Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells
2011-10-01
for both at current costs, when federal and state incentives are available • The integration of stationary fuel cells with biomass gasification is a... gasification plant utilizing biomass feedstock. 25 FuelCell Energy Market Research, January 2011...cell WTE opportunities near U.S. Department of Energy (DOE)-supported coal gasification sites. • Identify biomass -rich DOD installations
Energy by the Numbers: Fuel Cell Electric Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Energy by the Numbers presents fuel cell electric vehicles. Fuel cell electric vehicles (FCEVs) debuted in the U.S. in 2015. Three models are available in the United States. FCEVs run on hydrogen and only emit H2O.
High-Efficiency Solar Cells Using Photonic-Bandgap Materials
NASA Technical Reports Server (NTRS)
Dowling, Jonathan; Lee, Hwang
2005-01-01
Solar photovoltaic cells would be designed to exploit photonic-bandgap (PBG) materials to enhance their energy-conversion efficiencies, according to a proposal. Whereas the energy-conversion efficiencies of currently available solar cells are typically less than 30 percent, it has been estimated that the energy-conversion efficiencies of the proposed cells could be about 50 percent or possibly even greater. The primary source of inefficiency of a currently available solar cell is the mismatch between the narrow wavelength band associated with the semiconductor energy gap (the bandgap) and the broad wavelength band of solar radiation. This mismatch results in loss of power from both (1) long-wavelength photons, defined here as photons that do not have enough energy to excite electron-hole pairs across the bandgap, and (2) short-wavelength photons, defined here as photons that excite electron- hole pairs with energies much above the bandgap. It follows that a large increase in efficiency could be obtained if a large portion of the incident solar energy could be funneled into a narrow wavelength band corresponding to the bandgap. In the proposed approach, such funneling would be effected by use of PBG materials as intermediaries between the Sun and photovoltaic cells.
Performance of fuel cell for energy supply of passive house
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.
2015-12-23
Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that providemore » an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.« less
NASA Technical Reports Server (NTRS)
1982-01-01
The development of a commercially viable and cost-effective phospheric acid fuel cell powered on-site integrated energy system (OS/IES) is described. The fuel cell offers energy efficients in the range of 35-40% of the higher heating value of available fuels in the form of electrical energy. In addition, by utilizing the thermal energy generated for heating, ventilating and air-conditioning (HVAC), a fuel cell OS/IES could provide total energy efficiencies in the neighborhood of 80%. Also, the Engelhard fuel cell OS/IES offers the important incentive of replacing imported oil with domestically produced methanol, including coal-derived methanol.
Solid-state active switch matrix for high energy, moderate power battery systems
Deal, Larry; Paris, Peter; Ye, Changqing
2016-06-07
A battery management system employs electronic switches and capacitors. No traditional cell-balancing resistors are used. The BMS electronically switches individual cells into and out of a module of cells in order to use the maximum amount of energy available in each cell and to completely charge and discharge each cell without overcharging or under-discharging.
Production of solar photovoltaic cells on the Moon
NASA Technical Reports Server (NTRS)
Criswell, David R.; Ignatiev, Alex
1991-01-01
Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.
NASA Technical Reports Server (NTRS)
Costogue, E.; Pellin, R.
1983-01-01
Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers.
Simultaneous Multiparameter Cellular Energy Metabolism Profiling of Small Populations of Cells.
Kelbauskas, Laimonas; Ashili, Shashaanka P; Lee, Kristen B; Zhu, Haixin; Tian, Yanqing; Meldrum, Deirdre R
2018-03-12
Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.
Soubeyrand, Eric; Colombié, Sophie; Beauvoit, Bertrand; Dai, Zhanwu; Cluzet, Stéphanie; Hilbert, Ghislaine; Renaud, Christel; Maneta-Peyret, Lilly; Dieuaide-Noubhani, Martine; Mérillon, Jean-Michel; Gibon, Yves; Delrot, Serge; Gomès, Eric
2018-01-01
Anthocyanin biosynthesis is regulated by environmental factors (such as light, temperature, and water availability) and nutrient status (such as carbon, nitrogen, and phosphate nutrition). Previous reports show that low nitrogen availability strongly enhances anthocyanin accumulation in non carbon-limited plant organs or cell suspensions. It has been hypothesized that high carbon-to-nitrogen ratio would lead to an energy excess in plant cells, and that an increase in flavonoid pathway metabolic fluxes would act as an “energy escape valve,” helping plant cells to cope with energy and carbon excess. However, this hypothesis has never been tested directly. To this end, we used the grapevine Vitis vinifera L. cultivar Gamay Teinturier (syn. Gamay Freaux or Freaux Tintorier, VIVC #4382) cell suspension line as a model system to study the regulation of anthocyanin accumulation in response to nitrogen supply. The cells were sub-cultured in the presence of either control (25 mM) or low (5 mM) nitrate concentration. Targeted metabolomics and enzyme activity determinations were used to parametrize a constraint-based model describing both the central carbon and nitrogen metabolisms and the flavonoid (phenylpropanoid) pathway connected by the energy (ATP) and reducing power equivalents (NADPH and NADH) cofactors. The flux analysis (2 flux maps generated, for control and low nitrogen in culture medium) clearly showed that in low nitrogen-fed cells all the metabolic fluxes of central metabolism were decreased, whereas fluxes that consume energy and reducing power, were either increased (upper part of glycolysis, shikimate, and flavonoid pathway) or maintained (pentose phosphate pathway). Also, fluxes of flavanone 3β-hydroxylase, flavonol synthase, and anthocyanidin synthase were strongly increased, advocating for a regulation of the flavonoid pathway by alpha-ketoglutarate levels. These results strongly support the hypothesis of anthocyanin biosynthesis acting as an energy escape valve in plant cells, and they open new possibilities to manipulate flavonoid production in plant cells. They do not, however, support a role of anthocyanins as an effective mechanism for coping with carbon excess in high carbon to nitrogen ratio situations in grape cells. Instead, constraint-based modeling output and biomass analysis indicate that carbon excess is dealt with by vacuolar storage of soluble sugars. PMID:29868039
Soubeyrand, Eric; Colombié, Sophie; Beauvoit, Bertrand; Dai, Zhanwu; Cluzet, Stéphanie; Hilbert, Ghislaine; Renaud, Christel; Maneta-Peyret, Lilly; Dieuaide-Noubhani, Martine; Mérillon, Jean-Michel; Gibon, Yves; Delrot, Serge; Gomès, Eric
2018-01-01
Anthocyanin biosynthesis is regulated by environmental factors (such as light, temperature, and water availability) and nutrient status (such as carbon, nitrogen, and phosphate nutrition). Previous reports show that low nitrogen availability strongly enhances anthocyanin accumulation in non carbon-limited plant organs or cell suspensions. It has been hypothesized that high carbon-to-nitrogen ratio would lead to an energy excess in plant cells, and that an increase in flavonoid pathway metabolic fluxes would act as an "energy escape valve," helping plant cells to cope with energy and carbon excess. However, this hypothesis has never been tested directly. To this end, we used the grapevine Vitis vinifera L. cultivar Gamay Teinturier (syn. Gamay Freaux or Freaux Tintorier, VIVC #4382) cell suspension line as a model system to study the regulation of anthocyanin accumulation in response to nitrogen supply. The cells were sub-cultured in the presence of either control (25 mM) or low (5 mM) nitrate concentration. Targeted metabolomics and enzyme activity determinations were used to parametrize a constraint-based model describing both the central carbon and nitrogen metabolisms and the flavonoid (phenylpropanoid) pathway connected by the energy (ATP) and reducing power equivalents (NADPH and NADH) cofactors. The flux analysis (2 flux maps generated, for control and low nitrogen in culture medium) clearly showed that in low nitrogen-fed cells all the metabolic fluxes of central metabolism were decreased, whereas fluxes that consume energy and reducing power, were either increased (upper part of glycolysis, shikimate, and flavonoid pathway) or maintained (pentose phosphate pathway). Also, fluxes of flavanone 3β-hydroxylase, flavonol synthase, and anthocyanidin synthase were strongly increased, advocating for a regulation of the flavonoid pathway by alpha-ketoglutarate levels. These results strongly support the hypothesis of anthocyanin biosynthesis acting as an energy escape valve in plant cells, and they open new possibilities to manipulate flavonoid production in plant cells. They do not, however, support a role of anthocyanins as an effective mechanism for coping with carbon excess in high carbon to nitrogen ratio situations in grape cells. Instead, constraint-based modeling output and biomass analysis indicate that carbon excess is dealt with by vacuolar storage of soluble sugars.
Lavoie, Michel; Raven, John A; Levasseur, Maurice
2016-04-01
Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (<12%) of the total photon energy cost for growth. Cell wall formation in E. huxleyi was the least costly ballast strategy, whereas in T. pseudonana, the photon energy cost of the three ballast strategies was similar. In E. rex, carbohydrate storage and mobilization appear to be energetically cheaper than modulations in organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. © 2016 Phycological Society of America.
Sustainable and Renewable Energy Resources — Alternative Forms of Energy
NASA Astrophysics Data System (ADS)
Rao, M. C.
In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.
Lithium ion batteries and their manufacturing challenges
Daniel, Claus
2015-03-01
There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less
Power conversion and control methods for renewable energy sources
NASA Astrophysics Data System (ADS)
Yu, Dachuan
2005-07-01
In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.
Study of fuel cell powerplant with heat recovery
NASA Technical Reports Server (NTRS)
King, J. M.; Grasso, A. P.; Clausi, J. V.
1975-01-01
It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.
On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.
Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran
2014-04-21
One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the economic and ecological aspects of using nanotechnology are briefly introduced.
Liquid Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Bailey, S.; Cowen, Jonathan; Lucas, L.; Ernst, Frank; Pirouz, P.
2004-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Since future missions will demand large aggregates of solar cells, and space flight is expensive, the solar cells must furthermore be available at low costs and have a long lifetime and high resistance against structural damage introduced by irradiation with high energy electrons and protons. The photovoltaic materials that are presently available only partly fulfill all these requirements. Therefore, we propose to explore a new method for fabricating thin-films for cost-efficient solar cells with very high specific power,high irradiation resistance and long lifetime based on the alpha-phase of the Cu-In-Se system "alpha-CIS."
Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Almgren, D. W.
1978-01-01
In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.
A review of integration strategies for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping
Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.
Algal cell disruption using microbubbles to localize ultrasonic energy
Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.
2015-01-01
Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188
Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses
Das, Jayajit
2016-01-01
Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894
NASA Astrophysics Data System (ADS)
Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro
Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.
Alternative assembly of respiratory complex II connects energy stress to metabolic checkpoints.
Bezawork-Geleta, Ayenachew; Wen, He; Dong, LanFeng; Yan, Bing; Vider, Jelena; Boukalova, Stepana; Krobova, Linda; Vanova, Katerina; Zobalova, Renata; Sobol, Margarita; Hozak, Pavel; Novais, Silvia Magalhaes; Caisova, Veronika; Abaffy, Pavel; Naraine, Ravindra; Pang, Ying; Zaw, Thiri; Zhang, Ping; Sindelka, Radek; Kubista, Mikael; Zuryn, Steven; Molloy, Mark P; Berridge, Michael V; Pacak, Karel; Rohlena, Jakub; Park, Sunghyouk; Neuzil, Jiri
2018-06-07
Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CII low , serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CII low leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CII low is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.
Jin, Suoqin; MacLean, Adam L; Peng, Tao; Nie, Qing
2018-02-05
Single-cell RNA-sequencing (scRNA-seq) offers unprecedented resolution for studying cellular decision-making processes. Robust inference of cell state transition paths and probabilities is an important yet challenging step in the analysis of these data. Here we present scEpath, an algorithm that calculates energy landscapes and probabilistic directed graphs in order to reconstruct developmental trajectories. We quantify the energy landscape using "single-cell energy" and distance-based measures, and find that the combination of these enables robust inference of the transition probabilities and lineage relationships between cell states. We also identify marker genes and gene expression patterns associated with cell state transitions. Our approach produces pseudotemporal orderings that are - in combination - more robust and accurate than current methods, and offers higher resolution dynamics of the cell state transitions, leading to new insight into key transition events during differentiation and development. Moreover, scEpath is robust to variation in the size of the input gene set, and is broadly unsupervised, requiring few parameters to be set by the user. Applications of scEpath led to the identification of a cell-cell communication network implicated in early human embryo development, and novel transcription factors important for myoblast differentiation. scEpath allows us to identify common and specific temporal dynamics and transcriptional factor programs along branched lineages, as well as the transition probabilities that control cell fates. A MATLAB package of scEpath is available at https://github.com/sqjin/scEpath. qnie@uci.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.
Strong, Tough Glass Composites Developed for Solid Oxide Fuel Cell Seals
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2005-01-01
A fuel cell is an electrochemical device that continuously converts the chemical energy of a fuel directly into electrical energy. It consists of an electrolyte, an anode, and a cathode. Various types of fuel cells are available, such as direct methanol fuel cells, alkaline fuel cells, proton-exchange-membrane fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells (SOFCs). The salient features of an SOFC are all solid construction and high-temperature electrochemical-reaction-based operation, resulting in clean, efficient power generation from a variety of fuels. SOFCs are being developed for a broad range of applications, such as portable electronic devices, automobiles, power generation, and aeronautics.
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.
2017-01-01
The potential present day habitability of solar system bodies beyond Earth is limited to subsurface environments, where the availability of energy in biologically useful form is a paramount consideration. Energy availability is commonly quantified in terms of molar Gibbs energy changes for metabolisms of interest, but this can provide an incomplete and even misleading picture. A second aspect of life's requirement for energy - the rate of delivery, or power - strongly influences habitability, biomass abundance, growth rates, and, ultimately, rates of evolution. We are developing an approach to quantify metabolic power, using a cell-scale reactive transport model in which physical and chemical environmental parameters are varied. Simultaneously, we evaluate cell-specific energy flux requirements and their dependence on environmental "extremes". Comparison of metabolic power supply and demand provides a constraint on how biomass abundance varies across a range of environmental parameters, and thereby a prediction of the relative habitability of different environments. We are evaluating the predictive capability of this approach through comparison to observed distributions of microbial abundance in a range of subsurface (predominantly serpentinizing) systems.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells
NASA Astrophysics Data System (ADS)
Pilar, Kartik
Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.
Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.
Das, Jayajit
2016-03-08
Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fuel Cell Technology Status Analysis Project: Partnership Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.
Hydrogen as fuel carrier in PEM fuelcell for automobile applications
NASA Astrophysics Data System (ADS)
Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.
2015-02-01
The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew A
Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Enabling fast charging - Battery thermal considerations
NASA Astrophysics Data System (ADS)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony
2017-11-01
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.
Central-cell corrections and shallow donor states in strong magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayam, Sr. Gerardin; Navaneethakrishnan, K.
2001-06-01
Ionization energies and the central-cell corrections have been calculated for a few shallow donors in Si, GaP, and GaAs. We have assumed a short range potential with two parameters for the strength and the range for each donor, representing the central-cell effects. These parameters are fixed using the experimentally available ionization energies for each donor in a semiconductor. In the presence of a magnetic field the donor ionization energies are estimated using a variational procedure. Our results show that the ionization energies and the central-cell corrections increase with magnetic field. Our results are compared for GaAs with the recent workmore » by Heron et al. [R. J. Heron, R. A. Lewis, P. E. Simmonds, R. P. Starret, A. V. Skougarevsky, R. G. Clark, and C. R. Stanley, J. Appl. Phys. 85, 893 (1999)]. {copyright} 2001 American Institute of Physics.« less
A Strip Cell in Pyroelectric Devices
Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching
2016-01-01
The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134
Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte
NASA Technical Reports Server (NTRS)
Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.
2014-01-01
NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.
NASA Technical Reports Server (NTRS)
Conway, E. J.
1979-01-01
A brief overview of the development of GaAs solar cell technology is provided. An 18 to 20 percent AMO efficiency, stability under radiation and elevated-temperature operation, and high power-to-weight ratio are among the factors studied. Cell cost and availability are also examined.
Small is fast: astrocytic glucose and lactate metabolism at cellular resolution
Barros, L. F.; San Martín, A.; Sotelo-Hitschfeld, T.; Lerchundi, R.; Fernández-Moncada, I.; Ruminot, I.; Gutiérrez, R.; Valdebenito, R.; Ceballo, S.; Alegría, K.; Baeza-Lehnert, F.; Espinoza, D.
2013-01-01
Brain tissue is highly dynamic in terms of electrical activity and energy demand. Relevant energy metabolites have turnover times ranging from milliseconds to seconds and are rapidly exchanged between cells and within cells. Until recently these fast metabolic events were inaccessible, because standard isotopic techniques require use of populations of cells and/or involve integration times of tens of minutes. Thanks to fluorescent probes and recently available genetically-encoded optical nanosensors, this Technology Report shows how it is now possible to monitor the concentration of metabolites in real-time and in single cells. In combination with ad hoc inhibitor-stop protocols, these probes have revealed a key role for K+ in the acute stimulation of astrocytic glycolysis by synaptic activity. They have also permitted detection of the Warburg effect in single cancer cells. Genetically-encoded nanosensors currently exist for glucose, lactate, NADH and ATP, and it is envisaged that other metabolite nanosensors will soon be available. These optical tools together with improved expression systems and in vivo imaging, herald an exciting era of single-cell metabolic analysis. PMID:23526722
Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-12-01
This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.
The Geography of Solar Energy.
ERIC Educational Resources Information Center
LaHart, David E.; Allen, Rodney F.
1984-01-01
After learning about two promising techniques for generating electricity--photovoltaic cells and wind energy conversion systems--secondary students analyze two maps of the United States showing solar radiation and available wind power to determine which U.S. regions have potential for these solar electric systems. (RM)
Improvement and analysis of the hydrogen-cerium redox flow cell
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-09-01
The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.
Effect of microwave exposure on the photo anode of DSSC sensitized with natural dye
NASA Astrophysics Data System (ADS)
Swathi, K. E.; Jinchu, I.; Sreelatha, K. S.; Sreekala, C. O.; Menon, Sreedevi K.
2018-02-01
Dye Sensitized solar cells (DSSC) are also referred to as dye sensitised cells (DSC) or Graetzel cell are the device that converts solar energy in to electricity by the photovoltaic effect. This is the class of advanced cell that mimics the artificial photosynthesis. DSSC fabrication is simple and can be done using readily available low cost materials that are nontoxic, environment friendly and works even under low flux of sunlight. DSSC exhibits good efficiency of ~ 10-14 %. This paper emphasis on the study of enhancing the efficiency of DSSC by exposing the photo anode to microwave frequency. Effect of duration of microwave exposure at 2.6 GHz on energy efficiency of solar cell is studied in detail. The SEM analysis and dye desorption studies of the photo anode confirms an increased solar energy conversion efficiency of the DSSC.
Fullerene derivatives as electron acceptors for organic photovoltaic cells.
Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon
2014-02-01
Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin
2010-07-27
Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.
Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion
NASA Technical Reports Server (NTRS)
Youngblood, J. W.; Talay, T. A.; Pegg, R. J.
1984-01-01
Attention is given to the design features and operational capabilities of a class of unmanned flight vehicles possessing multiday mission endurance capabilities, based on the use of a mixed-mode electric power system which incorporates solar cells for diurnal energy production and a nonregenerative H2-O2 fuel cell for nocturnal energy supply. Energy is thereby provided for not only propulsion, but also the operation of the payload and the vehicle's avionics. The excess solar energy available during high insolation portions of the diurnal period may be used for climb/maneuvering or payload-related functions. Empirical structure scaling algorithms are combined with low Reynolds number aerodynamics algorithms to estimate requisite size and geometry for the chosen mission. Wing loadings will be of the order of 0.9-1.3 lb/sq ft.
Biochemistry of hyperthyroidism and hypothyroidism*
Hoch, Frederic L.
1968-01-01
The thyroid hormones act directly on mitochondria, and thereby control the transformation of the energy derived from oxidations into a form utilizable by the cell. Through their direct actions on mitochondria, the hormones also control indirectly the rate of protein synthesis and thereby the amount of oxidative apparatus in the cell. A rationale for the effects of thyroid hormone excess or deficiency is based upon studies of the mechanism of thyroid hormone action. In hypothyroidism, slow fuel consumption leads to a low output of utilizable energy. In hyperthyroidism, rapid fuel consumption leads to a high energy output, but as efficiency decreases, the utilizable energy produced decreases. Many of the chemical and physical features of these diseases can be reduced to changes in available energy. PMID:4871771
Simple Photovoltaic Cells for Exploring Solar Energy Concepts
ERIC Educational Resources Information Center
Appleyard, S. J.
2006-01-01
Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…
Multi-mission Ni-H2 battery cell for the 1990's
NASA Technical Reports Server (NTRS)
Miller, Lee; Brill, Jack; Dodson, Gary
1989-01-01
A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analyses and validation test cells demonstrate improved performance plus attractive specific-energy characteristics will be achieved.
Enabling fast charging – Battery thermal considerations
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...
2017-10-23
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Enabling fast charging – Battery thermal considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyser, Matthew; Pesaran, Ahmad; Li, Qibo
Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less
Description and modelling of the solar-hydrogen-biogas-fuel cell system in GlashusEtt
NASA Astrophysics Data System (ADS)
Hedström, L.; Wallmark, C.; Alvfors, P.; Rissanen, M.; Stridh, B.; Ekman, J.
The need to reduce pollutant emissions and utilise the world's available energy resources more efficiently has led to increased attention towards e.g. fuel cells, but also to other alternative energy solutions. In order to further understand and evaluate the prerequisites for sustainable and energy-saving systems, ABB and Fortum have equipped an environmental information centre, located in Hammarby Sjöstad, Stockholm, Sweden, with an alternative energy system. The system is being used to demonstrate and evaluate how a system based on fuel cells and solar cells can function as a complement to existing electricity and heat production. The stationary energy system is situated on the top level of a three-floor glass building and is open to the public. The alternative energy system consists of a fuel cell system, a photovoltaic (PV) cell array, an electrolyser, hydrogen storage tanks, a biogas burner, dc/ac inverters, heat exchangers and an accumulator tank. The fuel cell system includes a reformer and a polymer electrolyte fuel cell (PEFC) with a maximum rated electrical output of 4 kW el and a maximum thermal output of 6.5 kW th. The fuel cell stack can be operated with reformed biogas, or directly using hydrogen produced by the electrolyser. The cell stack in the electrolyser consists of proton exchange membrane (PEM) cells. To evaluate different automatic control strategies for the system, a simplified dynamic model has been developed in MATLAB Simulink. The model based on measurement data taken from the actual system. The evaluation is based on demand curves, investment costs, electricity prices and irradiation. Evaluation criteria included in the model are electrical and total efficiencies as well as economic parameters.
Improvement and analysis of the hydrogen-cerium redox flow cell
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-08-03
In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less
Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.
2017-11-01
Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.
Supercapacitors specialities - Materials review
NASA Astrophysics Data System (ADS)
Obreja, Vasile V. N.
2014-06-01
The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.
Smart Energy Management of Multiple Full Cell Powered Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
MOhammad S. Alam
2007-04-23
In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. Themore » goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.« less
A presently available energy supply for high temperature environment (550-1000 deg F)
NASA Technical Reports Server (NTRS)
Jacquelin, J.; Vic, R. L.
1981-01-01
Sodium-sulfur cells attractive electric energy storage device for long service, are discussed. The state of art is given. More than 200 Wh/kg cells were tested. The known range of working temperature is 550 to 750 F. Self-discharge is quite nonexistent for months in operation. The technical basis for expecting an operating range up to 1,000 F under a high pressure atmosphere is given. Possibilities to adapt size and characteristics to particular interplanetary missions are discussed.
Investigating dye-sensitised solar cells
NASA Astrophysics Data System (ADS)
Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.
2010-05-01
At present there is considerable global concern in relation to environmental issues and future energy supplies, for instance climate change (global warming) and the rapid depletion of fossil fuel resources. This trepidation has initiated a more critical investigation into alternative and renewable sources of power such as geothermal, biomass, hydropower, wind and solar energy. The immense dependence on electrical power in today's society has prompted the manufacturing of devices such as photovoltaic (PV) cells to help alleviate and replace current electrical demands of the power grid. The most popular and commercially available PV cells are silicon solar cells which have to date the greatest efficiencies for PV cells. The drawback however is that the manufacturing of these cells is complex and costly due to the expense and difficulty of producing and processing pure silicon. One relatively inexpensive alternative to silicon PV cells that we are currently studying are dye-sensitised solar cells (DSSC or Grätzel Cells). DSSC are biomimetic solar cells which are based on the process of photosynthesis. The SFI Strategic Research Centre for Solar Energy Conversion is a research cluster based in Ireland formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific research area is in DSSC and their electrical properties. We are currently developing testing equipment for arrays of DSSC and developing optoelectronic models which todescribe the performance and behaviour of DSSCs.
Multi-mission Ni-H2 battery cells for the 1990's
NASA Technical Reports Server (NTRS)
Miller, Lee; Brill, Jack; Dodson, Gary
1989-01-01
A sufficient production, test and operational database is now available to permit design technology optimization for the next decade. The evolved battery cell design features standardized technology intended to support multiple type missions (e.g., both GEO and LEO). Design analysis and validation test cells demonstrate that improved performance plus attractive specific-energy characteristics will be achieved.
Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.
Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei
2015-07-28
Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.
Energy harvesting by implantable abiotically catalyzed glucose fuel cells
NASA Astrophysics Data System (ADS)
Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.
Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1995-01-01
When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.
Supercapacitors specialities - Materials review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obreja, Vasile V. N.
The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energymore » density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.« less
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
NASA Astrophysics Data System (ADS)
Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.
An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.
ERIC Educational Resources Information Center
Appleyard, S. J.
2008-01-01
Photoelectrochemical cells using dye-sensitized ZnO with a Cu[superscript 2+]/Fe[superscript 2+]/Fe[superscript 3+] electrolyte can be easily made at home or in a school classroom with household chemicals and other readily available materials. The cells, which are made with wire housed within plastic drinking straws, have open-circuit voltages of…
NASA Astrophysics Data System (ADS)
Wendel, C. H.; Kazempoor, P.; Braun, R. J.
2015-02-01
Electrical energy storage (EES) is an important component of the future electric grid. Given that no other widely available technology meets all the EES requirements, reversible (or regenerative) solid oxide cells (ReSOCs) working in both fuel cell (power producing) and electrolysis (fuel producing) modes are envisioned as a technology capable of providing highly efficient and cost-effective EES. However, there are still many challenges and questions from cell materials development to system level operation of ReSOCs that should be addressed before widespread application. This paper presents a novel system based on ReSOCs that employ a thermal management strategy of promoting exothermic methanation within the ReSOC cell-stack to provide thermal energy for the endothermic steam/CO2 electrolysis reactions during charging mode (fuel producing). This approach also serves to enhance the energy density of the stored gases. Modeling and parametric analysis of an energy storage concept is performed using a physically based ReSOC stack model coupled with thermodynamic system component models. Results indicate that roundtrip efficiencies greater than 70% can be achieved at intermediate stack temperature (680 °C) and elevated stack pressure (20 bar). The optimal operating condition arises from a tradeoff between stack efficiency and auxiliary power requirements from balance of plant hardware.
Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide
NASA Technical Reports Server (NTRS)
Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.
2005-01-01
The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.
Characterising dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.
2009-08-01
With growing energy and environmental concerns due to fossil fuel depletion and global warming there is an increasing attention being attracted by alternative and/or renewable sources of power such as biomass, hydropower, geothermal, wind and solar energy. In today's society there is a vast and in many cases not fully appreciated dependence on electrical power for everyday life and therefore devices such as PV cells are of enormous importance. The more widely used and commercially available silicon (semiconductor) based cells currently have the greatest efficiencies, however the manufacturing of these cells is complex and costly due to the cost and difficulty of producing and processing pure silicon. One new direction being explored is the development of dye-sensitised solar cells (DSSC). The SFI Strategic Research Centre for Solar Energy Conversion is a new research cluster based in Ireland, formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific area of research is in biomimetic dye sensitised solar cells and their electrical properties. We are currently working to develop test equipment, and optoelectronic models describing the performance and behaviors of dye-sensitised solar cells (Grätzel Cells). In this paper we describe some of the background to our work and also some of our initial experimental results. Based on these results we intend to characterise the opto-electrical properties and bulk characteristics of simple dye-sensitised solar cells and then to proceed to test new cell compositions.
Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion
NASA Technical Reports Server (NTRS)
Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.
1984-01-01
Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.
Smart battery controller for lithium sulfur dioxide batteries
NASA Astrophysics Data System (ADS)
Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William
1992-08-01
Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.
High specific energy and specific power aluminum/air battery for micro air vehicles
NASA Astrophysics Data System (ADS)
Kindler, A.; Matthies, L.
2014-06-01
Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. R. Belt
2006-10-01
HPPCALC 2.1 was developed to analyze the raw data from a PNGV Hybrid Pulse Power Characterization (HPPC) test and produce seven standard plots that consist of resistance, power and available energy relationships. The purpose of the HPPC test is to extrapolate the total power capability within predetermined voltage limits of a prototype or full production cell regardless of chemistry with respect to the PNGV goals as outlined in the PNGV Testing Manual, Revision 3. The power capability gives the Electrochemical Energy Storage team the tools to compare different battery sizes and chemistries for possible use in a hybrid electric vehicle.more » The visual basic program HPPCALC 2.1 opens the comma separated value file that is produced from a Maccor, Bitrode or Energy Systems tester. It extracts the necessary information and performs the appropriate calculations. This information is arranged into seven graphs: Resistance versus Depth of Discharge, Power versus Depth of Discharge, Power versus Energy, Power versus Energy, Energy versus Power, Available Energy versus Power, Available Energy versus Power, and Power versus Depth of Discharge. These are the standard plots that are produced for each HPPC test. The primary metric for the HPPC test is the PNGV power, which is the power at which the available energy is equal to 300 Wh. The PNGV power is used to monitor the power degradation of the battery over the course of cycle or calendar life testing.« less
Supply of reactants for Redox bulk energy storage systems
NASA Technical Reports Server (NTRS)
Gahn, R. F.
1978-01-01
World resources, reserves, production, and costs of reactant materials, iron, chromium, titanium and bromine for proposed redox cell bulk energy storage systems are reviewed. Supplying required materials for multimegawatt hour systems appears to be feasible even at current production levels. Iron and chromium ores are the most abundant and lowest cost of four reactants. Chromium is not a domestic reserve, but redox system installations would represent a small fraction of U.S. imports. Vast quantities of bromine are available, but present production is low and therefore cost is high. Titanium is currently available at reasonable cost, with ample reserves available for the next fifty years.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.
CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature
2012-04-06
TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile-cosolvent...employing TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile- cosolvent...electrolyte formulation. CAM-7 provides the highest energy content and rate capability of any market- ready cathode material. Commercially available
Benefits of advanced technology in industrial cogeneration
NASA Technical Reports Server (NTRS)
Barna, G. J.; Burns, R. K.
1979-01-01
This broad study is aimed at identifying the most attractive advanced energy conversion systems for industrial cogeneration for the 1985 to 2000 time period and assessing the advantages of advanced technology systems compared to using today's commercially available technology. Energy conversion systems being studied include those using steam turbines, open cycle gas turbines, combined cycles, diesel engines, Stirling engines, closed cycle gas turbines, phosphoric acid and molten carbonate fuel cells and thermionics. Specific cases using today's commercially available technology are being included to serve as a baseline for assessing the advantages of advanced technology.
Regenerative fuel cell systems for mid- to high-orbit satellites
NASA Technical Reports Server (NTRS)
Taenaka, R. K.; Adler, E.; Stofel, E. J.; Clark, K. B.
1987-01-01
An assessment of the present and projected capabilities of selected hydrogen-oxygen and hydrogen-halogen fuel cell and electrolyzer combinations for energy storage systems (ESS) in configurations useful for spacecraft missions operating in the 10- to 50-kW range for many years in midaltitude to geosynchronous orbits has recently been completed. Results of the study indicate that regenerative fuel cell ESS are feasible for the intended application. A computer model was used to provide tradeoff analyses for optimizing the various ESS fuel cell concepts. When appropriately configured to be compatible with the mission needs of the selected model spacecraft, the specific energy for these ESS are intermediate between that presently available for nickel-hydrogen batteries and that expected for the newly emerging sodium-sulfur technology.
Microbial Colonization of Earth's Subsurface: A Thermodynamically Consistent Perspective
NASA Astrophysics Data System (ADS)
Bethke, C. M.; Sanford, R. A.; Jin, Q.; Kirk, M. F.
2014-12-01
The nature of how anaerobic microbes have come to distribute themselves within Earth's crust is an ecologic question that must be posed subject to the laws of thermodynamics, but a question that cannot be understood in light of thermodynamics alone. We use here the results of theory and quantitative modeling, field observations, and long-term laboratory experiments to argue that subsurface communities are composed of groups of microbes that cooperate as well as compete, and whose existence reflects a tight balance between reproduction and cell death. The most significant functional groups colonizing the anoxic crust, classified by electron accepting process, are the methanogens, sulfate reducers, and ferric iron reducers. An anaerobe can harvest the energy it needs to live and reproduce only to the extent that energy available to it in the environment exceeds the cell's internal levels. When methanogens transfer or dismutate electrons, they capture little energy, so as to preserve a thermodynamic drive for their catabolic reaction. In this way, they maximize their environmental range, but grow slowly. Sulfate reducers adopt a different strategy, striving to capture energy quickly and grow rapidly. Iron reduction consumes acid, so the energy available to iron reducers varies sharply with pH. The iron reducers can grow rapidly under acidic conditions, but an alkaline environment may leave them insufficient energy to live. Methane producers are vulnerable to exclusion in the subsurface, as is broadly appreciated, but not because of energetic limitations. Instead, the methanogens require abundant energy substrates in order to reproduce quickly enough to replace cells as they die. Sulfate reducers and iron reducers, instead of working to exclude each other by competing for limited energy sources, as is commonly believed, thrive in mutualistic communities. The three functional groups by necessity compete in their environments for limited sources of energy, but the manner in which the groups have come to colonize the subsurface is richer and more nuanced than can be explained by competition alone.
Mohammed, Binish; Bilooei, Sara Farahi; Grove, Elliot; Railo, Saana; Palme, Klaus
2018-01-01
The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions. PMID:29284741
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
Recent Advances on Sodium-Oxygen Batteries: A Chemical Perspective.
Yadegari, Hossein; Sun, Xueliang
2018-06-19
Releasing greenhouse gases into the atmosphere because of widespread use of fossil fuels by humankind has resulted in raising the earth's temperature during the past few decades. Known as global warming, increasing the earth's temperature may in turn endanger civilization on the earth by starting a cycle of environmental changes including climate change and sea level rise. Therefore, replacing fossil fuels with more sustainable energy resources has been considered as one of the main strategies to tackle the global warming crisis. In this regard, energy saving devices are required to store the energy from sustainable resources like wind and solar when they are available and deliver them on demand. Moreover, developing plug-in electric vehicles (PEVs) as an alternative for internal combustion engines has been extensively pursued, since a major sector of fossil fuels is used for transportation purposes. However, currently available battery systems fail to meet the required demands for energy storage. Alkali metal-O 2 battery systems demonstrate a promising prospect as a high-energy density solution regarding the increasing demand of mankind for energy storage. Combining a metallic negative electrode with a breathing oxygen electrode, a metal-O 2 cell can be considered as a half battery/half fuel cell system. The negative electrode in the metal-O 2 cells operates a conversion reaction rather than intercalation mechanism, which eliminates the need for a host lattice. In addition, the positive electrode material (O 2 ) comes from the ambient air and hence is not stored in the battery. Therefore, the resultant battery systems exhibit the highest theoretical energy density, which is comparable to that of gasoline. Accordingly, an unprecedented amount of research activity was directed toward alkali metal-O 2 batteries in the past decade in response to the need for high-energy storage technology in electric transportation. This extensive research surge has resulted in a rapid expansion of our knowledge about alkali metal-O 2 batteries. The present Account summarizes the most recent findings over the underlying chemistry of all components in Na-O 2 cells as one of the most efficient members of alkali metal-O 2 family.
NASA Technical Reports Server (NTRS)
Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie
2017-01-01
Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.
INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
FuelCell Energy
2005-05-16
With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP Vmore » Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.« less
Deng, Yu; Huang, Zhigang; Wang, Wenbing; Chen, Yinghuai; Guo, Zhongning; Chen, Ying
2017-01-01
Aiming to improve the laser-induced forward transfer (LIFT) cell isolation process, a polydimethylsiloxane (PDMS) layer with micro-hole arrays was employed to improve the cell separation precision, and a microchip with heater was developed to maintain the working area at 100% humidity and 37°C with the purpose to preserve the viability of the isolated cells. A series of experiments were conducted to verify the contributions of the optimization to LIFT cell isolation process as well as to study the effect of laser pulse energy, laser spot size and the titanium thickness on cell isolation. With 40µm laser spot size and 40nm thick of titanium, laser energy threshold for 100% single cell isolating succeed ratio is 7µJ. According to the staining images and proliferation ratios, the chip did help to improve the cell availability and the cells can recover from the juries at least a day earlier comparing to the samples processed without the chip. With a Lattice Boltzmann model, the cell isolation process is numerically studied and it turns out that the micro-hole makes the isolation process shift to a micro-syringe injection model leading to the lower laser energy threshold for cell separation and fewer injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Regenerative Fuel Cell Test Rig Completed and Operational at Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has completed construction of its first closed-cycle hydrogen-oxygen regenerative fuel cell (RFC). The RFC is an electrochemical system that collects and stores solar energy during the day then releases that energy at night, thus making the Sun's energy available all 24 hours. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for reuse during the next cycle.
Encircling the dark: constraining dark energy via cosmic density in spheres
NASA Astrophysics Data System (ADS)
Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.
2016-08-01
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.
Beyond mitochondria, what would be the energy source of the cell?
Herrera, Arturo S; Del C A Esparza, Maria; Md Ashraf, Ghulam; Zamyatnin, Andrey A; Aliev, Gjumrakch
2015-01-01
Currently, cell biology is based on glucose as the main source of energy. Cellular bioenergetic pathways have become unnecessarily complex in their eagerness to explain that how the cell is able to generate and use energy from the oxidation of glucose, where mitochondria play an important role through oxidative phosphorylation. During a descriptive study about the three leading causes of blindness in the world, the ability of melanin to transform light energy into chemical energy through the dissociation of water molecule was unraveled. Initially, during 2 or 3 years; we tried to link together our findings with the widely accepted metabolic pathways already described in metabolic pathway databases, which have been developed to collect and organize the current knowledge on metabolism scattered across a multitude of scientific articles. However, firstly, the literature on metabolism is extensive but rarely conclusive evidence is available, and secondly, one would expect these databases to contain largely the same information, but the contrary is true. For the apparently well studied metabolic process Krebs cycle, which was described as early as 1937 and is found in nearly every biology and chemistry curriculum, there is a considerable disagreement between at least five databases. Of the nearly 7000 reactions contained jointly by these five databases, only 199 are described in the same way in all the five databases. Thus to try to integrate chemical energy from melanin with the supposedly well-known bioenergetic pathways is easier said than done; and the lack of consensus about metabolic network constitutes an insurmountable barrier. After years of unsuccessful results, we finally realized that the chemical energy released through the dissociation of water molecule by melanin represents over 90% of cell energy requirements. These findings reveal a new aspect of cell biology, as glucose and ATP have biological functions related mainly to biomass and not so much with energy. Our finding about the unexpected intrinsic property of melanin to transform photon energy into chemical energy through the dissociation of water molecule, a role performed supposedly only by chlorophyll in plants, seriously questions the sacrosanct role of glucose and thereby mitochondria as the primary source of energy and power for the cells.
Atmospheric Science Data Center
2018-04-04
Description: Obtain Surface meteorology and Solar Energy (SSE) data Available for locations, global/regional areas, ... Provided for 1° latitude by 1° longitude grid cells over the 22-year period July 1983 through June 2005 ...
Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater
NASA Astrophysics Data System (ADS)
Ge, Zheng; Wu, Liao; Zhang, Fei; He, Zhen
2015-11-01
Development of microbial fuel cell (MFC) technology must address the challenges associated with energy extraction from large-scale MFC systems consisting of multiple modules. Herein, energy extraction is investigated with a 200-L MFC system (effective volume of 100 L for this study) treating actual municipal wastewater. A commercially available energy harvesting device (BQ 25504) is used successfully to convert 0.8-2.4 V from the MFCs to 5 V for charging ultracapacitors and running a DC motor. Four different types of serial connection containing different numbers of MFC modules are examined for energy extraction and conversion efficiency. The connection containing three rows of the MFCs has exhibited the best performance with the highest power output of ∼114 mW and the conversion efficiency of ∼80%. The weak performance of one-row MFCs negatively affects the overall performance of the connected MFCs in terms of both energy production and conversion. Those results indicate that an MFC system with balanced performance among individual modules will be critical to energy extraction. Future work will focus on application of the extracted energy to support MFC operation.
Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses
Matarese, Giuseppe; Procaccini, Claudio; Menale, Ciro; Kim, Jae Geun; Kim, Jung Dae; Diano, Sabrina; Diano, Nadia; De Rosa, Veronica; Dietrich, Marcelo O.; Horvath, Tamas L.
2013-01-01
Whole-body energy metabolism is regulated by the hypothalamus and has an impact on diverse tissue functions. Here we show that selective knockdown of Sirtuin 1 Sirt1 in hypothalamic Agouti-related peptide-expressing neurons, which renders these cells less responsive to cues of low energy availability, significantly promotes CD4+ T-cell activation by increasing production of T helper 1 and 17 proinflammatory cytokines via mediation of the sympathetic nervous system. These phenomena were associated with an impaired thymic generation of forkhead box P3 (FoxP3+) naturally occurring regulatory T cells and their reduced suppressive capacity in the periphery, which resulted in increased delayed-type hypersensitivity responses and autoimmune disease susceptibility in mice. These observations unmask a previously unsuspected role of hypothalamic feeding circuits in the regulation of adaptive immune response. PMID:23530205
NASA Technical Reports Server (NTRS)
Mcneely, J. B.; Negley, G. H.; Barnett, A. M.
1985-01-01
GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency.
Development of a Long-Range Underwater Vehicle
2015-09-30
contained lithium primary batteries . Based on reaction energy and reactant mass, oxidation of lithium is a particularly high energy density option. Each...LiOH E ~ 3.45 V Hydrogen evolution in seawater 2Li + 2H2O = 2 LiOH + H2 E ~ 2.60 V PolyPlus Battery Company has developed a lithium -seawater...PolyPlus achieves energy densities near 4.7 MJ/kg, four times that available from the primary lithium batteries used in gliders today. The seawater cells
Plasma separation process. Betacell (BCELL) code, user's manual
NASA Astrophysics Data System (ADS)
Taherzadeh, M.
1987-11-01
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the Plasma Separation Program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation and source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costogue, E.; Ferber, R.; Hasbach, W.
Photovoltaic solar cell arrays converting solar energy into electrical energy can become a cost-effective, alternative energy source provided that an adequate supply of low-priced solar cell materials and automated fabrication techniques are available. Presently, the photovoltaic industry is dependent upon polycrystalline silicon which is produced primarily for the discrete semiconductor device industry. This dependency is expected to continue until DOE-sponsored new technology developments mature. Recent industry forecasts have predicted a limited supply of polycrystalline silicon material and a shortage could occur in the early 80's. The Jet Propulsion Laboratory's Technology Development and Application Lead Center formed an ad hoc committeemore » at JPL, SERI and consultant personnel to conduct interviews with key polycrystalline manufacturers and a large cross-section of single crystal ingot growers and wafer manufacturers. Industry consensus and conclusions reached from the analysis of the data obtained by the committee are reported. The highlight of the study is that there is a high probability of polycrystalline silicon shortage by the end of CY 1982 and a strong seller's market after CY 1981 which will foster price competition for available silicon.« less
ERIC Educational Resources Information Center
Repak, Arthur J.; And Others
1988-01-01
Computer software, audiovisuals, and books are reviewed. Includes topics on interfacing, ionic equilibrium, space, the classification system, Acquired Immune Disease Syndrome, evolution, human body processes, energy, pesticides, teaching school, cells, and geological aspects. Availability, price, and a description of each are provided. (RT)
Solar- and wind-powered irrigation systems
NASA Astrophysics Data System (ADS)
Enochian, R. V.
1982-02-01
Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.
NASA Technical Reports Server (NTRS)
1977-01-01
Among a number of solar energy tests being jointly conducted by NASA's Lewis Research Center and the Energy Research and Development Administration are a sun-powered refrigerator and a back-pack mounted power supply for radios. Both use solar cells, spacecraft power sources which convert sun energy into electricity. The refrigerator, which has potential utility for outdoor campers, is in operation at a trail construction camp in Isle Royale National Park, a remote wilderness in Michigan's Lake Superior where electricity is available only at park headquarters. Trail maintenance crews working in the back country get food supplies only once weekly; with refrigeration they can enjoy a more varied and nutritious diet. Solar cells provide power to run the refrigerator and to charge its batteries for an alternate power supply when sun is not available. At the request of Znyo National Forest personnel NASA-Lewis also developed a back-pack system. The lightweight solar cell pack (on the pack strap in photo) charges batteries for portable two-way radios used by trailguards, who are on patrol for as much as two weeks at a time. Guards want continuous communication with the District Station, but battery capacity precludes such operation. With the solar cell power supply, guards can use their radios 24 hours a day.A lightweight, higher-capacity oxygen bottle-derived from rocket propellant tank technology-proved an important aid in the 1976 ascent to the summit of Mt. Everest by members of the. American Bicentennial Everest Expedition.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Astrophysics Data System (ADS)
Blazek, C. F.
1982-11-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Hybrid fuel cell/diesel generation total energy system, part 2
NASA Technical Reports Server (NTRS)
Blazek, C. F.
1982-01-01
Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-11-04
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.
Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis Witmer; Thomas Johnson
2008-12-31
Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transportedmore » and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.« less
Photovoltaic and photoelectrochemical conversion of solar energy.
Grätzel, Michael
2007-04-15
The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.
Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia
2015-09-01
Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. Published by Elsevier B.V.
Analysis of a fuel cell on-site integrated energy system for a residential complex
NASA Technical Reports Server (NTRS)
Simons, S. N.; Maag, W. L.
1979-01-01
Declining supplies of domestic oil and gas and the increased cost of energy resulted in a renewed emphasis in utilizing available resources in the most efficient manner possible. This, in turn, brought about a reassessment of a number of methods for converting fossil fuels to end uses at the highest practical efficiency. One of these is the on-site integrated energy system (OS/IES). This system provides electric power from an on-site power plant and recovers heat from the power plant that would normally be rejected to the environment. An OS/IES is potentially useful in any application that requires both electricity and heat. Several OS/IES are analyzed for a residential complex. The paper is divided into two sections; the first compares three energy supply systems, the second compares various designs for fuel cell OS/IES.
Light as an Energy Source in Continuous Cultures of Bacteriorhodopsin-Containing Halobacteria
Rodriguez-Valera, F.; Nieto, J. J.; Ruiz-Berraquero, F.
1983-01-01
The role of light as an energy source for slightly aereated cultures of halobacteria was studied, using continuous cultures with low nutrient concentrations and a low oxygen supply. A series of experiments were carried out with non-illuminated and differently illuminated cultures and with different oxygen transfer rates. Under low oxygen availability, light proved to be a decisively important energy source that allowed the populations to reach higher growth rates and much higher population densities. Oxygen influenced the growth over only a minimal level, below which neither the illuminated nor the dark cultures were affected by the oxygen transfer rate. From these results, it appears that the bacteriorhodopsin-mediated energy supply could have a very important role for the ecology of halobacteria in their microaerophilic habitats. In the illuminated cultures, cells that originated purple colonies on plates appeared. These cells, which could be bacteriorhodopsin-constitutive mutants, are now being studied. PMID:16346250
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William
2014-03-01
The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety,more » availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.« less
NASA Astrophysics Data System (ADS)
Kim, Dong Woo; Jo, Hyun-Jun; Thogiti, Suresh; Yang, Weon Ki; Cheruku, Rajesh; Kim, Jae Hong
2017-05-01
Förster resonance energy transfer (FRET) is critical for wide spectral absorption, an increased dye loading, and photocurrent generation of dye-sensitized solar cells (DSSCs). This process consists of organic fluorescent materials (as an energy donor), and an organic dye (as an energy acceptor on TiO2 surfaces) with quasi-solid electrolyte. The judicious choice of the energy donor and acceptor facilitates a strong spectral overlap between the emission and absorption regions of the fluorescent materials and dye. This FRET process enhances the light-harvesting characteristics of quasi-solid state DSSCs. In this study, DSSCs containing different concentrations (0, 1, and 1.5 wt%) of a fluorescent material (FM) as the energy donor are investigated using FRET. The power conversion efficiency of DSSCs containing FMs in a quasi-solid electrolyte increased by 33% over a pristine cell. The optimized cell fabricated with the quasi-solid state DSSC containing 1.0 wt% FM shows a maximum efficiency of 3.38%, with a short-circuit current density ( J SC ) of 4.32 mA/cm-2, and an open-circuit voltage ( V OC ) of 0.68 V under illumination of simulated solar light (AM 1.5G, 100 mW/cm-2). [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario
2015-06-01
Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).
Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks
NASA Astrophysics Data System (ADS)
Papaharalabos, George; Greenman, John; Stinchcombe, Andrew; Horsfield, Ian; Melhuish, Chris; Ieropoulos, Ioannis
2014-12-01
A microbial fuel cell (MFC) is a bioelectrochemical device that uses anaerobic bacteria to convert chemical energy locked in biomass into small amounts of electricity. One viable way of increasing energy extraction is by stacking multiple MFC units and exploiting the available electrical configurations for increasing the current or stepping up the voltage. The present study illustrates how a real-time electrical reconfiguration of MFCs in a stack, halves the time required to charge a capacitor (load) and achieves 35% higher current generation compared to a fixed electrical configuration. This is accomplished by progressively switching in-parallel elements to in-series units in the stack, thus maintaining an optimum potential difference between the stack and the capacitor, which in turn allows for a higher energy transfer.
Trevors, J T
2012-12-01
The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.
Electrolyser and fuel cells, key elements for energy and life support
NASA Astrophysics Data System (ADS)
Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim
Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated experience gained from testing will be presented, complemented by an outlook on next development steps preparatory to the application of electrolyser and fuel cell technology in human and robotic exploration building blocks.
NASA Astrophysics Data System (ADS)
Petersen, Richard C.
2014-03-01
Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.
Origin of Cancer: An Information, Energy, and Matter Disease
Hanselmann, Rainer G.; Welter, Cornelius
2016-01-01
Cells are open, highly ordered systems that are far away from equilibrium. For this reason, the first function of any cell is to prevent the permanent threat of disintegration that is described by thermodynamic laws and to preserve highly ordered cell characteristics such as structures, the cell cycle, or metabolism. In this context, three basic categories play a central role: energy, information, and matter. Each of these three categories is equally important to the cell and they are reciprocally dependent. We therefore suggest that energy loss (e.g., through impaired mitochondria) or disturbance of information (e.g., through mutations or aneuploidy) or changes in the composition or distribution of matter (e.g., through micro-environmental changes or toxic agents) can irreversibly disturb molecular mechanisms, leading to increased local entropy of cellular functions and structures. In terms of physics, changes to these normally highly ordered reaction probabilities lead to a state that is irreversibly biologically imbalanced, but that is thermodynamically more stable. This primary change—independent of the initiator—now provokes and drives a complex interplay between the availability of energy, the composition, and distribution of matter and increasing information disturbance that is dependent upon reactions that try to overcome or stabilize this intracellular, irreversible disorder described by entropy. Because a return to the original ordered state is not possible for thermodynamic reasons, the cells either die or else they persist in a metastable state. In the latter case, they enter into a self-driven adaptive and evolutionary process that generates a progression of disordered cells and that results in a broad spectrum of progeny with different characteristics. Possibly, 1 day, one of these cells will show an autonomous and aggressive behavior—it will be a cancer cell. PMID:27909692
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Gering
An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of amore » high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si« less
NASA Astrophysics Data System (ADS)
Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar
2011-06-01
Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.
Deployable Fuel Cell Power Generator - Multi-Fuel Processor
2009-02-01
and the system operating pressure, while the separation efficiency depends on the evaporator design. Desulfurizer – A flow-through gas -solid or gas ...meeting the Executive Order (EO) 13423 and the Energy Policy Act of 2005 to improve energy efficiency and reduce greenhouse gas emissions 3 percent...use available fuel such as natural gas (methane) or propane. The ability to reform multitude of fuels can accelerate the introduction of more
FDTD modeling of solar energy absorption in silicon branched nanowires.
Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen
2013-05-06
Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.
Glucose consumption of inflammatory cells masks metabolic deficits in the brain
Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf
2016-01-01
Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749
NASA Astrophysics Data System (ADS)
Abodunrin, T.; Boyo, A.; Usikalu, M.; Obafemi, L.; Oladapo, O.; Kotsedi, L.; Yenus, Z.; Maaza, M.
2017-03-01
A.cepa peels are obtained from mature onion bulbs. Because of the continuous need for energy, alternative avenues for producing energy are gaining importance. The motivation for this work is based on an urgent need to source energy from readily available waste materials like domestic onion peels. Dye sensitized solar cells (DSSCs) fabricated via doctor blade method and high temperature sintering from waste (onion peels) are investigated for their ability to convert solar to electrical energy. The charge carriers were revealed under phytochemical screening. Functional groups of compounds present in A.cepa peel were analyzed with Fourier transform in infrared (FTIR). The influence of different electrolyte sensitizer is observed on the DSSCs under standard air mass conditions of 1.5 AM. The microstructure properties of these A.cepa DSSCs were explored using scanning electron microscope with energy dispersive spectroscopy (SEM/EDS), x-ray diffraction and Fluorecence spectroscopy (XRF). The interfacial boundary between A.cepa dye, TiO2 framework of TiO2 and indium doped tin oxide (ITO) reveals several prominent anatase and rutile peaks. Photoelectric results, revealed dye-sensitized solar cells with a maximum power output of 126 W and incident photon to conversion energy (IPCE) of 0.13%.This work has established that A.cepa peels can be used as a source of micro-energy generation.
Surface Modification of Cu(In,Ga)Se2 Grains
NASA Astrophysics Data System (ADS)
Alruqobah, Essam H.
Nearly all of the world’s energy demand today is being met by the use of non-renewable energy sources. With the worldwide energy demand projected to increase in the coming years, it is vital to find alternative and renewable energy sources. Among the available renewable energy sources, solar energy is the most promising in meeting the worldwide energy demand. Recently, thin film solar cells have garnered attention due to their thinner architecture and relatively high optical absorption coefficients, as opposed to the conventional crytslline silicon solar cells. One of the most promising thin-film solar cell absorber materials is Cu(In,Ga)Se2 (CIGSe), achieving power conversion efficiencies approaching those of crystalline Si. The highest efficiency CIGSe devices were made via costly vacuum-based co-evaporation process. CIGSe devices made from solution-processed methods have also garnered attention due to their lower costs, and their efficiencies have increased considerably in recent years. In this thesis, CIGSe absorber layers are fabricated via the solution-processed from nanoparticle-based sulfide CIGS. The most important step in fabrication of a CIGSe solar cell absorber layer is the selenization step, which is the thermal sintering of a CIGSe precursor layer in the presence of selenium vapor to achieve large, dense selenide grains that are required for adequate PV performance. It is determined that maintaining adequate selenium vapor pressure on the substrate during the selenization and subsequent cooldown is crucial in producing high efficiency solar cell devices. Furthermore, exposing the CIGSe grains to a Se-deficient atmosphere causes Se to evaporate from the grains, and subsequently modifying the CIGSe grain surface. The modified grain surface adversely impacts the PV performance of the final solar cell device by forming defects due to the decrease in selenium concentration. These defects are manifested in increased current shunting, and decrease the overall efficiency of the device.
Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes
NASA Astrophysics Data System (ADS)
Hoffman, Casey J.
Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are also flexible and can be used to fabricate almost any fuel cell electrodes on the market today. This dissertation provides a description of the entire electrode manufacturing process as well as an analysis of the accuracy, performance and repeatability of the methods.
Energy and power limits for microbial activity
NASA Astrophysics Data System (ADS)
LaRowe, D.; Amend, J.
2014-12-01
The goal of this presentation is to describe a quantitative framework for determining how energy limits microbial activity, biomass and, ultimately, biogeochemical processes. Although this model can be applied to any environment, its utility is demonstrated in marine sediments, which are an attractive test habitat because they encompass a broad spectrum of energy levels, varying amounts of biomass and are ubiquitous. The potential number of active microbial cells in Arkonas Basin (Baltic Sea) sediments are estimated as a function of depth by quantifying the amount of energy that is available to them and the rate at which it is supplied: power. The amount of power supplied per cubic centimeter of sediment is determined by calculating the Gibbs energy of fermentation and sulfate reduction in combination with the rate of particulate organic carbon, POC, degradation. The Reactive Continuum Model (Boudreau and Ruddick, 1991), RCM, is used to determine the rate at which POC is made available for microbial consumption. The RCM represents POC as containing a range of different types of organic compounds whose ability to be consumed by microorganisms varies as a function of the age of the sediment and on the distribution of compound types that were initially deposited. The sediment age model and RCM parameters determined by (Mogollon et al., 2012) are used. The power available for fermentation and sulfate reduction coupled to H2 and acetate oxidation varies from 10-8 W cm-3 at the sediment water interface to between 10-11 - 10-12 W cm-3 at 3.5 meters below the seafloor, mbsf. Using values of maintenance powers for each of these catabolic activities taken from the literature, the total number of active cells in these sediments similarly decreases from just less than 108 cell cm-3 at the SWI to 4.6 x 104 cells cm-3 at 3.5 mbsf. The number of moles of POC decreases from 2.6 x 10-5 to 9.5 x 10-6, also becoming more recalcitrant with depth. Boudreau, B. P. and Ruddick, B. R. (1991) On a reactive continuum representation of organic matter diagenesis. Amer. J. Sci. 291, 507-538. Mogollon, J. M., Dale, A. W., Fossing, H. and Regnier, P. (2012) Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Bason (Baltic Sea). Biogeosciences 9, 1915-1933.
Microbial fuel cells as an alternative energy source: current status.
Javed, Muhammad Mohsin; Nisar, Muhammad Azhar; Ahmad, Muhammad Usman; Yasmeen, Nighat; Zahoor, Sana
2018-06-22
Microbial fuel cell (MFC) technology is an emerging area for alternative renewable energy generation and it offers additional opportunities for environmental bioremediation. Recent scientific studies have focused on MFC reactor design as well as reactor operations to increase energy output. The advancement in alternative MFC models and their performance in recent years reflect the interests of scientific community to exploit this technology for wider practical applications and environmental benefit. This is reflected in the diversity of the substrates available for use in MFCs at an economically viable level. This review provides an overview of the commonly used MFC designs and materials along with the basic operating parameters that have been developed in recent years. Still, many limitations and challenges exist for MFC development that needs to be further addressed to make them economically feasible for general use. These include continued improvements in fuel cell design and efficiency as well scale-up with economically practical applications tailored to local needs.
Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications
NASA Astrophysics Data System (ADS)
Guo, Qing; Ye, Fang; Guo, Hang; Ma, Chong Fang
2017-02-01
Hydrogen/oxygen fuel cells were successfully utilized in the field of space applications to provide electric energy and potable water in human-rated space mission since the 1960s. Proton exchange membrane (PEM) based fuel cells, which provide high power/energy densities, were reconsidered as a promising space power equipment for future space exploration. PEM-based water electrolyzers were employed to provide life support for crews or as major components of regenerative fuel cells for energy storage. Gas/water and heat are some of the key challenges in PEM-based fuel cells and electrolytic cells, especially when applied to space scenarios. In the past decades, efforts related to gas/water and thermal control have been reported to effectively improve cell performance, stability lifespan, and reduce mass, volume and costs of those space cell systems. This study aimed to present a primary review of research on gas/water and waste thermal management for PEM-based electrochemical cell systems applied to future space explorations. In the fuel cell system, technologies related to reactant supplement, gas humidification, water removal and active/passive water separation were summarized in detail. Experimental studies were discussed to provide a direct understanding of the effect of the gas-liquid two-phase flow on product removal and mass transfer for PEM-based fuel cell operating in a short-term microgravity environment. In the electrolyzer system, several active and static passive phaseseparation methods based on diverse water supplement approaches were discussed. A summary of two advanced passive thermal management approaches, which are available for various sizes of space cell stacks, was specifically provided
Jády, Attila Gy; Nagy, Ádám M; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László; Madarász, Emília
2016-07-01
While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H(+) production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In "starving" neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons.
Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2018-01-01
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4+ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4+ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4+ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions. PMID:29659554
Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2018-04-16
Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.
Pulsed Excimer Laser Processing for Cost-Effective Solar Cells
NASA Technical Reports Server (NTRS)
Wong, D.
1985-01-01
Residual lattice damage by 5 keV ion implantation and surface flaws induced by wafer cleaning are proven to affect the V sub oc more adversely for laser annealed cells than conventional thermal diffusion. However, an alternative, molecular implantation of molecular species holds potential. The first experimental results are encouraging. The lack of a commercially available mass analyzed implantation with low energy, high fluence ions is constraining.
NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.
2003-08-01
The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems
NASA Technical Reports Server (NTRS)
Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.
Interactions between adipose tissue and the immune system in health and malnutrition.
Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan
2015-09-01
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
Thin-film silicon for flexible metal-air batteries.
Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H
2014-12-01
Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Life cycle design metrics for energy generation technologies: Method, data, and case study
NASA Astrophysics Data System (ADS)
Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah
A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.
Keeping the home fires burning†: AMP-activated protein kinase
2018-01-01
Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK. PMID:29343628
Plasma Separation Process: Betacell (BCELL) code: User's manual. [Bipolar barrier junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taherzadeh, M.
1987-11-13
The emergence of clearly defined applications for (small or large) amounts of long-life and reliable power sources has given the design and production of betavoltaic systems a new life. Moreover, because of the availability of the plasma separation program, (PSP) at TRW, it is now possible to separate the most desirable radioisotopes for betacell power generating devices. A computer code, named BCELL, has been developed to model the betavoltaic concept by utilizing the available up-to-date source/cell parameters. In this program, attempts have been made to determine the betacell energy device maximum efficiency, degradation due to the emitting source radiation andmore » source/cell lifetime power reduction processes. Additionally, comparison is made between the Schottky and PN junction devices for betacell battery design purposes. Certain computer code runs have been made to determine the JV distribution function and the upper limit of the betacell generated power for specified energy sources. A Ni beta emitting radioisotope was used for the energy source and certain semiconductors were used for the converter subsystem of the betacell system. Some results for a Promethium source are also given here for comparison. 16 refs.« less
Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction.
El Gammal, Zaynab H; Zaher, Amr M; El-Badri, Nagwa
2017-09-01
Cardiovascular disease is the leading cause of death worldwide. Although cardiac transplantation is considered the most effective therapy for end-stage cardiac diseases, it is limited by the availability of matching donors and the complications of the immune suppressive regimen used to prevent graft rejection. Application of stem cell therapy in experimental animal models was shown to reverse cardiac remodeling, attenuate cardiac fibrosis, improve heart functions, and stimulate angiogenesis. The efficacy of stem cell therapy can be amplified by low-level laser radiation. It is well established that the bio-stimulatory effect of low-level laser is influenced by the following parameters: wavelength, power density, duration, energy density, delivery time, and the type of irradiated target. In this review, we evaluate the available experimental data on treatment of myocardial infarction using low-level laser. Eligible papers were characterized as in vivo experimental studies that evaluated the use of low-level laser therapy on stem cells in order to attenuate myocardial infarction. The following descriptors were used separately and in combination: laser therapy, low-level laser, low-power laser, stem cell, and myocardial infarction. The assessed low-level laser parameters were wavelength (635-804 nm), power density (6-50 mW/cm 2 ), duration (20-150 s), energy density (0.96-1 J/cm 2 ), delivery time (20 min-3 weeks after myocardial infarction), and the type of irradiated target (bone marrow or in vitro-cultured bone marrow mesenchymal stem cells). The analysis focused on the cardioprotective effect of this form of therapy, the attenuation of scar tissue, and the enhancement of angiogenesis as primary targets. Other effects such as cell survival, cell differentiation, and homing are also included. Among the evaluated protocols using different parameters, the best outcome for treating myocardial infarction was achieved by treating the bone marrow by one dose of low-level laser with 804 nm wavelength and 1 J/cm 2 energy density within 4 h of the infarction. This approach increased stem cell survival, proliferation, and homing. It has also decreased the infarct size and cell apoptosis, leading to enhanced heart functions. These effects were stable for 6 weeks. However, more studies are still required to assess the effects of low-level laser on the genetic makeup of the cell, the nuclei, and the mitochondria of mesenchymal stromal cells (MSCs).
Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes
NASA Astrophysics Data System (ADS)
Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui
2016-02-01
Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.
Redox mechanism of levobupivacaine cytostatic effect on human prostate cancer cells.
Jose, Caroline; Hebert-Chatelain, Etienne; Dias Amoedo, Nivea; Roche, Emmanuel; Obre, Emilie; Lacombe, Didier; Rezvani, Hamid Reza; Pourquier, Philippe; Nouette-Gaulain, Karine; Rossignol, Rodrigue
2018-05-31
Anti-cancer effects of local anesthetics have been reported but the mode of action remains elusive. Here, we examined the bioenergetic and REDOX impact of levobupivacaine on human prostate cancer cells (DU145) and corresponding non-cancer primary human prostate cells (BHP). Levobupivacaine induced a combined inhibition of glycolysis and oxidative phosphorylation in cancer cells, resulting in a reduced cellular ATP production and consecutive bioenergetic crisis, along with reactive oxygen species generation. The dose-dependent inhibition of respiratory chain complex I activity by levobupivacaine explained the alteration of mitochondrial energy fluxes. Furthermore, the potency of levobupivacaine varied with glucose and oxygen availability as well as the cellular energy demand, in accordance with a bioenergetic anti-cancer mechanism. The levobupivacaine-induced bioenergetic crisis triggered cytostasis in prostate cancer cells as evidenced by a S-phase cell cycle arrest, without apoptosis induction. In DU145 cells, levobupivacaine also triggered the induction of autophagy and blockade of this process potentialized the anti-cancer effect of the local anesthetic. Therefore, our findings provide a better characterization of the REDOX mechanisms underpinning the anti-effect of levobupivacaine against human prostate cancer cells. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Current technical approaches to brain energy metabolism.
Barros, L Felipe; Bolaños, Juan P; Bonvento, Gilles; Bouzier-Sore, Anne-Karine; Brown, Angus; Hirrlinger, Johannes; Kasparov, Sergey; Kirchhoff, Frank; Murphy, Anne N; Pellerin, Luc; Robinson, Michael B; Weber, Bruno
2018-06-01
Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles. © 2017 Wiley Periodicals, Inc.
Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang
2017-04-04
Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.
GaP betavoltaic cells as a power source
NASA Technical Reports Server (NTRS)
Pool, F. S.; Stella, Paul M.; Anspaugh, B.
1991-01-01
Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.
Renewable energy technologies and its adaptation in an urban environment
NASA Astrophysics Data System (ADS)
Thampi, K. Ravindranathan; Byrne, Owen; Surolia, Praveen K.
2014-01-01
This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 × 1017 watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the world's energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3rd generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.
Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy
Phoenix, Kathryn N.; Vumbaca, Frank; Fox, Melissa M.; Evans, Rebecca
2010-01-01
Dietary energy restriction has been shown to repress both mammary tumorigenesis and aggressive mammary tumor growth in animal studies. Metformin, a caloric restriction mimetic, has a long history of safe use as an insulin sensitizer in diabetics and has been shown to reduce cancer incidence and cancer-related mortality in humans. To determine the potential impact of dietary energy availability and metformin therapy on aggressive breast tumor growth and metastasis, an orthotopic syngeneic model using triple negative 66cl4 tumor cells in Balb/c mice was employed. The effect of dietary restriction, a standard maintenance diet or a diet with high levels of free sugar, were tested for their effects on tumor growth and secondary metastases to the lung. Metformin therapy with the various diets indicated that metformin can be highly effective at suppressing systemic metabolic biomarkers such as IGF-1, insulin and glucose, especially in the high energy diet treated animals. Long-term metformin treatment demonstrated moderate yet significant effects on primary tumor growth, most significantly in conjunction with the high energy diet. When compared to the control diet, the high energy diet promoted tumor growth, expression of the inflammatory adipokines leptin and resistin, induced lung priming by bone marrow-derived myeloid cells and promoted metastatic potential. Metformin had no effect on adipokine expression or the development of lung metastases with the standard or the high energy diet. These data indicate that metformin may have tumor suppressing activity where a metabolic phenotype of high fuel intake, metabolic syndrome, and diabetes exist, but may have little or no effect on events controlling the metastatic niche driven by proinflammatory events. PMID:20204498
Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.
Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin
2016-07-13
Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism.
Jády, Attila Gy.; Nagy, Ádám M.; Kőhidi, Tímea; Ferenczi, Szilamér; Tretter, László
2016-01-01
While it is evident that the metabolic machinery of stem cells should be fairly different from that of differentiated neurons, the basic energy production pathways in neural stem cells (NSCs) or in neurons are far from clear. Using the model of in vitro neuron production by NE-4C NSCs, this study focused on the metabolic changes taking place during the in vitro neuronal differentiation. O2 consumption, H+ production, and metabolic responses to single metabolites were measured in cultures of NSCs and in their neuronal derivatives, as well as in primary neuronal and astroglial cultures. In metabolite-free solutions, NSCs consumed little O2 and displayed a higher level of mitochondrial proton leak than neurons. In stem cells, glycolysis was the main source of energy for the survival of a 2.5-h period of metabolite deprivation. In contrast, stem cell-derived or primary neurons sustained a high-level oxidative phosphorylation during metabolite deprivation, indicating the consumption of own cellular material for energy production. The stem cells increased O2 consumption and mitochondrial ATP production in response to single metabolites (with the exception of glucose), showing rapid adaptation of the metabolic machinery to the available resources. In contrast, single metabolites did not increase the O2 consumption of neurons or astrocytes. In “starving” neurons, neither lactate nor pyruvate was utilized for mitochondrial ATP production. Gene expression studies also suggested that aerobic glycolysis and rapid metabolic adaptation characterize the NE-4C NSCs, while autophagy and alternative glucose utilization play important roles in the metabolism of stem cell-derived neurons. PMID:27116891
Glucose consumption of inflammatory cells masks metabolic deficits in the brain.
Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf
2016-03-01
Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Solar-hydrogen energy system for Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutfi, N.
1990-01-01
A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parametersmore » have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.« less
Laboratory Evaluation of Novel Particulate Control Concepts for Jet Engine Test Cells.
1983-12-01
HHV = Fuel higher heating value, btu/lb. tH = Heat of reaction, btu/Ib. KE = Kinetic energy, btu/hr. LHV = Lower heating value, btu/lb. M = Mass flow...the fuel bond energy must be the lower heating value ( LHV = AH of combustion with water as a vapor product). Therefore, the HHV must be corrected by... fuel . .- 7 This component is negligible for jet engines operated on uncontaminated turbine fuels . C. ALTERNATIVES AVAILABLE Several alternatives have
Separators - Technology review: Ceramic based separators for secondary batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.« less
Separators - Technology review: Ceramic based separators for secondary batteries
NASA Astrophysics Data System (ADS)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.
2014-06-01
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.
Martin, Bronwen; Shin, Yu-Kyong; White, Caitlin M; Ji, Sunggoan; Kim, Wook; Carlson, Olga D; Napora, Joshua K; Chadwick, Wayne; Chapter, Megan; Waschek, James A; Mattson, Mark P; Maudsley, Stuart; Egan, Josephine M
2010-05-01
It is becoming apparent that there is a strong link between taste perception and energy homeostasis. Recent evidence implicates gut-related hormones in taste perception, including glucagon-like peptide 1 and vasoactive intestinal peptide (VIP). We used VIP knockout mice to investigate VIP's specific role in taste perception and connection to energy regulation. Body weight, food intake, and plasma levels of multiple energy-regulating hormones were measured and pancreatic morphology was determined. In addition, the immunocytochemical profile of taste cells and gustatory behavior were examined in wild-type and VIP knockout mice. VIP knockout mice demonstrate elevated plasma glucose, insulin, and leptin levels, with no islet beta-cell number/topography alteration. VIP and its receptors (VPAC1, VPAC2) were identified in type II taste cells of the taste bud, and VIP knockout mice exhibit enhanced taste preference to sweet tastants. VIP knockout mouse taste cells show a significant decrease in leptin receptor expression and elevated expression of glucagon-like peptide 1, which may explain sweet taste preference of VIP knockout mice. This study suggests that the tongue can play a direct role in modulating energy intake to correct peripheral glycemic imbalances. In this way, we could view the tongue as a sensory mechanism that is bidirectionally regulated and thus forms a bridge between available foodstuffs and the intricate hormonal balance in the animal itself.
Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells
Jin, Xiaodong; Liu, Yan; Ye, Fei; Liu, Xiongxiong; Furusawa, Yoshiya; Wu, Qingfeng; Li, Feifei; Zheng, Xiaogang; Dai, Zhongying; Li, Qiang
2014-01-01
Heavy-ion radiotherapy has a potential advantage over conventional radiotherapy due to improved dose distribution and a higher biological effectiveness in cancer therapy. However, there is a little information currently available on the cellular and molecular basis for heavy-ion irradiation-induced cell death. Autophagy, as a novel important target to improve anticancer therapy, has recently attracted considerable attention. In this study, the effect of autophagy induced by high linear energy transfer (LET) carbon ions was examined in various tumor cell lines. To our knowledge, our study is the first to reveal that high-LET carbon ions could induce autophagy in various tumor cells effectively, and the autophagic level in the irradiated cells increased in a dose- and LET-dependent manner. The ability of carbon ions to inhibit the activation of the PI3K/Akt pathway rose with increasing their LET. Moreover, modulation of autophagy in tumor cells could modify their sensitivity to high-LET radiation, and inhibiting autophagy accelerated apoptotic cell death, resulting in an increase in radiosensitivity. Our data imply that targeting autophagy might enhance the effectiveness of heavy-ion radiotherapy. PMID:24731006
A micro-sized bio-solar cell for self-sustaining power generation.
Lee, Hankeun; Choi, Seokheun
2015-01-21
Self-sustainable energy sources are essential for a wide array of wireless applications deployed in remote field locations. Due to their self-assembling and self-repairing properties, "biological solar (bio-solar) cells" are recently gaining attention for those applications. The bio-solar cell can continuously generate electricity from microbial photosynthetic and respiratory activities under day-night cycles. Despite the vast potential and promise of bio-solar cells, they, however, have not yet successfully been translated into commercial applications, as they possess persistent performance limitations and scale-up bottlenecks. Here, we report an entirely self-sustainable and scalable microliter-sized bio-solar cell with significant power enhancement by maximizing solar energy capture, bacterial attachment, and air bubble volume in well-controlled microchambers. The bio-solar cell has a ~300 μL single chamber defined by laser-machined poly(methyl methacrylate) (PMMA) substrates and it uses an air cathode to allow freely available oxygen to act as an electron acceptor. We generated a maximum power density of 0.9 mW m(-2) through photosynthetic reactions of cyanobacteria, Synechocystis sp. PCC 6803, which is the highest power density among all micro-sized bio-solar cells.
Computer model to simulate ionizing radiation effects correlates with experimental data
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni
Exposure to radiation from high energy protons and particles with ionizing properties is a major challenge for long-term space missions. The specific effect of such radiation on hematopoietic cells is still not fully understood. A number of experiments have been conducted on ground and in space. Those experiments on one hand, measure the extent of damage on blood markers. On the other hand, they intend to quantify the correlation between dose and energy from the radiation particles, with their ability to impair the hematopoietic stem and progenitor function. We present a computer model based on a neural network that intends to assess the relationship between dose, energy and number of hits on a particular cell, to the damage incurred to the human marrow cells. Calibration of the network is performed with the existing experimental data available in bibliography. Different sources of ionizing radiation at different doses (0-90 cGy) and along different patterns of a long-term exposure scenarios are simulated. Results are shown for a continuous variation of doses and are compared with specific data available in the literature. Some predictions are inferred for long-term scenarios of spaceflight, and the risk of jeopardizing a mission due to a major disfunction of the bone marrow is calculated. The method has proved successful in reproducing specific experimental data. We also discuss the significance and validity of the predicted ionizing radiation effects in situations such as long-term missions for a continuous range of dose.
Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.
Ashwini, Ravi; Vijayanand, S; Hemapriya, J
2017-08-01
Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.
Quantum Dots Investigated for Solar Cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.
2001-01-01
The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in their fluorescence (see the photograph).
Tolman, C J; Kanodia, S; Roberts, M F
1987-08-15
The energy metabolism of an anaerobic obligate thermophile, Clostridium thermocellum, has been examined as a function of incubation temperature using 31P NMR spectroscopy. Specifically investigated were the generation and availability of ATP as a function of temperature, activation energies for key processes in energy metabolism including formation of a pH gradient across the cell membrane, transport of key nutrients, and initial steps in glycolysis, and the existence of a membrane phase transition in the intact organism. Cells generate ATP via glycolysis at all temperatures examined; hence, limitation of the energy supply is not directly responsible for the lack of growth of this organism at low temperatures. Estimations of activation energies show a distinct hierarchy in the ATP-utilizing reactions examined. Conservation of ATP hydrolysis energy as delta pH has the lowest activation energy (less than or equal to 4 kcal/mol), two transport processes exhibit 10 kcal/mol activation energies, and early phosphorylation steps in glycolysis have significantly higher activation energies (approximately 25 kcal/mol). Neither the membrane-bound ATPase responsible for formation of the pH gradient nor the permease involved in phosphate transport shows evidence of a change in behavior around the phase transition temperature determined for extracted lipids of C. thermocellum. Line widths of inorganic phosphate do show a break in behavior around 35-40 degrees C. Possible explanations for this behavior are discussed.
NASA Technical Reports Server (NTRS)
Britton, Doris L.
2007-01-01
Rechargeable lithium ion (Li-ion) battery technology offers significant performance advantages over the nickel-based technologies used for energy storage for the majority of NASA's missions. Specifically Li-ion technology offers a threefold to fourfold increase in gravimetric and volumetric energy densities and produces voltages in excess of three times the value of typical nickel-based battery systems. As part of the Advanced Battery Technology program at NASA Glenn Research Center (GRC), a program on the evaluation of anodes for Li-ion cells and batteries was conducted. This study focused on the feasibility of using carbon nanotubes as anodes in Li-Ion cells. Candidate materials from multiple sources were evaluated. Their performance was compared to a standard anode comprised of mesocarbon microbeads. In all cases, the standard MCMB electrode exhibited superior performance. The details and results of the study are presented.
Li, Huixi; Matheu, Melanie P; Sun, Fionna; Wang, Lin; Sanford, Melissa T; Ning, Hongxiu; Banie, Lia; Lee, Yung-Chin; Xin, Zhongcheng; Guo, Yinglu; Lin, Guiting; Lue, Tom F
2016-01-01
Erectile dysfunction (ED) caused by pelvic injuries is a common complication of civil and battlefield trauma with multiple neurovascular factors involved, and no effective therapeutic approach is available. To test the effect and mechanisms of low-energy shock wave (LESW) therapy in a rat ED model induced by pelvic neurovascular injuries. Thirty-two male Sprague-Dawley rats injected with 5-ethynyl-2'-deoxyuridine (EdU) at newborn were divided into 4 groups: sham surgery (Sham), pelvic neurovascular injury by bilateral cavernous nerve injury and internal pudendal bundle injury (PVNI), PVNI treated with LESW at low energy (Low), and PVNI treated with LESW at high energy (High). After LESW treatment, rats underwent erectile function measurement and the tissues were harvested for histologic and molecular study. To examine the effect of LESW on Schwann cells, in vitro studies were conducted. The intracavernous pressure (ICP) measurement, histological examination, and Western blot (WB) were conducted. Cell cycle, Schwann cell activation-related markers were examined in in vitro experiments. LESW treatment improves erectile function in a rat model of pelvic neurovascular injury by leading to angiogenesis, tissue restoration, and nerve generation with more endogenous EdU(+) progenitor cells recruited to the damaged area and activation of Schwann cells. LESW facilitates more complete re-innervation of penile tissue with regeneration of neuronal nitric oxide synthase (nNOS)-positive nerves from the MPG to the penis. In vitro experiments demonstrated that LESW has a direct effect on Schwann cell proliferation. Schwann cell activation-related markers including p-Erk1/2 and p75 were upregulated after LESW treatment. LESW-induced endogenous progenitor cell recruitment and Schwann cell activation coincides with angiogenesis, tissue, and nerve generation in a rat model of pelvic neurovascular injuries. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Energy cost unit of street and park lighting system with solar technology for a more friendly city
NASA Astrophysics Data System (ADS)
Warman, E.; Nasution, F. S.; Fahmi, F.
2018-03-01
Street and park lighting system is part of a basic infrastructure need to be available in such a friendly city. Enough light will provide more comfort to citizens, especially at night since its function to illuminate roads and park environments around the covered area. The necessity to add more and more lighting around the city caused the rapid growth of the street and park lighting system while the power from PLN (national electricity company) is insufficient and the cost is getting higher. Therefore, it is necessary to consider other energy sources that are economical, environmentally friendly with good continuity. Indonesia, which located on the equator, have benefited from getting solar radiation throughout the year. This free solar radiation can be utilized as an energy source converted by solar cells to empower street and park lighting system. In this study, we planned the street and park lighting with solar technology as alternatives. It was found that for Kota Medan itself, an average solar radiation intensity of 3,454.17 Wh / m2 / day is available. By using prediction and projection method, it was calculated that the energy cost unit for this system was at Rp 3,455.19 per kWh. This cost was higher than normal energy cost unit but can answer the scarcity of energy availability for street and park lighting system
High efficiency radioisotope thermophotovoltaic prototype generator
NASA Technical Reports Server (NTRS)
Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard
1995-01-01
A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.
High efficiency radioisotope thermophotovoltaic prototype generator
NASA Astrophysics Data System (ADS)
Avery, James E.; Samaras, John E.; Fraas, Lewis M.; Ewell, Richard
1995-10-01
A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.
Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea
Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.
2016-01-01
The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628
NASA Astrophysics Data System (ADS)
Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.; Davis, S. J.; Delman, E.
2015-12-01
It has been a generational challenge to simultaneously meet the world's energy requirements, while remaining within the bounds of acceptable cost and environmental impact. To this end, substantial research has explored various energy futures on a global scale, leaving decision-makers and the public overwhelmed by information on energy options. In response, this interactive energy table was developed as a comprehensive resource through which users can explore the availability, scalability, and growth potentials of all energy technologies currently in use or development. Extensive research from peer-reviewed papers and reports was compiled and summarized, detailing technology costs, technical considerations, imminent breakthroughs, and obstacles to integration, as well as political, social, and environmental considerations. Energy technologies fall within categories of coal, oil, natural gas, nuclear, solar, wind, hydropower, ocean, geothermal and biomass. In addition to 360 expandable cells of cited data, the interactive table also features educational windows with background information on each energy technology. The table seeks not to advocate for specific energy futures, but to succinctly and accurately centralize peer-reviewed research and information in an interactive, accessible resource. With this tool, decision-makers, researchers and the public alike can explore various combinations of energy technologies and their quantitative and qualitative attributes that can satisfy the world's total primary energy supply (TPES) while making progress towards a near zero carbon future.
Primary energy: Present status and future perspectives
NASA Astrophysics Data System (ADS)
Thielheim, K. O.
A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.
Theirrattanakul, Sirichai; Prelas, Mark
2017-09-01
Nuclear batteries based on silicon carbide betavoltaic cells have been studied extensively in the literature. This paper describes an analysis of design parameters, which can be applied to a variety of materials, but is specific to silicon carbide. In order to optimize the interface between a beta source and silicon carbide p-n junction, it is important to account for the specific isotope, angular distribution of the beta particles from the source, the energy distribution of the source as well as the geometrical aspects of the interface between the source and the transducer. In this work, both the angular distribution and energy distribution of the beta particles are modeled using a thin planar beta source (e.g., H-3, Ni-63, S-35, Pm-147, Sr-90, and Y-90) with GEANT4. Previous studies of betavoltaics with various source isotopes have shown that Monte Carlo based codes such as MCNPX, GEANT4 and Penelope generate similar results. GEANT4 is chosen because it has important strengths for the treatment of electron energies below one keV and it is widely available. The model demonstrates the effects of angular distribution, the maximum energy of the beta particle and energy distribution of the beta source on the betavoltaic and it is useful in determining the spatial profile of the power deposition in the cell. Copyright © 2017. Published by Elsevier Ltd.
Dionet, Claude; Müller-Barthélémy, Melanie; Marceau, Geoffroy; Denis, Jean-Marc; Averbeck, Dietrich; Gueulette, John; Sapin, Vincent; Pereira, Bruno; Tchirkov, Andrei; Chautard, Emmanuel; Verrelle, Pierre
2016-09-01
To analyze the dose rate influence in hyper-radiosensitivity (HRS) of human melanoma cells to very low doses of fast neutrons and to compare to the behaviour of normal human skin fibroblasts. We explored different neutron dose rates as well as possible implication of DNA double-strand breaks (DSB), apoptosis, and energy-provider adenosine-triphosphate (ATP) levels during HRS. HRS in melanoma cells appears only at a very low dose rate (VLDR), while a high dose rate (HDR) induces an initial cell-radioresistance (ICRR). HRS does not seem to be due either to DSB or to apoptosis. Both phenomena (HRS and ICRR) appear to be related to ATP availability for triggering cell repair. Fibroblast survival after neutron irradiation is also dose rate-dependent but without HRS. Melanoma cells or fibroblasts exert their own survival behaviour at very low doses of neutrons, suggesting that in some cases there is a differential between cancer and normal cells radiation responses. Only the survival of fibroblasts at HDR fits the linear no-threshold model. This new insight into human cell responses to very low doses of neutrons, concerns natural radiations, surroundings of accelerators, proton-therapy devices, flights at high altitude. Furthermore, ATP inhibitors could increase HRS during high-linear energy transfer (high-LET) irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovleva, Marina
2012-12-31
FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety,more » cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.« less
Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller
NASA Astrophysics Data System (ADS)
Margalef, Pere; Samuelsen, Scott
A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the gases before the chiller inlet. The results show that no risk of cold end corrosion within the chiller heat exchanger exists. In addition, crystallization is not an issue during system operation. Accounting for the electricity and the cooling produced and disregarding the remaining thermal energy, the second strategy is preferred and yields an overall estimated efficiency of 71.7%.
Amplification of effects of photons on wound healing
NASA Astrophysics Data System (ADS)
Dyson, Mary
2009-02-01
Following the absorption of photons by cells either resident in or in transit through the skin at and around a wound site, healing can be modulated. This is due to the primary, secondary and tertiary cellular effects of the photons. The main primary effect of phototherapy is photon absorption. This initiates secondary effects within the cells that have absorbed the photons. Secondary effects are restricted to cells that have absorbed a suprathreshold quantity of photonic energy. Photon absorption can lead to an increase in ATP synthesis and the release of reactive oxygen species that can activate specific transcription factors resulting in changes in synthesis of the enzymes needed for cellular proliferation, migration, phagocytosis and protein synthesis, all essential for wound healing. The amount of ATP production is limited in each cell by the availability of ADP and phosphate. Spatial and temporal amplification of the effects of photon absorption increases the range and duration of phototherapy. It may be caused in part by tertiary effects initiated in cells that have not absorbed photons by regulatory proteins such as cytokines secreted by cells that have absorbed photons. Amplification may also be due to changes induced by photons in immune cells, stem cells and soluble protein mediators while in transit through the dermal capillaries. The peripheral location of these capillaries makes their contents readily accessible to photons. The longer the duration of treatment, the greater will be the number of cells in transit that can be affected by photons. Depth of effect may be increased by transduction of electromagnetic energy into mechanical energy. For a treatment to be clinically effective on wound healing, its duration and power may each be important. Components of the immune system, endocrine system and nervous system may also amplify the effects of photons on wound healing.
NASA Technical Reports Server (NTRS)
Green, Robert D.; Kissock, Barbara I.; Bennett, William R.
2010-01-01
This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.
Renewable Firming EnergyFarm Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepien, Tom; Collins, Mark
2017-01-26
The American Recovery and Reinvestment Act (ARRA) of 2009 (Recovery Act) provided the U.S. Department of Energy (DOE) with funds to modernize the electric power grid. One program under this initiative is the Smart Grid Demonstration program (SGDP). The SGDP mandate is to demonstrate how a suite of existing and emerging smart grid technologies can be innovatively applied and integrated to prove technical, operational, and business-model feasibility. Primus Power is a provider of low cost, long life and long duration energy storage systems. The Company’s flow batteries are shipping to US and international microgrid, utility, military, commercial and industrial customers.more » Primus Power’s EnergyPod® is a modular battery system for grid scale applications available in configurations ranging from 25 kW to more than 25 MW. The EnergyPod provides nameplate power for 5 hours. This long duration unlocks economic benefits on both sides of the electric meter. It allows commercial and industrial customers to shift low cost electricity purchased at night to offset afternoon electrical peaks to reduce utility demand charges. It also allows utilities to economically reduce power peaks and defer costly upgrades to distribution infrastructure. An EnergyPod contains one or more EnergyCells-a highly engineered flow battery core made from low cost, readily available materials. An EnergyCell includes a membrane-free stack of titanium electrodes located above a novel liquid electrolyte management system. This patented design enables reliable, low maintenance operation for decades. It is safe and robust, featuring non-flammable aqueous electrolyte, sophisticated fault detection and built-in secondary containment. Unlike Li Ion batteries, the EnergyCell is not susceptible to thermal runaway. This cooperative agreement project was started in Feb 2010. The objectives of the project are: 1. Trigger rapid adoption of grid storage systems in the US by demonstrating a low cost, robust and flexible EnergyFarm®. 2. Accelerate adoption of renewable energy and enhance grid stability by firming the output of wind & solar farms. 3. Demonstrate improved grid asset utilization by storing energy during off-peak periods for dispatch during local load peaks. 4. Establish an advanced battery manufacturing industry in the U.S. 5. Reduce CO2 emissions from utilities. This report summarizes the key milestones, data, results and lessons learned from the project. The desired goals and benefits of the cooperative agreement with the DOE have all been achieved. The project has contributed to reducing power costs, accelerating adoption of renewable energy resources, reducing greenhouse gas emissions and establishing advanced battery manufacturing in the U.S. The Recovery Act funds provided thru the DOE have been leveraged multiple times by additional private equity investment. Primus Power continues to ship low cost, long life and long duration EnergyPod® flow battery systems to utilities, commercial/industrial, microgrid and data center customers. After the conclusion of this project, Primus Power has modified the EnergyPod® design to optimize around energy performance. Primus Power has moved to a prefabricated enclosure instead of multiple EnergyCells in a container. This lowers capital and maintenance costs and can optimize site design. Utilities are starting to adopt energy storage for a variety of functions. The market will grow as the technology is proven and profitable applications expand.« less
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.
1992-01-01
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.
Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants.
Siqueira, João Antonio; Hardoim, Pablo; Ferreira, Paulo C G; Nunes-Nesi, Adriano; Hemerly, Adriana S
2018-06-19
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield. Copyright © 2018 Elsevier Ltd. All rights reserved.
A systemic evolutionary approach to cancer: Hepatocarcinogenesis as a paradigm.
Mazzocca, Antonio; Ferraro, Giovanni; Misciagna, Giovanni; Carr, Brian I
2016-08-01
The systemic evolutionary theory of cancer pathogenesis posits that cancer is generated by the de-emergence of the eukaryotic cell system and by the re-emergence of its archaea (genetic material and cytoplasm) and prokaryotic (mitochondria) subsystems with an uncoordinated behavior. This decreased coordination can be caused by a change in the organization of the eukaryote environment (mainly chronic inflammation), damage to mitochondrial DNA and/or to its membrane composition by many agents (e.g. viruses, chemicals, hydrogenated fatty acids in foods) or damage to nuclear DNA that controls mitochondrial energy production or metabolic pathways, including glycolysis. Here, we postulate that the two subsystems (the evolutionarily inherited archaea and the prokaryote) in a eukaryotic differentiated cell are well integrated, and produce the amount of clean energy that is constantly required to maintain the differentiated status. Conversely, when protracted injuries impair cell or tissue organization, the amount of energy necessary to maintain cell differentiation can be restricted, and this may cause gradual de-differentiation of the eukaryotic cell over time. In cirrhotic liver, for example, this process can be favored by reduced oxygen availability to the organ due to an altered vasculature and the fibrotic barrier caused by the disease. Thus, hepatocarcinogenesis is an ideal example to support our hypothesis. When cancer arises, the pre-eukaryote subsystems become predominant, as shown by the metabolic alterations of cancer cells (anaerobic glycolysis and glutamine utilization), and by their capacity for proliferation and invasion, resembling the primitive symbiotic components of the eukaryotic cell. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fuel cell commercialization: The key to a hydrogen economy
NASA Astrophysics Data System (ADS)
Zegers, P.
With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Mantovani, James; Dominquez, Jesus
2011-01-01
The purpose of this NIAC study is to identify those volatile and mineral resources that are available on asteroids, comets, moons and planets in the solar system, and investigate methods to transform these resources into forms of power that will expand the capabilities of future robotic and human exploration missions to explore planetary bodies beyond the Moon and will mitigate hazards from NEOs. The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for thermal energy, or fuel cells and chemical reactions for chemical energy and propulsion.
Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.
Armaroli, Nicola; Balzani, Vincenzo
2016-01-04
The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottlieb, P.; Robinson, J.H.; Smith, D.R.
The Nuclear Energy Center siting opportunities in the eleven western states have been systematically examined. The study area has been divided into 10-mile by 10-mile grid cells, and each cell has been evaluated in terms of overall suitability and site-related costs. Composite suitability consists of a weighted sum of ten important nuclear power plant siting issues; the particular weights used for this study were decided by a Delphi session of twenty individuals with energy facility siting expertise, with at least one representative from each of the eleven western states. Site-related costs consist of the additional expenditures required for seismic hardeningmore » (in seismically active areas), electric power transmission lines (for sites significantly far from load centers), and wet/dry cooling system costs (limited water availability and/or high summer temperatures).« less
Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions.
Nguyen, Thi Mong Diep
2017-01-01
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Analysis of fuel cell hybrid locomotives
NASA Astrophysics Data System (ADS)
Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.
Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive, that is, not a hybrid.
In-situ short circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2000-01-01
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
In-situ short-circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2003-04-15
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
NASA Technical Reports Server (NTRS)
Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.
2013-01-01
A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.
Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser
NASA Technical Reports Server (NTRS)
Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.
1992-01-01
A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.
Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong
2016-01-01
In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917
Ko, Y H; Verhoeven, H A; Lee, M J; Corbin, D J; Vogl, T J; Pedersen, P L
2012-02-01
The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells' energy metabolism, both its high glycolysis ("Warburg Effect") and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an "Energy Blocker", is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP's discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83-91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269-275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly.
Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management
NASA Astrophysics Data System (ADS)
Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.
2008-09-01
A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.
Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls
NASA Astrophysics Data System (ADS)
Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.
Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.
NASA Astrophysics Data System (ADS)
Choi, YongMan; Lin, M. C.; Liu, Meilin
The search for clean and renewable sources of energy represents one of the most vital challenges facing us today. Solid oxide fuel cells (SOFCs) are among the most promising technologies for a clean and secure energy future due to their high energy efficiency and excellent fuel flexibility (e.g., direct utilization of hydrocarbons or renewable fuels). To make SOFCs economically competitive, however, development of new materials for low-temperature operation is essential. Here we report our results on a computational study to achieve rational design of SOFC cathodes with fast oxygen reduction kinetics and rapid ionic transport. Results suggest that surface catalytic properties are strongly correlated with the bulk transport properties in several material systems with the formula of La 0.5Sr 0.5BO 2.75 (where B = Cr, Mn, Fe, or Co). The predictions seem to agree qualitatively with available experimental results on these materials. This computational screening technique may guide us to search for high-efficiency cathode materials for a new generation of SOFCs.
Puszynska, Anna M; O'Shea, Erin K
2017-01-01
The transcription factor RpaA is the master regulator of circadian transcription in cyanobacteria, driving genome-wide oscillations in mRNA abundance. Deletion of rpaA has no effect on viability in constant light conditions, but renders cells inviable in cycling conditions when light and dark periods alternate. We investigated the mechanisms underlying this viability defect, and demonstrate that the rpaA- strain cannot maintain appropriate energy status at night, does not accumulate carbon reserves during the day, and is defective in transcription of genes crucial for utilization of carbohydrate stores at night. Reconstruction of carbon utilization pathways combined with provision of an external carbon source restores energy charge and viability of the rpaA- strain in light/dark cycling conditions. Our observations highlight how a circadian output pathway controls and temporally coordinates essential pathways in carbon metabolism to maximize fitness of cells facing periodic energy limitations. DOI: http://dx.doi.org/10.7554/eLife.23210.001 PMID:28430105
Solid oxidized fuel cells seals leakage setup and testing
NASA Technical Reports Server (NTRS)
Bastrzyk, Marta B.
2004-01-01
As the world s reserves of fossil fuels are depleted, the U.S. Government, as well as other countries and private industries, is researching solutions for obtaining power, answers that would be more efficient and environmentally friendly. For a long time engineers have been trying to obtain the benefits of clean electric power without heavy batteries or pollution-producing engines. While some of the inventions proved to be effective (i.e. solar panels or windmills) their applications are limited due to dependency on the energy source (i.e. sun or wind). Currently, as energy concerns increase, research is being carried out on the development of a Solid Oxide Fuel Cell (SOFC). The United States government is taking a proactive role in expanding the technology through the Solid State Energy Conversion Alliance (SECA) Program, which is coordinated by the Department of Energy. into an electrical energy. This occurs by the means of natural tendency of oxygen and hydrogen to chemically react. While controlling the process, it is possible to harvest the energy given off by the reaction. SOFCs use currently available fossil fuels and convert a variety of those fuels with very high efficiency (about 40% more efficient than modem thermal power plants). At the same time they are almost entirely nonpolluting and due to their size they can be placed in remote areas. The main fields where the application of the fuel cells appears to be the most useful for are stationary energy sources, transportation, and military applications. structure and materials must be resolved. All the components must be operational in harsh environments including temperatures reaching 800 C and cyclic thermal- mechanical loading. Under these conditions, the main concern is the requirement for hermetic seals to: (1) prevent mixing of the fuel and oxidant within the stack, (2) prevent parasitic leakage of the fuel from the stack, (3) prevent contamination of the anode by air leaking into the stack, (4) electrically isolate the individual cells within the stack, and (5) mechanically bond the cell components. The sealing challenges are aggravated by the need to maintain hermetic boundaries between the different flow paths within the fuel cell throughout cycled operation. Within the timeframe of my tenure, the main objective is to assist in building a state-of-art test facility.
Development of a High Reliability Compact Air Independent PEMFC Power System
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Wynne, Bob
2013-01-01
Autonomous Underwater Vehicles (AUV's) have received increasing attention in recent years as military and commercial users look for means to maintain a mobile and persistent presence in the undersea world. Compact, neutrally buoyant power systems are needed for both small and large vehicles. Historically, batteries have been employed in these applications, but the energy density and therefore mission duration are limited with current battery technologies. Vehicles with stored energy requirements greater than approximately 10 kWh have an alternate means to get long duration power. High efficiency Proton Exchange Membrane (PEM) fuel cell systems utilizing pure hydrogen and oxygen reactants show the potential for an order of magnitude energy density improvement over batteries as long as the subsystems are compact. One key aspect to achieving a compact and energy dense system is the design of the fuel cell balance of plant (BOP). Recent fuel cell work, initially focused on NASA applications requiring high reliability, has developed systems that can meet target power and energy densities. Passive flow through systems using ejector driven reactant (EDR) circulation have been developed to provide high reactant flow and water management within the stack, with minimal parasitic losses compared to blowers. The ejectors and recirculation loops, along with valves and other BOP instrumentation, have been incorporated within the stack end plate. In addition, components for water management and reactant conditioning have been incorporated within the stack to further minimize the BOP. These BOP systems are thermally and functionally integrated into the stack hardware and fit into the small volumes required for AUV and future NASA applications to maximize the volume available for reactants. These integrated systems provide a compact solution for the fuel cell BOP and maximize the efficiency and reliability of the system. Designs have been developed for multiple applications ranging from less than 1 kWe to 70 kWe. These systems occupy a very small portion of the overall energy system, allowing most of the system volume to be used for reactants. The fuel cell systems have been optimized to use reactants efficiently with high stack efficiency and low parasitic losses. The resulting compact, highly efficient fuel cell system provides exceptional reactant utilization and energy density. Key design variables and supporting test data are presented. Future development activities are described.
Quasi-perpetual discharge behaviour in p-type Ge-air batteries.
Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung
2014-11-07
Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.
75 FR 11873 - Notice of Fuel Cell Pre-Solicitation Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Notice of Fuel Cell Pre... Cell Pre-Solicitation Workshop. SUMMARY: The Fuel Cell Technologies Program, under the DOE Office of Energy Efficiency and Renewable Energy, is inviting the fuel cell research community and other...
Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N
2003-08-01
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.
Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies
NASA Technical Reports Server (NTRS)
Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik
2014-01-01
The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.
Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation
NASA Astrophysics Data System (ADS)
Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.
2016-05-01
In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.
An energy balance concept for habitability.
Hoehler, Tori M
2007-12-01
Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.
A Framework for Assessing the Sustainability of Monitored Natural Attenuation
Chapelle, Francis H.; Novak, John; Parker, John; Campbell, Bruce G.; Widdowson, Mark A.
2007-01-01
The sustainability of monitored natural attenuation (MNA) over time depends upon (1) the presence of chemical/biochemical processes that transform wastes to innocuous byproducts, and (2) the availability of energy to drive these processes to completion. The presence or absence of contaminant-transforming chemical/biochemical processes can be determined by observing contaminant mass loss over time and space (mass balance). The energy available to drive these processes to completion can be assessed by measuring the pool of metabolizable organic carbon available in a system, and by tracing the flow of this energy to available electron acceptors (energy balance). For the special case of chlorinated ethenes in ground-water systems, for which a variety of contaminant-transforming biochemical processes exist, natural attenuation is sustainable when the pool of bioavailable organic carbon is large relative to the carbon flux needed to drive biodegradation to completion. These principles are illustrated by assessing the sustainability of MNA at a chlorinated ethene-contaminated site in Kings Bay, Georgia. Approximately 1,000 kilograms of perchloroethene (PCE) was released to a municipal landfill in the 1978-1980 timeframe, and the resulting plume of chlorinated ethenes migrated toward a nearby housing development. A numerical model, built using the sequential electron acceptor model code (SEAM3D), was used to quantify mass and energy balance in this system. The model considered the dissolution of non-aqueous phase liquid (NAPL) as the source of the PCE, and was designed to trace energy flow from dissolved organic carbon to available electron acceptors in the sequence oxygen > chlorinated ethenes > ferric iron > sulfate > carbon dioxide. The model was constrained by (1) comparing simulated and measured rates of ground-water flow, (2) reproducing the observed distribution of electron-accepting processes in the aquifer, (3) comparing observed and measured concentrations of chlorinated ethenes, and (4) reproducing the observed production and subsequent dilution of dissolved chloride, a final degradation product of chloroethene biodegradation. Simulations using the constrained model indicated that an average flux of 5 milligrams per liter per day of organic carbon (CH2O) per model cell (25 square meters) is required to support the short-term sustainability of MNA. Because this flux is small relative to the pool of renewable organic carbon (about 4.7 x 107 milligrams [mg] per model cell) present in the soil zone and non-renewable carbon (about 6.9 x 108 mg per model cell) in an organic-rich sediment layer overlying the aquifer, the long-term sustainability of MNA is similarly large. This study illustrates that the short- and long-term sustainability of MNA can be assessed by: 1. Estimating the time required for contaminants to dissolve/disperse/degrade under ambient hydrologic conditions (time of remediation). 2. Quantifying the organic carbon flux to the system needed to consume competing electron acceptors (oxygen) and direct electron flow toward chloroethene degradation (short-term sustainability). 3. Comparing the required flux of organic carbon to the pool of renewable and non-renewable organic carbon given the estimated time of remediation (long-term sustainability). These are general principles that can be used to assess the sustainability of MNA in any hydrologic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho
Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less
Regulatory mechanisms for specification and patterning of plant vascular tissues.
Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku
2010-01-01
Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.
The energetics of organic synthesis inside and outside the cell
Amend, Jan P.; LaRowe, Douglas E.; McCollom, Thomas M.; Shock, Everett L.
2013-01-01
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids. PMID:23754809
Carbon and nitrogen assimilation in deep subseafloor microbial cells.
Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio
2011-11-08
Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.
Carbon and nitrogen assimilation in deep subseafloor microbial cells
Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio
2011-01-01
Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with 13C- and/or 15N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of 13C and/or 15N and growth occurred in response to glucose, pyruvate, and amino acids (∼76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 × 10−18 mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds. PMID:21987801
Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I
2014-03-20
During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
German-Korean cooperation for erection and test of industrialized solar technologies
NASA Astrophysics Data System (ADS)
Pfeiffer, H.
1986-01-01
A combined small solar-wind power station and a solar-thermal experimental plant were built. The plants are designed to demonstrate the effective exploitation of solar energy and wind energy and enhanced availability achievable through combination of these two energy sources. A 14 kW wind energy converter and a 2.5 kW solar-cell generator were operated in parallel. The biaxial tracking system used on the solar generator leads to increased and constant generation of electricity throughout the day. A consumer control system switches the energy generators and the consumers in autonomous mode according to changing supply and demand. The solar powered air conditioning unit operates with an absorption type refrigerating unit, high-output flat collectors and an automatic control system. All design values are achieved on start-up of the plant.
Marshall, Stephen
2006-08-01
Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.
A photovoltaics module for incoming science, technology, engineering and mathematics undergraduates
NASA Astrophysics Data System (ADS)
Dark, Marta L.
2011-05-01
Photovoltaic-cell-based projects have been used to train eight incoming undergraduate women who were part of a residential summer programme at a women's college. A module on renewable energy and photovoltaic cells was developed in the physics department. The module's objectives were to introduce women in science, technology, engineering and mathematics (STEM) majors to physical phenomena, to develop quantitative literacy and communication skills, and to increase the students' interest in physics. The students investigated the performance of commercially available silicon semiconductors through experiments they designed, carried out and analysed. They fabricated and tested organic dye-based solar cells. This article describes the programme, the solar cell module, and presents some experimental results obtained by the students.
Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P
2014-10-10
Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Surface Meteorology and Solar Energy (SSE) Data Release 5.1
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W. (Principal Investigator)
The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].
The role of astrocytic glycogen in supporting the energetics of neuronal activity.
Dinuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico
2012-11-01
Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.
Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer
Bultman, Scott J.
2016-01-01
Despite the success of colonoscopy screening, colorectal cancer (CRC) remains one of the most common and deadly cancers, and CRC incidence is rising in some countries where screening is not routine and populations have recently switched from traditional diets to western diets. Diet and energy balance influence CRC by multiple mechanisms. They modulate the composition and function of gut microbiota, which have a prodigious metabolic capacity and can produce oncometabolites or tumor-suppressive metabolites depending, in part, on which dietary factors and digestive components are present in the GI tract. Gut microbiota also have a profound effect on immune cells in the lamina propria, which influences inflammation and subsequently CRC. Nutrient availability, which is an outcome of diet and energy balance, determines the abundance of certain energy metabolites that are essential co-factors for epigenetic enzymes and therefore impinges upon epigenetic regulation of gene expression. Aberrant epigenetic marks accumulate during CRC, and epimutations that are selected for drive tumorigenesis by causing transcriptome profiles to diverge from the cell of origin. In some instances, the above mechanisms are intertwined as exemplified by dietary fiber being metabolized by colonic bacteria into butyrate, which is both a short-chain fatty acid (SCFA) and a histone deacetylase (HDAC) inhibitor that epigenetically upregulates tumor-suppressor genes in CRC cells and anti-inflammatory genes in immune cells. PMID:27138454
Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E
2016-11-01
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S 0 ), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S 0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2016-01-01
ABSTRACT Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an “energy landscape” of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the “energy landscape.” C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems. PMID:27565613
Martin, Bronwen; Pearson, Michele; Brenneman, Randall; Golden, Erin; Keselman, Alex; Iyun, Titilola; Carlson, Olga D.; Egan, Josephine M.; Becker, Kevin G.; Wood, William; Prabhu, Vinayakumar; de Cabo, Rafael
2008-01-01
The level of dietary energy intake influences metabolism, reproductive function, the development of age-related diseases, and even cognitive behavior. Because males and females typically play different roles in the acquisition and allocation of energy resources, we reasoned that dietary energy intake might differentially affect the brains of males and females at the molecular level. To test this hypothesis, we performed a gene array analysis of the hippocampus in male and female rats that had been maintained for 6 months on either ad libitum (control), 20% caloric restriction (CR), 40% CR, intermittent fasting (IF) or high fat/high glucose (HFG) diets. These diets resulted in expected changes in body weight, and circulating levels of glucose, insulin and leptin. However, the CR diets significantly increased the size of the hippocampus of females, but not males. Multiple genes were regulated coherently in response to energy restriction diets in females, but not in males. Functional physiological pathway analyses showed that the 20% CR diet down-regulated genes involved in glycolysis and mitochondrial ATP production in males, whereas these metabolic pathways were up-regulated in females. The 40% CR diet up-regulated genes involved in glycolysis, protein deacetylation, PGC-1α and mTor pathways in both sexes. IF down-regulated many genes in males including those involved in protein degradation and apoptosis, but up-regulated many genes in females including those involved in cellular energy metabolism, cell cycle regulation and protein deacetylation. Genes involved in energy metabolism, oxidative stress responses and cell death were affected by the HFG diet in both males and females. The gender-specific molecular genetic responses of hippocampal cells to variations in dietary energy intake identified in this study may mediate differential behavioral responses of males and females to differences in energy availability. PMID:18545695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Moskowitz, P.D.
1981-07-01
Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less
DU, Jianping
2016-01-01
Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.
Effects of Growth Rate and Limiting Substrate on Glucose Metabolism in Escherichia coli1
Wright, D. N.; Lockhart, W. R.
1965-01-01
Wright, D. N. (Iowa State University, Ames), and W. R. Lockhart. Effects of growth rate and limiting substrate on glucose metabolism in Escherichia coli. J. Bacteriol. 89:1082–1085. 1965.—Escherichia coli was grown in continuous culture at various rates in a defined medium with either glucose of (NH4)2SO4 as the rate-limiting substrate. Cellular content of polysaccharide (“glycogen”) is greater in cells grown under nitrogen limitation with glucose available in excess, and is greater in rapidly grown than in slowly grown cells. The ability of cells to carry on endogenous respiration, as measured by tetrazolium reduction, can be correlated with their glycogen content. In carbon-limited cultures, the proportion of substrate glucose diverted to glycogen production is least for cells grown slowly, which may reflect greater energy requirements for cell maintenance in such cultures. The activity of glucose-6-phosphate dehydrogenase (indicating function of a C-1 preferential pathway for glucose degradation) is greater in rapidly grown cells, confirming earlier observations in batch cultures. Activity of this enzyme is also greater in nitrogen-limited than in carbon-limited cells, suggesting that there may be catabolic repression of the Embden-Meyerhoff pathway when glucose is available in excess. PMID:14276099
Advanced Nanomaterials for High-Efficiency Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Junhong
2013-11-29
Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enoughmore » to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these nanomaterials in solar cells (both as photoanodes and counter electrodes), gas sensors, and energy storage devices. This research is potentially transformative since the availability of affordable hybrid nanostructures and their fundamental properties will enable various innovative applications of the multifunctional hybrid nanostructures and thus will accelerate new discoveries and inventions in nanoscience and nanotechnology.« less
Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN
Fristedt, Rikard; Dinc, Emine
2016-01-01
Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747
Song, Heli; Liu, Qingyun; Xie, Yongshu
2018-02-15
As a promising low-cost solar energy conversion technique, dye-sensitized solar cells have undergone spectacular development since 1991. For practical applications, improvement of power conversion efficiency has always been one of the major research topics. Porphyrins are outstanding sensitizers endowed with strong sunlight harvesting ability in the visible region and multiple reaction sites available for functionalization. However, judicious molecular design in consideration of light-harvest, energy levels, operational dynamics, adsorption geometry and suppression of back reactions is specifically required for achieving excellent photovoltaic performance. This feature article highlights some of the recently developed porphyrin sensitizers, especially focusing on the systematic dye structure optimization approach in combination with coadsorption and cosensitization methods in pursuing higher efficiencies. Herein, we expect to provide more insights into the structure-performance correlation and molecular engineering strategies in a stepwise manner.
Hypothalamic mTOR signaling regulates food intake.
Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J
2006-05-12
The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.
Shabala, Sergey; Shabala, Lana; Barcelo, Juan; Poschenrieder, Charlotte
2014-10-01
This review provides a comprehensive assessment of a previously unexplored topic: elucidating the role that plasma- and organelle-based membrane transporters play in plant-adaptive responses to flooding. We show that energy availability and metabolic shifts under hypoxia and anoxia are critical in regulating membrane-transport activity. We illustrate the high tissue and time dependence of this regulation, reveal the molecular identity of transporters involved and discuss the modes of their regulation. We show that both reduced oxygen availability and accumulation of transition metals in flooded roots result in a reduction in the cytosolic K(+) pool, ultimately determining the cell's fate and transition to programmed cell death (PCD). This process can be strongly affected by hypoxia-induced changes in the amino acid pool profile and, specifically, ϒ-amino butyric acid (GABA) accumulation. It is suggested that GABA plays an important regulatory role, allowing plants to proceed with H2 O2 signalling to activate a cascade of genes that mediate plant adaptation to flooding while at the same time, preventing the cell from entering a 'suicide program'. We conclude that progress in crop breeding for flooding tolerance can only be achieved by pyramiding the numerous physiological traits that confer efficient energy maintenance, cytosolic ion homeostasis, and reactive oxygen species (ROS) control and detoxification. © 2014 John Wiley & Sons Ltd.
Geobiochemistry: Placing Biochemistry in Its Geochemical Context
NASA Astrophysics Data System (ADS)
Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.
2014-12-01
Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.
Sodium-ion batteries: present and future.
Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
2017-06-19
Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.
A small portable proton exchange membrane fuel cell and hydrogen generator for medical applications.
Adlhart, O J; Rohonyi, P; Modroukas, D; Driller, J
1997-01-01
Small, lightweight power sources for total artificial hearts (TAH), left ventricular assist devices (LVAD), and other medical products are under development. The new power source will provide 2 to 3 times the capacity of conventional batteries. The implications of this new power source are profound. For example, for the Heartmate LVAD, 5 to 8 hours of operation are obtained with 3 lb of lead acid batteries (Personal Communication Mr. Craig Sherman, Thermo Cardiosystems, Inc TCI 11/29/96). With the same weight, as much as 14 hours of operation appear achievable with the proton exchange membrane (PEM) fuel cell power source. Energy densities near 135 watt-hour/L are achievable. These values significantly exceed those of most conventional and advanced primary and secondary batteries. The improvement is mission dependent and even applies for the short deployment cited above. The comparison to batteries becomes even more favorable if the mission length is increased. The higher capacity requires only replacement of lightweight hydride cartridges and logistically available water. Therefore, when one spare 50 L hydride cartridge weighing 115 g is added to the reactant supply the energy density of the total system increases to 230 watt-hour/kg. This new power source is comprised of a hydrogen fueled, air-breathing PEM fuel cell and a miniature hydrogen generator (US Patent No 5,514,353). The fuel cell is of novel construction and differs from conventional bipolar PEM fuel cells by the arrangement of cells on a single sheet of ion-exchange membrane. The construction avoids the weight and volume penalty of conventional bipolar stacks. The hydrogen consumed by the fuel cell is generated load-responsively in the miniature hydrogen generator, by reacting calcium hydride with water, forming in the process hydrogen and lime. The generator is cartridge rechargeable and available in capacities providing up to several hundred watt-hours of electric power.
Neutral beamline with improved ion energy recovery
Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.
1984-01-01
A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.
Fuel cells - a new contributor to stationary power
NASA Astrophysics Data System (ADS)
Dufour, Angelo U.
Stationary power generation historically started as distributed generation near the user, with the configuration of a very open market, where a lot of small competing utilities were offering electricity to the customers. At a second time it became a `monopolistic' business because of technical reasons. Big steam turbines and electric generators, allowing better efficiencies, were more conveniently installed in very large power plants, necessarily located in sites far away from where the power was needed, and the transmission losses were bounded by AC high voltage technology. The Governments were, therefore, trying to balance the power of monopolies, that were limiting the economical development of the countries, by strengthening the concept of electrical energy price public control and, alternatively, by establishing rules to allow a free flow of electricity from one region to the other, or taking direct control through ownership of big and small utilities. The most effective way of making the electric energy system competitive has proved to be the opening of a partial competition in the generation field by forcing the utilities to compare the cost of their energy, produced with new centralised plants, to the price of the available energy, coming from combined heat and power dispersed generators. In fact, with reference to this cost, all the peculiar features of large central stations and dispersed generators were taken into account, like the widespread use of natural gas, the investment risk reduction with single smaller increments of capacity, the transmission and distribution siting difficulties and high costs, the improved system reliability, and, finally, the high quality electric power. Fuel Cells are a recently become available technology for distributed electrical energy production, because they share the main typical aspects, relevant for a distributed power system, like compatibility with other modular subsystem packages, fully automation possibility, very low noise and emissions release, high efficiency both directly as fuel cell (38-55%) and in integrated cycles (50-65% with fossil fuels), delivered `power quality' and reliability. Focus is principally kept on the impact fuel cells could have on electrical grid management and control, for their voltage support and active filtering capabilities, for their response speed and for quick load connection capabilities. The cost for the moment is high, but some technology, like phosphoric acid, is in the market entry phase. Cost analysis for the main subsystems, that is fuel cell stacks, fuel processors, and power electronics and controls, indicates that the prices will be driven down to the required levels both through technology refinements and increase of production volumes. Anyhow, a new phase is beginning, where centralised power plants are facing the competition of distributed generators, like fuel cells, small gas turbines and internal combustion engines, and of other renewable energy generators, like photovoltaics and wind generators. They all are modular, dispersed throughout the utility distribution system to provide power closer to end user, and are not in competition with existing transmission and distribution systems, but they improve the systems' utilisation. The plants will initially be directly owned and operated by gas or energy distributors, and the customers could easily supersede their mistrusts by only paying for the energy they are really utilising, leaving away the worries about the investment costs and the risks of a bad operation. An `intelligent grid', delivering high quality electrical energy to millions of electrical household consumers, which, a second later, become non-polluting energy producers, appears to be giving a very relevant contribution to `the town of the future', envisaged also by the European Commission, where the quality of our lives is mainly depending on the quality of the energy.
Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew
2017-11-22
Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.
da Costa, Milene R; Pizzatti, Luciana; Lindoso, Rafael S; Sant'Anna, Julliana Ferreira; DuRocher, Barbara; Abdelhay, Eliana; Vieyra, Adalberto
2014-06-01
Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.
1984-01-01
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Bennett, William R.
2010-01-01
NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.
Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.
Xie, Guanhua; Swiderska-Syn, Marzena; Jewell, Mark L; Machado, Mariana Verdelho; Michelotti, Gregory A; Premont, Richard T; Diehl, Anna Mae
2017-04-20
Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.
Fuel cell energy storage for Space Station enhancement
NASA Technical Reports Server (NTRS)
Stedman, J. K.
1990-01-01
Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na+ entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na+ entry efficiency of somatic AP. Activating inward Ca2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca2+-activated outward K+ current in dendrites, however, decreases Na+ entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na+ influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption. PMID:28919852
Dendritic Properties Control Energy Efficiency of Action Potentials in Cortical Pyramidal Cells.
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin
2017-01-01
Neural computation is performed by transforming input signals into sequences of action potentials (APs), which is metabolically expensive and limited by the energy available to the brain. The metabolic efficiency of single AP has important consequences for the computational power of the cell, which is determined by its biophysical properties and morphologies. Here we adopt biophysically-based two-compartment models to investigate how dendrites affect energy efficiency of APs in cortical pyramidal neurons. We measure the Na + entry during the spike and examine how it is efficiently used for generating AP depolarization. We show that increasing the proportion of dendritic area or coupling conductance between two chambers decreases Na + entry efficiency of somatic AP. Activating inward Ca 2+ current in dendrites results in dendritic spike, which increases AP efficiency. Activating Ca 2+ -activated outward K + current in dendrites, however, decreases Na + entry efficiency. We demonstrate that the active and passive dendrites take effects by altering the overlap between Na + influx and internal current flowing from soma to dendrite. We explain a fundamental link between dendritic properties and AP efficiency, which is essential to interpret how neural computation consumes metabolic energy and how biophysics and morphologies contribute to such consumption.
Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion
NASA Technical Reports Server (NTRS)
Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.;
2012-01-01
Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.
NASA Astrophysics Data System (ADS)
Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe
This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.
Analytical determination of critical crack size in solar cells
NASA Technical Reports Server (NTRS)
Chen, C. P.
1988-01-01
Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.
Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma
Inman, Denise M.; Harun-Or-Rashid, Mohammad
2017-01-01
Axons can be several orders of magnitude longer than neural somas, presenting logistical difficulties in cargo trafficking and structural maintenance. Keeping the axon compartment well supplied with energy also presents a considerable challenge; even seemingly subtle modifications of metabolism can result in functional deficits and degeneration. Axons require a great deal of energy, up to 70% of all energy used by a neuron, just to maintain the resting membrane potential. Axonal energy, in the form of ATP, is generated primarily through oxidative phosphorylation in the mitochondria. In addition, glial cells contribute metabolic intermediates to axons at moments of high activity or according to need. Recent evidence suggests energy disruption is an early contributor to pathology in a wide variety of neurodegenerative disorders characterized by axonopathy. However, the degree to which the energy disruption is intrinsic to the axon vs. associated glia is not clear. This paper will review the role of energy availability and utilization in axon degeneration in glaucoma, a chronic axonopathy of the retinal projection. PMID:28424571
The use of pyro-polymeric catalysts and a new cylindrical cell design in oxygen-aluminum generators
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhuk, A. Z.; Kleymenov, B. V.; Oudaltsov, V. G.
2018-01-01
The increase in energy consumption, the economic crisis, the development of certain areas of engineering and energy, as well as the related deterioration of the environmental situation, require the development of new electrochemical current sources with high specific characteristics. In the field of creating air-hydrogen fuel cells, the problems of safety and mobile storage of hydrogen have not been completely solved, stagnation in the development of lithium-ion, lithium-air and lithium-sulfur batteries has been outlined. All this requires searching for new technological solutions, ways to increase the energy and resource characteristics of electrochemical current sources (ECS), reducing their cost [1-2]. The use of metals (aluminum, zinc, magnesium) as an energy carrier is due to their high energy intensity (in combination with the lack of transport, storage and on-board storage problems) of the relatively low cost of metals, their availability, storage safety and the absence of harmful emissions when used. As in the chemical and electrochemical use of metals, safe products (oxides, hydroxides) are formed, which are reduced to metals within the framework of traditional production technologies. Thus, a closed cycle of energy use is organized. The task of this paper is to evaluate the possibility of reducing the cost and increasing the specific power of ECS using oxygen depolarization. The goal is achieved by using non-platinum catalysts and optimizing the design of the current source.
Liu, Fei; Xu, Meiying; Chen, Xingjuan; Yang, Yonggang; Wang, Haiji; Sun, Guoping
2015-10-06
Direct visualization evidence is important for understanding the microbial degradation mechanisms. To track the microbial degradation pathways of azo dyes with different polar characterizations, sensors based on the fluorescence resonance energy transfer (FRET) from 1,8-naphthalimide to azo dyes were synthesized, in which the quenched fluorescence will recover when the azo bond was cleaved. In living cells, the sensor-tracking experiment showed that the low polarity and hydrophobic azo dye can be taken up into the cells and reduced inside the cells, whereas the high polarity and hydrophilic azo dye can be reduced only outside the cells because of the selective permeability of the cell membranes. These results indicated that there were two different bacterial degradation pathways available for different polarity azo dyes. To our knowledge, no fluorescent sensor has yet been designed for illuminating the microbial degradation mechanisms of organic pollutants with different characteristics.
Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.
2014-01-01
Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499
Hot topics in alkaline exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Serov, Alexey; Zenyuk, Iryna V.; Arges, Christopher G.; Chatenet, Marian
2018-01-01
The tremendous progress from the first discovery of fuel cell principles by Sir William Robert Grove in 1839 [1] and independent observation of electricity generated in electrochemical reaction of hydrogen and air by a Swiss scientist Christian F. Shoenbein [2] to the recent breakthroughs in the fuel cell field resulted in the appearance of this clean energy technology around us. Indeed, fuel cell technology undoubtedly has entered into our life with the first introduction of Toyota Mirai Fuel Cell Vehicle (FCV) by Toyota Motor Co. in December of 2014 [3,4]. This FCV is commercially available and can be purchased in several countries. However, its sticker price of 57,500 substantially limits the number of customers that can purchase it. There are numerous factors that contribute to the high cost of fuel cell stack, however the price of platinum and platinum alloys is the main contributor [5].
Rechargeable alkaline manganese dioxide cells. A test report
NASA Astrophysics Data System (ADS)
Farrington, Michael D.
The rechargeable alkaline MnO 2 (RAM) system has now been commercially available for several years. The Canadian Department of National Defence is interested in determining if the low cost RAM system is technically capable of replacing existing cells and batteries now in use. A preliminary study identified sufficient candidate batteries in use within the Department whose performance requirements compared favourably with RAM manufacturers' claims. Further study was warranted. Replacement cost savings could be significant. A study is now in progress that is aimed at determining how well the RAM technology actually performs. This paper presents test results that illustrate how RAM cells compare to primary alkaline cells and nickel/cadmium. The majority of the work is focused on the 'AA' size products from Rayovac and Pure Energy: tests were also conducted on Rayovac 'D' cells.
Beyond Fossil Fuels: Options and Challenges
NASA Astrophysics Data System (ADS)
Thompson, Levi T.
2007-05-01
Securing our nationâÂÂs energy supply is arguably the most important challenge we face. The source and amount of energy that is available impacts nearly every aspect of our lives including our mobility, health and welfare. Presently, the U.S. depends heavily on foreign energy resources. For example, in 2006, nearly 60 percent of the crude oil consumed in the U.S. was imported; approximately one-quarter of this oil comes from the Persian Gulf. With growing demands from emerging economies, declining environmental quality and potential for global conflict, there is a pressing need to develop a more sustainable energy strategy. This presentation will review options for a sustainable energy economy including the use of hydrogen and fuel cells, and describe some of the key challenges To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.A1.2
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
Advanced Lithium-Ion Cell Development for NASA's Constellation Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.
2008-01-01
The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.
Minireview: Metabolism of Female Reproduction: Regulatory Mechanisms and Clinical Implications
Babayev, Elnur; Collins, Stephen C.; Nemeth, Gabor; Horvath, Tamas L.
2014-01-01
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility. PMID:24678733
Minireview: Metabolism of female reproduction: regulatory mechanisms and clinical implications.
Seli, Emre; Babayev, Elnur; Collins, Stephen C; Nemeth, Gabor; Horvath, Tamas L
2014-06-01
Female fertility is highly dependent on successful regulation of energy metabolism. Central processes in the hypothalamus monitor the metabolic state of the organism and, together with metabolic hormones, drive the peripheral availability of energy for cellular functions. In the ovary, the oocyte and neighboring somatic cells of the follicle work in unison to achieve successful metabolism of carbohydrates, amino acids, and lipids. Metabolic disturbances such as anorexia nervosa, obesity, and diabetes mellitus have clinically important consequences on human reproduction. In this article, we review the metabolic determinants of female reproduction and their role in infertility.
Predicting the Dynamics of Protein Abundance
Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael
2014-01-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/. PMID:24532840
Predicting the dynamics of protein abundance.
Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael
2014-05-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/.
Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics
NASA Astrophysics Data System (ADS)
Zhong, Qiwen
The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.
Center for Efficiency in Sustainable Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Martin
The main goal of the Center for Efficiency in Sustainable Energy Systems is to produce a methodology that evaluates a variety of energy systems. Task I. Improved Energy Efficiency for Industrial Processes: This task, completed in partnership with area manufacturers, analyzes the operation of complex manufacturing facilities to provide flexibilities that allow them to improve active-mode power efficiency, lower standby-mode power consumption, and use low cost energy resources to control energy costs in meeting their economic incentives; (2) Identify devices for the efficient transformation of instantaneous or continuous power to different devices and sections of industrial plants; and (3) usemore » these manufacturing sites to demonstrate and validate general principles of power management. Task II. Analysis of a solid oxide fuel cell operating on landfill gas: This task consists of: (1) analysis of a typical landfill gas; (2) establishment of a comprehensive design of the fuel cell system (including the SOFC stack and BOP), including durability analysis; (3) development of suitable reforming methods and catalysts that are tailored to the specific SOFC system concept; and (4) SOFC stack fabrication with testing to demonstrate the salient operational characteristics of the stack, including an analysis of the overall energy conversion efficiency of the system. Task III. Demonstration of an urban wind turbine system: This task consists of (1) design and construction of two side-by-side wind turbine systems on the YSU campus, integrated through power control systems with grid power; (2) preliminary testing of aerodynamic control effectors (provided by a small business partner) to demonstrate improved power control, and evaluation of the system performance, including economic estimates of viability in an urban environment; and (3) computational analysis of the wind turbine system as an enabling activity for development of smart rotor blades that contain integrated sensor/actuator/controller modules to enhance energy capture and reduce aerodynamic loading and noise by way of virtual aerodynamic shaping. Accomplishments: Task I. Improved Energy Efficiency for Industrial Processes: We organized an energy management training session held on February 22, 2011, which was advertised through a regional manufacturing association to provide wide-ranging notification. Over two dozen companies were represented a the seminar, ranging from heavy manufacturing businesses with $5,000,000 per year energy expenses, to small, light manufacturing facilities. Task 2. Landfill Fuel Cell Power Generation Solid Oxide Fuel Cells (SOFCs) were constructed and evaluated as a means of obtaining electrical energy from landfill gas. Analysis of landfill gas. Attempts at collecting gas samples at the landfill and evaluating them on campus were still unsuccessful. Even a Teflon® sample bag would lose its H2S content. Evaluation of Gas Clean-up We consider this a confirmation of the CO2 effect on the solubility of H2S in water making much less sulfide available for the photocatalyst. It also means that another method should be employed to clean up landfill gas. Nonetheless, composition of impurities in landfill gas was reduced sufficiently to allow successful operation of the test fuel cell. Comparison to a PEM fuel cell system. If a PEMFC were to be operated with landfill gas as the fuel, the gas would have to be treated for sulfur removal, and then processed in a reformer large enough to drive the equilibrium far toward the products, so that negligible CO would flow into the fuel cell. Analysis of a fuel cell running on landfill gas. Using a Gow-Mac gas chromatograph with a thermal conductivity detector, unambiguous determination of CO can be made, at least as a primary constituent Task 3: Task 3 Plasma Controlled Turbine Blades Wind Turbine Selection. After carefully reviewing the various model available in the market the team selected the ARE 110 (2.5kW). The ARE 110 provides a very long life with little maintenance due to their relatively low rotational speeds (low RPM). The turbines large swept area (10.2ms2/110sq.ft), high-efficiency blades, purpose built alternator, and optimized power electronics ensure maximum energy capture from a wide range of wind speeds. Two wind turbines were installed side-by-side at the Melnick Hall site to compare their performance. Evaluate and Optimize Aerodynamically Enhanced Turbine Blades Due to delays in the installation of the wind turbines, no actual data was obtained within the contract period. At this time, the turbines are installed and operational at YSU with standard blades. We are in contact with Orbital Research and in discussion as to how best the required data can be obtained.« less
Review on α-Fe2O3 based negative electrode for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Arul, N. Sabari
2016-09-01
Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.
Mumtaz, Sidra; Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.
Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015
Glycolysis-respiration relationships in a neuroblastoma cell line.
Swerdlow, Russell H; E, Lezi; Aires, Daniel; Lu, Jianghua
2013-04-01
Although some reciprocal glycolysis-respiration relationships are well recognized, the relationship between reduced glycolysis flux and mitochondrial respiration has not been critically characterized. We concomitantly measured the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of SH-SY5Y neuroblastoma cells under free and restricted glycolysis flux conditions. Under conditions of fixed energy demand ECAR and OCR values showed a reciprocal relationship. In addition to observing an expected Crabtree effect in which increasing glucose availability raised the ECAR and reduced the OCR, a novel reciprocal relationship was documented in which reducing the ECAR via glucose deprivation or glycolysis inhibition increased the OCR. Substituting galactose for glucose, which reduces net glycolysis ATP yield without blocking glycolysis flux, similarly reduced the ECAR and increased the OCR. We further determined how reduced ECAR conditions affect proteins that associate with energy sensing and energy response pathways. ERK phosphorylation, SIRT1, and HIF1a decreased while AKT, p38, and AMPK phosphorylation increased. These data document a novel intracellular glycolysis-respiration effect in which restricting glycolysis flux increases mitochondrial respiration. Since this effect can be used to manipulate cell bioenergetic infrastructures, this particular glycolysis-respiration effect can practically inform the development of new mitochondrial medicine approaches. Copyright © 2012 Elsevier B.V. All rights reserved.
Performance Characterization of High Energy Commercial Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Schneidegger, Brianne T.
2010-01-01
The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.
Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M
2002-01-01
The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays.
Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar
2014-01-01
Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926
Liu, Hongyun; Zhao, Ke; Liu, Jianxin
2013-01-01
As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10-20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.
Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.
Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J
2015-06-24
Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C
2015-09-16
Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.
Interplay between microorganisms and geochemistry in geological carbon storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.
Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less
A synergetic use of hydrogen and fuel cells in human spaceflight power systems
NASA Astrophysics Data System (ADS)
Belz, S.
2016-04-01
Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.
Interplay between microorganisms and geochemistry in geological carbon storage
Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...
2016-02-28
Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less
Silva, José Rogério A; Bishai, William R; Govender, Thavendran; Lamichhane, Gyanu; Maguire, Glenn E M; Kruger, Hendrik G; Lameira, Jeronimo; Alves, Cláudio N
2016-01-01
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.
The role of astrocytic glycogen in supporting the energetics of neuronal activity
DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico
2014-01-01
Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that ground a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism. PMID:22614927
75 FR 2860 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee...
Light energy conservation processes in Halobacterium halobium cells
NASA Technical Reports Server (NTRS)
Bogomolni, R. A.
1977-01-01
Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.
Potential for a Danish power system using wind energy generators, solar cells and storage
NASA Astrophysics Data System (ADS)
Blegaa, S.; Christiansen, G.
1981-10-01
Performance characteristics of a combined solar/wind power system equipped with storage and an unspecified back-up power source are studied on the basis of meteorological data in Denmark from 1959-1972. A model for annual production and storage from wind/solar installations is presented, assuming 12% efficiency for the solar cells and various power coefficients of the windmills, in addition to long and short-term storage. Noting that no correlation between wind and solar energy availability was found, and a constant ratio of 60% wind/40% solar was determined to be the optimum mix for large scale power production without taking into consideration the variations among years. It is concluded that 80-90% of the total Danish electrical load can be covered by solar/wind systems, and 100% may be possible with the addition of pumped hydroelectric storage.
Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham
Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less
Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries
Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham; ...
2018-06-16
Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less
Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana
2017-06-15
Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Kasick, Michael P.
2004-01-01
Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between them, to determine the cause of the poor yields. As a student of electrical engineering with some material science background, my role in this research is to develop techniques for analyzing the electrical characteristics of the CuInS2 cells. My first task was to design a shadow mask to be used to place molybdenum contacts under a layer of CuInS;! in order to analyze the contact resistance between the materials. In addition, I have also analyzed evaporated aluminum top contacts and have tested various methods of increasing their thicknesses in order to decrease series resistance. More recently I have worked with other members of the research group in reviving a vertical cold-wall reactor for experimentation with CuInS2 quantum dots. As part of that project, I have improved the design for a variable frequency and pulse width square wave generator to be used in driving the precursor injection process. My task throughout the remainder of my tenure is to continue to analyze and develop tools for the analysis of electrical properties of the CuInS2 cells with the ultimate goal of discovering ways to improve the efficiency of our photovoltaic cells. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While The research group lead by Dr. Hepp has spent several years researching copper indium
Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
Yang, Ya; Zhang, Hulin; Zhu, Guang; Lee, Sangmin; Lin, Zong-Hong; Wang, Zhong Lin
2013-01-22
We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanowire arrays grown on the flexible polyester (PET) substrate, a ZnO-poly(3-hexylthiophene) (P3HT) heterojunction solar cell was designed for harvesting solar energy. By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. With the use of a Li-ion battery as the energy storage, the harvested energy can drive four red light-emitting diodes (LEDs).
NASA Technical Reports Server (NTRS)
Easter, R. W.
1974-01-01
Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.
77 FR 65542 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee... Updates Congressional Fuel Cell Caucuses NREL Reports on Hydrogen in Natural Gas Pipelines and...
NASA Astrophysics Data System (ADS)
Miyamoto, H.; Shoji, Y.; Akasaka, R.; Lemmon, E. W.
2017-10-01
Natural working fluid mixtures, including combinations of CO2, hydrocarbons, water, and ammonia, are expected to have applications in energy conversion processes such as heat pumps and organic Rankine cycles. However, the available literature data, much of which were published between 1975 and 1992, do not incorporate the recommendations of the Guide to the Expression of Uncertainty in Measurement. Therefore, new and more reliable thermodynamic property measurements obtained with state-of-the-art technology are required. The goal of the present study was to obtain accurate vapor-liquid equilibrium (VLE) properties for complex mixtures based on two different gases with significant variations in their boiling points. Precise VLE data were measured with a recirculation-type apparatus with a 380 cm3 equilibration cell and two windows allowing observation of the phase behavior. This cell was equipped with recirculating and expansion loops that were immersed in temperature-controlled liquid and air baths, respectively. Following equilibration, the composition of the sample in each loop was ascertained by gas chromatography. VLE data were acquired for CO2/ethanol and CO2/isopentane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were used to fit interaction parameters in a Helmholtz energy mixture model. Comparisons were made with the available literature data and values calculated by thermodynamic property models.
NASA Astrophysics Data System (ADS)
Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.
2008-07-01
Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.
Zhang, Shun; Chen, Chen; Zhou, Yangen; Qian, Yumin; Ye, Jing; Xiong, Shiyun; Zhao, Yu; Zhang, Xiaohong
2018-06-27
The rapid deployment of renewable energy is resulting in significant energy security, climate change mitigation, and economic benefits. We demonstrate here the direct solar-energy harvesting and storage in a rechargeable solar-powered redox cell, which can be charged solely by solar irradiation. The cell follows a conventional redox-flow cell design with one integrated TiO 2 photoanode in the cathode side. Direct charging of the cell by solar irradiation results in the conversion of solar energy in to chemical energy. Whereas discharging the cell leads to the release of chemical energy in the form of electricity. The cell integrates energy conversion and storage processes in a single device, making the solar energy directly and efficiently dispatchable. When using redox couples of Br 2 /Br - and I 3 - /I - in the cathode side and anode side, respectively, the cell can be directly charged upon solar irradiation, yielding a discharge potential of 0.5 V with good round-trip efficiencies. This design is expected to be a potential alternative toward the development of affordable, inexhaustible, and clean solar-energy technologies.
Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation
2017-01-01
Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high subzero temperature (> −10 °C) during cryopreservation, which is often referred to as ice seeding, could result in significant cell injury in the absence of any pCPA. This issue can be mitigated by predehydrating cells using extracellular trehalose to their minimal volume with minimized osmotically active water before ice seeding. We further observe that ice seeding can minimize the interfacial free energy that drives the devastating ice recrystallization-induced cell injury during warming cryopreserved samples. Indeed, by combining predehydration using extracellular trehalose with ice seeding at high subzero temperatures, high cell viability or recovery is achieved for fibroblasts, adult stem cells, and red blood cells after cryopreservation without using any pCPA. The pCPA-free technology developed in this study may greatly facilitate the long-term storage and ready availability of living cells, tissues, and organs that are of high demand by modern cell-based medicine. PMID:28824959
Energy storage cell impedance measuring apparatus, methods and related systems
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.
2017-12-26
Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.
Small Business Innovation Research Award Success Story: FuelCell Energy Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-08-31
This success story describes FuelCell Energy Inc., a small business that manufactures stationary fuel cells. In collaboration with Sustainable Innovations LLC, and with support from a Small Business Innovation Research (SBIR) Award from the U.S. Department of Energy's Fuel Cell Technologies Program, FuelCell Energy Inc. has developed a highly efficient solid state electrochemical hydrogen compressor.
Falcioni, Francesco; Blank, Lars M.; Frick, Oliver; Karau, Andreas; Schmid, Andreas
2013-01-01
Microbial physiology plays a crucial role in whole-cell biotransformation, especially for redox reactions that depend on carbon and energy metabolism. In this study, regio- and enantio-selective proline hydroxylation with recombinant Escherichia coli expressing proline-4-hydroxylase (P4H) was investigated with respect to its interconnectivity to microbial physiology and metabolism. P4H production was found to depend on extracellular proline availability and on codon usage. Medium supplementation with proline did not alter p4h mRNA levels, indicating that P4H production depends on the availability of charged prolyl-tRNAs. Increasing the intracellular levels of soluble P4H did not result in an increase in resting cell activities above a certain threshold (depending on growth and assay temperature). Activities up to 5-fold higher were reached with permeabilized cells, confirming that host physiology and not the intracellular level of active P4H determines the achievable whole-cell proline hydroxylation activity. Metabolic flux analysis revealed that tricarboxylic acid cycle fluxes in growing biocatalytically active cells were significantly higher than proline hydroxylation rates. Remarkably, a catalysis-induced reduction of substrate uptake was observed, which correlated with reduced transcription of putA and putP, encoding proline dehydrogenase and the major proline transporter, respectively. These results provide evidence for a strong interference of catalytic activity with the regulation of proline uptake and metabolism. In terms of whole-cell biocatalyst efficiency, proline uptake and competition of P4H with proline catabolism are considered the most critical factors. PMID:23455348
Intermediate-sized natural gas fueled carbonate fuel cell power plants
NASA Astrophysics Data System (ADS)
Sudhoff, Frederick A.; Fleming, Donald K.
1994-04-01
This executive summary of the report describes the accomplishments of the joint US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) and M-C POWER Corporation's Cooperative Research and Development Agreement (CRADA) No. 93-013. This study addresses the intermediate power plant size between 2 megawatt (MW) and 200 MW. A 25 MW natural-gas, fueled-carbonate fuel cell power plant was chosen for this purpose. In keeping with recent designs, the fuel cell will operate under approximately three atmospheres of pressure. An expander/alternator is utilized to expand exhaust gas to atmospheric conditions and generate additional power. A steam-bottoming cycle is not included in this study because it is not believed to be cost effective for this system size. This study also addresses the simplicity and accuracy of a spreadsheet-based simulation with that of a full Advanced System for Process Engineering (ASPEN) simulation. The personal computer can fully utilize the simple spreadsheet model simulation. This model can be made available to all users and is particularly advantageous to the small business user.
78 FR 18578 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell... and Fuel Cell Technical Advisory Committee (HTAC). The Federal Advisory Committee Act, Public Law 92... Cell Technical Advisory Committee (HTAC) was established under section 807 of the Energy Policy Act of...
Widdas, W F; Baker, G F
2004-01-01
The physical chemistry of water at nanometre dimensions was used to explain the conformational changes and water breaking properties of the glucose transporter protein (GLUTI) in human erythrocytes more than ten years ago. The energy for this hidden work arises from cycles of evaporation and condensation of water within the cells but was several times larger than resting metabolism. Physical chemical principles can quantify the hidden work done and demonstrate that a significant source of energy is available, which is free of the metabolic energy derived from the hydrolysis of ATP. Therefore, a more widespread biological use of this "free" energy source was probable and a working hypothesis, which applied this energy to supplement the work derived from ATP hydrolysis in muscle, was proposed. The scheme gives a complete explanation for the unexpected and novel findings in skeletal muscle reported from Italy. The problem of using two energy sources and the novel properties of water at nanometer dimensions as they would apply in muscle are briefly discussed but they merit further interdisciplinary studies.
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters.
Maryu, Gembu; Miura, Haruko; Uda, Youichi; Komatsubara, Akira T; Matsuda, Michiyuki; Aoki, Kazuhiro
2018-04-25
Protein kinases play pivotal roles in intracellular signal transduction, and dysregulation of kinases leads to pathological results such as malignant tumors. Kinase activity has hitherto been measured by biochemical methods such as in vitro phosphorylation assay and western blotting. However, these methods are less useful to explore spatial and temporal changes in kinase activity and its cell-to-cell variation. Recent advances in fluorescent proteins and live-cell imaging techniques enable us to visualize kinase activity in living cells with high spatial and temporal resolutions. Several genetically encoded kinase activity reporters, which are based on the modes of action of kinase activation and phosphorylation, are currently available. These reporters are classified into single-fluorophore kinase activity reporters and Förster (or fluorescence) resonance energy transfer (FRET)-based kinase activity reporters. Here, we introduce the principles of genetically encoded kinase activity reporters, and discuss the advantages and disadvantages of these reporters.Key words: kinase, FRET, phosphorylation, KTR.
Transportation Energy Data Book: Edition 28
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary
2009-06-01
The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latestmore » edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.« less
NASA Astrophysics Data System (ADS)
Fréchette, Luc G.
2007-09-01
Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration energy harvesting approaches. Technologies and approaches for micro heat engines are shared, ranging from a complete microsystem for thermal energy harvesting (Cho et al) to core bearing and microturbomachinery technologies for rotating micro heat engines (Waits et al, Nakajima et al). Electrochemical microsystems are also presented, based on methanol as fuel (Morse et al), as well as novel micro and nanofabrication approaches (Chu et al). Fuel cell microsystems with integrated hydrogen generation approaches are also investigated by Peterson et al and Varady et al, illustrating the benefits and challenges of miniaturizing complete power sources. Finally, biological micro fuel cells that leverage the principles found in nature are presented, in contrast to chemical fuel cells (Chen et al, Morishima et al). We hope that this work will inspire others to pursue innovative research and development activities in the area of power MEMS, and consequently contribute to addressing our energy challenges for the 21st century.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Recent advances in live cell imaging of hepatoma cells
2014-01-01
Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127
Solar cell design for avoiding LILT degradation. [low intensity, low temperature
NASA Technical Reports Server (NTRS)
Stella, P. M.; Ctorry, G. T.
1987-01-01
Growing concerns about radioisotope thermoelectric generator (RTG) performance potential, cost, safety, and availability have renewed interest in utilizing photovoltaic energy conversion for future JPL interplanetary missions such as the Mariner Mark II set. Although lightweight solar array technology has advanced to the point where it would appear to provide an alternative power source, anomalous silicon cell curve shape degradation at conditions of low intensity and low temperature (LILT) severely restricts photovoltaic applications for missions beyond 3 AU solar distance. In order to extend photovoltaic applications to distances of 5 AU, ways to minimize the deleterious impact of LILT cell degradation were investigated. These investigations have ranged from consideration of individual cell selection for LILT behavior to the examination of methods for reducing or eliminating cell LILT degradation by modifying the cell processing. Use of a partial oxide barrier between the cell n+ contacts and the silicon has been shown to reduce significantly both the occurrence and magnitude of the LILT degradation.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2009-01-01
An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.
New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.
2013-01-01
Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The reactants are Li-naphthalene dissolved in tetrahydrofuran (THF) with a lithium salt of 1M LiBF4 (lithium tetra fluoroborate) in the anode compartment, and DDQ again dissolved in THF and also containing 1M LiBF4 salt in the cathode half-cell. The solid electrolyte separator used in the first set of experiments is a ceramic solid electrolyte, available from a commercial source. The open circuit voltage of the cells is close to 3.0 V, as expected from the individual half-cell voltages of Li-naphthalene and Li-DDQ. Upon discharge, the cell shows steady discharge voltage of 2.7 V, which confirms that the electrochemical processes do involve lithium ion shuttling from the anodic compartment to the cathode half-cell. The reversibility or rechargeability is demonstrated by charging the partially discharged cells (i.e., with lithium present in the DDQ half). Once again, a steady voltage close to 3.0 V was observed during charge, indicating that the system is quite reversible. In the subsequent concept-demonstration studies, the ceramic electrolyte has been replaced with a gel polymer electrolyte, e.g., PVDF-HFP (poly vinylene difluoride hexafluoropropene) gel, which has several advantages such as high ionic conductivity (almost comparable to liquid electrolyte and about 2 orders of magnitude better than the ceramic equivalent), lower cost, and possibly higher chemical stability at the anode. In addition, it can be bonded to the electrode by thermal fusion to form membrane electrode assemblies (MEAs), as is done in fuel cells.
Improved specific energy Ni-H2 cell
NASA Astrophysics Data System (ADS)
Miller, L. E.
1985-12-01
Significant improvements in specific energy for Ni-H2 battery cells have been and will be achieved. Current flight cell designs in operation on multiple satellites have achieved a specific energy of 52 Whr/Kg (this value may be compared to 45 Whr/Kg for advanced, light-weight Ni-Cd space cells). Battery cells operating at increased pressures (61 atm/900 psi) have been manufactured and successfully tested demonstrating a specific energy of 70 Whr/Kg. Further optimization of electrode substrate, pressure vessel wall thickness and cell terminal/conductor assembly designs will permit achievement of specific energies between 75-80 Whr/Kg. Energy density (outline volume) will be improved from 49 Whr/L to 79 Whr/L.
NASA Technical Reports Server (NTRS)
Simpson, Mike B.
2004-01-01
In the search to bridge current gaps in surveillance and communication technologies, a new type of, aircraft is currently undergoing design. The idea of a High Altitude Long Endurance (HALE) aircraft is already a few decades old, but has only recently become realizable. A relay and collector of information at altitudes of 65,000 feet and higher could greatly improve standards of data exchange, homeland security, and research of the air, land and sea. NASA, as a major force in propulsion research, is exploring methods of powering an autonomous aircraft for days, weeks, or even months without refueling. Such a task requires not only high energy density, but also the ability to make use of renewable energy sources to regenerate power. Hydrogen is one of the most energy dense fuels available. Fuel cells make use of hydrogen by harnessing the energy released as it combines with oxygen to produce electricity and water. Fuel cells are envisioned to occupy future propulsion systems in cooperation with solar cells where the photovoltaic arrays harness sunlight into power which can electrolize the water byproduct into reusable hydrogen and oxygen. Modeling this type of system requires adequate assumptions of support hardware and daily transients in operation. The performance of a regenerative fuel cell propulsion system lies in the flight characteristics (altitude, density, temperature, latitude, etc.). Each subsystem is defined by many parameters which can be varied across wide ranges. Statistical and probabilistic analyses bring forward a wealth of information that can be utilized in the design process. This is necessary since the required technologies are relatively young and barely, if yet, capable. Once the modeling is complete, a design space exploration of this highly constrained scenario can be utilized to find the optimal design. The model will become an interactive environment with which experiments and tests can be run. When linked
New Techniques for the Generation and Analysis of Tailored Microbial Systems on Surfaces.
Furst, Ariel L; Smith, Matthew J; Francis, Matthew B
2018-05-17
The interactions between microbes and surfaces provide critically important cues that control the behavior and growth of the cells. As our understanding of complex microbial communities improves, there is a growing need for experimental tools that can establish and control the spatial arrangements of these cells in a range of contexts. Recent improvements in methods to attach bacteria and yeast to nonbiological substrates, combined with an expanding set of techniques available to study these cells, position this field for many new discoveries. Improving methods for controlling the immobilization of bacteria provides powerful experimental tools for testing hypotheses regarding microbiome interactions, studying the transfer of nutrients between bacterial species, and developing microbial communities for green energy production and pollution remediation.
Validation of an Integrated Hydrogen Energy Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heydorn, Edward C
This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). Build on the experiencemore » gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. Maintain safety as the top priority in the system design and operation. Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.« less
van Dongen, Joost T; Licausi, Francesco
2015-01-01
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Sedinger, James S.; White, Robert G.; Hupp, Jerry W.
1995-01-01
We measured apparent metabolizability of organic matter, gross energy, nitrogen and cell wall constituents of pelleted alfalfa by Lesser Snow Geese (Chen caerulescens caerulescens. We also used simultaneous measurements of energy expenditure and apparent metabolizable energy intake to estimate heat increment of feeding and net energy for production and maintenance. Apparent metabolizability of energy was 46% as a result of substantial retention of dietary cellulose (45%). Mean slope of the relationship between energy expenditure and apparent metabolizable energy intake, which estimates heat increment at feeding, was 0.33. One minus the slope, 0.67, was our estimate of the proportion of apparent metabolizable energy available for maintenance and production. Resting metabolic rate at zero apparent metabolizable energy intake ranged from 361 kJ· kg-1· day-1 to 432 kJ· kg-1· day-1, while apparent metabolizable energy intake required for energy balance ranged from 455 kJ· kg-1· day-1 to 871 kJ· kg-1· day-1. Lesser Snow Geese (>2 kg mass) were more efficient at retaining dietary energy but possibly lost more of this energy as heat than smaller Black Brant (Branta bernicla nigricans)(∼1 kg mass), suggesting a possible relationship between body size and processing of energy in herbivorous birds.
Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael
2017-08-01
COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for activity distribution on the cell surface, MIRD predictions appeared to fail the most. The proposed method is suitable for Auger-cascade electrons, but can be extended to any energy of interest and to beta spectra; as an example, the 3 H case is also discussed. COOLER is intended to be accessible to everyone (preclinical and clinical researchers included), and may provide important information for the selection of radionuclides, the interpretation of radiobiological or preclinical results, and the general establishment of doses in any scenario, e.g., with cultured cells in the laboratory or with therapeutic or diagnostic applications. The software will be made available for download from the DTU-Nutech website: http://www.nutech.dtu.dk/ .
Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication
Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong
2016-01-01
With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776
NASA Astrophysics Data System (ADS)
Steinfelds, Eric Victor
The topic of this thesis is the development of the Radioisotope Energy Conversion System (RECS) in a project which is utilizing analytical computational assisted design and some experimental Research in the investigation of fluorescers and effective transducers with the appropriate energy range choice for the conversion of energy. It is desirable to increase the efficiency in electrical power from the raw kinetic power available from the radioactive material within radioisotope power generators. A major step in this direction is the development and use of Radioisotope Energy Conversion Systems to supplement and ideally replace Radioactive Thermal Generators (RTG). It is possible to achieve electrical conversion efficiencies exceeding 25% for RECS power devices compared to only 9 percent efficiency for RTG's. The theoretical basis with existent materials for the potential achievability of efficiencies above 25% is documented within this thesis. The fundamental RECS consists of a radioisotope radiative source (C1), a mediating fluorescent gas (C2) which readily absorbs energy from the beta particles (or alpha's) and subsequently emits blue or UV photons, photovoltaic cells (C3) to convert the blue and UV photons into electrical energy [2], and electrical circuitry (C4). Solid State inspired component (C3), due to its theoretical (and attainable) high efficiency, is a large step ahead of the RTG design concept. The radioisotope flux source produces the beta(-) particles or alpha particles. Geometrically, presently, we prefer to have the ambient fluorescent gas surround the radioisotope flux source. Our fluorescer shall be a gas such as Krypton. Our specifically wide band-gap photovoltaic cells shall have gap energies which are slightly less than that of UV photons produced by the fluorescing gas. Diamond and Aluminum Nitride sample materials are good potential choices for photovoltaic cells, as is explained here in. Out of the material examples discussed, the highest electric power to mass ratio is found to be readily attainable with strontium-90 as the radiative source. Krypton-85 is indisputably the most efficient in RECS devices. In the conclusion in chapter VI, suggestions are given on acceptable ways of containing krypton-85 and providing sufficient shielding on deep space probes destined to use krypton-85 powered 'batteries'.
Develop and test fuel cell powered on-site integrated total energy system
NASA Technical Reports Server (NTRS)
Kaufman, A.; Johnson, G. K.
1982-01-01
Satisfactory performance is reported for the first 12-cell sub-stack of the 5 kW rebuild using improved ABA reactant distribution plates. Construction and test results are described for the first full-sized single-cell test (0.33 m x 0.56 m). Test duration was 450 hours. Plans are outlined for construction and testing of two methanol reformer units based on commercially-available shell-and-tube heat exchangers. A 5 kW-equivalent precursor and a 50 kW-equivalent prototype will be built. Supporting design and single-tube experimental data are presented. Stack support efforts are summarized on corrosion currents of graphite materials and acid-management of single-cell test facilities. Comparative properties are summarized for the two methanol/steam reforming catalysts evauated under Task V (now completed); T2107RS and C70-2RS.
Statistical Characterization of 18650-Format Lithium-Ion Cell Thermal Runaway Energy Distributions
NASA Technical Reports Server (NTRS)
Walker, William Q.; Rickman, Steven; Darst, John; Finegan, Donal; Bayles, Gary; Darcy, Eric
2017-01-01
Effective thermal management systems, designed to handle the impacts of thermal runaway (TR) and to prevent cell-to-cell propagation, are key to safe operation of lithium-ion (Li-ion) battery assemblies. Critical factors for optimizing these systems include the total energy released during a single cell TR event and the fraction of the total energy that is released through the cell casing vs. through the ejecta material. A unique calorimeter was utilized to examine the TR behavior of a statistically significant number of 18650-format Li-ion cells with varying manufacturers, chemistries, and capacities. The calorimeter was designed to contain the TR energy in a format conducive to discerning the fractions of energy released through the cell casing vs. through the ejecta material. Other benefits of this calorimeter included the ability to rapidly test of large quantities of cells and the intentional minimization of secondary combustion effects. High energy (270 Wh/kg) and moderate energy (200 Wh/kg) 18650 cells were tested. Some of the cells had an imbedded short circuit (ISC) device installed to aid in the examination of TR mechanisms under more realistic conditions. Other variations included cells with bottom vent (BV) features and cells with thin casings (0.22 1/4m). After combining the data gathered with the calorimeter, a statistical approach was used to examine the probability of certain TR behavior, and the associated energy distributions, as a function of capacity, venting features, cell casing thickness and temperature.
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Park, Younggeun; Pun, San; Lee, Sung Sik; Lo, Joe F.; Lee, Luke P.
2015-06-01
Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy.Intracellular Cyt c release profiles in living human neuroblastoma undergoing amyloid β oligomer (AβO)-induced apoptosis, as a model Alzheimer's disease-associated pathogenic molecule, were analysed in a real-time manner using plasmon resonance energy transfer (PRET)-based spectroscopy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02390d
Bending-Tolerant Anodes for Lithium-Metal Batteries.
Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan
2018-01-01
Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Haran, Michal; Gross, Atan
2014-11-01
Living organisms require a constant supply of safe and efficient energy to maintain homeostasis and to allow locomotion of single cells, tissues and the entire organism. The source of energy can be glycolysis, a simple series of enzymatic reactions in the cytosol, or a much more complex process in the mitochondria, oxidative phosphorylation (OXPHOS). In this review we will examine how does the organism balance its source of energy in two seemingly distinct and unrelated processes: hematopoiesis and exercise. In both processes we will show the importance of the metabolic program and its regulation. We will also discuss the importance of oxygen availability not as a sole determinant, but in the context of the nutrient and cellular state, and address the emerging role of lactate as an energy source and signaling molecule in health and disease. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Muri, Jonathan; Heer, Sebastian; Matsushita, Mai; Pohlmeier, Lea; Tortola, Luigi; Fuhrer, Tobias; Conrad, Marcus; Zamboni, Nicola; Kisielow, Jan; Kopf, Manfred
2018-05-10
The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4 - CD8 - thymocyte population, whereas Txnrd1 deletion in CD4 + CD8 + thymocytes does not affect further maturation and peripheral homeostasis of αβT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.
Energy Connections and Misconnections across Chemistry and Biology.
Kohn, Kathryn P; Underwood, Sonia M; Cooper, Melanie M
2018-01-01
Despite the number of university students who take courses in multiple science disciplines, little is known about how they connect concepts between disciplines. Energy is a concept that underlies all scientific phenomena and, as such, provides an appropriate context in which to investigate student connections and misconnections across disciplines. In this study, university students concurrently enrolled in introductory chemistry and biology were interviewed to explore their perceptions of the integration of energy both within and across the disciplines, and how they attempted to accommodate and reconcile different disciplinary approaches to energy, to inform future, interdisciplinary course reform. Findings suggest that, while students believed energy to be important to the scientific world and to the disciplines of biology and chemistry, the extent to which it was seen as central to success in their courses varied. Differences were also apparent in students' descriptions of the molecular-level mechanisms by which energy transfer occurs. These findings reveal a disconnect between how energy is understood and used in introductory science course work and uncovers opportunities to make stronger connections across the disciplines. We recommend that instructors engage in interdisciplinary conversations and consider the perspectives and goals of other disciplines when teaching introductory science courses. © 2018 K. P. Kohn et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Hu, Shan
This research explores the application of carbon nanotube (CNT) films for active noise cancellation, solar energy harvesting and energy storage in building windows. The CNT-based components developed herein can be integrated into a solar-powered active noise control system for a building window. First, the use of a transparent acoustic transducer as both an invisible speaker for auxiliary audio playback and for active noise cancellation is accomplished in this work. Several challenges related to active noise cancellation in the window are addressed. These include secondary path estimation and directional cancellation of noise so as to preserve auxiliary audio and internal sounds while preventing transmission of external noise into the building. Solar energy can be harvested at a low rate of power over long durations while acoustic sound cancellation requires short durations of high power. A supercapacitor based energy storage system is therefore considered for the window. Using CNTs as electrode materials, two generations of flexible, thin, and fully solid-state supercapacitors are developed that can be integrated into the window frame. Both generations consist of carbon nanotube films coated on supporting substrates as electrodes and a solid-state polymer gel layer for the electrolyte. The first generation is a single-cell parallel-plate supercapacitor with a working voltage of 3 Volts. Its energy density is competitive with commercially available supercapacitors (which use liquid electrolyte). For many applications that will require higher working voltage, the second-generation multi-cell supercapacitor is developed. A six-cell device with a working voltage as high as 12 Volts is demonstrated here. Unlike the first generation's 3D structure, the second generation has a novel planar (2D) architecture, which makes it easy to integrate multiple cells into a thin and flexible supercapacitor. The multi-cell planar supercapacitor has energy density exceeding that of other planar supercapacitors in literature by more than one order of magnitude. All-solution fabrication processes were developed for both generations to achieve economical and scalable production. In addition to carbon nanotubes, nickel/nickel oxide core-shell nanowires were also studied as electrode materials for supercapacitors, for which high specific capacitance but low working voltage were obtained. Semi-transparent solar cells with carbon nanotube counter electrodes are developed to power the active noise cancellation system. They can be directly mounted on the glass panes and become part of the home window. The 2.67% efficiency achieved is higher than the 1.8% efficiency required for harvesting adequate energy to cancel noise of 70dB Day-Night-Level, which impacts on a north-facing window. In summary, this project develops several fundamental technologies that together can contribute to a solar-powered active noise cancellation system for a building window. At the same time, since the component technologies being developed are fundamental, it is also likely that they will have wider applications in other domains beyond building windows.
Beam-energy-spread minimization using cell-timing optimization
NASA Astrophysics Data System (ADS)
Rose, C. R.; Ekdahl, C.; Schulze, M.
2012-04-01
Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.
[Advances in microbial solar cells--A review].
Guo, Xiaoyun; Yu, Changping; Zheng, Tianling
2015-08-04
The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.
Fuel-Cell Power Source Based on Onboard Rocket Propellants
NASA Technical Reports Server (NTRS)
Ganapathi, Gani; Narayan, Sri
2010-01-01
The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.
SAFT VES180 SA High Specific Energy Cell Qualification
NASA Astrophysics Data System (ADS)
Borthomieu, Y.; Semerie, J.-P.
2005-05-01
A « high specific energy Li-Ion cell» is under development in the frame of the Artes 8 (Alphabus) programme. The purpose of this cell is to reduce the battery weight for the Alphabus satellite by at least 50 kg. The objective is to increase the specific energy by more than 25 % compared to the existing 140 Wh cell. The specific energy target for the 180Wh is 170 Wh/kg.In addition to improving the energy density, this development aimed to introduce a design improvement of the cell, in order to sustain higher mechanical environments than the state of the art cells.
Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency
NASA Astrophysics Data System (ADS)
Petrone, C.
2017-12-01
Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.
2015-03-26
albeit powerful , method available for exploring CAS. As discussed above, there are many useful mathematical tools appropriate for CAS modeling. Agent-based...cells, tele- phone calls, and sexual contacts approach power -law distributions. [48] Networks in general are robust against random failures, but...targeted failures can have powerful effects – provided the targeter has a good understanding of the network structure. Some argue (convincingly) that all
Incorporating Resilience into Transportation Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, Elizabeth; Melaina, Marc
To aid decision making for developing transportation infrastructure, the National Renewable Energy Laboratory has developed the Scenario Evaluation, Regionalization and Analysis (SERA) model. The SERA model is a geospatially and temporally oriented model that has been applied to determine optimal production and delivery scenarios for hydrogen, given resource availability and technology cost and performance, for use in fuel cell vehicles. In addition, the SERA model has been applied to plug-in electric vehicles.
Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L.; Sleiti, Ahmad
2011-09-19
The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has alsomore » established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.« less
NASA Technical Reports Server (NTRS)
Beernink, Kevin; Guha, Subhendu; Yang, Jeff; Banerjee, Arindam; Lord, Ken; DeMaggio, Greg; Liu, Frank; Pietka, Ginger; Johnson, Todd; Reinhout, Melanie;
2007-01-01
The availability of low-cost, lightweight and reliable photovoltaic (PV) modules is an important component in reducing the cost of satellites and spacecraft. In addition, future high-power spacecraft will require lightweight PV arrays with reduced stowage volume. In terms of the requirements for low mass, reduced stowage volume, and the harsh space environment, thin film amorphous silicon (a-Si) alloy cells have several advantages over other material technologies (1). The deposition process is relatively simple, inexpensive, and applicable to large area, lightweight, flexible substrates. The temperature coefficient has been found to be between -0.2 and -0.3 %/degC for high-efficiency triple-junction a-Si alloy cells, which is superior for high temperature operation compared to crystalline Si and triple-junction GaAs/InGaP/Ge devices at 0.53 %/degC and 0.45 %/degC, respectively (2). As a result, the reduction in efficiency at high temperature typical in space conditions is less for a-Si alloy cells than for their crystalline counterparts. Additionally, the a-Si alloy cells are relatively insensitive to electron and proton bombardment. We have shown that defects that are created by electrons with energies between 0.2 to 2 MeV with fluence up to 1x10(exp 15) e/sq cm and by protons with energy in the range 0.3 MeV to 5 MeV with fluence up to 1x10(exp 13) p/sq cm can be annealed out at 70 C in less than 50 hours (1). Further, modules incorporating United Solar s a-Si alloy cells have been tested on the MIR space station for 19 months with only minimal degradation (3). For stratospheric applications, such as the high altitude airship, the required PV arrays are typically of considerably higher power than current space arrays. Airships typically have a large area available for the PV, but weight is of critical importance. As a result, low cost and high specific power (W/kg) are key factors for airship PV arrays. Again, thin-film a-Si alloy solar cell technology is well suited to such applications.
The impact of cell culture equipment on energy loss.
Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth
2014-01-01
Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.
Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.
Tatin, Arnaud; Comminges, Clément; Kokoh, Boniface; Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
2016-05-17
Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.
Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie; Waters, Alicia H.C.; Golubeva, Anna V.
2015-01-01
Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP,more » produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.« less
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
NASA Astrophysics Data System (ADS)
Routray, S. R.; Lenka, T. R.
2017-11-01
Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.
Wireless sensors powered by microbial fuel cells.
Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew
2005-07-01
Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.
The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation
NASA Technical Reports Server (NTRS)
Whelan, Harry T.
2002-01-01
Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.
Technology Pathway Partnership Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, John C. Dr.; Godby, Larry A.
2012-04-26
This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less
The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy
Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech
2016-01-01
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290
Metabolic regulation of inflammation.
Gaber, Timo; Strehl, Cindy; Buttgereit, Frank
2017-05-01
Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.
NASA Astrophysics Data System (ADS)
Harlow, Lisa Jean
The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand field states which the charge-transfer transitions necessary for electron injection deactivate to. We study a series of molecules that converts from a historically well-known ruthenium dye stepwise to an iron-based chromophore that has exhibited photocurrent previously. Converting to iron proves to be complicated and we aim to continue our investigation in order to gain a better understanding of the complexity.
Changes in energy metabolism accompanying pitting in blueberries stored at low temperature.
Zhou, Qian; Zhang, Chunlei; Cheng, Shunchang; Wei, Baodong; Liu, Xiuying; Ji, Shujuan
2014-12-01
Low-temperature storage and transport of blueberries is widely practiced in commercial blueberry production. In this research, the storage life of blueberries was extended at low temperature, but fruit stored for 30 d at 0°C pitted after 2d at room-temperature. Fruit cellular structure and physiological parameters accompanying pitting in blueberries were changed. The objective of this research was to characterise properties of energy metabolism accompanying pitting in blueberries during storage, including adenosine phosphates and mitochondrial enzymes involved in stress responses. Physiological and metabolic disorders, changes in cell ultrastructure, energy content and ATPase enzyme activity were observed in pitting blueberries. Energy shortages and increased activity of phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX) were observed in fruit kept at shelf life. The results suggested that sufficient available energy status and a stable enzymatic system in blueberries collectively contribute to improve chilling tolerance, thereby alleviating pitting and maintaining quality of blueberry fruit in long-term cold storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Onsite 40-kilowatt fuel cell power plant manufacturing and field test program
NASA Technical Reports Server (NTRS)
1985-01-01
A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.
Solar photovoltaic power systems: an electric utility R & d perspective.
Demeo, E A; Taylor, R W
1984-04-20
Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.
Solar silicon via the Dow Corning process
NASA Technical Reports Server (NTRS)
Hunt, L. P.; Dosaj, V. D.
1979-01-01
Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.
Quantifying the potential of III-V/Si partial concentrator by a statistical approach
NASA Astrophysics Data System (ADS)
Lee, Kan-Hua; Araki, Kenji; Ota, Yasuyuki; Nishioka, Kensuke; Yamaguchi, Masafumi
2017-09-01
We propose a theoretical framework for analyzing the energy yields of partial concentrators. A partial concentrator uses a concentrator cell to absorb the principal defracted or reflected light rays from its concentrator optics and a backplane cell to absorbs the diffused or defocused light. This concept can be applied to the concentrator system when accurate sun-tracking is not available, such as on a vehicle. This analysis framework provides a simplified way to describe the uncertainties of solar incidences dealt by partial concentrator. This help identified a clearer design criteria of partial concentrator in order to outperform the flat-panel PV or conventional CPV.
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells
NASA Technical Reports Server (NTRS)
Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.
1997-01-01
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.
Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G
1997-04-15
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
NASA Astrophysics Data System (ADS)
Yang, Huan; Ding, Qiuyu; Li, Ben Q.; Jiang, Xinbing; Zhang, Manman
2018-02-01
Though noble metal nanoparticles have been explored to enhance the performance of the organic solar cell, effect of dielectric nanoparticles, and coupled effect of dielectric and metal nanoparticles, have rarely been reported, if at all, on organic solar cell. This work reports an experimental study on synergetic scattering of SiO2 and Ag nanoparticles in a bulk organic heterojunction for the broadband light absorption enhancement. The wavelength scale SiO2 particles were arranged as a monolayer on the surface of the solar cell to guide incident light into the active layer and prolong the effective optical length of the entered energy. This is achieved by the excitation of whispering gallery modes in SiO2 nanoparticles and by leaky mode radiation. When small size Ag particles were incorporated into the transport layer of the solar cell, synergetic scattering of SiO2 and Ag nanoparticles is formed by coupling of the whispering gallery mode of closely arranged SiO2 particles atop and collaborative localized surface plasma resonance scattering of Ag nanoparticles dispersed in the transport layer. As a result, the performance of the organic solar cell is greatly enhanced and the short-circuit current density has an improvement of 42.47%. Therefore, the organic solar cell incorporated with SiO2 and Ag particles presents a meaningful strategy to achieve high energy-harvesting performance. [Figure not available: see fulltext.
Quantum-Well Thermophotovoltaic Cells
NASA Technical Reports Server (NTRS)
Freudlich, Alex; Ignatiev, Alex
2009-01-01
Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.
Nutritional strategies to modulate the adaptive response to endurance training.
Hawley, John A
2013-01-01
In recent years, advances in molecular biology have allowed scientists to elucidate how endurance exercise training stimulates skeletal muscle remodeling (i.e. promotes mitochondrial biogenesis). A growing field of interest directly arising from our understanding of the molecular bases of training adaptation is how nutrient availability can alter the regulation of many contraction-induced events in muscle in response to endurance exercise. Acutely manipulating substrate availability can exert profound effects on muscle energy stores and patterns of fuel metabolism during exercise, as well as many processes activating gene expression and cell signaling. Accordingly, such interventions when repeated over weeks and months have the potential to modulate numerous adaptive processes in skeletal muscle that ultimately drive the phenotype-specific characteristics observed in highly trained athletes. In this review, the molecular and cellular events that occur in skeletal muscle during and after endurance exercise are discussed and evidence provided to demonstrate that nutrient availability plays an important role in modulating many of the adaptive responses to training. Emphasis is on human studies that have determined the regulatory role of muscle glycogen availability on cell metabolism, endurance training capacity and performance. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Development of biologically modified anodes for energy harvesting using microbial fuel cells
NASA Astrophysics Data System (ADS)
Sumner, James J.; Ganguli, Rahul; Chmelka, Brad
2012-06-01
Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.
Nogueira, P; Zankl, M; Schlattl, H; Vaz, P
2011-11-07
The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.
Electronic circuit for measuring series connected electrochemical cell voltages
Ashtiani, Cyrus N.; Stuart, Thomas A.
2000-01-01
An electronic circuit for measuring voltage signals in an energy storage device is disclosed. The electronic circuit includes a plurality of energy storage cells forming the energy storage device. A voltage divider circuit is connected to at least one of the energy storage cells. A current regulating circuit is provided for regulating the current through the voltage divider circuit. A voltage measurement node is associated with the voltage divider circuit for producing a voltage signal which is proportional to the voltage across the energy storage cell.
77 FR 2714 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting, Webinar. SUMMARY: This notice announces an open meeting of the Hydrogen and Fuel Cell Technical Advisory Committee...
75 FR 59705 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of...
75 FR 26743 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... DEPARTMENT OF ENERGY Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of Open Meeting. SUMMARY: The Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) was established under section 807 of...
Wang, Wei; Tadé, Moses O; Shao, Zongping
2015-08-07
Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their photocatalytic activity and/or light adsorption capability. Comments on current and future challenges are also provided. The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.
Pentose phosphates in nucleoside interconversion and catabolism.
Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L
2006-03-01
Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.
A Short Progress Report on High-Efficiency Perovskite Solar Cells.
Tang, He; He, Shengsheng; Peng, Chuangwei
2017-12-01
Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.
Free energy analysis of cell spreading.
McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick
2017-10-01
In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing cytoskeletal free energy and increasing passive elastic free energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas concentration cells for utilizing energy
Salomon, R.E.
1987-06-30
An apparatus and method are disclosed for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine. 4 figs.
Gas concentration cells for utilizing energy
Salomon, Robert E.
1987-01-01
An apparatus and method for utilizing energy, in which the apparatus may be used for generating electricity or as a heat pump. When used as an electrical generator, two gas concentration cells are connected in a closed gas circuit. The first gas concentration cell is heated and generates electricity. The second gas concentration cell repressurizes the gas which travels between the cells. The electrical energy which is generated by the first cell drives the second cell as well as an electrical load. When used as a heat pump, two gas concentration cells are connected in a closed gas circuit. The first cell is supplied with electrical energy from a direct current source and releases heat. The second cell absorbs heat. The apparatus has no moving parts and thus approximates a heat engine.
The art and science of low-energy applications in medicine: pathology perspectives
NASA Astrophysics Data System (ADS)
Thomsen, Sharon L.
2011-03-01
Applications of low energy non-ionizing irradiation result in non-lethal and lethal effects in cells, tissues and intact individuals. The effects of these applications depend on the physical parameters of the applied energies, the mechanisms of interaction of these energies on the target and the biologic status of the target. Recently, cell death has been found not to be a random accident of situation or age but a range of complicated physiological responses to various extrinsic and intrinsic events some of which are genetically programmed and/ or physiologically regulated. Therefore, cell death has been classified into three general groups: 1) Programmed cell death including apoptosis and necroptosis, cornefication and autophagy; 2) Accidental (traumatic) cell death due to the direct, immediate effects of the lethal event and 3) Necrotic cell death which is, by default, all cell death not associated with programmed or accidental cell death. Lethal low energy non-ionizing application biologic effects involve mechanisms of all three groups as compared to high energy applications that predominantly involve the mechanisms of accidental cell death. Currently, the mechanisms of all these modes of cell death are being vigorously investigated. As research and development of new low energy applications continues, the need to understand the mechanisms of cell death that they produce will be critical to the rational creation of safe, yet effective instruments.
Assembly and characterization of quantum-dot solar cells
NASA Astrophysics Data System (ADS)
Leschkies, Kurtis Siegfried
Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of technologies have been developed to harness solar energy. For example, photovoltaic (or solar) cells based on silicon wafers can convert solar energy directly into electricity with high efficiency, however they are expensive to manufacture, and thus unattractive for widespread use. As the need for low-cost, solar-derived energy becomes more dire, strategies are underway to identify materials and photovoltaic device architectures that are inexpensive yet efficient compared to traditional silicon solar cells. Nanotechnology enables novel approaches to solar-to-electric energy conversion that may provide both high efficiencies and simpler manufacturing methods. For example, nanometer-size semiconductor crystallites, or semiconductor quantum dots (QDs), can be used as photoactive materials in solar cells to potentially achieve a maximum theoretical power conversion efficiency which exceeds that of current mainstay solar technology at a much lower cost. However, the novel concepts of quantum dot solar cells and their energy conversion designs are still very much in their infancy, as a general understanding of their assembly and operation is limited. This thesis introduces various innovative and novel solar cell architectures based on semiconductor QDs and provides a fundamental understanding of the operating principles that govern the performance of these solar cells. Such effort may lead to the advancement of current nanotechnology-based solar power technologies and perhaps new initiatives in nextgeneration solar energy conversion devices. We assemble QD-based solar cells by depositing photoactive QDs directly onto thin ZnO films or ZnO nanowires. In one scheme, we combine CdSe QDs and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell (QDSSC). An array of ZnO nanowires was grown vertically from a fluorine-doped-tin-oxide conducting substrate and decorated with an ensemble of CdSe QDs, capped with mercaptopropionic acid. When illuminated with visible light, the CdSe QDs absorb photons and inject electrons into the ZnO nanowires. The morphology of the nanowires then provided these photoinjected electrons with a direct and efficient electrical pathway to the photoanode. When using a liquid electrolyte as the hole transport medium, our quantum-dot-sensitized nanowire solar cells exhibited short-circuit current densities up to 2.1 mA/cm 2 and open-circuit voltages between 0.6--0.65 V when illuminated with 100 mW/cm2 of simulated AM1.5 light. Our QDSSCs also demonstrated internal quantum efficiencies as high as 50--60%, comparable to those reported for dye-sensitized solar cells made using similar nanowires. We found that the overall power conversion efficiency of these QDSSCs is largely limited by the surface area of the nanowires available for QD adsorption. Unfortunately, the QDs used to make these devices corrode in the presence of the liquid electrolyte and QDSSC performance degrades after several hours. Consequently, further improvements on the efficiency and stability of these QDSSCs required development of an optimal hole transport medium and a transition away from the liquid electrolyte. Towards improving the reliability of semiconductor QDs in solar cells, we developed a new type of all-solid-based solar cell based on heterojunctions between PbSe QDs and thin ZnO films. We found that the photovoltage obtained in these devices depends on QD size and increases linearly with the QD effective bandgap energy. Thus, these solar cells resemble traditional photovoltaic devices based on a semiconductor--semiconductor heterojunction but with the important difference that the bandgap energy of one of the semiconductors, and consequently the cell's photovoltage, can be varied by changing the size of the QDs. Under simulated 100 mW/cm2 AM1.5 illumination, these QD-based solar cells exhibit short-circuit current densities as high as 15 mA/cm2 and open-circuit voltages up to 0.45 V, larger than that achieved with solar cells based on junctions between PbSe QDs and metal films. Moreover, we found that incident-photon-to-current-conversion efficiency in these solar cells can be increased by replacing the ZnO films with a vertically-oriented array of single crystal ZnO nanowires, separated by distances comparable to the exciton diffusion length, and infiltrating this array with colloidal PbSe QDs. In this scheme, photogenerated excitons can encounter a donor--acceptor junction before they recombine. Thus, we were able to construct solar cells with thick QD absorber layers that were still capable of efficiently extracting charge despite short exciton or charge carrier diffusion lengths. When illuminated with the AM1.5 spectrum, these nanowire-based quantum-dot solar cells exhibited power conversion efficiencies approaching 2%, approximately three times higher than that achieved with thin film ZnO devices constructed with the same amount of QDs. Supporting experiments using field-effect transistors made from the PbSe QDs as well as the sensitivity of these transistors to nitrogen and oxygen gas show that the solar cells described above are unlikely to be operating like traditional p--n heterojunction solar cells. All data, including significant improvements in both photocurrent and power conversion efficiency with increasing nanowire length, suggest that these photovoltaic devices operate as excitonic solar cells.
Commercial Development Of Ovonic Thin Film Solar Cells
NASA Astrophysics Data System (ADS)
Ovshinsky, Stanford R.
1983-09-01
One square foot Ovonic amorphous photovoltaic devices are already in commercial production and are manufactured through a continuous web process. The next levels of commercialization required to achieve a large-volume power market will be discussed, and the device specifications correlated with the chemical and electronic properties of the materials that we are developing to achieve even higher efficiencies. It has been long considered a utopian dream to harness the energy of the sun to create electricity that would be competitive in cost to that produced from the conventional sources of energy such as oil, gas, and uranium. The impact on our society of stand-alone power generators without moving parts using the continually available, ubiquitous energy of the sun could certainly lead to a new age with consequences comparable to the first introduction of electricity which greatly accelerated the Industrial Revolution. Low cost, nonpolluting energy not dependent upon or limited by transmission costs could again make DC electricity a realistic option. The relatively young field of photovoltaics suffers from certain dogmas that are just now being questioned. For example, it is thought by many that solar cells utilizing crys-talline materials have inherently higher efficiencies than those using amorphous materials, and that somehow crystalline solar cells, whether fabricated from single crystals or polycrystalline material, in round or rectangular geometries, grown from the melt or by a rib-bon process, can be reduced in cost sufficiently that the economics become attractive enough for large-scale terrestrial generation of power. In this paper, we shall show that amorphous materials can have much higher efficiencies than do crystalline and that the answer to our power generation needs lies not in crystalline but in amorphous technology. At Energy Conversion Devices, Inc. (ECD), we have designed and built a production machine (described by my colleague, Dr. Izu, in a subsequent paper) which has clearly demonstrated that the basic barrier to low-cost production has been broken through and that one can now speak realistically of delivering power directly from the sun for under a dollar per peak watt merely by making larger versions of this basic continuous web, large-area thin-film machine. We have made one square foot amorphous silicon alloy PIN devices with conversion efficiencies in the range of 7%, and in the laboratory, we have reported smaller area PIN de-vices in the 10% conversion efficiency range. In addition, much higher energy conversion efficiencies can be obtained within the same process by using multi-cell layered or tandem thin-film solar cell structures (see Figure 1). These devices exhibit enhanced efficiency by utilizing a wider range of the solar spectrum. Since the theoretical maximum efficiency for multi-cell structures is over 60%, one can certainly realistically anticipate the pro-duction of thin-film amorphous photovoltaic devices with efficiencies as high as 30%. Our production device is already a two-cell tandem, as we have solved not only the problems of interfacing the individual cell components but also the difficulties associated with a one foot square format deposited on a continuous web. Figure 2 shows a continuous roll of Ovonic solar cells. Realistic calculations for a three-cell tandem thin-film device using amorphous semiconductor alloys with 1.8eV, 1.5eV, and 1.0eV optical band gaps indicate that solar energy conversion efficiencies of 20-30% can be achieved.
Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1996-01-01
The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.
Development of a micro-fiber nickel electrode for nickel-hydrogen cell
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1995-01-01
Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.
Seeleuthner, Yoann; Mondy, Samuel; Lombard, Vincent; Carradec, Quentin; Pelletier, Eric; Wessner, Marc; Leconte, Jade; Mangot, Jean-François; Poulain, Julie; Labadie, Karine; Logares, Ramiro; Sunagawa, Shinichi; de Berardinis, Véronique; Salanoubat, Marcel; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Searson, Sarah; Pesant, Stephane; Poulton, Nicole; Stepanauskas, Ramunas; Bork, Peer; Bowler, Chris; Hingamp, Pascal; Sullivan, Matthew B; Iudicone, Daniele; Massana, Ramon; Aury, Jean-Marc; Henrissat, Bernard; Karsenti, Eric; Jaillon, Olivier; Sieracki, Mike; de Vargas, Colomban; Wincker, Patrick
2018-01-22
Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.
NASA Astrophysics Data System (ADS)
Narula, Deep
At present, the global energy infrastructure is highly dependent on (i) non-renewable fossil fuels with significant emissions of greenhouse gasses (ii) green fuels such as bioethanol and biodiesel with impact on current agricultural practices competing with food production for arable lands, fertilizers, also requiring additional energy input. Plant-based microbial fuel cell (PMFC) technology can be found as a promising alternative to produce electricity without any side effects with an advantage of using sunlight as an energy source. In the present study, we developed PMFCs using Spartina patens, a marshland grass, abundantly available in the coastal regions of the USA. Figure 1 is a schematic for a PMFC with the anode and cathode compartments where others have used carbon-based electrodes for current collection. In contrast, we attempted to utilize stainless steel wires with more surface area to enhance the current collection in the anode compartment as well as to increase the rate of reduction in the cathode chamber and thereby increase the amount of electricity produced. The study will give results on the periodic use of Spartina patens in PMFC along with the porous stainless steel electrodes which have never been employed in PMFCs before.
An Overview of Stationary Fuel Cell Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
DR Brown; R Jones
1999-03-23
Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle ormore » rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.« less
Solar breeder: Energy payback time for silicon photovoltaic systems
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1977-01-01
The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
Map of assessed shale gas in the United States, 2012
,; Biewick, Laura R. H.
2013-01-01
The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.
Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua
2018-06-14
Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future
NASA Astrophysics Data System (ADS)
Kothari, S.; Bartsch, A.
2016-12-01
Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.
Low energy availability in the marathon and other endurance sports.
Loucks, Anne B
2007-01-01
Energy availability is the amount of dietary energy remaining after exercise training for all other metabolic processes. Excessively low energy availability impairs reproductive and skeletal health, although genetics and age may alter an individual's initial conditions and sensitivity when low energy availability is imposed. Many marathon runners and other endurance athletes reduce energy availability either (i) intentionally to modify body size and composition for improving performance; (ii) compulsively in a psychopathological pattern of disordered eating; or (iii) inadvertently because there is no strong biological drive to match energy intake to activity-induced energy expenditure. Inadvertent low energy availability is more extreme when consuming a low fat, high carbohydrate diet. Low energy availability, reproductive disorders, low bone mineral density and stress fractures are more common in female than male athletes. Functional menstrual disorders caused by low energy availability should be diagnosed by excluding diseases that also disrupt menstrual cycles. To determine energy availability (in units of kilocalories or kilojoules per kilogram of fat-free mass), athletes can record their diets and use diet analysis software to calculate energy intake, measure energy expenditure during exercise using a heart monitor and measure fat-free mass using a bioelectrical impedance body composition scale. All are commercially available at consumer prices.
Bypass apparatus and method for series connected energy storage devices
Rouillard, Jean; Comte, Christophe; Daigle, Dominik
2000-01-01
A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.
Future Automotive Systems Technology Simulator (FASTSim)
DOE Office of Scientific and Technical Information (OSTI.GOV)
An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.
Development of Optimization Procedure for Design of Package Cushioning
1975-01-01
Sheller-Globe Corp, Polyurethane None GAF Corp. Felt Not uaeful National Bureau of Standards Anything available None Plastics Tech- nical...000517 ■’■■ LIABLE ASSIGNMENTS HEMP I OSOSJJCG! S?c " ÜSJ0 Ic ■ nooooicoi IITM - oooooacoi *’ : EF §■ : ES S...absorb.relatively small amounts of energy and recover most of the cushion thickness in a short time. An example is a lightweight open-celled plastic
Solar powered actuator with continuously variable auxiliary power control
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A solar powered system is disclosed in which a load such as a compressor is driven by a main induction motor powered by a solar array. An auxiliary motor shares the load with the solar powered motor in proportion to the amount of sunlight available, is provided with a power factor controller for controlling voltage applied to the auxiliary motor in accordance with the loading on that motor. In one embodiment, when sufficient power is available from the solar cell, the auxiliary motor is driven as a generator by excess power from the main motor so as to return electrical energy to the power company utility lines.
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
Chen, Yanyu; Li, Tiantian; Jia, Zian; ...
2017-10-12
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
3D printed hierarchical honeycombs with shape integrity under large compressive deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyu; Li, Tiantian; Jia, Zian
Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less
Ramos, J L; Guerrero, M G; Losada, M
1987-04-01
Synthesis of ammonia from dinitrogen and water by suspensions of Anabaena sp. Strain ATCC 33047 treated with the glutamine synthetase inhibitor L-methionine-D,L-sulfoximine is strictly dependent on light. Under otherwise optimal conditions, the yield of ammonia production is influenced by irradiance, as well as by the density, depth, and turbulence of the cell suspension. The interaction among these factors seems to determine the actual amount of light available to each single cell or filament in the suspension for the photoproduction process. Under convenient illumination, the limiting factor in the synthesis of ammonia seems to be the cellular nitrogenase activity level, but under limiting light conditions the limiting factor could, however, be the assimilatory power required for nitrogen fixation. Photosynthetic ammonia production from atmospheric nitrogen and water can operate with an efficiency of ca. 10% of its theoretical maximum, representing a remarkable process for the conversion of light energy into chemical energy.
Impact of the ion transportome of chloroplasts on the optimization of photosynthesis.
Szabò, Ildikò; Spetea, Cornelia
2017-06-01
Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tran, P. D.; Morozan, A.; Archambault, S.; Heidkamp, J.; Chenevier, P.; Dau, H.; Fontecave, M.
2015-01-01
Hydrogen is a promising energy vector for storing renewable energies: obtained from water-splitting, in electrolysers or photoelectrochemical cells, it can be turned back to electricity on demand in fuel cells (FCs). Proton exchange membrane (PEM) devices with low internal resistance, high compactness and stability are an attractive technology optimized over decades, affording fast start-up times and low operating temperatures. However, they rely on the powerful catalytic properties of noble metals such as platinum, while lower cost, more abundant materials would be needed for economic viability. Replacing these noble metals at both electrodes has long proven to be a difficult task, so far incompatible with PEM technologies. Here we take advantage of newly developed bio-inspired molecular H2 oxidation catalysts and noble metal-free O2-reducing materials, to fabricate a noble metal-free PEMFC, with an 0.74 V open circuit voltage and a 23 μW cm–2 output power under technologically relevant conditions. X-ray absorption spectroscopy measurements confirm that the catalysts are stable and retain their structure during turnover. PMID:29142673
Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate
NASA Astrophysics Data System (ADS)
Darmawan, M. D.; Hawa, L. C.; Argo, B. D.
2018-03-01
Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.
Experimental validation of a sub-surface model of solar power for distributed marine sensor systems
NASA Astrophysics Data System (ADS)
Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.
2016-04-01
The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
NASA Technical Reports Server (NTRS)
Walker, William; Darst, John; Finegan, Donal; Bayles, Gary; Johnson, Kenneth; Darcy, Eric; Rickman, Steven
2018-01-01
Effective thermal management systems, designed to handle the impacts of thermal runaway (TR) and to prevent cell-to-cell propagation, are key to safe operation of lithium-ion (Li-ion) battery assemblies. Critical factors for optimizing these systems include the total energy released during a single cell TR event and the fraction of the total energy that is released through the cell casing vs. through the ejecta material. A unique calorimeter was utilized to examine the TR behavior of a statistically significant number of 18650-format Li-ion cells with varying manufacturers, chemistries, and capacities. The calorimeter was designed to contain the TR energy in a format conducive to discerning the fractions of energy released through the cell casing vs. through the ejecta material. Other benefits of this calorimeter included the ability to rapidly test of large quantities of cells and the intentional minimization of secondary combustion effects. High energy (270 Wh kg-1) and moderate energy (200 Wh kg-1) 18650 cells were tested. Some of the cells had an imbedded short circuit (ISC) device installed to aid in the examination of TR mechanisms under more realistic conditions. Other variations included cells with bottom vent (BV) features and cells with thin casings (0.22 l(1/4)m). After combining the data gathered with the calorimeter, a statistical approach was used to examine the probability of certain TR behavior, and the associated energy distributions, as a function of capacity, venting features, cell casing thickness and temperature.?
Solar energy powered microbial fuel cell with a reversible bioelectrode.
Strik, David P B T B; Hamelers, Hubertus V M; Buisman, Cees J N
2010-01-01
The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode, and the nonspecific proton exchange through the membrane. Here we report a solution for a new kind of solar energy powered microbial fuel cell via development of a reversible bioelectrode responsible for both biocatalyzed anodic and cathodic electron transfer. Anodic produced protons were used for the cathodic reduction reaction which held the formation of a pH membrane gradient. The microbial fuel cell continuously generated electricity and repeatedly reversed polarity dependent on aeration or solar energy exposure. Identified organisms within biocatalyzing biofilm of the reversible bioelectrode were algae, (cyano)bacteria and protozoa. These results encourage application of solar energy powered microbial fuel cells.
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Design Strategies for Ultra-high Efficiency Photovoltaics
NASA Astrophysics Data System (ADS)
Warmann, Emily Cathryn
While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired lattice constant. The film is grown strained on an available wafer substrate, but the thickness is below the dislocation nucleation threshold. By removing the film from the growth substrate, allowing the strain to relax elastically, and bonding it to a supportive handle, a template with the desired lattice constant is formed. Experimental efforts towards this structure and initial proof of concept are presented. Cells with high radiative quality present the opportunity to recover a large amount of their radiative losses if they are incorporated in an ensemble that couples emission from one cell to another. This effect is well known, but has been explored previously in the context of sub cells that independently operate at their maximum power point. This analysis explicitly accounts for the system interaction and identifies ways to enhance overall performance by operating some cells in an ensemble at voltages that reduce the power converted in the individual cell. Series connected multijunctions, which by their nature facilitate strong optical coupling between sub-cells, are reoptimized with substantial performance benefit. Photovoltaic efficiency is usually measured relative to a standard incident spectrum to allow comparison between systems. Deployed in the field systems may differ in energy production due to sensitivity to changes in the spectrum. The series connection constraint in particular causes system efficiency to decrease as the incident spectrum deviates from the standard spectral composition. This thesis performs a case study comparing performance of systems over a year at a particular location to identify the energy production penalty caused by series connection relative to independent electrical connection.
NASA Astrophysics Data System (ADS)
Rahman, Airul Azha Abd; Jamil, Wan Adil Wan; Umar, Akrajas Ali
2016-07-01
Multivariate energy harvesting system, solar and thermal energies, with configurable impedance matching features is presented. The system consists of a tuneable mechanism for peak performance tracking. The inputs are voltages ranging from 20 mV to 3.1 V. The matching load is individually tuned for photovoltaic and thermoelectric power efficiency not less than 80% and 50% of the open circuit voltage respectively. Of experimentation and analysis has been done, the time it takes to fully charge up to 3.4 V is 23 minutes with the rate of charging is 1.8 mV/sec. Empirical data is presented. [Figure not available: see fulltext.
Development of Electrochemical Supercapacitors for EMA Applications
NASA Technical Reports Server (NTRS)
Kosek, John A.; Dunning, Thomas; LaConti, Anthony B.
1996-01-01
A limitation of the typical electrochemical capacitor is the maximum available power and energy density, and an improvement in capacitance per unit weight and volume is needed. A solid-ionomer electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils has been developed. This capacitor could provide high-current pulses for electromechanical actuation (EMA). Primary project objectives were to develop high-capacitance particulates, to increase capacitor gravimetric and volumetric energy densities above baseline and to fabricate a 10-V capacitor with a repeating element thickness of 6 mils or less. Specific EMA applications were identified and capacitor weight and volume projections made.
Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen
2017-07-19
Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.
Modeling complex dispersed energy and clean water systems for the United States/Mexico border
NASA Astrophysics Data System (ADS)
Herrera, Hugo Francisco Lopez
As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen and distribution of it in El Paso/Juarez region. More precisely, the goals were the conversion of brines and waste-waters to hydrogen via electrolysis, and the generation of electricity through fuel cells. Thereafter, the specific objectives were to (1) design a simulation model for hydrogen generation, (2) design and simulate a model of photovoltaic (PV) array capable to generate the required energy for the process, (3) simulate fuel cells in order to be used as electricity power supply in remote houses, and (4) simulate a complete remote house hybrid system. The results of this research gave us information about the feasibility of high-volume hydrogen generation with the diverse resources of the region. On the other hand, this research has shown the alternatives of local energy generation, and efficiency of a remote house hybrid system located in El Paso/Juarez area. Experiences obtained from this research will also provide information for future investigations in the field of alternate energy sources, in order to get a clean environment through sustainable development.
An Energetic Concept of Habitability for the Deep Subsurface
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.
2006-01-01
Universally, life must be characterized by a characteristic level of order and complexity. In the most general sense, habitability could then be defined as the set of factors required to allow the creation and maintenance of molecular complexity. These factors are: chemical raw materials; energy with which to assemble those materials into complex molecules and sustain the resultant state of complexity; a solvent that allows the interaction of complex molecules, promotes tertiary structure, and permits compartmentalization; and environmental conditions that permit the assembly and maintenance of complex molecules. On Earth, these general requirements correspond to the major biogenic elements C, H, O, N, P, S; chemical or light energy; the solvent water; and specific ranges of temperature, pH, radiation, ionic strength, and so forth, which have thus far been determined on and exclusively empirical basis. Importantly, while the complete absence of any of these factors ensures uninhabitable conditions, the mere presence of all four does not guarantee habitability. In each case - even that of water - it is a question of degree. This question can be couched in quantitative terms by considering the impact of each of these factors on cellular energy balance. More "extreme" conditions (e.g., high temperature, high or low pH, etc.), lower water activity, and low concentrations of nutrients incur or have potential to be addressed by increased investment of energy on the part of the cell. This must be balanced by energy conservation in the cell, noting that biochemical, mass transport, and abiotic chemical limitations intervene between environmental energy availability and biological energy capture. Similarly, lower boundary conditions are emplaced on useful environmental energy yields by the "quantized" nature of biological energy conservation, and upper boundary conditions are emplaced by energy levels or fluxes that are destructive with respect to complexity. This energetic framework, with boundary conditions supplied by the specifics of the biochemistry in question, offers a generalized, yet quantitative means of assessing the habitability of any system with respect to complex life.
Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways
Iwata, Terri N.; Ramírez-Komo, Julita A.; Park, Heon; Iritani, Brian M.
2017-01-01
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells. PMID:28583723
Environmental impact of PV cell waste scenario.
Bogacka, M; Pikoń, K; Landrat, M
2017-12-01
Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R
2016-05-17
Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.
Taghipoor, Masoomeh; van Milgen, Jaap; Gondret, Florence
2016-09-07
Variations in energy storage and expenditure are key elements for animals adaptation to rapidly changing environments. Because of the multiplicity of metabolic pathways, metabolic crossroads and interactions between anabolic and catabolic processes within and between different cells, the flexibility of energy stores in animal cells is difficult to describe by simple verbal, textual or graphic terms. We propose a mathematical model to study the influence of internal and external challenges on the dynamic behavior of energy stores and its consequence on cell energy status. The role of the flexibility of energy stores on the energy equilibrium at the cellular level is illustrated through three case studies: variation in eating frequency (i.e., glucose input), level of physical activity (i.e., ATP requirement), and changes in cell characteristics (i.e., maximum capacity of glycogen storage). Sensitivity analysis has been performed to highlight the most relevant parameters of the model; model simulations have then been performed to illustrate how variation in these key parameters affects cellular energy balance. According to this analysis, glycogen maximum accumulation capacity and homeostatic energy demand are among the most important parameters regulating muscle cell metabolism to ensure its energy equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yayathi, Sandeep; Walker, William; Doughty, Daniel; Ardebili, Haleh
2016-10-01
Lithium ion (Li-ion) batteries provide low mass and energy dense solutions necessary for space exploration, but thermal related safety concerns impede the utilization of Li-ion technology for human applications. Experimental characterization of thermal runaway energy release with accelerated rate calorimetry supports safer thermal management systems. 'Standard' accelerated rate calorimetry setup provides means to measure the addition of energy exhibited through the body of a Li-ion cell. This study considers the total energy generated during thermal runaway as distributions between cell body and hot gases via inclusion of a unique secondary enclosure inside the calorimeter; this closed system not only contains the cell body and gaseous species, but also captures energy release associated with rapid heat transfer to the system unobserved by measurements taken on the cell body. Experiments include Boston Power Swing 5300, Samsung 18650-26F and MoliCel 18650-J Li-ion cells at varied states-of-charge. An inverse relationship between state-of-charge and onset temperature is observed. Energy contained in the cell body and gaseous species are successfully characterized; gaseous energy is minimal. Significant additional energy is measured with the heating of the secondary enclosure. Improved calorimeter apparatus including a secondary enclosure provides essential capability to measuring total energy release distributions during thermal runaway.
Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisaman, Matthew
2014-04-16
Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measuredmore » in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.« less
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.
Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang
2016-08-22
Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles
2011-01-01
Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336
Air-liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2.
Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze
2017-01-01
The intestinal porcine epithelial cell line IPEC-J2, cultured under the air-liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo . Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium-cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1 α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1 α , demonstrating a major change in the transcriptional response.
Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2
Klasvogt, Sonja; Zuschratter, Werner; Schmidt, Anke; Kröber, Andrea; Vorwerk, Sandra; Wolter, Romina; Isermann, Berend; Wimmers, Klaus; Rothkötter, Hermann-Josef; Nossol, Constanze
2017-01-01
The intestinal porcine epithelial cell line IPEC-J2, cultured under the air–liquid interface (ALI) conditions, develops remarkable morphological characteristics close to intestinal epithelial cells in vivo. Improved oxygen availability has been hypothesised to be the leading cause of this morphological differentiation. We assessed oxygen availability in ALI cultures and examined the influence of this cell culture method on glycolysis and oxidative phosphorylation in IPEC-J2 using the submerged membrane culture (SMC) and ALI cultures. Furthermore, the role of HIF-1 as mediator of oxygen availability was analysed. Measurements of oxygen tension confirmed increased oxygen availability at the medium–cell interface and demonstrated reduced oxygen extraction at the basal compartment in ALI. Microarray analysis to determine changes in the genetic profile of IPEC-J2 in ALI identified 2751 modified transcripts. Further examinations of candidate genes revealed reduced levels of glycolytic enzymes hexokinase II and GAPDH, as well as lactate transporting monocarboxylate transporter 1 in ALI, whereas expression of the glucose transporter GLUT1 remained unchanged. Cytochrome c oxidase (COX) subunit 5B protein analysis was increased in ALI, although mRNA level remained at constant level. COX activity was assessed using photometric quantification and a three-fold increase was found in ALI. Quantification of glucose and lactate concentrations in cell culture medium revealed significantly reduced glucose levels and decreased lactate production in ALI. In order to evaluate energy metabolism, we measured cellular adenosine triphosphate (ATP) aggregation in homogenised cell suspensions showing similar levels. However, application of the uncoupling agent FCCP reduced ATP levels in ALI but not in SMC. In addition, HIF showed reduced mRNA levels in ALI. Furthermore, HIF-1α protein was reduced in the nuclear compartment of ALI when compared to SCM as confirmed by confocal microscopy. These results indicate a metabolic switch in IPEC-J2 cultured under ALI conditions enhancing oxidative phosphorylation and suppressing glycolysis. ALI-induced improvement of oxygen supply reduced nuclear HIF-1α, demonstrating a major change in the transcriptional response. PMID:28250970
76 FR 28759 - Hydrogen and Fuel Cell Technical Advisory Committee (HTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... Advisory Committee (HTAC) was established under section 807 of the Energy Policy Act of 2005 (EPACT... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of...
World-Record Solar Cell a Step Closer to Cheap Solar Energy
envelope of solar-cell efficiency, we can begin to visualize the day when energy from the sun will be in efficiency translates into lower costs for harnessing energy from the sun. The cell's excellent
Neutron-energy-dependent cell survival and oncogenic transformation.
Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J
1999-12-01
Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.
On strain and stress in living cells
NASA Astrophysics Data System (ADS)
Cox, Brian N.; Smith, David W.
2014-11-01
Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known in detail. However, estimates can be inferred from the known relative velocities of the cells' centers of mass. When averaged over a volume comparable to the cell size, representative values of the strain are, to order of magnitude, ɛ0≈0.1 and γ0≈0.1. The shape distortions of cells seen, for example, in Fig. 1c, imply peak strains in minor segments of a cell of magnitude unity, ɛ0≈1 and γ0≈1; these values represent the upper bound of plausible values and are included for discussion of the extremes of attainable strain energy rates.Given the strain magnitudes, the strain rates follow from the fact that a cell switches from one contacting neighbor in the adjacent row to the next in approximately 0.25 d, during which motion the strains might vary from zero to their maximum values and back again. Thus the most probable shear strain rate is inferred to be γ˙0=10-6 s-1 and the most probable tensile strain rate is inferred to be ɛ˙0≈10-6 s-1, with high bounds γ˙0=10-5 s-1 and ɛ˙0=10-5 s-1.
Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies.
Jain, Suneil; Coulter, Jonathan A; Hounsell, Alan R; Butterworth, Karl T; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Dickson, Glenn R; Prise, Kevin M; Currell, Fred J; O'Sullivan, Joe M; Hirst, David G
2011-02-01
Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. Copyright © 2011 Elsevier Inc. All rights reserved.
Alkaline regenerative fuel cell systems for energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Reid, M. A.; Martin, R. E.
1981-01-01
A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.
Thermophotovoltaic in-situ mirror cell
Campbell, Brian C.
1997-01-01
A photovoltaic cell used in a direct energy conversion generator for converting heat to electricity includes a reflective layer disposed within the cell between the active layers of the cell and the cell substrate. The reflective layer reflects photons of low energy back to a photon producing emitter for reabsorption by the emitter, or reflects photons with energy greater than the cell bandgap back to the cell active layers for conversion into electricity. The reflective layer can comprise a reflective metal such as gold while the substrate can comprise heavily doped silicon or a metal.
Advanced Materials and Component Development for Lithium-Ion Cells for NASA Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2012-01-01
Human missions to Near Earth Objects, such as asteroids, planets, moons, liberation points, and orbiting structures, will require safe, high specific energy, high energy density batteries to provide new or extended capabilities than are possible with today s state-of-the-art aerospace batteries. The Enabling Technology Development and Demonstration Program, High Efficiency Space Power Systems Project battery development effort at the National Aeronautics and Space Administration (NASA) is continuing advanced lithium-ion cell development efforts begun under the Exploration Technology Development Program Energy Storage Project. Advanced, high-performing materials are required to provide improved performance at the component-level that contributes to performance at the integrated cell level in order to meet the performance goals for NASA s High Energy and Ultra High Energy cells. NASA s overall approach to advanced cell development and interim progress on materials performance for the High Energy and Ultra High Energy cells after approximately 1 year of development has been summarized in a previous paper. This paper will provide an update on these materials through the completion of 2 years of development. The progress of materials development, remaining challenges, and an outlook for the future of these materials in near term cell products will be discussed.
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
Waligórski, M P R; Grzanka, L; Korcyl, M; Olko, P
2015-09-01
An algorithm was developed of a treatment planning system (TPS) kernel for carbon radiotherapy in which Katz's Track Structure Theory of cellular survival (TST) is applied as its radiobiology component. The physical beam model is based on available tabularised data, prepared by Monte Carlo simulations of a set of pristine carbon beams of different input energies. An optimisation tool developed for this purpose is used to find the composition of pristine carbon beams of input energies and fluences which delivers a pre-selected depth-dose distribution profile over the spread-out Bragg peak (SOBP) region. Using an extrapolation algorithm, energy-fluence spectra of the primary carbon ions and of all their secondary fragments are obtained over regular steps of beam depths. To obtain survival vs. depth distributions, the TST calculation is applied to the energy-fluence spectra of the mixed field of primary ions and of their secondary products at the given beam depths. Katz's TST offers a unique analytical and quantitative prediction of cell survival in such mixed ion fields. By optimising the pristine beam composition to a published depth-dose profile over the SOBP region of a carbon beam and using TST model parameters representing the survival of CHO (Chinese Hamster Ovary) cells in vitro, it was possible to satisfactorily reproduce a published data set of CHO cell survival vs. depth measurements after carbon ion irradiation. The authors also show by a TST calculation that 'biological dose' is neither linear nor additive. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Demas, Gregory E
2010-04-01
Mounting an immune response requires a relatively substantial investment of energy and marked reductions in energy availability can suppress immune function and presumably increase disease susceptibility. We have previously demonstrated that a moderate reduction in energy stores by partial surgical lipectomy impairs humoral immunity of Siberian hamsters (Phodopus sungorus) and is mediated, in part, by changes in the adipose tissue hormone leptin. The goals of the present study were to assess the role of leptin in cell-mediated immunity and to determine if the potential effects of leptin on immunity are via the direct actions of this hormone on lymphocytes, or indirect, via the sympathetic nervous system (SNS). In Experiment 1, hamsters received osmotic minipumps containing either murine leptin (0.5 microl/h) or vehicle alone for 10 days and splenocyte proliferation in response to the T-cell mitogen Concanavalin A (Con A) was determined. In Experiment 2, Con A-induced splenocyte proliferation was tested in the presence or absence of leptin in vitro. In Experiment 3, exogenous leptin was administered to intact or sympathetically denervated hamsters. Hamsters treated with in vivo leptin displayed increased splenocyte proliferation compared with control hamsters receiving vehicle. In contrast, in vitro leptin had no effect on splenocyte proliferation. Sympathetic denervation attenuated, but did not block, leptin-induced increases in immunity. Taken together, these results are consistent with the idea that leptin can enhance cell-mediated immunity; the SNS appears to contribute, least in part, to leptin-induced increases in immunity. Importantly, these findings confirm previous studies that leptin serves as an important endocrine link between energy balance and immunity. (c) 2009 Elsevier Inc. All rights reserved.
Ultrashort pulsed laser ablation for decollation of solid state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hördemann, C.; Anand, H.; Gillner, A.
2017-08-01
Rechargeable lithium-ion batteries with liquid electrolytes are the main energy source for many electronic devices that we use in our everyday lives. However, one of the main drawbacks of this energy storage technology is the use of liquid electrolyte, which can be hazardous to the user as well as the environment. Moreover, lithium-ion batteries are limited in voltage, energy density and operating temperature range. One of the most novel and promising battery technologies available to overcome the above-mentioned drawbacks is the Solid-State Lithium-Ion Battery (SSLB). This battery type can be produced without limitations to the geometry and is also bendable, which is not possible with conventional batteries1 . Additionally, SSLBs are characterized by high volumetric and gravimetric energy density and are intrinsically safe since no liquid electrolyte is used2-4. Nevertheless, the manufacturing costs of these batteries are still high. The existing production-technologies are comparable to the processes used in the semiconductor industry and single cells are produced in batches with masked-deposition at low deposition rates. In order to decrease manufacturing costs and to move towards continuous production, Roll2Roll production methods are being proposed5, 6. These methods offer the possibility of producing large quantities of substrates with deposited SSLB-layers. From this coated substrate, single cells can be cut out. For the flexible decollation of SSLB-cells from the substrate, new manufacturing technologies have to be developed since blade-cutting, punching or conventional laser-cutting processes lead to short circuiting between the layers. Here, ultra-short pulsed laser ablation and cutting allows the flexible decollation of SSLBs. Through selective ablation of individual layers, an area for the cutting kerf is prepared to ensure a shortcut-free decollation.
Metrology for hydrogen energy applications: a project to address normative requirements
NASA Astrophysics Data System (ADS)
Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo
2018-03-01
Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.
Fuel cell on-site integrated energy system parametric analysis of a residential complex
NASA Technical Reports Server (NTRS)
Simons, S. N.
1977-01-01
A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.
Peet, Jeffrey; Heeger, Alan J; Bazan, Guillermo C
2009-11-17
As the global demand for low-cost renewable energy sources intensifies, interest in new routes for converting solar energy to electricity is rapidly increasing. Although photovoltaic cells have been commercially available for more than 50 years, only 0.1% of the total electricity generated in the United States comes directly from sunlight. The earliest commercial solar technology remains the basis for the most prevalent devices in current use, namely, highly-ordered crystalline, inorganic solar cells, commonly referred to as silicon cells. Another class of solar cells that has recently inspired significant academic and industrial excitement is the bulk heterojunction (BHJ) "plastic" solar cell. Research by a rapidly growing community of scientists across the globe is generating a steady stream of new insights into the fundamental physics, the materials design and synthesis, the film processing and morphology, and the device science and architecture of BHJ technology. Future progress in the fabrication of high-performance BHJ cells will depend on our ability to combine aspects of synthetic and physical chemistry, condensed matter physics, and materials science. In this Account, we use a combination of characterization tools to tie together recent advances in BHJ morphology characterization, device photophysics, and thin-film solution processing, illustrating how to identify the limiting factors in solar cell performance. We also highlight how new processing methods, which control both the BHJ phase separation and the internal order of the components, can be implemented to increase the power conversion efficiency (PCE). The failure of many innovative materials to achieve high performance in BHJ solar cell devices has been blamed on "poor morphology" without significant characterization of either the structure of the phase-separated morphology or the nature of the charge carrier recombination. We demonstrate how properly controlling the "nanomorphology", which is critically dependent on minute experimental details at every step, from synthesis to device construction, provides a clear path to >10% PCE BHJ cells, which can be fabricated at a fraction of the cost of conventional solar cells.
Measured Correlated Motion of theThree Body Coulomb Interacting System H^+ + H^+ + H^-
NASA Astrophysics Data System (ADS)
Wiese, L. M.
1998-05-01
The problem of three bodies interacting through a 1/r potential is a fundamental problem of physics. While its longstanding fame stems from its application to celestial mechanics, in atomic physics its importance arises from application to Coulomb-interacting systems, in which all three bodies carry some net charge. Because the three bodies interact through long range Coulomb forces over their entire path, their motion can be highly correlated. The effect of the interaction among the three bodies and any resulting correlated motion is reflected in how the available energy is ultimately shared among the three particles. By experimentally determining the energy sharing in a three body system, we can gain insight into the interactions governing the system. For the three body Coulomb interacting system of H^+ + H^+ + H^-, we have measured the partitioning of available center of mass (c.m.) energy among the particles when the system is in a near collinear configuration. By colliding 4 keV H_3^+ with a He target gas cell, we produce the H^+ + H^+ + H^- system a few eV above the dissociative limit. All three fragments are laboratory energy and angle resolved. By detecting all three in triple coincidence, we determine unambiguously the final state dynamics for each triply coincident event. Transforming our results to the c.m. frame, we determine the partitioning of available energy among the three particles. We have modified the Dalitz plot of high energy physics to elucidate correlations in the motion of any three body atomic system. Correlated motion in the H^+ + H^+ + H^- system is indicated by a nonuniform distribution on the Dalitz plot. For the near collinear breakup of H_3^+, we have observed the H^- to reside anywhere between the two H^+, from the Coulomb saddle point to the near vicinity of a proton. This work is supported by NSF Grant Number 9419505.
Wong, Wai-Yeung; Ho, Cheuk-Lam
2010-09-21
Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device performance. Our group has developed a novel strategy that allows for tuning of the optical absorption and charge transport properties as well as the PSC efficiency of these metallopolyynes. The absorbance of these materials can also be tuned to traverse the near-visible and near-infrared spectral regions. Because of the diversity of transition metals available and chemical versatility of the central spacer unit, we anticipate that this class of materials could soon lead to exciting applications in next-generation PSCs and other electronic or photonic devices. Further research in this emerging field could spur new developments in the production of renewable energy.
Novel energy relay dyes for high efficiency dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon
2015-02-01
4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342; J-V characteristics of ERD-incorporated DSSCs sensitized with N3, Ru505, and Z907 (Type-A strategy). See DOI: 10.1039/c4nr06645f
ERIC Educational Resources Information Center
Smith, Michael J.; Vincent, Colin A.
1989-01-01
Summarizes the quantitative relationships pertaining to the operation of electrochemical cells. Energy conversion efficiency, cycle efficiency, battery power, and energy/power density of two types of zinc-silver oxide cells are discussed. (YP)
White Nail Radio Transmitter: Billion Dollar Savings through Energy Efficiency
2011-05-10
increase efficiency and reduce overall energy consumption ashore by 50 percent CNO, Navy Energy Vision, P 10 White Nail Vision Your Cell Phone Cell...Estimated Total Number of transmitters 3,000,000 Estimated total power saved Watt 1,250,000,000 Cell Phone Transmitter Efficiency 1.25 Gigawatts saved...Greenhouse Gas Power 4 1 Energy Navy Use 7.3 Billion kWh White Nail Cell Phone Savings 11 Billion kWh One and a half times!!! Saves the output of four of
The AMPK inhibitor Compound C is a potent AMPK-independent anti-glioma agent
Liu, Xiaona; Chhipa, Rishi Raj; Nakano, Ichiro; Dasgupta, Biplab
2014-01-01
AMPK is an evolutionarily conserved energy sensor important for cell growth, proliferation, survival and metabolic regulation. Active AMPK inhibits biosynthetic enzymes like mTOR and acetyl CoA carboxylase (required for protein and lipid synthesis, respectively) to ensure that cells maintain essential nutrients and energy during metabolic crisis. Despite our knowledge about this incredibly important kinase, no specific chemical inhibitors are available to examine its function. However, one small molecule known as Compound C (also called dorsomorphin) has been widely used in cell-based, biochemical and in vivo assays as a selective AMPK inhibitor. In nearly all these reports including a recent study in glioma, the biochemical and cellular effects of Compound C has been attributed to its inhibitory action towards AMPK. While examining the status of AMPK activation in human gliomas, we observed that glioblastomas (GBMs) express copious amount of active AMPK. Compound C effectively reduced glioma viability in vitro both by inhibiting proliferation and inducing cell death. As expected, Compound C inhibited AMPK; however, all the antiproliferative effects of this compound were AMPK-independent. Instead, Compound C killed glioma cells by multiple mechanisms including activation of the Calpain/Cathepsin pathway, inhibition of AKT, mTORC1/C2, cell cycle block at G2M and induction of necroptosis and autophagy. Importantly, normal astrocytes were significantly less susceptible to Compound C. In summary, Compound C is an extremely potent anti-glioma agent but we suggest that caution should be taken in interpreting results when this compound is used as an AMPK inhibitor. PMID:24419061
Modular assembly of a photovoltaic solar energy receiver
Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.
1978-01-01
There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.
NASA Technical Reports Server (NTRS)
Gaffron, H.
1971-01-01
The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.
Computational Fluid Dynamics Modeling of Nickel Hydrogen Batteries
NASA Technical Reports Server (NTRS)
Cullion, R.; Gu, W. B.; Wang, C. Y.; Timmerman, P.
2000-01-01
An electrochemical Ni-H2 battery model has been expanded to include thermal effects. A thermal energy conservation equation was derived from first principles. An electrochemical and thermal coupled model was created by the addition of this equation to an existing multiphase, electrochemical model. Charging at various rates was investigated and the results validated against experimental data. Reaction currents, pressure changes, temperature profiles, and concentration variations within the cell are predicted numerically and compared with available data and theory.
Fuel economy of hybrid fuel-cell vehicles
NASA Astrophysics Data System (ADS)
Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.
The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.
Redox regulation in metabolic programming and inflammation.
Griffiths, Helen R; Gao, Dan; Pararasa, Chathyan
2017-08-01
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function. Copyright © 2017. Published by Elsevier B.V.
Hole-Transport Materials for Perovskite Solar Cells.
Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada
2016-11-14
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Performance of PV panels for solar energy conversion at the South Pole
NASA Astrophysics Data System (ADS)
Peeran, Syed M.
Expanding research facilities at the Amundson-Scott South pole station require increased electric power generation. Presently, electric power generation is by diesel generators using the JP8 fuel. As the station is accessible only for a short supply period during the austral summer, there are limitations upon the supply of fuel for power generation. This makes it necessary to seriously consider the use of the renewable energy sources. Although there is no sunlight for six months in the year, abundant solar energy is available during the remaining 6 months because of the clear skies, the clarity of air and the low humidity at the south pole. As the buildings at the south pole are built either without windows or with only porthole type windows, large areas on the walls and the roof are available for mounting the photovoltaic (PV) panels. In addition there is unlimited space around the station for constructing a PV panel 'farm'. In this paper four types of PV panels are evaluated; the 2-axis tracking panels, vertical 1-axis tracking panels, fixed vertical panels on the walls of buildings and mounted outdoors, and fixed horizontal panels on the roofs of the buildings. Equations are developed for the power output in KW/sq. ft and annual energy in kWh/sq. ft for each type of panel. The equations include the effects of the inclination of the sun above the horizon, the movement of the sun around the horizon, the direct, reflected and diffused components of the solar radiation, the characteristics of the solar cells and the types of dc/ac inverters used to interface the output of the cells with the existing ac power. A conceptual design of a 150-kW PV generation system suitable for the south pole is also discussed in this paper.
Performance of Ga(0.47)In(0.53)As cells over a range of proton energies
NASA Technical Reports Server (NTRS)
Weinberg, I.; Jain, R. K.; Vargasaburto, C.; Wilt, D. M.; Scheiman, D. A.
1995-01-01
Ga(0.47)In(0.53)As solar cells were processed by OMVPE and their characteristics determined at proton energies of 0.2, 0.5, and 3 MeV. Emphasis was on characteristics applicable to use of this cell as the low bandgap member of a monolithic, two terminal high efficiency InP/GaInAs cell. It was found that the radiation induced degradation in efficiency, I(sub SC), V(sub OC) and diffusion length increased with decreasing proton energy. When efficiency degradations were compared with InP it was observed that the present cells showed considerably more degradation over the entire energy range. Similar to InP, R(sub C), the carrier removal rate, decreased with increasing proton energy. However, numerical values for R(sub C) differed from those observed with InP. The difference is attributed to differing defect behavior between the two cell types. It was concluded that particular attention should be paid to the effects of low energy protons especially when the particle's track ends in one cell of the multibandgap device.
Waste-to-energy conversion from a microfluidic device
NASA Astrophysics Data System (ADS)
López-González, B.; Jiménez-Valdés, R. J.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Ledesma-García, J.; García-Cordero, J. L.; Arriaga, L. G.
2017-08-01
This work reports the successful harvesting of energy from waste produced in a microfluidic device using a fuel cell. A miniaturized glucose air-breathing microfluidic fuel cell (ABμFFC) was designed, fabricated and tested with three different configurations according to their electrode nature: inorganic, hybrid and biofuel cell. Each ABμFFC was characterized using an ideal medium, with sterile cell culture medium, and with waste produced on a microfluidic device. The inorganic-ABμFFC exhibited the highest performance compared to the rest of the configurations. As a proof-of-concept, cancer cells were cultured on a microfluidic device and the consumed cell culture media (glucose concentration <11 mM) was used as an energy source without further treatment, into the inorganic-ABμFFC. The fuel cell generated a maximum total power of 5.2 μW, which is enough energy to power low-consumption microelectronic chips. This application demonstrates that the waste produced by microfluidic applications could be potentially scavenged to produce electrical energy. It also opens the possibility to develop truly energy self-sufficient portable devices.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
Hybrid battery/supercapacitor energy storage system for the electric vehicles
NASA Astrophysics Data System (ADS)
Kouchachvili, Lia; Yaïci, Wahiba; Entchev, Evgueniy
2018-01-01
Electric vehicles (EVs) have recently attracted considerable attention and so did the development of the battery technologies. Although the battery technology has been significantly advanced, the available batteries do not entirely meet the energy demands of the EV power consumption. One of the key issues is non-monotonic consumption of energy accompanied by frequent changes during the battery discharging process. This is very harmful to the electrochemical process of the battery. A practical solution is to couple the battery with a supercapacitor, which is basically an electrochemical cell with a similar architecture, but with a higher rate capability and better cyclability. In this design, the supercapacitor can provide the excess energy required while the battery fails to do so. In addition to the battery and supercapacitor as the individual units, designing the architecture of the corresponding hybrid system from an electrical engineering point of view is of utmost importance. The present manuscript reviews the recent works devoted to the application of various battery/supercapacitor hybrid systems in EVs.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-ichiro; Nakao, Mitsuyoshi
2012-01-01
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis. PMID:22453831
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-Ichiro; Nakao, Mitsuyoshi
2012-03-27
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.
Hibbert, Jacqueline M; Creary, Melissa S; Gee, Beatrice E; Buchanan, Iris D; Quarshie, Alexander; Hsu, Lewis L
2006-11-01
We hypothesized that an elevated hemoglobin synthesis rate (SynHb) and myocardial oxygen consumption (MVO2) contribute to the excess protein and energy metabolism reported in children with sickle cell anemia. Twelve children (6-12 years old) with asymptomatic sickle cell and 9 healthy children matched for age and sex were studied. Measurements were whole-body protein turnover by [1-C]leucine, SynHb by [N]glycine, resting energy expenditure by indirect calorimetry and the systolic blood pressure-heart rate product used as an index of MVO2. Protein energy cost was calculated from protein turnover. Statistical analysis included Spearman correlations and partial correlation analyses. Although body mass index was significantly lower for sickle cell versus controls (P < 0.02), children with asymptomatic sickle cell had 52% higher protein turnover (P < 0.0005). Proportional reticulocyte count, SynHb, MVO2 and resting energy expenditure were also significantly higher in children with sickle cell (P < 0.01). Protein turnover correlated significantly with both SynHb (r = 0.63, P < 0.01) and reticulocyte percentage (r = 0.83, P < 0.0001). Partial correlation of these 3 variables showed reticulocyte percentage as the only variable to be significantly associated with protein turnover, even after adjusting for sickle cell anemia (P = 0.03). Partial correlation of log resting energy expenditure on MVO2 was significant, controlling for protein energy cost, sex and age (P = 0.03). These results indicate that metabolic demands of increased erythropoiesis and cardiac energy consumption account for much of the excess protein and energy metabolism in children with sickle cell anemia.
Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle
NASA Astrophysics Data System (ADS)
Jeong, Kwi Seong; Oh, Byeong Soo
The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.
Garcia-Lastra, Juan M.; De La Torre, Gema; Himpsel, F. J.; Rubio, Angel
2015-01-01
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed. PMID:29142685
Challenges for fuel cells as stationary power resource in the evolving energy enterprise
NASA Astrophysics Data System (ADS)
Rastler, Dan
The primary market challenges for fuel cells as stationary power resources in evolving energy markets are reviewed. Fuel cell power systems have significant barriers to overcome in their anticipated role as decentralized energy power systems. Market segments for fuel cells include combined heat and power; low-cost energy, premium power; peak shaving; and load management and grid support. Understanding the role and fit of fuel cell systems in evolving energy markets and the highest value applications are a major challenge for developers and government funding organizations. The most likely adopters of fuel cell systems and the challenges facing each adopter in the target market segment are reviewed. Adopters include generation companies, utility distribution companies, retail energy service providers and end-users. Key challenges include: overcoming technology risk; achieving retail competitiveness; understanding high value markets and end-user needs; distribution and service channels; regulatory policy issues; and the integration of these decentralized resources within the electrical distribution system.
Strain energy storage and dissipation rate in active cell mechanics
NASA Astrophysics Data System (ADS)
Agosti, A.; Ambrosi, D.; Turzi, S.
2018-05-01
When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded (symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active stress generated by the molecular motors continuously stretches and drifts the actin network, the cytoskeleton of the cell. In this paper we theoretically compare the energy stored and dissipated in this active system in two geometric configurations of interest: symmetric and polarized. We find that the stored energy is larger for a radially symmetric cell at low activation regime, while the polar configuration has larger strain energy when the active stress is beyond a critical threshold. Conversely, the dissipation of energy in a symmetric cell is always larger than that of a nonsymmetric one. By a combination of symmetry arguments and competition between surface and bulk stress, we argue that radial symmetry is an energetically expensive metastable state that provides access to an infinite number of lower-energy states, the polarized configurations.
Strain energy storage and dissipation rate in active cell mechanics.
Agosti, A; Ambrosi, D; Turzi, S
2018-05-01
When living cells are observed at rest on a flat substrate, they can typically exhibit a rounded (symmetric) or an elongated (polarized) shape. Although the cells are apparently at rest, the active stress generated by the molecular motors continuously stretches and drifts the actin network, the cytoskeleton of the cell. In this paper we theoretically compare the energy stored and dissipated in this active system in two geometric configurations of interest: symmetric and polarized. We find that the stored energy is larger for a radially symmetric cell at low activation regime, while the polar configuration has larger strain energy when the active stress is beyond a critical threshold. Conversely, the dissipation of energy in a symmetric cell is always larger than that of a nonsymmetric one. By a combination of symmetry arguments and competition between surface and bulk stress, we argue that radial symmetry is an energetically expensive metastable state that provides access to an infinite number of lower-energy states, the polarized configurations.
Rybchyn, Mark Stephen; De Silva, Warusavithana Gunawardena Manori; Sequeira, Vanessa Bernadette; McCarthy, Bianca Yuko; Dilley, Anthony Vincent; Dixon, Katie Marie; Halliday, Gary Mark; Mason, Rebecca Sara
2018-05-01
Inadequately repaired post-UV DNA damage results in skin cancers. DNA repair requires energy but skin cells have limited capacity to produce energy after UV insult. We examined whether energy supply is important for DNA repair after UV exposure, in the presence of 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), which reduces UV-induced DNA damage and photocarcinogenesis in a variety of models. After UV exposure of primary human keratinocytes, the addition of 1,25(OH) 2 D 3 increased unscheduled DNA synthesis, a measure of DNA repair. Oxidative phosphorylation was depleted in UV-irradiated keratinocytes to undetectable levels within an hour of UV irradiation. Treatment with 1,25(OH) 2 D 3 but not vehicle increased glycolysis after UV. 2-Deoxyglucose-dependent inhibition of glycolysis abolished the reduction in cyclobutane pyrimidine dimers by 1,25(OH) 2 D 3 , whereas inhibition of oxidative phosphorylation had no effect. 1,25(OH) 2 D 3 increased autophagy and modulated PINK1/Parkin consistent with enhanced mitophagy. These data confirm that energy availability is limited in keratinocytes after exposure to UV. In the presence of 1,25(OH) 2 D 3 , glycolysis is enhanced along with energy-conserving processes such as autophagy and mitophagy, resulting in increased repair of cyclobutane pyrimidine dimers and decreased oxidative DNA damage. Increased energy availability in the presence of 1,25(OH) 2 D 3 is an important contributor to DNA repair in skin after UV exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
2010-09-01
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2010 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE...Cells • Solar Energy Cells • High Capacity Batteries • Radioisotope Thermoelectric Energy • Energy Capture 7 Hydrogen Fuel Cells Hydrogen fuel is...eventually required recharging Radioisotope Thermoelectric Energy Radioisotope Thermoelectric Generators (RTGs) use isotopic radioactive decay as a
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Neutral beamline with improved ion energy recovery
Kim, Jinchoon
1984-01-01
A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.
Foote, Monica R; Nonnecke, Brian J; Waters, W Ray; Palmer, Mitchell V; Beitz, Donald C; Fowler, Mike A; Miller, Bill L; Johnson, Tom E; Perry, H Bruce
2005-09-01
Effects of increased protein and energy provided by an intensified milk replacer on the antigen-specific, cell-mediated immune response of the neonatal calf were examined. Calves were fed a standard (0.45 kg/day of a 20% crude protein, 20% fat milk replacer; n=11) or intensified (1.14 kg/day of a 28% crude protein, 20% fat milk replacer; n=11) diet from 0 to 6 weeks of age. All calves were vaccinated with Mycobacterium bovis bacillus Calmette-Guerin (BCG) at 1 week of age. The daily weight gain of intensified-diet calves (0.62 kg/day) was greater than the weight gain of standard-diet calves (0.29 kg/day). Liver, kidney, heart, thymus, and subcervical lymph nodes from intensified-diet calves were heavier than the same organs from standard-diet calves. Flow cytometric analysis of peripheral blood mononuclear cell (PBMC) populations indicated that CD4+ cells, gamma delta TCR+ cells, and monocyte percentages, although unaffected by diet during the first 5 weeks of the study, were higher in intensified-diet calves at week 6. The decline in gamma delta TCR+ cell percentages and increase in B cell percentages with increasing age seen in all calves are characteristic of the maturing immune system of the calf. CD8+ T cell or B cell percentages were not affected by diet. In intensified-diet calves, percentages of CD4+ expressing interleukin-2 receptor increased and percentages of gamma delta TCR+ cells expressing interleukin-2 receptor decreased with time. The same populations in standard-diet calves did not change with time. Percentages of CD4+ and CD8+ T cells, and B cells expressing MHC class II antigen, were unaffected by diet or age. Although mitogen-induced interferon (IFN)-gamma and nitric oxide (NO) secretion increased with age for all calves, PBMC from intensified-diet calves produced less IFN-gamma and more NO than did cells from standard-diet calves at week 6 of the study. Antigen-induced secretion of IFN-gamma and NO also increased with age but was unaffected by diet. Antigen-elicited delayed-type hypersensitivity was unaffected by diet, suggesting increased dietary protein and energy did not alter adaptive immunity in vivo. Overall, these results suggest that feeding calves a commercially available, intensified milk replacer affects minimally the composition and functional capacities of PBMC populations. Additional research is necessary to determine whether these subtle effects influence the calf's susceptibility to infectious disease.
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Sampling based State of Health estimation methodology for Li-ion batteries
NASA Astrophysics Data System (ADS)
Camci, Fatih; Ozkurt, Celil; Toker, Onur; Atamuradov, Vepa
2015-03-01
Storage and management of energy is becoming a more and more important problem every day, especially for electric and hybrid vehicle applications. Li-ion battery is one of the most important technological alternatives for high capacity energy storage and related industrial applications. State of Health (SoH) of Li-ion batteries plays a critical role in their deployment from economic, safety, and availability aspects. Most, if not all, of the studies related to SoH estimation focus on the measurement of a new parameter/physical phenomena related to SoH, or development of new statistical/computational methods using several parameters. This paper presents a new approach for SoH estimation for Li-ion battery systems with multiple battery cells: The main idea is a new circuit topology which enables separation of battery cells into two groups, main and test batteries, whenever a SoH related measurement is to be conducted. All battery cells will be connected to the main battery during the normal mode of operation. When a measurement is needed for SoH estimation, some of the cells will be separated from the main battery, and SoH estimation related measurements will be performed on these units. Compared to classical SoH measurement methods which deal with whole battery system, the proposed method estimates the SoH of the system by separating a small but representative set of cells. While SoH measurements are conducted on these isolated cells, remaining cells in the main battery continue to function in normal mode, albeit in slightly reduced performance levels. Preliminary experimental results are quite promising, and validate the feasibility of the proposed approach. Technical details of the proposed circuit architecture are also summarized in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J. A.; Hansen, K. M.; Wilson, J. S.
1976-08-01
This report summarizes results of preliminary experiments to develop cytological and biochemical indicators for estimating damage to respiratory epithelium exposed to toxic agents associated with the by-products of nonnuclear energy production using advanced flow-systems cell-analysis technologies. Since initiation of the program one year ago, progress has been made in obtaining adequate numbers of exfoliated lung cells from the Syrian hamster for flow analysis; cytological techniques developed on human exfoliated gynecological samples have been adapted to hamster lung epithelium for obtaining single-cell suspensions; and lung-cell samples have been initially characterized based on DNA content, total protein, nuclear and cytoplasmic size, andmore » multiangle light-scatter measurements. Preliminary results from measurements of the above parameters which recently became available are described in this report. As the flow-systems technology is adapted further to analysis of exfoliated lung cells, measurements of changes in physical and biochemical cellular properties as a function of exposure to toxic agents will be performed.« less
Arrays of EAP micro-actuators for single-cell stretching applications
NASA Astrophysics Data System (ADS)
Akbari, S.; Niklaus, M.; Shea, H.
2010-04-01
Mechanical stimuli are critical for the development and maintenance of most tissues such as muscles, cartilage, bones and blood vessels. The commercially available cell culture systems replicating the in vivo environment are typically based on simple membrane cell-stretching equipment, which can only measure the average response of large colonies of cells over areas of greater than one cm2. We present here the conceptual design and the complete fabrication process of an array of 128 Electro-Active Polymer (EAP) micro-actuators which are uni-axially stretched and hence used to impose unidirectional strain on single cells, make it feasible to do experiments on the cytomechanics of individual cells. The Finite Element Method is employed to study the effect of different design parameters on achievable strain, leading to the optimized design. Compliant gold electrodes are deposited by low-energy ion implantation on both sides of a PDMS membrane, as this technique allows making electrodes that support large strain with minimal stiffening of the elastomer. The membrane is bonded to a rigid support, leading to an array of 100×100 μm2 EAP actuators.
Amorphous silicon solar cell allowing infrared transmission
Carlson, David E.
1979-01-01
An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.
Khani, Hadi; Dowell, Timothy J; Wipf, David O
2018-06-27
We develop zirconium-templated NiO/NiOOH nanosheets on nickel foam and polypyrrole-embedded in exfoliated carbon fiber cloth as complementary electrodes for an asymmetric battery-type supercapacitor device. We achieve high volumetric energy and power density by the modification of commercially available current collectors (CCs). The modified CCs provide the source of active material, actively participate in the charge storage process, provide a larger surface area for active material loading, need no additional binders or conductive additives, and retain the ability to act as the CC. Nickel foam (NF) CCs are modified by use of a soft-templating/solvothermal treatment to generate NiO/NiOOH nanosheets, where the NF is the source of Ni for the synthesis. Carbon-fiber cloth (CFC) CCs are modified by an electrochemical oxidation/reduction process to generate exfoliated core-shell structures (ECFC). Electropolymerization of pyrrole into the shell structure produces polypyrrole embedded in exfoliated core-shell material (PPy@rECFC). Battery-type supercapacitor devices are produced with NiO/NiOOH@NF and PPy@rECFC as positive and negative electrodes, respectively, to demonstrate the utility of this approach. Volumetric energy densities for the full-cell device are in the range of 2.60-4.12 mWh cm -3 with corresponding power densities in the range of 9.17-425.58 mW cm -3 . This is comparable to thin-film lithium-ion batteries (0.3-10 mWh cm -3 ) and better than some commercial supercapacitors (<1 mWh cm -3 ). 1 The energy and power density is impressive considering that it was calculated using the entire cell volume (active materials, separator, and both CCs). The full-cell device is highly stable, retaining 96% and 88% of capacity after 2000 and 5000 cycles, respectively. These results demonstrate the utility of directly modifying the CCs and suggest a new method to produce high volumetric energy density and power density storage devices.
Rapid spectrophotometric method for determining surface free energy of microalgal cells.
Zhang, Xinru; Jiang, Zeyi; Li, Mengyin; Zhang, Xinxin; Wang, Ge; Chou, Aihui; Chen, Liang; Yan, Hai; Zuo, Yi Y
2014-09-02
Microalgae are one of the most promising renewable energy sources with environmental sustainability. The surface free energy of microalgal cells determines their biofouling and bioflocculation behavior and hence plays an important role in microalgae cultivation and harvesting. To date, the surface energetic properties of microalgal cells are still rarely studied. We developed a novel spectrophotometric method for directly determining the surface free energy of microalgal cells. The principles of this method are based on analyzing colloidal stability of microalgae suspensions. We have shown that this method can effectively differentiate the surface free energy of four microalgal strains, i.e., marine Chlorella sp., marine Nannochloris oculata, freshwater autotrophic Chlorella sp., and freshwater heterotrophic Chlorella sp. With advantages of high-throughput and simplicity, this new spectrophotometric method has the potential to evolve into a standard method for measuring the surface free energy of cells and abiotic particles.
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha; Bennett, William
2009-01-01
NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Sauer, Dirk Uwe
2016-10-01
This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.
Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo
2015-04-20
Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.
An improved high-performance lithium-air battery.
Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno
2012-06-10
Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.
Crystal structure optimisation using an auxiliary equation of state
NASA Astrophysics Data System (ADS)
Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron
2015-11-01
Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.
Electronic and thermodynamic properties of α-Pu2O3
NASA Astrophysics Data System (ADS)
Lu, Yong; Yang, Yu; Zheng, Fawei; Zhang, Ping
2014-08-01
Based on density functional theory+U calculations and the quasi-annealing simulation method, we obtain the ground electronic state for α-Pu2O3 and present its phonon dispersion curves as well as various thermodynamic properties, which have seldom been theoretically studied because of the huge unit cell. We find that the Pu-O chemical bonding is weaker in α-Pu2O3 than in fluorite PuO2, and subsequently a frequency gap appears between oxygen and plutonium vibration density of states. Based on the calculated Helmholtz free energies at different temperatures, we further study the reaction energies for Pu oxidation, PuO2 reduction, and transformation between PuO2 and α-Pu2O3. Our reaction energy results are in agreements with available experiment. And it is revealed that high temperature and insufficient oxygen environment are in favor of the formation of α-Pu2O3.
Energy Storage Requirements & Challenges for Ground Vehicles
2010-03-18
Titinate Evaluation Cell Evaluation Battery Aging Phenomenon Battery SOC/SOH Determination Modeling ARM 100 LiIon APU Lion Cell Evaluation Cell...Advanced Batteries Fuels Th er m al Ma na ge m en t Radiators Heat Recovery Thermal Interface Materials Phase Change Cooling Advanced Electronics...in all energy storage Energy Storage Team Mission Battery Technology Evaluation Lab Module Test & Eval Cell Test & Eval 6UNCLASSIFIED Pacing Vehicle
Thermophotovoltaic energy generation
Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter
2015-08-25
Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
Fuel Cell Development and Test Laboratory | Energy Systems Integration
Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel a fuel cell test in the Fuel Cell Development and Test Laboratory. Capability Hubs The Fuel Cell
Energy management strategy based on fuzzy logic for a fuel cell hybrid bus
NASA Astrophysics Data System (ADS)
Gao, Dawei; Jin, Zhenhua; Lu, Qingchun
Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.
Limits to anaerobic energy and cytosolic concentration in the living cell.
Paglietti, A
2015-01-01
For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.
Limits to anaerobic energy and cytosolic concentration in the living cell
NASA Astrophysics Data System (ADS)
Paglietti, A.
2015-11-01
For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.
A micromachined carbon nanotube film cantilever-based energy cell
NASA Astrophysics Data System (ADS)
Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long
2012-08-01
This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm-2 when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems.
Respective effects of oxygen and energy substrate deprivation on beta cell viability.
Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric
2015-01-01
Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.
Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.
Sivula, Kevin
2013-01-01
Efficiently and inexpensively converting solar energy into chemical fuels is an important goal towards a sustainable energy economy. An integrated tandem cell approach could reasonably convert over 20% of the sun's energy directly into chemical fuels like H2 via water splitting. Many different systems have been investigated using various combinations of photovoltaic cells and photoelectrodes, but in order to be economically competitive with the production of H2 from fossil fuels, a practical water splitting tandem cell must optimize cost, longevity and performance. In this short review, the practical aspects of solar fuel production are considered from the perspective of a semiconductor-based tandem cell and the latest advances with a very promising technology - metal oxide photoelectrochemical tandem cells - are presented.
Damiani, Chiara; Colombo, Riccardo; Gaglio, Daniela; Mastroianni, Fabrizia; Westerhoff, Hans Victor; Vanoni, Marco; Alberghina, Lilia
2017-01-01
Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth. PMID:28957320
Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells.
Guo, J; Wang, Q; Wai, D; Zhang, Q Z; Shi, S H; Le, A D; Shi, S T; Yen, S L-K
2015-04-01
This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Hladky, Paul W.
2009-01-01
The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…
Surface tension and modeling of cellular intercalation during zebrafish gastrulation.
Calmelet, Colette; Sepich, Diane
2010-04-01
In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.
Theoretical study of electronic transfer current rate at dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays
2018-05-01
In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litchfield, J.W.; Watts, R.L.; Gurwell, W.E.
A materials assessment methodology for identifying specific critical material requirements that could hinder the implementation of solar energy has been developed and demonstrated. The methodology involves an initial screening process, followed by a more detailed materials assessment. The detailed assessment considers such materials concerns and constraints as: process and production constraints, reserve and resource limitations, lack of alternative supply sources, geopolitical problems, environmental and energy concerns, time constraints, and economic constraints. Data for 55 bulk and 53 raw materials are currently available on the data base. These materials are required in the example photovoltaic systems. One photovoltaic system and thirteenmore » photovoltaic cells, ten solar heating and cooling systems, and two agricultural and industrial process heat systems have been characterized to define their engineering and bulk material requirements.« less
Challenges to diagnosis of HIV-associated wasting.
Kotler, Donald
2004-12-01
There is a wide variability in the clinical presentation of the protein energy malnutrition often characterized as wasting in patients infected with HIV. Moreover, the clinical presentation has evolved over time. Initially, protein energy malnutrition was characterized by profound weight loss and depletion of body cell mass (BCM). Recently, unrelated concurrent metabolic abnormalities, such as lipodystrophy, may complicate the diagnosis of HIV wasting. Although measures of BCM are relatively accurate for the diagnosis of HIV wasting, the optimal tools for assessing BCM are not necessarily available to the clinician. From the practical standpoint, HIV wasting may be a self-evident diagnosis in advanced stages, but effective interpretation of the early signs of HIV wasting requires familiarity with other complications included in the differential diagnosis.
Ruan, Zuoxi; Giordano, Mario
2017-02-01
The assimilation of N-NO 3 - requires more energy than that of N-NH 4 + . This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N-limited and energy-limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH 4 + did not stimulate growth. When energy was limiting, however, Synechococcus grew faster in NH 4 + than in NO 3 - and had higher C (20%), N (38%) and S (30%) cell quotas. Furthermore, more C was allocated to protein, whereas the carbohydrate and lipid pool size did not change appreciably. Energy limitation also led to a higher photosynthetic rate relative to N limitation. We interpret these results as an indication that, under energy limitation, the use of the least expensive N source allowed a spillover of the energy saved from N assimilation to the assimilation of other nutrients. The change in elemental stoichiometry influenced C allocation, inducing an increase in cell protein, which resulted in a stimulation of photosynthesis and growth. © 2016 John Wiley & Sons Ltd.
New bimetallic EMF cell shows promise in direct energy conversion
NASA Technical Reports Server (NTRS)
Hesson, J. C.; Shimotake, H.
1968-01-01
Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.
Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.
Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco
2017-07-03
Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.
Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Gönüllü, Y.; Arndt, B.
2013-05-01
Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
NASA Technical Reports Server (NTRS)
Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.
Large Scale Reduction of Graphite Oxide Project
NASA Technical Reports Server (NTRS)
Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy
2015-01-01
This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.
Fundamentals and applications of electrochemistry
NASA Astrophysics Data System (ADS)
McEvoy, A. J.
2013-06-01
The Voltaic pile, invented here on Lake Como 200 years ago, was a crucial step in the development of electrical engineering. For the first time a controlled and reliable source of electric current was available. The science of electrochemistry developed rapidly and is now a key contributor, not just to energy technology but also, for example, to metallurgy and industrial processes. The basic concepts of electrochemistry are presented, with the practical examples of its application in fuel cells, and with the perspective of the history of the subject.
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1981-01-01
The use of interactive computer graphics is suggested as an aid in battery system development. Mathematical representations of simplistic but fully representative functions of many electrochemical concepts of current practical interest will permit battery level charge and discharge phenomena to be analyzed in a qualitative manner prior to the assembly and testing of actual hardware. This technique is a useful addition to the variety of tools available to the battery system designer as he bridges the gap between interesting single cell life test data and reliable energy storage subsystems.
[Principles of energy sources of totally implantable hearing aids for inner ear hearing loss].
Baumann, J W; Leysieffer, H
1998-02-01
A fully implantable hearing aid consists of a sound receptor (microphone), an electronic amplifier including active audio-signal processing, an electromechanical transducer (actuator) for stimulating the ear by vibration, and an energy source. The energy source may be either a primary cell or a rechargeable (secondary) cell. As the energy requirements of an implantable hearing aid are dependent on the operating principle of the actuator, the operating principles of electromagnetic and piezoelectric transducers were examined with respect to their relative power consumption. The analysis showed that the energy requirements of an implantable hearing aid are significantly increased when an electromagnetic transducer is used. The power consumption of a piezoelectric transducer was found to be less than that of the electronic components alone. The energy needed to run a fully implantable hearing aid under these conditions would be 38 mWH per day. Primary cells cannot provide the energy needed for a minimum operation time of 5 years (70 WH), and therefore rechargeable cells must be used. A theoretical appraisal was carried out on nickel-cadmium, nickel-metal hydride, and lithium-ion cells to determine their suitability as well as to assess the risks associated with their use in an implant. Safety measures were drawn up from the results. Ni-MH cells were found to be the most suitable for use as an energy source for implantable hearing-aids because they are more robust than Li ion cells and their storage capacity is double that of Ni-Cd cells of similar size.
Raberg, Matthias; Volodina, Elena; Lin, Kaichien; Steinbüchel, Alexander
2018-06-01
Ralstonia eutropha strain H16 is a Gram-negative non-pathogenic betaproteobacterium ubiquitously found in soils and has been the subject of intensive research for more than 50 years. Due to its remarkable metabolically versatility, it utilizes a broad range of renewable heterotrophic resources. The substrate utilization range can be further extended by metabolic engineering as genetic tools are available. It has become the best studied "Knallgas" bacterium capable of chemolithoautotrophic growth with hydrogen as the electron donor and carbon dioxide as the carbon source. It also serves as a model organism to study the metabolism of poly(β-hydroxybutyrate), a polyester which is accumulated within the cells for storage of both carbon and energy. Thermoplastic and biodegradable properties of this polyhydroxyalkanoate (PHA) have attracted much biotechnical interest as a replacement for fossil resource-based plastics. The first applications of R. eutropha aimed at chemolithoautotrophic production of single cell protein (SCP) for food and feed and the synthesis of various PHAs. The complete annotated genome is available allowing systematic biology approaches together with data provided by available omics studies. Besides PHAs, novel biopolymers of 2-hydroxyalkanoates and polythioesters or cyanophycin as well as chemicals such as alcohols, alkanes, alkenes, and further interesting value added chemicals significantly recently extended the range of products synthesized by R. eutropha. High cell density cultivations can be performed without too much effort and the available repertoire of genetic tools is rapidly growing. Altogether, this qualifies R. eutropha strain H16 to become a production platform strain for a large spectrum of products.
Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko
2012-01-01
Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469
The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...
Safi, C; Cabas Rodriguez, L; Mulder, W J; Engelen-Smit, N; Spekking, W; van den Broek, L A M; Olivieri, G; Sijtsma, L
2017-09-01
Several cell disruption methods were tested on Nannochloropsis gaditana, to evaluate their efficiency in terms of cell disintegration, energy input and release of soluble proteins. High-pressure homogenization (HPH) and bead milling were the most efficient with >95% cell disintegration, ±50% (w/w) release of total proteins and low energy input (<0.5kWh.kg -1 biomass ). Enzymatic treatment required low energy input (<0.34kWh.kg -1 biomass ), but it only released ±35% protein (w/w). Pulsed Electric Field (PEF) was neither energy-efficient (10.44kWh.kg -1 biomass ) nor successful for protein release (only 10% proteins w/w) and cell disintegration. The release of proteins after applying HPH and bead milling always required less intensive operating conditions for cell disruption. The energy cost per unit of released protein ranged from 0.15-0.25 €.kg Protein -1 in case of HPH, and up to 2-20 €.kg Protein -1 in case of PEF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fire Tests on E-vehicle Battery Cells and Packs.
Sturk, David; Hoffmann, Lars; Ahlberg Tidblad, Annika
2015-01-01
The purpose of this study was to investigate the effects of abuse conditions, including realistic crash scenarios, on Li ion battery systems in E-vehicles in order to develop safe practices and priorities when responding to accidents involving E-vehicles. External fire tests using a single burning item equipment were performed on commercial Li ion battery cells and battery packs for electric vehicle (E-vehicle) application. The 2 most common battery cell technologies were tested: Lithium iron phosphate (LFP) and mixed transition metal oxide (lithium nickel manganese cobalt oxide, NMC) cathodes against graphite anodes, respectively. The cell types investigated were "pouch" cells, with similar physical dimensions, but the NMC cells have double the electric capacity of the LFP cells due to the higher energy density of the NMC chemistry, 7 and 14 Ah, respectively. Heat release rate (HRR) data and concentrations of toxic gases were acquired by oxygen consumption calorimetry and Fourier transform infrared spectroscopy (FTIR), respectively. The test results indicate that the state of charge (SOC) affects the HRR as well as the amount of toxic hydrogen fluoride (HF) gas formed during combustion. A larger number of cells increases the amount of HF formed per cell. There are significant differences in response to the fire exposure between the NMC and LFP cells in this study. The LFP cells generate a lot more HF per cell, but the overall reactivity of the NMC cells is higher. However, the total energy released by both batteries during combustion was independent of SOC, which indicates that the electric energy content of the test object contributes to the activation energy of the thermal and heat release process, whereas the chemical energy stored in the materials is the main source of thermal energy in the batteries. The results imply that it is difficult to draw conclusions about higher order system behavior with respect to HF emissions based on data from tests on single cells or small assemblies of cells. This applies to energy release rates as well. The present data show that mass and shielding effects between cells in multicell assemblies affect the propagation of a thermal event.
NASA Technical Reports Server (NTRS)
Mougin, L. J.
1983-01-01
The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.