inherently mechanical process, must also be mechanically controlled to ensure that two equivalent daughter cells are produced with high fidelity. Since cells respond to their mechanical environment [6, 7], we hypothesized that cells utilize mechanosensing and mechanical feedback to sense and correct shape asymmetries during cytokinesis. Because the mitotic spindle and myosin-II are vital to cell division [8, 9], we explored their roles in responding to shape perturbations during cell division. We demonstrate that the contractile proteins, myosin-II and cortexillin-I, redistribute in response to intrinsic and externally induced shape asymmetries. In early cytokinesis, mechanical load overrides spindle cues and slows cytokinesis progression while contractile proteins accumulate and correct shape asymmetries. In late cytokinesis, mechanical perturbation also directs contractile proteins but without apparently disrupting cytokinesis. Significantly, this response only occurs during anaphase through cytokinesis, does not require microtubules, is independent of spindle orientation, but is dependent on myosin-II. Our data provide evidence for a mechanosensory system that directs contractile proteins to regulate cell shape during mitosis. PMID:17027494
NASA Technical Reports Server (NTRS)
Ford, Donald B. (Inventor)
2004-01-01
A sandwich core comprises two faceplates separated by a plurality of cells. The cells are comprised of walls positioned at oblique angles relative to a perpendicular axis extending through the faceplates. The walls preferably form open cells and are constructed from open cells and are constructed from rows of ribbons. The walls may be obliquely angled relative to more than one plane extending through the perpendicular axis.
Kalve, Shweta; Fotschki, Joanna; Beeckman, Tom; Vissenberg, Kris; Beemster, Gerrit T S
2014-12-01
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
PERSISTENCE OF MESSENGER RNA THROUGH MITOSIS IN HELA CELLS
Hodge, L. D.; Robbins, E.; Scharff, M. D.
1969-01-01
The decrease in protein synthesis which occurs in mammalian cells during cell division is associated with significant disaggregation of polyribosomes. For determining whether messenger RNA survives this disaggregation, the reformation of polyribosomes was investigated in synchronized HeLa cells as they progressed from metaphase into interphase in the presence of 2 µg/ml Actinomycin D. The persistence of messenger during cell division was evidenced by: (1) a progressive increase in the rate of protein synthesis in both treated and untreated cells for 45 min after metaphase; (2) reformation of polyribosomes, as determined by both sucrose gradients and electron microscopy, within 30 min after the addition of Actinomycin D to metaphase cells; (3) the persistence of approximately 50% of the rapidly labeled nonribosomal RNA which had associated with polyribosomes just before metaphase; (4) the resumption of synthesis, following cell division, of 6 selected peptides in Actinomycin-treated cells. PMID:5761922
Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal
Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N.; Trumpp, Andreas; Shinohara, Takashi
2016-01-01
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. PMID:28007786
Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.
Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi
2016-12-01
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.
Phillips, Brett E.; Cancel, Limary; Tarbell, John M.; Antonetti, David A.
2008-01-01
Purpose The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. Methods Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. Results Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. Conclusions The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein. PMID:18263810
Tank, Jigna G; Thaker, Vrinda S
2014-01-01
Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.
Tank, Jigna G.; Thaker, Vrinda S.
2014-01-01
Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358
Vedyaykin, Alexey D; Vishnyakov, Innokentii E; Polinovskaya, Vasilisa S; Khodorkovskii, Mikhail A; Sabantsev, Anton V
2016-06-01
FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis
NASA Astrophysics Data System (ADS)
McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned
2010-03-01
A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.
Kinetics of cell division in epidermal maintenance
NASA Astrophysics Data System (ADS)
Klein, Allon M.; Doupé, David P.; Jones, Phillip H.; Simons, Benjamin D.
2007-08-01
The rules governing cell division and differentiation are central to understanding the mechanisms of development, aging, and cancer. By utilizing inducible genetic labeling, recent studies have shown that the clonal population in transgenic mouse epidermis can be tracked in vivo. Drawing on these results, we explain how clonal fate data may be used to infer the rules of cell division and differentiation underlying the maintenance of adult murine tail-skin. We show that the rates of cell division and differentiation may be evaluated by considering the long-time and short-time clone fate data, and that the data is consistent with cells dividing independently rather than synchronously. Motivated by these findings, we consider a mechanism for cancer onset based closely on the model for normal adult skin. By analyzing the expected changes to clonal fate in cancer emerging from a simple two-stage mutation, we propose that clonal fate data may provide a novel method for studying the earliest stages of the disease.
Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit
2018-02-01
Cell division is compromised in DnaAcos mutant E. coli cells due to chromosome over-replication. In these cells, CedA acts as a regulatory protein and initiates cell division by a hitherto unknown mechanism. CedA, a double stranded DNA binding protein, interacts with various subunits of RNA polymerase complex, including rpoB. To reveal how this concert between CedA, rpoB and DNA brings about cell division in E. coli, we performed biophysical and in silico analysis and obtained mechanistic insights. Interaction between CedA and rpoB was shown by circular dichroism spectrometry and in silico docking experiments. Further, CedA and rpoB were allowed to interact individually to a selected DNA and their binding was monitored by fluorescence spectroscopy. The binding constants of these interactions as determined by BioLayer Interferometry clearly show that rpoB binds to DNA with higher affinity (K D2 =<1.0E-12M) as compared to CedA (K D2 =9.58E-09M). These findings were supported by docking analysis where 12 intermolecular H-bonds were formed in rpoB-DNA complex as compared to 4 in CedA-DNA complex. Based on our data we propose that in E. coli cells chromosome over-replication signals CedA to recruit rpoB to specific DNA site(s), which initiates transcription of cell division regulatory elements. Copyright © 2017 Elsevier B.V. All rights reserved.
Ganjam, L S; Thornton, W H; Marshall, R T; MacDonald, R S
1997-10-01
The consumption of yogurt has been associated with a reduced incidence of colon cancer in population groups. Bioactive peptides produced during bacterial fermentation may alter the risk of colon cancer via modification of cell proliferation in the colon. Using our previously described cell culture model system, we have isolated a yogurt fraction that decreases cell proliferation. Yogurt was fractionated using 10,000- and 500-Da membrane dialysis. When the yogurt fraction was incubated with IEC-6 or Caco-2 cells, cell division was decreased compared with control treatments, as determined by thymidine incorporation. Cell division was not inhibited in response to a similarly produced milk fraction or in response to solutions of lactic acid. The determination of cell kinetics by flow cytometry revealed a decrease in the number of cells in the initial growth phase in response to the yogurt fraction for the IEC-6 cells, but not the Caco-2 cells. Alpha-Lactalbumin inhibited cell division of both cell lines, but beta-casein did not.
Inversin modulates the cortical actin network during mitosis
Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.
2013-01-01
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530
Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel
2016-06-01
Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Circadian rhythms synchronize mitosis in Neurospora crassa.
Hong, Christian I; Zámborszky, Judit; Baek, Mokryun; Labiscsak, Laszlo; Ju, Kyungsu; Lee, Hyeyeong; Larrondo, Luis F; Goity, Alejandra; Chong, Hin Siong; Belden, William J; Csikász-Nagy, Attila
2014-01-28
The cell cycle and the circadian clock communicate with each other, resulting in circadian-gated cell division cycles. Alterations in this network may lead to diseases such as cancer. Therefore, it is critical to identify molecular components that connect these two oscillators. However, molecular mechanisms between the clock and the cell cycle remain largely unknown. A model filamentous fungus, Neurospora crassa, is a multinucleate system used to elucidate molecular mechanisms of circadian rhythms, but not used to investigate the molecular coupling between these two oscillators. In this report, we show that a conserved coupling between the circadian clock and the cell cycle exists via serine/threonine protein kinase-29 (STK-29), the Neurospora homolog of mammalian WEE1 kinase. Based on this finding, we established a mathematical model that predicts circadian oscillations of cell cycle components and circadian clock-dependent synchronized nuclear divisions. We experimentally demonstrate that G1 and G2 cyclins, CLN-1 and CLB-1, respectively, oscillate in a circadian manner with bioluminescence reporters. The oscillations of clb-1 and stk-29 gene expression are abolished in a circadian arrhythmic frq(ko) mutant. Additionally, we show the light-induced phase shifts of a core circadian component, frq, as well as the gene expression of the cell cycle components clb-1 and stk-29, which may alter the timing of divisions. We then used a histone hH1-GFP reporter to observe nuclear divisions over time, and show that a large number of nuclear divisions occur in the evening. Our findings demonstrate the circadian clock-dependent molecular dynamics of cell cycle components that result in synchronized nuclear divisions in Neurospora.
Biological consequences and advantages of asymmetric bacterial growth.
Kysela, David T; Brown, Pamela J B; Huang, Kerwyn Casey; Brun, Yves V
2013-01-01
Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.
Ni, Hua; Fan, Weiwei; Li, Chaolong; Wu, Qianqian; Hou, Hongfen; Hu, Dan; Zheng, Feng; Zhu, Xuhui; Wang, Changjun; Cao, Xiangrong; Shao, Zhu-Qing; Pan, Xiuzhen
2018-01-01
Streptococcus suis serotype 2 is an important swine pathogen and an emerging zoonotic agent that causes severe infections. Recent studies have reported a eukaryotic-like Ser/Thr protein kinase (STK) gene and characterized its role in the growth and virulence of different S. suis 2 strains. In the present study, phosphoproteomic analysis was adopted to identify substrates of the STK protein. Seven proteins that were annotated to participate in different cell processes were identified as potential substrates, which suggests the pleiotropic effects of stk on S. suis 2 by targeting multiple pathways. Among them, a protein characterized as cell division initiation protein (DivIVA) was further investigated. In vitro analysis demonstrated that the recombinant STK protein directly phosphorylates threonine at amino acid position 199 (Thr-199) of DivIVA. This effect could be completely abolished by the T199A mutation. To determine the specific role of DivIVA in growth and division, a divIVA mutant was constructed. The ΔdivIVA strain exhibited impaired growth and division, including lower viability, enlarged cell mass, asymmetrical division caused by aberrant septum, and extremely weak pathogenicity in a mouse infection model. Collectively, our results reveal that STK regulates the cell growth and virulence of S. suis 2 by targeting substrates that are involved in different biological pathways. The inactivation of DivIVA leads to severe defects in cell division and strongly attenuates pathogenicity, thereby indicating its potential as a molecular drug target against S. suis. PMID:29616196
Guzman, L M; Weiss, D S; Beckwith, J
1997-01-01
FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle. PMID:9260951
Gurling, Mark; Talavera, Karla; Garriga, Gian
2014-01-01
Neuroblast divisions in the nematode Caenorhabditis elegans often give rise to a larger neuron and a smaller cell that dies. We have previously identified genes that, when mutated, result in neuroblast divisions that generate daughter cells that are more equivalent in size. This effect correlates with the survival of daughter cells that would normally die. We now describe a role for the DEP domain-containing protein TOE-2 in promoting the apoptotic fate in the Q lineage. TOE-2 localized at the plasma membrane and accumulated in the cleavage furrow of the Q.a and Q.p neuroblasts, suggesting that TOE-2 might position the cleavage furrow asymmetrically to generate daughter cells of different sizes. This appears to be the case for Q.a divisions where loss of TOE-2 led to a more symmetric division and to survival of the smaller Q.a daughter. Localization of TOE-2 to the membrane is required for this asymmetry, but, surprisingly, the DEP domain is dispensable. By contrast, loss of TOE-2 led to loss of the apoptotic fate in the smaller Q.p daughter but did not affect the size asymmetry of the Q.p daughters. This function of TOE-2 required the DEP domain but not localization to the membrane. We propose that TOE-2 ensures an apoptotic fate for the small Q.a daughter by promoting asymmetry in the daughter cell sizes of the Q.a neuroblast division but by a mechanism that is independent of cell size in the Q.p division. PMID:24961802
Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle.
Vats, Purva; Rothfield, Lawrence
2007-11-06
The bacterial actin homolog MreB exists as a single-copy helical cytoskeletal structure that extends between the two poles of rod-shaped bacteria. In this study, we show that equipartition of the MreB cytoskeleton into daughter cells is accomplished by division and segregation of the helical MreB array into two equivalent structures located in opposite halves of the predivisional cell. This process ensures that each daughter cell inherits one copy of the MreB cytoskeleton. The process is triggered by the membrane association of the FtsZ cell division protein. The cytoskeletal division and segregation events occur before and independently of cytokinesis and involve specialized MreB structures that appear to be intermediates in this process.
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Accumulation of neutral mutations in growing cell colonies with competition.
Sorace, Ron; Komarova, Natalia L
2012-12-07
Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.
How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.
ERIC Educational Resources Information Center
McKean, Heather R.; Gibson, Linda S.
1989-01-01
Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)
Wu, Dang; Wang, Lepeng; Yang, Yanhong; Huang, Jin; Hu, Yuhua; Shu, Yongwei; Zhang, Jingyu; Zheng, Jing
2018-03-25
Mitotic arrest deficient-like-1 (MAD2, also known as MAD2L1) is thought to be an important spindle assembly checkpoint protein, which ensures accurate chromosome segregation and is closely associated with poor prognosis in many cancer. As a MAD2 binding protein, p31 comet counteracts the function of MAD2 and leads to mitotic checkpoint silence. In this study, we explore the function of MAD2-p31 comet axis in malignant glioma cells. Our results showed that disruption of MAD2-p31 comet axis by MAD2 knockdown or p31 comet overexpression suppressed cell proliferation, survival and migration of glioma, indicating that MAD2-p31 comet axis is required for maintaining glioma cells malignancy. It is noted that MAD2 depletion or p31 comet overexpression reduced the sensitivity of glioma cells to microtubule-interfering agents paclitaxel and vinblastine, providing clinical guidance for application of such drugs. Taken together, our findings suggest that MAD2-p31 comet axis may serve as a potential therapeutic target for glioma. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Matz, Rebecca L.
2012-01-01
Chapter 1: The role of cell division in protein expression is important to understand in order to guide the development of better nonviral gene delivery materials that can transport DNA to the nucleus with high efficiency for a variety of cell types, particularly when nondividing cells are targets of gene therapy. We evaluated the relationship…
Centrosome Amplification: A Potential Marker of Breast Cancer Agressiveness
2006-07-01
centrosome amplification. Introduction of DNA damage in the MCF-7 cell line by treatment with hydroxyurea (HU) or daunorubicin (DR) resulted in the...cycles of DNA synthesis and mitotic division in hydroxyurea - arrested Chinese hamster ovary cells. J Cell Biol, 130: 105-115, 1995. 23. D’Assoro, A. B...from cycles of DNA synthesis and mitotic division in hydroxyurea -arrested Chinese hamster ovary cells. J Cell Biol, 1995. 130(1): p. 105-15. 22
Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong
2017-01-01
Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision. PMID:27956603
Willamme, Rémi; Alsafra, Zouheir; Arumugam, Rameshkumar; Eppe, Gauthier; Remacle, Françoise; Levine, R D; Remacle, Claire
2015-12-10
Biomass composition of Chlamydomonas reinhardtii was studied during two consecutive cycles of 12h light/12h dark. As in our experimental conditions the two synchronized divisions were separated by 20h, it was possible to show that accumulation of dry weight, proteins, chlorophyll and fatty acids mainly depends on cell division, whereas starch accumulation depends on a circadian rhythm as reported previously. Our metabolomics analyses also revealed that accumulation of five (Ser, Val, Leu, Ile and Thr) of the nine free amino acids detected displayed rhythmicity, depending on cell division while Glu was 20-50 times more abundant than the other ones probably because this free amino acid serves not only for protein synthesis but also for biosynthesis of nitrogen compounds. In addition, we performed a thermodynamic-motivated theoretical approach known as 'surprisal analysis'. The results from this analysis showed that cells were close to a steady state all along the 48h of the experiment. In addition, calculation of free energy of cellular metabolites showed that the transition point, i.e. the state which immediately precedes cell division, corresponds to the most unstable stage of the cell cycle and that division is identified as the greatest drop in the free energy of metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.
Cell proliferation during hair cell regeneration induced by Math1 in vestibular epithelia in vitro
Huang, Yi-bo; Ma, Rui; Yang, Juan-mei; Han, Zhao; Cong, Ning; Gao, Zhen; Ren, Dongdong; Wang, Jing; Chi, Fang-lu
2018-01-01
Hair cell regeneration is the fundamental method of correcting hearing loss and balance disorders caused by hair cell damage or loss. How to promote hair cell regeneration is a hot focus in current research. In mammals, cochlear hair cells cannot be regenerated and few vestibular hair cells can be renewed through spontaneous regeneration. However, Math1 gene transfer allows a few inner ear cells to be transformed into hair cells in vitro or in vivo. Hair cells can be renewed through two possible means in birds: supporting cell differentiation and transdifferentiation with or without cell division. Hair cell regeneration is strongly associated with cell proliferation. Therefore, this study explored the relationship between Math1-induced vestibular hair cell regeneration and cell division in mammals. The mouse vestibule was isolated to harvest vestibular epithelial cells. Ad-Math1-enhanced green fluorescent protein (EGFP) was used to track cell division during hair cell transformation. 5-Bromo-2′-deoxyuridine (BrdU) was added to track cell proliferation at various time points. Immunocytochemistry was utilized to determine cell differentiation and proliferation. Results demonstrated that when epithelial cells were in a higher proliferative stage, more of these cells differentiated into hair cells by Math1 gene transfer. However, in the low proliferation stage, no BrdU-positive cells were seen after Math1 gene transfer. Cell division always occurred before Math1 transfection but not during or after Math1 transfection, when cells were labeled with BrdU before and after Ad-Math1-EGFP transfection. These results confirm that vestibular epithelial cells with high proliferative potential can differentiate into new hair cells by Math1 gene transfer, but this process is independent of cell proliferation. PMID:29623936
Interactions between CXCR4 and CXCL12 promote cell migration and invasion of canine hemangiosarcoma.
Im, K S; Graef, A J; Breen, M; Lindblad-Toh, K; Modiano, J F; Kim, J-H
2017-06-01
The CXCR4/CXCL12 axis plays an important role in cell locomotion and metastasis in many cancers. In this study, we hypothesized that the CXCR4/CXCL12 axis promotes migration and invasion of canine hemangiosarcoma (HSA) cells. Transcriptomic analysis across 12 HSA cell lines and 58 HSA whole tumour tissues identified heterogeneous expression of CXCR4 and CXCL12, which was associated with cell movement. In vitro, CXCL12 promoted calcium mobilization, cell migration and invasion that were directly proportional to surface expression of CXCR4; furthermore, these responses proved sensitive to the CXCR4 antagonist, AMD3100, in HSA cell lines. These results indicate that CXCL12 potentiates migration and invasion of canine HSA cells through CXCR4 signalling. The direct relationship between these responses in HSA cells suggests that the CXCR4/CXCL12 axis contributes to HSA progression. © 2015 John Wiley & Sons Ltd.
Metz, Patrick J.; Lopez, Justine; Kim, Stephanie H.; Akimoto, Kazunori; Ohno, Shigeo; Chang, John T.
2016-01-01
Naïve CD8+ T lymphocytes responding to microbial pathogens give rise to effector T cells that provide acute defense and memory T cells that provide long-lived immunity. Upon activation, CD8+ T lymphocytes can undergo asymmetric division, unequally distributing factors to the nascent daughter cells that influence their eventual fate towards the effector or memory lineages. Individual loss of either atypical protein kinase C (aPKC) isoform, PKCζ or PKCλ/ι, partially impairs asymmetric divisions and increases CD8+ T lymphocyte differentiation toward a long-lived effector fate at the expense of memory T cell formation. Here, we show that deletion of both aPKC isoforms resulted in a deficit in asymmetric divisions, increasing the proportion of daughter cells that inherit high amounts of effector fate-associated molecules, IL-2Rα, T-bet, IFNγR, and interferon regulatory factor 4 (IRF4). However, unlike CD8+ T cells deficient in only one aPKC isoform, complete loss of aPKC unexpectedly increased CD8+ T cell differentiation toward a short-lived, terminal effector fate, as evidenced by increased rates of apoptosis and decreased expression of Eomes and Bcl2 early during the immune response. Together, these results provide evidence for an important role for asymmetric division in CD8+ T lymphocyte fate specification by regulating the balance between effector and memory precursors at the initiation of the adaptive immune response. PMID:26765121
Asahina, Masashi; Iwai, Hiroaki; Kikuchi, Akira; Yamaguchi, Shinjiro; Kamiya, Yuji; Kamada, Hiroshi; Satoh, Shinobu
2002-01-01
Cucumber (Cucumis sativus) hypocotyls were cut to one-half of their diameter transversely, and morphological and histochemical analyses of the process of tissue reunion in the cortex were performed. Cell division in the cortex commenced 3 d after cutting, and the cortex was nearly fully united within 7 d. 4′,6-Diamidino-2-phenylindole staining and 5-bromo-2′-deoxyuridine labeling experiments indicate that nDNA synthesis occurred during this process. In addition, specific accumulation of pectic substances was observed in the cell wall of attached cells in the reunion region of the cortex. Cell division during tissue reunion was strongly inhibited when the cotyledon was removed. This inhibition was reversed by applying gibberellin (GA, 10−4 m GA3) to the apical tip of the cotyledon-less plant. Supporting this observation, cell division in the cortex was inhibited by treatment of the cotyledon with 10−4 m uniconazole-P (an inhibitor of GA biosynthesis), and this inhibition was also reversed by simultaneous application of GA. In contrast to the essential role of cotyledon, normal tissue reunion in cut hypocotyls was still observed when the shoot apex was removed. The requirement of GA for tissue reunion in cut hypocotyls was also evident in the GA-deficient gib-1 mutant of tomato (Lycopersicon esculentum). Our results suggest that GA, possibly produced in cotyledons, is essential for cell division in reuniting cortex of cut hypocotyls. PMID:12011351
Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Gasa, Laura; Navarro, Lourdes; Samitier, Mireia; Pons, Miquel; Mezquita, Cristóbal
2018-05-04
All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.
Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann
2017-09-01
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.
Heller, Danielle M.; Tavag, Mrinalini
2017-01-01
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PMID:28931012
The zebrafish dorsal axis is apparent at the four-cell stage.
Gore, Aniket V; Maegawa, Shingo; Cheong, Albert; Gilligan, Patrick C; Weinberg, Eric S; Sampath, Karuna
2005-12-15
A central question in the development of multicellular organisms pertains to the timing and mechanisms of specification of the embryonic axes. In many organisms, specification of the dorsoventral axis requires signalling by proteins of the Transforming growth factor-beta and Wnt families. Here we show that maternal transcripts of the zebrafish Nodal-related morphogen, Squint (Sqt), can localize to two blastomeres at the four-cell stage and predict the dorsal axis. Removal of cells containing sqt transcripts from four-to-eight-cell embryos or injection of antisense morpholino oligonucleotides targeting sqt into oocytes can cause a loss of dorsal structures. Localization of sqt transcripts is independent of maternal Wnt pathway function and requires a highly conserved sequence in the 3' untranslated region. Thus, the dorsoventral axis is apparent by early cleavage stages and may require the maternally encoded morphogen Sqt and its associated factors. Because the 3' untranslated region of the human nodal gene can also localize exogenous sequences to dorsal cells, this mechanism may be evolutionarily conserved.
Foundation laid for understanding essentials of cell division | Center for Cancer Research
NCI Center for Cancer Research (CCR) scientists reported new molecular insights into understanding a critical aspect of cell division through a cross-disciplinary effort that combines cryo-electron microscopy (cryo-EM), biochemical and cell biological approaches. Errors in segregation of chromosomes during mitosis can lead to an aberrant number of chromosomes, a condition
Yuan, Shenglei; Huang, Wuren; Geng, Lei; Beerntsen, Brenda T; Song, Hongsheng; Ling, Erjun
2017-01-01
Integuments are the first line to protect insects from physical damage and pathogenic infection. In lepidopteran insects, they undergo distinct morphology changes such as scale formation during metamorphosis. However, we know little about integument development and scale formation during this stage. Here, we use the silkworm, Bombyx mori, as a model and show that stem cells in the integument of each segment, but not intersegmental membrane, divide into two scale precursor cells during the spinning stage. In young pupae, the scale precursor cell divides again. One of the daughter cells becomes a mature scale-secreting cell that undergoes several rounds of DNA duplication and the other daughter cell undergoes apoptosis later on. This scale precursor cell division is crucial to the development and differentiation of scale-secreting cells because scale production can be blocked after treatment with the cell division inhibitor paclitaxel. Subsequently, the growth of scale-secreting cells is under the control of 20-hydroxyecdysone but not juvenile hormone since injection of 20-hydroxyecdysone inhibited scale formation. Further work demonstrated that 20-hydroxyecdysone injection inhibits DNA duplication in scale-secreting cells while the expression of scale-forming gene ASH1 was down-regulated by BR-C Z2. Therefore, this research demonstrates that the scale cells of the silkworm develops through stem cell division prior to pupation and then another wave of cell division differentiates these cells into scale secreting cells soon after entrance into the pupal stage. Additionally, DNA duplication and scale production in the scale-secreting cells were found to be under the regulation of 20-hydroxyecdysone.
Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis
Marston, Adele L.; Wassmann, Katja
2017-01-01
Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045
Elkouby, Yaniv M.; Jamieson-Lucy, Allison; Mullins, Mary C.
2016-01-01
The source of symmetry breaking in vertebrate oocytes is unknown. Animal—vegetal oocyte polarity is established by the Balbiani body (Bb), a conserved structure found in all animals examined that contains an aggregate of specific mRNAs, proteins, and organelles. The Bb specifies the oocyte vegetal pole, which is key to forming the embryonic body axes as well as the germline in most vertebrates. How Bb formation is regulated and how its asymmetric position is established are unknown. Using quantitative image analysis, we trace oocyte symmetry breaking in zebrafish to a nuclear asymmetry at the onset of meiosis called the chromosomal bouquet. The bouquet is a universal feature of meiosis where all telomeres cluster to one pole on the nuclear envelope, facilitating chromosomal pairing and meiotic recombination. We show that Bb precursor components first localize with the centrosome to the cytoplasm adjacent to the telomere cluster of the bouquet. They then aggregate around the centrosome in a specialized nuclear cleft that we identified, assembling the early Bb. We show that the bouquet nuclear events and the cytoplasmic Bb precursor localization are mechanistically coordinated by microtubules. Thus the animal—vegetal axis of the oocyte is aligned to the nuclear axis of the bouquet. We further show that the symmetry breaking events lay upstream to the only known regulator of Bb formation, the Bucky ball protein. Our findings link two universal features of oogenesis, the Bb and the chromosomal bouquet, to oocyte polarization. We propose that a meiotic—vegetal center couples meiosis and oocyte patterning. Our findings reveal a novel mode of cellular polarization in meiotic cells whereby cellular and nuclear polarity are aligned. We further reveal that in zygotene nests, intercellular cytoplasmic bridges remain between oocytes and that the position of the cytoplasmic bridge coincides with the location of the centrosome meiotic—vegetal organizing center. These results suggest that centrosome positioning is set by the last mitotic oogonial division plane. Thus, oocytes are polarized in two steps: first, mitotic divisions preset the centrosome with no obvious polarization yet, then the meiotic—vegetal center forms at zygotene bouquet stages, when symmetry is, in effect, broken. PMID:26741740
A plant cell division algorithm based on cell biomechanics and ellipse-fitting
Abera, Metadel K.; Verboven, Pieter; Defraeye, Thijs; Fanta, Solomon Workneh; Hertog, Maarten L. A. T. M.; Carmeliet, Jan; Nicolai, Bart M.
2014-01-01
Background and Aims The importance of cell division models in cellular pattern studies has been acknowledged since the 19th century. Most of the available models developed to date are limited to symmetric cell division with isotropic growth. Often, the actual growth of the cell wall is either not considered or is updated intermittently on a separate time scale to the mechanics. This study presents a generic algorithm that accounts for both symmetrically and asymmetrically dividing cells with isotropic and anisotropic growth. Actual growth of the cell wall is simulated simultaneously with the mechanics. Methods The cell is considered as a closed, thin-walled structure, maintained in tension by turgor pressure. The cell walls are represented as linear elastic elements that obey Hooke's law. Cell expansion is induced by turgor pressure acting on the yielding cell-wall material. A system of differential equations for the positions and velocities of the cell vertices as well as for the actual growth of the cell wall is established. Readiness to divide is determined based on cell size. An ellipse-fitting algorithm is used to determine the position and orientation of the dividing wall. The cell vertices, walls and cell connectivity are then updated and cell expansion resumes. Comparisons are made with experimental data from the literature. Key Results The generic plant cell division algorithm has been implemented successfully. It can handle both symmetrically and asymmetrically dividing cells coupled with isotropic and anisotropic growth modes. Development of the algorithm highlighted the importance of ellipse-fitting to produce randomness (biological variability) even in symmetrically dividing cells. Unlike previous models, a differential equation is formulated for the resting length of the cell wall to simulate actual biological growth and is solved simultaneously with the position and velocity of the vertices. Conclusions The algorithm presented can produce different tissues varying in topological and geometrical properties. This flexibility to produce different tissue types gives the model great potential for use in investigations of plant cell division and growth in silico. PMID:24863687
The Nematode Caenorhabditis Elegans.
ERIC Educational Resources Information Center
Kenyon, Cynthia
1988-01-01
Discusses advantages of nematode use for studying patterns of cell division, differentiation, and morphogenesis. Describes nematode development. Cites experimental approaches available for genetic studies. Reviews the topics of control of cell division and differentiation, the nervous system, and muscle assembly and function of the organism. (RT)
Methods of using viral replicase polynucleotides and polypeptides
Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min
2007-12-18
The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.
Dedov, Vadim N; Dedova, Irina V; Nicholson, Garth A
2004-04-01
Starvation arrests cultured mammalian cells in the G(1) restriction point of the cell cycle, whereas cancer cells generally lose the regulatory control of the cell cycle. Human lymphocytes, infected with Epstein-Barr virus (EBV), also lose their cell cycle control and produce immortal lymphoblastoid cell lines. We show that during starvation, EBV-lymphoblasts override the cell cycle arrest in the G(1) restriction point and continue cell division. Simultaneously, starvation activates apoptosis in an approximately half of the daughter cells in each cell generation. Continuos cell division and partial removal of cells by apoptosis results in stabilization of viable cell numbers, where a majority of viable cells are in the G(1) phase of the cell cycle. In contrast to starvation, anticancer drug etoposide activates apoptosis indiscriminately in all EBV-lymphoblasts and convertes all the viable cells into apoptotic. We conclude that the removal of surplus cells by apoptosis may represent a survival mechanism of transformed (i.e., cancer) cell population in nutrient restricted conditions, whereas nontransformed mammalian cells are arrested in the G(1) restriction point of the cell cycle.
Accurate Cell Division in Bacteria: How Does a Bacterium Know Where its Middle Is?
NASA Astrophysics Data System (ADS)
Howard, Martin; Rutenberg, Andrew
2004-03-01
I will discuss the physical principles lying behind the acquisition of accurate positional information in bacteria. A good application of these ideas is to the rod-shaped bacterium E. coli which divides precisely at its cellular midplane. This positioning is controlled by the Min system of proteins. These proteins coherently oscillate from end to end of the bacterium. I will present a reaction-diffusion model that describes the diffusion of the Min proteins, and their binding/unbinding from the cell membrane. The system possesses an instability that spontaneously generates the Min oscillations, which control accurate placement of the midcell division site. I will then discuss the role of fluctuations in protein dynamics, and investigate whether fluctuations set optimal protein concentration levels. Finally I will examine cell division in a different bacteria, B. subtilis. where different physical principles are used to regulate accurate cell division. See: Howard, Rutenberg, de Vet: Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87 278102 (2001). Howard, Rutenberg: Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90 128102 (2003). Howard: A mechanism for polar protein localization in bacteria. J. Mol. Biol. 335 655-663 (2004).
The Min system in rod-shaped bacteria restricts improper assembly of the division septum. In Escherichia coli, the Min system localizes to the cell poles, but in Bacillus subtilis, it is recruited to nascent cell division sites at mid-cell to prevent aberrant septation events immediately adjacent to a constricting septum. How does the cell spatially and temporally restrict the
Homeostasis 5: nurses as external agents of control in breast cancer.
Clancy, John; McVicar, Andrew
Breast cancer is caused by a homeostatic imbalance of cell division. Healthcare practitioners need to understand cellular activities to appreciate the physiological basis of health (homeostasis), the pathophysiological basis of illness and the physiological rationale of healthcare. Cells are the 'basic unit of life' (Clancy and McVicar, 2011a). This article describes normal cell division and the anatomy and physiology of the breast and, using a case study, will show how breast cancer is a homeostatic imbalance of cell division. There are analogies between the components of homeostasis and the components of the nursing (healthcare) process (Clancy and McVicar, 2011b) in the condition of breast cancer. After reading this article, nurses should be able to: understand that breast cancer is a cellular hence chemical imbalance that causes uncontrollable mitotic division of breast cells; understand how the cell cycle of cancer cells differs from that of normal cells; identify nature-nurture interactions involved in the aetiology of breast cancer; understand that when caring for people with breast cancer, health professionals including oncology nurses are acting as external agents of homeostatic control as the patient 'recovers' from breast cancer, and also to some extent when reducing signs and symptoms, hence quality of life, by providing palliative care.
NASA Technical Reports Server (NTRS)
Schatten, Heide
1996-01-01
The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.
Mine, Ichiro; Kinoshita, Urara; Kawashima, Shigetaka; Sekida, Satoko
2018-01-22
The cells in the foliose thallus of trebouxiophycean alga Prasiola japonica apparently develop into 2 × 2 cell groups composed of two two-celled groups, each of which is a pair of derivative cells of the latest cell division. In the present study, the structural features of cell walls of the alga P. japonica concerning the formation of the cell groups were investigated using histochemical methods. Thin cell layers stained by Calcofluor White appeared to envelope the two-celled and four-celled groups separately and, hence, separated them from neighboring cell groups, and the Calcofluor White-negative gaps between neighboring four-celled groups were specifically stained by lectins, such as soybean agglutinin, jacalin, and Vicia villosa lectin conjugated with fluorescein. These results indicated that the Calcofluor White-positive cell wall layer of parent cell that existed during two successive cell divisions structurally distinguished two-celled and four-celled groups from others in this alga. Moreover, the results suggested that the cell wall components of the Calcofluor White-negative gaps would possibly contribute to the formation of the planar thallus through lateral union of the cell groups.
Rodrigues-Martins, Ana; Riparbelli, Maria; Callaini, Giuliano; Glover, David M; Bettencourt-Dias, Monica
2008-01-01
Centrioles are essential for the formation of cilia, flagella and centrosome organization. Abnormalities in centrosome structure and number in many cancers can be associated with aberrant cell division and genomic instability.(1,2) Canonical centriole duplication occurs in coordination with the cell division cycle, such that a single new "daughter" centriole arises next to each "mother" centriole. If destroyed, or eliminated during development, centrioles can form de novo.(3-5) Here we discuss our recent data demonstrating a molecular pathway that operates in both de novo and canonical centriole biogenesis involving SAK/PLK4, SAS-6 and SAS-4.(6) We showed that centriole biogenesis is a self-assembly process locally triggered by high SAK/PLK4 activity that may or not be associated with an existing centriole. SAS-6 acts downstream of SAK/PLK4 to organize nine precentriolar units, which we call here enatosomes, fitting together laterally and longitudinally, specifying a tube-like centriole precursor.(7,8) The identification of mutants impaired in centriole biogenesis has permitted the study of the physiological consequences of their absence in the whole organism. In Drosophila, centrioles are not necessary for somatic cell divisions.(9,10) However, we show here that mitotic abnormalities arise in syncytial SAK/PLK4-derived mutant embryos resulting in lethality. Moreover male meiosis fails in both SAK/PLK4 and DSAS-4 mutant spermatids that have no centrioles. These results show diversity in the need for centrioles in cell division. This suggests that tissue specific constraints selected for different contributions of centrosome-independent and dependent mechanisms in spindle function. This heterogeneity should be taken into account both in reaching an understanding of spindle function and when designing drugs that target cell division.
Biller, Steven J; Wayne, Kyle J; Winkler, Malcolm E; Burkholder, William F
2011-02-01
Bacteria must accurately replicate and segregate their genetic information to ensure the production of viable daughter cells. The high fidelity of chromosome partitioning is achieved through mechanisms that coordinate cell division with DNA replication. We report that YycJ (WalJ), a predicted member of the metallo-β-lactamase superfamily found in most low-G+C Gram-positive bacteria, contributes to the fidelity of cell division in Bacillus subtilis. B. subtilis ΔwalJ (ΔwalJ(Bsu)) mutants divide over unsegregated chromosomes more frequently than wild-type cells, and this phenotype is exacerbated when DNA replication is inhibited. Two lines of evidence suggest that WalJ(Bsu) and its ortholog in the Gram-positive pathogen Streptococcus pneumoniae, WalJ(Spn) (VicX), play a role in cell wall metabolism: (i) strains of B. subtilis and S. pneumoniae lacking walJ exhibit increased sensitivity to a narrow spectrum of cephalosporin antibiotics, and (ii) reducing the expression of a two-component system that regulates genes involved in cell wall metabolism, WalRK (YycFG), renders walJ essential for growth in B. subtilis, as observed previously with S. pneumoniae. Together, these results suggest that the enzymatic activity of WalJ directly or indirectly affects cell wall metabolism and is required for accurate coordination of cell division with DNA replication.
Accelerator Technology Division: Annual Report FY 1990
1991-05-01
new version of PARMTEQ that includes 3-D space - charge and image- charge effects in the Figure 2.4. Preliminary concept for the SSC RFQ Linac 25...developing a better space - charge model based on the work of Sachercr. We have successfully demonstrated the ability to include off-axis effects in...a way fully consistent with the space - charge forces. Modifying BEDLAM to include these effects will leave almost all of the code (the integrator
Validation of the USAWC Student War Gaming Model.
1983-05-18
from EREZ clogged with traffic; brigade, and SHARON division Egyptian artillery advance command post, follow harassing; fired on RESHEF brigade along...according to ADAN, "The advance of the Egyptian’s 25th Independent Tank Brigade along the Lexicon axis was incredibly slow; they seemed to be doing...in advance of play which artillery units would be played in each of the two legitimate modes described above. The model unit data base was then
Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak
2012-01-01
Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764
Zucchini, Laure; Mercy, Chryslène; Garcia, Pierre Simon; Cluzel, Caroline; Gueguen-Chaignon, Virginie; Galisson, Frédéric; Freton, Céline; Guiral, Sébastien; Brochier-Armanet, Céline; Gouet, Patrice; Grangeasse, Christophe
2018-02-01
Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.
Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.
Dri, A M; Rouviere-Yaniv, J; Moreau, P L
1991-01-01
Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558
Deregulation of cell growth and malignant transformation.
Sulić, Sanda; Panić, Linda; Dikić, Ivan; Volarević, Sinisa
2005-08-01
Cell growth and cell division are fundamental aspects of cell behavior in all organisms. Recent insights from many model organisms have shed light on the molecular mechanisms that control cell growth and cell division. A significant body of evidence has now been accumulated, showing a direct link between deregulation of components of cell cycle machinery and cancer. In addition, defects in one or more steps that control growth are important for malignant transformation, as many tumor suppressors and proto-oncogenes have been found to regulate cell growth. The importance of cell growth in tumor development is further supported by the discovery that rapamycin, an effective anticancer drug, inhibits a key regulator of protein synthetic machinery and cell growth, mammalian target of rapamycin (mTOR). In most cases, cell growth and cell division are coupled, thereby maintaining cell size within physiological limits. We believe that, in a long-term perspective, understanding how these two processes are coordinated in vivo and how their interplay is deregulated in a number of diseases, including cancer, may have a direct impact on the efficiency of modern therapeutics.
Wu, Chenggang; Al Mamun, Abu Amar Mohamed; Luong, Truc Thanh; Hu, Bo; Gu, Jianhua; Lee, Ju Huck; D'Amore, Melissa; Das, Asis; Ton-That, Hung
2018-04-24
Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the Δ ftsX and Δ envC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of Δ ftsX and Δ envC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum , due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the Δ ftsX and Δ envC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen. Copyright © 2018 Wu et al.
Wnt5a and Wnt11 regulate mammalian anterior-posterior axis elongation
Andre, Philipp; Song, Hai; Kim, Wantae; Kispert, Andreas; Yang, Yingzi
2015-01-01
Mesoderm formation and subsequent anterior-posterior (A-P) axis elongation are fundamental aspects of gastrulation, which is initiated by formation of the primitive streak (PS). Convergent extension (CE) movements and epithelial-mesenchymal transition (EMT) are important for A-P axis elongation in vertebrate embryos. The evolutionarily conserved planar cell polarity (PCP) pathway regulates CE, and Wnts regulate many aspects of gastrulation including CE and EMT. However, the Wnt ligands that regulate A-P axis elongation in mammalian development remain unknown. Wnt11 and Wnt5a regulate axis elongation in lower vertebrates, but only Wnt5a, not Wnt11, regulates mammalian PCP signaling and A-P axis elongation in development. Here, by generating Wnt5a; Wnt11 compound mutants, we show that Wnt11 and Wnt5a play redundant roles during mouse A-P axis elongation. Both genes regulate trunk notochord extension through PCP-controlled CE of notochord cells, establishing a role for Wnt11 in mammalian PCP. We show that Wnt5a and Wnt11 are required for proper patterning of the neural tube and somites by regulating notochord formation, and provide evidence that both genes are required for the generation and migration of axial and paraxial mesodermal precursor cells by regulating EMT. Axial and paraxial mesodermal precursors ectopically accumulate in the PS at late gastrula stages in Wnt5a−/−; Wnt11−/− embryos and these cells ectopically express epithelial cell adhesion molecules. Our data suggest that Wnt5a and Wnt11 regulate EMT by inducing p38 (Mapk14) phosphorylation. Our findings provide new insights into the role of Wnt5a and Wnt11 in mouse early development and also in cancer metastasis, during which EMT plays a crucial role. PMID:25813538
Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao
2015-06-05
In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Interrogating the Escherichia coli cell cycle by cell dimension perturbations
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli
2016-01-01
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612
Interrogating the Escherichia coli cell cycle by cell dimension perturbations.
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli
2016-12-27
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Clinical Utility of Blood Cell Histogram Interpretation
Bhagya, S.; Majeed, Abdul
2017-01-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered. PMID:29207767
Clinical Utility of Blood Cell Histogram Interpretation.
Thomas, E T Arun; Bhagya, S; Majeed, Abdul
2017-09-01
An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered.
2004-02-01
Potential new stan- dard ASME Boiler and Pressure Vessel Code, Section VIII ( BPVC -VIII), Division 1 Rules for Construction of Pressure Vessels...Published and avail- able for sale. ASME BPVC -VIII Division 2 Rules for Construction of Pressure Vessels, Division 2, Gerry Eisenberg, ASME ...Vessels, Division 3, Alternate ASME BPVC -VIII Division 3 Gerry Eisenberg, ASME Published and avail- able for sale. Rules High
Nambo, Masakazu; Kurihara, Daisuke; Yamada, Tomomi; Nishiwaki-Ohkawa, Taeko; Kadofusa, Naoya; Kimata, Yusuke; Kuwata, Keiko; Umeda, Masaaki; Ueda, Minako
2016-11-01
Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T.; VanNieuwenhze, Michael; Brun, Yves V.; Maurelli, Anthony T.
2016-01-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe’s developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host. PMID:27144308
Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T
2016-05-01
The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.
Sun, Li-Li; Zhou, Zhong-Jing; An, Li-Jun; An, Yan; Zhao, Yong-Qin; Meng, Xiao-Fang; Steele-King, Clare; Gan, Yin-Bo
2013-07-01
Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication. Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling, although GIS gene does not play a direct role in regulating trichome cell division. Here, we describe a novel role of GIS, controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM). Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM. A loss of function mutation of SIM signficantly reduced the expression of GIS. Futhermore, the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant. The gain or loss of function of GIS had no significant effect on the expression of SIM. These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.
Fujiwara, Makoto T; Yasuzawa, Mana; Kojo, Kei H; Niwa, Yasuo; Abe, Tomoko; Yoshida, Shigeo; Nakano, Takeshi; Itoh, Ryuuichi D
2018-01-01
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Liao, K H; Gustafson, D L; Fox, M H; Chubb, L S; Reardon, K F; Yang, R S
2001-01-01
We modified the two-stage Moolgavkar-Venzon-Knudson (MVK) model for use with Syrian hamster embryo (SHE) cell neoplastic progression. Five phenotypic stages are proposed in this model: Normal cells can either become senescent or mutate into immortal cells followed by anchorage-independent growth and tumorigenic stages. The growth of normal SHE cells was controlled by their division, death, and senescence rates, and all senescent cells were converted from normal cells. In this report, we tested the modeling of cell kinetics of the first two phenotypic stages against experimental data evaluating the effects of arsenic on SHE cells. We assessed cell division and death rates using flow cytometry and correlated cell division rates to the degree of confluence of cell cultures. The mean cell death rate was approximately equal to 1% of the average division rate. Arsenic did not induce immortalization or further mutations of SHE cells at concentrations of 2 microM and below, and chromium (3.6 microM) and lead (100 microM) had similar negative results. However, the growth of SHE cells was inhibited by 5.4 microM arsenic after a 2-day exposure, with cells becoming senescent after only 16 population doublings. In contrast, normal cells and cells exposed to lower arsenic concentrations grew normally for at least 30 population doublings. The biologically based model successfully predicted the growth of normal and arsenic-treated cells, as well as the senescence rates. Mechanisms responsible for inducing cellular senescence in SHE cells exposed to arsenic may help explain the apparent inability of arsenic to induce neoplasia in experimental animals. PMID:11748027
Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine
2013-12-01
We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
PBP2b plays a key role in both peripheral growth and septum positioning in Lactococcus lactis.
David, Blandine; Duchêne, Marie-Clémence; Haustenne, Gabrielle Laurie; Pérez-Núñez, Daniel; Chapot-Chartier, Marie-Pierre; De Bolle, Xavier; Guédon, Eric; Hols, Pascal; Hallet, Bernard
2018-01-01
Lactococcus lactis is an ovoid bacterium that forms filaments during planktonic and biofilm lifestyles by uncoupling cell division from cell elongation. In this work, we investigate the role of the leading peptidoglycan synthase PBP2b that is dedicated to cell elongation in ovococci. We show that the localization of a fluorescent derivative of PBP2b remains associated to the septal region and superimposed with structural changes of FtsZ during both vegetative growth and filamentation indicating that PBP2b remains intimately associated to the division machinery during the whole cell cycle. In addition, we show that PBP2b-negative cells of L. lactis are not only defective in peripheral growth; they are also affected in septum positioning. This septation defect does not simply result from the absence of the protein in the cell growth machinery since it is also observed when PBP2b-deficient cells are complemented by a catalytically inactive variant of PBP2b. Finally, we show that round cells resulting from β-lactam treatment are not altered in septation, suggesting that shape elongation as such is not a major determinant for selection of the division site. Altogether, we propose that the specific PBP2b transpeptidase activity at the septum plays an important role for tagging future division sites during L. lactis cell cycle.
Bacterial cytoskeleton and implications for new antibiotic targets.
Wang, Huan; Xie, Longxiang; Luo, Hongping; Xie, Jianping
2016-01-01
Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.
Control of proliferation and cancer growth by the Hippo signaling pathway
Ehmer, Ursula; Sage, Julien
2015-01-01
The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795
Li, Zhichao; He, Chaoying
2015-01-01
Physalis species show a significant variation in berry size; however, the underlying molecular basis is unknown. In this work, we showed that cell division difference in the ovaries might contribute to the ultimate berry size variation within Physalis species, and that mRNA abundance of Physalis floridana Cell Number Regulator1 (PfCNR1), the putative orthologue of the tomato fruit weight 2.2 (FW2.2), was negatively correlated with cell division in the ovaries. Moreover, heterochronic expression variation of the PfCNR1 genes in the ovaries concomitantly correlated with berry weight variation within Physalis species. In transgenic Physalis, multiple organ sizes could be negatively controlled by altering PfCNR1 levels, and cell division instead of cell expansion was primarily affected. PfCNR1 was shown to be anchored in the plasma membrane and to interact with PfAG2 (an AGAMOUS-like protein determining ovary identity). The expression of PfCYCD2;1, a putative orthologue of the mitosis-specific gene CyclinD2;1 in the cell cycle was negatively correlated with the PfCNR1 mRNA levels. PfAG2 was found to selectively bind to the CArG-box in the PfCYCD2;1 promoter and to repress PfCYCD2;1 expression, thus suggesting a PfAG2-mediated pathway for PfCNR1 to regulate cell division. The interaction of PfCNR1 with PfAG2 enhanced the repression of PfCYCD2;1 expression. The nuclear import of PfAG2 was essential in the proposed pathway. Our data provide new insights into the developmental pathways of a cell membrane-anchored protein that modulates cell division and governs organ size determination. This study also sheds light on the link between organ identity and organ growth in plants. PMID:25305759
AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells
Shao, Ying-Ying; Zhang, Tao-Lan; Wu, Lan-Xiang; Zou, He-Cun; Li, Shuang; Huang, Jin; Zhou, Hong-Hao
2017-01-01
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma. PMID:28208619
Mo, Allison H; Burkholder, William F
2010-06-01
Cell viability depends on the stable transmission of genetic information to each successive generation. Therefore, in the event of intrinsic or extrinsic DNA damage, it is important that cell division be delayed until DNA repair has been completed. In Bacillus subtilis, this is accomplished in part by YneA, an inhibitor of division that is induced as part of the SOS response. We sought to gain insight into the mechanism by which YneA blocks cell division and the processes involved in shutting off YneA activity. Our data suggest that YneA is able to inhibit daughter cell separation as well as septum formation. YneA contains a LysM peptidoglycan binding domain and is predicted to be exported. We established that the YneA signal peptide is rapidly cleaved, resulting in secretion of YneA into the medium. Mutations within YneA affect both the rate of signal sequence cleavage and the activity of YneA. YneA does not stably associate with the cell wall and is rapidly degraded by extracellular proteases. Based on these results, we hypothesize that exported YneA is active prior to signal peptide cleavage and that proteolysis contributes to the inactivation of YneA. Finally, we identified mutations in the transmembrane segment of YneA that abolish the ability of YneA to inhibit cell division, while having little or no effect on YneA export or stability. These data suggest that protein-protein interactions mediated by the transmembrane region may be required for YneA activity.
Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium.
Seery, J P; Watt, F M
2000-11-16
In spite of its clinical importance, little is known about the stem-cell compartment of the human oesophageal epithelium [1,2]. The epithelial basal layer consists of two distinct zones, one overlying the papillae of the supporting connective tissue (PBL) and the other covering the interpapillary zone (IBL) [3]. In examining the oesophageal basal layer, we found that proliferating cells were rare in the IBL and a high proportion of mitoses were asymmetrical, giving rise to one basal daughter and one suprabasal, differentiating daughter. In the PBL, mitoses were more frequent and predominantly symmetrical. The IBL was characterised by low expression of ?1 integrins and high expression of the beta2 laminin chain. By combining fluorescence-activated cell sorting (FACS) with in vitro clonal analysis, we obtained evidence that the IBL is enriched for stem cells. A normal oesophageal epithelium with asymmetric divisions was reconstituted on denuded oesophageal connective tissue. In contrast, asymmetric divisions were not sustained on skin connective tissue, and the epithelium formed resembled epidermis. We propose that stem cells located in the IBL give rise to differentiating daughters through asymmetric divisions in response to cues from the underlying basement membrane. Until now, stem-cell fate in stratified squamous epithelia was believed to be achieved largely through populational asymmetry [4-6].
Zhang, Le; Willemse, Joost; Hoskisson, Paul A; van Wezel, Gilles P
2018-05-09
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi
2016-01-01
DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. PMID:26400504
Hu, Bin; Yang, Guohua; Zhao, Weixing; Zhang, Yingjiao; Zhao, Jindong
2007-03-01
MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.
Anderson-Furgeson, James C.; Zupan, John R.; Grangeon, Romain
2016-01-01
ABSTRACT Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. IMPORTANCE How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several alphaproteobacteria, including Agrobacterium tumefaciens. Essential components for unipolar growth are largely uncharacterized, and the mechanism constraining growth to one pole of a wild-type cell is unknown. Here, we report that the deletion of a polar development gene, podJAt, results in cells exhibiting ectopic polar growth, including multiple growth poles and aberrant localization of cell division and polar growth-associated proteins. These data suggest that PodJAt is a critical factor in normal polar growth and impacts cell division in A. tumefaciens. PMID:27137498
A minimal model of epithelial tissue dynamics and its application to the corneal epithelium
NASA Astrophysics Data System (ADS)
Henkes, Silke; Matoz-Fernandez, Daniel; Kostanjevec, Kaja; Coburn, Luke; Sknepnek, Rastko; Collinson, J. Martin; Martens, Kirsten
Epithelial cell sheets are characterized by a complex interplay of active drivers, including cell motility, cell division and extrusion. Here we construct a particle-based minimal model tissue with only division/death dynamics and show that it always corresponds to a liquid state with a single dynamic time scale set by the division rate, and that no glassy phase is possible. Building on this, we construct an in-silico model of the mammalian corneal epithelium as such a tissue confined to a hemisphere bordered by the limbal stem cell zone. With added cell motility dynamics we are able to explain the steady-state spiral migration on the cornea, including the central vortex defect, and quantitatively compare it to eyes obtained from mice that are X-inactivation mosaic for LacZ.
Cornils, Hauke; Kohler, Reto S; Hergovich, Alexander; Hemmings, Brian A
2011-06-15
The mammalian genome encodes four members of the NDR/LATS kinase family: NDR1 (STK38), NDR2 (STK38L), LATS1 and LATS2, which are highly conserved from yeast to man. Members of the NDR/LATS kinase family have been implicated in a variety of biological processes ranging from cell division and morphology to apoptosis and tumor suppression. In mammals, LATS1/2 function as central parts of the HIPPO tumor suppressor pathway by restricting the activity of the YAP/TAZ proto-oncogenes. Recent evidence suggested that NDR1/2 are also part of an extended HIPPO tumor suppressor pathway. Apart from functions in apoptosis signaling and tumor suppression, NDR1/2 have been implicated in controlling centrosome duplication and mitotic chromosome alignment downstream of the HIPPO kinase homologs MST1 and MST2. Significantly, we also reported recently that NDR1/2 are controlling G 1/S transition downstream of a third MST family member MST3. Intriguingly, this newly described MST3-NDR1/2 axis promotes G 1 progression by stabilizing c-myc and preventing p21 accumulation, indicating a potential pro-tumorigenic role for NDR kinases. Here, we discuss these novel cell cycle functions of NDR kinases in a broader context and elaborate on possible explanations for the opposing functions of NDR kinases in normal and tumor biology.
Use of abnormal preprophase bands to decipher division plane determination
NASA Technical Reports Server (NTRS)
Granger, C.; Cyr, R.
2001-01-01
Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.
García del Portillo, F; de Pedro, M A
1990-01-01
To study the functional differences between penicillin-binding proteins (PBPs) 1A and 1B, as well as their recently postulated involvement in the septation process (F. García del Portillo, M. A. de Pedro, D. Joseleau-Petit, and R. D'Ari, J. Bacteriol. 171:4217-4221, 1989), a series of isogenic strains with mutations in the genes coding for PBP 1A (ponA) or PBP 1B (ponB) or in the cell division-specific genes ftsA, ftsQ, pbpB, and ftsZ was constructed and used as the start point to produce double mutants combining the ponA or ponB characters with mutations in cell division genes. PBP 1A seemed to be unable to preserve cell integrity by itself, requiring the additional activities of PBP 2, PBP 3, and FtsQ. PBP 1B was apparently endowed with a more versatile biosynthetic potential that permitted a substantial enlargement of PBP 1A-deficient cells when PBP 2 or 3 was inhibited or when FtsQ was inactive. beta-Lactams binding to PBP 2 (mecillinam) or 3 (furazlocillin) caused rapid lysis in a ponB background. The lytic effect of furazlocillin to ponB cell division double mutants was suppressed at the restrictive temperature irrespective of the identity of the mutated cell division gene. These results indicate that PBPs 1A and 1B play distinct roles in cell wall synthesis and support the idea of a relevant involvement of PBP 1B in peptidoglycan synthesis at the time of septation. Images PMID:2211517
Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway
Mauser, Jonathon F.; Prehoda, Kenneth E.
2012-01-01
During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744
Meiotic Divisions: No Place for Gender Equality.
El Yakoubi, Warif; Wassmann, Katja
2017-01-01
In multicellular organisms the fusion of two gametes with a haploid set of chromosomes leads to the formation of the zygote, the first cell of the embryo. Accurate execution of the meiotic cell division to generate a female and a male gamete is required for the generation of healthy offspring harboring the correct number of chromosomes. Unfortunately, meiosis is error prone. This has severe consequences for fertility and under certain circumstances, health of the offspring. In humans, female meiosis is extremely error prone. In this chapter we will compare male and female meiosis in humans to illustrate why and at which frequency errors occur, and describe how this affects pregnancy outcome and health of the individual. We will first introduce key notions of cell division in meiosis and how they differ from mitosis, followed by a detailed description of the events that are prone to errors during the meiotic divisions.
ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells.
Lewis, Samantha C; Uchiyama, Lauren F; Nunnari, Jodi
2016-07-15
Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria. Copyright © 2016, American Association for the Advancement of Science.
INHIBITION OF NEURAL CREST CELL MIGRATION BY THE WATER DISINFECTION BYPRODUCTS DICHLORO-, DIBROMO- AND BROMOCHLORO-ACETIC ACID. JE Andrews, H Nichols, J Schmid 1, and ES Hunter. Reproductive Toxicology Division, 1Research Support Division, NHEERL, USEPA, RTP, NC, USA.
...
How to Foster an Understanding of Growth and Cell Division
ERIC Educational Resources Information Center
Kruger, Dirk; Fleige, Jennifer; Riemeier, Tanja
2006-01-01
The study presents the frequencies of students' conceptions of growth and cell division before and after one hour of instruction. The investigation supplements qualitative results by directing attention to those conceptions which might occur most frequently to students: teachers can then concentrate their preparation on practical requirements. A…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ji; Huang, Yijiang; Gao, Yunsuo
The essential roles of overexpression of eukaryotic translation initiation factor 4E (eIF4E) and aberrant activation of β-catenin in lung cancer development have been recently identified. However, whether there is a direct connection between eIF4E overexpression and β-catenin activation in lung cancer cells is unknown. In this study, we show that antibiotic drug rifabutin targets human lung cancer cells via inhibition of eIF4E-β-catenin axis. Rifabutin is effectively against lung cancer cells in in vitro cultured cells and in vivo xenograft mouse model through inhibiting proliferation and inducing apoptosis. Mechanistically, eIF4E regulates β-catenin activity in lung cancer cells as shown by the increased β-cateninmore » phosphorylation and activity in cells overexpressing eIF4E, and furthermore that the regulation is dependent on phosphorylation at S209. Rifabutin suppresses eIF4E phosphorylation, leads to decreased β-catenin phosphorylation and its subsequent transcriptional activities. Depletion of eIF4E abolishes the inhibitory effects of rifabutin on β-catenin activities and overexpression of β-catenin reverses the inhibitory effects of rifabutin on cell growth and survival, further confirming that rifabutin acts on lung cancer cells via targeting eIF4E- β-catenin axis. Our findings identify the eIF4E- β-catenin axis as a critical regulator of lung cancer cell growth and survival, and suggest that its pharmacological inhibition may be therapeutically useful in lung cancer. - Highlights: • Rifabutin targets EGFR-mutated lung cancer cells in vitro and in vivo. • eIF4E phosphorylation regulates β-catenin activity in lung cancer cells. • Rifabutin acts on lung cancer cells via eIF4E- β-catenin axis. • Rifabutin can be repurposed for lung cancer treatment.« less
Development of the Zebra Danio Model: Carcinogenesis and Gene Transfer Studies
1996-09-01
J., and Enomoto, M. (1988). Liver cell carcinomas in the medaka (Oryzias latipes) induced by methylazoxymethanol-acetate. J. Comp. Path. 98, 441-452...accelerate steroid- induced cell division in Xenopus oocytes (Sadler et al., 1986). More recently, ras p21 has been implicated in the transduction of a... induced cell division in Xenopus laevis oocytes. Mol Cell Biol 6:719-722. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A
Kodama, Yuuki; Fujishima, Masahiro
2012-10-01
The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. A. MC CLURE; C. A. NELSON; R. L. BOUDRIE
2001-04-01
This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamosmore » National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety.« less
Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.
García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A
2017-01-01
A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.
Chen, Changchao; Zhang, Zixiao; Cui, Panpan; Liao, Yaya; Zhang, Yue; Yao, Lingyun; Rui, Rong; Ju, Shiqiang
2017-07-01
Phosphorylation of histone H3 on Ser-10 (H3S10ph) is involved in regulating mitotic chromosome condensation and decondensation, which plays an important regulatory role during mitotic cell cycle progression in mammalian cells. However, whether H3S10ph plays a similar role in early porcine embryos during the first mitotic division remains uncertain. In this study, the subcellular localization and possible roles of H3S10ph were evaluated in the first mitotic cell cycle progression of porcine embryos using western blot, indirect immunofluorescence and barasertib (H3S10ph upstream regulator Aurora-B inhibitor) treatments. H3S10ph exhibited a dynamic localization pattern and was localized to chromosomes from prometaphase to anaphase stages. Treatment of porcine embryos with barasertib inhibited mitotic division at the prophase stage and was associated with a defect in chromosome condensation accompanied by the reduction of H3S10ph. These results indicated that H3S10ph is involved in the first mitotic division in porcine embryos through its regulatory function in chromosome condensation, which further affects porcine embryo cell cycle progression during mitotic division.
Parkin suppresses Drp1-independent mitochondrial division.
Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi
2016-07-01
The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanical influences in bacterial morphogenesis and cell division
NASA Astrophysics Data System (ADS)
Sun, Sean
2010-03-01
Bacterial cells utilize a ring-like organelle (the Z-ring) to accomplish cell division. The Z-ring actively generates a contractile force and influences cell wall growth. We will discuss a general model of bacterial morphogenesis where mechanical forces are coupled to the growth dynamics of the cell wall. The model suggests a physical mechanism that determines the shapes of bacteria cells. The roles of several bacterial cytoskeletal proteins and the Z-ring are discussed. We will also explore molecular mechanisms of force generation by the Z-ring and how cells can generate mechanical forces without molecular motors.
A new subtype of progenitor cell in the mouse embryonic neocortex
Wang, Xiaoqun; Tsai, Jin-Wu; LaMonica, Bridget; Kriegstein, Arnold R.
2011-01-01
A hallmark of mammalian brain evolution is cortical expansion, which reflects an increase in the number of cortical neurons established by the progenitor cell subtypes present and the number of their neurogenic divisions. Recent studies have revealed a new class of radial glia-like (oRG) progenitor cells in the human brain, which reside in the outer subventricular zone. Expansion of the subventricular zone and appearance of oRG cells may have been essential evolutionary steps leading from lissencephalic to gyrencephalic neocortex. Here we show that oRG-like progenitor cells are present in the mouse embryonic neocortex. They arise from asymmetric divisions of radial glia and undergo self-renewing asymmetric divisions to generate neurons. Moreover, mouse oRG cells undergo mitotic somal translocation whereby centrosome movement into the basal process during interphase preceeds nuclear translocation. Our finding of oRG cells in the developing rodent brain fills a gap in our understanding of neocortical expansion. PMID:21478886
Model of Fission Yeast Cell Shape Driven by Membrane-Bound Growth Factors and the Cytoskeleton
Drake, Tyler; Vavylonis, Dimitrios
2013-01-01
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. PMID:24146607
Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M
2014-08-22
In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
High-throughput monitoring of major cell functions by means of lensfree video microscopy
Kesavan, S. Vinjimore; Momey, F.; Cioni, O.; David-Watine, B.; Dubrulle, N.; Shorte, S.; Sulpice, E.; Freida, D.; Chalmond, B.; Dinten, J. M.; Gidrol, X.; Allier, C.
2014-01-01
Quantification of basic cell functions is a preliminary step to understand complex cellular mechanisms, for e.g., to test compatibility of biomaterials, to assess the effectiveness of drugs and siRNAs, and to control cell behavior. However, commonly used quantification methods are label-dependent, and end-point assays. As an alternative, using our lensfree video microscopy platform to perform high-throughput real-time monitoring of cell culture, we introduce specifically devised metrics that are capable of non-invasive quantification of cell functions such as cell-substrate adhesion, cell spreading, cell division, cell division orientation and cell death. Unlike existing methods, our platform and associated metrics embrace entire population of thousands of cells whilst monitoring the fate of every single cell within the population. This results in a high content description of cell functions that typically contains 25,000 – 900,000 measurements per experiment depending on cell density and period of observation. As proof of concept, we monitored cell-substrate adhesion and spreading kinetics of human Mesenchymal Stem Cells (hMSCs) and primary human fibroblasts, we determined the cell division orientation of hMSCs, and we observed the effect of transfection of siCellDeath (siRNA known to induce cell death) on hMSCs and human Osteo Sarcoma (U2OS) Cells. PMID:25096726
Attitude orientation control for a spinning satellite
NASA Astrophysics Data System (ADS)
Frost, Gerald
The Department of the Air Force, Headquarters Space Systems Division, and the National Aeronautics and Space Administration (NASA) are currently involved in litigation with Hughes Aircraft Company over the alledged infringement of the 'Williams patent,' which describes a method for attitude control of a spin-stabilized vehicle. Summarized here is pre-1960 RAND work on this subject and information obtained from RAND personnel knowledgeable on this subject. It was concluded that there is no RAND documentation that directly parallels the 'Williams patent' concept. Also, the TIROS II magnetic torque attitude control method is reviewed. The TIROS II meteorological satellite, launched on November 23, 1960, incorporated a magnetic actuation system for spin axis orientation control. The activation system was ground controlled to orient the satellite spin axis to obtain the desired pointing direction for optical and infrared sensor subsystems.
Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi
2012-04-01
The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.
Timing the start of division in E. coli: a single-cell study
NASA Astrophysics Data System (ADS)
Reshes, G.; Vanounou, S.; Fishov, I.; Feingold, M.
2008-12-01
We monitor the shape dynamics of individual E. coli cells using time-lapse microscopy together with accurate image analysis. This allows measuring the dynamics of single-cell parameters throughout the cell cycle. In previous work, we have used this approach to characterize the main features of single-cell morphogenesis between successive divisions. Here, we focus on the behavior of the parameters that are related to cell division and study their variation over a population of 30 cells. In particular, we show that the single-cell data for the constriction width dynamics collapse onto a unique curve following appropriate rescaling of the corresponding variables. This suggests the presence of an underlying time scale that determines the rate at which the cell cycle advances in each individual cell. For the case of cell length dynamics a similar rescaling of variables emphasizes the presence of a breakpoint in the growth rate at the time when division starts, τc. We also find that the τc of individual cells is correlated with their generation time, τg, and inversely correlated with the corresponding length at birth, L0. Moreover, the extent of the T-period, τg - τc, is apparently independent of τg. The relations between τc, τg and L0 indicate possible compensation mechanisms that maintain cell length variability at about 10%. Similar behavior was observed for both fast-growing cells in a rich medium (LB) and for slower growth in a minimal medium (M9-glucose). To reveal the molecular mechanisms that lead to the observed organization of the cell cycle, we should further extend our approach to monitor the formation of the divisome.
Leguay, Jean-Jacques; Guern, Jean
1977-01-01
The utilization of 2,4-dichlorophenoxyacetic acid (2,4-D) molecules by Acer pseudoplatanus cells is governed mainly by a glucosylation process. Evidence that 2,4-D glucoside molecules are biologically inactive is presented. 2,3,5-Triiodobenzoic acid (TIBA), by inhibiting 2,4-D glucosylation, has a sparing effect on 2,4-D molecules; thus TIBA treatments increase growth yield (expressed as the ratio of the maximum number of cells produced to the initial concentration of 2,4-D in the culture medium). Significant amounts of intact 2,4-D molecules remain outside and inside the cells when cell division stops at the onset of the stationary phase. This result and the previous demonstration that, at the onset of the stationary phase, 2,4-D is the specific limiting factor of cell division (Leguay JJ, J Guern 1975 Plant Physiol 56: 356-359) suggest that a threshold concentration of auxin is needed for cell division to proceed. The distribution of 2,4-D molecules between the cells and the culture medium is dependent on the population density at the stationary phase. The extracellular 2,4-D concentration at that time is a linear function of the population density whereas intracellular amounts of 2,4-D and 2,4-D metabolites are constant. By using a modified 2-14C,-5,5-dimethyloxazolidine-2,4-dione technique, it has been shown that the intracellular pH is markedly lowered as the population density at the plateau is increased. This intracellular pH modification is likely to be responsible for a large modification of the ratio between intracellular and extracellular auxin concentrations. The intracellular auxin concentration reaches a constant value (about 3 × 10−7m), independent of population density when cell division stops at the onset of the stationary phase suggesting that it represents the threshold value of the control for cell division. PMID:16660072
Zusman, David R.; Carbonell, Augustina; Haga, Juli Y.
1973-01-01
The reorganization of the bacterial nucleoid of an Escherichia coli mutant, MX74T2 ts52, was studied by electron microscopy after protein synthesis inhibition by using whole mounts of cell ghosts, ultrathin-sectioning, and freeze-etching. The bacterial nucleoid showed two morphological changes after chloramphenicol addition: deoxyribonucleic acid (DNA) localization and DNA condensation. DNA localization was observed 10 min after chloramphenicol addition; the DNA appeared as a compact, solid mass. DNA condensation was observed at 25 min; the nucleoid appeared as a cytoplasm-filled sphere, often opened at one end. Ribosomes were observed in the center. Giant nucleoids present in some mutant filaments showed fused, spherical nucleoids arranged linearly, suggesting that the tertiary structure of the nucleoid reflects the number of replicated genomes. Inhibitors which directly or indirectly blocked protein synthesis and caused DNA condensation were chloramphenicol, puromycin, amino acid starvation, rifampicin, or carbonyl cyanide m-chlorophenyl hydrazone. All inhibitors that caused cell division in the mutant also caused condensation, although some inhibitors caused condensation without cell division. Nucleoid condensation appears to be related to chromosome structure rather than to DNA segregation upon cell division. Images PMID:4580561
Collyn-d'Hooghe, M; Hemon, D; Gilet, R; Curtis, S B; Valleron, A J; Malaise, E P
1981-03-01
Exponentially growing cultures of EMT 6 cells were irradiated in vitro with neon ions, helium ions or 60Co gamma-rays. Time-lapse cinematography allowed the determination, for individual cells, of cycle duration, success of the mitotic division and the age of the cell at the moment of irradiation. Irradiation induced a significant mitotic delay increasing proportionally with the delivered dose. Using mitotic delay as an endpoint, the r.b.e. for neon ions with respect to 60Co gamma-rays was 3.3 +/- 0.2 while for helium ions it was 1.2 +/- 0.1. Mitotic delay was greatest in those cells that had progressed furthest in their cycle at the time of irradiation. No significant mitotic delay was observed in the post-irradiation generation. Division probability was significantly reduced by irradiation both in the irradiated and in the post-irradiated generation. The reduction in division probability obtained with 3 Gy of neon ions was similar to that obtained after irradiation with 6 Gy of helium ions or 60Co gamma-rays.
Tsui, Ho-Ching Tiffany; Keen, Susan K; Sham, Lok-To; Wayne, Kyle J; Winkler, Malcolm E
2011-01-01
The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
Cancer growth and its inhibition in terms of coherence.
Popp, Fritz-Albert
2009-01-01
It is shown that a molecular origin for growth inhibition is rather unlikely because the cross-sectional area of inhibitory forces in a cell population cannot exceed more than about 10(-8) Dalton. A model of the time dependence of cell number N(t), where t is the time, is based on biophotons and explains without any contradiction to known experimental results growth regulation in terms of the factor a = 1/T, which stimulates the cell division rate dN/dt and the factor b = dT/dN(1/T(2)), which inhibits cell division. It accounts for the total cell division rate dN/dt = aN(t) - bN(2)(t). For adults, T is the coherence time of about 10(6) s, corresponding to the longest lifetime of cell organelles in men, while dT/dN = 10(-7) s corresponds to the resolution time of the cell population which is always the average time interval between two cell loss events. Our model follows a stringently holistic approach to describing a cell population as an entity, regulated by a fully coherent (biophoton) field.
Pavement cells and the topology puzzle
2017-01-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800
A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS.
Amodeo, Valeria; A, Deli; Betts, Joanne; Bartesaghi, Stefano; Zhang, Ying; Richard-Londt, Angela; Ellis, Matthew; Roshani, Rozita; Vouri, Mikaella; Galavotti, Sara; Oberndorfer, Sarah; Leite, Ana Paula; Mackay, Alan; Lampada, Aikaterini; Stratford, Eva Wessel; Li, Ningning; Dinsdale, David; Grimwade, David; Jones, Chris; Nicotera, Pierluigi; Michod, David; Brandner, Sebastian; Salomoni, Paolo
2017-07-11
Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, S.W.; Maxcy, R.B.
1979-01-01
Representative highly radiation-resistant Moraxella-Acinetobacter (M-A), Pseudomonas radiora, Micrococcus radiodurans, and Micrococcus radiophilus exhibited a wide variety of division systems and cell wall characteristics. However, the more resistant M-A possessed unusually thick cell walls, indicating a possible role of the cell wall in radiation resistance in the M-A. Thick septation was present in most of the bacteria studied, but was absent in P. radiora, thus excluding this as a necessity for high resistance. Reliable determination of the number of division planes of the M-A for use as a taxonomic criterion was achieved by the direct observation of dividing cells. The highlymore » resistant M-A were found to divide in multiple planes and had base compositions of 54.0 to 57.5%, unlike typical Moraxella and/or Acinetobacter species. The taxonomic position of most highly resistant bacteria remains unclear.« less
IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas
Wood, Christopher R.; Wang, Zhaohui; Diener, Dennis; Zones, James Matt; Rosenbaum, Joel; Umen, James G.
2012-01-01
Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division. PMID:22328921
A New Model for the Estimation of Cell Proliferation Dynamics Using CFSE Data
Banks, H.T.; Sutton, Karyn L.; Thompson, W. Clayton; Bocharov, Gennady; Doumic, Marie; Schenkel, Tim; Argilaguet, Jordi; Giest, Sandra; Peligero, Cristina; Meyerhans, Andreas
2011-01-01
CFSE analysis of a proliferating cell population is a popular tool for the study of cell division and division-linked changes in cell behavior. Recently [13, 43, 45], a partial differential equation (PDE) model to describe lymphocyte dynamics in a CFSE proliferation assay was proposed. We present a significant revision of this model which improves the physiological understanding of several parameters. Namely, the parameter γ used previously as a heuristic explanation for the dilution of CFSE dye by cell division is replaced with a more physical component, cellular autofluorescence. The rate at which label decays is also quantified using a Gompertz decay process. We then demonstrate a revised method of fitting the model to the commonly used histogram representation of the data. It is shown that these improvements result in a model with a strong physiological basis which is fully capable of replicating the behavior observed in the data. PMID:21889510
Foundation laid for understanding essentials of cell division | Center for Cancer Research
NCI Center for Cancer Research (CCR) scientists reported new molecular insights into understanding a critical aspect of cell division through a cross-disciplinary effort that combines cryo-electron microscopy (cryo-EM), biochemical and cell biological approaches. Errors in segregation of chromosomes during mitosis can lead to an aberrant number of chromosomes, a condition known as aneuploidy, which can lead to cancer and birth defects. Read more…
A Policy Impact Analysis of the Mandatory NCAA Sickle Cell Trait Screening Program
Tarini, Beth A; Brooks, Margaret Alison; Bundy, David G
2012-01-01
Objective To estimate the impact of the mandatory National Collegiate Athletic Association (NCAA) sickle cell trait (SCT) screening policy on the identification of sickle cell carriers and prevention of sudden death. Data Source We used NCAA reports, population-based SCT prevalence estimates, and published risks for exercise-related sudden death attributable to SCT. Study Design We estimated the number of sickle cell carriers identified and the number of potentially preventable sudden deaths with mandatory SCT screening of NCAA Division I athletes. We calculated the number of student-athletes with SCT using a conditional probability based upon SCT prevalence data and self-identified race/ethnicity status. We estimated sudden deaths over 10 years based on published attributable risk of exercise-related sudden death due to SCT. Principal Findings We estimate that over 2,000 NCAA Division I student-athletes with SCT will be identified under this screening policy and that, without intervention, about seven NCAA Division I student-athletes would die suddenly as a complication of SCT over a 10-year period. Conclusion Universal sickle cell screening of NCAA Division I student-athletes will identify a substantial number of sickle cell carriers. A successful intervention could prevent about seven deaths over a decade. PMID:22150647
Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao
2016-01-01
This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.
Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao
2016-01-01
This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
Pazos, Manuel; Natale, Paolo; Vicente, Miguel
2013-02-01
In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.
Mo, Allison H.; Burkholder, William F.
2010-01-01
Cell viability depends on the stable transmission of genetic information to each successive generation. Therefore, in the event of intrinsic or extrinsic DNA damage, it is important that cell division be delayed until DNA repair has been completed. In Bacillus subtilis, this is accomplished in part by YneA, an inhibitor of division that is induced as part of the SOS response. We sought to gain insight into the mechanism by which YneA blocks cell division and the processes involved in shutting off YneA activity. Our data suggest that YneA is able to inhibit daughter cell separation as well as septum formation. YneA contains a LysM peptidoglycan binding domain and is predicted to be exported. We established that the YneA signal peptide is rapidly cleaved, resulting in secretion of YneA into the medium. Mutations within YneA affect both the rate of signal sequence cleavage and the activity of YneA. YneA does not stably associate with the cell wall and is rapidly degraded by extracellular proteases. Based on these results, we hypothesize that exported YneA is active prior to signal peptide cleavage and that proteolysis contributes to the inactivation of YneA. Finally, we identified mutations in the transmembrane segment of YneA that abolish the ability of YneA to inhibit cell division, while having little or no effect on YneA export or stability. These data suggest that protein-protein interactions mediated by the transmembrane region may be required for YneA activity. PMID:20400548
Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.
Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki
2010-01-01
Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Williams, Michelle; DeBarger, Angela Haydel; Montgomery, Beronda L.; Zhou, Xuechun; Tate, Erika
2012-01-01
This study examines students' understanding of the normative connections between key concepts of cell division, including both mitosis and meiosis, and underlying biological principles that are critical for an in-depth understanding of genetic inheritance. Using a structural equation modeling method, we examine middle school students'…
ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics
Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.
2014-01-01
ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368
Abe, Yoshito; Fujisaki, Naoki; Miyoshi, Takanori; Watanabe, Noriko; Katayama, Tsutomu; Ueda, Tadashi
2016-02-01
DnaAcos, a mutant of the initiator DnaA, causes overinitiation of chromosome replication in Escherichia coli, resulting in inhibition of cell division. CedA was found to be a multi-copy suppressor which represses the dnaAcos inhibition of cell division. However, functional mechanism of CedA remains elusive except for previously indicated possibilities in binding to DNA and RNA polymerase. In this study, we searched for the specific sites of CedA in binding of DNA and RNA polymerase and in repression of cell division inhibition. First, DNA sequence to which CedA preferentially binds was determined. Next, the several residues and β4 region in CedA C-terminal domain was suggested to specifically interact with the DNA. Moreover, we found that the flexible N-terminal region was required for tight binding to longer DNA as well as interaction with RNA polymerase. Based on these results, several cedA mutants were examined in ability for repressing dnaAcos cell division inhibition. We found that the N-terminal region was dispensable and that Glu32 in the C-terminal domain was required for the repression. These results suggest that CedA has multiple roles and residues with different functions are positioned in the two regions. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Plant cell division is specifically affected by nitrotyrosine
Jovanović, Aleksandra M.; Durst, Steffen; Nick, Peter
2010-01-01
Virtually all eukaryotic α-tubulins harbour a C-terminal tyrosine that can be reversibly removed and religated, catalysed by a specific tubulin–tyrosine carboxypeptidase (TTC) and a specific tubulin–tyrosine ligase (TTL), respectively. The biological function of this post-translational modification has remained enigmatic. 3-nitro-L-tyrosine (nitrotyrosine, NO2Tyr), can be incorporated into detyrosinated α-tubulin instead of tyrosine, producing irreversibly nitrotyrosinated α-tubulin. To gain insight into the possible function of detyrosination, the effect of NO2Tyr has been assessed in two plant model organisms (rice and tobacco). NO2Tyr causes a specific, sensitive, and dose-dependent inhibition of cell division that becomes detectable from 1 h after treatment and which is not observed with non-nitrosylated tyrosine. These effects are most pronounced in cycling tobacco BY-2 cells, where the inhibition of cell division is accompanied by a stimulation of cell length, and a misorientation of cross walls. NO2Tyr reduces the abundance of the detyrosinated form of α-tubulin whereas the tyrosinated α-tubulin is not affected. These findings are discussed with respect to a model where NO2Tyr is accepted as substrate by TTL and subsequently blocks TTC activity. The irreversibly tyrosinated α-tubulin impairs microtubular functions that are relevant to cell division in general, and cell wall deposition in particular. PMID:20018903
Sugioka, Kenji; Hamill, Danielle R; Lowry, Joshua B; McNeely, Marie E; Enrick, Molly; Richter, Alyssa C; Kiebler, Lauren E; Priess, James R; Bowerman, Bruce
2017-01-01
The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here, we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. Intriguingly, our genetic data suggest that SAS-7 is required for daughter centrioles to become competent for duplication, and for mother centrioles to maintain this competence. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly. DOI: http://dx.doi.org/10.7554/eLife.20353.001 PMID:28092264
The use of morphokinetics as a predictor of embryo implantation.
Meseguer, Marcos; Herrero, Javier; Tejera, Alberto; Hilligsøe, Karen Marie; Ramsing, Niels Birger; Remohí, Jose
2011-10-01
Time-lapse observation presents an opportunity for optimizing embryo selection based on morphological grading as well as providing novel kinetic parameters, which may further improve accurate selection of viable embryos. The objective of this retrospective study was to identify the morphokinetic parameters specific to embryos that were capable of implanting. In order to compare a large number of embryos, with minimal variation in culture conditions, we have used an automatic embryo monitoring system. Using a tri-gas IVF incubator with a built-in camera designed to automatically acquire images at defined time points, we have simultaneously monitored up to 72 individual embryos without removing the embryos from the controlled environment. Images were acquired every 15 min in five different focal planes for at least 64 h for each embryo. We have monitored the development of transferred embryos from 285 couples undergoing their first ICSI cycle. The total number of transferred embryos was 522, of which 247 either failed to implant or fully implanted, with full implantation meaning that all transferred embryos in a treatment implanted. A detailed retrospective analysis of cleavage times, blastomere size and multinucleation was made for the 247 transferred embryos with either failed or full implantation. We found that several parameters were significantly correlated with subsequent implantation (e.g. time of first and subsequent cleavages as well as the time between cleavages). The most predictive parameters were: (i) time of division to 5 cells, t5 (48.8-56.6 h after ICSI); (ii) time between division to 3 cells and subsequent division to 4 cells, s2 (≤ 0.76 h) and (iii) duration of cell cycle two, i.e. time between division to 2 cells and division to 3 cells, cc2 (≤ 11.9 h). We also observed aberrant behavior such as multinucleation at the 4 cell stage, uneven blastomere size at the 2 cell stage and abrupt cell division to three or more cells, which appeared to largely preclude implantation. The image acquisition and time-lapse analysis system makes it possible to determine exact timing of embryo cleavages in a clinical setting. We propose a multivariable model based on our findings to classify embryos according to their probability of implantation. The efficacy of this classification will be evaluated in a prospective randomized study that ultimately will determine if implantation rates can be improved by time-lapse analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Fangwei; Bringmann, Martin; Combs, Jonathon
In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less
Roth, Therese M.; Chiang, C.-Y. Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E.; Yamashita, Yukiko M.
2012-01-01
Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions. PMID:22357619
Salpeter, Seth J.; Klochendler, Agnes; Weinberg-Corem, Noa; Porat, Shay; Granot, Zvi; Shapiro, A. M. James; Magnuson, Mark A.; Eden, Amir; Grimsby, Joseph; Glaser, Benjamin
2011-01-01
Understanding the molecular triggers of pancreatic β-cell proliferation may facilitate the development of regenerative therapies for diabetes. Genetic studies have demonstrated an important role for cyclin D2 in β-cell proliferation and mass homeostasis, but its specific function in β-cell division and mechanism of regulation remain unclear. Here, we report that cyclin D2 is present at high levels in the nucleus of quiescent β-cells in vivo. The major regulator of cyclin D2 expression is glucose, acting via glycolysis and calcium channels in the β-cell to control cyclin D2 mRNA levels. Furthermore, cyclin D2 mRNA is down-regulated during S-G2-M phases of each β-cell division, via a mechanism that is also affected by glucose metabolism. Thus, glucose metabolism maintains high levels of nuclear cyclin D2 in quiescent β-cells and modulates the down-regulation of cyclin D2 in replicating β-cells. These data challenge the standard model for regulation of cyclin D2 during the cell division cycle and suggest cyclin D2 as a molecular link between glucose levels and β-cell replication. PMID:21521747
Brum, Felipe Lopes; Catta-Preta, Carolina Moura Costa; de Souza, Wanderley; Schenkman, Sergio; Elias, Maria Carolina; Motta, Maria Cristina Machado
2014-02-01
Strigomonas culicis (previously referred to as Blastocrithidia culicis) is a monoxenic trypanosomatid harboring a symbiotic bacterium, which maintains an obligatory relationship with the host protozoan. Investigations of the cell cycle in symbiont harboring trypanosomatids suggest that the bacterium divides in coordination with other host cell structures, particularly the nucleus. In this study we used light and electron microscopy followed by three-dimensional reconstruction to characterize the symbiont division during the cell cycle of S. culicis. We observed that during this process, the symbiotic bacterium presents different forms and is found at different positions in relationship to the host cell structures. At the G1/S phase of the protozoan cell cycle, the endosymbiont exhibits a constricted form that appears to elongate, resulting in the bacterium division, which occurs before kinetoplast and nucleus segregation. During cytokinesis, the symbionts are positioned close to each nucleus to ensure that each daughter cell will inherit a single copy of the bacterium. These observations indicated that the association of the bacterium with the protozoan nucleus coordinates the cell cycle in both organisms.
Graña, E; Sotelo, T; Díaz-Tielas, C; Araniti, F; Krasuska, U; Bogatek, R; Reigosa, M J; Sánchez-Moreiras, A M
2013-02-01
Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.
Potential role of centrioles in determining the morphogenetic status of animal somatic cells.
Tkemaladze, J; Chichinadze, K
2005-05-01
Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells. Cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called 'Hayflick limit'. Existing links between cell division, differentiation and apoptosis make it possible to conclude that all these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (diplosome) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination and modification of the morphogenetic status. It may contain differently encoded RNA molecules stacked in a definite order. During mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, RNA can be embedded in nuclear DNA. This process presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.
Temporal Control of Plant Organ Growth by TCP Transcription Factors.
Huang, Tengbo; Irish, Vivian F
2015-06-29
The Arabidopsis petal is a simple laminar organ whose development is largely impervious to environmental effects, making it an excellent model for dissecting the regulation of cell-cycle progression and post-mitotic cell expansion that together sculpt organ form. Arabidopsis petals grow via basipetal waves of cell division, followed by a phase of cell expansion. RABBIT EARS (RBE) encodes a C2H2 zinc finger transcriptional repressor and is required for petal development. During the early phase of petal initiation, RBE regulates a microRNA164-dependent pathway that controls cell proliferation at the petal primordium boundaries. The effects of rbe mutations on petal lamina growth suggest that RBE is also required to regulate later developmental events during petal organogenesis. Here, we demonstrate that, early in petal development, RBE represses the transcription of a suite of CIN-TCP genes that in turn act to inhibit the number and duration of cell divisions; the temporal alleviation of that repression results in the transition from cell division to post-mitotic cell expansion and concomitant petal maturation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Hiroaki
Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less
cdc-25.2, a Caenorhabditis elegans ortholog of cdc25, is required for male tail morphogenesis.
Oh, Sangmi; Yoon, Sunghee; Youn, Esther; Kawasaki, Ichiro; Shim, Yhong-Hee
2017-01-22
Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development. Copyright © 2016 Elsevier Inc. All rights reserved.
A gene involved in control of human cellular senescence on human chromosome 1q
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensler, P.J.; Pereira-Smith, O.M.; Annab, L.A.
1994-04-01
Normal cells in culture exhibit limited division potential and have been used as a model for cellular senescence. In contrast, tumor-derived or carcinogen- or virus-transformed cells are capable of indefinite division. Fusion of normal human diploid fibroblasts with immortal human cells yielded hybrids having limited life spans, indicating that cellular senescence was dominant. Fusions of various immortal human cell lines with each other led to the identification of four complementation groups for indefinite division. The purpose of this study was to determine whether human chromosome 1 could complement the recessive immortal defect of human cell lines assigned to one ofmore » the four complementation groups. Using microcell fusion, the authors introduced a single normal human chromosome 1 into immortal human cell lines representing the complementation groups and determined that it caused loss of proliferative potential of an osteosarcoma-derived cell line (TE85), a cytomegalovirus-transformed lung fibroblast cell line (CMV-Mj-HEL-1), and a Ki-ras[sup +]-transformed derivative of TE85 (143B TK[sup [minus
Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP.
Kohlmaier, Gregor; Loncarek, Jadranka; Meng, Xing; McEwen, Bruce F; Mogensen, Mette M; Spektor, Alexander; Dynlacht, Brian D; Khodjakov, Alexey; Gönczy, Pierre
2009-06-23
The centrosome is the principal microtubule organizing center (MTOC) of animal cells. Accurate centrosome duplication is fundamental for genome integrity and entails the formation of one procentriole next to each existing centriole, once per cell cycle. The procentriole then elongates to eventually reach the same size as the centriole. The mechanisms that govern elongation of the centriolar cylinder and their potential relevance for cell division are not known. Here, we show that the SAS-4-related protein CPAP is required for centrosome duplication in cycling human cells. Furthermore, we demonstrate that CPAP overexpression results in the formation of abnormally long centrioles. This also promotes formation of more than one procentriole in the vicinity of such overly long centrioles, eventually resulting in the presence of supernumerary MTOCs. This in turn leads to multipolar spindle assembly and cytokinesis defects. Overall, our findings suggest that centriole length must be carefully regulated to restrict procentriole number and thus ensure accurate cell division.
How PI3K-derived lipids control cell division.
Campa, Carlo C; Martini, Miriam; De Santis, Maria C; Hirsch, Emilio
2015-01-01
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P 3,PtdIns(4,5)P 2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P 3 at the cell poles and PtdIns(4,5)P 2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission.
Dnmt1-dependent Chk1 pathway suppression is protective against neuron division.
Oshikawa, Mio; Okada, Kei; Tabata, Hidenori; Nagata, Koh-Ichi; Ajioka, Itsuki
2017-09-15
Neuronal differentiation and cell-cycle exit are tightly coordinated, even in pathological situations. When pathological neurons re-enter the cell cycle and progress through the S phase, they undergo cell death instead of division. However, the mechanisms underlying mitotic resistance are mostly unknown. Here, we have found that acute inactivation of retinoblastoma (Rb) family proteins (Rb, p107 and p130) in mouse postmitotic neurons leads to cell death after S-phase progression. Checkpoint kinase 1 (Chk1) pathway activation during the S phase prevented the cell death, and allowed the division of cortical neurons that had undergone acute Rb family inactivation, oxygen-glucose deprivation (OGD) or in vivo hypoxia-ischemia. During neurogenesis, cortical neurons became protected from S-phase Chk1 pathway activation by the DNA methyltransferase Dnmt1, and underwent cell death after S-phase progression. Our results indicate that Chk1 pathway activation overrides mitotic safeguards and uncouples neuronal differentiation from mitotic resistance. © 2017. Published by The Company of Biologists Ltd.
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
Wang, Xuefeng; Ohlin, Christian A; Lu, Qinghua; Hu, Jun
2008-05-01
The extracellular matrix in animal tissues usually provides a three-dimensional structural support to cells in addition to performing various other important functions. In the present study, wavy submicrometer laser-irradiated periodic surface structures (LIPSS) were produced on a smooth polystyrene film by polarized laser irradiation with a wavelength of 266 nm. Rat C6 glioma cells exhibited directional migration and oriented division on laser-irradiated polystyrene, which was parallel to the direction of LIPSS. However, rat C6 glioma cells on smooth polystyrene moved in a three-step invasion cycle, with faster migration speed than that on laser-irradiated polystyrene. In addition, focal adhesions examined by immunostaining focal adhesion kinase in human epithelial carcinoma HeLa cells were punctuated on smooth polystyrene, whereas dash-like on laser-irradiated polystyrene. We hypothesized that LIPSS on laser-irradiated polystyrene acted as an anisotropic and persistent mechanical stimulus to guide cell anisotropic spreading, migration and division through focal adhesions.
De Rybel, Bert; Adibi, Milad; Breda, Alice S; Wendrich, Jos R; Smit, Margot E; Novák, Ondřej; Yamaguchi, Nobutoshi; Yoshida, Saiko; Van Isterdael, Gert; Palovaara, Joakim; Nijsse, Bart; Boekschoten, Mark V; Hooiveld, Guido; Beeckman, Tom; Wagner, Doris; Ljung, Karin; Fleck, Christian; Weijers, Dolf
2014-08-08
Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue. Copyright © 2014, American Association for the Advancement of Science.
Asymmetry-defective oligodendrocyte progenitors are glioma precursors
Sugiarto, Sista; Persson, Anders I.; Munoz, Elena Gonzalez; Waldhuber, Markus; Lamagna, Chrystelle; Andor, Noemi; Hanecker, Patrizia; Ayers-Ringler, Jennifer; Phillips, Joanna; Siu, Jason; Lim, Daniel; Vandenberg, Scott; Stallcup, William; Berger, Mitchel S.; Bergers, Gabriele; Weiss, William A.; Petritsch, Claudia
2012-01-01
Summary Postnatal oligodendrocyte progenitor cells (OPC) self-renew, generate mature oligodendrocytes, and are a cellular origin of oligodendrogliomas. We show that the proteoglycan NG2 segregates asymmetrically during mitosis to generate OPC cells of distinct fate. NG2 is required for asymmetric segregation of EGFR to the NG2+ progeny, which consequently activates EGFR and undergoes EGF-dependent proliferation and self-renewal. In contrast, the NG2− progeny differentiates. In a mouse model, decreased NG2 asymmetry coincides with premalignant, abnormal self-renewal rather than differentiation and with tumor-initiating potential. Asymmetric division of human NG2+ cells is prevalent in non-neoplastic tissue but is decreased in oligodendrogliomas. Regulators of asymmetric cell division are misexpressed in low-grade oligodendrogliomas. Our results identify loss of asymmetric division associated with the neoplastic transformation of OPC. PMID:21907924
Mehnati, P; Yatagai, F; Tsuzuki, T; Hanaoka, F; Sasaki, H
2001-03-01
The cell killing effect of ionizing radiation depends on the degree of linear energy transfer (LET). The relative biological effectiveness (RBE) reaches a maximum at LET of around 100-200 keV/micron and decreases at higher levels. The ion clusters produced by high-LET radiation are not uniformly distributed. The incidence of non-hit cell events is higher in high LET irradiation than in the cases of low-LET irradiation. This fact could explain the decrease in the cell killing effect at higher levels of LET irradiation. Since the cell killing effect may be related to the nuclear traversal of heavy-ions, it is necessary to establish methods to distinguish the hit cells from the non-hit cells, especially in case with high LET irradiation. Using time-lapse photography, we first examined the hit events by observing the division delay in the cells caused by high-LET irradiation. In addition, we explored the use of CR-39 plastics to detect the exact position of heavy-ion traversal on the surface of a flask where cells were growing. When Chinese hamster ovary (CHO-K1) cells were exposed to 4 Gy of accelerated Fe-ions (2000 keV/micron) or Ar (1640 keV/micron)-ions, the surviving fraction decreased to about 30% in both cases of irradiation. Eighty percent of the irradiated cells, suffered a division delay in contrast to the remaining 20% of the cells which showed a normal division time (12-13 hrs). The later 20% of the cells is considered to be a population of cells which were not actually traversed by heavy-ions. The difference between the higher values of the surviving fraction (approximately 30%) and the non-hit cell population (20%) indicates that some hit cells can grow even after being hit by heavy-ions. The fraction of recovered cells determined by the time-lapse photography method was 10%, and this value closely correlated with the difference between the surviving fraction and the non-hit cells. We used the Poisson distribution of the hit-events by heavy-ions among the cell population in order to calculate the fraction of cells receiving at least a single-hit in the cell nucleus (130 micron 2 in average size). From this calculation we determined that 80% of the cells had a single hit to their nuclei by a heavy-ion which induced such early cellular responses as division delay. Our finding in the experiments using CR-39 plastics as a detector for hit-sites further supported the idea that the hit lethality of a cell is related to heavy-ion traversal through its nucleus. This study indicates the possible usefulness of both the division delay and CR-39 plastic methods for evaluating the biological effects of heavy-ions, especially when these two methods are combined.
Promise and problems in relating cellular senescence in vitro to aging in vivo.
Rubin, Harry
2002-01-01
According to the 'Hayflick limit', human fetal fibroblasts have a uniform, limited replicative lifespan of about 50 population doublings in cell culture. This concept was extrapolated to diverse cells in the body. It seemed to decrease with the age of the cell donor and, as a form of cell senescence, was thought to underlie the aging process. More discriminating analysis, however, showed that the fibroblasts decayed in a stochastic manner from the time of their explantation, at a rate that increased with the number of population doublings in culture. There was no consistent relation to the age of the donor. Despite the contradictory evidence, the original version of the Hayflick limit retained its general acceptance. Cell senescence was attributed to the absence of telomerase in the fibroblasts, which resulted in shortening of telomeres at each division until they fell below a critical length needed for further division. However, it is well established that stem cells in renewing tissues undergo many more than 50 divisions in a lifetime, without apparent senescence. Contrary to early findings of no telomerase in most tissues, their stem cells retain telomerase and presumably telomere length despite many divisions in vivo. Massive accumulation of lipofuscin granules occurs under stress in long term crowded cultures, but the granules dissipate on subculture or neoplastic transformation. The overall results indicate a critical disjunction between cell senescence in vitro and aging in vivo. By contrast, cell culture has been useful in showing a need for telomere capping in maintaining cell stability and viability. It may also provide information about the biochemical mechanism of lipofuscin production.
Walsh, James C; Angstmann, Christopher N; Duggin, Iain G; Curmi, Paul M G
2015-01-01
Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo.
Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge
2013-01-01
Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30 min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in-situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids. PMID:23305762
Brusati, R; Giannì, A B
2005-12-01
The authors describe a surgical technique alternative to traditional pre-surgical orthodontics in order to increase the apical base in mandibular retrusion (class II, division I). This subapical osteotomy, optimizing inferior incisal axis without dental extractions and a long orthodontic treatment, associated to genioplasty permits to obtain an ideal labio-dento-mental morphology. This procedure avoids in some cases the need of a mandibular advancement and, if necessary, it reduces his entity with obvious advantages.
2002-07-01
spectral components remain co-polarized. We confirmed that this was the case by passing the continuum through a polarizing beam splitter . The...propagation direction through polarization beam splitters and aligned along the other axis of the fiber. Co-propagating control and signal pulses...amplifier, PBS = polarization beam splitter . Figure 8. Eye diagram of header processor. This is the trace of the eye diagrams taken with the setup of Fig
Status of the 4 MW WTS-4 wind turbine
NASA Technical Reports Server (NTRS)
Bussolari, R. J.
1982-01-01
The WTS-4 is a four-megawatt, horizontal-axis wind turbine presently being fabricated for the U.S. Department of Interior, Bureau of Reclamation, by United Technologies' Hamilton Standard division. This unit, called the System Verification Unit (SVU) will be installed at Medicine Bow, Wyoming, early next spring. The specifications, characteristics and features of the WTS-4 are discussed. The major components-such as rotor, nacelle and tower-are described and their status in the fabrication phase is presented.
2017-03-15
effectiveness with the provision of both operational and tactical level fires. Division artillery reinforced with FAB assets must focus on close support of...the infantry and armored force. In turn, FAB assets must focus on both reinforcing divisional artillery and striking throughout an enemy’s depth...by FABs ) to retain assets for operational level fires. Field artillery firepower must see a qualitative increase in addition to a quantitative
Juckett, D A
1987-03-01
A model is presented which proposes a specific cause-and-effect relationship between a limited cell division potential and the maximum lifespan of humans and other mammals. It is based on the clonal succession hypothesis of Kay which states that continually replicating cell beds (e.g. bone marrow, intestinal crypts, epidermis) could be composed of cells with short, well-defined division potentials. In this model, the cells of these beds are proposed to exist in an ordered hierarchy which establishes a specific sequence for cell divisions throughout the organism's lifespan. The depletion of division potential at all hierarchical levels leads to a loss of bed function and sets an intrinsic limit to species longevity. A specific hierarchy for cell proliferation is defined which allows the calculation of time to bed depletion and, ultimately, to organism mortality. The model allows the existence of a small number (n) of critical cell beds within the organism and defines organism death as the inability of any one of these beds to produce cells. The model is consistent with all major observations related to cellular and organismic aging. In particular, it links the PDLs (population doubling limit) observed for various species to their mean lifespan; it explains the slow decline in PDL as a function of age of the donor; it establishes a thermodynamically stable maximum lifespan for a disease-free population; and it can explain why tissue transplants outlive donors or hosts.
Kim, So Yoon; Rane, Sushil G.
2011-01-01
Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060
ERIC Educational Resources Information Center
Ndirangu, Mwangi; Kiboss, Joel K.; Wekesa, Eric W.
2005-01-01
The application of computer technology in education is a relatively new approach that is trying to justify inclusion in the Kenyan school curriculum. Being abstract, with a dynamic nature that does not manifest itself visibly, the process of cell division has posed difficulties for teachers. Consequently, a computer simulation program, using…
ERIC Educational Resources Information Center
Sesli, Ertugrul; Kara, Yilmaz
2012-01-01
This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…
R. Minocha; S.C. Minocha; A. Komamine; W.C. Shortle
1991-01-01
Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL α-difluoromethylarginine inhibited ADC activity, cellular...
ERIC Educational Resources Information Center
Karaçöp, Ataman
2016-01-01
The aim of this study was to determine the effect of Student Teams-Achievement Divisions cooperative learning with models on academic achievements of undergraduate university students attending classes in which the electrochemical cells. The sample of research was comprised of 70 students from first class of science teacher education program…
Videomicroscopic extraction of specific information on cell proliferation and migration in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debeir, Olivier; Megalizzi, Veronique; Warzee, Nadine
2008-10-01
In vitro cell imaging is a useful exploratory tool for cell behavior monitoring with a wide range of applications in cell biology and pharmacology. Combined with appropriate image analysis techniques, this approach has been shown to provide useful information on the detection and dynamic analysis of cell events. In this context, numerous efforts have been focused on cell migration analysis. In contrast, the cell division process has been the subject of fewer investigations. The present work focuses on this latter aspect and shows that, in complement to cell migration data, interesting information related to cell division can be extracted frommore » phase-contrast time-lapse image series, in particular cell division duration, which is not provided by standard cell assays using endpoint analyses. We illustrate our approach by analyzing the effects induced by two sigma-1 receptor ligands (haloperidol and 4-IBP) on the behavior of two glioma cell lines using two in vitro cell models, i.e., the low-density individual cell model and the high-density scratch wound model. This illustration also shows that the data provided by our approach are suggestive as to the mechanism of action of compounds, and are thus capable of informing the appropriate selection of further time-consuming and more expensive biological evaluations required to elucidate a mechanism.« less
Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.
Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D
2001-03-01
Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.
Robust control of mitotic spindle orientation in the developing epidermis
Poulson, Nicholas D.
2010-01-01
Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice. PMID:21098114
Xiong, Wan-Cheng; Han, Na; Wu, Nan; Zhao, Ke-Lei; Han, Chen; Wang, Hui-Xin; Ping, Guan-Fang; Zheng, Peng-Fei; Feng, Hailong; Qin, Lei; He, Peng
2018-01-01
Long noncoding RNAs (lncRNAs) are dysregulated in many diseases. MicroRNA-101 (miR-101) functions as a tumor suppressor by directly targeting ZEB1 in various cancers. However, the potential mechanism of lncRNA ZEB1-AS1 and miR-101/ZEB1 axis in CRC remains unknown. In this study, we further investigated the potential interplay between miR-101/ZEB1 axis and lncRNA ZEB1-AS1 in colorectal cancer (CRC). Results showed that ZEB1-AS1 was upregulated in CRC tissues and cells. MiR-101 was downregulated in CRC tissues and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in CRC. Functional experiments showed that, consistent with ZEB1-AS1 depletion, miR-101 overexpression and ZEB1 depletion inhibited the proliferation and migration of CRC cells. Overexpression of miR-101 partially abolished the effects of ZEB1-AS1 on the proliferation and migration of these cells. Moreover, combined ZEB1-AS1 depletion and miR-101 overexpression significantly inhibited cell proliferation and migration of the CRC cells. Hence, ZEB1-AS1 functioned as a molecular sponge for miR-101 and relieved the inhibition of ZEB1 caused by miR-101. This study revealed a novel regulatory mechanism between ZEB1-AS1 and miR-101/ZEB1 axis. The interplay between ZEB1-AS1 and miR-101/ZEB1 axis contributed to the proliferation and migration of CRC cells, and targeting this interplay could be a promising strategy for CRC treatment.
Wang, Tianjiao; Lu, Ye; Polk, Avery; Chowdhury, Pinki; Zamalloa, Carlos Murga; Fujiwara, Hiroshi; Suemori, Koichiro; Beyersdorf, Niklas; Hristov, Alexandra C.; Lim, Megan S.; Bailey, Nathanael G.; Wilcox, Ryan A.
2016-01-01
Purpose T-cell lymphomas are a molecularly heterogeneous group of non-Hodgkin lymphomas (NHL) that account for a disproportionate number of NHL disease-related deaths due to their inherent and acquired resistance to standard multiagent chemotherapy regimens. Despite their molecular heterogeneity and frequent loss of various T-cell specific receptors, the T-cell antigen receptor is retained in the majority of these lymphomas. As T-cell receptor (TCR) engagement activates a number of signaling pathways and transcription factors that regulate T-cell growth and survival, we examined the TCR’s role in mediating resistance to chemotherapy. Experimental Design Genetic and pharmacologic strategies were utilized to determine the contribution of tyrosine kinases and transcription factors activated in conventional T cells following T-cell receptor (TCR) engagement in acquired chemotherapy resistance in primary T-cell lymphoma cells and patient-derived cell lines. Results Here we report that TCR signaling activates a signaling axis that includes ITK, NF-κB, and GATA-3, and promotes chemotherapy resistance. Conclusions These observations have significant therapeutic implications, as pharmacologic inhibition of ITK prevented activation of this signaling axis and overcame chemotherapy resistance. PMID:27780854
The Arabidopsis CSLD 5 functions in cell plate formation in a cell cycle-dependent manner
Gu, Fangwei; Bringmann, Martin; Combs, Jonathon; ...
2016-06-27
In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less
How many TCR clonotypes does a body maintain?
Lythe, Grant; Callard, Robin E.; Hoare, Rollo L.; Molina-París, Carmen
2016-01-01
We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. PMID:26546971
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.
2014-01-01
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.
Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A
2014-07-08
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.
Individuality and universality in the growth-division laws of single E. coli cells
NASA Astrophysics Data System (ADS)
Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco
2016-01-01
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.
Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.
2016-01-01
Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086
Diurnal rhythm in the cell-division frequency of prochloron (prochlorophyta) in nature
NASA Technical Reports Server (NTRS)
Lewin, R. A.; Cheng, L.; Matta, J.
1983-01-01
Frequencies of cell division stages in suspensions of Prochloron cells, expressed at regular intervals throughout a natural day-night cycle from several colonies of four species of host didemnid, are given. The proportion of dividing cells of Prochloron living symbiotically in colonies of a didemnid, Diplosoma virens, rises from about 4% during the night (20.00-04.00 hrs.) to about 13% in the morning (0,.00-12.00 hrs.), and then falls again in the afternoon. Similiar, though less pronounced, changes were observed among Prochloron cells in two other symbiotic didemnids, Lissoclinum patella and L. voeltzkowi.
Cell growth, division, and death in cohesive tissues: A thermodynamic approach
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Marcq, Philippe
2017-08-01
Cell growth, division, and death are defining features of biological tissues that contribute to morphogenesis. In hydrodynamic descriptions of cohesive tissues, their occurrence implies a nonzero rate of variation of cell density. We show how linear nonequilibrium thermodynamics allows us to express this rate as a combination of relevant thermodynamic forces: chemical potential, velocity divergence, and activity. We illustrate the resulting effects of the nonconservation of cell density on simple examples inspired by recent experiments on cell monolayers, considering first the velocity of a spreading front, and second an instability leading to mechanical waves.
Kuluev, B R; Safiullina, M G; Kniazev, A V; Chemeris, A V
2013-01-01
We obtained transgenic tobacco plants demonstrating overexpression of NtEXPA5 gene that encodes alpha-expansin of Nicotiana tabacum. The transgenic plants were characterized by increased size of leaves and stems. However, size of flowers remained almost unchanged. The increase of organ sizes was induced by cell stretching only. Moreover, the number of cell divisions was even decreased. The obtained data suggest tight interaction between cell stretching regulation and cell division, which together provide the basic mechanism aimed at the controlling of plant organ sizes.
A yeast gene essential for regulation of spindle pole duplication.
Baum, P; Yip, C; Goetsch, L; Byers, B
1988-01-01
In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479
Strigolactones Stimulate Internode Elongation Independently of Gibberellins1[C][W
de Saint Germain, Alexandre; Ligerot, Yasmine; Dun, Elizabeth A.; Pillot, Jean-Paul; Ross, John J.; Beveridge, Christine A.; Rameau, Catherine
2013-01-01
Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation. PMID:23943865
Centriole, differentiation, and senescence.
Tkemaladze, J; Chichinadze, K
2010-01-01
Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells, and cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called Hayflick limit. Existing links between cell division, differentiation, and apoptosis make it possible to conclude that all of these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are the chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (a diplosome, or pair of centrioles) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination, and modification of the morphogenetic status. Centrioles may contain differently encoded RNA molecules stacked in a definite order, and during mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, processing of this RNA presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.
Hematopoietic stem cell fate through metabolic control.
Ito, Kyoko; Ito, Keisuke
2018-05-25
Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.
Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis
2016-07-01
Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.