Sample records for cell exposure system

  1. Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment.

    PubMed

    Karunasena, Enusha; Larrañaga, Michael D; Simoni, Jan S; Douglas, David R; Straus, David C

    2010-12-01

    Damage to human neurological system cells resulting from exposure to mycotoxins confirms a previously controversial public health threat for occupants of water-damaged buildings. Leading scientific organizations disagree about the ability of inhaled mycotoxins in the indoor environment to cause adverse human health effects. Damage to the neurological system can result from exposure to trichothecene mycotoxins in the indoor environment. This study demonstrates that neurological system cell damage can occur from satratoxin H exposure to neurological cells at exposure levels that can be found in water-damaged buildings contaminated with fungal growth. The constant activation of inflammatory and apoptotic pathways at low levels of exposure in human brain capillary endothelial cells, astrocytes, and neural progenitor cells may amplify devastation to neurological tissues and lead to neurological system cell damage from indirect events triggered by the presence of trichothecenes.

  2. Understanding Air-Liquid Interface Cell Exposure Systems: A Comprehensive Assessment of Various Systems Under Identical Conditions

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI system design features that permit reproducible a...

  3. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures.

    PubMed

    Liu, Faye F; Peng, Cheng; Escher, Beate I; Fantino, Emmanuelle; Giles, Cindy; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2013-10-15

    Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. In-vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung - A Dialogue between Aerosol Science and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.

    The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerningmore » inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.« less

  5. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  6. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials

    PubMed Central

    Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.

    2013-01-01

    To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796

  7. Critical Evaluation of Air-Liquid Interface Cell Exposure Systems for in Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    We compared various in vitro exposure systems for their ability to expose cells to particles and gases. The systems tested use different mechanisms to deliver multi-pollutants to the cells: diffusion, sedimentation, thermophoresis (THP) and electrostatic precipitation (ESP). Vari...

  8. Evaluation of air-liquid interface exposure systems for in vitro assessment of airborne pollutants

    EPA Science Inventory

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared fi...

  9. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung.

    PubMed

    Klein, Sebastian G; Serchi, Tommaso; Hoffmann, Lucien; Blömeke, Brunhilde; Gutleb, Arno C

    2013-07-26

    Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. A system consisting of four different human cell lines which mimics the cell response of the alveolar surface in vitro was developed to study native aerosol exposure (Vitrocell™ chamber). The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane. The spatial distribution of the cells in the tetraculture was analysed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the transwell. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The cells formed colonies under submerged conditions, which disappeared at the ALI. To evaluate the response to oxidative stress, the dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used together with 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH) as inducer of oxidative stress. The tetraculture showed less induction of reactive oxygen species (ROS) production after being treated with a positive control compared to the monocultures of EA.hy 926, THP-1 and HMC-1. Submerged cultures showed elevated ROS and IL-8 levels compared to ALI cultures. The Vitrocell™ aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine NPs in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. The system can be used in conjunction with a native aerosol exposure system and may finally lead to a more realistic judgement regarding the hazard of new compounds and/or new nano-scaled materials in the future. The results for the ROS production and IL-8 secretion suggest that submerged exposure may lead to an overestimation of observed effects.

  10. Improvement of the CULTEX® exposure technology by radial distribution of the test aerosol.

    PubMed

    Aufderheide, Michaela; Heller, Wolf-Dieter; Krischenowski, Olaf; Möhle, Niklas; Hochrainer, Dieter

    2017-07-05

    The exposure of cellular based systems cultivated on microporous membranes at the air-liquid interface (ALI) has been accepted as an appropriate approach to simulate the exposure of cells of the respiratory tract to native airborne substances. The efficiency of such an exposure procedure with regard to stability and reproducibility depends on the optimal design at the interface between the cellular test system and the exposure technique. The actual exposure systems favor the dynamic guidance of the airborne substances to the surface of the cells in specially designed exposure devices. Two module types, based on a linear or radial feed of the test atmosphere to the test system, were used for these studies. In our technical history, the development started with the linear designed version, the CULTEX ® glass modules, fulfilling basic requirements for running ALI exposure studies (Mohr and Durst, 2005). The instability in the distribution of different atmospheres to the cells caused us to create a new exposure module, characterized by a stable and reproducible radial guidance of the aerosol to the cells. The outcome was the CULTEX ® RFS (Mohr et al., 2010). In this study, we describe the differences between the two systems with regard to particle distribution and deposition clarifying the advantages and disadvantages of a radial to a linear aerosol distribution concept. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects.

    PubMed

    Oostingh, Gertie J; Papaioannou, Eleni; Chasapidis, Leonidas; Akritidis, Theofylaktos; Konstandopoulos, Athanasios G; Duschl, Albert

    2013-09-01

    Diesel engine emission particle filters are often placed at exhaust outlets to remove particles from the exhaust. The use of filters results in the exposure to a reduced number of nanometer-sized particles, which might be more harmful than the exposure to a larger number of micrometer-sized particles. An in vitro exposure system was established to expose human alveolar epithelial cells to freshly generated exhaust. Computer simulations were used to determine the optimal flow characteristics and ensure equal exposure conditions for each well of a 6-well plate. A selective particle size sampler was used to continuously deliver diesel soot particles with different particle size distributions to cells in culture. To determine, whether the system could be used for cellular assays, alterations in cytokine production and cell viability of human alveolar A549 cells were determined after 3h on-line exposure followed by a 21-h conventional incubation period. Data indicated that complete diesel engine emission slightly affected pre-stimulated cells, but naive cells were not affected. The fractions containing large or small particles never affected the cells. The experimental set-up allowed a reliable exposure of the cells to the complete exhaust fraction or to the fractions containing either large or small diesel engine emission particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mechanism of Electromagnetic Energy Effects of the Nervous System. Experimental System and Preliminary Results.

    DTIC Science & Technology

    1982-07-01

    17 * 7 Expulsion of pipette by cell... 17 8 Effects of curare on cell studied 27 June 1980 ... 18 9 Pipette experiment, 18 July 1980 ... 27 10...Response of cell studied 18 August 1980 to sudden dc shift... 29 3 3 FIGURES (cont’d) C-Ia-c Baseline period of cell studied 18 June 1980 ... page 49 C-2a-c...Exposure period of cell studied 18 June 1980 ... 50 C-3a-c Post-exposure period of cell studied 18 June 1980 ... 51 C-4a-d Baseline, first exposure

  13. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  14. Apoptosis and expression of apoptosis-related genes in the mouse testis following heat exposure.

    PubMed

    Miura, Michiharu; Sasagawa, Isoji; Suzuki, Yasuhiro; Nakada, Teruhiro; Fujii, Junichi

    2002-04-01

    To investigate molecular mechanisms of germ cell apoptosis induced by heat exposure in mice. Controlled laboratory study. Departments of Urology and Biochemistry, Yamagata University School of Medicine, Yamagata, Japan. Forty-four male B6D2F1 mice. Heat exposure, 43 degrees C for 15 minutes. Testicular germ cell apoptosis (percentages of apoptotic tubules and apoptotic cells) was assessed by using DNA nick-end labeling, and expression of Bcl-2 family, Fas-FasL system, and p53 was evaluated by using Western analysis. Bilateral testicular weights decreased significantly from 3 days after heat exposure. Percentages of apoptotic tubules and apoptotic germ cells increased significantly from 1 day after heat exposure. There were no significant changes in the levels of Bcl-xl, Bad, and Bax after heat exposure. However, Bcl-2 expression level decreased significantly 7 days after heat exposure. In contrast, the expression level of Fas and p53 increased significantly from 1 day to 3 days after heat exposure, respectively. Expression level of FasL elevated significantly at days 1 and 2 but declined from day 3. Germ cell apoptosis induced by heat exposure is mainly mediated by the Fas-FasL system.

  15. Magnetostatic Field System for Uniform Cell Cultures Exposure

    PubMed Central

    Vergallo, Cristian; Piccoli, Claudia; Romano, Alberto; Panzarini, Elisa; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2013-01-01

    The aim of the present work has been the design and the realization of a Magnetostatic Field System for Exposure of Cell cultures (MaFiSEC) for the uniform and the reproducible exposure of cell cultures to static magnetic fields (SMFs) of moderate magnetic induction. Experimental and computer-simulated physical measurements show that MaFiSEC: i) generates a SMF with magnetic induction that can be chosen in the range of 3 to 20 mT; ii) allows the uniform SMF exposure of cells growing in adhesion and in suspension; iii) is cheap and easy to use. The efficacy and reproducibility of MaFiSEC has been tested by comparing the biological effects exerted on isolated human lymphocytes by 72 h of exposure to a magnet (i.e. Neodymium Magnetic Disk, NMD) placed under the culture Petri dish. Lymphocytes morphology, viability, cell death, oxidative stress and lysosomes activity were the parameters chosen to evaluate the SMF biological effects. The continuous exposure of cells to a uniform SMF, achieved with MaFiSEC, allows highly reproducible biochemical and morphological data. PMID:23977284

  16. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  17. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE PAGES

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong; ...

    2017-02-03

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  18. Solar simulated ultraviolet radiation damages murine neonatal skin and alters Langerhans cell development, but does not induce inflammation.

    PubMed

    McGee, Heather M; Dharmadasa, Thanuja; Woods, Gregory M

    2009-06-01

    Development of melanoma has been linked to excessive childhood exposure to sunlight. As neonates have a relatively underdeveloped immune system, it is likely that the immune system reacts differently to the exposure, leading to alterations in this development. This study was designed to assess changes in development of the skin immune system following neonatal irradiation. Ultraviolet radiation exposure led to relative depletion of Langerhans cells, however this was not due to migration or cell death, but rather restriction of Langerhans cells populating the epidermis. During this time, there was evidence of cellular damage, however there was no induction of an inflammatory response. It therefore appears that neonatal exposure to ultraviolet radiation leads to a skew towards a tolerogenic immune response, which may lead to a reduced ability to respond to ultraviolet radiation-induced tumours.

  19. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.

    PubMed

    Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine

    2016-11-03

    Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that exposure of cells at the air-liquid interface represents a valid and sensitive method to assess the toxicity of several poorly soluble nanomaterials. We underlined the importance of the cellular model used and offer the possibility to deal with low deposition doses by using more sensitive and physiologic cellular models. This brings perspectives towards the use of relevant in vitro methods of exposure to assess nanomaterial toxicity.

  20. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  1. Apoptosis Induction in Cancer Cells by Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Kawai, Kazuaki; Sato, Toshio; Nishimura, Hiroyuki; Kawashima, Norimichi; Takeuchi, Shinichi

    2004-05-01

    The methods of suppressing cancer cell proliferation by ultrasound exposure were investigated to develop a new minimally invasive cancer treatment. A stainless-steel diaphragm with a bolt-clamped Langevin-type transducer (BLT) was attached to the bottom of a water tank in the ultrasound exposure system used in this study. Cancer cells of a mouse T lymphoma (EL-4) in a flask were exposed to ultrasound under various conditions of exposure time, ultrasound frequency, ultrasound waveform, and so forth. The number of cancer cells exposed to ultrasound decreased during the culturing process. In this study, it was proved by electrophoresis, enzyme activity measurement and morphological observation that cancer cell proliferation can be suppressed by apoptosis induction in cancer cells by ultrasound exposure.

  2. An HF exposure system for mice with improved efficiency.

    PubMed

    Capstick, Myles; Gong, Yijian; Pasche, Boris; Kuster, Niels

    2016-05-01

    An exposure system that addresses difficulties that arise for exposure of small animals at low frequencies with a high exposure level is presented. The system, intended to operate at 27 MHz, consists of two identical transverse electro-magnetic (TEM) cells for exposure and sham exposure of groups of 16 free-running mice housed in pairs within standard cages, capable of exposure over extended daily periods while being provided food and water. Inclusion of the exposure cell in a half-wavelength resonator has been developed as a new paradigm to enhance field strength for an increase of >50-fold in available specific absorption rate (SAR) levels compared to traditional TEM cell configurations. The system described allows both daily and weekly exposure schedules and supports blinded protocols with continuous wave (CW) and amplitude modulation (AM) signals with programmable modulation depths and frequencies. Electric field (E-field) homogeneity across the TEM cell along a vertical plane (orthogonal to the axis of the TEM line) was within 3.3%, and 3.1% along the horizontal plane. Accurate and comprehensive dosimetric assessments based on whole-body and organ-specific SAR essential for in vivo bioelectromagnetic experiments are presented, which takes into account various factors (e.g., mouse activities, close proximity, and field homogeneity). Average SAR levels are controllable in the range of 1 mW/kg to 2 W/kg, with expanded uncertainty (k = 2) of 1 dB and instantaneous variation (k = 1) of 4 dB. © 2016 Wiley Periodicals, Inc.

  3. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure maymore » be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.« less

  4. Adverse effects of bisphenol A (BPA) on the dopamine system in two distinct cell models and corpus striatum of the Sprague-Dawley rat.

    PubMed

    Nowicki, Brittney A; Hamada, Matt A; Robinson, Gina Y; Jones, Douglas C

    2016-01-01

    The aim of this study was to examine the effects of bisphenol A (BPA) on the brain dopamine (DA) system utilizing both in vitro models (GH3 cells, a rat pituitary cell line, and SH-SY5Y cells, a human neuroblastoma cell line) and an animal model such as Sprague-Dawley (SD) rats. First, cellular DA uptake was measured 2 or 8 h following BPA exposure (0.1-400 μM) in SH-SY5Y cells, where a significant increase in DA uptake was noted. BPA exerted no marked effect on dopamine active transporter levels in GH3 cells exposed for 8 or 24 h. However, SH-SY5Y cells displayed an increase in dopamine transporter (DAT) levels following 24 h of exposure to BPA. In contrast to DAT levels, BPA exposure produced no marked effect on DA D1 receptor levels in SH-SY5Y cells, yet a significant decrease in GH3 cells following both 8- and 24-h exposure periods was noted, suggesting that BPA exerts differential effects dependent upon cell type. BPA produced no significant effects on prolactin levels at 2 h, but a marked fall occurred at 24 h of exposure in GH3 cells. Finally, to examine the influence of dietary developmental exposure to BPA on brain DA levels in F1 offspring, SD rats were exposed to BPA (0.5-20 mg/kg) through maternal transfer and/or diet and striatal DA levels were measured on postnatal day (PND) 60 using high-performance liquid chromatography (HPLC). Data demonstrated that chronic exposure to BPA did not significantly alter striatal DA levels in the SD rat.

  5. Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease.

    PubMed

    Gbotosho, O T; Cytlak, U M; Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2014-07-01

    The present work investigates the contribution of various second messenger systems to Ca(2+)-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca(2+) dependence of PS exposure was confirmed using the Ca(2+) ionophore bromo-A23187 to clamp intracellular Ca(2+) over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca(2+) loading in the presence of an outwardly directed electrochemical gradient for K(+) stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca(2+)] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca(2+)-induced PS exposure in RBCs, incubated in either HK or LK saline.

  6. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    PubMed

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Impact of a Small Cell on the RF-EMF Exposure in a Train

    PubMed Central

    Aerts, Sam; Plets, David; Thielens, Arno; Martens, Luc; Joseph, Wout

    2015-01-01

    The deployment of a miniature mobile-phone base station or small cell in a train car significantly improves the coverage and the capacity of a mobile network service on the train. However, the impact of the small cell on the passengers’ exposure to radio-frequency electromagnetic fields (RF-EMF) is unknown. In this study, we assessed experimentally the RF-EMF exposure of a mobile-phone user who is either connected to the outdoor macrocell network or to an in-train small cell, while traveling on the train, by means of the absorbed-dose concept, which combines the base station downlink exposure with the mobile-phone uplink exposure. For Global System for Mobile Communications (GSM) technology at 1800 MHz, we found that by connecting to a small cell, the brain exposure of the user could realistically be reduced by a factor 35 and the whole-body exposure by a factor 11. PMID:25734793

  8. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

    PubMed Central

    2009-01-01

    Background Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. Results A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. Conclusion The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions. PMID:20015351

  9. Mixture effects of benzene, toluene, ethylbenzene, and xylenes (BTEX) on lung carcinoma cells via a hanging drop air exposure system.

    PubMed

    Liu, Faye F; Escher, Beate I; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2014-06-16

    A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 and 24 h of exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) as individual compounds and as mixtures of four or six components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated using a mass balance model and came to 17, 12, 11, 9, 4, and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene, and p-xylene, respectively, after 1 h of exposure. The EC50 decreased by a factor of 4 after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions was found for benzene, toluene, ethylbenzene, and m-xylene at four different representative fixed concentration ratios after 1 h of exposure, but lower agreement with mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable, but lower quality, prediction as well.

  10. Solar power satellite system definition study. Volume 4: Silicon solar cell annealing test, phase 1

    NASA Technical Reports Server (NTRS)

    Walker, F.

    1979-01-01

    Laser annealing tests were conducted on ten 50 micron cells. Two were control cells that were not irradiated. These showed no loss in output due to exposure to the laser. Two cells were broken in handling. Six cells were successfully tested. All cells tested without breakage showed some recovery. One cell was subjected to two cycles and showed recovery on both cycles. Cells that were moderately degraded appeared to recover more completely than those more severly degraded. Exposure times ranged from two to ten seconds at 500 degrees centigrade. There was some indication that longer exposure was beneficial.

  11. Breaking the rules? X-ray examination of hematopoietic stem cell grafts at international airports.

    PubMed

    Petzer, Andreas L; Speth, Hans-Georg; Hoflehner, Elisabeth; Clausen, Johannes; Nachbaur, David; Gastl, Günther; Gunsilius, Eberhard

    2002-06-15

    Hematopoietic stem cell grafts from unrelated donors are commonly transported by aircraft. They must not be subjected to x-rays during security checks, which may cause inconvenient discussions between the courier and the airport security staff. We exposed hematopoietic stem cells from mobilized peripheral blood to a widely used x-ray hand-luggage control system. Cell viability as well as growth in vitro of mature progenitor cells (colony-forming cells), primitive progenitor cells (long-term culture-initiating cells), and lymphocytes were not altered even after 10 passages through the hand-luggage control system. Thus, repeated exposure to the low radiation dose of hand-luggage control systems (1.5 +/- 0.6 microSv per exposure) seems to be harmless for hematopoietic stem cells, which should simplify the international transport of stem cell grafts.

  12. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

    PubMed

    Liu, Kaijun; Zhang, Guowei; Wang, Zhi; Liu, Yong; Dong, Jianyun; Dong, Xiaomei; Liu, Jinyi; Cao, Jia; Ao, Lin; Zhang, Shaoxiang

    2014-08-04

    The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  14. Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels

    PubMed Central

    Buckner, Carly A.; Buckner, Alison L.; Koren, Stan A.; Persinger, Michael A.; Lafrenie, Robert M.

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca2+ channels. Blocking Ca2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy. PMID:25875081

  15. Foam cell formation by particulate matter (PM) exposure: a review.

    PubMed

    Cao, Yi; Long, Jimin; Ji, Yuejia; Chen, Gui; Shen, Yuexin; Gong, Yu; Li, Juan

    2016-11-01

    Increasing evidence suggests that exposure of particulate matter (PM) from traffic vehicles, e.g., diesel exhaust particles (DEP), was associated with adverse vascular effects, e.g., acceleration of atherosclerotic plaque progression. By analogy, engineered nanoparticles (NPs) could also induce similar effects. The formation of lipid laden foam cells, derived predominately from macrophages and vascular smooth muscle cells (VSMC), is closely associated with the development of atherosclerosis and adverse vascular effects. We reviewed current studies about particle exposure-induced lipid laden foam cell formation. In vivo studies using animal models have shown that exposure of air pollution by PM promoted lipid accumulation in alveolar macrophages or foam cells in plaques, which was likely associated with pulmonary inflammation or systemic oxidative stress, but not blood lipid profile. In support of these findings, in vitro studies showed that direct exposure of cultured macrophages to DEP or NP exposure, with or without further exposure to external lipids, promoted intracellular lipid accumulation. The mechanisms remained unknown. Although a number studies found increased reactive oxygen species (ROS) or an adaptive response to oxidative stress, the exact role of oxidative stress in mediating particle-induced foam cell formation requires future research. There is currently lack of reports concerning VSMC as a source for foam cells induced by particle exposure. In the future, it is necessary to explore the role of foam cell formation in particle exposure-induced atherosclerosis development. In addition, the formation of VSMC derived foam cells by particle exposure may also need extensive studies.

  16. Effects of exposure to DAMPS and GSM signals on ornithine decarboxylase (ODC) activity: II. SH-SY5Y human neuroblastoma cells.

    PubMed

    Billaudel, Bernard; Taxile, Murielle; Poulletier de Gannes, Florence; Ruffie, Gilles; Lagroye, Isabelle; Veyret, Bernard

    2009-06-01

    An increase in Ornithine Decarboxylase (ODC) activity was reported in L929 murine fibroblast cells after exposure to a digital cellular telephone signal. This result was not confirmed by several other studies, including the one reported in a companion paper. As a partner in the Perform-B programme, we extended this study to human neuroblastoma cells (SH-SY5Y), using well-defined waveguide systems to imitate exposure to radiofrequency radiation (RFR): Digital Advanced Mobile Phone System (DAMPS) or Global System for Mobile communications (GSM) signals emitted by mobile phones. Human neuroblastoma cells (SH-SY5Y) were exposed at various Specific Absorption Rates (SAR) to DAMPS or GSM signals using different set-ups. Cell ODC activities were assayed using 14CO2 generation from 14C-labeled L-ornithine. SH-SY5Y cells were incubated for 20 hours, and were blindly exposed to 50 Hz-modulated DAMPS-835 or 217 Hz-modulated GSM-1800 for 8 or 24 h using Information Technologies in Society (IT'IS) waveguides equipped with fans. After cell lysis, ODC activity was determined using 14C-labeled L-ornithine. ODC activity was estimated by the 14CO2 generated from 14C-labeled L-ornithine, as generated d.p.m. 14CO2/h/mg protein. The results showed that, irrespective of the signal used (835 MHz/DAMPS, or 1800 MHz/GSM) and exposure conditions (duration and SAR), human SH-SY5Y neuroblastoma cells did not exhibit any alteration in ODC enzyme activity. This work did not show a significant effect of mobile phone RFR exposure on ODC activity in neuroblastoma cells (SH-SY5Y).

  17. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    PubMed Central

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2006-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure. PMID:16451852

  18. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    PubMed

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  19. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  20. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  1. Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasca, Silvana; Tsai, Lily; Trunova, Nataliya

    2007-10-10

    Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ Tmore » cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.« less

  2. Injury-induced inflammation and inadequate HSP expression in mesothelial cells upon repeat exposure to dual-chamber bag peritoneal dialysis fluids.

    PubMed

    Bender, Thorsten O; Kratochwill, Klaus; Herzog, Rebecca; Ulbrich, Andrea; Böhm, Michael; Jörres, Achim; Aufricht, Christoph

    2015-10-01

    Peritoneal dialysis fluids (PDFs) may induce inadequate heat-shock protein (HSP) expression and injury-related inflammation in exposed mesothelial cells. The aim of this study was to relate cellular injury to these cellular responses in mesothelial cells following repeated exposure to 3 commercial PDFs with different biocompatibility profiles. Primary cultures of human peritoneal mesothelial cells (HPMC) were exposed to a 1:2 mixture of cell culture medium and CAPD2 (single-chamber bag PDF; Fresenius, Bad Homburg, Germany), Physioneal (dual-chamber bag PDF; Baxter, Deerfield, IL, USA) or Balance (dual-chamber bag PDF, Fresenius) for up to 10 days exposure time (4 dwells). Supernatant was analyzed for LDH, IL-6, and IL-8, cells for HSP-72 expression, and protein content. PDF exposure resulted in a biphasic pattern of cell damage switching from an earlier phase with increased injury by single-chamber PDF to a delayed phase with increased susceptibility to dual-chamber PDF. Sterile inflammation was related to LDH release over time and could be reproduced by exposure to necrotic cellular material. PDF exposure resulted in low HSP-72 expression in all tested PDFs. Exposure to single-chamber as well as to dual-chamber bag PDFs induce increased vulnerability of mesothelial cells to repeated exposure of the same solution. These effects were delayed with dual-chamber PDFs. Injury-induced inflammation and impaired HSP expression upon PDF exposure might initiate a vicious cycle with progredient mesothelial cell damage upon repeated PDF exposure. Certainly, interventional studies and translation of these results into the in vivo system is needed.

  3. Enhanced in vivo IgE production and T cell polarization toward the type 2 phenotype in association with indoor exposure to VOC: results of the LARS study.

    PubMed

    Lehmann, I; Rehwagen, M; Diez, U; Seiffart, A; Rolle-Kampczyk, U; Richter, M; Wetzig, H; Borte, M; Herbarth, O

    2001-12-01

    The association between indoor exposure to volatile organic compounds (VOC), prevalence of allergic sensitization and cytokine secretion profile of peripheral T cells was studied in 3 year old children of the LARS study (Leipzig Allergy Risk Children Study) to investigate the role of VOC exposure as a risk factor for the development of atopic disease. Indoor VOC exposure was measured over a period of 4 weeks in infants' bedrooms using a passive sampling system. Specific IgE antibodies to food, indoor and outdoor allergens were measured by the Pharmacia CAP system and correlated to VOC exposure (n = 120). In addition, cytokine producing peripheral T cells (interleukin(IL)-4, interferon(IFN)-gamma) were measured in a subgroup of 28 children by means of intracellular cytokine staining. For the first time we were able to show that exposure to alkanes (C6, C9, C10) and aromatic compounds (toluene, o-xylene, m + p-xylene, 2-, 3- and 4-ethyl-toluene, chlorobenzene) may contribute to the risk of allergic sensitization to the food allergens milk and egg white (Odds ratios between 5.7 and 11.2). Moreover, significantly reduced numbers of CD3+/CD8+ peripheral T cells were found in children exposed to alkanes (C9-C13), naphthalene and chlorobenzene. Exposure to benzene, ethylbenzene and chlorobenzene was associated with higher percentages of IL-4 producing CD3+ T cells. Both an increase in IL-4 producing type 2 T cells and a reduction of IFN-gamma producing type 1 T cells may contribute to a type 2 skewed memory in response to allergens. Therefore, we suggest exposure to VOCs in association with allergic sensitization to be mediated by a T cell polarization toward the type 2 phenotype.

  4. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holásková, Ida; Elliott, Meenal; Hanson, Miranda L.

    2012-12-01

    Cadmium (Cd) is a common environmental contaminant. Adult exposure to Cd alters the immune system, however, there are limited studies on the effects of prenatal exposure to Cd. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at 20 weeks of age. Prenatal Cd exposure caused an increase in the percent of CD4{sup −}CD8{sup −}CD44{sup +}CD25{sup −} (DN1) thymocytes in both sexes and a decrease in the percent of CD4{sup −}CD8{sup −}CD44{sup −}CD25{sup +} (DN3) thymocytes in females. Females had an increasemore » in the percent of splenic CD4{sup +} T cells, CD8{sup +} T cells, and CD45R/B220{sup +} B cells and a decrease in the percent of NK cells and granulocytes (Gr-1{sup +}). Males had an increase in the percent of splenic CD4{sup +} T cells and CD45R/B220{sup +} B cells and a decrease in the percent of CD8{sup +} T cells, NK cells, and granulocytes. The percentage of neutrophils and myeloid-derived suppressor cells were reduced in both sexes. The percent of splenic nTreg cells was decreased in all Cd-exposed offspring. Cd-exposed offspring were immunized with a streptococcal vaccine and the antibody response was determined. PC-specific serum antibody titers were decreased in Cd exposed female offspring but increased in the males. PspA-specific serum IgG titers were increased in both females and males compared to control animals. Females had a decrease in PspA-specific serum IgM antibody titers. Females and males had a decrease in the number of splenic anti-PspA antibody-secreting cells when standardized to the number of B cells. These findings demonstrate that very low levels of Cd exposure during gestation can result in long term sex-specific alterations on the immune system of the offspring. -- Highlights: ► Prenatal exposure to cadmium alters the immune system of 20 week old offspring. ► The percentage of DN1 and DN3 thymocytes was changed. ► Males and females had changed percentages of numerous splenic cell populations. ► The antibody response of a streptococcal vaccine showed numerous changes.« less

  5. Study of Parameters Affecting the Level of Ultrasound Exposure with In Vitro Set-Ups

    NASA Astrophysics Data System (ADS)

    Leskinen, Jarkko J.; Hynynen, Kullervo

    2010-03-01

    Ultrasound (US) exposures are widely used with in vitro cell systems e.g. in stem cell and tissue engineering research. However, without the knowledge of factors affecting the level of US exposure, the outcome of the biological result may vary from test to test or even be misinterpreted. Thereby, some of the factors affecting in vitro US exposures were studied. The level of US exposure was characterized in standard commercial cell culturing plates. The temperature distributions were measured inside the wells using infrared camera and fine wire thermocouples, and pressure and intensity distributions using a laser vibrometer and a schlieren system. The measurements were made at operating frequency of around 1 MHz with varying temporal parameters and powers (up to 2 W of acoustic power). Heat accumulation between the wells varied up to 40-50% depending on the location of the well on the plate. This well-to-well variation was be linked to the activity of reporter plasmid on osteoblastic cells. Similar temperature variations within the wells were also measured. Small sub-wavelength change in the exposure distance or, respectively, liquid volume inside the well was found to alter the acoustic field in both magnitude and shape due the standing waves. The gathered data reveals the complexity of the acoustic field in a typical in vitro set-up and gives new information about the environment of the in vitro cells during US exposures. This data may be especially useful when US set-ups are designed or characterized.

  6. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice.

    PubMed

    Bodin, Johanna; Bølling, Anette Kocbach; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2014-02-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.

  7. Developmental exposure to trichloroethylene promotes CD4{sup +} T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.

    2008-09-15

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-{gamma} following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice weremore » exposed to 0.1 mg/ml TCE ({approx} 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-{alpha}, and IFN-{gamma} by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders.« less

  8. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    NASA Astrophysics Data System (ADS)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  9. Biochemical changes to fibroblast cells subjected to ionizing radiation.

    PubMed

    Jones, Pamala; Benghuzzi, Hamed; Tucci, Michelle; Richards, Latoya; Harrison, George; Patel, Ramesh

    2008-01-01

    High energy X-rays are capable of interacting with biological membranes to cause both functional and structural modifications. The goal of the present study was to investigate the effects human fibroblast cells exposed multiple times to 10 Gy over time. Following exposures of 2, 3, or 4 times to 10 Gy/10min the cells were evaluated for cell number changes, membrane damage, and intracellular glutathione content after 24, 48 and 72 hours. Twenty-four hours following exposure the cell numbers were reduced and increased levels of cellular membrane damage was evident. This trend was observed for the duration of the study. Interestingly, there was not an exposure dependent increase in cell damage or cell loss with time. Intracellular antioxidant systems were activated as indicated by anincrease in total cellular glutathione content. Additional studies are needed to determine if the cellular reduction is caused by a direct effect of the X-rays targeting the DNA or an indirect effect of the X-ray targeting the cellular membrane, which then generates radicals that target cell cycle checkpoints or DNA damage. In conclusion, fibroblast cells can be used to determine early and late events of cellular function following exposure to harmful levels of radiation exposure and results of exposure can be seen within twenty four hours.

  10. B lymphocyte lineage cells and the respiratory system

    PubMed Central

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  11. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  12. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields.

    PubMed

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-06-01

    Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.

  13. Exposure of magnetic bacteria to simulated mobile phone-type RF radiation has no impact on mortality.

    PubMed

    Cranfield, Charles G; Wieser, Heinz Gregor; Dobson, Jon

    2003-09-01

    The interaction of mobile phone RF emissions with biogenic magnetite in the human brain has been proposed as a potential mechanism for mobile phone bioeffects. This is of particular interest in light of the discovery of magnetite in human brain tissue. Previous experiments using magnetite-containing bacteria exposed directly to emissions from a mobile phone have indicated that these emissions might be causing greater levels of cell death in these bacterial populations when compared to sham exposures. A repeat of these experiments examining only the radio frequency (RF) global system for mobile communication (GSM) component of the mobile phone signal in a well-defined waveguide system (REFLEX), shows no significant change in cell mortality compared to sham exposures. A nonmagnetite containing bacterial cell strain (CC-26) with similar genotype and phenotype to the magnetotactic bacteria was used as a control. These also showed no significant change in cell mortality between RF and sham exposed samples. Results indicate that the RF components of mobile phone exposure do not appear to be responsible for previous findings indicating cell mortality as a result of direct mobile phone exposure. A further mobile phone emission component that should be investigated is the 2-Hz magnetic field pulse generated by battery currents during periods of discontinuous transmission.

  14. AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Sekino, Yuko; Kanda, Yasunari

    2013-05-01

    Organotin compounds such as tributyltin (TBT) are known to cause various forms of cytotoxicity, including developmental toxicity and neurotoxicity. However, the molecular target of the toxicity induced by nanomolar levels of TBT has not been identified. In the present study, we found that exposure to 100 nM TBT induced growth arrest in human pluripotent embryonic carcinoma cell line NT2/D1. Since glucose provides metabolic energy, we focused on the glycolytic system. We found that exposure to TBT reduced the levels of both glucose-6-phosphate and fructose-6-phosphate. To investigate the effect of TBT exposure on glycolysis, we examined glucose transporter (GLUT) activity. TBT exposure inhibited glucose uptake via a decrease in the level of cell surface-bound GLUT1. Furthermore, we examined the effect of AMP-activated protein kinase (AMPK), which is known to regulate glucose transport by facilitating GLUT translocation. Treatment with the potent AMPK activator, AICAR, restored the TBT-induced reduction in cell surface-bound GLUT1 and glucose uptake. In conclusion, these results suggest that exposure to nanomolar levels of TBT causes growth arrest by targeting glycolytic systems in human embryonic carcinoma cells. Thus, understanding the energy metabolism may provide new insights into the mechanisms of metal-induced cytotoxicity.

  15. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Liang; Zhao, Fang; Shen, Xuefeng

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood bymore » 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.« less

  16. Critical Evaluation of Air-Liquid Interface Cell Exposure Systems for In Vitro Assessment of Atmospheric Pollutants##

    EPA Science Inventory

    Conventional in vitro exposure studies of airborne pollutants involve, for example, the addition of particulate matter (PM) or PM extracts to the cell culture medium, or the bubbling of gases into the culture medium; these methods alter the pollutant’s physical and chemical...

  17. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.

    PubMed

    Segawa, Katsumori; Nagata, Shigekazu

    2015-11-01

    Apoptosis and the clearance of apoptotic cells are essential processes in animal development and homeostasis. For apoptotic cells to be cleared, they must display an 'eat me' signal, most likely phosphatidylserine (PtdSer) exposure, which prompts phagocytes to engulf the cells. PtdSer, which is recognized by several different systems, is normally confined to the cytoplasmic leaflet of the plasma membrane by a 'flippase'; apoptosis activates a 'scramblase' that quickly exposes PtdSer on the cell surface. The molecules that flip and scramble phospholipids at the plasma membrane have recently been identified. Here we discuss recent findings regarding the molecular mechanisms of apoptotic PtdSer exposure and the clearance of apoptotic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Characterisation of the borgwaldt LM4E system for in vitro exposures to undiluted aerosols from next generation tobacco and nicotine products (NGPs).

    PubMed

    Adamson, Jason; Jaunky, Tomasz; Thorne, David; Gaça, Marianna D

    2018-03-01

    Traditional in vitro exposure to combustible tobacco products utilise exposure systems that include the use of smoking machines to generate, dilute and deliver smoke to in vitro cell cultures. With reported lower emissions from next generation tobacco and nicotine products (NGPs), including e-cigarettes and tobacco heating products (THPs), diluting the aerosol is potentially not required. Herein we present a simplified exposure scenario to undiluted NGP aerosols, using a new puffing system called the LM4E. Nicotine delivery from an e-cigarette was used as a dosimetry marker, and was measured at source across 4 LM4E ports and in the exposure chamber. Cell viability studies, using Neutral Red Uptake (NRU) assay, were performed using H292 human lung epithelial cells, testing undiluted aerosols from an e-cigarette and a THP. E-cigarette mean nicotine generated at source was measured at 0.084 ± 0.005 mg/puff with no significant differences in delivery across the 4 different ports, p = 0.268 (n = 10/port). Mean nicotine delivery from the e-cigarette to the in vitro exposure chamber (measured up to 100 puffs) was 0.046 ± 0.006 mg/puff, p = 0.061. Aerosol penetration within the LM4E was 55% from source to chamber. H292 cells were exposed to undiluted e-cigarette aerosol for 2 h (240 puffs) or undiluted THP aerosol for 1 h (120 puffs). There were positive correlations between puff number and nicotine in the exposed culture media, R 2  = 0.764 for the e-cigarette and R 2  = 0.970 for the THP. NRU determined cell viability for e-cigarettes after 2 h' exposure resulted in 21.5 ± 17.0% cell survival, however for the THP, full cytotoxicity was reached after 1-h exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Gene expression profile in circulating mononuclear cells after exposure to ultrafine carbon particles

    PubMed Central

    Huang, Yuh-Chin T.; Schmitt, Michael; Yang, Zhonghui; Que, Loretta G.; Stewart, Judith C.; Frampton, Mark W.; Devlin, Robert B.

    2013-01-01

    Context Exposure to particulate matter (PM) is associated with systemic health effects, but the cellular and molecular mechanisms are unclear. Objective We hypothesized that, if circulating mononuclear cells play an important role in mediating systemic effects of PM, they would show gene expression changes following exposure. Materials and methods Peripheral blood samples were collected before (0 hour) and at 24 hours after exposure from healthy subjects who participated in previous controlled exposures to ultrafine carbon particles (UFP, 50 μg/m3) or filtered air (FA)(n = 3 each). RNA from mononuclear cell fraction (>85% lymphocytes) was extracted, amplified and hybridized to Affymetrix HU133 plus 2 microarrays. Results We identified 1713 genes (UFP 24 hours vs. FA 0 and 24 hours, p < 0.05, FDR 0.01). The top 10 upregulated genes (fold) were CDKN1C (1.86), ZNF12 (1.83), SRGAP2 (1.82), FYB (1.79), LSM14B (1.79), CD93 (1.76), NCSTN (1.70), DUSP6 (1.69), TACC1 (1.68) and H2AFY (1.68). Upregulation of CDKN1C and SRGAP2 was confirmed by RT-PCR using samples from additional 5 subjects exposed to FA and UFP. We entered 1020 genes with a ratio >1.1 or <−1.1 into the Ingenuity Pathway Analysis and identified many canonical pathways related to inflammation, tissue growth and host defense against environmental insults, including IGF-1 signaling, insulin receptor signaling and NRF2-mediated oxidative stress response pathway. Discussion and conclusions Two-hour exposures to UFP produced gene expression changes in circulating mononuclear cells. These gene changes provide biologically plausible links to PM-induced systemic health effects, especially those in the cardiovascular system and glucose metabolism. PMID:20507211

  20. Effect of radon on the immune system: alterations in the cellularity and functions of T cells in lymphoid organs of mouse.

    PubMed

    Nagarkatti, M; Nagarkatti, P S; Brooks, A

    1996-04-19

    Exposure to radon and its progeny induces significant damage to the cells of the respiratory tract and causes lung cancer. Whether a similar exposure to radon would alter the functions of the immune system has not been previously investigated. In the current study, we investigated the effect of exposure of C57BL/6 mice to 1000 or 2500 working-level months (WLM) of radon and its progeny by inhalation, on the number and function of T lymphocytes in lymphoid organs. The control mice received uranium ore dust carrier aerosol by inhalation. Exposure to radon induced marked decrease in the total cellularity of most lymphoid organs such as thymus, peripheral lymph nodes (PLN), and lung-associated lymph nodes (LALN), when compared to the controls. The percentage of T cells increased, while that of non-T cells decreased, in all peripheral lymphoid organs at both the doses of radon. In the thymus, particularly at 2500 WLM of radon exposure, there was a marked decrease in CD4+CD8+ T cells and an increase in the immature CD4-CD8- T cells. Such alterations in both the numbers and percentages of lymphocytes and macrophages in radon-exposed mice may have resulted from the cell killing by the alpha particles as the immune cells were migrating through the lungs, or it may have been caused by altered migration of cells, inasmuch as expression of CD44, a molecule involved in migration and homing of immune cells, was significantly altered on cells found in different lymphoid organs. In the LALN, where one would predict the largest number of damaged cells to be present, there was a significant decrease in the T-cell responsiveness to mitogens while the B-cell response was not affected. Such alterations may have resulted from the direct effect of alpha-particle exposure on the migrating lymphocytes, altered percentage of lymphocytes as seen in secondary lymphoid organs, or altered expression of adhesion molecules involved in cell activation such as CD44 and CD3. Interestingly, radon exposure caused and increase in the T- and B-cell responsiveness to mitogens in the spleen and PLN. Since there is little evidence of direct radiation dose from radon in lymphoid organs, our studies demonstrating immunological alterations suggest an indirect effect of radon exposure that may have significant repercussions on the development of hypersensitivity and increased susceptibility to infections and cancer in the lung.

  1. Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust

    PubMed Central

    Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John

    2015-01-01

    Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193

  2. The effect of in vitro exposure to tributyltin on the immune competence of Chinook salmon (Oncorhynchus tshawytscha) leukocytes.

    PubMed

    Misumi, Ichiro; Yada, Takashi; Leong, Jo-Ann C; Schreck, Carl B

    2009-02-01

    We evaluated the direct effects of in vitro exposures to tributyltin (TBT), a widely used biocide, on the cell-mediated immune system of Chinook salmon (Oncorhynchus tshawytscha). Splenic and pronephric leukocytes isolated from juvenile Chinook salmon were exposed to TBT (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l) in cell cultures for 24 h. Effects of TBT on cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry. Splenic and pronephric leukocytes in the presence of TBT experienced a concentration-dependent decrease in viability in cell cultures. Apoptosis was detected as one of the mechanisms of cell death after TBT exposure. In addition, pronephric lymphocytes exhibited a greater sensitivity to TBT exposure than pronephric granulocytes. The functional ability of splenic B-cells to undergo blastogenesis upon lipopolysaccharide stimulation was also significantly inhibited in the presence of 0.05, 0.07, or 0.10 mg/l of TBT in the cell cultures. Flow cytometric assay using a fluorescent conjugated monoclonal antibody against salmon surface immunoglobulin was employed for the conclusive identification of B-cells in the Chinook salmon leukocytes. Our findings suggest that adverse effects of TBT on the function or development of fish immune systems could lead to an increase in disease susceptibility and its subsequent ecological implications.

  3. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells

    PubMed Central

    Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang

    2017-01-01

    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485

  4. APOPTOSIS DURING DEVELOPMENT AND AGING AND IN RESPONSE TO MERCURY EXPOSURE.

    EPA Science Inventory


    In the central nervous system from embryogenesis through senescence, cell number is regulated, in part, by apoptosis. Each region of the nervous system has a characteristic temporal pattern of programmed cell death, which includes far greater numbers of cells undergoing apop...

  5. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  6. Effects of short-term hypothermal and contrast exposure on immunophysiological parameters of laboratory animals.

    PubMed

    Kalenova, L F; Fisher, T A; Suhovey, J G; Besedin, I M

    2009-05-01

    Experiments on inbred animals showed that short-term exposure in cold water significantly modified structural and functional parameters of the immune system at different levels of its organization, from bone marrow hemopoiesis to effector stage of the immune response to antigen. The thermal factor caused changes in nonspecific and specific mechanisms of the immune system. Hypothermal exposure (7-9 degrees C, 5 sec) increased the thymic index and bone marrow lymphocyte count, reduced absorption capacity and stimulated metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. Contrast exposure in cold and hot water (7-9 degrees C, 5 sec/40-42 degrees C, 30 sec) increased monocyte count in bone marrow and reduced it in the their peripheral blood, reduced metabolic activity of phagocytes, stimulated cell-mediated and suppressed humoral immunity. These data demonstrate physiological mechanisms of interactions between the thermoregulatory and immune systems.

  7. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    PubMed Central

    Xu, Joella; Huang, Guannan; Guo, Tai L.

    2016-01-01

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427

  8. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.

    PubMed

    Xu, Joella; Huang, Guannan; Guo, Tai L

    2016-09-26

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.

  9. Exposure cell number during feeder cell growth-arrest by Mitomycin C is a critical pharmacological aspect in stem cell culture system.

    PubMed

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2016-01-01

    Growth-arrested feeder cells following Mitomycin C treatment are instrumental in stem cell culture allowing development of regenerative strategies and alternatives to animal testing in drug discovery. The concentration of Mitomycin C and feeder cell type was described to affect feeder performance but the criticality of feeder cell exposure density was not addressed. We hypothesize that the exposure cell density influences the effectiveness of Mitomycin C in an arithmetic manner. Three different exposure cell densities of Swiss 3T3 fibroblasts were treated with a range of Mitomycin C concentrations for 2h. The cells were replaced and the viable cells counted on 3, 6, 9, 12 and 20days. The cell extinctions were compared with doses per cell which were derived by dividing the product of concentration and volume of Mitomycin C solution with exposure cell number. The periodic post-treatment feeder cell extinctions were not just dependent on Mitomycin C concentration but also on dose per cell. Analysis of linearity between viable cell number and Mitomycin C dose per cell derived from the concentrations of 3 to 10μg/ml revealed four distinct categories of growth-arrest. Confluent cultures exposed to low concentration showed growth-arrest failure. The in vitro cell density titration can facilitate prediction of a compound's operational in vivo dosing. For containing the growth arrest failure, an arithmetic volume derivation strategy is proposed by fixing the exposure density to a safe limit. The feeder extinction characteristics are critical for streamlining the stem cell based pharmacological and toxicological assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Consideration on suppression of cancer cell proliferation by ultrasound exposure using sonochemical and biological measurements

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Nishimura, H.; Kawashima, N.; Takeuchi, S.

    2004-01-01

    The suppression methods of cancer cells proliferation using ultrasound exposure are investigated to develop a new minimally invasive cancer treatment method. A stainless steel vibrating plate with a Langevin type transducer is attached to the bottom of a water tank of the ultrasound exposure system used in this study. Ultrasound was irradiated to cancer cells of mouse T lymphoma (EL-4) in a flask. A decreasing tendency of the number of viable cancer cells exposed to ultrasound of 150 kHz and acoustic intensity ISPTP of 750 mW/cm2 was confirmed in the culturing process. Then, the suppression mechanism of cancer cell proliferation by ultrasound exposure was considered through confirmation of apoptosis and necrosis with the exposed cancer cells by electrophoresis and enzyme activity measurements. It was found that the apoptosis was induced on the cancer cells after ultrasound exposure. We confirmed the generation of hydroxyl radical in water in the water tank by ESR device. When the hydroxyl radicals were scavenged by adding ethanol to the culture medium for cancer cells, the apoptosis was not induced and proliferation was not suppressed. Therefore, we found that generation of activated oxygen in the culturing medium by ultrasound exposure was caused to apoptosis induction and suppression of cancer cell proliferation. We will present the results of above consideration in this conference.

  11. [Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure].

    PubMed

    Yang, Xue-Sen; Zhang, Wei; Gong, Qian-Fen

    2008-06-01

    To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells. After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure. The apoptosis of PC12 cells were detected by Annexin-V-FITC flow cytometry. U0126, but not SB203580 could inhibit the activation of ERK1/2 induced by electromagnetic exposure. U0126 and SB203580 had no effects on the activation of JNK. SB203580 could inhibit the activation of P38 MAPK significantly. But U0126 had no such effect on the activation of P38 MAPK. After pretreated by SB203580 alone or together with U0126, the apoptosis of PC12 cells decreased. But the pretreatment by U0126 alone had no influence on the apoptosis of PC12 cells. The P38 MAPK signal transduction modulate the apoptosis of PC12 cells induced by electromagnetic exposure. ERK signal transduction has no effect on the apoptosis of PC12 cells. JNK signal transduction may promote the apoptosis of PC12 cells in the early stage after electromagnetic exposure.

  12. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  13. Exploring Non-Thermal Radiofrequency Bioeffects for Novel Military Applications

    DTIC Science & Technology

    2006-11-30

    catecholamine release, using cultured adrenal chromaffin cells as an i,i vitro model system, and on skeletal muscle contraction , using intact skeletal...characterization and construction of a waveguide-based exposure system for monitoring skeletal muscle contraction during exposure to 0.75-1 GHz RF

  14. Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems

    EPA Science Inventory

    The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...

  15. Thermal evaluation of laser exposures in an in vitro retinal model by microthermal sensing

    NASA Astrophysics Data System (ADS)

    Choi, Tae Y.; Denton, Michael L.; Noojin, Gary D.; Estlack, Larry E.; Shrestha, Ramesh; Rockwell, Benjamin A.; Thomas, Robert; Kim, Dongsik

    2014-09-01

    A temperature detection system using a micropipette thermocouple sensor was developed for use within mammalian cells during laser exposure with an 8.6-μm beam at 532 nm. We have demonstrated the capability of measuring temperatures at a single-cell level in the microscale range by inserting micropipette-based thermal sensors of size ranging from 2 to 4 μm into the membrane of a live retinal pigment epithelium (RPE) cell subjected to a laser beam. We setup the treatment groups of 532-nm laser-irradiated single RPE cell and in situ temperature recordings were made over time. Thermal profiles are given for representative cells experiencing damage resulting from exposures of 0.2 to 2 s. The measured maximum temperature rise for each cell ranges from 39 to 73°C the RPE cells showed a signature of death for all the cases reported herein. In order to check the cell viability, real-time fluorescence microscopy was used to identify the transition of pigmented RPE cells between viable and damaged states due to laser exposure.

  16. Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons

    PubMed Central

    Simoniello, Palma; Wiedemann, Julia; Zink, Joana; Thoennes, Eva; Stange, Maike; Layer, Paul G.; Kovacs, Maximilian; Podda, Maurizio; Durante, Marco; Fournier, Claudia

    2016-01-01

    The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, dose-averaged LET 100 keV/μm) in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was observed. Carbon ions triggered inflammatory signaling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in the polarity of basal cells. PMID:26779439

  17. Effect of prenatal exposure to mobile phone on pyramidal cell numbers in the mouse hippocampus: a stereological study.

    PubMed

    Rağbetli, Murat Cetin; Aydinlioğlu, Atif; Koyun, Necat; Rağbetli, Cennet; Karayel, Metin

    2009-01-01

    Because of the possible risk factor for the health, World Health Organization (WHO) recommended the study with animals on the developing nervous system concerning the exposure to radiofrequency (RF) field. A few studies related to hippocampal exposure are available, which indicate the impact of RF field in some parameters. The present study investigated the effect of exposure to mobile phone on developing hippocampus. Male and female Swiss albino mice were housed as control and mobile phone exposed groups. The pregnant animals in tested group were exposed to the effects of mobile phone in a room possessing the exposure system. The left hemispheres of the brains were processed by frozen microtome. The sections obtained were stained with Hematoxylin & Eosin. For cell counting by the optical fractionator method, a pilot study was first performed. Hippocampal areas were analyzed using Axiovision software running on a personal computer. The optical dissector, systematically and randomly spaced, was focused to the widest profile of the pyramidal cell nucleus. No significant difference in pyramidal cell number of total Cornu Ammonis (CA) sectors of hippocampus was found between the control and the mobile phone exposed groups (p > .05). It was concluded that further study is needed in this field due to popular use of mobile telephones and relatively high exposure to the developing brain.

  18. Paraquat and Maneb Exposure Alters Rat Neural Stem Cell Proliferation by Inducing Oxidative Stress: New Insights on Pesticide-Induced Neurodevelopmental Toxicity.

    PubMed

    Colle, Dirleise; Farina, Marcelo; Ceccatelli, Sandra; Raciti, Marilena

    2018-06-01

    Pesticide exposure has been linked to the pathogenesis of neurodevelopmental and neurodegenerative disorders including autism spectrum disorders, attention deficit/hyperactivity, and Parkinson's disease (PD). Developmental exposure to pesticides, even at low concentrations not harmful for the adult brain, can lead to neuronal loss and functional deficits. It has been shown that prenatal or early postnatal exposure to the herbicide paraquat (PQ) and the fungicide maneb (MB), alone or in combination, causes permanent toxicity in the nigrostriatal dopamine system, supporting the idea that early exposure to these pesticides may contribute to the pathophysiology of PD. However, the mechanisms mediating PQ and MB developmental neurotoxicity are not yet understood. Therefore, we investigated the neurotoxic effect of low concentrations of PQ and MB in primary cultures of rat embryonic neural stem cells (NSCs), with particular focus on cell proliferation and oxidative stress. Exposure to PQ alone or in combination with MB (PQ + MB) led to a significant decrease in cell proliferation, while the cell death rate was not affected. Consistently, PQ + MB exposure altered the expression of major genes regulating the cell cycle, namely cyclin D1, cyclin D2, Rb1, and p19. Moreover, PQ and PQ + MB exposures increased the reactive oxygen species (ROS) production that could be neutralized upon N-acetylcysteine (NAC) treatment. Notably, in the presence of NAC, Rb1 expression was normalized and a normal cell proliferation pattern could be restored. These findings suggest that exposure to PQ + MB impairs NSCs proliferation by mechanisms involving alterations in the redox state.

  19. Human primordial germ cell formation is diminished by exposure to environmental toxicants acting through the AHR signaling pathway.

    PubMed

    Kee, Kehkooi; Flores, Martha; Cedars, Marcelle I; Reijo Pera, Renee A

    2010-09-01

    Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.

  20. Mobile phone radiation alters proliferation of hepatocarcinoma cells.

    PubMed

    Ozgur, Elcin; Guler, Goknur; Kismali, Gorkem; Seyhan, Nesrin

    2014-11-01

    This study investigated the effects of intermittent exposure (15 min on, 15 min off for 1, 2, 3, or 4 h, at a specific absorption rate of 2 W/kg) to enhanced data rates for global system for mobile communication evolution-modulated radiofrequency radiation (RFR) at 900- and 1,800-MHz frequencies on the viability of the Hepatocarcinoma cells (Hep G2). Hep G2 cell proliferation was measured by a colorimetric assay based on the cleavage of the tetrazolium salt WST-1 by mitochondrial dehydrogenases in viable cells. Cell injury was evaluated by analyzing the levels of lactate dehydrogenase (LDH) and glucose released from lysed cells into the culture medium. Morphological observation of the nuclei was carried out by 4',6-diamidino-2-phenylindole (DAPI) staining using fluorescence microscopy. In addition, TUNEL assay was performed to confirm apoptotic cell death. It was observed that cell viability, correlated with the LDH and glucose levels, changed according to the frequency and duration of RFR exposure. Four-hour exposure produced more pronounced effects than the other exposure durations. 1,800-MHz RFR had a larger impact on cell viability and Hep G2 injury than the RFR at 900 MHz. Morphological observations also supported the biochemical results indicating that most of the cells showed irregular nuclei pattern determined by using the DAPI staining, as well as TUNEL assay which shows DNA damage especially in the cells after 4 h of exposure to 1,800-MHz RFR. Our results indicate that the applications of 900- and 1,800-MHz (2 W/kg) RFR cause to decrease in the proliferation of the Hep G2 cells after 4 h of exposure. Further studies will be conducted on other frequency bands of RFR and longer duration of exposure.

  1. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    PubMed

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  2. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  3. Influence of the environment and phototoxicity of the live cell imaging system at IMP microbeam facility

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Wei, Junzhe; Chen, Hao; Li, Yaning; Zhao, Jing; Li, Xiaoyue

    2017-08-01

    To investigate the spatiotemporal dynamics of DNA damage and repair after the ion irradiation, an online live cell imaging system has been established based on the microbeam facility at Institute of Modern Physics (IMP). The system could provide a sterile and physiological environment by making use of heating plate and live cell imaging solution. The phototoxicity was investigated through the evaluation of DNA repair protein XRCC1 foci formed in HT1080-RFP cells during the imaging exposure. The intensity of the foci induced by phototoxicity was much lower compared with that of the foci induced by heavy ion hits. The results showed that although spontaneous foci were formed due to RFP exposure during live cell imaging, they had little impact on the analysis of the recruitment kinetics of XRCC1 in the foci induced by the ion irradiation.

  4. Evaluation of air-liquid interface exposure systems for in vitro ...

    EPA Pesticide Factsheets

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared five ALI systems for their ability to deliver both particulate matter (PM) and gases to cells cultured on porous membrane inserts. The ALI systems use different mechanisms to deliver pollutants to the inserts: diffusion, sedimentation, electrostatic precipitation (ESP), and thermophoresis (THP). We used fluorescent polystyrene latex spheres (PSLs) as a surrogate for PM to assess the efficacy of particle deposition in each system. PM loading in each insert was determined by dissolving the PSLs in ethyl acetate and measuring the fluorescence. Results show that using ESP as an external force enhances deposition of 50-nm PSLs by 5.5-fold and 11-fold for 1-µm PSLs when compared to diffusion alone. Similarly, THP enhances deposition of 50-nm and 1-µm PSLs by 4.5-fold and 2.7-fold, respectively. The interaction of ozone with an indigo dye on the surface of the insert showed that diffusion alone permitted gas-cell interaction. For each system there were various design and operational factors, such as the flow rate, surface materials and flow path geometry that adversely affected performance. Increased flow rates correlated with increased efficacy of the systems to deliver the gas to the inserts.

  5. Whole genome expression analysis in primary bronchial epithelial cells after exposure to sulphur mustard.

    PubMed

    Jowsey, Paul A; Blain, Peter G

    2014-11-04

    Sulphur mustard (SM) is a highly toxic chemical agent and poses a current threat to both civilians and military personnel in the event of a deliberate malicious release. Acute SM toxicity develops over the course of several hours and mainly affects the skin and mucosal surfaces of the eyes and respiratory system. In cases of acute severe exposure, significant lung injury can result in respiratory failure and death. Systemic levels of SM can also be fatal, frequently due to immunodepletion and the subsequent development of secondary infections. Whilst the physical effects associated with SM exposure are well documented, the molecular mechanisms mediating these changes are poorly understood, hindering the development of an effective therapeutic strategy. To gain a better understanding of the mechanism of SM toxicity, this study investigated whole genome transcriptional changes after SM in primary human bronchial epithelial cells, as a model for inhalation exposure. The analysis revealed >400 transcriptional changes associated with SM exposure. Pathways analysis confirmed the findings of previous studies suggesting that DNA damage, cell cycle arrest, cell death and inflammation were important components of SM toxicity. In addition, several other interesting observations were made, suggesting that protein oxidation as well as effects on the mitotic apparatus may contribute to SM toxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate themore » hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.« less

  7. Adverse respiratory effects in rats following inhalation exposure to ammonia: respiratory dynamics and histopathology.

    PubMed

    Perkins, Michael W; Wong, Benjamin; Tressler, Justin; Rodriguez, Ashley; Sherman, Katherine; Andres, Jaclynn; Devorak, Jennifer; L Wilkins, William; Sciuto, Alfred M

    2017-01-01

    Acute respiratory dynamics and histopathology of the lungs and trachea following inhaled exposure to ammonia were investigated. Respiratory dynamic parameters were collected from male Sprague-Dawley rats (300-350 g) during (20 min) and 24 h (10 min) after inhalation exposure for 20 min to 9000, 20,000, and 23,000 ppm of ammonia in a head-only exposure system. Body weight loss, analysis of blood cells, and lungs and trachea histopathology were assessed 1, 3, and 24 h following inhalation exposure to 20,000 ppm of ammonia. Prominent decreases in minute volume (MV) and tidal volume (TV) were observed during and 24 h post-exposure in all ammonia-exposed animals. Inspiratory time (IT) and expiratory time (ET) followed similar patterns and decreased significantly during the exposure and then increased at 24 h post-exposure in all ammonia-exposed animals in comparison to air-exposed controls. Peak inspiratory (PIF) and expiratory flow (PEF) significantly decreased during the exposure to all ammonia doses, while at 24 h post-exposure they remained significantly decreased following exposure to 20,000 and 23,000 ppm. Exposure to 20,000 ppm of ammonia resulted in body weight loss at 1 and 3 h post-exposure; weight loss was significant at 24 h compared to controls. Exposure to 20,000 ppm of ammonia for 20 min resulted in increases in the total blood cell counts of white blood cells, neutrophils, and platelets at 1, 3, and 24 h post-exposure. Histopathologic evaluation of the lungs and trachea tissue of animals exposed to 20,000 ppm of ammonia at 1, 3, and 24 h post-exposure revealed various morphological changes, including alveolar, bronchial, and tracheal edema, epithelial necrosis, and exudate consisting of fibrin, hemorrhage, and inflammatory cells. The various alterations in respiratory dynamics and damage to the respiratory system observed in this study further emphasize ammonia-induced respiratory toxicity and the relevance of efficacious medical countermeasure strategies.

  8. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    PubMed

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Chronic ethanol exposure enhances the aggressiveness of breast cancer: the role of p38γ

    PubMed Central

    Xu, Mei; Wang, Siying; Ren, Zhenhua; Frank, Jacqueline A.; Yang, Xiuwei H.; Zhang, Zhuo; Ke, Zun-ji; Shi, Xianglin; Luo, Jia

    2016-01-01

    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12–48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway. PMID:26655092

  10. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo

    2016-01-01

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest. PMID:27322243

  11. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo

    2016-06-16

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest.

  12. Early postnatal exposure to cigarette smoke impairs the antigen-specific T-cell responses in the spleen.

    PubMed

    Singh, Shashi P; Razani-Boroujerdi, Seddigheh; Pena-Philippides, Juan C; Langley, Raymond J; Mishra, Neerad C; Sopori, Mohan L

    2006-12-15

    Annually, approximately two million babies are exposed to cigarette smoke in utero and postnatally through cigarette smoking of their mothers. Exposure to mainstream cigarette smoke is known to impair both innate and adaptive immunities, and it has been hypothesized that the effects of in utero exposure to cigarette smoke on children's health might primarily stem from the adverse effects of cigarette smoke on the immune system. To simulate the environment that babies from smoking mothers encounter, we examined the effects of prenatal mainstream and postnatal sidestream cigarette smoke on spleen cell responses. Results show that postnatal exposure of newborn Balb/c mouse pups to sidestream cigarette smoke through the first 6 weeks of life strongly suppresses the antibody response of spleen cells to the T-cell-dependent antigen, sheep red blood cells. The reduction in the antibody response seen within 6 weeks of postnatal smoke exposure is much quicker than the published data on the time 25 weeks) required to establish reproducible immunosuppression in adult rats and mice. Moreover, the immunosuppression is not associated with significant changes in T-cell numbers or subset distribution. While the postnatal exposure to cigarette smoke did not affect the mitogenic response of T and B cells, the exposure inhibited the T cell receptor-mediated rise in the intracellular calcium concentration. These results suggest that the early postnatal period is highly sensitive to the immunosuppressive effects of environmental tobacco smoke, and the effects are causally associated with impaired antigen-mediated signaling in T cells.

  13. Toxicokinetic Study for Investigation of Sex Differences in Internal Dosimetry of Jet Propulsion Fuel 8 (JP-8) in the Laboratory Rat

    DTIC Science & Technology

    2013-07-26

    8 (2000 mg/m 3 ) may have produced transient impairment of rat cochlear outer hair cell function in the absence of noise (Fechter et al., 2010); the...system is a dynamic, non- rebreathing system. In this system, an exposure atmosphere flow rate of approximately 0.5 L/min per open port was maintained...exposure atmosphere flow to the chamber or the exhaust. The outer plenum of the nose-only exposure system carried the animals’ exhaled breath and excess

  14. Human immunotoxicologic markers of chemical exposures: preliminary validation studies.

    PubMed

    Wartenberg, D; Laskin, D; Kipen, H

    1993-01-01

    The circulating cells of the immune system are sensitive to environmental contaminants, and effects are often manifested as changes in the cell surface differentiation antigens of affected populations of cells, particularly lymphocytes. In this investigation, we explore the likelihood that variation in the expression of the surface markers of immune cells can be used as an index of exposure to toxic chemicals. We recruited 38 healthy New Jersey men to study pesticides effects: 19 orchard farmers (high exposure); 13 berry farmers (low exposure); and 6 hardware store owners (no exposure). Immunophenotyping was performed assaying the following cell surface antigens: CD2, CD4, CD8, CD14, CD20, CD26, CD29, CD45R, CD56, and PMN. Data were analyzed using univariate and multivariate methods. There were no significant differences among the groups with respect to routine medical histories, physical examinations, or routine laboratory parameters. No striking differences between groups were seen in univariate tests. Multivariate tests suggested some differences among groups and limited ability to correctly classify individuals based on immunophenotyping results. Immunophenotyping represents a fruitful area of research for improved exposure classification. Work is needed both on mechanistic understanding of the patterns observed and on the statistical interpretation of these patterns.

  15. Induction and repair of DNA double-strand breaks in hippocampal neurons of mice of different age after exposure to 60Co γ-rays in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Kozhina, R. A.; Chausov, V. N.; Kuzmina, E. A.; Boreyko, A. V.

    2018-04-01

    One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Co were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.

  16. The x-ray light valve: a potentially low-cost, digital radiographic imaging system--a liquid crystal cell design for chest radiography.

    PubMed

    Szeto, Timothy C; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J A

    2008-03-01

    Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.

  17. Investigations of immunotoxicity and allergic potential induced by topical application of triclosan in mice

    PubMed Central

    Anderson, Stacey E.; Meade, B. Jean; Long, Carrie M.; Lukomska, Ewa; Marshall, Nikki B.

    2016-01-01

    Triclosan is an antimicrobial chemical commonly used occupationally and by the general public. Using select immune function assays, the purpose of these studies was to evaluate the immunotoxicity of triclosan following dermal exposure using a murine model. Triclosan was not identified to be a sensitizer in the murine local lymph node assay (LLNA) when tested at concentrations ranging from 0.75–3.0%. Following a 28-day exposure, triclosan produced a significant increase in liver weight at concentrations of ≥ 1.5%. Exposure to the high dose (3.0%) also produced a significant increase in spleen weights and number of platelets. The absolute number of B-cells, T-cells, dendritic cells and NK cells were significantly increased in the skin draining lymph node, but not the spleen. An increase in the frequency of dendritic cells was also observed in the lymph node following exposure to 3.0% triclosan. The IgM antibody response to sheep red blood cells (SRBC) was significantly increased at 0.75% – but not at the higher concentrations – in the spleen and serum. These results demonstrate that dermal exposure to triclosan induces stimulation of the immune system in a murine model and raise concerns about potential human exposure. PMID:25812624

  18. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation

    PubMed Central

    Eghlidospour, M.; Mortazavi, S. M. J.; Yousefi, F.; Mortazavi, S. A. R.

    2015-01-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure. PMID:26396965

  19. New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation.

    PubMed

    Eghlidospour, M; Mortazavi, S M J; Yousefi, F; Mortazavi, S A R

    2015-09-01

    Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem cells in modern medicine, numerous studies have been performed on the effects of ionizing and non-ionizing radiation on cellular processes such as: proliferation, differentiation, cell cycle and DNA repair processes. We have conducted extensive studies on beneficial (stimulatory) or detrimental biological effects of exposure to different sources of electromagnetic fields such as mobile phones, mobile phone base stations, mobile phone jammers, radar systems, magnetic resonance imaging (MRI) systems and dentistry cavitrons over the past years. In this article, recent studies on the biological effects of non-ionizing electromagnetic radiation in the range of radiofrequency (RF) on some important features of stem cells such as their proliferation and differentiation are reviewed. Studies reviewed in this paper indicate that the stimulatory or inhibitory effects of RF radiation on the proliferation and differentiation of stem cells depend on various factors such as the biological systems, experiment conditions, the frequency and intensity of RF and the duration of exposure.

  20. Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes.

    PubMed

    Fernández-Bertólez, Natalia; Costa, Carla; Brandão, Fátima; Kiliç, Gözde; Duarte, José Alberto; Teixeira, Joao Paulo; Pásaro, Eduardo; Valdiglesias, Vanessa; Laffon, Blanca

    2018-04-27

    Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Potentiometric Biosensor for Studying Hydroquinone Cytotoxicity in vitro

    PubMed Central

    Wang, Yanyan; Chen, Qiang; Zeng, Xiangqun

    2009-01-01

    Many processes in living cells have electrochemical characteristics that are suitable for measurement by potentiometric biosensors. Potentiometric biosensors allow non invasive, real-time monitoring of the extracellular environment changes by measuring the potential at cell/sensor interface. This can be used as an indicator for overall cell cytotoxicity. The present work employs a potentiometric sensor array to investigate the cytotoxicity of hydroquinone to cultured mammalian V79 cells. Various electrode substrates (Au, PPy-HQ and PPy-PS) used for cell growth were designed and characterized. The controllable release of hydroquinone from PPy substrates was studied. Our results showed that hydroquinone exposure affected cell proliferation and delayed cell growth and attachment in a dose-dependent manner. Additionally, we have shown that exposure of V79 cells to hydroquinone at low doses (i.e 5μM) for more than 15 hours allows V79 cells to gain enhanced adaptability to survive exposure to high toxic HQ doses afterwards. Compared with traditional methods, the potentiometric biosensor not only provides non-invasive and real time monitoring of the cellular reactions but also is more sensitive for in vitro cytotoxicity study. By real time and non-invasive monitoring of the extracellular potential in vitro, the potentiometric sensor system represents a promising biosensor system for drug discovery. PMID:19926470

  2. The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells

    NASA Astrophysics Data System (ADS)

    Fan, W.; Ding, J.; Duan, W.; Zhu, Y. M.

    2004-11-01

    The aim of present work was to investigate the influence of magnetic fields exposure on neurite outgrowth in PC12 cells. The neurite number per cell, length of neurites and directions of neurite growth with respect to the direction of the magnetic field were analyzed after exposure to 50 Hz electromagnetic field for 96 h. A promotion was observed under a weak field (0.23 mT), as the average number of neurites per cell increased to 2.38±0.06 compared to 1.91±0.07 neurites/cell of the control dishes, while inhibition and directional outgrowth was evident under a relatively stronger field (1.32 mT). Our work shows that biological systems can be very sensitive to the strength of electromagnetic field.

  3. Jet fuel-induced immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Titone, D; Robledo, R F; Young, R S; Witten, M

    2000-09-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and to decrease sensorimotor speed (3-5). Exposure to potential environmental toxicants such as jet fuel may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.), e.g., the immune system. Significant changes in immune function, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed 1 h/day for 7 days to a 1000-mg/m3 concentration of aerosolized jet fuel obtained from various sources (JP-8, JP-8+100 and Jet A1) and of differing compositions to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on the immune system. It was observed that exposure to all jet fuel sources examined had detrimental effects on the immune system. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in differential losses of immune cell populations in the thymus. Further, jet fuel exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low-concentration exposure of mice to aerosolized jet fuel, regardless of source or composition, caused significant deleterious effects on the immune system.

  4. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    PubMed

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  5. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation.

    PubMed

    Williams, Rachel; Schofield, Amy; Holder, Gareth; Downes, Joan; Edgar, David; Harrison, Paul; Siggel-King, Michele; Surman, Mark; Dunning, David; Hill, Stephen; Holder, David; Jackson, Frank; Jones, James; McKenzie, Julian; Saveliev, Yuri; Thomsen, Neil; Williams, Peter; Weightman, Peter

    2013-01-21

    Understanding the influence of exposure of biological systems to THz radiation is becoming increasingly important. There is some evidence to suggest that THz radiation can influence important activities within mammalian cells. This study evaluated the influence of the high peak power, low average power THz radiation produced by the ALICE (Daresbury Laboratory, UK) synchrotron source on human epithelial and embryonic stem cells. The cells were maintained under standard tissue culture conditions, during which the THz radiation was delivered directly into the incubator for various exposure times. The influence of the THz radiation on cell morphology, attachment, proliferation and differentiation was evaluated. The study demonstrated that there was no difference in any of these parameters between irradiated and control cell cultures. It is suggested that under these conditions the cells are capable of compensating for any effects caused by exposure to THz radiation with the peak powers levels employed in these studies.

  6. Argemone oil, an edible oil adulterant, induces systemic immunosuppression in Balb/c mice in an oral 28 days repeated dose toxicity study.

    PubMed

    Mandal, Payal; Tewari, Prachi; Kumar, Sachin; Yadav, Sarika; Ayanur, Anjaneya; Chaturvedi, Rajnish K; Das, Mukul; Tripathi, Anurag

    2018-05-01

    Consumption of edible oils contaminated with Argemone oil (AO) leads to a clinical condition called "Epidemic dropsy". Earlier studies have reported that metabolism and oxidative stress primarily contributes to AO toxicity, however, the involvement of immune system has not been assessed so far. Therefore, the present study was undertaken to systematically assess the effect of AO exposure on the function of immune system in Balb/c mice. The repeated exposure of AO for 28 days caused prominent regression of spleen and thymus; severe inflammatory changes in spleen depicted by the loss of distinct follicles, increased megakaryocyte infiltration, and enhanced expression levels of inflammatory markers (iNOS & COX-2). At the functional level, AO exposure significantly abrogated the mixed lymphocyte reaction and mitogen-stimulated lymphoproliferative activity of T and B cells, which is reflective of profound lymphocyte dysfunction upon antigen exposure. In concordance with the loss in functional activity of lymphocytes in AO exposed animals, it was found the AO altered the relative percentage of CD3 + , CD4 + , and CD28  +  T cells. Further, there was a marked decrease in the relative distribution of cells with prominent MHC I and CD1d expression in AO exposed splenocytes. Moreover, reduced levels of immune stimulatory cytokines (TNF-α, IFN-γ, IL-2, IL-4, and IL-6), and increased levels of immunosuppressive cytokine IL-10 were detected in the serum of AO treated mice. Along with T and B cells, AO exposure also affected the phenotype and activation status of macrophages suggesting the inclination towards "alternative activation of macrophages". Altogether, these functional changes in the immune cells are contributing factors in AO induced immunosuppression. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The Effects of Magnetic Exposure on the Nervous System: A study on the effects of low-strength low-frequency magnetic fields on neurotransmitter exocytosis and cell viability through ionic cyclotron resonance frequency

    NASA Astrophysics Data System (ADS)

    Saveriades, George

    This PhD dissertation focuses on the study of the effects of magnetic exposure on biological systems using amperometry techniques and viability assays. In our prior work based on the cyclotron resonance model, chromaffin cells in physiological saline and Ca2+-free media were exposed for 5 minutes to a 2.7 muT magnetic field, with frequency sweeps going from 30-60 Hz (targeting several ions involved in exocytosis) and 44-48 Hz (targeting specifically Ca2+ ions), with noticeable effects on exocytosis. The present study extended the work on chromaffin cells by covering frequency sweeps for different ions, manipulating the time of exposure and the strength of the magnetic field. Furthermore, amperometry was conducted on acute coronal brain slices, to demonstrate that the recorded effects could be measured on neuronal tissue. The viability of chromaffin cells and primary neuronal cultures exposed to magnetic fields was also addressed. The results demonstrate that cellular exocytosis is sensitive to the frequency of the magnetic field it is exposed to, the strength of the magnetic field and the duration of exposure. No significant effects were established with regards to the viability of the cells exposed to magnetic fields.

  8. Monitoring of human populations for early markers of cadmium toxicity: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Bruce A.

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.« less

  9. Monitoring of human populations for early markers of cadmium toxicity: a review.

    PubMed

    Fowler, Bruce A

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.

  10. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    PubMed

    Jin, Yeung Bae; Choi, Seo-Hyun; Lee, Jae Seon; Kim, Jae-Kyung; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2014-03-01

    The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.

  11. HSP induction in mesothelial cells by peritoneal dialysis fluid depends on biocompatibility test system.

    PubMed

    Bender, Thorsten O; Kratochwill, Klaus; Böhm, Michael; Jörres, Achim; Aufricht, Christoph

    2011-05-01

    We have previously shown that exposure of mesothelial cells (MC) to peritoneal dialysis fluids (PDF) not only caused toxic injury, but also induced cytoprotective heat shock proteins (HSP). This study was performed in order to compare HSP expression in MC upon PDF exposure in three currently used biocompatibility test systems. Omentum-derived human peritoneal MC underwent 3 modalities of exposure to heat- or filter-sterilized PDF: (A) pure PDF for 60 minutes followed by a recovery-period in pure culture medium for 24 hours; (B) 1:1 mixture of PDF and culture medium for 24 hours or (C) pure PDF for 60 minutes followed by a recovery-period in a 1:1 mixture of PDF and culture medium for 24 hours. Biocompatibility was assessed by LDH-release into the supernatant and HSP-72 expression in MC lysates. Short-term exposure of MC to pure PDF (Modality A) resulted in concordant LDH release and upregulation of HSP-72, regardless of heat or filter sterilization. In contrast, both test systems that exposed MC to heat-sterilized PDF during the recovery period (Modalities B and C) resulted in severe cellular lethality but low HSP-72 expression. This study clearly shows that HSP expression in MC upon PDF exposure depends on the biocompatibility test system. The presence of heat-sterilized PDF during recovery resulted in significant downregulation of Hsp-72 despite severe cell injury. Therefore, Hsp-72 expression reflects adequate cellular stress responses rather than PDF cytotoxicity.

  12. Tobacco and e-cigarette products initiate Kupffer cell inflammatory responses.

    PubMed

    Rubenstein, David A; Hom, Sarah; Ghebrehiwet, Berhane; Yin, Wei

    2015-10-01

    Kupffer cells are liver resident macrophages that are responsible for screening and clearing blood of pathogens and foreign particles. It has recently been shown that Kupffer cells interact with platelets, through an adhesion based mechanism, to aid in pathogen clearance and then these platelets re-enter the general systemic circulation. Thus, a mechanism has been identified that relates liver inflammation to possible changes in the systemic circulation. However, the role that Kupffer cells play in cardiovascular disease initiation/progression has not been elucidated. Thus, our objective was to determine whether or not Kupffer cells are responsive to a classical cardiovascular risk factor and if these changes can be transmitted into the general systemic circulation. If Kupffer cells initiate inflammatory responses after exposure to classical cardiovascular risk factors, then this provides a potential alternative/synergistic pathway for cardiovascular disease initiation. We aimed to elucidate the prevalence of this potential pathway. We hypothesized that Kupffer cells would initiate a robust inflammatory response after exposure to tobacco cigarette or e-cigarette products and that the inflammatory response would have the potential to antagonize other salient cells for cardiovascular disease progression. To test this, Kupffer cells were incubated with tobacco smoke extracts, e-cigarette vapor extracts or pure nicotine. Complement deposition onto Kupffer cells, Kupffer cell complement receptor expression, oxidative stress production, cytokine release and viability and density were assessed after the exposure. We observed a robust inflammatory response, oxidative stress production and cytokine release after Kupffer cells were exposed to tobacco or e-cigarette extracts. We also observed a marginal decrease in cell viability coupled with a significant decrease in cell density. In general, this was not a function of the extract formulation (e.g. tobacco vs. e-cigarette products or the formulation of the cigarette product). These results indicate that Kupffer cells are responsive to classical cardiovascular risk factors and that an inflammatory response is initiated that may pass into the general systemic circulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Synergistic effects on dopamine cell death in a Drosophila model of chronic toxin exposure

    PubMed Central

    Martin, Ciara A.; Barajas, Angel; Lawless, George; Lawal, Hakeem O.; Assani, Khadij; Lumintang, Yosephine P.; Nunez, Vanessa; Krantz, David E.

    2014-01-01

    The neurodegenerative effects of Parkinson’s disease (PD) are marked by a selective loss of dopaminergic (DA) neurons. Epidemiological studies suggest that chronic exposure to the pesticide paraquat may increase the risk for PD and DA cell loss. However, combined exposure with additional fungicide(s) including maneb and/or ziram may be required for pathogenesis. To explore potential pathogenic mechanisms, we have developed a Drosophila model of chronic paraquat exposure. We find that while chronic paraquat exposure alone decreased organismal survival and motor function, combined chronic exposure to both paraquat and maneb was required for DA cell death in the fly. To initiate mechanistic studies of this interaction, we used additional genetic reagents to target the ubiquitin proteasome system, implicated in some rare familial forms of PD and the toxic effects of ziram. Genetic inhibition of E1 ubiquitin ligase, but not the proteasome itself, increased DA cell death in combination with maneb but not paraquat. These studies establish a model for long-term exposure to multiple pesticides, and support the idea that pesticide interactions relevant to PD may involve inhibition of protein ubiquitination. PMID:25160001

  14. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  16. Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Altavista, Pierluigi; Lovisolo, Giorgio Alfonso; Marino, Carmela; Pioli, Claudio

    2010-12-01

    During embryogenesis, the development of tissues, organs and systems, including the immune system, is particularly susceptible to the effects of noxious agents. We examined the effects of prenatal (in utero) exposure to WiFi signals on pregnancy outcome and the immune B-cell compartment, including antibody production. Sixteen mated (plug-positive) female mice were assigned to each of the following groups: cage control, sham-exposed and microwave-exposed (WiFi signals at 2.45 GHz, whole body, SAR 4 W/kg, 2 h/day, 14 consecutive days starting 5 days after mating). No effects due to exposure to WiFi signals during pregnancy on mating success, number of newborns/mother and body weight at birth were found. Newborn mice were left to grow until 5 or 26 weeks of age, when immunological analyses were performed. No differences due to exposure were found in spleen cell number, B-cell frequency or antibody serum levels. When challenged in vitro with LPS, B cells from all groups produced comparable amounts of IgM and IgG, and proliferated at a similar level. All these findings were consistently observed in the female and male offspring at both juvenile (5 weeks) and adult (26 weeks) ages. Stress-associated effects as well as age- and/or sex-related differences were observed for several parameters. In conclusion, our results do not show any effect on pregnancy outcome or any early or late effects on B-cell differentiation and function due to prenatal exposure to WiFi signals.

  17. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells.

    PubMed

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-06-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34(+)KDR(+) cells) or early (CD34(+)CD133(+)KDR(+) cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2',7'-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Short-term stress enhances cellular immunity and increases early resistance to squamous cell carcinoma.

    PubMed

    Dhabhar, Firdaus S; Saul, Alison N; Daugherty, Christine; Holmes, Tyson H; Bouley, Donna M; Oberyszyn, Tatiana M

    2010-01-01

    In contrast to chronic/long-term stress that suppresses/dysregulates immune function, an acute/short-term fight-or-flight stress response experienced during immune activation can enhance innate and adaptive immunity. Moderate ultraviolet-B (UV) exposure provides a non-invasive system for studying the naturalistic emergence, progression and regression of squamous cell carcinoma (SCC). Because SCC is an immunoresponsive cancer, we hypothesized that short-term stress experienced before UV exposure would enhance protective immunity and increase resistance to SCC. Control and short-term stress groups were treated identically except that the short-term stress group was restrained (2.5h) before each of nine UV-exposure sessions (minimum erythemal dose, 3-times/week) during weeks 4-6 of the 10-week UV exposure protocol. Tumors were measured weekly, and tissue collected at weeks 7, 20, and 32. Chemokine and cytokine gene expression was quantified by real-time PCR, and CD4+ and CD8+ T cells by flow cytometry and immunohistochemistry. Compared to controls, the short-term stress group showed greater cutaneous T-cell attracting chemokine (CTACK)/CCL27, RANTES, IL-12, and IFN-gamma gene expression at weeks 7, 20, and 32, higher skin infiltrating T cell numbers (weeks 7 and 20), lower tumor incidence (weeks 11-20) and fewer tumors (weeks 11-26). These results suggest that activation of short-term stress physiology increased chemokine expression and T cell trafficking and/or function during/following UV exposure, and enhanced Type 1 cytokine-driven cell-mediated immunity that is crucial for resistance to SCC. Therefore, the physiological fight-or-flight stress response and its adjuvant-like immuno-enhancing effects, may provide a novel and important mechanism for enhancing immune system mediated tumor-detection/elimination that merits further investigation.

  19. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Ultrasound enhances retrovirus-mediated gene transfer.

    PubMed

    Naka, Toshio; Sakoda, Tsuyoshi; Doi, Takashi; Tsujino, Takeshi; Masuyama, Tohru; Kawashima, Seinosuke; Iwasaki, Tadaaki; Ohyanagi, Mitsumasa

    2007-01-01

    Viral vector systems are efficient for transfection of foreign genes into many tissues. Especially, retrovirus based vectors integrate the transgene into the genome of the target cells, which can sustain long term expression. However, it has been demonstrated that the transduction efficiency using retrovirus is relatively lower than those of other viruses. Ultrasound was recently reported to increase gene expression using plasmid DNA, with or without, a delivery vehicle. However, there are no reports, which show an ultrasound effect to retrovirus-mediated gene transfer efficiency. Retrovirus-mediated gene transfer systems were used for transfection of 293T cells, bovine aortic endothelial cells (BAECs), rat aortic smooth muscle cells (RASMCs), and rat skeletal muscle myoblasts (L6 cells) with beta-galactosidase (beta-Gal) genes. Transduction efficiency and cell viability assay were performed on 293T cells that were exposed to varying durations (5 to 30 seconds) and power levels (1.0 watts/cm(2) to 4.0 watts/cm(2)) of ultrasound after being transduced by a retrovirus. Effects of ultrasound to the retrovirus itself was evaluated by transduction efficiency of 293T cells. After exposure to varying power levels of ultrasound to a retrovirus for 5 seconds, 293T cells were transduced by a retrovirus, and transduction efficiency was evaluated. Below 1.0 watts/cm(2) and 5 seconds exposure, ultrasound showed increased transduction efficiency and no cytotoxicity to 293T cells transduced by a retrovirus. Also, ultrasound showed no toxicity to the virus itself at the same condition. Exposure of 5 seconds at the power of 1.0 watts/cm(2) of an ultrasound resulted in significant increases in retrovirus-mediated gene expression in all four cell types tested in this experiment. Transduction efficiencies by ultrasound were enhanced 6.6-fold, 4.8-fold, 2.3-fold, and 3.2-fold in 293T cells, BAECs, RASMCs, and L6 cells, respectively. Furthermore, beta-Gal activities were also increased by the retrovirus with ultrasound exposure in these cells. Adjunctive ultrasound exposure was associated with enhanced retrovirus-mediated transgene expression in vitro. Ultrasound associated local gene therapy has potential for not only plasmid-DNA-, but also retrovirus-mediated gene transfer.

  1. Effects of Solar Particle Event-Like Proton Radiation and/or Simulated Microgravity on Circulating Mouse Blood Cells.

    PubMed

    Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R

    2014-08-01

    Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.

  2. Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos

    PubMed Central

    Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko

    2010-01-01

    Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic purposes. PMID:20126466

  3. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization. The Astronauts will be exposed to microgravity environment for a long duration of time during these flights. Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system and nervous system. We did our preliminary investigations by exposing mammalian lymphocytes and astrocyte cells to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon, Inc. (USA).Our initial results showed no significant change in cytokine expression in these cells up to a time period of 120 hours exposure. Our future experiments will involve exposure for a longer period of time.

  4. Tier-2 studies on monocrotaline immunotoxicity in C57BL/6 mice.

    PubMed

    Deyo, J A; Kerkvliet, N I

    1991-01-01

    Monocrotaline (MCT) is a member of a class of naturally occurring phytotoxins known as pyrrolizidine alkaloids, and is a toxicological concern to both man and his livestock. The purpose of these studies was to evaluate the effect of a 14-day oral MCT (0-100 mg/kg per day) exposure on the functional integrity of various immunocyte effector systems in C57BL/6 mice, as well as to investigate potential mechanisms for its immunotoxicity. Decreases in lymphoid organ weights and cellularity, and resident peritoneal exudate cell (PEC) number were only observed after exposure to the highest dose of 100 mg/kg MCT. This dose also inhibited NK cell cytotoxicity, while the total number of NK lytic units per spleen was decreased (-53%) after exposure to 50 mg/kg MCT. Following i.p. injection of SRBC, the percentage of PEC macrophages containing engulfed SRBC was significantly increased in MCT-exposed mice, while the percentage of large vacuolated (activated) macrophages was decreased in a dose-dependent manner. Exposure to MCT significantly decreased the total number of Ig+ cells without altering the number of CD4+ and CD8+ cells. The antibody responses (PFC/10(6) spleen cells) to two T cell-independent antigens, TNP-LPS and DNP-Ficoll, were significantly decreased at all MCT doses, and the degree of suppression of both responses was identical at coincident doses. MCT exposure (25 mg/kg) significantly suppressed the blastogenic response to the T cell mitogen concanavalin A (-38%), and to the B cell mitogen lipopolysaccharide (-58%). These results indicate that exposure to MCT can alter the functional integrity of various immune effector responses in a dose-dependent manner, and suggest that the B cell may be a relatively more sensitive target of MCT immunotoxicity compared to T cells, macrophages and NK cells.

  5. Comparative studies of saxitoxin (STX) -induced cytotoxicity in Neuro-2a and RTG-2 cell lines: An explanation with respect to changes in ROS.

    PubMed

    Zhou, Zhongyuan; Tang, Xuexi; Chen, Hongmei; Wang, You

    2018-02-01

    Saxitoxin (STX), a paralytic shellfish toxin (PST) produced from toxic bloom-forming dinoflagellates, was selected to comparatively investigate the induction of cytotoxicity and apoptosis and a possible mechanism based on changes in the antioxidant defence system of two cellular strains: the mouse neuroblastoma cell line Neuro-2a and the rainbow trout fish cell line RTG-2. Increasing concentrations of STX (0-256 nM) presented little cytotoxic or apoptotic effects on the two cell lines. Measurements of cellular viability, lethal ratio and LDH leakage showed slight changes in Neuro-2a and RTG-2 cells (p > 0.05), and similar results were observed for cellular morphology and apoptotic rates. The contents of the main reactive oxygen species (ROS) components, superoxide anion (O 2 - ) and hydrogen peroxide (H 2 O 2 ), were markedly increased in Neuro-2a cell with STX exposure at middle (15 nM) and high (150 nM) concentrations (p < 0.05), and the simultaneous increase of the ratio of reduced/oxidized glutathione (GSH/GSSG) (p < 0.05) inferred the occurrence of oxidative stress. However, little difference was observed in all treated groups of RTG-2 cells. The activities of three antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), were significantly enhanced in Neuro-2a cells in the middle and high concentration groups (p < 0.05), while glutathione peroxidase (GPX) obviously decreased (p < 0.05) in all treated groups. Little change was found in RTG-2 cells with the same exposures. These results provided evidence that STX exposure altered the redox status of Neuro-2a cells and resulted in oxidative stress, but the same exposure exerted little effect on RTG-2 cells. Therefore, Neuro-2a cells are more sensitive than reproductive cells to STX exposure, and the antioxidant systems appears to be partly responsible for this differentiation response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, October 1, 1976--June 30, 1977. [Damage induced by exposure to toxic agents associated with production of synthetic fuels from oil shale and coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1977-07-01

    This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory tract cells in animals exposed to toxic agents associated with production of synthetic fuels from oil shale and coal, the specific goal being the application of advanced flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. The objectives of the program during the past 6 months were: to develop standard methods for lavaging lungs of several rodent species (hamster, rat, and mouse) to increase cell yield; initiate oil shale exposures in hamsters and rats; study the effects ofmore » macrophage mobility in the presence of oil shale; and determine the effects of different fixatives on lung cell morphology using electron microscopy. To develop standard methods for lavaging the respiratory tract of test animals, experiments were devised to increase cell yield with minimal debris and blood. Proteolytic enzymes such as trypsin were also tested but produced excessive amounts of fibrinated blood. Experimental animals were exposed to raw and spent oil shale particulates to determine if changes in lung cell differential counts and/or atypical cellular changes were noted. Since the multiparameter cell separator system was inoperative during this reporting period due to major modifications, including the addition of an uv krypton laser, emphasis was primarily on cytological techniques. As the flow-systems instrumentation becomes fully operational during the next month, automated analysis of respiratory tract cells and measurement of physical and biochemical properties as a function of exposure to toxic agents will continue.« less

  7. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    NASA Astrophysics Data System (ADS)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  8. Cell phones: modern man's nemesis?

    PubMed

    Makker, Kartikeya; Varghese, Alex; Desai, Nisarg R; Mouradi, Rand; Agarwal, Ashok

    2009-01-01

    Over the past decade, the use of mobile phones has increased significantly. However, with every technological development comes some element of health concern, and cell phones are no exception. Recently, various studies have highlighted the negative effects of cell phone exposure on human health, and concerns about possible hazards related to cell phone exposure have been growing. This is a comprehensive, up-to-the-minute overview of the effects of cell phone exposure on human health. The types of cell phones and cell phone technologies currently used in the world are discussed in an attempt to improve the understanding of the technical aspects, including the effect of cell phone exposure on the cardiovascular system, sleep and cognitive function, as well as localized and general adverse effects, genotoxicity potential, neurohormonal secretion and tumour induction. The proposed mechanisms by which cell phones adversely affect various aspects of human health, and male fertility in particular, are explained, and the emerging molecular techniques and approaches for elucidating the effects of mobile phone radiation on cellular physiology using high-throughput screening techniques, such as metabolomics and microarrays, are discussed. A novel study is described, which is looking at changes in semen parameters, oxidative stress markers and sperm DNA damage in semen samples exposed in vitro to cell phone radiation.

  9. Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system.

    PubMed

    Romeo, Agostino; Tarabella, Giuseppe; D'Angelo, Pasquale; Caffarra, Cristina; Cretella, Daniele; Alfieri, Roberta; Petronini, Pier Giorgio; Iannotta, Salvatore

    2015-06-15

    We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics. To qualify the device, we used a human lung adenocarcinoma cell line (A549) that was cultivated on the micro-porous membrane of a Transwell (Twell) support, and exposed to the anticancer drug doxorubicin. Time-dependent and dose-dependent dynamics of A549 cells exposed to doxorubicin are evaluated by monitoring cell death upon exposure to a range of doses and times that fully covers the protocols used in cancer treatment. The demonstrated ability to directly monitor cell stress and death dynamics upon drug exposure using simple electronic devices and, possibly, achieving selectivity to different cell dynamics is of great interest for several application fields, including toxicology, pharmacology, and therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  11. Modeling vascular inflammation and atherogenicity after inhalation of ambient levels of ozone: exploratory lessons from transcriptomics.

    PubMed

    Tham, Andrea; Lullo, Dominic; Dalton, Sarah; Zeng, Siyang; van Koeverden, Ian; Arjomandi, Mehrdad

    2017-02-01

    Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.

  12. Perfluorooctanoic acid exposure induces endoplasmic reticulum stress in the liver and its effects are ameliorated by 4-phenylbutyrate.

    PubMed

    Yan, Shengmin; Zhang, Hongxia; Wang, Jianshe; Zheng, Fei; Dai, Jiayin

    2015-10-01

    Perfluoroalkyl acids (PFAAs) are a group of widely used anthropogenic compounds. As one of the most dominant PFAAs, perfluorooctanoic acid (PFOA) has been suggested to induce hepatotoxicity and several other toxicological effects. However, details on the mechanisms for PFOA-induced hepatotoxicity still need to be elucidated. In this study, we observed the occurrence of endoplasmic reticulum (ER) stress in mouse livers and HepG2 cells after PFOA exposure using several familiar markers for the unfolded protein response (UPR). ER stress in HepG2 cells after PFOA exposure was not significantly influenced by autophagy inhibition or stimulation. The antioxidant defense system was significantly disturbed in mouse livers after PFOA exposure, and reactive oxygen species (ROS) were increased in cells exposed to PFOA for 24 h. However, N-acetyl-L-cysteine (NAC) pretreatment did not satisfactorily alleviate the UPR in cells exposed to PFOA even though the increase of ROS was less evident. Furthermore, exposure of HepG2 cells to PFOA in the presence of sodium 4-phenylbutyrate (4-PBA), a chemical chaperone and ER stress inhibitor, suggested that 4-PBA alleviated the UPR and autophagosome accumulation induced by PFOA in cells. In addition, several toxicological effects attributed to PFOA exposure, including cell cycle arrest, proteolytic activity impairment, and neutral lipid accumulation, were also improved by 4-PBA cotreatment in cells. In vivo study demonstrated that PFOA-induced lipid metabolism perturbation and liver injury were partially ameliorated by 4-PBA in mice after 28 days of exposure. These findings demonstrated that PFOA-induced ER stress leading to UPR might play an important role in PFOA-induced hepatotoxic effects, and chemical chaperone 4-PBA could ameliorate the effects. Copyright © 2015. Published by Elsevier Inc.

  13. The effect of acute exposure to coarse particulate matter air pollution in a rural location on circulating endothelial progenitor cells: results from a randomized controlled study

    PubMed Central

    Brook, Robert D.; Bard, Robert L.; Kaplan, Mariana J.; Yalavarthi, Srilakshmi; Morishita, Masako; Dvonch, J. Timothy; Wang, Lu; Yang, Hui-yu; Spino, Catherine; Mukherjee, Bhramar; Oral, Elif A.; Sun, Qinghua; Brook, Jeffrey R.; Harkema, Jack; Rajagopalan, Sanjay

    2015-01-01

    Context Fine particulate matter (PM) air pollution has been associated with alterations in circulating endothelial progenitor cell (EPC) levels, which may be one mechanism whereby exposures promote cardiovascular diseases. However, the impact of coarse PM on EPCs is unknown. Objective We aimed to determine the effect of acute exposure to coarse concentrated ambient particles (CAP) on circulating EPC levels. Methods Thirty-two adults (25.9±6.6 years) were exposed to coarse CAP (76.2±51.5 μgm−3) in a rural location and filtered air (FA) for 2 h in a randomized double-blind crossover study. Peripheral venous blood was collected 2 and 20 h post-exposures for circulating EPC (n=21), white blood cell (n=24) and vascular endothelial growth factor (VEGF) (n=16–19) levels. The changes between exposures were compared by matched Wilcoxon signed-rank tests. Results Circulating EPC levels were elevated 2 [108.29 (6.24–249.71) EPC mL−1; median (25th–75th percentiles), p=0.052] and 20 h [106.86 (52.91–278.35) EPC mL−1, p=0.008] post-CAP exposure compared to the same time points following FA [38.47 (0.00–84.83) and 50.16 (0.00–104.79) EPC mL−1]. VEGF and white blood cell (WBC) levels did not differ between exposures. Conclusions Brief inhalation of coarse PM from a rural location elicited an increase in EPCs that persisted for at least 20 h. The underlying mechanism responsible may reflect a systemic reaction to an acute “endothelial injury” and/or a circulating EPC response to sympathetic nervous system activation. PMID:23919441

  14. Free radical release and HSP70 expression in two human immune-relevant cell lines after exposure to 1800 MHz radiofrequency radiation.

    PubMed

    Lantow, M; Schuderer, J; Hartwig, C; Simkó, M

    2006-01-01

    The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.

  15. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury.

    PubMed

    Branco, Vasco; Coppo, Lucia; Solá, Susana; Lu, Jun; Rodrigues, Cecília M P; Holmgren, Arne; Carvalho, Cristina

    2017-10-01

    Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg 2+ ), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. 7,12-Dimethylbenzanthracene induces apoptosis in RL95-2 human endometrial cancer cells: Ligand-selective activation of cytochrome P450 1B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Young; Medical Research Science Center, Dong-A University, Busan 602-714; Lee, Seung Gee

    2012-04-15

    7,12-Dimethylbenzanthracene (DMBA), a polycyclic aromatic hydrocarbon, exhibits mutagenic, carcinogenic, immunosuppressive, and apoptogenic properties in various cell types. To achieve these functions effectively, DMBA is modified to its active form by cytochrome P450 1 (CYP1). Exposure to DMBA causes cytotoxicity-mediated apoptosis in bone marrow B cells and ovarian cells. Although uterine endometrium constitutively expresses CYP1A1 and CYP1B1, their apoptotic role after exposure to DMBA remains to be elucidated. Therefore, we chose RL95-2 endometrial cancer cells as a model system for studying DMBA-induced cytotoxicity and cell death and hypothesized that exposure to DMBA causes apoptosis in this cell type following CYP1A1 and/ormore » CYP1B1 activation. We showed that DMBA-induced apoptosis in RL95-2 cells is associated with activation of caspases. In addition, mitochondrial changes, including decrease in mitochondrial potential and release of mitochondrial cytochrome c into the cytosol, support the hypothesis that a mitochondrial pathway is involved in DMBA-induced apoptosis. Exposure to DMBA upregulated the expression of AhR, Arnt, CYP1A1, and CYP1B1 significantly; this may be necessary for the conversion of DMBA to DMBA-3,4-diol-1,2-epoxide (DMBA-DE). Although both CYP1A1 and CYP1B1 were significantly upregulated by DMBA, only CYP1B1 exhibited activity. Moreover, knockdown of CYP1B1 abolished DMBA-induced apoptosis in RL95-2 cells. Our data show that RL95-2 cells are susceptible to apoptosis by exposure to DMBA and that CYP1B1 plays a pivotal role in DMBA-induced apoptosis in this system. -- Highlights: ► Cytotoxicity-mediated apoptogenic action of DMBA in human endometrial cancer cells. ► Mitochondrial pathway in DMBA-induced apoptosis of RL95-2 endometrial cancer cells. ► Requirement of ligand-selective activation of CYP1B1 in DMBA-induced apoptosis.« less

  17. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  18. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  19. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  20. Elevated non-esterified fatty acid concentrations hamper bovine oviductal epithelial cell physiology in three different in vitro culture systems.

    PubMed

    Jordaens, L; Arias-Alvarez, M; Pintelon, I; Thys, S; Valckx, S; Dezhkam, Y; Bols, P E J; Leroy, J L M R

    2015-10-01

    Elevated non-esterified fatty acids (NEFAs) have been recognized as an important link between lipolytic metabolic conditions and impaired fertility in high-yielding dairy cows. However, NEFA effects on the oviductal micro-environment currently remain unknown. We hypothesize that elevated NEFAs may contribute to the complex pathology of subfertility by exerting a negative effect on bovine oviductal epithelial cell (BOEC) physiology. Therefore, the objectives of this study were to elucidate direct NEFA effects on BOEC physiology in three different in vitro cell culture systems. Bovine oviductal epithelial cells (four replicates) were mechanically isolated, pooled, and cultured as conventional monolayers, as explants, and in a polarized cell culture system with Dulbecco's modified Eagle's medium/F12-based culture medium. Bovine oviductal epithelial cells were exposed to an NEFA mixture of oleic, stearic, and palmitic acids for 24 hours at both physiological and pathologic concentrations. A control (0 μM NEFA) and a solvent control (0 μM NEFA + 0.45% ethanol) group were implemented. Bovine oviductal epithelial cells physiology was assessed by means of cell number and viability, a sperm binding assay, transepithelial electric resistance (TER), and a wound-healing assay. Bovine oviductal epithelial cell morphology was assessed by scanning electron microscopy on cell polarity, presence of microvilli and cilia, and monolayer integrity. Bovine oviductal epithelial cell number was negatively affected by increasing NEFAs, however, cell viability was not. Sperm binding affinity significantly decreased with increasing NEFAs and tended (P = 0.051) to be more affected by the direction of NEFA exposure in the polarized cell culture system. The absolute TER increase after NEFA exposure in the control (110 ± 11 Ω.cm(2)) was significantly higher than that in all the other treatments and was also different depending on the exposure side. Bidirectional exposed monolayers were even associated with a significant TER reduction (-15 ± 10 Ω.cm(2); P < 0.05). Cell proliferation capacity showed a decreased cell migration with increasing NEFA concentrations but was irrespective of the exposure side. Bovine oviductal epithelial cell morphology was not affected. In conclusion, in an in vitro setting, NEFAs exert a negative effect on BOEC physiology but not morphology. Ultimately, these physiological alterations in its microenvironment may result in suboptimal development of the pre-implantation embryo and a reduced reproductive outcome in dairy cattle. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  2. Comparative biology approaches for charged particle exposures and cancer development processes

    NASA Astrophysics Data System (ADS)

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Sudo, Hiroko; Wiese, Claudia; Dan, Cristian; Turker, Mitchell

    Comparative biology studies can provide useful information for the extrapolation of results be-tween cells in culture and the more complex environment of the tissue. In other circumstances, they provide a method to guide the interpretation of results obtained for cells from differ-ent species. We have considered several key cancer development processes following charged particle exposures using comparative biology approaches. Our particular emphases have been mutagenesis and genomic instability. Carcinogenesis requires the accumulation of mutations and most of htese mutations occur on autosomes. Two loci provide the greatest avenue for the consideration of charged particle-induced mutation involving autosomes: the TK1 locus in human cells and the APRT locus in mouse cells. Each locus can provide information on a wide variety of mutational changes, from small intragenic mutations through multilocus dele-tions and extensive tracts of mitotic recombination. In addition, the mouse model can provide a direct measurement of chromosome loss which cannot be accomplished in the human cell system. Another feature of the mouse APRT model is the ability to examine effects for cells exposed in vitro with those obtained for cells exposed in situ. We will provide a comparison of the results obtained for the TK1 locus following 1 GeV/amu Fe ion exposures to the human lymphoid cells with those obtained for the APRT locus for mouse kidney epithelial cells (in vitro or in situ). Substantial conservation of mechanisms is found amongst these three exposure scenarios, with some differences attributable to the specific conditions of exposure. A similar approach will be applied to the consideraiton of proton-induced autosomal mutations in the three model systems. A comparison of the results obtained for Fe ions vs. protons in each case will highlight LET-specificc differences in response. Another cancer development process that is receiving considerable interest is genomic instability. We have examined this process following exposure to sparsely and densely ionizing charged particles in human lymphoid cells and in human epithelial cells. A comparison of the results in these systems can reveal similari-ties and differences as a function of cell type and LET. Last, we will approach the question of the relevance of genomic instability in the context of charged particle mutagenesis. In many models, it has been difficult to link these two processes. We will present data regarding the mechanistic associations between these processes. Taken together, these studies will allow the definition of conserved pathways that are likely to contribute strongly to the cancer risks for astronauts exposed to charged particle radiations. Supported by NASA grant NNJ07HC721 to A. Kronenberg and NASA grant NNX10AC12G to M. Turker.

  3. Toxicological analysis of limonene reaction products using an in vitro exposure system

    PubMed Central

    Anderson, Stacey E.; Khurshid, Shahana S.; Meade, B. Jean; Lukomska, Ewa; Wells, J.R.

    2015-01-01

    Epidemiological investigations suggest a link between exposure to indoor air chemicals and adverse health effects. Consumer products contain reactive chemicals which can form secondary pollutants which may contribute to these effects. The reaction of limonene and ozone is a well characterized example of this type of indoor air chemistry. The studies described here characterize an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue (MucilAir™). The model is used to investigate adverse effects following exposure to combinations of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction products resulted in alterations in inflammatory cytokine production. A one hour exposure to limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ tissue. No change in proliferation was observed but increases in cytokine production were observed for both the parent compounds and reaction products. Factors such as exposure duration, chemical concentration, and sampling time point were identified to influence result outcome. These findings suggest that exposure to reaction products may produce more severe effects compared to the parent compound. PMID:23220291

  4. Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells.

    PubMed

    Alja, Štraser; Filipič, Metka; Novak, Matjaž; Žegura, Bojana

    2013-08-21

    The newly emerging cyanobacterial cytotoxin cylindrospermopsin (CYN) is increasingly found in surface freshwaters, worldwide. It poses a potential threat to humans after chronic exposure as it was shown to be genotoxic in a range of test systems and is potentially carcinogenic. However, the mechanisms of CYN toxicity and genotoxicity are not well understood. In the present study CYN induced formation of DNA double strand breaks (DSBs), after prolonged exposure (72 h), in human hepatoma cells, HepG2. CYN (0.1-0.5 µg/mL, 24-96 h) induced morphological changes and reduced cell viability in a dose and time dependent manner. No significant increase in lactate dehydrogenase (LDH) leakage could be observed after CYN exposure, indicating that the reduction in cell number was due to decreased cell proliferation and not due to cytotoxicity. This was confirmed by imunocytochemical analysis of the cell-proliferation marker Ki67. Analysis of the cell-cycle using flow-cytometry showed that CYN has an impact on the cell cycle, indicating G0/G1 arrest after 24 h and S-phase arrest after longer exposure (72 and 96 h). Our results provide new evidence that CYN is a direct acting genotoxin, causing DSBs, and these facts need to be considered in the human health risk assessment.

  5. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited.

    PubMed

    Raemy, David O; Limbach, Ludwig K; Rothen-Rutishauser, Barbara; Grass, Robert N; Gehr, Peter; Birbaum, Karin; Brandenberger, Christina; Günther, Detlef; Stark, Wendelin J

    2011-04-01

    Nowadays, aerosol processes are widely used for the manufacture of nanoparticles (NPs), creating an increased occupational exposure risk of workers, laboratory personnel and scientists to airborne particles. There is evidence that possible adverse effects are linked with the accumulation of NPs in target cells, pointing out the importance of understanding the kinetics of particle internalization. In this context, the uptake kinetics of representative airborne NPs over 30 min and their internalization after 24 h post-exposure were investigated by the use of a recently established exposure system. This system combines the production of aerosolized cerium oxide (CeO(2)) NPs by flame spray synthesis with its simultaneous particle deposition from the gas-phase onto A549 lung cells, cultivated at the air-liquid interface. Particle uptake was quantified by mass spectrometry after several exposure times (0, 5, 10, 20 and 30 min). Over 35% of the deposited mass was found internalized after 10 min exposure, a value that increased to 60% after 30 min exposure. Following an additional 24 h post-incubation, a time span, after which adverse biological effects were observed in previous experiments, over 80% of total CeO(2) could be detected intracellularly. On the ultrastructural level, focal cerium aggregates were present on the apical surface of A549 cells and could also be localized intracellularly in vesicular structures. The uptake behaviour of aerosolized CeO(2) is in line with observations on cerium suspensions, where particle mass transport was identified as the rate-limiting factor for NP internalization. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins.

    PubMed

    Soloff, Adam C; Wolf, Bethany Jacobs; White, Natasha D; Muir, Derek; Courtney, Sean; Hardiman, Gary; Bossart, Gregory D; Fair, Patricia A

    2017-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4 + and CD8 + T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Immunotoxicological effects of JP-8 jet fuel exposure.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed (3-5). Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (e.g., physiology, cardiology, respiratory, etc.); e.g., the immune system. Significant changes in immune consequences, even if short-lived, may have serious consequences for the exposed host that may impinge affect susceptibility to infectious agents. Major alterations in immune function that are long-lasting may result in an increased likelihood of development and/or progression of cancer, as well as autoimmune diseases. In the current study mice were exposed for 1h/day for 7 days to varying concentrations of aerosolized JP-8 jet fuel to simulate occupational exposures. Twenty-four hours after the last exposure the mice were analyzed for effects on their immune systems. It was observed that even at exposure concentrations as low as 100 mg/m3 detrimental effects on the immune system occurred. Decreases in viable immune cell numbers and immune organ weights were found. Jet fuel exposure resulted in losses of different immune cell subpopulations depending upon the immune organ being examined. Further, JP-8 exposure resulted in significantly decreased immune function, as analyzed by mitogenesis assays. Suppressed immune function could not be overcome by the addition of exogenous growth factors known to stimulate immune function. Thus, short-term, low concentration exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure, as effects were seen at concentrations of jet fuel that did not evidence change in other biological systems. Such changes may have significant effects on the health of the exposed individual.

  8. UV-B affects the immune system and promotes nuclear abnormalities in pigmented and non-pigmented bullfrog tadpoles.

    PubMed

    Franco-Belussi, Lilian; Fanali, Lara Zácari; De Oliveira, Classius

    2018-03-01

    Ultra-Violet (UV) radiation is a stressor of the immune system and causes DNA damage. Leukocytes can change in response to environmental changes in anurans, making them an important biomarker of stressful situations. The initial barrier against UV in ectothermic animals is melanin-containing cells in skin and in their internal organs. Here, we tested the effects of UV exposure on immune cells and DNA integrity in pigmented and non-pigmented tadpoles of Lithobates catesbeianus. We used an inflammation model with lipopolysaccharide (LPS) of Escherichia coli to test synergic effects of UV and LPS. We tested the following hypotheses: 1) DNA damage caused by UV will be more pronounced in non-pigmented than in pigmented animals; 2) LPS increases leukocytes in both pigmented and non-pigmented animals by systemic inflammation; 3) The combined LPS and UV exposure will decrease the number of leukocytes. We found that the frequency of immune cells differed between pigmented and non-pigmented tadpoles. UV exposure increased mast cells and DNA damage in erythrocytes in both pigmented and non-pigmented tadpoles, while leukocytes decreased after UV exposure. Non-pigmented tadpoles experienced DNA damage and a lower lymphocyte count earlier than pigmented tadpoles. UV altered immune cells likely as a consequence of local and systemic inflammation. These alterations were less severe in pigmented than in non-pigmented animals. UV and LPS increased internal melanin in pigmented tadpoles, which were correlated with DNA damage and leukocytes. Here, we described for the first time the effects of UV and LPS in immune cells of pigmented and non-pigmented tadpoles. In addition, we demonstrated that internal melanin in tadpoles help in these defenses, since leukocyte responses were faster in non-pigmented animals, supporting the hypothesis that melanin is involved in the initial innate immune response. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system.

    PubMed

    Smith, Matthew J; Brown, Jared M; Zamboni, William C; Walker, Nigel J

    2014-04-01

    The potential for human exposure to the diverse and ever-changing world of nanoscale materials has raised concerns about their influence on health and disease. The novel physical and chemical properties of these materials, which are associated with their small size, complicate toxicological evaluations. Further, these properties may make engineered nanomaterials (ENMs) a prime target for interaction with the immune system following uptake by phagocytes. Undesired effects on antigen-presenting cells and other phagocytic cells are of concern due to the high likelihood of ENM uptake by these cells. In addition, ENM interactions with lymphocytes and other cell types can contribute to a varied spectrum of possible effects, including inflammation, hypersensitivity, and immunomodulation. Furthermore, the mast cell (a type of immune cell traditionally associated with allergy) appears to contribute to certain inflammatory and toxic effects associated with some ENMs. Although incidental exposure may be undesirable, nanomedicines engineered for various clinical applications provide opportunities to develop therapies that may or may not intentionally target the immune system. The interaction between ENMs and the immune system and the resulting pharmacokinetic and phenotypic responses are critical factors that dictate the balance between toxicity and clinical efficacy of nanotherapeutics.

  10. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  11. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols. PMID:27348622

  12. Compilation of 1990 annual reports of the Navy ELF communications system ecological monitoring program. Volume 2: Tabs C thru F

    NASA Astrophysics Data System (ADS)

    Zapotosky, J. E.

    1991-08-01

    This portion of the report includes monitoring of and data for arthropoda and earthworms; pollinating insects; and small mammals and nesting birds. During the 1990 growing season the ELF antenna was operated more frequently than in prior years. This provides 2 years of intermittent ELF exposure for the biological systems to react to the radiation, one year of very limited exposure and greater exposure in 1990. Arthropod and earthworm sampling was conducted at intervals of two weeks from early May to late October. High voltage transmission lines and magnetic fields have been shown to affect honeybee reproduction, survival, orientation, and nest structure. ELF EM fields could have similar effects on native megachild bees. Changes in cell length, number of cells per nest, number of leaver per cell, orientation of nest entrances, and time to collect a round leaf pierce to cap a cell were monitored. We have not detected significant changes that could be attributed to ELF EM fields. Small mammal and nesting bird biological studies in the western Upper Peninsula of Michigan for the year 1990 are reported.

  13. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  14. Electromagnetic field and brain development.

    PubMed

    Kaplan, Suleyman; Deniz, Omur Gulsum; Önger, Mehmet Emin; Türkmen, Aysın Pınar; Yurt, Kıymet Kübra; Aydın, Işınsu; Altunkaynak, Berrin Zuhal; Davis, Devra

    2016-09-01

    Rapid advances in technology involve increased exposures to radio-frequency/microwave radiation from mobile phones and other wireless transmitting devices. As cell phones are held close to the head during talking and often stored next to the reproductive organs, studies are mostly focused on the brain. In fact, more research is especially needed to investigate electromagnetic field (EMF)'s effects on the central nervous system (CNS). Several studies clearly demonstrate that EMF emitted by cell phones could affect a range of body systems and functions. Recent work has demonstrated that EMF inhibit the formation and differentiation of neural stem cells during embryonic development and also affect reproductive and neurological health of adults that have undergone prenatal exposure. The aim of this review is to discuss the developing CNS and explain potential impacts of EMF on this system. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  16. Short infrared laser pulses increase cell membrane fluidity

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cantu, Jody C.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses induce a variety of effects in cells and tissues, including neural stimulation and inhibition. However, the mechanism behind these physiological effects is poorly understood. It is known that the fast thermal gradient induced by the infrared light is necessary for these biological effects. Therefore, this study tests the hypothesis that the fast thermal gradient induced in a cell by infrared light exposure causes a change in the membrane fluidity. To test this hypothesis, we used the membrane fluidity dye, di-4-ANEPPDHQ, to investigate membrane fluidity changes following infrared light exposure. Di-4-ANEPPDHQ fluorescence was imaged on a wide-field fluorescence imaging system with dual channel emission detection. The dual channel imaging allowed imaging of emitted fluorescence at wavelengths longer and shorter than 647 nm for ratiometric assessment and computation of a membrane generalized polarization (GP) value. Results in CHO cells show increased membrane fluidity with infrared light pulse exposure and this increased fluidity scales with infrared irradiance. Full recovery of pre-infrared exposure membrane fluidity was observed. Altogether, these results demonstrate that infrared light induces a thermal gradient in cells that changes membrane fluidity.

  17. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.

    PubMed

    Calderon-Gierszal, Esther L; Prins, Gail S

    2015-01-01

    Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.

  18. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.

    PubMed

    Malavazi, Iran; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2014-11-01

    In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis.

    PubMed

    Almeida-Porada, Graça; Rodman, Christopher; Kuhlman, Bradford; Brudvik, Egil; Moon, John; George, Sunil; Guida, Peter; Sajuthi, Satria P; Langefeld, Carl D; Walker, Stephen J; Wilson, Paul F; Porada, Christopher D

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.

  20. Elucidation of the new generation fluorescent protein tdTomato for space related radiobiological research

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther

    Astronauts in space are exposed to a potentially harmful radiation field, which does not exist in its quality and quantity on earth. Radiation exposure in space can lead to delayed or acute health effects. A successful long-term space mission requires better risk estimation and development of appropriate countermeasures, therefore study of the cellular radiation response is necessary. Ionizing radiation can provoke active cellular responses (cell cycle arrest, DNA repair, apoptosis or other forms of cell type). Exposure to ionizing radiation also activates various signaling pathways in human cells. In the cellular radiation-response, two pivotal signal transduction pathways have to be comprehensively studied i.e. the p53-pathway and NF-κB-pathway. Discovery of fluorescent proteins has revolutionized biological research by making it possible to carry out functional studies in living cells and understanding complex signaling pathways. Previously the green fluorescent proteins EGFP and d2EGFP were used for signaling pathway studies. In this work the new red fluorescent protein tdTomato will be used for comprehensive investigation of NF-κB and other transcription factor activation after exposure of human cells to ionizing radiation (X-rays, heavy ions; space conditions). tdTomato has many advantages over EGFP because of its high fluorescence signals and a better signal/noise ratio in human cells. The previously constructed reporter system with d2EGFP was used to evaluate NF-kB activation after exposure to heavy ion particles of different biological effectiveness. The sensitivity threshold of this system was determined to be 2 particle traversals per cell nucleus. In the current study a more sensitive reporter assay will be constructed using a GAL4-VP16 turbo system that comprises a receptor plasmid and a reporter plasmid. This reporter assay will be designed and constructed with tdTomato and evaluation will be done with different molecular techniques.

  1. An immunosurveillance mechanism controls cancer cell ploidy.

    PubMed

    Senovilla, Laura; Vitale, Ilio; Martins, Isabelle; Tailler, Maximilien; Pailleret, Claire; Michaud, Mickaël; Galluzzi, Lorenzo; Adjemian, Sandy; Kepp, Oliver; Niso-Santano, Mireia; Shen, Shensi; Mariño, Guillermo; Criollo, Alfredo; Boilève, Alice; Job, Bastien; Ladoire, Sylvain; Ghiringhelli, François; Sistigu, Antonella; Yamazaki, Takahiro; Rello-Varona, Santiago; Locher, Clara; Poirier-Colame, Vichnou; Talbot, Monique; Valent, Alexander; Berardinelli, Francesco; Antoccia, Antonio; Ciccosanti, Fabiola; Fimia, Gian Maria; Piacentini, Mauro; Fueyo, Antonio; Messina, Nicole L; Li, Ming; Chan, Christopher J; Sigl, Verena; Pourcher, Guillaume; Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Lazar, Vladimir; Penninger, Josef M; Madeo, Frank; López-Otín, Carlos; Smyth, Mark J; Zitvogel, Laurence; Castedo, Maria; Kroemer, Guido

    2012-09-28

    Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.

  2. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system.

    PubMed

    Fields, Wanda; Fowler, Kathy; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2017-04-01

    Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses. 1) demonstrate functionality of the VITROCELL® VC10® system by installation, operational and performance qualification, 2) develop and validate a cellular system for assessing cytotoxicity following whole smoke exposure and 3) assess the whole smoke NRU assay sensitivity for statistical differentiation between a reference combustible cigarette (3R4F) and a primarily "heat-not-burn" cigarette (Eclipse). The VITROCELL® VC10® provided consistent generation and delivery of whole smoke; exposure-related changes in in vitro cytotoxicity were observed with reproducible IC 50 values; comparative analysis showed that the heat-not-burn cigarette was significantly (P<0.001) less cytotoxic than the 3R4F combustible cigarette, consistent with the lower levels of chemical constituents liberated by primarily-heating the cigarette versus burning. Copyright © 2017. Published by Elsevier Ltd.

  3. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization.

    PubMed

    Ji, Jie; Upadhyay, Swapna; Xiong, Xiaomiao; Malmlöf, Maria; Sandström, Thomas; Gerde, Per; Palmberg, Lena

    2018-05-02

    Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm 2 aerosolized DEP using XposeALI ® . Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell-cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems.

  4. Electric and magnetic fields and tumor progression. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keng, P.C.; Grota, L.J.; Michaelson, S.

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatoninmore » is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.« less

  5. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    PubMed Central

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  6. Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium.

    PubMed

    Wu, Hao; Li, Yingjun; Lang, Xingping; Wang, Lan

    2015-08-01

    To study the responses of digestive system of the freshwater crab Sinopotamon henanense to the exposure with cadmium (Cd), crabs were acutely exposed to 7.25, 14.50, and 29.00 mg/l Cd for 96 h and subchronically exposed to 0.725, 1.450, and 2.900 mg/l for 21 days. Cd bioaccumulation in the hepatopancreas and digestive tract (esophagus and intestine) was examined. Furthermore, histopathological alterations of the esophagus, midgut, hindgut, and hepatopancreas were assessed in animals from the 29.0 and 2.90 mg/l Cd treatment groups, and expression of metallothionein messenger RNA (MT mRNA) in the hepatopancreas and intestine was measured in all treatment groups. The results showed difference in the middle and high concentrations between acute and subchronic treatment groups. Cd content in digestive tract after acute 14.5 and 29.0 mg/l Cd exposure was significantly higher than that at subchronic 1.45 and 2.90 mg/l exposure, but Cd levels in hepatopancreas were not significantly different under the same condition. Acute exposure to Cd induced greater morphological damage than subchronic exposure: large areas of epithelial cells were necrotic in hepatopancreas and midgut, which detached from the basal lamina. Vacuolated muscle cells were observed in the hindgut of animals from the acute exposure group, but the changes of esophageal morphology were not obvious after acute or subchronic treatments. The expression of MT mRNA increased with increasing Cd concentration, and MT mRNA level in acute exposure groups was significantly lower when compared to the subchronic exposure groups. Higher Cd content and lower MT mRNA expression in the acutely exposed groups may be responsible for more severe damage of digestive system in these exposure groups.

  7. Effects of lead shot ingestion on selected cells of the mallard immune system

    USGS Publications Warehouse

    Rocke, T.E.; Samuel, M.D.

    1991-01-01

    The immunologic effects of lead were measured in game-farm mallards (Anas platyrhynchos) that ingested lead shot while foraging naturally, mallards intubated with lead shot, and unexposed controls. Circulating white blood cells (WBC) declined significantly in male mallards exposed to lead by either natural ingestion or intubation, but not females. Spleen plaque-forming cell (SPFC) counts were significantly lower in mallards intubated with lead pellets compared to controls. Declines in WBC and SPFC means with increasing tissue lead concentrations provide further evidence that lead exposure reduced immunologic cell numbers. Hormonal activity and diet may have influenced the immunologic effects of lead exposure in this study.

  8. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    PubMed Central

    Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie

    2018-01-01

    Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures. PMID:29385186

  9. Investigation of a direct effect of nanosecond pulse electric fields on mitochondria

    NASA Astrophysics Data System (ADS)

    Estlack, Larry E.; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.; Ibey, Bennett L.

    2014-03-01

    The unique cellular response to nanosecond pulsed electric field (nsPEF) exposure, as compared to longer pulse exposure, has been theorized to be due to permeabilization of intracellular organelles including the mitochondria. In this investigation, we utilized a high-throughput oxygen and pH sensing system (Seahorse® XF24 extracellular flux analyzer) to assess the mitochondrial activity of Jurkat and U937 cells after nsPEF. The XF Analyzer uses a transient micro-chamber of only a few μL in specialized cell culture micro-plates to enable oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to be monitored in real-time. We found that for nsPEF exposures of 10 pulses at 10-ns pulse width and at 50 kV/cm e-field, we were able to cause an increase in OCR in both U937 and Jurkat cells. We also found that high pulse numbers (>100) caused a significant decrease in OCR. Higher amplitude 150 kV/cm exposures had no effect on U937 cells and yet they had a deleterious effect on Jurkat cells, matching previously published 24 hour survival data. These results suggest that the exposures were modulating metabolic activity in cells possibly due to direct effects on the mitochondria themselves. To validate this hypothesis, we isolated mitochondria from U937 cells and exposed them similarly and found no significant change in metabolic activity for any pulse number. In a final experiment, we removed calcium from the buffer solution that the cells were exposed in and found that no significant enhancement in metabolic activity was observed. These results suggest that direct permeabilization of the mitochondria is unlikely a primary effect of nsPEF exposure and calcium-mediated intracellular pathway activation is likely responsible for observed pulse-induced mitochondrial effects.

  10. Effects of microwaves on the colony-forming capacity of haemopoietic stem cells in mice.

    PubMed

    Rotkovská, D; Vacek, A; Bartonícková, A

    1987-01-01

    A suspension of bone marrow cells from femurs of female (CBA X C57Bl)F1 mice was exposed to 2450 MHz CW microwaves in a specially designed waveguide exposure system. The temperature of the suspension rose, during exposure to microwaves, from 20 degrees C to 45 degrees C, and at an interval within 20 degrees C to 45 degrees C the number of haemopoietic stem cells (CFUs) was determined by the spleen exocolony method. The time of exposure of bone marrow cells to each temperature studied was 20 s. Control suspensions of bone marrow cells were exposed to a water bath temperature. There were no significant effects of the CFUs with the water bath temperature, while after exposure to microwaves the number of spleen colonies was elevated with a nadir at the temperature of 37 degrees C. With a microwave-induced increase of the temperature above 41 degrees C the number of CFUs in the bone marrow suspension decreased. The increase in the number of colonies was related to the rise in the seeding rate of the CFUs as well as to a rise in their proliferative activity, while the drop in the number of colonies was influenced also by heat-killing of the CFUs by microwave exposure.

  11. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation-inducing environmental agents. PMID:26010737

  12. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis.

    PubMed

    Poyntz, Hazel C; Stylianou, Elena; Griffiths, Kristin L; Marsay, Leanne; Checkley, Anna M; McShane, Helen

    2014-05-01

    The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis (TB) is highly variable between populations. One possible explanation for this variability is increased exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were evaluated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms underlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were associated with reduced protection. These findings demonstrate that exposure to NTM can induce opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-04-23

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.

  14. Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System

    DTIC Science & Technology

    2006-07-01

    damage , and to identify antioxidants capable of protecting these cells from laser-in- duced cell death. MATERIALS AND METHODS The human RPE cell...melanosomes in blue laser-induced damage in vitro, which confirms the view that melanin plays an important role in photochemical damage mechanisms in...community has only a validating role in the animal ED50 damage threshold data used by safety committees. Systems of in vitro analysis must be

  15. Revisiting the putative role of heme as a trigger of inflammation.

    PubMed

    Vallelian, Florence; Schaer, Christian A; Deuel, Jeremy W; Ingoglia, Giada; Humar, Rok; Buehler, Paul W; Schaer, Dominik J

    2018-04-01

    Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell-free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb-based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein-binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein-free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein-associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein-associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein-free culture medium demonstrated a weak capacity of heme-solutions to induce toll-like receptor-(TLR4) dependent TNF-alpha expression in macrophages. Our data suggests that the equilibrium-state of free and protein-associated heme critically determines the proinflammatory capacity of the metallo-porphyrin. Based on these data it appears unlikely that inflammation-promoting equilibrium conditions could ever occur in vivo.

  16. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  17. METHYLMERCURY BUT NOT MERCURIC CHLORIDE INDUCES APOPTOTIC CELL DEATH IN PC12 CELLS.

    EPA Science Inventory

    Normal development of the nervous system requires the process of apoptosis, a form of programmed cell death, to remove superfluous neurons. Abnormal patterns of apoptosis may be a consequence of exposure to environmental neurotoxicants leading to a disruption in the tightly regul...

  18. Prenatal cadmium exposure alters postnatal immune cell development and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspringmore » were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental effects on the immune system of the offspring and these effects are to some extent sex-specific. -- Highlights: ► Prenatal exposure to Cd causes no thymocyte phenotype changes in the offspring ► Analysis of the splenocyte phenotype demonstrates a macrophage-specific effect only in male offspring ► The cytokine profiles suggest an effect on peripheral Th1 cells in female and to a lesser degree in male offspring ► There was a marked increase in serum anti-streptococcal antibody levels after immunization in both sexes ► There was a marked decrease in the numbers of splenic CD8{sup +}CD223{sup +} cells in both sexes.« less

  19. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  20. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.

    PubMed

    Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L

    2015-07-01

    To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.

  1. Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells.

    PubMed

    Bajinskis, Ainars; Lindegren, Heléne; Johansson, Lotta; Harms-Ringdahl, Mats; Forsby, Anna

    2011-02-01

    The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.

  2. Partial contribution of the Keap1–Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinkai, Yasuhiro; Kimura, Tomoki; Itagaki, Ayaka

    Cadmium is an environmental electrophile that modifies protein reactive thiols such as Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear factor-erythroid 2-related factor 2 (Nrf2). In the present study, we investigated a role of the Keap1–Nrf2 system in cellular response to cadmium in vascular endothelial cells. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of Keap1 and Nrf2 activation, thereby up-regulating not only its typical downstream proteins but also metallothionein-1/2. Experiments with siRNA-mediated knockdown of Nrf2 or Keap1 supported participation of the Keap1–Nrf2 system in the modulation of metallothionein-1/2 expression. Furthermore, chromatin immunoprecipitation assay showedmore » that Nrf2 was recruited to the antioxidant response element of the promoter region of the bovine metallothionein-2 gene in the presence of cadmium. These results suggest that the transcription factor Nrf2 plays, at least in part, a role in the changes in metallothionein expression mediated by exposure to cadmium. - Highlights: • Role of the Keap1–Nrf2 system in cellular response to cadmium was examined. • We used bovine aortic endothelial cells as a model of the vascular endothelium. • Exposure of cells to cadmium resulted in modification of Keap1 and Nrf2 activation. • Keap1–Nrf2 system participated in the modulation of metallothionein-1/2 expression. • Nrf2 was recruited to the antioxidant response element of MT2 promoter region.« less

  3. Use of a microscope stage-mounted Nickel-63 microirradiator for real-time observation of the DNA double-strand break response.

    PubMed

    Cao, Zhen; Kuhne, Wendy W; Steeb, Jennifer; Merkley, Mark A; Zhou, Yunfeng; Janata, Jiri; Dynan, William S

    2010-08-01

    Eukaryotic cells begin to assemble discrete, nucleoplasmic repair foci within seconds after the onset of exposure to ionizing radiation. Real-time imaging of this assembly has the potential to further our understanding of the effects of medical and environmental radiation exposure. Here, we describe a microirradiation system for targeted delivery of ionizing radiation to individual cells without the need for specialized facilities. The system consists of a 25-micron diameter electroplated Nickel-63 electrode, enveloped in a glass capillary and mounted in a micromanipulator. Because of the low energy of the beta radiation and the minute total amount of isotope present on the tip, the device can be safely handled with minimum precautions. We demonstrate the use of this system for tracking assembly of individual repair foci in real time in live U2OS human osteosarcoma cells. Results indicate that there is a subset of foci that appear and disappear rapidly, before a plateau level is reached approximately 30 min post-exposure. This subset of foci would not have been evident without real-time observation. The development of a microirradiation system that is compatible with a standard biomedical laboratory expands the potential for real-time investigation of the biological effects of ionizing radiation.

  4. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE PAGES

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford; ...

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  5. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  6. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yumei; Williams, Nolann G.; Tolic, Ana

    The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures tomore » airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI), and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 hours post exposure we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.« less

  7. [Ultrastructure of the cortex of the cerebellar nodulus in rats after a flight on the biosatellite Kosmos-1514].

    PubMed

    Krasnov, I B; D'iachkova, L N

    1986-01-01

    The ultrastructure of moss fibers and granule cells of the cortex of the cerebellum nodulus of rats flown for 5 days onboard the biosatellite Cosmos-1514 and exposed to 1 g for 6-8 hours upon return to Earth is indicative of an excess excitation of terminals of moss fibers and excitation of granule cells. The excitation of moss fiber terminals reflect the excitatory state of hair cells of the otolith apparatus and neurons of the vestibular ganglion produced by the effect of 1 g after exposure to microgravity. This state can be viewed as evidence of a greater sensitivity of the hair cell of the otolith organ--neuron of the vestibular ganglion system during exposure to microgravity. It is hypothesized that the sensitivity of this system of other mammals may also increase in microgravity.

  8. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells.

    PubMed

    Taratula, Olena; Dani, Raj Kumar; Schumann, Canan; Xu, Hong; Wang, Andrew; Song, Han; Dhagat, Pallavi; Taratula, Oleh

    2013-12-15

    A multifunctional tumor-targeting delivery system was developed and evaluated for an efficient treatment of drug-resistant ovarian cancer by combinatorial therapeutic modality based on chemotherapy and mild hyperthermia. The engineered iron oxide nanoparticle (IONPs)-based nanocarrier served as an efficient delivery vehicle for doxorubicin and provided the ability to heat cancer cells remotely upon exposure to an alternating magnetic field (AMF). The nanocarrier was additionally modified with polyethylene glycol and LHRH peptide to improve its biocompatibility and ability to target tumor cells. The synthesized delivery system has an average size of 97.1 nm and a zeta potential close to zero, both parameters favorable for increased stability in biological media and decreased elimination by the immune system. The nanocarrier demonstrated faster drug release in acidic conditions that mimic the tumor environment. It was also observed that the LHRH targeted delivery system could effectively enter drug resistant ovarian cancer cells, and the fate of doxorubicin was tracked with fluorescence microscope. Mild hyperthermia (40°C) generated by IONPs under exposure to AMF synergistically increased the cytotoxicity of doxorubicin delivered by the developed nanocarrier to cancer cells. Thus, the developed IONPs-based delivery system has high potential in the effective treatment of ovarian cancer by combinatorial approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Early Endothelial Bioactivity of Serum after Diesel Exhaust ...

    EPA Pesticide Factsheets

    Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of systemic inflammation and precedes multiple cardiovascular pathologies. The purpose of this study was to examine the plausibility of serum-bound factors as initiators of an air pollution-induced pathologic sequelae beginning with endothelial injury, and later, cardiac dysfunction. We hypothesized that serum taken from diesel exhaust (DE)-exposed rats that develop cardiac dysfunction would alter aortic endothelial cell function in vitro. To assess cardiac function in vivo, left ventricular pressure (LVP) assessments were conducted in rats one day after a single 4 hour whole body exposure to 150 or 500 μg/m3 DE or filtered air. Rat aortic endothelial cells (RAEC) were then exposed to diluted serum (10%) collected 1 hour after exposure from a separate cohort of similarly exposed rats for measures of VCAM-1, cell viability, nitric oxide synthase (NOS) levels, and mRNA expression of key mediators of inflammation. Exposure of rats to 150 or 500 μg/m3 DE increased heart rate (HR) after exposure relative to rats exposed to filtered air, suggesting a shift towards increased sympathetic tone. LVP and HR in DE-exposed rats (500 μg/m3 DE) failed to recover to normal levels after challenge with the

  10. Ultrastructural effects on gill tissues induced in red tilapia Oreochromis sp. by a waterborne lead exposure.

    PubMed

    Aldoghachi, Mohammed A; Azirun, Mohd Sofian; Yusoff, Ismail; Ashraf, Muhammad Aqeel

    2016-09-01

    Experiments on hybrid red tilapia Oreochromis sp. were conducted to assess histopathological effects induced in gill tissues of 96 h exposure to waterborne lead (5.5 mg/L). These tissues were investigated by light and scanning electron microscopy. Results showed that structural design of gill tissues was noticeably disrupted. Major symptoms were changes of epithelial cells, fusion in adjacent secondary lamellae, hypertrophy and hyperplasia of chloride cells and coagulate necrosis in pavement cells with disappearance of its microridges. Electron microscopic X-ray microanalysis of fish gills exposed to sublethal lead revealed that lead accumulated on the surface of the gill lamella. This study confirmed that lead exposure incited a difference of histological impairment in fish, supporting environmental watch over aquatic systems when polluted by lead.

  11. METHYLMERCURY EFFECTS ON NEUROTROPHIN SIGNALING IN PC12 CELLS.

    EPA Science Inventory

    Exposure to methylmercury (CH 3 Hg) can cause disruption in the development of the nervous system but the underlying mechanism of action is unclear. Previous in vivo studies in our laboratory have shown that developmental exposure to CH 3 Hg resulted in changes in neurotrophic fa...

  12. Developing a Passive Time-Activity Triage System In support of Consumer Ingredient Exposure Prioritization.

    EPA Science Inventory

    Chemical Hazard/toxicity assessment of chemicals relies on droves of chemical-biological data at the organism, tissue, cell, and biomolecular level of resolution. Big data in the context of exposure science relies on a comprehensive knowledge of societies’ and community act...

  13. Developing a Passive Time-Activity Triage System In support of Consumer Ingredient Exposure Prioritization

    EPA Science Inventory

    Chemical Hazard/toxicity assessment of chemicals relies on droves of chemical-biological data at the organism, tissue, cell, and biomolecular level of resolution. Big data in the context of exposure science relies on a comprehensive knowledge of societies’ and community activity ...

  14. The effect of sunshine testing on terrestrial solar cell system components

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1975-01-01

    Samples of FEP encapsulated silicon solar cells and various potential encapsulation or cover materials were subjected to accelerated and real time testing. By measuring changes in solar cell output or optical transmission as a function of exposure the durability of the samples was evaluated. Results are presented.

  15. Quantitative assessment of neurite outgrowth in human embryonic stem cell derived hN2 cells using automated high-content image analysis

    EPA Science Inventory

    Throughout development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxic chemicals that interfere with this process may result in permanent deficits in nervous system function. Traditionally, rodent primary ne...

  16. Regulation of glutamate in cultures of human monocytic THP-1 and astrocytoma U-373 MG cells.

    PubMed

    Klegeris, A; Walker, D G; McGeer, P L

    1997-09-01

    Glutamate, an excitatory neurotransmitter, is neurotoxic at high concentrations. Neuroglial cells, including astrocytes and microglia, play an important role in regulating its extracellular levels. Cultured human monocytic THP-1 cells increased their glutamate secretion following 18 and 68 h exposure to the inflammatory mediators zymosan, phorbol myristate acetate (PMA), lipopolysaccharide, interferon-gamma, tumor-necrosis factor-alpha and interleukin-1beta. Cultured astrocytoma U-373 MG cells increased their glutamate secretion following similar exposure to zymosan and PMA. DL-Alpha-aminopimelic acid, an inhibitor of the glutamate secretion system, reduced extracellular glutamate in both cell culture systems, while the high-affinity glutamate uptake inhibitors D-Aspartic acid, DL-threo-beta-hydroxyaspartic acid and L-trans-pyrrolidine-2,4-dicarboxylic acid increased extracellular glutamate in U-373 MG, but not THP-1 cell cultures. In co-cultures of THP-1 and U-373 MG cells, extracellular glutamate levels were increased significantly by the Alzheimer beta-amyloid peptide (1-40) and were decreased significantly by the anti-inflammatory drug dexamethasone. These data indicate that inflammatory stimuli may increase extracellular glutamate while antiinflammatory drugs decrease it.

  17. Classification of phthalates based on an in vitro neurosphere assay using rat mesencephalic neural stem cells.

    PubMed

    Ishido, Masami; Suzuki, Junko

    2014-02-01

    Exposure to environmental neurotoxic chemicals both in utero and during the early postnatal period can cause neurodevelopmental disorders. To evaluate the disruption of neurodevelopmental programming, we previously established an in vitro neurosphere assay system using rat mesencephalic neural stem cells that can be used to evaluate. Here, we extended the assay system to examine the neurodevelopmental toxicity of the endocrine disruptors butyl benzyl phthalate, di-n-butyl phthalate, dicyclohexyl phthalate, diethyl phthalate, di(2-ethyl hexyl) phthalate, di-n-pentyl phthalate, and dihexyl phthalate at a range of concentrations (0-100 μM). All phthalates tested inhibited cell migration with a linear or non-linear range of concentrations when comparing migration distance to the logarithm of the phthalate concentrations. On the other hand, some, but not all, phthalates decreased the number of proliferating cells. Apoptotic cells were not observed upon phthalate exposure under any of the conditions tested, whereas the dopaminergic toxin rotenone induced significant apoptosis. Thus, we were able to classify phthalate toxicity based on cell migration and cell proliferation using the in vitro neurosphere assay.

  18. Compilation of 1990 annual reports of the Navy ELF Communications System Ecological-Monitoring Program. Volume 2. Tabs C thru F. Annual report, Jan-Dec 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapotosky, J.E.

    1991-08-01

    This portion of the report includes monitoring of and data for arthropoda and earthworms; pollinating insects; and small mammals and nesting birds. During the 1990 growing season the ELF antenna was operated more frequently than in prior years. This provides 2 years of intermittent ELF exposure for the biological systems to react to the radiation, one year of very limited exposure and greater exposure in 1990. Arthropod and earthworm sampling was conducted at intervals of two weeks from early May to late October. High voltage transmission lines and magnetic fields have been shown to affect honeybee reproduction, survival, orientation, andmore » nest structure. ELF EM fields could have similar effects on native megachild bees. Changes in cell length, number of cells per nest, number of leaver per cell, orientation of nest entrances, and time to collect a round leaf pierce to cap a cell were monitored. We have not detected significant changes that could be attributed to ELF EM fields. Small mammal and nesting bird biological studies in the western Upper Peninsula of Michigan for the year 1990 are reported.« less

  19. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph

    2012-03-01

    Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.

  20. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells

    PubMed Central

    Eghlidospour, Mahsa; Ghanbari, Amir

    2017-01-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices. PMID:28713615

  1. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells.

    PubMed

    Eghlidospour, Mahsa; Ghanbari, Amir; Mortazavi, Seyyed Mohammad Javad; Azari, Hassan

    2017-06-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro . We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices.

  2. Thioredoxin reductase activity may be more important than GSH level in protecting human lens epithelial cells against UVA light.

    PubMed

    Padgaonkar, Vanita A; Leverenz, Victor R; Bhat, Aparna V; Pelliccia, Sara E; Giblin, Frank J

    2015-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2 , 3% and 20%, were employed during a 1 h exposure of the cells to 25 J cm(-2) of UVA radiation (338-400 nm wavelength, peak at 365 nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. © 2014 The American Society of Photobiology.

  3. Thioredoxin Reductase Activity may be More Important than GSH Level in Protecting Human Lens Epithelial Cells Against UVA Light

    PubMed Central

    Padgaonkar, Vanita A.; Leverenz, Victor R.; Bhat, Aparna V.; Pelliccia, Sara E.; Giblin, Frank J.

    2014-01-01

    This study compares the abilities of the glutathione (GSH) and thioredoxin (Trx) antioxidant systems in defending cultured human lens epithelial cells (LECs) against UVA light. Levels of GSH were depleted with either L-buthionine-(S,R)-sulfoximine (BSO) or 1-chloro-2,4-dinitrobenzene (CDNB). CDNB treatment also inhibited the activity of thioredoxin reductase (TrxR). Two levels of O2, 3% and 20%, were employed during a 1 hr exposure of the cells to 25 J/cm2 of UVA radiation (338-400nm wavelength, peak at 365nm). Inhibition of TrxR activity by CDNB, combined with exposure to UVA light, produced a substantial loss of LECs and cell damage, with the effects being considerably more severe at 20% O2 compared to 3%. In contrast, depletion of GSH by BSO, combined with exposure to UVA light, produced only a slight cell loss, with no apparent morphological effects. Catalase was highly sensitive to UVA-induced inactivation, but was not essential for protection. Although UVA light presented a challenge for the lens epithelium, it was well-tolerated under normal conditions. The results demonstrate an important role for TrxR activity in defending the lens epithelium against UVA light, possibly related to the ability of the Trx system to assist DNA synthesis following UVA-induced cell damage. PMID:25495870

  4. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio.

    PubMed

    Ryu, Do-Yeal; Rahman, Md Saidur; Pang, Myung-Geol

    2017-09-06

    Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases.

  5. Determination of Highly Sensitive Biological Cell Model Systems to Screen BPA-Related Health Hazards Using Pathway Studio

    PubMed Central

    Ryu, Do-Yeal

    2017-01-01

    Bisphenol-A (BPA) is a ubiquitous endocrine-disrupting chemical. Recently, many issues have arisen surrounding the disease pathogenesis of BPA. Therefore, several studies have been conducted to investigate the proteomic biomarkers of BPA that are associated with disease processes. However, studies on identifying highly sensitive biological cell model systems in determining BPA health risk are lacking. Here, we determined suitable cell model systems and potential biomarkers for predicting BPA-mediated disease using the bioinformatics tool Pathway Studio. We compiled known BPA-mediated diseases in humans, which were categorized into five major types. Subsequently, we investigated the differentially expressed proteins following BPA exposure in several cell types, and analyzed the efficacy of altered proteins to investigate their associations with BPA-mediated diseases. Our results demonstrated that colon cancer cells (SW480), mammary gland, and Sertoli cells were highly sensitive biological model systems, because of the efficacy of predicting the majority of BPA-mediated diseases. We selected glucose-6-phosphate dehydrogenase (G6PD), cytochrome b-c1 complex subunit 1 (UQCRC1), and voltage-dependent anion-selective channel protein 2 (VDAC2) as highly sensitive biomarkers to predict BPA-mediated diseases. Furthermore, we summarized proteomic studies in spermatozoa following BPA exposure, which have recently been considered as another suitable cell type for predicting BPA-mediated diseases. PMID:28878155

  6. Mathematical modeling the radiation effects on humoral immunity

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    One of the biological processes affecting the carcinogenesis is a response of humoral immune system to an antigen of malignant cells. Humoral immunity involves the production of protein molecules, antibodies, which can specifically bind to a certain antigen. This body system is radiosensitive. Therefore when simulating the radiation carcinogenesis, it is important to take into account the radiation effects on humoral immunity. To this end, a model of humoral immune response in irradiated mammals is developed. It is based on conventional theories and experimental facts. The model represents a system of nonlinear differential equations whose variables are the concentrations of antigen-sensitive immuno-competent cells carrying surface receptors and their bone-marrow precursor cells, as well as the concentrations of antibody-producing cells, antibodies, and an antigen. The dose of acute exposure and the dose rate of chronic exposure are the variable parameters in our approach. The model quantitatively reproduces the dynamics of the humoral immune response to the T-independent antigen (capsular antigen of Pasteurella pestis) in nonirradiated mammals (CBA mice). The model simulates the processes of the damage and recovery of the system of humoral immunity after acute exposure and predicts an adaptation of this system to low-level long-term chronic irradiation. These results give evidence that the developed model, after the appropriate identification, can be incorporated into a model of radiation carcinogenesis in humans. Together with a model of cellular immunity, such joined model will give capability to estimate the risk of radiation carcinogenesis for cosmonauts and astronauts on long space missions such as a voyage to Mars or a lunar colony.

  7. Dosimetry for radiobiological studies of the human hematopoietic system

    NASA Technical Reports Server (NTRS)

    Beck, W. L.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies.

  8. Hormesis and adaptive cellular control systems

    EPA Science Inventory

    Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from...

  9. Neurotoxic effects and biomarkers of lead exposure: a review.

    PubMed

    Sanders, Talia; Liu, Yiming; Buchner, Virginia; Tchounwou, Paul B

    2009-01-01

    Lead, a systemic toxicant affecting virtually every organ system, primarily affects the central nervous system, particularly the developing brain. Consequently, children are at a greater risk than adults of suffering from the neurotoxic effects of lead. To date, no safe lead-exposure threshold has been identified. The ability of lead to pass through the blood-brain barrier is due in large part to its ability to substitute for calcium ions. Within the brain, lead-induced damage in the prefrontal cerebral cortex, hippocampus, and cerebellum can lead to a variety of neurologic disorders. At the molecular level, lead interferes with the regulatory action of calcium on cell functions and disrupts many intracellular biological activities. Experimental studies have also shown that lead exposure may have genotoxic effects, especially in the brain, bone marrow, liver, and lung cells. Knowledge of the neurotoxicology of lead has advanced in recent decades due to new information on its toxic mechanisms and cellular specificity. This paper presents an overview, updated to January 2009, of the neurotoxic effects of lead with regard to children, adults, and experimental animals at both cellular and molecular levels, and discusses the biomarkers of lead exposure that are useful for risk assessment in the field of environmental health.

  10. An Experimental Determination of Static Magnetic Fields Induced Noise in Living Systems

    NASA Astrophysics Data System (ADS)

    Brady, Megan; Laramee, Craig

    2013-03-01

    Living systems are constantly exposed to static magnetic fields (SMFs) from both natural and man-made sources. Exposures vary in dose and duration ranging from geomagnetic (~50 μT) to residential and industrial (~10s of mT) fields. Efforts to characterize responses to SMFs have yielded conflicting results, showing a dependence on experimental variables used. Here we argue that low to moderate SMF exposure is a sub-threshold perturbation operating below thermal noise, and assays that evaluate statistical characteristics of a single cell may identify responses not consistently found by population averaging approaches. Recent studies of gene expression show that it is a stochastic process capable of producing bursting dynamics. Moreover, theoretical and experimental methods have also been developed to allow quantitative estimates of the associated biophysical parameters. These developments provide a new way to assess responses of living systems to SMFs. In this work, we report on our efforts to use single molecule fluorescence in situ hybridization to assess responses of NIH-3T3 cells to SMF exposure at flux densities ranging from 1 to 440 mT for 48 hours. Results will contribute to determining mechanisms by which SMF exposure influences gene expression.

  11. The mammalian respiratory system and critical windows of exposure for children's health.

    PubMed Central

    Pinkerton, K E; Joad, J P

    2000-01-01

    The respiratory system is a complex organ system composed of multiple cell types involved in a variety of functions. The development of the respiratory system occurs from embryogenesis to adult life, passing through several distinct stages of maturation and growth. We review embryonic, fetal, and postnatal phases of lung development. We also discuss branching morphogenesis and cellular differentiation of the respiratory system, as well as the postnatal development of xenobiotic metabolizing systems within the lungs. Exposure of the respiratory system to a wide range of chemicals and environmental toxicants during perinatal life has the potential to significantly affect the maturation, growth, and function of this organ system. Although the potential targets for exposure to toxic factors are currently not known, they are likely to affect critical molecular signals expressed during distinct stages of lung development. The effects of exposure to environmental tobacco smoke during critical windows of perinatal growth are provided as an example leading to altered cellular and physiological function of the lungs. An understanding of critical windows of exposure of the respiratory system on children's health requires consideration that lung development is a multistep process and cannot be based on studies in adults. Images Figure 1 Figure 4 PMID:10852845

  12. Safety of High Speed Guided Ground Transportation Systems - The Biological Effects of Maglev Magnetic Field Exposures

    DOT National Transportation Integrated Search

    1993-08-01

    This report describes selected biological effects on transformed human cell lines and on rats from exposure to simulated : maglev magnetic fields (MFs). Rats (n = 6 per group) were exposed at various times throughout the 24-h day to MFs : simulating ...

  13. Role of Metabolomics in Environmental Chemical Exposure and Risk Assessment

    EPA Science Inventory

    The increasing demand for the reduction, replacement, and refinement of the use of animal models in exposure assessments has stimulated the pursuit of alternative methods. This has included not only the use of the in vitro systems (e.g., cell cultures) in lieu of in vivo whole an...

  14. Space Station Freedom Solar Array design development

    NASA Astrophysics Data System (ADS)

    Winslow, Cindy

    The SSF program's Electrical Power System supports a high-power bus with six solar-array wings in LEO; each solar array generates 30.8 kW at 161.1 V dc, with a deployed natural frequency of 0.1 Hz. Design challenges to the solar array, which must survive exposure for 15 years of operating life, include atomic oxygen, the thermal environment, and spacecraft propulsion plume-impingement loads. Tests thus far completed address cell UV-exposure effects, thermal cycling, and solar-cell deflection.

  15. Human alcohol-related neuropathology

    PubMed Central

    Kril, Jillian J.

    2015-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions. PMID:24370929

  16. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER{alpha} signaling pathway and global gene expressionmore » profiles. Compared to control cells, nuclear internalization of ER{alpha} was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER{alpha}-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER{alpha}-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.« less

  17. Cigarette smoke-induced accumulation of lung dendritic cells is interleukin-1α-dependent in mice

    PubMed Central

    2012-01-01

    Background Evidence suggests that dendritic cells accumulate in the lungs of COPD patients and correlate with disease severity. We investigated the importance of IL-1R1 and its ligands IL-1α and β to dendritic cell accumulation and maturation in response to cigarette smoke exposure. Methods Mice were exposed to cigarette smoke using a whole body smoke exposure system. IL-1R1-, TLR4-, and IL-1α-deficient mice, as well as anti-IL-1α and anti-IL-1β blocking antibodies were used to study the importance of IL-1R1 and TLR4 to dendritic cell accumulation and activation. Results Acute and chronic cigarette smoke exposure led to increased frequency of lung dendritic cells. Accumulation and activation of dendritic cells was IL-1R1/IL-1α dependent, but TLR4- and IL-1β-independent. Corroborating the cellular data, expression of CCL20, a potent dendritic cells chemoattractant, was IL-1R1/IL-1α-dependent. Studies using IL-1R1 bone marrow-chimeric mice revealed the importance of IL-1R1 signaling on lung structural cells for CCL20 expression. Consistent with the importance of dendritic cells in T cell activation, we observed decreased CD4+ and CD8+ T cell activation in cigarette smoke-exposed IL-1R1-deficient mice. Conclusion Our findings convey the importance of IL-1R1/IL-1α to the recruitment and activation of dendritic cells in response to cigarette smoke exposure. PMID:22992200

  18. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment.

    PubMed

    Johanning, E; Biagini, R; Hull, D; Morey, P; Jarvis, B; Landsbergis, P

    1996-01-01

    There is growing concern about adverse health effects of fungal bio-aerosols on occupants of water-damaged buildings. Accidental, occupational exposure in a nonagricultural setting has not been investigated using modern immunological laboratory tests. The objective of this study was to evaluate the health status of office workers after exposure to fungal bio-aerosols, especially Stachybotrys chartarum (atra) (S. chartarum) and its toxigenic metabolites (satratoxins), and to study laboratory parameters or biomarkers related to allergic or toxic human health effects. Exposure characterization and quantification were performed using microscopic, culture, and chemical techniques. The study population (n = 53) consisted of 39 female and 14 male employees (mean age 34.8 years) who had worked for a mean of 3.1 years at a problem office site; a control group comprised 21 persons (mean age 37.5 years) without contact with the problem office site. Health complaints were surveyed with a 187-item standardized questionnaire. A comprehensive test battery was used to study the red and white blood cell system, serum chemistry, immunology/antibodies, lymphocyte enumeration and function. Widespread fungal contamination of water-damaged, primarily cellulose material with S. chartarum was found. S. chartarum produced a macrocyclic trichothecene, satratoxin H, and spirocyclic lactones. Strong associations with exposure indicators and significant differences between employees (n = 53) and controls (n = 21) were found for lower respiratory system symptoms, dermatological symptoms, eye symptoms, constitutional symptoms, chronic fatigue symptoms and several enumeration and function laboratory tests, mainly of the white blood cell system. The proportion of mature T-lymphocyte cells (CD3%) was lower in employees than in controls, and regression analyses showed significantly lower CD3% among those reporting a history of upper respiratory infections. Specific S. chartarum antibody tests (IgE and IgG) showed small differences (NS). It is concluded that prolonged and intense exposure to toxigenic S. chartarum and other atypical fungi was associated with reported disorders of the respiratory and central nervous systems, reported disorders of the mucous membranes and a few parameters pertaining to the cellular and humoral immune system, suggesting a possible immune competency dysfunction.

  19. Inflammatory Cytokines and White Blood Cell Counts ...

    EPA Pesticide Factsheets

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lympho

  20. Breast Cancer Detection

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA's Jet Propulsion Laboratory has come up with a technique to decrease exposure to harmful x-rays in mammographies or breast radiography. Usually, physicians make more than one exposure to arrive at an x-ray film of acceptable density. Now the same solar cells used to convert sunlight into electricity on space satellites can make a single exposure sufficient. When solar cell sensor is positioned directly beneath x-ray film, it can determine exactly when film has received sufficient radiation and has been exposed to optimum density. At that point associated electronic equipment sends signal to cut off x-ray source. Reduction of mammography to single exposures not only reduced x-ray hazard significantly, but doubled the number of patient examinations handled by one machine. The NASA laboratory used this control system at the Huntington Memorial Hospital with overwhelming success.

  1. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity

    PubMed Central

    Donohue, Jr., Terrence M.; Thomes, Paul G.

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  2. Functional Involvement of Carbonic Anhydrase in the Lysosomal Response to Cadmium Exposure in Mytilus galloprovincialis Digestive Gland

    PubMed Central

    Caricato, Roberto; Giordano, M. Elena; Schettino, Trifone; Lionetto, M. Giulia

    2018-01-01

    Carbonic anhydrase (CA) is a ubiquitous metalloenzyme, whose functions in animals span from respiration to pH homeostasis, electrolyte transport, calcification, and biosynthetic reactions. CA is sensitive to trace metals in a number of species. In mussels, a previous study demonstrated CA activity and protein expression to be enhanced in digestive gland by cadmium exposure. The aim of the present work was to investigate the functional meaning, if any, of this response. To this end the study addressed the possible involvement of CA in the lysosomal system response of digestive gland cells to metal exposure. The in vivo exposure to acetazolamide, specific CA inhibitor, significantly inhibited the acidification of the lysosomal compartment in the digestive gland cells charged with the acidotropic probe LysoSensor Green D-189, demonstrating in vivo the physiological contribution of CA to the acidification of the lysosomes. Under CdCl2 exposure, CA activity significantly increased in parallel to the increase of the fluorescence of LysoSensor Green charged cells, which is in turn indicative of proliferation and/or increase in size of lysosomes. Acetazolamide exposure was able to completely inhibit the cadmium induced Lysosensor fluorescence increase in digestive gland cells. In conclusion, our results demonstrated the functional role of CA in the lysosomal acidification of Mytilus galloprovincialis digestive gland and its involvement in the lysosomal activation following cadmium exposure. CA induction could physiologically respond to a prolonged increased requirement of H+ for supporting lysosomal acidification during lysosomal activation. PMID:29670538

  3. Comparative assessment of three in vitro exposure methods for combustion toxicity.

    PubMed

    Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J

    2006-01-01

    A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.

  4. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in altered thymocyte development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana

    2010-01-15

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/beta-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/beta-catenin pathways. Pregnant C57Bl/6more » mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4{sup +} cells and a subpopulation of double-negative cells (DN; CD4{sup -}CD8{sup -}), DN4 (CD44{sup -}CD25{sup -}). Shh and Wnt/beta-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/beta-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.« less

  5. Effects of intense magnetic fields on sedimentation pattern and gene expression profile in budding yeast

    NASA Astrophysics Data System (ADS)

    Ikehata, Masateru; Iwasaka, Masakazu; Miyakoshi, Junji; Ueno, Shoogo; Koana, Takao

    2003-05-01

    Effects of magnetic fields (MFs) on biological systems are usually investigated using biological indices such as gene expression profiles. However, to precisely evaluate the biological effects of MF, the effects of intense MFs on systematic material transport processes including experimental environment must be seriously taken into consideration. In this study, a culture of the budding yeast, Saccharomyces cerevisiae, was used as a model for an in vitro biological test system. After exposure to 5 T static vertical MF, we found a difference in the sedimentation pattern of cells depending on the location of the dish in the magnet bore. Sedimented cells were localized in the center of the dish when they were placed in the lower part of the magnet bore while the sedimentation of the cells was uniform in dishes placed in the upper part of the bore because of the diamagnetic force. Genome wide gene expression profile of the yeast cells after exposure to 5 T static MF for 2 h suggested that the MF did not affect the expression level of any gene in yeast cells although the sedimentation pattern was altered. In addition, exposure to 10 T for 1 h and 5 T for 24 h also did not affect the gene expression. On the other hand, a slight change in expressions of several genes which are related to respiration was observed by exposure to a 14 T static MF for 24 h. The necessity of estimating the indirect effects of MFs on a study of its biological effect of MF in vitro will be discussed.

  6. Modulation of mesenchymal stem cell behavior by nano- and micro-sized β-tricalcium phosphate particles in suspension and composite structures

    NASA Astrophysics Data System (ADS)

    Smoak, Mollie; Hogan, Katie; Kriegh, Lisa; Chen, Cong; Terrell, LeKeith B.; Qureshi, Ammar T.; Todd Monroe, W.; Gimble, Jeffrey M.; Hayes, Daniel J.

    2015-04-01

    Interest has grown in the use of microparticles and nanoparticles for modifying the mechanical and biological properties of synthetic bone composite structures. Micro- and nano-sized calcium phosphates are of interest for their osteoinductive behavior. Engineered composites incorporating polymers and ceramics, such as poly-l-lactic acid (PLLA) and beta-tricalcium phosphate (β-TCP), for bone tissue regeneration have been well investigated for their proliferative and osteoinductive abilities. Only limited research has been done to investigate the effects of different sizes of β-TCP particles on human mesenchymal stromal cell behavior. As such, the aim of this study was to investigate the modulations of human adipose-derived stem cell (hASCs) behavior within cell/particle and cell/composite systems as functions of particle size, concentration, and exposure time. The incorporation of nanoscale calcium phosphate resulted in improved mechanical properties and osteogenic behavior within the scaffold compared to the microscale calcium phosphate additives. Particle exposure results indicate that cytotoxicity on hASCs correlates inversely with particle size and increases with the increasing exposure time and particle concentration. Composites with increasing β-TCP content, whether microparticles or nanoparticles, were less toxic than colloidal micro- and nano-sized β-TCP particles directly supplied to hASCs. The difference in viability observed as a result of varying exposure route is likely related to the increased cell-particle interactions in the direct exposure compared to the particles becoming trapped within the scaffold/polymer matrix.

  7. Environmental pollution and acne: Chloracne.

    PubMed

    Ju, Qiang; Zouboulis, Christos C; Xia, Longqing

    2009-05-01

    Environmental pollutants can result in a variant of acne called 'chloracne'. Chloracne is caused by systemic exposure to certain halogenated aromatic hydrocarbons 'chloracnegens', and is considered to be one of the most sensitive indicators of systemic poisoning by these compounds. Dioxin is the most potent environmental chloracnegen. Most cases of chloracne have resulted from occupational and non-occupational exposures, non-occupational chloracne mainly resulted from contaminated industrial wastes and contaminated food products. Non-inflammatory comedones and straw-colored cysts are the primary clinical manifestation of chloracne. Increasing of cysts in number is a signal of aggravation of chloracne. Generalized lesions can appear on the face, neck, trunk, exterimities, genitalia, axillary and other areas. Course of chloracne is chronic. Severity of chloracne is related to dosage of exposed chloracnegens, chloracnegenic potency and individual susceptibility. Histopathology of chloracne is characterized mainly by hyperplasia of epidermal cell, while follicular and sebaceous gland are taken placed by keratinized epidermal cell. The pathogenesis of chloracne maybe related to the imbalance of epidermal stem cell. Chloracne appears to be resistant to all tested forms of treatment. The only way to control chloracne is to prevent exposure to chloracnegens.

  8. In vitro cytotoxicity assessment of a West Virginia chemical spill mixture involving 4-methylcyclohexanemethanol and propylene glycol phenyl ether.

    PubMed

    Han, Alice A; Fabyanic, Emily B; Miller, Julie V; Prediger, Maren S; Prince, Nicole; Mouch, Julia A; Boyd, Jonathan

    2017-04-01

    Thousands of gallons of industrial chemicals, crude 4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh), leaked from industrial tanks into the Elk River in Charleston, West Virginia, USA, on January 9, 2014. A considerable number of people were reported to exhibit symptoms of chemical exposure and an estimated 300,000 residents were advised not to use or drink tap water. At the time of the spill, the existing toxicological data of the chemicals were limited for a full evaluation of the health risks, resulting in concern among those in the impacted regions. In this preliminary study, we assessed cell viability and plasma membrane degradation following a 24-h exposure to varying concentrations (0-1000 μM) of the two compounds, alone and in combination. Evaluation of different cell lines, HEK-293 (kidney), HepG2 (liver), H9c2 (heart), and GT1-7 (brain), provided insight regarding altered cellular responses in varying organ systems. Single exposure to MCHM or PPh did not affect cell viability, except at doses much higher than the estimated exposure levels. Certain co-exposures significantly reduced metabolic activity and increased plasma membrane degradation in GT1-7, HepG2, and H9c2 cells. These findings highlight the importance of examining co-exposures to fully understand the potential toxic effects.

  9. Squamous cell and basal cell carcinoma of the skin in relation to radiation therapy and potential modification of risk by sun exposure.

    PubMed

    Karagas, Margaret R; Nelson, Heather H; Zens, Michael S; Linet, Martha; Stukel, Therese A; Spencer, Steve; Applebaum, Katie M; Mott, Leila; Mabuchi, Kiyohiko

    2007-11-01

    Epidemiologic studies consistently find enhanced risk of basal cell carcinoma of the skin among individuals exposed to ionizing radiation, but it is unclear whether the radiation effect occurs for squamous cell carcinoma. It is also not known whether subgroups of individuals are at greater risk, eg, those with radiation sensitivity or high ultraviolet radiation exposure. We analyzed data from a case-control study of keratinocyte cancers in New Hampshire. Incident cases diagnosed in 1993-1995 and 1997-2000 were identified through a state-wide skin cancer surveillance system, and controls were identified through the Department of Transportation and Center for Medicare and Medicaid Service Files (n = 1121 basal cell carcinoma cases, 854 squamous cell carcinoma cases, and 1049 controls). We found an association between history of radiation treatment and basal cell carcinoma. The association was especially strong for basal cell carcinomas arising within the radiation treatment field (odds ratio = 2.6; 95% confidence interval = 1.5-4.3), and among those treated with radiation therapy before age 20 (3.4; 1.8-6.4), those whose basal cell carcinomas occurred 40 or more years after radiation treatment (3.2; 1.8-5.8), and those treated with radiation for acne (11; 2.7-49). Similar age and time patterns of risk were observed for squamous cell carcinoma, although generally with smaller odds ratios. For basal cell carcinoma, early exposure to radiation treatment was a risk factor largely among those without a history of severe sunburns, whereas for squamous cell carcinoma, radiation treatment was a risk factor primarily among those with a sun-sensitive skin type (ie, a tendency to sunburn). Radiation treatment, particularly if experienced before age 20, seems to increase the long-term risk of both basal and squamous cell carcinomas of the skin. These risks may differ by sun exposure or host response to sunlight exposure.

  10. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure

    PubMed Central

    Calderon-Gierszal, Esther L.; Prins, Gail S.

    2015-01-01

    Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20–30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures. PMID:26222054

  11. Toxicity study of dimethylethoxysilane (DMSES), the waterproofing agent for the Orbiter heat protective system

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; Dodd, Darol; Stuart, Bruce; Rothenberg, Simon; Kershaw, Mary Ann; Thilagar, A.

    1993-01-01

    DMES, a volatile liquid, is used by NASA to waterproof the Orbiter thermal protective system. During waterproofing operations at the Oribter Processing Facility at KSC, workers could be exposed to DMES vapor. To assess the toxicity of DMES, acute and subchronic (2-week and 13-week) inhalation studies were conducted with rats. Studies were also conducted to assess the potential of DMES. Inhalation exposure concentrations ranged from 40 ppm to 4000 ppm. No mortality was observed during the studies. Exposures to 2100 ppm produced narcosis and ataxia. Post-exposure recovery from these CNS effects was rapid (less than 1 hr). These effects were concentration-dependent and relatively independent of exposure length. Exposure to 3000 ppm for 2 weeks (5 h/d, 5 d/wk) produced testicular toxicity. The 13-week study yielded similar results. Results from the genotoxicity assays (in vivo/in vitro unscheduled DNA synthesis in rat primary heptaocytes, chromosomal aberrations in rat bone marrow cells; reverse gene mutation in Salmonella typhimurium; and forward mutation in Chinese hamster culture cells) were negative. These studies indicated that DMES is mildly to moderately toxic but not a multagen.

  12. Placental transport and in vitro effects of Bisphenol A.

    PubMed

    Mørck, Thit J; Sorda, Giuseppina; Bechi, Nicoletta; Rasmussen, Brian S; Nielsen, Jesper B; Ietta, Francesca; Rytting, Erik; Mathiesen, Line; Paulesu, Luana; Knudsen, Lisbeth E

    2010-08-01

    Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Systemic Th17/IL-17A response appears prior to hippocampal neurodegeneration in rats exposed to low doses of ozone.

    PubMed

    Solleiro-Villavicencio, H; Rivas-Arancibia, S

    2017-06-03

    Exposure to low doses of O 3 leads to a state of oxidative stress. Some studies show that oxidative stress can modulate both the CNS and systemic inflammation, which are important factors in the development of Alzheimer disease (AD). This study aims to evaluate changes in the frequency of Th17-like cells (CD3 + CD4 + IL-17A + ), the concentration of IL-17A in peripheral blood, and hippocampal immunoreactivity to IL-17A in rats exposed to low doses of O 3 . One hundred eight male Wistar rats were randomly assigned to 6 groups (n=18) receiving the following treatments: control (O 3 free) or O 3 exposure (0.25ppm, 4hours daily) over 7, 15, 30, 60, and 90 days. Twelve animals from each group were decapitated and a peripheral blood sample was taken to isolate plasma and mononuclear cells. Plasma IL-17A was quantified using LUMINEX, while Th17-like cells were counted using flow cytometry. The remaining 6 rats were deeply anaesthetised and underwent transcardial perfusion for immunohistological study of the hippocampus. Results show that exposure to O 3 over 7 days resulted in a significant increase in the frequency of Th17-like cells and levels of IL-17A in peripheral blood. However, levels of Th17/IL-17A in peripheral blood were lower at day 15 of exposure. We also observed increased IL-17A in the hippocampus beginning at 30 days of exposure. These results indicate that O 3 induces a short-term, systemic Th17-like/IL-17A effect and an increase of IL-17A in the hippocampal tissue during the chronic neurodegenerative process. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Environmental contaminant mixtures modulate in vitro influenza infection.

    PubMed

    Desforges, Jean-Pierre; Bandoro, Christopher; Shehata, Laila; Sonne, Christian; Dietz, Rune; Puryear, Wendy B; Runstadler, Jonathan A

    2018-09-01

    Environmental chemicals, particularly organochlorinated contaminants (OCs), are associated with a ranged of adverse health effects, including impairment of the immune system and antiviral immunity. Influenza A virus (IAV) is an infectious disease of major global public health concern and exposure to OCs can increase the susceptibility, morbidity, and mortality to disease. It is however unclear how pollutants are interacting and affecting the outcome of viral infections at the cellular level. In this study, we investigated the effects of a mixture of environmentally relevant OCs on IAV infectivity upon in vitro exposure in Madin Darby Canine Kidney (MDCK) cells and human lung epithelial cells (A549). Exposure to OCs reduced IAV infectivity in MDCK and A549 cells during both short (18-24h) and long-term (72h) infections at 0.05 and 0.5ppm, and effects were more pronounced in cells co-treated with OCs and IAV than pre-treated with OCs prior to IAV (p<0.001). Pre-treatment of host cells with OCs did not affect IAV cell surface attachment or entry. Visualization of IAV by transmission electron microscopy revealed increased envelope deformations and fewer intact virions during OC exposure. Taken together, our results suggest that disruption of IAV infection upon in vitro exposure to OCs was not due to host-cell effects influencing viral attachment and entry, but perhaps mediated by direct effects on viral particles or cellular processes involved in host-virus interactions. In vitro infectivity studies such as ours can shed light on the complex processes underlying host-pathogen-pollutant interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hemopoietic Response to Low Dose-Rates of Ionizing Radiation Shows Stem Cell Tolerance and Adaptation

    PubMed Central

    Fliedner, Theodor M.; Graessle, Dieter H.; Meineke, Viktor; Feinendegen, Ludwig E.

    2012-01-01

    Chronic exposure of mammals to low dose-rates of ionizing radiation affects proliferating cell systems as a function of both dose-rate and the total dose accumulated. The lower the dose-rate the higher needs to be the total dose for a deterministic effect, i.e., tissue reaction to appear. Stem cells provide for proliferating, maturing and functional cells. Stem cells usually are particularly radiosensitive and damage to them may propagate to cause failure of functional cells. The paper revisits 1) medical histories with emphasis on the hemopoietic system of the victims of ten accidental chronic radiation exposures, 2) published hematological findings of long-term chronically gamma-irradiated rodents, and 3) such findings in dogs chronically exposed in large life-span studies. The data are consistent with the hypothesis that hemopoietic stem and early progenitor cells have the capacity to tolerate and adapt to being repetitively hit by energy deposition events. The data are compatible with the “injured stem cell hypothesis”, stating that radiation–injured stem cells, depending on dose-rate, may continue to deliver clones of functional cells that maintain homeostasis of hemopoiesis throughout life. Further studies perhaps on separated hemopoietic stem cells may unravel the molecular-biology mechanisms causing radiation tolerance and adaptation. PMID:23304110

  16. Basophil mediated pro-allergic inflammation in vehicle-emitted particles exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharenko, Alexander M.

    Despite of the fact that engine manufacturers develop a new technology to reduce exhaust emissions, insufficient attention given to particulate emissions. However, diesel exhaust particles are a major source of air-borne pollution, contain vast amount of polycyclic aromatic hydrocarbons (PAHs) and may have deleterious effects on the immune system, resulting in the induction and enhancement of pro-allergic processes. In the current study, vehicle emitted particles (VEP) from 2 different types of cars (diesel - D and gasoline - G) and locomotive (L) were collected. Overall, 129 four-week-old, male SPF-class Kunming mice were subcutaneously instilled with either low dose 100, 250more » or high dose, 500 mg/kg VEP and 15 mice were assigned as control group. The systemic toxicity was evaluated and alterations in the percentages of the CD3, CD4, CD8, CD16, CD25 expressing cells, basophils, eosinophils and neutrophils were determined. Basophil percentages were inversely associated with the PAH content of the VEPs, however basophil sensitization was more important than cell count in VEP exposure. Thus, the effects of VEP-PAHs emerge with the activation of basophils in an allergen independent fashion. Despite the increased percentage of CD4+ T cells, a sharp decrease in basophil counts at 500 mg/kg of VEP indicates a decreased inhibitory effect of CD16+ monocytes on the proliferation of CD4+ T cell and suppressed polarization into a Th2 phenotype. Therefore, although the restrictions for vehicles emissions differ between countries, follow up studies and strict regulations are needed. - Highlights: • Basophil sensitization is more important than cell count in VEP exposure. • CD16+ cells are more effective than basophils on CD4+ T cell proliferation. • CD16+ and CD16- monocytes respond to VEP exposure in opposite directions. • CD8+ T cell proliferation is inhibited by all doses of VEPs. • Globally, more stringent standards are needed for vehicle particle emissions.« less

  17. Long-Term Effects of Radiation Exposure and Metabolic Status on Telomere Length of Peripheral Blood T Cells in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro

    2016-10-01

    In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.

  18. A systems toxicology approach for comparative assessment: Biological impact of an aerosol from a candidate modified-risk tobacco product and cigarette smoke on human organotypic bronchial epithelial cultures.

    PubMed

    Iskandar, Anita R; Mathis, Carole; Schlage, Walter K; Frentzel, Stefan; Leroy, Patrice; Xiang, Yang; Sewer, Alain; Majeed, Shoaib; Ortega-Torres, Laura; Johne, Stephanie; Guedj, Emmanuel; Trivedi, Keyur; Kratzer, Gilles; Merg, Celine; Elamin, Ashraf; Martin, Florian; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    This study reports a comparative assessment of the biological impact of a heated tobacco aerosol from the tobacco heating system (THS) 2.2 and smoke from a combustible 3R4F cigarette. Human organotypic bronchial epithelial cultures were exposed to an aerosol from THS2.2 (a candidate modified-risk tobacco product) or 3R4F smoke at similar nicotine concentrations. A systems toxicology approach was applied to enable a comprehensive exposure impact assessment. Culture histology, cytotoxicity, secreted pro-inflammatory mediators, ciliary beating, and genome-wide mRNA/miRNA profiles were assessed at various time points post-exposure. Series of experimental repetitions were conducted to increase the robustness of the assessment. At similar nicotine concentrations, THS2.2 aerosol elicited lower cytotoxicity compared with 3R4F smoke. No morphological change was observed following exposure to THS2.2 aerosol, even at nicotine concentration three times that of 3R4F smoke. Lower levels of secreted mediators and fewer miRNA alterations were observed following exposure to THS2.2 aerosol than following 3R4F smoke. Based on the computational analysis of the gene expression changes, 3R4F (0.13 mg nicotine/L) elicited the highest biological impact (100%) in the context of Cell Fate, Cell Proliferation, Cell Stress, and Inflammatory Network Models at 4 h post-exposure. Whereas, the corresponding impact of THS2.2 (0.14 mg nicotine/L) was 7.6%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Tracking Adolescents With Global Positioning System-Enabled Cell Phones to Study Contextual Exposures and Alcohol and Marijuana Use: A Pilot Study.

    PubMed

    Byrnes, Hilary F; Miller, Brenda A; Wiebe, Douglas J; Morrison, Christopher N; Remer, Lillian G; Wiehe, Sarah E

    2015-08-01

    Measuring activity spaces, places adolescents spend time, provides information about relations between contextual exposures and risk behaviors. We studied whether contextual exposures in adolescents' activity spaces differ from contextual risks present in residential contexts and examined relationships between contextual exposures in activity spaces and alcohol/marijuana use. Adolescents (N = 18) aged 16-17 years carried global positioning system (GPS)-enabled smartphones for 1 week, with locations tracked. Activity spaces were created by connecting global positioning system points sequentially and adding buffers. Contextual exposure data (e.g., alcohol outlets) were connected to routes. Adolescents completed texts regarding behaviors. Adolescent activity spaces intersected 24.3 census tracts and contained nine times more alcohol outlets than that of residential census tracts. Outlet exposure in activity spaces was related to drinking. Low-socioeconomic status exposure was related to marijuana use. Findings suggest substantial differences between activity spaces and residential contexts and suggest that activity spaces are relevant for adolescent risk behaviors. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  20. TRANSPORT OF THIOL-CONJUGATES OF INORGANIC MERCURY IN HUMAN RETINAL PIGMENT EPITHELIAL CELLS

    PubMed Central

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-01-01

    Inorganic mercury (Hg2+) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg2+ exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg2+ to access photoreceptor cells, it must be first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg2+, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cells via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg2+ utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg2+, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg2+: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na+-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B0,+ and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B0,+ and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury. PMID:17467761

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, D.P.

    The exfoliated-cell micronucleus assay is a relatively new cytogenetic technique which can provide a measure of the genetic effect of exposure to carcinogens and mutagens in target tissues where tumors arise among exposed populations. It is responsive to the effects of ionizing radiation and tobacco smoke in some in vivo human cell systems, but has not been extensively field tested as an indicator of lung cancer-related effects, despite the public health importance of exposure to occupational and environmental lung carcinogens. In this study the exfoliated-cell micronucleus assay was used to assess effects of exposure to radon progeny and cigarette smokemore » in a population of uranium industry workers (including employees in underground and open-pit mines, mills, laboratories, and administrative offices); underground uranium miners experience markedly elevated lung cancer risk because of exposure to ionizing radiation from radon progeny. Ninety-nine workers were selected at random from among workers in Colorado Plateau uranium-related facilities who participated in a workplace sputum cytology screening program from 1964-1988. The prevalence of cells with micronuclei was determined by a manual assay of one sputum specimen for each worker under a light microscope. Occupational and smoking data obtained by interview during screening were used to classify exposure and smoking status at the time the sputum specimen was taken and to obtain information on potential confounders and effect modifiers; underground miners were classified as exposed to radon progeny, and others were considered unexposed. Neither radon progeny exposure nor cigarette smoking had any appreciable effect on the prevalence of micronucleated cells. Crude prevalence ratios were 1.0 (95% CI 0.7-1.4) and 0.9 (95% CI 0.6-1.3), respectively, for radon exposure and smoking.« less

  2. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-03-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.

  3. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect modification". Fortunately, in the absence of "seed particles", the complex highly-reactive VOC system used does not create any secondary aerosol in situ. All PM present in these tests were, therefore, introduced by injection of MOA to serve as PM-to-be-modified by the gaseous environment. PM addition was only done during dark periods, either before or after the daylight period. The purpose of this design is to test if a non-toxic PM becomes toxic in initially unreacted ("Fresh"), or in reacted ("Aged") complex VOC conditions. To have a complete design, we also tested the effects of clean air and the same VOC conditions, but without introducing any PM. Thus, there were six exposure treatment conditions that were evaluated with the side-by-side, gas-only- and PM-only-effects exposure systems; five separate chamber experiments were performed: two with clean air and three with the complex VOC/NOx mixture. For all of these experiments and exposures, chemical composition data and matching biological effects results for two end-points were compared. Chemical measurements demonstrate the temporal evolution of oxidized species, with a corresponding increase in toxicity observed from exposed cells. The largest increase in gas-phase toxicity was observed in the two "Aged" VOC exposures. The largest increase in particle-phase toxicity was observed in the "Aged" VOC exposure with the addition of PM after sunset. These results are a clear demonstration that the findings from Part 1 can be extended to the complex urban oxidized environment. This further demonstrates that the atmosphere itself cannot be ignored as a source of toxic species when establishing the risks associated with exposure to PM. Because gases and PM are transported and deposited differently within the atmosphere and lungs, these results have significant consequences. In the next (and final) part of the study, testing is further applied to systems with real diesel exhaust, including primary PM from a vehicle operated with different types of diesel fuel.

  4. The effects of electromagnetic fields on B16-BL6 cells are dependent on their spatial and temporal character.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2017-04-01

    Exposure to low intensity, low frequency electromagnetic fields (EMF) has effects on several biological systems. Spatiotemporal characteristics of these EMFs are critical. The effect of several complex EMF patterns on the proliferation of B16-BL6 mouse melanoma cells was tested. Exposure to one of these patterns, the Thomas-EMF, inhibited cell proliferation and promoted calcium uptake. The Thomas-EMF is coded from a digital-to-analog file comprised of 849 points, which provides power to solenoids and can be set to alter timing, intensity, and duration of variable EMF. Setting the point duration to 3 ms generated a time-varying EMF pattern which began at 25 Hz and slowed to 6 Hz over a 2.5 s repeat. Exposing B16-BL6 cells to Thomas-EMF set to 3 ms for 1 h/day inhibited cell proliferation by 40% after 5 days, while setting the point duration to 1, 2, 4, or 5 ms had no effect on cell proliferation. Similarly, exposing cells to Thomas-EMF set to 3 ms promoted a three-fold increase in calcium uptake after 1 h, while the other timings had no effect. Exposure to Thomas-EMF for as short as 15 min/day slowed cell proliferation, but exposure for 1 h/day was optimal. This corresponded to the effect on calcium uptake where uptake was detected after 15 min exposure and was maximal by 1 h of treatment. Studies show that the specific spatiotemporal character of EMF is critical in mediating their biological activities. Bioelectromagnetics. 38:165-174, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    PubMed

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay: Book Chapter

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adher...

  7. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay-Book Chapter*

    EPA Science Inventory

    There are thousands of environmental chemicals for which there is limited toxicological information, motivating the development and application of in vitro systems to profile the biological effects of xenobiotic exposure and predict their potential developmental hazard. An adhere...

  8. The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells

    PubMed Central

    Helm, Alexander; Lee, Ryonfa; Durante, Marco; Ritter, Sylvia

    2016-01-01

    Damage to the endothelium of blood vessels, which may occur during radiotherapy, is discussed as a potential precursor to the development of cardiovascular disease. We thus chose human umbilical vein endothelial cells as a model system to examine the effect of low- and high-linear energy transfer (LET) radiation. Cells were exposed to 250 kV X-rays or carbon ions (C-ions) with the energies of either 9.8 MeV/u (LET = 170 keV/μm) or 91 MeV/u (LET = 28 keV/μm). Subculture of cells was performed regularly up to 46 days (~22 population doublings) post-irradiation. Immediately after exposure, cells were seeded for the colony forming assay. Additionally, at regular intervals, mitochondrial membrane potential (MMP) (JC-1 staining) and cellular senescence (senescence-associated β-galactosidase staining) were assessed. Cytogenetic damage was investigated by the micronucleus assay and the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. Analysis of radiation-induced damage shortly after exposure showed that C-ions are more effective than X-rays with respect to cell inactivation or the induction of cytogenetic damage (micronucleus assay) as observed in other cell systems. For 9.8 and 91 MeV/u C-ions, relative biological effectiveness values of 2.4 and 1.5 were obtained for cell inactivation. At the subsequent time points, the number of micronucleated cells decreased to the control level. Analysis of chromosomal damage by mFISH technique revealed aberrations frequently involving chromosome 13 irrespective of dose or radiation quality. Disruption of the MMP was seen only a few days after exposure to X-rays or C-ions. Cellular senescence was not altered by radiation at any time point investigated. Altogether, our data indicate that shortly after exposure C-ions were more effective in damaging endothelial cells than X-rays. However, late damage to endothelial cells was not found for the applied conditions and endpoints. PMID:26835420

  9. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    PubMed

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  10. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues.

    PubMed

    Iskandar, Anita R; Martin, Florian; Talikka, Marja; Schlage, Walter K; Kostadinova, Radina; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.

  11. Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

    PubMed Central

    Iskandar, Anita R.; Martin, Florian; Talikka, Marja; Schlage, Walter K.; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue. PMID:24224167

  12. [Metabolic changes in cells under electromagnetic radiation of mobile communication systems].

    PubMed

    Iakimenko, I L; Sidorik, E P; Tsybulin, A S

    2011-01-01

    Review is devoted to the analysis of biological effects of microwaves. The results of last years' researches indicated the potential risks of long-term low-level microwaves exposure for human health. The analysis of metabolic changes in living cells under the exposure of microwaves from mobile communication systems indicates that this factor is stressful for cells. Among the reproducible effects of low-level microwave radiation are overexpression of heat shock proteins, an increase of reactive oxygen species level, an increase of intracellular Ca2+, damage of DNA, inhibition of DNA reparation, and induction of apoptosis. Extracellular-signal-regulated kinases ERK and stress-related kinases p38MAPK are involved in metabolic changes. Analysis of current data suggests that the concept of exceptionally thermal mechanism of biological effects of microwaves is not correct. In turn, this raises the question of the need to revaluation of modern electromagnetic standards based on thermal effects of non-ionizing radiation on biological systems.

  13. Blood-Brain Barrier Disruption and Oxidative Stress in Guinea Pig after Systemic Exposure to Modified Cell-Free Hemoglobin

    PubMed Central

    Butt, Omer I.; Buehler, Paul W.; D'Agnillo, Felice

    2011-01-01

    Systemic exposure to cell-free hemoglobin (Hb) or its breakdown products after hemolysis or with the use of Hb-based oxygen therapeutics may alter the function and integrity of the blood-brain barrier. Using a guinea pig exchange transfusion model, we investigated the effect of a polymerized cell-free Hb (HbG) on the expression of endothelial tight junction proteins (zonula occludens 1, claudin-5, and occludin), astrocyte activation, IgG extravasation, heme oxygenase (HO), iron deposition, oxidative end products (4-hydroxynonenal adducts and 8-hydroxydeoxyguanosine), and apoptosis (cleaved caspase 3). Reduced zonula occludens 1 expression was observed after HbG transfusion as evidenced by Western blot and confocal microscopy. Claudin-5 distribution was altered in small- to medium-sized vessels. However, total expression of claudin-5 and occludin remained unchanged except for a notable increase in occludin 72 hours after HbG transfusion. HbG-transfused animals also showed increased astrocytic glial fibrillary acidic protein expression and IgG extravasation after 72 hours. Increased HO activity and HO-1 expression with prominent enhancement of HO-1 immunoreactivity in CD163-expressing perivascular cells and infiltrating monocytes/macrophages were also observed. Consistent with oxidative stress, HbG increased iron deposition, 4-hydroxynonenal and 8-hydroxydeoxyguanosine immunoreactivity, and cleaved caspase-3 expression. Systemic exposure to an extracellular Hb triggers blood-brain barrier disruption and oxidative stress, which may have important implications for the use of Hb-based therapeutics and may provide indirect insight on the central nervous system vasculopathies associated with excessive hemolysis. PMID:21356382

  14. Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes.

    PubMed

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Al Battah, Feras; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-03-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1-500 microg ml(-1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  15. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model

    NASA Astrophysics Data System (ADS)

    Loutfy, Samah A.; Alam El-Din, Hanaa M.; Elberry, Mostafa H.; Allam, Nanis G.; Hasanin, M. T. M.; Abdellah, Ahmed M.

    2016-09-01

    To evaluate the cytotoxic effect of chitosan nanoparticles (CS-NPs) on an in vitro human liver cancer cell model (HepG2) and their possible application as a drug delivery system, we synthesized water-soluble CS-NPs, investigated their properties and extensively evaluated their cytotoxic activity on the cellular and molecular levels. A human liver cancer cell line was used as a model of human liver cancer. The CS-NPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta analysis. The cytotoxic effects of the CS-NPs on HepG2 cells were monitored by sulforhodamine B colorimetric assays for cytotoxicity screening and flow cytometric analysis. Molecular investigations including DNA fragmentation and the expression of some apoptotic genes on the transcriptional RNA level were conducted. Treatment of HepG2 with different concentrations of 150 nm diameter CS-NPs did not show alteration of cell morphology after 24 h of cell exposure. Also, when cells were treated with 100 μg ml-1 of CS-NPs, 12% of them were killed and IC50 reached 239 μg ml-1 after 48 h of cell exposure. Flow cytometry evaluation of the CS-NPs revealed mild accumulation in the G2/M phase followed by cellular DNA fragmentation after 48 h of cell exposure. Extensive evaluation of the cytotoxic effect of the CS-NPs showed messenger RNA (mRNA) apoptotic gene expression (p53, Bak, Caspase3) after 24 h of cell exposure with no expression of the mRNA of the caspase 3 gene after 48 h of cell exposure, suggesting the involvement of an intrinsic apoptotic caspase-independent pathway by increasing the exposure time of 100 μg ml-1 of the CS-NPs. The engineered CS-NPs were controlled to a 150 nm size and charges of 40 mV and a concentration of 100 μg ml-1 revealed a genotoxic effect on HepG2 after 48 h of cell exposure through intrinsic apoptotic caspase-independent mechanisms. Further quantitative analysis on the molecular and protein levels is still required to confirm the impact of chitosan size and time on genotoxic effect before reaching a final conclusion and starting its biomedical application.

  16. Correlation between in vivo and in vitro pulmonary responses to jet propulsion fuel-8 using precision-cut lung slices and a dynamic organ culture system.

    PubMed

    Hays, Allison M; Lantz, R Clark; Witten, Mark L

    2003-01-01

    In tissue slice models, interactions between the heterogeneous cell types comprising the lung parenchyma are maintained thus providing a controlled system for the study of pulmonary toxicology in vitro. However, validation of the model in vitro system must be affirmed. Previous reports, in in vivo systems, have demonstrated that Clara cells and alveolar type II cells are the targets following inhalation of JP-8 jet fuel. We have utilized the lung slice model to determine if cellular targets are similar following in vitro exposure to JP-8. Agar-filled adult rat lung explants were cored and precision cut, using the Brende/Vitron tissue slicer. Slices were cultured on titanium screens located as half-cylinders in cylindrical Teflon cradles that were loaded into standard scintillation vials and incubated at 37 degrees C. Slices were exposed to JP-8 jet fuel (0.5 mg/ml, 1.0 mg/ml, and 1.5 mg/ml in medium) for up to 24 hours. We determined ATP content using a luciferin-luciferase bioluminescent assay. No significant difference was found between the JP-8 jet fuel doses or time points, when compared to controls. Results were correlated with structural alterations following aerosol inhalation of JP-8. As a general observation, ultrastructural evaluation of alveolar type cells revealed an apparent increase in the number and size of surfactant secreting lamellar bodies that was JP-8 jet fuel-dose dependent. These results are similar to those observed following aerosol inhalation exposure. Thus, the lung tissue slice model appears to mimic in vivo effects of JP-8 and therefore is a useful model system for studying the mechanisms of lunginjury following JP-8 exposure.

  17. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells

    PubMed Central

    Hatch, Gary E.; Duncan, Kelly E.; Diaz-Sanchez, David; Schmitt, Michael T.; Ghio, Andrew J.; Carraway, Martha Sue; McKee, John; Dailey, Lisa A.; Berntsen, Jon; Devlin, Robert B.

    2014-01-01

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 (18O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25–1.0 ppm 18O3 for 2 h. The O3 dose to the cells was defined as the level of 18O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same 18O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system. PMID:24928893

  18. Relationship between ketamine-induced developmental neurotoxicity and NMDA receptor-mediated calcium influx in neural stem cell-derived neurons.

    PubMed

    Wang, Cheng; Liu, Fang; Patterson, Tucker A; Paule, Merle G; Slikker, William

    2017-05-01

    Ketamine, a noncompetitive NMDA receptor antagonist, is used as a general anesthetic and recent data suggest that general anesthetics can cause neuronal damage when exposure occurs during early brain development. To elucidate the underlying mechanisms associated with ketamine-induced neurotoxicity, stem cell-derived models, such as rodent neural stem cells harvested from rat fetuses and/or neural stem cells derived from human induced pluripotent stem cells (iPSC) can be utilized. Prolonged exposure of rodent neural stem cells to clinically-relevant concentrations of ketamine resulted in elevated NMDA receptor levels as indicated by NR1subunit over-expression in neurons. This was associated with enhanced damage in neurons. In contrast, the viability and proliferation rate of undifferentiated neural stem cells were not significantly affected after ketamine exposure. Calcium imaging data indicated that 50μM NMDA did not cause a significant influx of calcium in typical undifferentiated neural stem cells; however, it did produce an immediate elevation of intracellular free Ca 2+ [Ca 2+ ] i in differentiated neurons derived from the same neural stem cells. This paper reviews the literature on this subject and previous findings suggest that prolonged exposure of developing neurons to ketamine produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to neuronal cell death likely due to elevated reactive oxygen species generation. The absence of functional NMDA receptors in cultured neural stem cells likely explains why clinically-relevant concentrations of ketamine did not affect undifferentiated neural stem cell viability. Published by Elsevier B.V.

  19. Total-body irradiation with high-LET particles: acute and chronic effects on the immune system

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Nelson, Gregory A.

    2002-01-01

    Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.

  20. Total-body irradiation with high-LET particles: acute and chronic effects on the immune system.

    PubMed

    Gridley, Daila S; Pecaut, Michael J; Nelson, Gregory A

    2002-03-01

    Although the immune system is highly susceptible to radiation-induced damage, consequences of high linear energy transfer (LET) radiation remain unclear. This study evaluated the effects of 0.1 gray (Gy), 0.5 Gy, and 2.0 Gy iron ion (56Fe(26)) radiation on lymphoid cells and organs of C57BL/6 mice on days 4 and 113 after whole body exposure; a group irradiated with 2.0 Gy silicon ions (28Si) was euthanized on day 113. On day 4 after 56Fe irradiation, dose-dependent decreases were noted in spleen and thymus masses and all major leukocyte populations in blood and spleen. The CD19(+) B lymphocytes were most radiosensitive and NK1.1(+) natural killer (NK) cells were most resistant. CD3(+) T cells were moderately radiosensitive and a greater loss of CD3(+)/CD8(+) T(C) cells than CD3(+)/CD4(+) T(H) cells was noted. Basal DNA synthesis was elevated on day 4, but response to mitogens and secretion of interleukin-2 and tumor necrosis factor-alpha were unaffected. Signs of anemia were noted. By day 113, high B cell numbers and low T(C) cell and monocyte percents were found in the 2.0 Gy 56Fe group; the 2.0 Gy 2)Si mice had low NK cells, decreased basal DNA synthesis, and a somewhat increased response to two mitogens. Collectively, the data show that lymphoid cells and tissues are markedly affected by high linear energy transfer (LET) radiation at relatively low doses, that some aberrations persist long after exposure, and that different consequences may be induced by various densely ionizing particles. Thus simultaneous exposure to multiple radiation sources could lead to a broader spectrum of immune dysfunction than currently anticipated.

  1. Tobacco smoke exposure in either the donor or recipient before transplantation accelerates cardiac allograft rejection, vascular inflammation, and graft loss.

    PubMed

    Khanna, Ashwani K; Xu, Jianping; Uber, Patricia A; Burke, Allen P; Baquet, Claudia; Mehra, Mandeep R

    2009-11-03

    Tobacco exposure in cardiac transplant recipients, before and after transplantation, may increase the risk of cardiac allograft vasculopathy and allograft loss, but no direct evidence for this phenomenon is forthcoming. In this experimental study, we investigated early consequences of tobacco smoke exposure in cardiac transplant donors and recipients with an emphasis on alloinflammatory mediators of graft outcome. Using heterotopic rat cardiac transplantation, we tested the effects of donor or recipient tobacco smoke exposure in 6 groups of animals (rat heterotopic cardiac transplantation) as follows: tobacco-naïve allogeneic rejecting controls (n=6), tobacco-naïve nonrejecting controls (n=3; killed on day 5 to simulate survival times of tobacco-treated animals), isografts (n=3), both donor and recipient rats exposed to tobacco smoke (n=4), only donor rats exposed to tobacco smoke (n=7), and only recipient rats exposed to tobacco smoke (n=6). Polymerase chain reaction studies of tissue and peripheral (systemic) protein expression were performed to evaluate inflammatory (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and alloimmune (interleukin-1 receptor 2, programmed cell death-1, and stromal cell-derived factor-1) pathways, as was histological analysis of the cardiac allografts. Our experiments reveal that pretransplantation tobacco exposure in donors and/or recipients results in heightened systemic inflammation and increased oxidative stress, reduces posttransplantation cardiac allograft survival by 33% to 57%, and increases intragraft inflammation (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and alloimmune activation (CD3, interleukin-1 receptor 2, programmed cell death-1, and stromal cell-derived factor-1) with consequent myocardial and vascular destruction. These sentinel findings confirm that tobacco smoke exposure in either donors or recipients leads to accelerated allograft rejection, vascular inflammation, and graft loss. Molecular pathways that intersect as arbiters in this phenomenon include instigation of alloimmune activation associated with tobacco smoke-induced inflammation.

  2. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    PubMed

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-02-12

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers.

  3. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  4. Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats.

    PubMed

    Liu, Zhaohui; Gong, Li; Li, Xiaofang; Ye, Lin; Wang, Bin; Liu, Jing; Qiu, Jianyong; Jiao, Huiduo; Zhang, Wendong; Chen, Jingzao; Wang, Jiuping

    2012-01-01

    In the present study, we determined the effect of infrasonic exposure on apoptosis and intracellular free Ca²⁺ ([Ca²⁺]i) levels in the hippocampus of adult rats. Adult rats were randomly divided into the control and infrasound exposure groups. For infrasound treatment, animals received infrasonic exposure at 90 (8 Hz) or 130 dB (8 Hz) for 2 h per day. Hippocampi were dissected, and isolated hippocampal neurons were cultured. The [Ca²⁺]i levels in hippocampal neurons from adult rat brains were determined by Fluo-3/AM staining with a confocal microscope system on days 1, 7, 14, 21 and 28 following infrasonic exposure. Apoptosis was evaluated by Annexin V-FITC and propidium iodide double staining. Positive cells were sorted and analyzed by flow cytometry. Elevated [Ca²⁺]i levels were observed on days 14 and 21 after rats received daily treatment with 90 or 130 dB sound pressure level (SPL) infrasonic exposure (p<0.01 vs. control). The highest levels of [Ca²⁺]i were detected in the 130 dB SPL infrasonic exposure group. Meanwhile, apoptosis in hippocampal neurons was found to increase on day 7 following 90 dB SPL infrasound exposure, and significantly increased on day 14. Upon 130 dB infrasound treatment, apoptosis was first observed on day 14, whereas the number of apoptotic cells gradually decreased thereafter. Additionally, a marked correlation between cell apoptosis and [Ca²⁺]i levels was found on day 14 and 21 following daily treatment with 90 and 130 dB SPL, respectively. These results demonstrate that a period of infrasonic exposure induced apoptosis and upregulated [Ca²⁺]i levels in hippocampal neurons, suggesting that infrasound may cause damage to the central nervous system (CNS) through the Ca²⁺‑mediated apoptotic pathway in hippocampal neurons.

  5. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals.

    PubMed

    Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst

    2008-12-01

    The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.

  6. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice.

    PubMed

    Wardoyo, Arinto Y P; Juswono, Unggul P; Noor, Johan A E

    2018-01-01

    Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm 3 /s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.

  7. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  8. Multiple lesion track structure model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1992-01-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.

  9. Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort.

    PubMed

    Baïz, Nour; Slama, Rémy; Béné, Marie-Christine; Charles, Marie-Aline; Kolopp-Sarda, Marie-Nathalie; Magnan, Antoine; Thiebaugeorges, Olivier; Faure, Gilbert; Annesi-Maesano, Isabella

    2011-11-02

    Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system. Exposure to background particulate matter less than 10 μm in diameter (PM10) and nitrogen dioxide (NO2) was assessed in 370 women three months before and during pregnancy using monitoring stations. Personal exposure to four volatile organic compounds (VOCs) was measured in a subsample of 56 non-smoking women with a diffusive air sampler during the second trimester of pregnancy. Cord blood was analyzed at birth by multi-parameter flow cytometry to determine lymphocyte subsets. Among other immunophenotypic changes in cord blood, decreases in the CD4+CD25+ T-cell percentage of 0.82% (p = 0.01), 0.71% (p = 0.04), 0.88% (p = 0.02), and 0.59% (p = 0.04) for a 10 μg/m3 increase in PM10 levels three months before and during the first, second and third trimester of pregnancy, respectively, were observed after adjusting for confounders. A similar decrease in CD4+CD25+ T-cell percentage was observed in association with personal exposure to benzene. A similar trend was observed between NO2 exposure and CD4+CD25+ T-cell percentage; however the association was stronger between NO2 exposure and an increased percentage of CD8+ T-cells. These data suggest that maternal exposure to air pollution before and during pregnancy may alter the immune competence in offspring thus increasing the child's risk of developing health conditions later in life, including asthma and allergies.

  10. Assessment of ixekizumab, an interleukin-17A monoclonal antibody, for potential effects on reproduction and development, including immune system function, in cynomolgus monkeys.

    PubMed

    Clarke, D O; Hilbish, K G; Waters, D G; Newcomb, D L; Chellman, G J

    2015-12-01

    The reproductive and developmental toxicity of ixekizumab, a selective inhibitor of interleukin-17A (IL-17A), was assessed in the following studies in cynomolgus monkeys: fertility (3-month dosing), embryo-fetal development (EFD; dosing from gestation day (GD) 20 through 139), and pre-postnatal development (PPND; dosing from GD 20 through parturition). Because IL-17A has functional roles in innate and humoral immunity, immune system modulation was evaluated in the EFD and PPND studies; immunological evaluations in infants comprised peripheral blood immunophenotyping, Natural Killer cell cytolytic activity, and T-cell-dependent antibody (IgG and IgM) primary and secondary responses to antigen challenge. Ixekizumab exposure was sustained during the dosing periods in most adult monkeys. Fetal exposure at Cesarean section (GD 140-142; EFD study) was 18-25% of maternal exposure and ixekizumab was present in infants for up to 29 weeks postpartum. There were no adverse effects attributed to ixekizumab in any study. Importantly, immune system development and maturation were unaffected. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Staphylococcus aureus Strain Newman Photoinactivation and Cellular Response to Sunlight Exposure.

    PubMed

    McClary, Jill S; Sassoubre, Lauren M; Boehm, Alexandria B

    2017-09-01

    Sunlight influences microbial water quality of surface waters. Previous studies have investigated photoinactivation mechanisms and cellular photostress responses of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, but further work is needed to characterize photostress responses of bacterial pathogens. Here we investigate the photoinactivation of Staphylococcus aureus (strain Newman), a pigmented, waterborne pathogen of emerging concern. We measured photodecay using standard culture-based assays and cellular membrane integrity and investigated photostress response by measuring the relative number of mRNA transcripts of select oxidative stress, DNA repair, and metabolism genes. Photoinactivation experiments were performed in both oxic and anoxic systems to further investigate the role of oxygen-mediated and non-oxygen-mediated photoinactivation mechanisms. S. aureus lost culturability much faster in oxic systems than in anoxic systems, indicating an important role for oxygen in photodecay mechanisms. S. aureus cell membranes were damaged by sunlight exposure in anoxic systems but not in oxic systems, as measured by cell membrane permeability to propidium iodide. After sunlight exposure, S. aureus increased expression of a gene coding for methionine sulfoxide reductase after 12 h of sunlight exposure in the oxic system and after 6 h of sunlight exposure in the anoxic system, suggesting that methionine sulfoxide reductase is an important enzyme for defense against both oxygen-dependent and oxygen-independent photostresses. This research highlights the importance of oxygen in bacterial photoinactivation in environmentally relevant systems and the complexity of the bacterial photostress response with respect to cell structure and transcriptional regulation. IMPORTANCE Staphylococcus aureus is a pathogenic bacterium that causes gastrointestinal, respiratory, and skin infections. In severe cases, S. aureus infection can lead to life-threatening diseases, including pneumonia and sepsis. Cases of community-acquired S. aureus infection have been increasing in recent years, pointing to the importance of considering S. aureus transmission pathways outside the hospital environment. Associations have been observed between recreational water contact and staphylococcal skin infections, suggesting that recreational waters may be an important environmental transmission pathway for S. aureus However, prediction of human health risk in recreational waters is hindered by incomplete knowledge of pathogen sources, fate, and transport in this environment. This study is an in-depth investigation of the inactivation of a representative strain of S. aureus by sunlight exposure, one of the most important factors controlling the fate of microbial contaminants in clear waters, which will improve our ability to predict water quality changes and human health risk in recreational waters. Copyright © 2017 American Society for Microbiology.

  12. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality.

    PubMed

    Dinkla, Sip; Peppelman, Malou; Van Der Raadt, Jori; Atsma, Femke; Novotný, Vera M J; Van Kraaij, Marian G J; Joosten, Irma; Bosman, Giel J C G M

    2014-04-01

    Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibility of red blood cells to stress-induced phosphatidylserine exposure increases with storage. Phosphatidylserine exposure may, therefore, constitute a link between donor variation and the quality of red blood cell concentrates. In order to examine the relationship between storage parameters and donor characteristics, the percentage of phosphatidylserine-exposing red blood cells was measured in red blood cell concentrates during storage and in fresh red blood cells from blood bank donors. The percentage of phosphatidylserine-exposing red blood cells was compared with red blood cell susceptibility to osmotic stress-induced phosphatidylserine exposure in vitro, with the regular red blood cell concentrate quality parameters, and with the donor characteristics age, body mass index, haemoglobin level, gender and blood group. Phosphatidylserine exposure varies between donors, both on red blood cells freshly isolated from the blood, and on red blood cells in red blood cell concentrates. Phosphatidylserine exposure increases with storage time, and is correlated with stress-induced phosphatidylserine exposure. Increased phosphatidylserine exposure during storage was found to be associated with haemolysis and vesicle concentration in red blood cell concentrates. The percentage of phosphatidylserine-exposing red blood cells showed a positive correlation with the plasma haemoglobin concentration of the donor. The fraction of phosphatidylserine-exposing red blood cells is a parameter of red blood cell integrity in red blood cell concentrates and may be an indicator of red blood cell survival after transfusion. Measurement of phosphatidylserine exposure may be useful in the selection of donors and red blood cell concentrates for specific groups of patients.

  13. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice.

    PubMed

    Bodin, Johanna; Kocbach Bølling, Anette; Wendt, Anna; Eliasson, Lena; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  14. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus.

    PubMed

    Wang, Xinli; Cai, Jiali; Zhang, Jiliang; Wang, Chonggang; Yu, Ang; Chen, Yixin; Zuo, Zhenghong

    2008-10-20

    Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.

  15. The immune system in space, including Earth-based benefits of space-based research.

    PubMed

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  16. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice.

    PubMed

    Akers, Katherine G; Kushner, Steven A; Leslie, Ana T; Clarke, Laura; van der Kooy, Derek; Lerch, Jason P; Frankland, Paul W

    2011-07-07

    Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development.

  17. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields.

    PubMed

    Kuzniar, Arnold; Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A Peter M; Demmers, Jeroen; Lebbink, Joyce H G; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.

  18. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields

    PubMed Central

    Laffeber, Charlie; Eppink, Berina; Bezstarosti, Karel; Dekkers, Dick; Woelders, Henri; Zwamborn, A. Peter M.; Demmers, Jeroen; Lebbink, Joyce H. G.; Kanaar, Roland

    2017-01-01

    The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture. PMID:28234898

  19. Early life exposure to 2.45GHz WiFi-like signals: effects on development and maturation of the immune system.

    PubMed

    Sambucci, Manolo; Laudisi, Federica; Nasta, Francesca; Pinto, Rosanna; Lodato, Rossella; Lopresto, Vanni; Altavista, Pierluigi; Marino, Carmela; Pioli, Claudio

    2011-12-01

    The development of the immune system begins during embryogenesis, continues throughout fetal life, and completes its maturation during infancy. Exposure to immune-toxic compounds at levels producing limited/transient effects in adults, results in long-lasting or permanent immune deficits when it occurs during perinatal life. Potentially harmful radiofrequency (RF) exposure has been investigated mainly in adult animals or with cells from adult subjects, with most of the studies showing no effects. Is the developing immune system more susceptible to the effects of RF exposure? To address this question, newborn mice were exposed to WiFi signals at constant specific absorption rates (SAR) of 0.08 or 4 W/kg, 2h/day, 5 days/week, for 5 consecutive weeks, starting the day after birth. The experiments were performed with a blind procedure using sham-exposed groups as controls. No differences in body weight and development among the groups were found in mice of both sexes. For the immunological analyses, results on female and male newborn mice exposed during early post-natal life did not show any effects on all the investigated parameters with one exception: a reduced IFN-γ production in spleen cells from microwaves (MW)-exposed (SAR 4 W/kg) male (not in female) mice compared with sham-exposed mice. Altogether our findings do not support the hypothesis that early post-natal life exposure to WiFi signals induces detrimental effects on the developing immune system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The immune system in space and microgravity

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  1. Promotion of haematopoietic activity in embryonic stem cells by the aorta-gonad-mesonephros microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krassowska, Anna; Gordon-Keylock, Sabrina; Samuel, Kay

    We investigated whether the in vitro differentiation of ES cells into haematopoietic progenitors could be enhanced by exposure to the aorta-gonadal-mesonephros (AGM) microenvironment that is involved in the generation of haematopoietic stem cells (HSC) during embryonic development. We established a co-culture system that combines the requirements for primary organ culture and differentiating ES cells and showed that exposure of differentiating ES cells to the primary AGM region results in a significant increase in the number of ES-derived haematopoietic progenitors. Co-culture of ES cells on the AM20-1B4 stromal cell line derived from the AGM region also increases haematopoietic activity. We concludemore » that factors promoting the haematopoietic activity of differentiating ES cells present in primary AGM explants are partially retained in the AM20.1B4 stromal cell line and that these factors are likely to be different to those required for adult HSC maintenance.« less

  2. Effect of Microgravity on Mammalian Lymphocytes

    NASA Technical Reports Server (NTRS)

    Banerjee, H.; Blackshear, M.; Mahaffey, K.; Knight, C.; Khan, A. A.; Delucas, L.

    2004-01-01

    The effect of microgravity on mammalian system is an important and interesting topic for scientific investigation, since NASA s objective is to send manned flights to planets like Mars and eventual human colonization.The Astronauts will be exposed to microgravity environment for a long duration of time during these flights.Our objective of research is to conduct in vitro studies for the effect of microgravity on mammalian immune system.We did our preliminary investigations by exposing mammalian lymphocytes to a microgravity simulator cell bioreactor designed by NASA and manufactured at Synthecon Inc (USA).Our initial results showed no significant change in cytokine expression in these cells for a time period of forty eight hours exposure.Our future experiments will involve exposure for a longer period of time.

  3. EFFECTS OF SUBSCUTE EXPOSURE TO NANOMOLAR CONCENTRATIONS OF METHYLMERCURY ON VOLTAGE-GATES SODIUM AND CALCIUM CURRENTS IN PC12 CELLS.

    EPA Science Inventory

    Methylmercury (CH3Hg+) alters the function of voltage-gated Na+ and Ca2+ channels in neuronal preparations following acute, in vitro, exposure. Because the developing nervous system is particularly sensitive to CH3Hg+ neurotoxicity, effects on voltage-gated Na+ (INa) and Ca2+ (IC...

  4. CONCENTRATION-RESPONSE ASSESSMENT OF CHEMICAL EFFECTS ON SYNAPTOGENESIS USING A HIGH CONTENT IMAGE ANALYSIS-BASED SCREENING ASSAY

    EPA Science Inventory

    Functional connectivity of the nervous system is dependent upon the development of synapses: i.e. specialized cell-cell contacts which facilitate the unidirectional flow of fast neurotransmission. Prenatal and/or early postnatal exposure to chemicals which disrupt synaptogenesis ...

  5. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, S.; Tebby, C.

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-timemore » cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.« less

  6. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  7. A first insight into temperature stress-induced neuroendocrine and immunological changes in giant freshwater prawn, Macrobrachium rosenbergii.

    PubMed

    Chang, Chin-Chyuan; Jiang, Jia-Rong; Cheng, Winton

    2015-11-01

    Haemolymph norepinephrine (NE); total haemocyte count (THC); respiratory bursts (RBs); superoxide dismutase (SOD), phenoloxidase (PO), and phagocytic activity; and prophenoloxidase (proPO)-system-related genes (lipopolysaccharide- and β-1,3-glucan-binding protein: LGBP, proPO, peroxinectin: PE, and α2-macroglobulin: α2-M) in haemocytes of Macrobrachium rosenbergii were investigated after transferring them from 28 °C to 22 °C, 28 °C, and 34 °C respectively. The results revealed that haemolymph NE, hyaline cells (HCs), and PO activity per granulocyte increased from 30 to 120 min of exposure, and however, RBs and phagocytic activity significantly decreased from 30 to 120 min of exposure as well as granular cells (GCs), semigranular cells (SGCs), and SOD activity decreased from 60 to 120 min of exposure for the prawns subjected to temperature stress. The proPO-system-related gene expression markedly increased with 60-120 min of exposure for the prawns transferred from 28 °C to 22 °C and 34 °C, except α2M at 120 min. These results provide a first insight into the effects of temperature stress on haemolymph NE level and immune functions in prawns and suggest that temperature-stress-induced acute modulation in immunity is associated with the release of haemolymph NE in M. rosenbergii. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Internal pigment cells respond to external UV radiation in frogs.

    PubMed

    Franco-Belussi, Lilian; Nilsson Sköld, Helen; de Oliveira, Classius

    2016-05-01

    Fish and amphibians have pigment cells that generate colorful skins important for signaling, camouflage, thermoregulation and protection against ultraviolet radiation (UVR). However, many animals also have pigment cells inside their bodies, on their internal organs and membranes. In contrast to external pigmentation, internal pigmentation is remarkably little studied and its function is not well known. Here, we tested genotoxic effects of UVR and its effects on internal pigmentation in a neotropical frog, Physalaemus nattereri We found increases in body darkness and internal melanin pigmentation in testes and heart surfaces and in the mesenterium and lumbar region after just a few hours of UVR exposure. The melanin dispersion in melanomacrophages in the liver and melanocytes in testes increased after UV exposure. In addition, the amount of melanin inside melanomacrophages cells also increased. Although mast cells were quickly activated by UVR, only longer UVR exposure resulted in genotoxic effects inside frogs, by increasing the frequency of micronuclei in red blood cells. This is the first study to describe systemic responses of external UVR on internal melanin pigmentation, melanomacrophages and melanocytes in frogs and thus provides a functional explanation to the presence of internal pigmentation. © 2016. Published by The Company of Biologists Ltd.

  9. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    PubMed Central

    Bardack, Stephanie; Dalgard, Clifton L.; Kalinich, John F.; Kasper, Christine E.

    2014-01-01

    Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted. PMID:24619124

  10. The role of phosphatidylserine in recognition and removal of erythrocytes.

    PubMed

    Kuypers, F A; de Jong, K

    2004-03-01

    During the time that erythrocytes (RBC) spend in the circulation, a series of progressive events take place that lead to their removal and determine their apparent aging and limited survival. In addition, a fraction of RBC precursors will be removed during erythropoiesis by apoptotic processes, often described as "ineffective erythropoiesis". Both will determine the survival of erythroid cells and play an important role in red cell pathology, including hemoglobinopathies and red cell membrane disorders. The loss of phospholipid asymmetry, and the exposure of phosphatidylserine (PS) on the surface of plasma membranes may be a general trigger by which cells, including aging RBC and apoptotic cells, are removed. Oxidant stress and inactivation of the system that maintains phospholipid asymmetry play a central role in the events that will lead to PS exposure, death and removal.

  11. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    PubMed Central

    2011-01-01

    Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system. PMID:21914226

  12. Plasticity of Neurovestibular Systems Following Micro- and Hyper-Gravity Exposure and Readaptation to Earth's 1G

    NASA Technical Reports Server (NTRS)

    Boyle, Richard D.

    2012-01-01

    The gravity-sensing organs sense the sum of inertial force due to head translation and head orientation relative to gravity. Normally gravity is constant, and yet the neural sensors show remarkable plasticity. When the force of gravity changes, such as in spaceflight or during centrifugation, the neurovestibular system responds by regulating its neural output, and this response is similar for the vertebrate utricular nerve afferents and for the statocyst hair cell in invertebrates. First, we examine the response of utricular afferents in toadfish following exposure to G on two orbital missions (STS-90 and 95). Within the first day after landing, magnitude of neural response to an applied acceleration was significantly elevated, and re-adaptation back to control values occurred within approximately 30 hours. Time course of return to normal approximately parallels the decrease in vestibular disorientation in astronauts following return. Next, we use well-controlled hyper-G experiments in the vertebrate model to address: If G leads to adaptation and subsequent re-adaptation neural processes, does the transfer from 1G to hyper-G impart the opposite effects and do the effects accompanying transfer from the hyper-G back to the 1G conditions resemble as an analog the transfer from 1G to the microG Results show a biphasic pattern in reaction to 3G exposures: an initial sensitivity up-regulation (3- and 4-day) followed by a significant decrease after longer exposure. Return to control values is on the order of 4-8 days. Utricular sensitivity is strongly regulated up or down by gravity load and the duration of exposure. Interestingly, we found no correlation of response and hair cell synaptic body counts despite the large gain difference between 4- and 16-Day subjects. Lastly, we examine responses of statocyst receptors in land snail following exposure to G on two unmanned Russian Orbital missions (Foton M-2 and -3). Here, we have the ability to measure the output directly from the hair cells. Similar to afferents in vertebrates the hair cells increased their response sensitivity to vestibular stimulation. Two major pieces of information are needed: the precise vertebrate hair cell response to altered gravity and the impact of longer duration exposures on sensory plasticity.

  13. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    NASA Astrophysics Data System (ADS)

    Pojo, M.; Cerqueira, S. R.; Mota, T.; Xavier-Magalhães, A.; Ribeiro-Samy, S.; Mano, J. F.; Oliveira, J. M.; Reis, R. L.; Sousa, N.; Costa, B. M.; Salgado, A. J.

    2013-05-01

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 μg/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 μg/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present 100 % of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ( 20 % of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  14. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Seed, T. M.; Fritz, T. E.; Tolle, D. V.; Jackson, W. E.

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d -1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d -1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (> 1yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d -1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d -1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation.

  15. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    EPA Pesticide Factsheets

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  16. Immunological biomarkers in salt miners exposed to salt dust, diesel exhaust and nitrogen oxides.

    PubMed

    Backé, Eva; Lotz, Gabriele; Tittelbach, Ulrike; Plitzko, Sabine; Gierke, Erhardt; Schneider, Wolfram Dietmar

    2004-06-01

    Air pollutants can affect lung function and also the immune system. In a study about lung function of salt miners in relation to the complex exposure in a salt mine, we also analysed selected immunological parameters and inflammation markers in the blood of miners. Effect of salt dust, diesel exhaust, nitrogen oxides (NOx) and smoking on the biomarkers was analysed. Blood was drawn from 286 salt miners, and the soluble intercellular adhesion molecule-1 (s-ICAM), monocyte chemotactic protein (MCP-1) and clara cell protein (CC16) were analysed by an immunoassay, blood profile was done and lymphocyte subpopulations (CD3, CD3/CD4, CD3/CD8, CD19, NK-cells, CD3/HLA-DR) were determined by flow cytometry. Salt dust was measured by two-step gravimetry (personal sampling). Diesel exhaust was measured as elemental carbon concentration by coulometry. NOx were determined by an electrochemical cell method. Differences between non-smokers, former smokers and active smokers were analysed by analysis of variance. Linear regression analysis to describe exposure-response relationships was done with regard to confounding factors [smoking, inflammatory diseases, time of blood drawing, respiratory infection and body-mass index (BMI)]. Significant differences between non-smokers and active smokers were found for most of the leukocyte types (e.g. granulocytes P = 0.000, lymphocytes P = 0.002, T-cells P = 0.033) and for some soluble parameters (ICAM P = 0.000, IgM P = 0.007, IgE P = 0.035). Increasing numbers of total lymphocytes, T-cells and HLA-DR positive T-cells in relation to exposure were found by linear regression analysis (e.g. for inhalable dust:total lymphocytes P = 0.011, T-cells P = 0.061, HLA-DR positive T-cells P = 0.007). CONCLUSION. Comparison of immunological markers in non-smokers and active smokers confirms leukocytosis and inflammation following tobacco consumption. The combined exposure of salt dust, diesel exhaust and NOx seems to influence the immune system. Together, the results suggest that the analysis of leukocytes and their subsets can complete other investigations (lung function, questionnaire) to monitor exposure-response relationships in occupational studies investigating the effect of inhaled substances. Longitudinal studies will be necessary to determine the predictive value of the immunological changes. Copyright 2004 Springer-Verlag

  17. Influence of grid control and object detection on radiation exposure and image quality using mobile C-arms - first results.

    PubMed

    Gosch, D; Ratzmer, A; Berauer, P; Kahn, T

    2007-09-01

    The objective of this study was to examine the extent to which the image quality on mobile C-arms can be improved by an innovative exposure rate control system (grid control). In addition, the possible dose reduction in the pulsed fluoroscopy mode using 25 pulses/sec produced by automatic adjustment of the pulse rate through motion detection was to be determined. As opposed to conventional exposure rate control systems, which use a measuring circle in the center of the field of view, grid control is based on a fine mesh of square cells which are overlaid on the entire fluoroscopic image. The system uses only those cells for exposure control that are covered by the object to be visualized. This is intended to ensure optimally exposed images, regardless of the size, shape and position of the object to be visualized. The system also automatically detects any motion of the object. If a pulse rate of 25 pulses/sec is selected and no changes in the image are observed, the pulse rate used for pulsed fluoroscopy is gradually reduced. This may decrease the radiation exposure. The influence of grid control on image quality was examined using an anthropomorphic phantom. The dose reduction achieved with the help of object detection was determined by evaluating the examination data of 146 patients from 5 different countries. The image of the static phantom made with grid control was always optimally exposed, regardless of the position of the object to be visualized. The average dose reduction when using 25 pulses/sec resulting from object detection and automatic down-pulsing was 21 %, and the maximum dose reduction was 60 %. Grid control facilitates C-arm operation, since optimum image exposure can be obtained independently of object positioning. Object detection may lead to a reduction in radiation exposure for the patient and operating staff.

  18. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips.

    PubMed

    Gustavino, Bianca; Carboni, Giovanni; Petrillo, Roberto; Paoluzzi, Giovanni; Santovetti, Emanuele; Rizzoni, Marco

    2016-03-01

    The increasing use of mobile phones and wireless networks raised a great debate about the real carcinogenic potential of radiofrequency-electromagnetic field (RF-EMF) exposure associated with these devices. Conflicting results are reported by the great majority of in vivo and in vitro studies on the capability of RF-EMF exposure to induce DNA damage and mutations in mammalian systems. Aimed at understanding whether less ambiguous responses to RF-EMF exposure might be evidenced in plant systems with respect to mammalian ones, in the present work the mutagenic effect of RF-EMF has been studied through the micronucleus (MN) test in secondary roots of Vicia faba seedlings exposed to mobile phone transmission in controlled conditions, inside a transverse electro magnetic (TEM) cell. Exposure of roots was carried out for 72h using a continuous wave (CW) of 915 MHz radiation at three values of equivalent plane wave power densities (23, 35 and 46W/m(2)). The specific absorption rate (SAR) was measured with a calorimetric method and the corresponding values were found to fall in the range of 0.4-1.5W/kg. Results of three independent experiments show the induction of a significant increase of MN frequency after exposure, ranging from a 2.3-fold increase above the sham value, at the lowest SAR level, up to a 7-fold increase at the highest SAR. These findings are in agreement with the limited number of data on cytogenetic effects detected in other plant systems exposed to mobile phone RF-EMF frequencies and clearly show the capability of radiofrequency exposure to induce DNA damage in this eukaryotic cell system. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro

    PubMed Central

    Yang, Sheng-Huei; Tsai, Po-Wei; Wang, Shwu-Huey; Wang, Ching-Chiung; Lee, Yee-Shin; Cheng, Guei-Yun; HuangFu, Wei-Chun; London, David; Tang, Heng-Yuan; Fu, Earl; Yen, Yun; Liu, Leroy F.; Lin, Hung-Yun; Davis, Paul J.

    2014-01-01

    We have used a perfusion bellows cell culture system to investigate resveratrolinduced anti-proliferation/apoptosis in a human estrogen receptor (ER)-negative breast cancer cell line (MDA-MB-231). Using an injection system to perfuse media with stilbene, we showed resveratrol (0.5 – 100 μM) to decrease cell proliferation in a concentration-dependent manner. Comparison of influx and medium efflux resveratrol concentrations revealed rapid disappearance of the stilbene, consistent with cell uptake and metabolism of the agent reported by others. Exposure of cells to 10 μM resveratrol for 4 h daily × 6 d inhibited cell proliferation by more than 60%. Variable extracellular acid-alkaline conditions (pH 6.8 – 8.6) affected basal cell proliferation rate, but did not alter anti-proliferation induced by resveratrol. Resveratrol-induced gene expression, including transcription of the most up-regulated genes and pro-apoptotic p53-dependent genes, was not affected by culture pH changes. The microarray findings in the context of induction of anti-proliferation with brief daily exposure of cells to resveratrol—and rapid disappearance of the compound in the perfusion system—are consistent with existence of an accessible initiation site for resveratrol actions on tumor cells, e.g., the cell surface receptor for resveratrol described on integrin αvβ3. PMID:25436977

  20. The effects of chronic oral methyl mercury exposure on the lysosome system of rat kidney. Morphometric and biochemical studies.

    PubMed

    Fowler, B A; Brown, H W; Lucier, G W; Krigman, M R

    1975-03-01

    This report describes morphometric and biochemical changes in the renal lysosome system of rats exposed to 3, 5, or 10 p.p.m. concentrations of methyl mercury hydroxide in their drinking water for 4 weeks. Increased numbers of dense, granular lysosomes, previously found to contain mercury, were observed in tubule cells of rats receiving the 3 and 5 p.p.m. dose levels but not those of the 10 p.p.m. group. Tubule cells from animals given the 10 p.p;m. dose level displayed proteinaceous vacuoles with dense crystalloid structures, apical cytoplasmic extrusion, and cellular degeneration; Mitochondrial swelling within tubule cells of treated animals showed a marked dose-response relationship. Renal microsomal activity levels of ss-glucuronidase were strongly inhibited by methyl mercury hydroxide exposure at all dose levels, whereas the activity levels of acid phosphatase were unchanged. Lysosomal beta-glucuronidase was also inhibited by methyl mercury hydroxide exposure, whereas lysosomal acid phosphatase showed approximately a 2-fold increase in activity. The results are discussed in relation to the role of lysosomes in mediating the nephrotoxic effects of methyl mercury and other toxic trace metals.

  1. Environmental pollution and acne: Chloracne

    PubMed Central

    Zouboulis, Christos C; Xia, Longqing

    2009-01-01

    Environmental pollutants can result in a variant of acne called ‘chloracne’. Chloracne is caused by systemic exposure to certain halogenated aromatic hydrocarbons ‘chloracnegens’, and is considered to be one of the most sensitive indicators of systemic poisoning by these compounds. Dioxin is the most potent environmental chloracnegen. Most cases of chloracne have resulted from occupational and non-occupational exposures, non-occupational chloracne mainly resulted from contaminated industrial wastes and contaminated food products. Non-inflammatory comedones and straw-colored cysts are the primary clinical manifestation of chloracne. Increasing of cysts in number is a signal of aggravation of chloracne. Generalized lesions can appear on the face, neck, trunk, exterimities, genitalia, axillary and other areas. Course of chloracne is chronic. Severity of chloracne is related to dosage of exposed chloracnegens, chloracnegenic potency and individual susceptibility. Histopathology of chloracne is characterized mainly by hyperplasia of epidermal cell, while follicular and sebaceous gland are taken placed by keratinized epidermal cell. The pathogenesis of chloracne maybe related to the imbalance of epidermal stem cell. Chloracne appears to be resistant to all tested forms of treatment. The only way to control chloracne is to prevent exposure to chloracnegens. PMID:20436879

  2. Normal saline is associated with increased sickle red cell stiffness and prolonged transit times in a microfluidic model of the capillary system.

    PubMed

    Carden, Marcus A; Fay, Meredith; Sakurai, Yumiko; McFarland, Brynn; Blanche, Sydney; DiPrete, Caleb; Joiner, Clinton H; Sulchek, Todd; Lam, Wilbur A

    2017-07-01

    Vaso-occlusive crisis (VOC) is a complex process that occurs in patients with sickle cell disease (SCD) and is often associated with pain and urgent hospitalization. A major instigator of VOC is microvascular obstruction by pathologically stiffened sickle red blood cells (RBCs), and thus, therapy relies heavily on optimizing intravenous fluid (IVF) hydration to increase RBC deformability. However, no evidence-based guidelines regarding the choice of IVF currently exist. We therefore analyzed alterations in biomechanical properties of sickle RBCs isolated from patients with homozygous SCD (hemoglobin SS) after exposure to different osmolarities of clinical IVF formulations. Atomic force microscopy (AFM) was used to assess stiffness of RBCs after exposure to different IVFs. A microfluidic model of the human capillary system was used to assess transit time (TT) and propensity to occlusion after exposure to the different IVF formulations. Sickle RBCs exposed to normal saline (NS) had increased stiffness, TTs, and propensity to microchannel occlusion compared to other osmolarities. NS, an IVF formulation often used to treat patients with SCD during VOC, may induce localized microvascular obstruction due to alterations of sickle RBC biomechanical properties. © 2017 John Wiley & Sons Ltd.

  3. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling.

    PubMed

    Park, Ji-Won; Lee, In-Chul; Shin, Na-Rae; Jeon, Chan-Mi; Kwon, Ok-Kyoung; Ko, Je-Won; Kim, Jong-Choon; Oh, Sei-Ryang; Shin, In-Sik; Ahn, Kyung-Seop

    2016-01-01

    Copper oxide nanoparticles (CuONPs), metal oxide nanoparticles were used in multiple applications including wood preservation, antimicrobial textiles, catalysts for carbon monoxide oxidation and heat transfer fluid in machines. We investigated the effects of CuONPs on the respiratory system in Balb/c mice. In addition, to investigate the effects of CuONPs on asthma development, we used a murine model of ovalbumin (OVA)-induced asthma. CuONPs markedly increased airway hyper-responsiveness (AHR), inflammatory cell counts, proinflammatory cytokines and reactive oxygen species (ROS). CuONPs induced airway inflammation and mucus secretion with increases in phosphorylation of the MAPKs (Erk, JNK and p38). In the OVA-induced asthma model, CuONPs aggravated the increased AHR, inflammatory cell count, proinflammatory cytokines, ROS and immunoglobulin E induced by OVA exposure. In addition, CuONPs markedly increased inflammatory cell infiltration into the lung and mucus secretions, and MAPK phosphorylation was elevated compared to OVA-induced asthmatic mice. Taken together, CuONPs exhibited toxicity on the respiratory system, which was associated with the MAPK phosphorylation. In addition, CuONPs exposure aggravated the development of asthma. We conclude that CuONPs exposure has a potential toxicity in humans with respiratory disease.

  4. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells.

    PubMed

    Czyz, Jaroslaw; Guan, Kaomei; Zeng, Qinghua; Nikolova, Teodora; Meister, Armin; Schönborn, Frank; Schuderer, Jürgen; Kuster, Niels; Wobus, Anna M

    2004-05-01

    Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004. Copyright 2004 Wiley-Liss, Inc.

  5. Trichloroethylene toxicity in a human hepatoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thevenin, E.; McMillian, J.

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  6. An Animal Model of Chronic Aplastic Bone Marrow Failure Following Pesticide Exposure in Mice

    PubMed Central

    Chatterjee, Sumanta; Chaklader, Malay; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    The wide use of pesticides for agriculture, domestic and industrial purposes and evaluation of their subsequent effect is of major concern for public health. Human exposure to these contaminants especially bone marrow with its rapidly renewing cell population is one of the most sensitive tissues to these toxic agents represents a risk for the immune system leading to the onset of different pathologies. In this experimental protocol we have developed a mouse model of pesticide(s) induced hypoplastic/aplastic marrow failure to study quantitative changes in the bone marrow hematopoietic stem cell (BMHSC) population through flowcytometric analysis, defects in the stromal microenvironment through short term adherent cell colony (STACC) forming assay and immune functional capacity of the bone marrow derived cells through cell mediated immune (CMI) parameter study. A time course dependent analysis for consecutive 90 days were performed to monitor the associated changes in the marrow’s physiology after 30th, 60th and 90th days of chronic pesticide exposure. The peripheral blood showed maximum lowering of the blood cell count after 90 days which actually reflected the bone marrow scenario. Severe depression of BMHSC population, immune profile of the bone marrow derived cells and reduction of adherent cell colonies pointed towards an essentially empty and hypoplastic marrow condition that resembled the disease aplastic anemia. The changes were accompanied by splenomegaly and splenic erythroid hyperplasia. In conclusion, this animal model allowed us a better understanding of clinico-biological findings of the disease aplastic anemia following toxic exposure to the pesticide(s) used for agricultural and industrial purposes. PMID:24855541

  7. Phosphate absorption by air-stressed root systems.

    PubMed

    Dove, L D

    1969-03-01

    Root systems from plants grown in nutrient solution were exposed to air and either transferred to fresh nutrient solution containing (32)P-labeled phosphate or placed in a psychrometer to determine their water potential. The amount of (32)P absorbed by maize and soybean roots in the hour following their exposure to air was proportional to their water potential at the time they were transferred. Some cells, probably located in the stele, were more resistant to moisture stress than others. Absorption of (32)P by all cells was severely inhibited by water potentials below-12 to-15 bars. Nearly normal amounts of the radioisotope and total phosphate were absorbed within 72 hr following root exposure of 4 of 5 species of detopped plants; some phosphorus was lost to the nutrient solution. Uptake of (32)P by passive processes was increased slightly by exposure of roots of intact maize plants to air, but the increase did not compensate for the substantial reduction in actively-absorbed (32)P.

  8. Stabilization of the yeast desaturase system by low levels of oxygen

    NASA Technical Reports Server (NTRS)

    Volkmann, C. M.; Klein, H. P.

    1983-01-01

    The stability of particulate palmitoyl-CoA desaturase preparations from anaerobically grown yeast cells was increased by exposure to low levels of oxygen. The stabilizing effect of oxygen may be based upon the increased amounts of palmitoleic acid and ergosterol that become available to the cells. These results suggest the evolutinary appearance of this system at a time when atmospheric oxygen was at a low level.

  9. 4-Nonylphenol induced DNA damage and repair in fish, Channa punctatus after subchronic exposure.

    PubMed

    Sharma, Madhu; Chadha, Pooja

    2017-07-01

    The detection of a possible DNA damaging effect of 4-nonylphenol (NP) after subchronic exposure and repair after cessation of exposure to Channa punctatus is the aim of the present study. Channa punctatus was exposed to different concentrations (0.15 mg/l, 0.10 mg/l, and 0.07 mg/l) of NP along with positive control (ethanol) and negative control (water) for 90 d and after that allowed to recover for 30 d. Comet assay and micronucleus assay were used for the determination of DNA damage and repair by using blood cells. The effect was seen after 30, 60, and 90 d of exposure. Time- and dose-dependent increase in DNA damage was found as revealed by both the end points studied. Evident recovery was observed after 30 d of cessation of exposure. Blood cells were successfully appeared to achieve the restoration of DNA integrity. Hence, the study aimed to improve the knowledge of the genetic hazard to fish associated with NP exposure and provide a wide scope to discover the efficiency of DNA repair system in C. punctatus.

  10. Quantitative assessment of neurite outgrowth in human embryonic stem-cell derived neurons using automated high-content image analysis

    EPA Science Inventory

    During development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxicants that interfere with this process may cause in permanent deficits in nervous system function. While many studies have used rodent primary...

  11. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells.

    PubMed

    Husmann, K R; Morgan, A S; Girod, D A; Durham, D

    1998-11-01

    Damage to inner ear sensory hair cells after systemic administration of ototoxic drugs has been documented in humans and animals. Birds have the ability to regenerate new hair cells to replace those damaged by drugs or noise. Unfortunately, the systemic administration of gentamicin damages both ears in a variable fashion with potentially confounding systemic drug effects. We developed a method of direct application of gentamicin to one cochlea of hatchling chickens, allowing the other ear to serve as a within-animal control. We tested variables including the vehicle for application, location of application, dosage, and duration of gentamicin exposure. After 5 or 28 days survival, the percent length damage to the cochlea and regeneration of hair cells was evaluated using scanning electron microscopy. Controls consisted of the opposite unexposed cochlea and additional animals which received saline instead of gentamicin. Excellent damage was achieved using gentamicin-soaked Gelfoam pledgets applied to the round window membrane. The percent length damage could be varied from 15 to 100% by changing the dosage of gentamicin, with exposures as short as 30 min. No damage was observed in control animals. Regeneration of hair cells was observed in both the base and apex by 28 days survival.

  12. The effect of 2100 MHz radiofrequency radiation of a 3G mobile phone on the parotid gland of rats.

    PubMed

    Aydogan, Filiz; Unlu, Ilhan; Aydin, Emine; Yumusak, Nihat; Devrim, Erdinc; Samim, Ethem Erdal; Ozgur, Elcin; Unsal, Velid; Tomruk, Arin; Ozturk, Goknur Guler; Seyhan, Nesrin

    2015-01-01

    We aimed to evaluate the effect of 2100 MHz radiofrequency radiation on the parotid gland of rats in short and relatively long terms. Thirty Wistar albino rats were divided into four groups. Groups A and B served as the control groups (for 10 days and 40 days, respectively), and each group included six rats. Groups C and D were composed of nine rats each, and they were the exposure groups. The rats were exposed to 2100 MHz radiofrequency radiation emitted by a generator, simulating a third generation mobile phone for 6 hours/day, 5 days/week, for 10 or 40 days. Following exposure, the rats were sacrificed and parotid glands were removed. Histopathological and biochemical examinations were performed. Although there were no histopathological changes in the control groups except for two animals in group A and three animals in group B, the exposure groups C (10 days) and D (40 days) showed numerous histopathological changes regarding salivary gland damage including acinar epithelial cells, interstitial space, ductal system, vascular system, nucleus, amount of cytoplasm and variations in cell size. The histopathological changes were more prominent in group D compared to group C. There was statistically significant different parameter regarding variation in cell size between the groups B and D (p=0.036). The parotid gland of rats showed numerous histopathological changes after exposure to 2100 MHz radiofrequency radiation, both in the short and relatively long terms. Increased exposure duration led to an increase in the histopathological changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    PubMed

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  14. Effects of zinc oxide nanoparticles on human coronary artery endothelial cells.

    PubMed

    Chuang, Kai-Jen; Lee, Kang-Yun; Pan, Chih-Hong; Lai, Ching-Huang; Lin, Lian-Yu; Ho, Shu-Chuan; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2016-07-01

    Inhalation of zinc oxide (ZnO) metal fumes is known to cause metal fume fever and to have systemic effects; however, the effects of ZnO nanoparticles (ZnONPs) on the cardiovascular system remain unclear. The objective of this study was to investigate the cardiovascular toxicity of ZnONPs. Human coronary artery endothelial cells (HCAECs) were exposed to ZnONPs of different sizes to investigate the cell viability, 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin (IL)-6, nitric oxide (NO), and regulation of cardiovascular disease-related genes. Exposure of HCAECs to ZnONPs resulted in decreased cell viability and increased levels of 8-OHdG, IL-6, and NO. Downregulation of cardiovascular-associated genes was observed in response to ZnONPs in HCAECs determined by qPCR, suggesting that the calcium signaling pathway, neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy, and renin-angiotensin system are important affected pathways in response to ZnONPs. Furthermore, we observed a significant response of AGTR1 to ZnONP exposure in HCAECs. Our results suggest that ZnONPs cause toxicity to HCAECs, which could be associated with cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms.

    PubMed

    Vilas-Boas, V; Silva, R; Guedes-de-Pinho, P; Carvalho, F; Bastos, M L; Remião, F

    2014-09-01

    Paraquat (PQ) is a widely used, highly toxic and non-selective contact herbicide, which has been associated with central neurotoxic effects, namely the development of Parkinson's disease, but whose effects to the blood-brain barrier (BBB) itself have rarely been studied. This work studied the mechanisms of PQ uptake and efflux in a rat's BBB cell model, the RBE4 cells. PQ is believed to enter cells using the basic or neutral amino acid or polyamine transport systems or through the choline-uptake system. In contrast, PQ efflux from cells is reported to be mediated by P-glycoprotein. Therefore, we evaluated PQ-induced cytotoxicity and the effect of some substrates/blockers of these transporters (such as arginine, L-valine, putrescine, hemicholinium-3 and GF120918) on such cytotoxicity. RBE4 cells were shown to be extremely resistant to PQ after 24 h of exposure; even at concentrations as high as 50 mM approximately 45% of the cells remained viable. Prolonging exposure until 48 h elicited significant cytotoxicity only for PQ concentrations above 5 mM. Although hemicholinium-3, a choline-uptake system inhibitor, significantly protected cells against PQ-induced toxicity, none of the effects were observed for arginine, L-valine or putrescine. Meanwhile, inhibiting the efflux pump P-glycoprotein using GF120918 significantly enhanced PQ-induced cytotoxicity. In conclusion, PQ used the choline-uptake system, instead of the transporters for the basic or neutral amino acids or for the polyamines, to enter RBE4 cells. P-glycoprotein extrudes PQ back to the extracellular medium. However, this efflux mechanism only partially explains the observed RBE4 resistance to PQ. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  17. Systemic molecular and cellular changes induced in rats upon inhalation of JP-8 petroleum fuel vapor.

    PubMed

    Hanas, Jay S; Bruce Briggs, G; Lerner, Megan R; Lightfoot, Stan A; Larabee, Jason L; Karsies, Todd J; Epstein, Robert B; Hanas, Rushie J; Brackett, Daniel J; Hocker, James R

    2010-05-01

    Limited information is available regarding systemic changes in mammals associated with exposures to petroleum/hydrocarbon fuels. In this study, systemic toxicity of JP-8 jet fuel was observed in a rat inhalation model at different JP-8 fuel vapor concentrations (250, 500, or 1000 mg/m(3), for 91 days). Gel electrophoresis and mass spectrometry sequencing identified the alpha-2 microglobulin protein to be elevated in rat kidney in a JP-8 dose-dependent manner. Western blot analysis of kidney and lung tissue extracts revealed JP-8 dependent elevation of inducible heat shock protein 70 (HSP70). Tissue changes were observed histologically (hematoxylin and eosin staining) in liver, kidney, lung, bone marrow, and heart, and more prevalently at medium or high JP-8 vapor phase exposures (500-1000 mg/m(3)) than at low vapor phase exposure (250 mg/m(3)) or non-JP-8 controls. JP-8 fuel-induced liver alterations included dilated sinusoids, cytoplasmic clumping, and fat cell deposition. Changes to the kidneys included reduced numbers of nuclei, and cytoplasmic dumping in the lumen of proximal convoluted tubules. JP-8 dependent lung alterations were edema and dilated alveolar capillaries, which allowed clumping of red blood cells (RBCs). Changes in the bone marrow in response to JP-8 included reduction of fat cells and fat globules, and cellular proliferation (RBCs, white blood cells-WBCs, and megakaryocytes). Heart tissue from JP-8 exposed animals contained increased numbers of inflammatory and fibroblast cells, as well as myofibril scarring. cDNA array analysis of heart tissue revealed a JP-8 dependent increase in atrial natriuretic peptide precursor mRNA and a decrease in voltage-gated potassium (K+) ion channel mRNA.

  18. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    PubMed Central

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Battah, Feras Al; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-01-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1–500 µg ml−1) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver. PMID:16550229

  19. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    DTIC Science & Technology

    2013-12-30

    exposures are unlikely to have systemic effects as cobalt cannot readily penetrate normal skin, although contact with cobalt can cause dermatitis [16...Cobalt can enter the body through respiration, ingestion, or contact with the skin. The adverse effects of an inhalation exposure occur mostly in the lung...Surg 2: 134–140. 16. Schwartz L PS (1945) Allergic dermatitis due to metallic cobalt. Journal of Allergy 16: 51–53. 17. De Matteis F, Gibbs AH (1977

  20. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.

    PubMed

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M; Thorne, Peter S

    2015-04-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONPs. Cells were exposed to filtered, particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×10(7)particles/cm(3), respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4h) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Investigation of chemical and physical properties of carbon nanotubes and their effects on cell biomechanics

    NASA Astrophysics Data System (ADS)

    Dong, Chenbo

    Carbon nanotubes (CNTs) are used for a variety of applications from nanocircuits, to hydrogen storage devices, and from designing optical fibers to forming conductive plastics. Recently, their functionalization with biomolecules led to exciting biological and biomedical applications in drug delivery or bioimaging. However, because of CNTs interactions with biological systems and their ability to translocate and persist into the circulatory and lymphatic systems and biological tissues, concerns about CNTs intrinsic toxicity have risen. It is thus necessary to develop and implement sensitive analysis technologies that allow investigation of CNTs toxicity upon uptake into a biological system. This thesis provides a comprehensive guide of experiments that have been performed during my Ph.D. tenure at West Virginia University in the Department of Chemical Engineering, in the group of Prof. Cerasela Zoica Dinu. Briefly: Chapter one presents a systematic study of the CNTs physical and chemical properties and how these properties are changed upon exposure to chemical agents normally used during their cleaning and purification processes. Also, this chapter shows how acid oxidation treatment leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive x-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity making CNTs feasible platforms to be used for biomedical applications or the next generation of biosensors. (Publication: Chenbo Dong, Alan S Campell, Reem Eldawud, Gabriela Perhinschi, and Cerasela Zoica Dinu, Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes, Applied Surface Science, 2013, 268, 261-268.) Chapter two shows how exposure to CNTs changes the biomechanical properties of fixed human lung epithelial cells (BEAS-2B cells). Specifically, by using Atomic Force Microscopy (AFM) nanoindentation technology, we demonstrated that cellular exposure to multi-walled carbon nanotubes (MWCNTs) for 24h induces significant changes in cellular biomechanics leading to increased cellular stiffness. The MWCNTs incubation also seemed to alter the surface area of the cells. Consequently, measures of the mechanical properties of the exposed cell could be used as indicators of its biological state and could offer valuable insights into the mechanisms associated with CNTs-induced genetic instability. (Publication: Chenbo Dong, Linda Sargent, Michael L Kashon, David Lowry, Jonathan S. Dordick, Steven H. Reynolds, Yon Rojanasakul and Cerasela Zoica Dinu, Expose to carbon nanotubes leads to change in cellular biomechanics, Advanced Healthcare Materials, 2013, 7, 945-951.) Chapter three links together the MWCNTs exposure duration, internalization and induced biomechanical changes in fixed cells. Our findings indicated that changes in biomechanical properties of the fixed cells are a function of the uptake and internalization of the MWCNTs as well as their uptake time. Specifically, short exposure time did not seem to lead to considerable changes in the elastic properties in the cellular system. However, longer cellular exposure to CNTs leads to a higher uptake and internalization of the nanotubes and a larger effect on the cell mechanics. Such changes could be related to CNTs interactions with cellular elements and could bring information on the CNT intrinsic toxicity. Chapter four talks about the potential of purified forms of CNTs with increased hydrophilicity to affect live human lung epithelial cells when used at occupational relevant exposure doses for particles not otherwise regulated. Specifically, our results showed that exposure to MWCNTs affects the dynamics and the biomechanical properties of live cells by reducing the activity of the mitochondria and inducing cell cycle arrest. Our analysis emphasized that cellular toxicity observed upon exposure to MWCNTs is a synergism resulting from multiple types of interactions that could be analyzed by means of intracellular mechanical changes. This thesis contains Appendices of additional projects/publications for which I served as the first author: (1) Chenbo Dong, and Cerasela Zoica Dinu, Molecular trucks and complementary tracks for bionanotechnological applications, Current Opinion in Biotechnology, 2013, 24, 612-619. (2) Chenbo Dong, Zijie Yan, Jacklyn Kokx, Douglas B. Chrisey and Cerasela Zoica Dinu, Antibacterial and surface-enhanced Raman scattering (SERS) activities of AgCl cubes synthesized by pulsed laser ablation in liquid, Applied Surface Science, 2012, 258(10), 9218-9222.

  2. System, device, and methods for real-time screening of live cells, biomarkers, and chemical signatures

    DOEpatents

    Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA

    2011-06-07

    An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.

  3. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    NASA Astrophysics Data System (ADS)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis. Different types of stimulation affect Purkinje cells in particular locations of the vestibulo-cerebellum. This system allows us to study how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments. Supported by NASA grant NAG2-1353.

  4. Cellular effects of acute exposure to high peak power microwave systems: Morphology and toxicology.

    PubMed

    Ibey, Bennett L; Roth, Caleb C; Ledwig, Patrick B; Payne, Jason A; Amato, Alayna L; Dalzell, Danielle R; Bernhard, Joshua A; Doroski, Michael W; Mylacraine, Kevin S; Seaman, Ronald L; Nelson, Gregory S; Woods, Clifford W

    2016-03-15

    Electric fields produced by advanced pulsed microwave transmitter technology now readily exceed the Institute of Electrical and Electronic Engineers (IEEE) C.95.1 peak E-field limit of 100 kV/m, highlighting a need for scientific validation of such a specific limit. Toward this goal, we exposed Jurkat Clone E-6 human lymphocyte preparations to 20 high peak power microwave (HPPM) pulses (120 ns duration) with a mean peak amplitude of 2.3 MV/m and standard deviation of 0.1 with the electric field at cells predicted to range from 0.46 to 2.7 MV/m, well in excess of current standard limit. We observed that membrane integrity and cell morphology remained unchanged 4 h after exposure and cell survival 24 h after exposure was not statistically different from sham exposure or control samples. Using flow cytometry to analyze membrane disruption and morphological changes per exposed cell, no changes were observed in HPPM-exposed samples. Current IEEE C95.1-2005 standards for pulsed radiofrequency exposure limits peak electric field to 100 kV/m for pulses shorter than 100 ms [IEEE (1995) PC95.1-Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA]. This may impose large exclusion zones that limit HPPM technology use. In this study, we offer evidence that maximum permissible exposure of 100 kV/m for peak electric field may be unnecessarily restrictive for HPPM devices. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  6. Neuroimmune Effects of Inhaling Low Dose Sarin

    DTIC Science & Technology

    2008-02-01

    system Because two of the Japanese sarin terrorism survivors succumbed to Legionella infection nearly two years after the sarin exposure (Kamimura...lung organism, Legionella . However, our results indicated that both adaptive (antibody and T cell receptor-mediated responses) as well inflammatory...H. Niino, K. Saitoh, and A. Saitoh. 1998. Legionella pneumonia caused by aspiration of hot spring water after sarin exposure. Nihon. Kokyuki. Gakkai

  7. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  8. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease

    PubMed Central

    Han, Arnold; Newell, Evan W.; Glanville, Jacob; Fernandez-Becker, Nielsen; Khosla, Chaitan; Chien, Yueh-hsiu; Davis, Mark M.

    2013-01-01

    Celiac disease is an intestinal autoimmune disease driven by dietary gluten and gluten-specific CD4+ T-cell responses. In celiac patients on a gluten-free diet, exposure to gluten induces the appearance of gluten-specific CD4+ T cells with gut-homing potential in the peripheral blood. Here we show that gluten exposure also induces the appearance of activated, gut-homing CD8+ αβ and γδ T cells in the peripheral blood. Single-cell T-cell receptor sequence analysis indicates that both of these cell populations have highly focused T-cell receptor repertoires, indicating that their induction is antigen-driven. These results reveal a previously unappreciated role of antigen in the induction of CD8+ αβ and γδ T cells in celiac disease and demonstrate a coordinated response by all three of the major types of T cells. More broadly, these responses may parallel adaptive immune responses to viral pathogens and other systemic autoimmune diseases. PMID:23878218

  9. In vitro cytogenetic studies of organic chemicals found as contaminants in spacecraft cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Torres, J.

    1986-01-01

    Astronauts can be exposed during spaceflight to organic chemical contaminants in the spacecraft cabin atmosphere. Toxic exposures may cause lesions in the cellular DNA which are subsequently expressed as sister-chromatid exchanges (SCE). Analysis of SCE is a sensitive short-term assay technique to detect and quantitate exposures to DNA-damaging (mutagenic) substances. The increase in SCE incidence over baseline (control) levels is generally proportional to the concentration of the mutagen and to the duration of exposure. Dichloromethane (methylene chloride) was chosen for this study since it occurred as an atmospheric contaminant in ten of the first 12 STS flights, and has been reported to have toxic and mutagenic effects in various test systems. Glutaraldehyde was chosen because relatively few data are available on the toxicity or mutagenicity of this common biological fixative, which is carried on STS flights for use in biological experiments. The BHK-21 baby hamster kidney cell line was the in vitro test system used in this study. Neither dichloromethane (10 ppm to 500 ppm) nor glutaraldehyde (1 ppm to 10 ppm) increased SCE levels following 20-hour exposure of BHK-21 cells to the test chemicals.

  10. Extremely low frequency (ELF) stray magnetic fields of laboratory equipment: a possible co-exposure conducting experiments on cell cultures.

    PubMed

    Gresits, Iván; Necz, Péter Pál; Jánossy, Gábor; Thuróczy, György

    2015-09-01

    Measurements of extremely low frequency (ELF) magnetic fields were conducted in the environment of commercial laboratory equipment in order to evaluate the possible co-exposure during the experimental processes on cell cultures. Three types of device were evaluated: a cell culture CO2 incubator, a thermostatic water bath and a laboratory shaker table. These devices usually have electric motors, heating wires and electronic control systems, therefore may expose the cell cultures to undesirable ELF stray magnetic fields. Spatial distributions of magnetic field time domain signal waveform and frequency spectral analysis (FFT) were processed. Long- and short-term variation of stray magnetic field was also evaluated under normal use of investigated laboratory devices. The results show that the equipment under test may add a considerable ELF magnetic field to the ambient environmental magnetic field or to the intentional exposure to ELF, RF or other physical/chemical agents. The maximum stray magnetic fields were higher than 3 µT, 20 µT and 75 µT in the CO2 incubator, in water bath and on the laboratory shaker table, respectively, with high variation of spatial distribution and time domain. Our investigation emphasizes possible confounding factors conducting cell culture studies related to low-level ELF-EMF exposure due to the existing stray magnetic fields in the ambient environment of laboratory equipment.

  11. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Trained immunity in newborn infants of HBV-infected mothers

    PubMed Central

    Hong, Michelle; Sandalova, Elena; Low, Diana; Gehring, Adam J.; Fieni, Stefania; Amadei, Barbara; Urbani, Simonetta; Chong, Yap-Seng; Guccione, Ernesto; Bertoletti, Antonio

    2015-01-01

    The newborn immune system is characterized by an impaired Th1-associated immune response. Hepatitis B virus (HBV) transmitted from infected mothers to newborns is thought to exploit the newborns’ immune system immaturity by inducing a state of immune tolerance that facilitates HBV persistence. Contrary to this hypothesis, we demonstrate here that HBV exposure in utero triggers a state of trained immunity, characterized by innate immune cell maturation and Th1 development, which in turn enhances the ability of cord blood immune cells to respond to bacterial infection in vitro. These training effects are associated with an alteration of the cytokine environment characterized by low IL-10 and, in most cases, high IL-12p40 and IFN-α2. Our data uncover a potentially symbiotic relationship between HBV and its natural host, and highlight the plasticity of the fetal immune system following viral exposure in utero. PMID:25807344

  13. Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress.

    PubMed

    Sgobba, Alessandra; Paradiso, Annalisa; Dipierro, Silvio; De Gara, Laura; de Pinto, Maria Concetta

    2015-01-01

    Heat stress can have deleterious effects on plant growth by impairing several physiological processes. Plants have several defense mechanisms that enable them to cope with high temperatures. The synthesis and accumulation of heat shock proteins (HSPs), as well as the maintenance of an opportune redox balance play key roles in conferring thermotolerance to plants. In this study changes in redox parameters, the activity and/or expression of reactive oxygen species (ROS) scavenging enzymes and the expression of two HSPs were studied in tobacco Bright Yellow-2 (TBY-2) cells subjected to moderate short-term heat stress (SHS) and long-term heat stress (LHS). The results indicate that TBY-2 cells subjected to SHS suddenly and transiently enhance antioxidant systems, thus maintaining redox homeostasis and avoiding oxidative damage. The simultaneous increase in HSPs overcomes the SHS and maintains the metabolic functionality of cells. In contrast the exposure of cells to LHS significantly reduces cell growth and increases cell death. In the first phase of LHS, cells enhance antioxidant systems to prevent the formation of an oxidizing environment. Under prolonged heat stress, the antioxidant systems, and particularly the enzymatic ones, are inactivated. As a consequence, an increase in H2 O2 , lipid peroxidation and protein oxidation occurs. This establishment of oxidative stress could be responsible for the increased cell death. The rescue of cell growth and cell viability, observed when TBY-2 cells were pretreated with galactone-γ-lactone, the last precursor of ascorbate, and glutathione before exposure to LHS, highlights the crucial role of antioxidants in the acquisition of basal thermotolerance. © 2014 Scandinavian Plant Physiology Society.

  14. Vitamin E Reversed Apoptosis of Cardiomyocytes Induced by Exposure to High Dose Formaldehyde During Mice Pregnancy.

    PubMed

    Wu, Dongyuan; Jiang, Zhirong; Gong, Bing; Dou, Yue; Song, Mingxuan; Song, Xiaoxia; Tian, Yu

    2017-10-21

    In this study, we investigated the protection effect of Vitamin E (Vit E) on formaldehyde (FA) exposure during pregnancy induced apoptosis of cardiomyocytes, and used an HL-1 cell line to confirmed the findings in vivo.Pregnant mice received different doses of FA (0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 0.1 μg Vit E, or 1.5 mg/kg + 0.1 μg Vit E). TUNEL staining was used to reveal the apoptosis in cardiomyocytes, and SOD, MDA, GSH, Livin, and Caspase-3 in cardiomyocytes were detected by ELISA, RT-PCR, and Western blot. For in vitro study, HL-1 cells were treated with vehicle, 5 μmol/L FA, 25 μmol/L FA, 50 μmol/L FA, 10 mg/L Vit. E, and 50 μmol/L FA+ 10 mg/L Vit E, respectively. CCK-8 assay and flow cytometry were used to evaluate cell vitality and apoptosis. A high dose of FA exposure led to cytotoxicity in both pregnant mice and offspring, as TUNEL staining revealed a significant apoptosis of cardiomyocytes, and the alternation in SOD, GSH, MDA, Livin, and Caspase-3 was found in cardiomyocytes. 0.1 μg Vit. E could reverse high doses of FA exposure induced apoptosis of cardiomyocytes in both pregnant mice and offspring. The in vitro study revealed that FA exposure induced a decrease of cell viability and increased cell apoptosis, as well as oxidative stress in HL-1 cells with alternation in SOD, GSH, MDA, Livin, and Caspase-3.This study revealed a high dose of FA induced oxidative stress and apoptosis of cardiomyocytes in both pregnant mice and offspring, and Vit E supplement during pregnancy reversed the systemic and myocardial toxicity of FA.

  15. Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis.

    PubMed

    Dekita, Masato; Wu, Zhou; Ni, Junjun; Zhang, Xinwen; Liu, Yicong; Yan, Xu; Nakanishi, Hiroshi; Takahashi, Ichiro

    2017-01-01

    Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4 + T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c + DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient ( CatS -/- ) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17 + CD4 + T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS -/- mice after PgLPS exposure. Furthermore, the increase in the Th17 + CD4 + T cell population paralleled increases in the levels of CatS and IL-6 in CD11c + cells in the splenic MZ. In isolated primary splenic CD11c + cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS - /- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c + cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS - induced increase in the IL-6 production by splenic CD11c + cells was completely abolished by pre-treatment with FSLLRY-NH 2 , a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.

  16. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    PubMed

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    PubMed Central

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. PMID:21118529

  18. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    PubMed Central

    2011-01-01

    Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737

  19. Metal-accelerated oxidation in plant cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death aremore » Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.« less

  20. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.

    PubMed

    Wagner, Andrew J; Bleckmann, Charles A; Murdock, Richard C; Schrand, Amanda M; Schlager, John J; Hussain, Saber M

    2007-06-28

    Nanomaterials, with dimensions in the 1-100 nm range, possess numerous potential benefits to society. However, there is little characterization of their effects on biological systems, either within the environment or on human health. The present study examines cellular interaction of aluminum oxide and aluminum nanomaterials, including their effect on cell viability and cell phagocytosis, with reference to particle size and the particle's chemical composition. Experiments were performed to characterize initial in vitro cellular effects of rat alveolar macrophages (NR8383) after exposure to aluminum oxide nanoparticles (Al2O3-NP at 30 and 40 nm) and aluminum metal nanoparticles containing a 2-3 nm oxide coat (Al-NP at 50, 80, and 120 nm). Characterization of the nanomaterials, both as received and in situ, was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and/or CytoViva150 Ultra Resolution Imaging (URI)). Particles showed significant agglomeration in cell exposure media using DLS and the URI as compared to primary particle size in TEM. Cell viability assay results indicate a marginal effect on macrophage viability after exposure to Al2O3-NP at doses of 100 microg/mL for 24 h continuous exposure. Al-NP produced significantly reduced viability after 24 h of continuous exposure with doses from 100 to 250 microg/mL. Cell phagocytotic ability was significantly hindered by exposure to 50, 80, or 120 nm Al-NP at 25 microg/mL for 24 h, but the same concentration (25 microg/mL) had no significant effect on the cellular viability. However, no significant effect on phagocytosis was observed with Al2O3-NP. In summary, these results show that Al-NP exhibit greater toxicity and more significantly diminish the phagocytotic ability of macrophages after 24 h of exposure when compared to Al2O3-NP.

  1. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells.

    PubMed

    Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Çiğ, Bilal

    2014-08-01

    Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.

  2. Genomics Study of the Exposure Effect of Gymnodinium catenatum, a Paralyzing Toxin Producer, on Crassostrea gigas' Defense System and Detoxification Genes

    PubMed Central

    García-Lagunas, Norma; Romero-Geraldo, Reyna; Hernández-Saavedra, Norma Y.

    2013-01-01

    Background Crassostrea gigas accumulates paralytic shellfish toxins (PST) associated with red tide species as Gymnodinium catenatum. Previous studies demonstrated bivalves show variable feeding responses to toxic algae at physiological level; recently, only one study has reported biochemical changes in the transcript level of the genes involved in C. gigas stress response. Principal Findings We found that 24 h feeding on toxic dinoflagellate cells (acute exposure) induced a significant decrease in clearance rate and expression level changes of the genes involved in antioxidant defense (copper/zinc superoxide dismutase, Cu/Zn-SOD), cell detoxification (glutathione S-transferase, GST and cytochrome P450, CPY450), intermediate immune response activation (lipopolysaccharide and beta glucan binding protein, LGBP), and stress responses (glutamine synthetase, GS) in Pacific oysters compared to the effects with the non-toxic microalga Isochrysis galbana. A sub-chronic exposure feeding on toxic dinoflagellate cells for seven and fourteen days (30×103 cells mL−1) showed higher gene expression levels. A significant increase was observed in Cu/Zn-SOD, GST, and LGBP at day 7 and a major increase in GS and CPY450 at day 14. We also observed that oysters fed only with G. catenatum (3×103 cells mL−1) produced a significant increase on the transcription level than in a mixed diet (3×103 cells mL−1 of G. catenatum+0.75×106 cells mL−1 I. galbana) in all the analyzed genes. Conclusions Our results provide gene expression data of PST producer dinoflagellate G. catenatum toxic effects on C. gigas, a commercially important bivalve. Over expressed genes indicate the activation of a potent protective mechanism, whose response depends on both cell concentration and exposure time against these toxic microalgae. Given the importance of dinoflagellate blooms in coastal environments, these results provide a more comprehensive overview of how oysters respond to stress generated by toxic dinoflagellate exposure. PMID:24039751

  3. Susceptibility of Escherichia coli to Bactericidal Action of Lactoperoxidase, Peroxide, and Iodide or Thiocyanate

    PubMed Central

    Thomas, Edwin L.; Aune, Thomas M.

    1978-01-01

    The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097

  4. In Vitro Analysis of Early Genotoxic and Cytotoxic Effects of Okadaic Acid in Different Cell Types of the Mussel Mytilus galloprovincialis.

    PubMed

    Prego-Faraldo, María Verónica; Valdiglesias, Vanessa; Laffon, Blanca; Eirín-López, José M; Méndez, Josefina

    2015-01-01

    Okadaic acid (OA) is the predominant biotoxin responsible for diarrhetic shellfish poisoning (DSP) syndrome in humans. While its harmful effects have been extensively studied in mammalian cell lines, the impact on marine organisms routinely exposed to OA is still not fully known. Few investigations available on bivalve molluscs suggest less genotoxic and cytotoxic effects of OA at high concentrations during long exposure times. In contrast, no apparent information is available on how sublethal concentrations of OA affect these organisms over short exposure times. In order to fill this gap, this study addressed for the first time in vitro analysis of early genotoxic and cytotoxic effects attributed to OA in two cell types of the mussel Mytilus galloprovincialis. Accordingly, hemocytes and gill cells were exposed to low OA concentrations (10, 50, 100, 200, or 500 nM) for short periods of time (1 or 2 h). The resulting DNA damage, as apoptosis and necrosis, was subsequently quantified using the comet assay and flow cytometry, respectively. Data demonstrated that (1) mussel hemocytes seem to display a resistance mechanism against early genotoxic and cytotoxic OA-induced effects, (2) mussel gill cells display higher sensitivity to early OA-mediated genotoxicity than hemocytes, and (3) mussel gill cells constitute more suitable systems to evaluate the genotoxic effect of low OA concentrations in short exposure studies. Taken together, this investigation provides evidence supporting the more reliable suitability of mussel gill cells compared to hemocytes to evaluate the genotoxic effect of low short-duration exposure to OA.

  5. Neuroprotective effects of formononetin against NMDA-induced apoptosis in cortical neurons.

    PubMed

    Tian, Zhen; Liu, Shui-Bing; Wang, Yu-Cai; Li, Xiao-Qiang; Zheng, Lian-He; Zhao, Ming-Gao

    2013-12-01

    Formononetin (FMNT) is an isoflavone found in many herbs including Trifolium pratense L., Spatholobus suberectus Dunn., and Astragalus mongholicus Bunge. The purpose of this study is to investigate pharmacological properties of FMNT on neurotoxicity induced by N-methyl-D-asparate (NMDA) in primary-cultured cortical neurons. The cell viability was significantly decreased after exposure to NMDA (200 μM) for 40 min. Pretreatment of FMNT (10 μM) for 12 h significantly attenuated the cell loss induced by NMDA exposure. Flow cytometry analysis revealed that treatment of FMNT attenuated the number of apoptotic cells, especially the early phase apoptotic cells, induced by NMDA exposure. Western blot analysis showed that FMNT regulated the expression of apoptosis-related proteins by increasing the levels of Bcl-2 and pro-caspase-3 and decreasing the levels of Bax and caspase-3. These findings demonstrate that FMNT is capable of protecting neurons from NMDA-evoked excitotoxic injury and has a potential perspective to the clinical treatment for neurodegenerative disorders in central nervous system. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Cumulative Antiretroviral Exposure Measured in Hair Is Not Associated With Measures of HIV Persistence or Inflammation Among Individuals on Suppressive ART.

    PubMed

    Gandhi, Monica; Gandhi, Rajesh T; Stefanescu, Andrei; Bosch, Ronald J; Cyktor, Joshua C; Horng, Howard; Louie, Alexander; Phung, Nhi; Eron, Joseph J; Hogg, Evelyn; Macatangay, Bernard J C; Hensel, Christopher; Fletcher, Courtney V; Mellors, John W; McMahon, Deborah K

    2018-06-20

    Data on the relationship of antiretroviral exposure to measures of human immunodeficiency virus (HIV) persistence are limited. To address this gap, multiple viral, immunologic, and pharmacologic measures were analyzed from individuals with sustained virologic suppression on therapy (median 7 years) in the AIDS Clinical Trials Group A5321 cohort. Among 110 participants on tenofovir-(TFV)-disoproxil-fumarate (TDF)/emtricitabine (FTC)-containing regimens, we found no significant correlation between hair concentrations of individual antiretrovirals (ARVs) in the regimen and measures of HIV persistence (plasma HIV-1 RNA by single copy assay, cell-associated-DNA, cell-associated RNA) or soluble markers of inflammation. These findings suggest that higher systemic ARV exposure may not impact HIV persistence or inflammation.

  7. Accelerated/abbreviated test methods for predicting life of solar cell encapsulants to Jet Propulsion Laboratory California Institute of Technology for the encapsulation task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.

    1978-01-01

    An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.

  8. Short term effects of reduced exposure to cigarette smoke on white blood cells, platelets and red blood cells in adult cigarette smokers.

    PubMed

    Roethig, Hans J; Koval, Tamara; Muhammad-Kah, Raheema; Jin, Yan; Mendes, Paul; Unverdorben, Martin

    2010-01-01

    Previous studies indicate that cigarette smokers have a 5-30% higher white blood cell counts (WBC) compared to non-smokers and higher red blood cell counts. This study was to pool hematology data from three similar studies and analyze the data for effects on WBC, its subpopulations, platelets, red blood cell count (RBC) and hematocrit in adult cigarette smokers three days after using an electrically heated cigarette smoking system (EHCSS) as a potential reduced exposure product (PREP) or no-smoking compared to smoking a conventional cigarette. Lower exposure to cigarette smoke in adult, long term smokers, by using an EHCSS or stopping smoking, leads to statistically significant decreases of up to 9% in WBC, neutrophils, lymphocytes, platelets, RBC and hematocrit within three days. Switching from CC-smoking to EHCSS-smoking or no-smoking resulted in lower WBC and vice versa within 3 days. This clinical model may be used as a screening tool to find new technologies that could provide insights on changes in inflammation resulting from the change in cigarette smoke. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition

    PubMed Central

    Sorsby, Eleanor; Mahtey, Nabeel; Brown, Ian

    2017-01-01

    Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this “unmasking” of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection. PMID:28542528

  10. Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, M. A.; Marquette, M. L.

    2006-01-01

    The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on Earth and future space explorations.

  11. Cranberry Products Inhibit Adherence of P-Fimbriated Escherichia Coli to Primary Cultured Bladder and Vaginal Epithelial Cells

    PubMed Central

    Gupta, K.; Chou, M. Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A. E.

    2011-01-01

    Purpose Cranberry proanthocyanidins have been identified as possible inhibitors of Escherichia coli adherence to uroepithelial cells. However, little is known about the dose range of this effect. Furthermore, it has not been studied directly in the urogenital system. To address these issues we tested the effect of a cranberry powder and proanthocyanidin extract on adherence of a P-fimbriated uropathogenic E. coli isolate to 2 new urogenital model systems, namely primary cultured bladder epithelial cells and vaginal epithelial cells. Materials and Methods E. coli IA2 was pre-incubated with a commercially available cranberry powder (9 mg proanthocyanidin per gm) or with increasing concentrations of proanthocyanidin extract. Adherence of E. coli IA2 to primary cultured bladder epithelial cells or vaginal epithelial cells was measured before and after exposure to these products. Results Cranberry powder decreased mean adherence of E. coli IA2 to vaginal epithelial cells from 18.6 to 1.8 bacteria per cell (p <0.001). Mean adherence of E. coli to primary cultured bladder epithelial cells was decreased by exposure to 50 μg/ml proanthocyanidin extract from 6.9 to 1.6 bacteria per cell (p <0.001). Inhibition of adherence of E. coli by proanthocyanidin extract occurred in linear, dose dependent fashion over a proanthocyanidin concentration range of 75 to 5 μg/ml. Conclusions Cranberry products can inhibit E. coli adherence to biologically relevant model systems of primary cultured bladder and vaginal epithelial cells. This effect occurs in a dose dependent relationship. These findings provide further mechanistic evidence and biological plausibility for the role of cranberry products for preventing urinary tract infection. PMID:17509358

  12. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    PubMed Central

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-01-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes. PMID:25367288

  13. Vernalizing cold is registered digitally at FLC.

    PubMed

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I; Dean, Caroline; Howard, Martin

    2015-03-31

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor flowering locus C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure.

  14. Vernalizing cold is registered digitally at FLC

    PubMed Central

    Angel, Andrew; Song, Jie; Yang, Hongchun; Questa, Julia I.; Dean, Caroline; Howard, Martin

    2015-01-01

    A fundamental property of many organisms is an ability to sense, evaluate, and respond to environmental signals. In some situations, generation of an appropriate response requires long-term information storage. A classic example is vernalization, where plants quantitatively sense long-term cold and epigenetically store this cold-exposure information to regulate flowering time. In Arabidopsis thaliana, stable epigenetic memory of cold is digital: following long-term cold exposure, cells respond autonomously in an all-or-nothing fashion, with the fraction of cells that stably silence the floral repressor FLOWERING LOCUS C (FLC) increasing with the cold exposure duration. However, during cold exposure itself it is unknown whether vernalizing cold is registered at FLC in individual cells in an all-or-nothing (digital) manner or is continuously varying (analog). Using mathematical modeling, we found that analog registration of cold temperature is problematic due to impaired analog-to-digital conversion into stable memory. This disadvantage is particularly acute when responding to short cold periods, but is absent when cold temperatures are registered digitally at FLC. We tested this prediction experimentally, exposing plants to short periods of cold interrupted with even shorter warm breaks. For FLC expression, we found that the system responds similarly to both interrupted and uninterrupted cold, arguing for a digital mechanism integrating long-term temperature exposure. PMID:25775579

  15. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  16. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    PubMed

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  17. Microbial Genetic Memory to Study Heterogeneous Soil Processes

    NASA Astrophysics Data System (ADS)

    Fulk, E. M.; Silberg, J. J.; Masiello, C. A.

    2017-12-01

    Microbes can be engineered to sense environmental conditions and produce a detectable output. These microbial biosensors have traditionally used visual outputs that are difficult to detect in soil. However, recently developed gas-producing biosensors can be used to noninvasively monitor complex soil processes such as horizontal gene transfer or cell-cell signaling. While these biosensors report on the fraction of a microbial population exposed to a process or chemical signal at the time of measurement, they do not record a "memory" of past exposure. Synthetic biologists have recently developed a suite of genetically encoded memory circuits capable of reporting on historical exposure to the signal rather than just the current state. We will provide an overview of the microbial memory systems that may prove useful to studying microbial decision-making in response to environmental conditions. Simple memory circuits can give a yes/no report of any past exposure to the signal (for example anaerobic conditions, osmotic stress, or high nitrate concentrations). More complicated systems can report on the order of exposure of a population to multiple signals or the experiences of spatially distinct populations, such as those in root vs. bulk soil. We will report on proof-of-concept experiments showing the function of a simple permanent memory system in soil-cultured microbes, and we will highlight additional applications. Finally, we will discuss challenges still to be addressed in applying these memory circuits for biogeochemical studies.

  18. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines.

    PubMed

    Kroll, Alexandra; Kühnel, Dana; Schirmer, Kristin

    2013-01-01

    Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present ways of deriving a mass balance and quantitative/qualitative information on the uptake and distribution of NM in cells.As NM have a high surface-to-volume ratio and possess specific physical-chemical properties, which make them prone to interfere with various compounds and certain types of toxicity tests, potential interferences and appropriate controls are introduced. Furthermore, different types of dose metrics, which is still a strongly debated issue in nanotoxicology, are highlighted. We also consider laboratory safety regarding NM handling and disposal.

  19. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts

    PubMed Central

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R.; Medlin, Donald; Zheng, Leon; Wilson, R. Kevin; Rusin, Matthew; Takacs, Endre

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial “pause” in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature. PMID:29300773

  20. Application of Signaling Pathway-Based Adverse Outcome Pathways and High Throughput Toxicokinetic-PBPK for Developmental Cardiac Malformations

    EPA Science Inventory

    Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...

  1. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro

    NASA Astrophysics Data System (ADS)

    Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.

    2017-03-01

    While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.

  2. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure

    PubMed Central

    Blossom, Sarah J.; Melnyk, Stepan B.; Li, Ming; Wessinger, William D.; Cooney, Craig A.

    2016-01-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4+ T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1 mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4+ T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. PMID:26812193

  3. Systemic immune cell response in rats after pulmonary exposure to manganese-containing particles collected from welding aerosols.

    PubMed

    Antonini, James M; Zeidler-Erdely, Patti C; Young, Shih-Houng; Roberts, Jenny R; Erdely, Aaron

    2012-01-01

    Welding fume inhalation affects the immune system of exposed workers. Manganese (Mn) in welding fume may induce immunosuppressive effects. The goal was to determine if Mn in welding fume alters immunity by reducing the number of circulating total leukocytes and specific leukocyte sub-populations. Sprague-Dawley rats were treated by intratracheal instillation (ITI) with either a single dose (2.00 mg/rat) or repeated doses (0.125 or 2.00 mg/rat for 7 weeks) with welding fumes that contained different levels of Mn. Additional rats were treated by ITI once a week for 7 weeks with the two doses of manganese chloride (MnCl₂). Bronchoalveolar lavage was performed to assess lung inflammation. Also, whole blood was recovered, and the number of circulating total leukocytes, as well as specific lymphocyte subsets, was determined by flow cytometry. The welding fume highest in Mn content significantly increased lung inflammation, injury, and production of inflammatory cytokines and chemokines compared to all other treatment groups. In addition, the same group expressed significant decreases in the number of circulating CD4⁺ and CD8⁺ T-lymphocytes after a single exposure, and significant reductions in the number of circulating total lymphocytes, primarily CD4⁺ and CD8⁺ T-lymphocytes, after repeated exposures (compared to control values). Repeated MnCl₂ exposure led to a trend of a reduction (but not statistically significant) in circulating total lymphocytes, attributable to the changes in the CD4⁺ T-lymphocyte population levels. The welding fume with the lower concentration of Mn had no significant effect on the numbers of blood lymphocytes and lymphocyte subsets compared to control values. Evidence from this study indicates that pulmonary exposure to certain welding fumes cause decrements in systemic immune cell populations, specifically circulating T-lymphocytes, and these alterations in immune cell number are not dependent exclusively on Mn, but likely a combination of other metals present in welding fume.

  4. Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.

    PubMed

    Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A

    2018-07-01

    The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.

  5. Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability.

    PubMed

    Thomas, M P; Monaghan, D T; Morrisett, R A

    1998-10-01

    Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

  6. Detection of early changes in lung cell cytology by flow-systems analysis techniques. Progress report, July 1--December 31, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.

    1978-04-01

    This report summarizes ongoing experiments to develop cytological and biochemical indicators for measuring damage to respiratory tract cells exposed by inhalation of environmental toxic agents. The specific goal of this project is to apply flow cytometric methods to analyze and detect changes in lung epithelium as a function of exposure to toxic agents such as those associated with the production of synthetic fuels from oil shale and coal. The objectives during the past 6 months were to complete modifications to the multiparameter cell separator by adding a krypton laser with an output capability of specific wavelengths ranging from the uvmore » to the ir; analyze and separate lung cells based on their DNA content; evaluate some new fluorescent DNA and protein stains; and treat hamster lung cells with proteolytic enzymes for increasing cell yield. Future experiments will involve the continued analysis and characterization of exfoliated lung cells based primarily on cellular DNA content, protein, morphological features, and specific enzyme activities; quantitation of macrophage activity; exposure of hamsters to toxic agents such as oil shale particulates and ozone; and continued analysis of cells based on DNA content. As this new technology becomes adapted to analyzing respiratory tract cells, the measurement of physical and biochemical cell properties as a function of exposure to toxic agents will be increased. This analytical approach is designed to assist in the establishment of guidelines for estimating risks to exposed humans.« less

  7. Integrated Experimental and Computational Approach to Understand the Effects of Heavy Ion Radiation on Skin Homeostasis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Neubeck, Claere; Shankaran, Harish; Geniza, Matthew

    2013-08-08

    The effects of low dose high linear energy transfer (LET) radiation on human health are of concern for both space and clinical exposures. As epidemiological data for such radiation exposures are scarce for making relevant predictions, we need to understand the mechanism of response especially in normal tissues. Our objective here is to understand the effects of heavy ion radiation on tissue homeostasis in a realistic model system. Towards this end, we exposed an in vitro three dimensional skin equivalent to low fluences of Neon (Ne) ions (300 MeV/u), and determined the differentiation profile as a function of time followingmore » exposure using immunohistochemistry. We found that Ne ion exposures resulted in transient increases in the tissue regions expressing the differentiation markers keratin 10, and filaggrin, and more subtle time-dependent effects on the number of basal cells in the epidermis. We analyzed the data using a mathematical model of the skin equivalent, to quantify the effect of radiation on cell proliferation and differentiation. The agent-based mathematical model for the epidermal layer treats the epidermis as a collection of heterogeneous cell types with different proliferation/differentiation properties. We obtained model parameters from the literature where available, and calibrated the unknown parameters to match the observed properties in unirradiated skin. We then used the model to rigorously examine alternate hypotheses regarding the effects of high LET radiation on the tissue. Our analysis indicates that Ne ion exposures induce rapid, but transient, changes in cell division, differentiation and proliferation. We have validated the modeling results by histology and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The integrated approach presented here can be used as a general framework to understand the responses of multicellular systems, and can be adapted to other epithelial tissues.« less

  8. 28Si total body irradiation injures bone marrow hematopoietic stem cells via induction of cellular apoptosis

    NASA Astrophysics Data System (ADS)

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-05-01

    Long-term space mission exposes astronauts to a radiation environment with potential health hazards. High-energy charged particles (HZE), including 28Si nuclei in space, have deleterious effects on cells due to their characteristics with high linear energy transfer and dense ionization. The influence of 28Si ions contributes more than 10% to the radiation dose equivalent in the space environment. Understanding the biological effects of 28Si irradiation is important to assess the potential health hazards of long-term space missions. The hematopoietic system is highly sensitive to radiation injury and bone marrow (BM) suppression is the primary life-threatening injuries after exposure to a moderate dose of radiation. Therefore, in the present study we investigated the acute effects of low doses of 28Si irradiation on the hematopoietic system in a mouse model. Specifically, 6-month-old C57BL/6 J mice were exposed to 0.3, 0.6 and 0.9 Gy 28Si (600 MeV) total body irradiation (TBI). The effects of 28Si TBI on BM hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) were examined four weeks after the exposure. The results showed that exposure to 28Si TBI dramatically reduced the frequencies and numbers of HSCs in irradiated mice, compared to non-irradiated controls, in a radiation dose-dependent manner. In contrast, no significant changes were observed in BM HPCs regardless of radiation doses. Furthermore, irradiated HSCs exhibited a significant impairment in clonogenic ability. These acute effects of 28Si irradiation on HSCs may be attributable to radiation-induced apoptosis of HSCs, because HSCs, but not HPCs, from irradiated mice exhibited a significant increase in apoptosis in a radiation dose-dependent manner. However, exposure to low doses of 28Si did not result in an increased production of reactive oxygen species and DNA damage in HSCs and HPCs. These findings indicate that exposure to 28Si irradiation leads to acute HSC damage.

  9. Th17/T regulator cell balance and NK cell numbers in relation to psychosis liability and social stress reactivity.

    PubMed

    Counotte, J; Drexhage, H A; Wijkhuijs, J M; Pot-Kolder, R; Bergink, V; Hoek, H W; Veling, W

    2018-03-01

    Psychotic disorders are characterized by a deranged immune system, including altered number and function of Natural Killer (NK) and T cells. Psychotic disorders arise from an interaction between genetic vulnerability and exposure to environmental risk factors. Exposure to social adversity during early life is particularly relevant to psychosis risk and is thought to increase reactivity to subsequent minor daily social stressors. Virtual reality allows controlled experimental exposure to virtual social stressors. To investigate the interplay between social adversity during early life, cell numbers of NK cells and T helper subsets and social stress reactivity in relation to psychosis liability. Circulating numbers of Th1, Th2, Th17, T regulator and NK cells were determined using flow cytometry in 80 participants with low psychosis liability (46 healthy controls and 34 siblings) and 53 participants with high psychosis liability (14 ultra-high risk (UHR) patients and 39 recent-onset psychosis patients), with and without the experience of childhood trauma. We examined if cell numbers predicted subjective stress when participants were exposed to social stressors (crowdedness, hostility and being part of an ethnic minority) in a virtual reality environment. There were no significant group differences in Th1, Th2, Th17, T regulator and NK cell numbers between groups with a high or low liability for psychosis. However, in the high psychosis liability group, childhood trauma was associated with increased Th17 cell numbers (p = 0.028). Moreover, in the high psychosis liability group increased T regulator and decreased NK cell numbers predicted stress experience during exposure to virtual social stressors (p = 0.015 and p = 0.009 for T regulator and NK cells, respectively). A deranged Th17/T regulator balance and a reduced NK cell number are associated intermediate biological factors in the relation childhood trauma, psychosis liability and social stress reactivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Cadmium (Cd(2+)) exposure differentially elicits both cell proliferation and cell death related responses in SK-RC-45.

    PubMed

    Sinha, Krishnendu; Pal, Pabitra Bikash; Sil, Parames C

    2014-03-01

    Cadmium (Cd(2+)) is a major nephrotoxic environmental pollutant, affecting mostly proximal convoluted tubule (PCT) cells of the mammalian kidney, while conditionally Cd(2+) could also elicit protective responses with great variety and variability in different systems. The present study was designed to evaluate the molecular mechanism of Cd(2+) toxicity on human PCT derived Renal Cell Carcinoma (RCC), SK-RC-45 and compare its responses with normal human PCT derived cell line, NKE. Exposure of SK-RC-45 cells with different concentrations of CdCl2 (e.g. 0, 10 and 20μM) in serum free medium for 24h generate considerable amount of ROS, accompanied with decreased cell viability and alternations in the cellular and nuclear morphologies, heat shock responses and GCLC mediated protective responses. Also phosphatidylserine externalization, augmentation in the level of caspase-3, PARP, BAD, Apaf1 and cleaved caspase-9 along with decreased expression of Bcl2 and release of cytochrome c confirmed that, Cd(2+) dose dependently induces solely intrinsic pathway of apoptosis in SK-RC-45, independent of JNK. Furthermore, the non-toxic concentration (10μM) of Cd(2+) induced nuclear translocation of Nrf2 and increased expression in the level of HO-1 enzyme suggesting that at the milder concentration, Cd(2+) induces protective signaling pathways. On the other hand, exposure of NKE to different concentrations of CdCl2 (e.g. 0, 10, 20, 30 and 50μM) under the same conditions elevate stronger heat shock and SOD2 mediated protective responses. In contrary to the RCC PCT, the normal PCT derived cell follows JNK dependent and extrinsic pathways of apoptosis. Cumulatively, these results suggest that Cd(2+) exposure dose dependently elicit both cell proliferative and cell death related responses in SK-RC-45 cells and is differentially regulated with respect to normal kidney epithelia derived NKE cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Human central nervous system astrocytes support survival and activation of B cells: implications for MS pathogenesis.

    PubMed

    Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit

    2018-04-19

    The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival and activation of B cell subsets implicated in MS, including memory B cells from patients with both relapsing and progressive forms of disease. Our findings point to a potential mechanism whereby activated astrocytes in the inflamed MS CNS not only promote a B cell fostering environment, but also actively support the ability of B cells to contribute to the propagation of CNS-compartmentalized inflammation, now thought to play key roles in progressive disease.

  12. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System.

    PubMed

    Gao, Rong; Godfrey, Katherine A; Sufian, Mahir A; Stock, Ann M

    2017-09-15

    Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular "memory" that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli. Copyright © 2017 American Society for Microbiology.

  13. Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System

    PubMed Central

    Gao, Rong; Godfrey, Katherine A.; Sufian, Mahir A.

    2017-01-01

    ABSTRACT Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the “memory” to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the Escherichia coli PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that “memory” of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. IMPORTANCE Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular “memory” that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli. PMID:28674072

  14. Cigarette Smoke Exposure during Pregnancy Alters Fetomaternal Cell Trafficking Leading to Retention of Microchimeric Cells in the Maternal Lung

    PubMed Central

    Vogelgesang, Anja; Scapin, Cristina; Barone, Caroline; Tam, Elaine

    2014-01-01

    Cigarette smoke exposure causes chronic oxidative lung damage. During pregnancy, fetal microchimeric cells traffic to the mother. Their numbers are increased at the site of acute injury. We hypothesized that milder chronic diffuse smoke injury would attract fetal cells to maternal lungs. We used a green-fluorescent-protein (GFP) mouse model to study the effects of cigarette smoke exposure on fetomaternal cell trafficking. Wild-type female mice were exposed to cigarette smoke for about 4 weeks and bred with homozygote GFP males. Cigarette smoke exposure continued until lungs were harvested and analyzed. Exposure to cigarette smoke led to macrophage accumulation in the maternal lung and significantly lower fetal weights. Cigarette smoke exposure influenced fetomaternal cell trafficking. It was associated with retention of GFP-positive fetal cells in the maternal lung and a significant reduction of fetal cells in maternal livers at gestational day 18, when fetomaternal cell trafficking peaks in the mouse model. Cells quickly clear postpartum, leaving only a few, difficult to detect, persisting microchimeric cells behind. In our study, we confirmed the postpartum clearance of cells in the maternal lungs, with no significant difference in both groups. We conclude that in the mouse model, cigarette smoke exposure during pregnancy leads to a retention of fetal microchimeric cells in the maternal lung, the site of injury. Further studies will be needed to elucidate the effect of cigarette smoke exposure on the phenotypic characteristics and function of these fetal microchimeric cells, and confirm its course in cigarette smoke exposure in humans. PMID:24832066

  15. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow

    NASA Astrophysics Data System (ADS)

    Calibasi Kocal, Gizem; Güven, Sinan; Foygel, Kira; Goldman, Aaron; Chen, Pu; Sengupta, Shiladitya; Paulmurugan, Ramasamy; Baskin, Yasemin; Demirci, Utkan

    2016-12-01

    Cancer microenvironment is a remarkably heterogeneous composition of cellular and non-cellular components, regulated by both external and intrinsic physical and chemical stimuli. Physical alterations driven by increased proliferation of neoplastic cells and angiogenesis in the cancer microenvironment result in the exposure of the cancer cells to elevated levels of flow-based shear stress. We developed a dynamic microfluidic cell culture platform utilizing eshopagael cancer cells as model cells to investigate the phenotypic changes of cancer cells upon exposure to fluid shear stress. We report the epithelial to hybrid epithelial/mesenchymal transition as a result of decreasing E-Cadherin and increasing N-Cadherin and vimentin expressions, higher clonogenicity and ALDH positive expression of cancer cells cultured in a dynamic microfluidic chip under laminar flow compared to the static culture condition. We also sought regulation of chemotherapeutics in cancer microenvironment towards phenotypic control of cancer cells. Such in vitro microfluidic system could potentially be used to monitor how the interstitial fluid dynamics affect cancer microenvironment and plasticity on a simple, highly controllable and inexpensive bioengineered platform.

  16. A Safety Evaluation of DAS181, a Sialidase Fusion Protein, in Rodents

    PubMed Central

    Larson, Jeffrey L.; Kang, Seong-Kwi; Choi, Bo In; Hedlund, Maria; Aschenbrenner, Laura M.; Cecil, Beth; Machado, GloriaMay; Nieder, Matthew; Fang, Fang

    2011-01-01

    DAS181 is a novel inhaled drug candidate blocking influenza virus (IFV) and parainfluenza virus (PIV) infections through removal of sialic acid receptors from epithelial surface of the respiratory tract. To support clinical development, a 28-day Good Laboratory Practices inhalation toxicology study was conducted in Sprague-Dawley rats. In this study, achieved average daily doses based on exposure concentrations were 0.47, 0.90, 1.55, and 3.00 mg/kg/day of DAS181 in a dry powder formulation. DAS181 was well tolerated at all dose levels, and there were no significant toxicological findings. DAS181 administration did not affect animal body weight, food consumption, clinical signs, ophthalmology, respiratory parameters, or organ weight. Gross pathology evaluations were unremarkable. Histological examination of the lungs was devoid of pulmonary tissue damage, and findings were limited to mild and transient changes indicative of exposure and clearance of a foreign protein. DAS181 did not show any cytotoxic effects on human and animal primary cells, including hepatocytes, skeletal muscle cells, osteoblasts, or respiratory epithelial cells. DAS181 did not cause direct or indirect hemolysis. A laboratory abnormality observed in the 28-day toxicology study was mild and transient anemia in male rats at the 3.00 mg/kg dose, which is an expected outcome of enhanced clearance of desialylated red blood cells resulting from systemic exposure with DAS181. Another laboratory observation was a transient dose-dependent elevation in alkaline phosphatase (ALP), which can be attributed to reduced ALP clearance resulting from increased protein desialylation due to DAS181 systemic exposure. These laboratory parameters returned to normal at the end of the recovery period. PMID:21572096

  17. Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment.

    PubMed

    Ma, Lei; He, Hua; Liu, Xuedong; Zhang, Guangyun; Li, Li; Yan, Song; Li, Kangchu; Shi, Ming

    2015-08-01

    Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system. Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood. Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury. After exposure to infrasound at 16 Hz and 130 dB for 1-14 days, the expression of CB receptors in rat hippocampi was gradually but significantly decreased. Their expression levels reached the minimum after 7- to 14-day exposure during which the maximum number of apoptotic cells was observed in the CA1. 2-Arachidonoylglycerol (2-AG), an endogenous agonist for CB receptors, reduced the number of infrasound-triggered apoptotic cells, which, however, could be further increased by CB receptor antagonist AM251. In animal behavior performance test, 2-AG ameliorated the infrasound-impaired learning and memory abilities of rats, whereas AM251 aggravated the infrasound-impaired learning and memory abilities of rats. Furthermore, the levels of proinflammatory cytokines tumor necrosis factor alpha and interleukin-1β in the CA1 were upregulated after infrasound exposure, which were attenuated by 2-AG but further increased by AM251. Thus, our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  18. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice.

    PubMed

    Malaisé, Yann; Ménard, Sandrine; Cartier, Christel; Lencina, Corinne; Sommer, Caroline; Gaultier, Eric; Houdeau, Eric; Guzylack-Piriou, Laurence

    2018-01-01

    The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 μg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA + cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.

  19. Biological indicators in response to radiofrequency/microwave exposure.

    PubMed

    Marjanović, Ana Marija; Pavičić, Ivan; Trošić, Ivančica

    2012-09-01

    Over the years, due to rapid technological progress, radiation from man-made sources exceeded that of natural origin. There is a general concern regarding a growing number of appliances that use radiofrequency/ microwave (RF/MW) radiation with particular emphasis on mobile communication systems. Since nonthermal biological effects and mechanisms of RF/MW radiation are still uncertain, laboratory studies on animal models, tissues, cells, and cell free system are of extraordinary importance in bioelectromagnetic research. We believe that such investigations play a supporting role in public risk assessment. Cellular systems with the potential for a clear response to RF/MW exposures should be used in those studies. It is known that organism is a complex electrochemical system where processes of oxidation and reduction regularly occur. One of the plausible mechanisms is connected with generation of reactive oxygen species (ROS). Depending on concentration, ROS can have both beneficial and deleterious effects. Positive effects are connected with cell signalling, defence against infectious agents, and proliferative cell ability. On the other hand, excessive production, which overloads antioxidant defence mechanism, leads to cellular damage with serious potential for disease development. ROS concentration increase within the cell caused by RF/MW radiation seems to be a biologically relevant hypothesis to give clear insight into the RF/MW action at non-thermal level of radiation. In order to better understand the exact mechanism of action and its consequences, further research is needed in the field. We would like to present current knowledge on possible biological mechanisms of RF/MW actions.

  20. Hematopoietic responses under protracted exposures to low daily dose gamma irradiation.

    PubMed

    Seed, T M; Fritz, T E; Tolle, D V; Jackson, W E

    2002-01-01

    In attempting to evaluate the possible health consequences of chronic ionizing radiation exposure during extended space travel (e.g., Mars Mission), ground-based experimental studies of the clinical and pathological responses of canines under low daily doses of 60Co gamma irradiation (0.3-26.3 cGy d-1) have been examined. Specific reference was given to responses of the blood forming system. Results suggest that the daily dose rate of 7.5 cGy d-1 represents a threshold below which the hematopoietic system can retain either partial or full trilineal cell-producing capacity (erythropoiesis, myelopoiesis, and megakaryopoiesis) for extended periods of exposure (>1 yr). Trilineal capacity was fully retained for several years of exposure at the lowest dose-rate tested (0.3 cGy d-1) but was completely lost within several hundred days at the highest dose-rate (26.3 cGy d-1). Retention of hematopoietic capacity under chronic exposure has been demonstrated to be mediated by hematopoietic progenitors with acquired radioresistance and repair functions, altered cytogenetics, and cell-cycle characteristics. Radiological, biological, and temporal parameters responsible for these vital acquisitions by hematopoietic progenitors have been partially characterized. These parameters, along with threshold responses, are described and discussed in relation to potential health risks of the space traveler under chronic stress of low-dose irradiation. Published by Elsevier Science Ltd on behalf of COSPAR.

  1. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  2. Impact of nest sanitation on the immune system of parents and nestlings in a passerine bird.

    PubMed

    Evans, Jessica K; Griffith, Simon C; Klasing, Kirk C; Buchanan, Katherine L

    2016-07-01

    Bacterial communities are thought to have fundamental effects on the growth and development of nestling birds. The antigen exposure hypothesis suggests that, for both nestlings and adult birds, exposure to a diverse range of bacteria would select for stronger immune defences. However, there are relatively few studies that have tested the immune/bacterial relationships outside of domestic poultry. We therefore sought to examine indices of immunity (microbial killing ability in naive birds, which is a measure of innate immunity, and the antibody response to sheep red blood cells, which measures adaptive immunity) in both adult and nestling zebra finches (Taeniopygia guttata). We did this throughout breeding and between reproductive attempts in nests that were experimentally manipulated to change the intensity of bacterial exposure. Our results suggest that nest sanitation and bacterial load affected measures of the adaptive immune system, but not the innate immune parameters tested. Adult finches breeding in clean nests had a lower primary antibody response to sheep red blood cells, particularly males, and a greater difference between primary and secondary responses. Adult microbial killing of Escherichia coli decreased as parents moved from incubation to nestling rearing for both nest treatments; however, killing of Candida albicans remained consistent throughout. In nestlings, both innate microbial killing and the adaptive antibody response did not differ between nest environments. Together, these results suggest that exposure to microorganisms in the environment affects the adaptive immune system in nesting birds, with exposure upregulating the antibody response in adult birds. © 2016. Published by The Company of Biologists Ltd.

  3. Cell biology and biotechnology research for exploration of the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to conduct experiments in the early phase of the development of requirements for exploration. Supporting the NASA concept of stepping stones, we believe that ground based, International Space Station, robotic and satellite missions offer the ideal environment to perform experiments and secure answers necessary for human exploration.

  4. Recovery from radiation-induced bone marrow damage by HSP25 through Tie2 signaling.

    PubMed

    Lee, Hae-June; Kwon, Hee-Chung; Chung, Hee-Yong; Lee, Yoon-Jin; Lee, Yun-Sil

    2012-09-01

    Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Immunomodulation Induced by Stem Cell Mobilization and Harvesting in Healthy Donors: Increased Systemic Osteopontin Levels after Treatment with Granulocyte Colony-Stimulating Factor

    PubMed Central

    Melve, Guro Kristin; Ersvaer, Elisabeth; Akkök, Çiğdem Akalın; Ahmed, Aymen Bushra; Kristoffersen, Einar K.; Hervig, Tor; Bruserud, Øystein

    2016-01-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. The frequency of severe graft versus host disease is similar for patients receiving peripheral blood and bone marrow allografts, even though the blood grafts contain more T cells, indicating mobilization-related immunoregulatory effects. The regulatory phosphoprotein osteopontin was quantified in plasma samples from healthy donors before G-CSF treatment, after four days of treatment immediately before and after leukapheresis, and 18–24 h after apheresis. Myeloma patients received chemotherapy, combined with G-CSF, for stem cell mobilization and plasma samples were prepared immediately before, immediately after, and 18–24 h after leukapheresis. G-CSF treatment of healthy stem cell donors increased plasma osteopontin levels, and a further increase was seen immediately after leukapheresis. The pre-apheresis levels were also increased in myeloma patients compared to healthy individuals. Finally, in vivo G-CSF exposure did not alter T cell expression of osteopontin ligand CD44, and in vitro osteopontin exposure induced only small increases in anti-CD3- and anti-CD28-stimulated T cell proliferation. G-CSF treatment, followed by leukapheresis, can increase systemic osteopontin levels, and this effect may contribute to the immunomodulatory effects of G-CSF treatment. PMID:27447610

  6. Potential proinflammatory effects of hydroxyapatite nanoparticles on endothelial cells in a monocyte–endothelial cell coculture model

    PubMed Central

    Liu, Xin; Sun, Jiao

    2014-01-01

    Currently, synthetic hydroxyapatite nanoparticles (HANPs) are used in nanomedicine fields. The delivery of nanomedicine to the bloodstream exposes the cardiovascular system to a potential threat. However, the possible adverse cardiovascular effects of HANPs remain unclear. Current observations using coculture models of endothelial cells and monocytes with HANPs to mimic the complex physiological functionality of the vascular system demonstrate that monocytes could play an important role in the mechanisms of endothelium dysfunction induced by the exposure to HANPs. Our transmission electron microscopy analysis revealed that both monocytes and endothelial cells could take up HANPs. Moreover, our findings demonstrated that at a subcytotoxic dose, HANPs alone did not cause direct endothelial cell injury, but they did induce an indirect activation of endothelial cells, resulting in increased interleukin-6 production and elevated adhesion molecule expression after coculture with monocytes. The potential proinflammatory effect of HANPs is largely mediated by the release of soluble factors from the activated monocytes, leading to an inflammatory response of the endothelium, which is possibly dependent on p38/c-Jun N-terminal kinase, and nuclear factor-kappa B signaling activation. The use of in vitro monocyte–endothelial cell coculture models for the biocompatibility assessment of HANPs could reveal their potential proinflammatory effects on endothelial cells, suggesting that exposure to HANPs possibly increases the risk of cardiovascular disease. PMID:24648726

  7. Intermittent Hypoxia Alters Gene Expression in Peripheral Blood Mononuclear Cells of Healthy Volunteers.

    PubMed

    Polotsky, Vsevolod Y; Bevans-Fonti, Shannon; Grigoryev, Dmitry N; Punjabi, Naresh M

    2015-01-01

    Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.

  8. Low doses of oxygen ion irradiation cause long-term damage to bone marrow hematopoietic progenitor and stem cells in mice

    PubMed Central

    Wang, Yingying; Chang, Jianhui; Li, Xin; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong

    2017-01-01

    During deep space missions, astronauts will be exposed to low doses of charged particle irradiation. The long-term health effects of these exposures are largely unknown. We previously showed that low doses of oxygen ion (16O) irradiation induced acute damage to the hematopoietic system, including hematopoietic progenitor and stem cells in a mouse model. However, the chronic effects of low dose 16O irradiation remain undefined. In the current study, we investigated the long-term effects of low dose 16O irradiation on the mouse hematopoietic system. Male C57BL/6J mice were exposed to 0.05 Gy, 0.1 Gy, 0.25 Gy and 1.0 Gy whole body 16O (600 MeV/n) irradiation. The effects of 16O irradiation on bone marrow (BM) hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) were examined three months after the exposure. The results showed that the frequencies and numbers of BM HPCs and HSCs were significantly reduced in 0.1 Gy, 0.25 Gy and 1.0 Gy irradiated mice compared to 0.05 Gy irradiated and non-irradiated mice. Exposure of mice to low dose 16O irradiation also significantly reduced the clongenic function of BM HPCs determined by the colony-forming unit assay. The functional defect of irradiated HSCs was detected by cobblestone area-forming cell assay after exposure of mice to 0.1 Gy, 0.25 Gy and 1.0 Gy of 16O irradiation, while it was not seen at three months after 0.5 Gy and 1.0 Gy of γ-ray irradiation. These adverse effects of 16O irradiation on HSCs coincided with an increased intracellular production of reactive oxygen species (ROS). However, there were comparable levels of cellular apoptosis and DNA damage between irradiated and non-irradiated HPCs and HSCs. These data suggest that exposure to low doses of 16O irradiation induces long-term hematopoietic injury, primarily via increased ROS production in HSCs. PMID:29232383

  9. Sphingosine kinase inhibition alleviates endothelial permeability induced by thrombin and activated neutrophils.

    PubMed

    Itagaki, Kiyoshi; Zhang, Qin; Hauser, Carl J

    2010-04-01

    Inflammation and microvascular thrombosis are interrelated causes of acute lung injury in the systemic inflammatory response syndrome. Neutrophils (polymorphonuclear neutrophil [PMN]) and endothelial cells (EC) activated by systemic inflammatory response syndrome interact to increase pulmonary vascular permeability, but the interactions between PMN and EC are difficult to study. Recently, we reported that sphingosine 1-phosphate is a second messenger eliciting store-operated calcium entry (SOCE) in response to inflammatory agonists in both PMN and EC. Store-operated calcium entry is therefore a target mechanism for the therapeutic modulation of inflammatory PMN-EC interactions. Here, we isolated, modeled, and studied the effects of pharmacologic SOCE inhibition using real-time systems to monitor EC permeability after exposure to activated PMN. We created systems to continuously assess permeability of human pulmonary artery endothelial cells and human microvascular endothelial cells from lung. Endothelial cells show increased permeability after challenge by activated PMN. Such permeability increases can be attenuated by exposure of the cocultures to sphingosine kinase (SK) inhibitors (SKI-2, N,N-dimethylsphingosine [DMS]) or Ca2+ entry inhibitors (Gd3+, MRS-1845). Human microvascular endothelial cells from lung pretreated with SKI-2 or DMS showed decreased permeability when later exposed to activated PMN. Likewise, when PMNs were activated with thapsigargin (TG) in the presence of SKI-2, DMS, Gd, or MRS-1845, their ability to cause EC permeability subsequently was reduced. SKI-2 also inhibited the activation of human pulmonary artery ECs by thrombin. These studies will provide a firm mechanistic foundation for understanding how systemic SOCE inhibition may be used to prevent acute lung injury in vivo.

  10. Maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort

    PubMed Central

    2011-01-01

    Background Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system. Methods Exposure to background particulate matter less than 10 μm in diameter (PM10) and nitrogen dioxide (NO2) was assessed in 370 women three months before and during pregnancy using monitoring stations. Personal exposure to four volatile organic compounds (VOCs) was measured in a subsample of 56 non-smoking women with a diffusive air sampler during the second trimester of pregnancy. Cord blood was analyzed at birth by multi-parameter flow cytometry to determine lymphocyte subsets. Results Among other immunophenotypic changes in cord blood, decreases in the CD4+CD25+ T-cell percentage of 0.82% (p = 0.01), 0.71% (p = 0.04), 0.88% (p = 0.02), and 0.59% (p = 0.04) for a 10 μg/m3 increase in PM10 levels three months before and during the first, second and third trimester of pregnancy, respectively, were observed after adjusting for confounders. A similar decrease in CD4+CD25+ T-cell percentage was observed in association with personal exposure to benzene. A similar trend was observed between NO2 exposure and CD4+CD25+ T-cell percentage; however the association was stronger between NO2 exposure and an increased percentage of CD8+ T-cells. Conclusions These data suggest that maternal exposure to air pollution before and during pregnancy may alter the immune competence in offspring thus increasing the child's risk of developing health conditions later in life, including asthma and allergies. PMID:22047167

  11. Occupational exposure to dusts and risk of renal cell carcinoma

    PubMed Central

    Karami, S; Boffetta, P; Stewart, P S; Brennan, P; Zaridze, D; Matveev, V; Janout, V; Kollarova, H; Bencko, V; Navratilova, M; Szeszenia-Dabrowska, N; Mates, D; Gromiec, J; Slamova, A; Chow, W-H; Rothman, N; Moore, L E

    2011-01-01

    Background: Occupational exposures to dusts have generally been examined in relation to cancers of the respiratory system and have rarely been examined in relation to other cancers, such as renal cell carcinoma (RCC). Although previous epidemiological studies, though few, have shown certain dusts, such as asbestos, to increase renal cancer risk, the potential for other occupational dust exposures to cause kidney damage and/or cancer may exist. We investigated whether asbestos, as well as 20 other occupational dust exposures, were associated with RCC risk in a large European, multi-center, hospital-based renal case–control study. Methods: General occupational histories and job-specific questionnaires were reviewed by occupational hygienists for subject-specific information. Odds ratios (ORs) and 95% confidence intervals (95% CIs) between RCC risk and exposures were calculated using unconditional logistic regression. Results: Among participants ever exposed to dusts, significant associations were observed for glass fibres (OR: 2.1; 95% CI: 1.1–3.9), mineral wool fibres (OR: 2.5; 95% CI: 1.2–5.1), and brick dust (OR: 1.5; 95% CI: 1.0–2.4). Significant trends were also observed with exposure duration and cumulative exposure. No association between RCC risk and asbestos exposure was observed. Conclusion: Results suggest that increased RCC risk may be associated with occupational exposure to specific types of dusts. Additional studies are needed to replicate and extend findings. PMID:21540858

  12. Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridges, Christy C.; Battle, Jamie R.; Zalups, Rudolfs K.

    2007-06-01

    Inorganic mercury (Hg{sup 2+}) is a prevalent environmental contaminant to which exposure to can damage rod photoreceptor cells and compromise scotopic vision. The retinal pigment epithelium (RPE) likely plays a role in the ocular toxicity associated with Hg{sup 2+} exposure in that it mediates transport of substances to the photoreceptor cells. In order for Hg{sup 2+} to access photoreceptor cells, it must first be taken up by the RPE, possibly by mechanisms involving transporters of essential nutrients. In other epithelia, Hg{sup 2+}, when conjugated to cysteine (Cys) or homocysteine (Hcy), gains access to the intracellular compartment of the target cellsmore » via amino acid and organic anion transporters. Accordingly, the purpose of the current study was to test the hypothesis that Cys and Hcy S-conjugates of Hg{sup 2+} utilize amino acid transporters to gain access into RPE cells. Time- and temperature-dependence, saturation kinetics, and substrate-specificity of the transport of Hg{sup 2+}, was assessed in ARPE-19 cells exposed to the following S-conjugates of Hg{sup 2+}: Cys (Cys-S-Hg-S-Cys), Hcy (Hcy-S-Hg-S-Hcy), N-acetylcysteine (NAC-S-Hg-S-NAC) or glutathione (GSH-S-Hg-S-GSH). We discovered that only Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy were taken up by these cells. This transport was Na{sup +}-dependent and was inhibited by neutral and cationic amino acids. RT-PCR analyses identified systems B{sup 0,+} and ASC in ARPE-19 cells. Overall, our data suggest that Cys-S-Hg-S-Cys and Hcy-S-Hg-S-Hcy are taken up into ARPE-19 cells by Na-dependent amino acid transporters, possibly systems B{sup 0,+} and ASC. These amino acid transporters may play a role in the retinal toxicity observed following exposure to mercury.« less

  13. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides.

    PubMed

    Romero, Delfina M; Berardino, Bruno G; Wolansky, Marcelo J; Kotler, Mónica L

    2017-01-01

    A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC) 15 s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10 -1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC 15 ) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  15. Artificial dental pulp exposure injury up-regulates antigen-presenting cell-related molecules in rat central nervous system.

    PubMed

    Kaneko, Tomoatsu; Kaneko, Mitsuhiro; Chokechanachaisakul, Uraiwan; Kawamura, Jun; Kaneko, Reika; Sunakawa, Mitsuhiro; Okiji, Takashi; Suda, Hideaki

    2010-03-01

    Bacterial infection and resulting inflammation of the dental pulp might not only trigger neuroimmune interactions in this tissue but also sensitize the central nervous system (CNS) such as the thalamus via nociceptive neurons. Thus, immunopathologic changes in the rat thalamus that take place after pulp inflammation were investigated. Pulp exposure was made in mandibular right first molars of 5-week-old Wistar rats. After 24 hours, the thalamus was retrieved and subjected to either immunohistochemistry for class II major histocompatibility complex (MHC) molecules and glial fibrillary acidic protein (GFAP) or mRNA expression analysis of antigen-presenting cell-related molecules and N-methyl-D-aspartate receptor 2D subunit (NR2D) by means of reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. At 24 hours after pulp exposure, the density of class II MHC molecule-expressing and GFAP-expressing cells was increased in the contralateral thalamus. Gene expression analysis revealed the up-regulation of class II MHC molecules, CD80, CD83, CD86, and NR2D in the contralateral thalamus, as compared with the ipsilateral thalamus. These results suggest the signal of pulp inflammation induces neuronal activation in the CNS. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  17. Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures

    PubMed Central

    2012-01-01

    Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects. PMID:22901679

  18. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  19. Cell Survival After Exposure to a Novel Endodontic Irrigant

    DTIC Science & Technology

    2016-05-13

    antimicrobial activity , the ability to dissolve necrotic tissue, to aid in the debridement of the canal system, and be nontoxic to the periradicular tissues...also not appreciably affect the proliferation of the patient’s own stem cells (11). The active ingredient in Endocyn is hypochlorous acid which has...significant bactericidal activity due to its ability to penetrate bacterial cell membranes resulting in protein degradation (17). If Endocyn

  20. Evaluating the toxicity of bDtBPP on CHO-K1 cells for testing of single-use bioprocessing systems considering media selection, cell culture volume, mixing, and exposure duration.

    PubMed

    Shah, Rhythm R; Linville, Taylor W; Whynot, Andrew D; Brazel, Christopher S

    2016-09-01

    Single-use bioprocessing bags are gaining popularity due to ease of use, lower risk of contamination, and ease of process scale-up. Bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP), a degradant of tris(2,4-di-tert-butylphenyl)phosphite, marketed as Irgafos 168®, which is an antioxidant stabilizer added to resins, has been identified as a potentially toxic leachate which may impact the performance of single-use, multilayer bioprocessing bags. In this study, the toxicity of bDtBPP was tested on CHO-K1 cells grown as adherent or suspended cells. The EC50 (effective concentration to cause 50% cell death) for adherent cells was found to be one order of magnitude higher than that for suspended CHO-K1 cells. While CHO-K1 cells had good cell viability when exposed to moderate concentrations of bDtBPP, the degradant was shown to impact the viable cell density (VCD) at much lower concentrations. Hence, in developing an industry-standard assay for testing the cytotoxicity of leachates, suspended cells (as commonly used in the bioprocessing industry) would likely be most sensitive, particularly when reporting EC50 values based on VCD. The effects of mixing, cell culture volume, and exposure duration were also evaluated for suspended CHO-K1 cells. It was found that the sensitivity of cell culture to leachates from single-use plastic bags was enhanced for suspended cells cultured for longer exposure times and when the cells were subjected to continuous agitation, both of which are important considerations in the production of biopharmaceuticals. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1318-1323, 2016. © 2016 American Institute of Chemical Engineers.

  1. Effects of Early Sun Exposure

    MedlinePlus

    ... People with light skin have less melanin than dark-skinned people. This is why very fair-skinned ... this are wrinkled, tight, or leathery skin and dark spots. Lowered immune system. White blood cells work ...

  2. Mechanistic insight into neurotoxicity induced by developmental insults

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Christoffer; Ceccatelli, Sandra

    Epidemiological and/or experimental studies have shown that unfavorable prenatal environmental factors, such as stress or exposure to certain neurotoxic environmental contaminants, may have adverse consequences for neurodevelopment. Alterations in neurogenesis can have harmful effects not only for the developing nervous system, but also for the adult brain where neurogenesis is believed to play a role in learning, memory, and even in depression. Many recent advances in the understanding of the complex process of nervous system development can be integrated into the field of neurotoxicology. In the past 15 years we have been using cultured neural stem or progenitor cells tomore » investigate the effects of neurotoxic stimuli on cell survival, proliferation and differentiation, with special focus on heritable effects. This is an overview of the work performed by our group in the attempt to elucidate the mechanisms of developmental neurotoxicity and possibly provide relevant information for the understanding of the etiopathogenesis of complex brain disorders. - Highlights: • The developing nervous system is highly sensitive to toxic insults. • Neural stem cells are relevant models for mechanistic studies as well as for identifying heritable effects due to epigenetic changes. • Depending on the dose, the outcome of exposure to neurotoxicants ranges from altered proliferation and differentiation to cell death. • The elucidation of neurotoxicity mechanisms is relevant for understanding the etiopathogenesis of developmental and adult nervous system disorders.« less

  3. Effects of In Utero Exposure to Bisphenol A or Diethylstilbestrol on the Adult Male Reproductive System

    PubMed Central

    LaRocca, Jessica; Boyajian, Alanna; Brown, Caitlin; Smith, Stuart Duncan; Hixon, Mary

    2011-01-01

    The objective of this study was to determine if in utero exposure to Bisphenol A (BPA) induced reproductive tract abnormalities in the adult male testis. Using the C57/Bl6 mouse, we examined sex-organ weights, anogenital distance (AGD), and testis histopathology in adult males exposed in utero via oral gavage to sesame oil, 50 μg/kg BPA, 1,000 μg/kg BPA, or 2 μg/kg diethylstilbestrol (DES) as a positive control from gestational days 10–16. No changes in sperm production or germ cell apoptosis were observed in adult testes following exposure to either chemical. Adult mRNA levels of genes associated with sexual maturation and differentiation, GATA4 and ID2, were significantly lower only in DES-exposed testes. In summary, the data indicate no gross alterations in spermatogenesis following in utero exposure to BPA or DES. At the molecular level, in utero exposure to DES, but not BPA, leads to decreased mRNA expression of genes associated with Sertoli cell differentiation. PMID:21922642

  4. Transcriptional and Functional Plasticity Induced by Chronic Insulin Exposure in a Mast Cell-Like Basophilic Leukemia Cell Model

    PubMed Central

    Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen

    2018-01-01

    Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID:29430572

  5. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells

    PubMed Central

    Hew, K. M.; Walker, A. I.; Kohli, A.; Garcia, M.; Syed, A.; McDonald-Hyman, C.; Noth, E. M.; Mann, J. K.; Pratt, B.; Balmes, J.; Hammond, S. Katharine; Eisen, E. A.; Nadeau, K. C.

    2015-01-01

    Summary Background Evidence suggests that exposure to polycyclic aromatic hydrocarbons (PAHs) increases atopy; it is unclear how PAH exposure is linked to increased severity of atopic diseases. Objective We hypothesized that ambient PAH exposure is linked to impairment of immunity in atopic children (defined as children with asthma and/or allergic rhinitis) from Fresno, California, an area with elevated ambient PAHs. Methods We recruited 256 subjects from Fresno, CA. Ambient PAH concentrations (ng/m3) were measured using a spatial-temporal regression model over multiple time periods. Asthma diagnosis was determined by current NHLBI criteria. Phenotyping and functional immune measurements were performed from isolated cells. For epigenetic measurements, DNA was isolated and pyrosequenced. Results We show that higher average PAH exposure was significantly associated with impaired Treg function and increased methylation in the forkhead box protein 3 (FOXP3) locus (P < 0.05), conditional on atopic status. These epigenetic modifications were significantly linked to differential protein expression of FOXP3 (P < 0.001). Methylation was associated with cellular functional changes, specifically Treg dysfunction, and an increase in total plasma IgE levels. Protein expression of IL-10 decreased and IFN-γ increased as the extent of PAH exposure increased. The strength of the associations generally increased as the time window for average PAH exposure increased from 24 hr to 1 year, suggesting more of a chronic response. Significant associations with chronic PAH exposure and immune outcomes were also observed in subjects with allergic rhinitis. Conclusions and Clinical Relevance Collectively, these results demonstrate that increased ambient PAH exposure is associated with impaired systemic immunity and epigenetic modifications in a key locus involved in atopy: FOXP3, with a higher impact on atopic children. The results suggest that increased atopic clinical symptoms in children could be linked to increased PAH exposure in air pollution. PMID:25048800

  6. Can Exposure to Environmental Chemicals Increase the Risk of Diabetes Type 1 Development?

    PubMed Central

    Stene, Lars Christian

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged. PMID:25883945

  7. Can exposure to environmental chemicals increase the risk of diabetes type 1 development?

    PubMed

    Bodin, Johanna; Stene, Lars Christian; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.

  8. An essential role for platelet-activating factor in activating mast cell migration following ultraviolet irradiation

    PubMed Central

    Chacón-Salinas, Rommel; Chen, Limo; Chávez-Blanco, Alma D.; Limón-Flores, Alberto Y.; Ma, Ying; Ullrich, Stephen E.

    2014-01-01

    The UVB (290–320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (KitW-sh/W-sh) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR−/− mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR−/− mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR−/− mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression. PMID:24009177

  9. In-vitro photo-translocation of antiretroviral drug delivery into TZMbl cells

    NASA Astrophysics Data System (ADS)

    Malabi, Rudzani; Manoto, Sello; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    The current human immunodeficiency virus (HIV) treatment regime possesses the ability to diminish the viral capacity to unnoticeable levels; however complete eradication of the virus cannot be achieved while latent HIV-1 reservoirs go unchallenged. Therapeutic targeting of HIV therefore requires further investigation and current therapies need modification in order to address HIV eradication. This deflects research towards investigating potential novel antiretroviral drug delivery systems. The use of femtosecond (fs) laser pulses in promoting targeted optical drug delivery of antiretroviral drugs (ARVs) into TZMbl cells revolves around using ultrafast laser pulses that have high peak powers, which precisely disrupt the cell plasma membrane in order to allow immediate transportation and expression of exogenous material into the live mammalian cells. A photo-translocation optical setup was built and validated by characterisation of the accurate parameters such as wavelength (800 nm) and pulse duration (115 fs). Optimisation of drug translocation parameters were done by performing trypan blue translocation studies. Cellular responses were determined via cell viability (Adenosine Triphosphate activity) and cell cytotoxicity (Lactate Dehydrogenase) assays which were done to study the influence of the drugs and laser exposure on the cells. After laser irradiation, high cell viability was observed and low toxicity levels were observed after exposure of the cells to both the ARVs and the laser. Our results confirmed that, with minimal damage and high therapeutic levels of ARVs, the fs laser assisted drug delivery system is efficient with benefits of non-invasive and non-toxic treatment to the cells.

  10. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: A contribution to the optimization of gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Congiu Castellano, Agostina

    2011-12-01

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound.

  11. Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human SH-SY5Y cells.

    PubMed

    Wernicke, Catrin; Hellmann, Julian; Finckh, Ulrich; Rommelspacher, Hans

    2010-01-01

    There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.

  12. Induction and repair of HZE induced cytogenetic damage

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Bao, S.; Rithidech, K.; Chrisler, W. B.; Couch, L. A.; Braby, L. A.

    2001-01-01

    Wistar rats were exposed to high-mass, high energy (HZE) 56Fe particles (1000 GeV/AMU) using the Alternating Gradient Synchrotron (AGS). The animals were sacrificed at 1-5 hours or after a 30-day recovery period. The frequency of micronuclei in the tracheal and the deep lung epithelial cells were evaluated. The relative effectiveness of 56Fe, for the induction of initial chromosome damage in the form of micronuclei, was compared to damage produced in the same biological system exposed to other types of high and low-LET radiation. It was demonstrated that for animals sacrificed at short times after exposure, the tracheal and lung epithelial cells, the 56Fe particles were 3.3 and 1.3 times as effective as 60Co in production of micronuclei, respectively. The effectiveness was also compared to that for exposure to inhaled radon. With this comparison, the 56Fe exposure of the tracheal epithelial cells and the lung epithelial cells were only 0.18 and 0.20 times as effective as radon in the production of the initial cytogenetic damage. It was suggested that the low relative effectiveness was related to potential for 'wasted energy' from the core of the 56Fe particles. When the animals were sacrificed after 30 days, the slopes of the dose-response relationships, which reflect the remaining level of damage, decreased by a factor of 10 for both the tracheal and lung epithelial cells. In both cases, the slope of the dose-response lines were no longer significantly different from zero, and the r2 values were very high. Lung epithelial cells, isolated from the animals sacrificed hours after exposure, were maintained in culture, and the micronuclei frequency evaluated after 4 and 6 subcultures. These cells were harvested at 24 and 36 days after the exposure. There was no dose-response detected in these cultures and no signs of genomic instability at either sample time.

  13. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    PubMed

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  14. Risk equivalent of exposure versus dose of radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, V.P.

    This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems. (TEM)

  15. Accelerated/abbreviated test methods, study 4 of task 3 (encapsulation) of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.; Mann, N. R.

    1978-01-01

    Inherent weatherability is controlled by the three weather factors common to all exposure sites: insolation, temperature, and humidity. Emphasis was focused on the transparent encapsulant portion of miniature solar cell arrays by eliminating weathering effects on the substrate and circuitry (which are also parts of the encapsulant system). The most extensive data were for yellowing, which were measured conveniently and precisely. Considerable data also were obtained on tensile strength. Changes in these two properties after outdoor exposure were predicted very well from accelerated exposure data.

  16. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    PubMed

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast. © 2013.

  17. Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells

    PubMed Central

    2013-01-01

    Background Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles. Methods Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium. Results ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees. Conclusions The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa. PMID:24144420

  18. Logic-Based and Cellular Pharmacodynamic Modeling of Bortezomib Responses in U266 Human Myeloma Cells

    PubMed Central

    Chudasama, Vaishali L.; Ovacik, Meric A.; Abernethy, Darrell R.

    2015-01-01

    Systems models of biological networks show promise for informing drug target selection/qualification, identifying lead compounds and factors regulating disease progression, rationalizing combinatorial regimens, and explaining sources of intersubject variability and adverse drug reactions. However, most models of biological systems are qualitative and are not easily coupled with dynamical models of drug exposure-response relationships. In this proof-of-concept study, logic-based modeling of signal transduction pathways in U266 multiple myeloma (MM) cells is used to guide the development of a simple dynamical model linking bortezomib exposure to cellular outcomes. Bortezomib is a commonly used first-line agent in MM treatment; however, knowledge of the signal transduction pathways regulating bortezomib-mediated cell cytotoxicity is incomplete. A Boolean network model of 66 nodes was constructed that includes major survival and apoptotic pathways and was updated using responses to several chemical probes. Simulated responses to bortezomib were in good agreement with experimental data, and a reduction algorithm was used to identify key signaling proteins. Bortezomib-mediated apoptosis was not associated with suppression of nuclear factor κB (NFκB) protein inhibition in this cell line, which contradicts a major hypothesis of bortezomib pharmacodynamics. A pharmacodynamic model was developed that included three critical proteins (phospho-NFκB, BclxL, and cleaved poly (ADP ribose) polymerase). Model-fitted protein dynamics and cell proliferation profiles agreed with experimental data, and the model-predicted IC50 (3.5 nM) is comparable to the experimental value (1.5 nM). The cell-based pharmacodynamic model successfully links bortezomib exposure to MM cellular proliferation via protein dynamics, and this model may show utility in exploring bortezomib-based combination regimens. PMID:26163548

  19. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes.

    PubMed

    Seo, Seung-Beom; Choe, Eun Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-06-01

    Brain tissue is known to be vulnerable to the exposure by tobacco smoke. Tobacco smoke can induce generation of reactive oxygen species (ROS), causing inflammatory activity and blood-brain barrier (BBB) impairment. The aim of the present study was to investigate the effect of tobacco smoke on cell cytotoxicity, generation of ROS, and cellular membrane damage in astrocytes and BBB using a co-culture system. Cell viability of U373MG cells was reduced in a dose-dependent manner, ranging from 96.7% to 40.3% by tobacco smoke condensate (TSC). Cell viability of U373MG co-cultured with human brain microvascular endothelial cells (HBMECs) was 104.9% at the IC 50 value of TSC. Trans-epithelial electric resistance values drastically decreased 80% following 12-h incubation. The value was maintained until 48 h and then increased at 72-h incubation (85%). It then decreased to 75% at 120 h. Generation of ROS increased in a dose-dependent manner, ranging from 102.7% to 107.9%, when various concentrations of TSC (4-16 mg/mL) were administered to the U373MG monoculture. When TSC was added into U373MG co-cultured with HBMECs, production of ROS ranged from 101.7% to 102.6%, slightly increasing over 12 h. Maximum exposure-generated ROS of 104.8% was reached at 24 h. Cell cytotoxicity and oxidative stress levels in the U373MG co-culture model system with HBMECs were lower than U373MG monoculture. HBMECs effectively acted as a barrier to protect the astrocytes (U373MG) from toxicity of TSC.

  20. Tadalafil modulates aromatase activity and androgen receptor expression in a human osteoblastic cell in vitro model.

    PubMed

    Aversa, A; Fittipaldi, S; Bimonte, V M; Wannenes, F; Papa, V; Francomano, D; Greco, E A; Lenzi, A; Migliaccio, S

    2016-02-01

    Phosphodiesterase type-5 inhibitor (PDE5i) tadalafil administration in men with erectile dysfunction is associated with increased testosterone/estradiol ratio, leading to hypothesize a potential increased effect of androgen action on target tissues. We aimed to characterize, in a cellular model system in vitro, the potential modulation of aromatase and sex steroid hormone receptors upon exposure to tadalafil (TAD). Human osteoblast-like cells SAOS-2 were chosen as an in vitro model system since osteoblasts are target of steroid hormones. Cells were tested for viability upon TAD exposure, which increased cell proliferation. Then, cells were treated with/without TAD for several times to evaluate potential modulation in PDE5, aromatase (ARO), androgen (AR) and estrogen (ER) receptor expression. Osteoblasts express significant levels of both PDE5 mRNA and protein. Exposure of cells to increasing concentrations of TAD (10(-8)-10(-7) M) decreased PDE5 mRNA and protein expression. Also, TAD inhibited ARO mRNA and protein expression leading to an increase in testosterone levels in the supernatants. Interestingly, TAD increased total AR mRNA and protein expression and decreased ERα, with an increased ratio of AR/ER, suggesting preferential androgenic vs estrogenic pathway activation. Our results demonstrate for the first time that TAD decreases ARO expression and increases AR protein expression in human SAOS-2, strongly suggesting a new control of steroid hormones pathway by PDE5i. These findings might represent the first evidence of translational actions of PDE5i on AR, which leads to hypothesize a growing relevance of this molecule in men with prostate cancer long-term treated with TAD for sexual rehabilitation.

  1. Tissue Phthalate Levels Correlate With Changes in Immune Gene Expression in a Population of Juvenile Wild Salmon.

    PubMed

    Martins, Kelly; Hagedorn, Birgit; Ali, Shareen; Kennish, John; Applegate, Ben; Leu, Matthias; Epp, Lidia; Pallister, Chris; Zwollo, Patty

    2016-07-01

    Phthalates have detrimental effects on health and have been shown to dysregulate the immune system of mammals, birds, and fish. We recently reported that di(2-ethylhexyl) phthalate exposure reduces the abundance and inhibits the proliferation of rainbow trout (Oncorhynchus mykiss) IgM(+) B lymphocytes and expression of secreted immunoglobulin heavy-chain mu transcripts in an in vitro culture system. We proposed that phthalates act as immunomodulators by modifying the normal B cell-activation pathways by accelerating B cell differentiation while suppressing plasmablast expansion, thus resulting in fewer IgM-secreting plasma cells. This hypothesis was tested here in an in vivo field study of juvenile Dolly Varden (Salvelinus malma) from a plastic-polluted lake in the Gulf of Alaska. Fish tissues were analyzed for both phthalate levels using liquid chromatography-coupled tandem mass spectrometry and for changes in immune gene expression using reverse transcriptase-real time polymerase chain reaction. Results showed that fish with higher tissue levels of di(2-ethylhexyl) phthalate, di(n-butyl) phthalate, and/or dimethyl phthalate expressed significantly fewer secreted and membrane-bound immunoglobulin heavy-chain mu and Blimp1 transcripts in their hematopoietic tissue. This suggests that in vivo uptake of phthalates in fish changes the expression of B cell-specific genes. Chronic exposure to phthalates likely dysregulates normal B-lymphoid development and antibody responses in salmonids and may increase susceptibility to infection. Given the conserved nature of B-lineage cells in vertebrate animals, other marine species may be similarly affected by chronic phthalate exposure.

  2. Basic study on apoptosis induction into cancer cells U-937 and EL-4 by ultrasound exposure.

    PubMed

    Takeuchi, Shinichi; Udagawa, Yoshiko; Oku, Yumiko; Fujii, Takuma; Nishimura, Hiroyuki; Kawashima, Norimichi

    2006-12-22

    Recently, the low invasive cancer treatments with small aftereffects have been considered. We are studying on the suppression methods of cancer cell proliferation with ultrasound. Cancer cells of mouse T lymphoma (EL-4) have been used in our study. The human histitocytic lymphoma cells (U-937) was used in this time. The cancer cells were cultured in a culture medium of RPMI1640. The standing wave acoustic field was formed in a water tank of our ultrasound exposure system by a vibrating plate driven with a Langevine type transducer. The U-937 and EL-4 were exposed to ultrasound in the acoustic field with spatial average acoustic intensity of 350 mW/cm(2) at 150 kHz. The viable rate of EL-4 decreased with the lapse of culture time after ultrasound exposure. U-937 did not show the remarkable decrease tendency. The proliferation of U-937 which exposed to ultrasound with 700 mW/cm(2) was suppressed. It can be thought that apoptosis was induced in the cancer cells in this condition. We observed the morphological change on the U-937 exposed to ultrasound with this condition. The morphological changes by apoptosis like the shrink of cells, formation of apoptotic bodies etc. can be observed with an optical microscope and a phase contrast microscope.

  3. Protective effect of quercetin on the reproductive toxicity of 4-nitrophenol in diesel exhaust particles on male embryonic chickens.

    PubMed

    Mi, Yuling; Zhang, Caiqiao; Li, Chun Mei; Taneda, Shinji; Watanabe, Gen; Suzuki, Akira K; Taya, Kazuyoshi

    2010-04-01

    The 4-nitrophenol (PNP) in diesel exhaust particles (DEP) has been identified as a vasodilator and is a known degradation product of the insecticide parathion. In this study, the protective effect of quercetin, a potent oxygen free radical scavenger and metal chelator, against the oxidative damage of PNP on cultured testicular cells was studied in male embryonic chickens. Testicular cells from Day 18 embryos were cultured in serum-free McCoy's 5A medium and challenged with quercetin (1.0 microg/ml) alone or in combinations with PNP (10(-7)-10(-5) M) for 48 h. The oxidative damage was estimated by measuring cell viability, content of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidation (GSH-Px) activity. The results showed that exposure to PNP (10(-5) M) induced condensed nuclei, vacuolated cytoplasm and a decrease in testicular cell viability and spermatogonial cell number. Exposure to PNP induced lipid peroxidation by elevation of the content of MDA. Exposure to PNP also decreased GSH-Px activity and SOD activity. However, simultaneous supplementation with quercetin restored these parameters to the same levels as the control. Consequently, PNP induced oxidative stress in spermatogonial cells, and dietary quercetin may attenuate the reproductive toxicity of PNP to restore the intracellular antioxidant system in the testicular cells of embryonic chickens.

  4. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury.

    PubMed

    Dziorny, Adam C; Orlando, Mark S; Strain, J J; Davidson, Philip W; Myers, Gary J

    2013-09-01

    Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily be quantified, and might be helpful additions to testing. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants and whether they are associated with children's neurodevelopment. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium.

    PubMed

    Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J

    2017-05-01

    Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.

  6. Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium

    PubMed Central

    Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.

    2017-01-01

    ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383

  7. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to survive nsPEFs. The ability of the CHO cytoskeleton to recover and complete mitosis after nsPEF-induced damage in G2/M phase may be integral to the cell line's higher tolerance of nsPEF exposure.

  8. DNA methylation and copy number variation analyses of human embryonic stem cell-derived neuroprogenitors after low-dose decabromodiphenyl ether and/or bisphenol A exposure.

    PubMed

    Du, L; Sun, W; Li, X M; Li, X Y; Liu, W; Chen, D

    2018-05-01

    The polybrominated diphenyl ether flame retardants decabromodiphenyl ether (BDE-209) and bisphenol A (BPA) are environmental contaminants that can cross the placenta and exert toxicity in the developing fetal nervous system. Copy number variants (CNVs) play a role in a number of genetic disorders and may be implicated in BDE-209/BPA teratogenicity. In this study, we found that BDE-209 and/or BPA exposure decreased neural differentiation efficiency of human embryonic stem cells (hESCs), although there was a >90% induction of neuronal progenitor cells (NPCs) from exposed hESCs. However, the mean of CNV numbers in the NPCs with BDE-209 + BPA treatment was significantly higher compared to the other groups, whereas DNA methylation was lower and DNA methyltransferase(DNMT1 and DNMT3A) expression were significantly decreased in all of the BDE-209 and/or BPA treatment groups compared with the control groups. The number of CNVs in chromosomes 3, 4, 11, 22, and X in NPCs with BDE-209 and/or BPA exposure was higher compared to the control group. In addition, CNVs in chromosomes 7, 8, 14, and 16 were stable in hESCs and hESCs-derived NPCs irrespective of BDE-209/BPA exposure, and CNVs in chromosomes 20 q11.21 and 16 p13.11 might be induced by neural differentiation. Thus, BDE-209/BPA exposure emerges as a potential source of CNVs distinct from neural differentiation by itself. BDE-209 and/or BPA exposure may cause genomic instability in cultured stem cells via reduced activity of DNA methyltransferase, suggesting a new mechanism of human embryonic neurodevelopmental toxicity caused by this class of environmental toxins.

  9. Asthma progression to airway remodeling and bone marrow eosinophil responses in genetically distinct strains of mice.

    PubMed

    Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S

    2008-12-01

    Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.

  10. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  11. Dihydroxyacetone induces G2/M arrest and apoptotic cell death in A375P melanoma cells.

    PubMed

    Smith, Kelly R; Granberry, Molley; Tan, Marcus C B; Daniel, Casey L; Gassman, Natalie R

    2018-03-01

    The active ingredient in sunless tanning products (STPs) is a simple sugar, dihydroxyacetone (DHA). Several studies have demonstrated that DHA is absorbed within the viable layers of skin and not fully contained within the stratum corneum. Additionally, spray tanning and other aerosolized application methods have increased the risk of internal exposure through mucous membranes and inhalation. Beyond its presence in STPs, DHA also occurs as an endogenous by-product of fructose metabolism, and an excess of DHA in cells can induce advanced glycation end (AGE) products and oxidative stress. Therefore, exogenous and endogenous exposures to DHA may be harmful to cells, and it has already been demonstrated that exogenous exposure to DHA is cytotoxic in immortalized keratinocytes. Still, little is known about the exogenous DHA exposure effects on other skin components. In this study, we explore the effects of exogenous DHA exposure in a human melanoma cell line, A375P. Melanoma cells were sensitive to DHA and displayed a transient burst of reactive oxygen species within an hour of exposure. Cell cycle arrest at G2/M was observed within 24 h of exposure, and apoptosis, monitored by the cleavage of PARP-1 and Caspase-3, was detected within 72 h of exposure to DHA. Together, these demonstrate that exogenous exposure to DHA has cytotoxic effects in our selected cell model and indicates the need to further investigate the exogenous exposure effects of DHA in other relevant exposure models. © 2017 Wiley Periodicals, Inc.

  12. Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity.

    PubMed

    Odorizzi, Pamela M; Feeney, Margaret E

    2016-10-01

    Pregnancy-associated malaria, including placental malaria, causes significant morbidity and mortality worldwide. Recently, it has been suggested that in utero exposure of the fetus to malaria antigens may negatively impact the developing immune system and result in tolerance to malaria. Here, we review our current knowledge of fetal immunity to malaria, focusing on the dynamic interactions between maternal malaria infection, placental development, and the fetal immune system. A better understanding of the long-term impact of in utero malaria exposure on the development of natural immunity to malaria, immune responses to other childhood pathogens, and vaccine immunogenicity is urgently needed. This may guide the implementation of novel chemoprevention strategies during pregnancy and facilitate the push toward malaria vaccines. Published by Elsevier Ltd.

  13. Biological Effects of Space Radiation and Development of Effective Countermeasures

    PubMed Central

    Kennedy, Ann R.

    2014-01-01

    As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation. PMID:25258703

  14. Biological effects of space radiation and development of effective countermeasures

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  15. Cell Signaling and Neurotoxicity: Protein Kinase C in vitro and in vivo

    EPA Science Inventory

    There is a growing concern about the effects of chemicals on the developing nervous system. Chemical exposure at critical periods of development can be associated with effects ranging from subtle to profound on the structure and/or function of the nervous system. Understanding cr...

  16. The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol.

    PubMed

    Naciff, Jorge M; Khambatta, Zubin S; Thomason, Ryan G; Carr, Gregory J; Tiesman, Jay P; Singleton, David W; Khan, Sohaib A; Daston, George P

    2009-01-01

    We have determined the gene expression profile induced by 17 alpha-ethynyl estradiol (EE) in Ishikawa cells, a human uterine-derived estrogen-sensitive cell line, at various doses (1 pM, 100 pM, 10 nM, and 1 microM) and time points (8, 24, and 48 h). The transcript profiles were compared between treatment groups and controls (vehicle-treated) using high-density oligonucleotide arrays to determine the expression level of approximately 38,500 human genes. By trend analysis, we determined that the expression of 2560 genes was modified by exposure to EE in a dose- and time-dependent manner (p

  17. A systems toxicology approach identifies Lyn as a key signaling phosphoprotein modulated by mercury in a B lymphocyte cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, Joseph A.; Stemmer, Paul M.; Dombkowski, Alan

    2014-04-01

    Network and protein–protein interaction analyses of proteins undergoing Hg{sup 2+}-induced phosphorylation and dephosphorylation in Hg{sup 2+}-intoxicated mouse WEHI-231 B cells identified Lyn as the most interconnected node. Lyn is a Src family protein tyrosine kinase known to be intimately involved in the B cell receptor (BCR) signaling pathway. Under normal signaling conditions the tyrosine kinase activity of Lyn is controlled by phosphorylation, primarily of two well known canonical regulatory tyrosine sites, Y-397 and Y-508. However, Lyn has several tyrosine residues that have not yet been determined to play a major role under normal signaling conditions, but are potentially important sitesmore » for phosphorylation following mercury exposure. In order to determine how Hg{sup 2+} exposure modulates the phosphorylation of additional residues in Lyn, a targeted MS assay was developed. Initial mass spectrometric surveys of purified Lyn identified 7 phosphorylated tyrosine residues. A quantitative assay was developed from these results using the multiple reaction monitoring (MRM) strategy. WEHI-231 cells were treated with Hg{sup 2+}, pervanadate (a phosphatase inhibitor), or anti-Ig antibody (to stimulate the BCR). Results from these studies showed that the phosphoproteomic profile of Lyn after exposure of the WEHI-231 cells to a low concentration of Hg{sup 2+} closely resembled that of anti-Ig antibody stimulation, whereas exposure to higher concentrations of Hg{sup 2+} led to increases in the phosphorylation of Y-193/Y-194, Y-501 and Y-508 residues. These data indicate that mercury can disrupt a key regulatory signal transduction pathway in B cells and point to phospho-Lyn as a potential biomarker for mercury exposure. - Highlights: • Inorganic mercury (Hg{sup 2+}) induces changes in the WEHI-231 B cell phosphoproteome. • The B cell receptor (BCR) signaling pathway was the pathway most affected by Hg{sup 2+}. • The Src family phosphoprotein kinase Lyn was the most interconnected node. • Lyn is likely central to the immunotoxic potential of Hg{sup 2+}. • Lyn phosphorylation profiles may be biomarkers for Hg{sup 2+} intoxication of B cells.« less

  18. Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D in-vivo imaging of multicellular organism

    NASA Astrophysics Data System (ADS)

    Rasmi, Chelur K.; Padmanabhan, Sreedevi; Shirlekar, Kalyanee; Rajan, Kanhirodan; Manjithaya, Ravi; Singh, Varsha; Mondal, Partha Pratim

    2017-12-01

    We propose and demonstrate a light-sheet-based 3D interrogation system on a microfluidic platform for screening biological specimens during flow. To achieve this, a diffraction-limited light-sheet (with a large field-of-view) is employed to optically section the specimens flowing through the microfluidic channel. This necessitates optimization of the parameters for the illumination sub-system (illumination intensity, light-sheet width, and thickness), microfluidic specimen platform (channel-width and flow-rate), and detection sub-system (camera exposure time and frame rate). Once optimized, these parameters facilitate cross-sectional imaging and 3D reconstruction of biological specimens. The proposed integrated light-sheet imaging and flow-based enquiry (iLIFE) imaging technique enables single-shot sectional imaging of a range of specimens of varying dimensions, ranging from a single cell (HeLa cell) to a multicellular organism (C. elegans). 3D reconstruction of the entire C. elegans is achieved in real-time and with an exposure time of few hundred micro-seconds. A maximum likelihood technique is developed and optimized for the iLIFE imaging system. We observed an intracellular resolution for mitochondria-labeled HeLa cells, which demonstrates the dynamic resolution of the iLIFE system. The proposed technique is a step towards achieving flow-based 3D imaging. We expect potential applications in diverse fields such as structural biology and biophysics.

  19. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus).

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Ling, Ren-Zhi; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li

    2015-07-01

    Ammonia is one of major environmental pollutants in the freshwater aquatic system that affects the survival and growth of organisms. In the present study, we investigated the effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Fish were exposed to various concentrations of ammonia (0, 1.43, 3.57, 7.14mM) for 72h. The date showed that ammonia exposure could induce intracellular reactive oxygen species (ROS), interrupt intracellular Ca(2+) (cf-Ca(2+)) homeostasis, and subsequently lead to DNA damage and cell apoptosis. To test the apoptotic pathway, the expression patterns of some key apoptotic related genes including P53, Bax Bcl2, Caspase 9, Caspase 8 and Caspase 3 in the liver were examined. The results showed that ammonia stress could change these genes transcription, associated with increasing of cell apoptosis, suggesting that the P53-Bax-Bcl2 pathway and caspase-dependent apoptotic pathway could be involved in cell apoptosis induced by ammonia stress. In addition, ammonia stress could induced up-regulation of inflammatory cytokines (BAFF, TNF-α, IL-6 and IL-12) transcription, indicating that innate immune system play important roles in ammonia-induced toxicity in fish. Furthermore, the gene expressions of antioxidant enzymes (Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the liver were induced by ammonia stress, suggesting that antioxidant system and heat shock proteins tried to protect cells from oxidative stress and apoptosis induced by ammonia stress. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Beta Androstenediol Mitigates the Damage of 1 GeV/n Fe Ion Particle Radiation to the Hematopoietic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loria R.; Guida P.; Loria, R.

    2010-09-07

    Space exploration is associated with exposure to 1-3 Gy solar particle radiation and galactic cosmic radiation that could increase cancer rates. Effective nontoxic countermeasures to high linear energy transfer (LET) radiation exposure are highly desirable but currently not available. The aim was to determine whether a single subcutaneous injection of androstenediol ({Delta}(5) androsten-3{beta}, 17{beta}-diol [AED]) could mitigate and restore the mouse hematopoetic system from the radiation-mediated injury of 3 Gy whole-body high LET (56)Fe(26+) exposure. The findings show that postradiation AED treatment has an overall positive and significant beneficial effect to restore the levels of hematopoeitic elements (p < 0.001).more » Androstenediol treatment significantly increased monocyte levels at days 4, 7, and 14 and, similarly, increased red blood cell, hemoglobin, and platelet counts. Flow cytometry analysis 14 days after radiation and AED treatment demonstrated an increase (p < 0.05) in bone marrow cells counts. Ex vivo osteoclastogenesis studies show that AED treatment is necessary and advantageous for the development and restoration of osteoclastogenesis after radiation exposure. These findings clearly show that androstenediol functions as a countermeasure to remedy hematopoeitic injury mediated by high LET iron ion radiation. Presently, no other agent has been shown to have such properties.« less

  1. Effect of space relevant radiation exposure on differentiation and mineralization of murine osteoprogenitor cells

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. Exposure to X-irradiation dose-dependently increased the mRNA levels of Runx2 (cbfa1) whereas expression values of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more marked effect on bone specific gene expression within the differentiation process. Collectively, our results indi-cate that heavy ions facilitate differentiation more effectively than X-rays as a major response in the progeny of irradiated osteoprogenitor cells. The data presented allow us to suggest that exposure to ionizing radiation interferes with bone formation at the level of cellular differenti-ation. In this regard, further experiments are needed to investigate gene expression patterns in mammalian cells that respond to differentiation after exposure to ionizing radiation.

  2. A transmission electron microscopy study of the diversity of Candida albicans cells induced by Euphorbia hirta L. leaf extract in vitro

    PubMed Central

    Basma, Abu Arra; Zuraini, Zakaria; Sasidharan, Sreenivasan

    2011-01-01

    Objective To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. Methods Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C. albicans cells at various exposure time. Results It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. Conclusions The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent. PMID:23569719

  3. Cross-Generational Reproductive Fitness Enforced by Microchimeric Maternal Cells.

    PubMed

    Kinder, Jeremy M; Jiang, Tony T; Ertelt, James M; Xin, Lijun; Strong, Beverly S; Shaaban, Aimen F; Way, Sing Sing

    2015-07-30

    Exposure to maternal tissue during in utero development imprints tolerance to immunologically foreign non-inherited maternal antigens (NIMA) that persists into adulthood. The biological advantage of this tolerance, conserved across mammalian species, remains unclear. Here, we show maternal cells that establish microchimerism in female offspring during development promote systemic accumulation of immune suppressive regulatory T cells (Tregs) with NIMA specificity. NIMA-specific Tregs expand during pregnancies sired by males expressing alloantigens with overlapping NIMA specificity, thereby averting fetal wastage triggered by prenatal infection and non-infectious disruptions of fetal tolerance. Therefore, exposure to NIMA selectively enhances reproductive success in second-generation females carrying embryos with overlapping paternally inherited antigens. These findings demonstrate that genetic fitness, canonically thought to be restricted to Mendelian inheritance, is enhanced in female placental mammals through vertically transferred maternal cells that promote conservation of NIMA and enforce cross-generational reproductive benefits. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia.

    PubMed

    Boas, F E; Forman, L; Beutler, E

    1998-03-17

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells.

  5. Titanium dioxide nanoparticles-mediated in vitro cytotoxicity does not induce Hsp70 and Grp78 expression in human bronchial epithelial A549 cells.

    PubMed

    Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Kulthong, Kornphimol; Maniratanachote, Rawiwan

    2012-10-01

    Titanium dioxide nanoparticles (TiO(2)NPs) are increasingly being used in various industrial applications including the production of paper, plastics, cosmetics and paints. With the increasing number of nano-related products, the concern of governments and the general public about the health and environmental risks, especially with regard to occupational and other environmental exposure, are gradually increasing. However, there is insufficient knowledge about the actual affects upon human health and the environment, as well as a lack of suitable biomarkers for assessing TiO(2)NP-induced cytotoxicity. Since the respiratory tract is likely to be the main exposure route of industrial workers to TiO(2)NPs, we investigated the cytotoxicity of the anatase and rutile crystalline forms of TiO(2)NPs in A549 cells, a human alveolar type II-like epithelial cell line. In addition, we evaluated the transcript and protein expression levels of two heat shock protein (HSP) members, Grp78 and Hsp70, to ascertain their suitability as biomarkers of TiO(2)NP-induced toxicity in the respiratory system. Ultrastructural observations confirmed the presence of TiO(2)NPs inside cells. In vitro exposure of A549 cells to the anatase or rutile forms of TiO(2)NPs led to cell death and induced intracellular ROS generation in a dose-dependent manner, as determined by the MTS and dichlorofluorescein (DCF) assays, respectively. In contrast, the transcript and protein expression levels of Hsp70 and Grp78 did not change within the same TiO(2)NPs dose range (25-500 μg/ml). Thus, whilst TiO(2)NPs can cause cytotoxicity in A549 cells, and thus potentially in respiratory cells, Hsp70 and Grp78 are not suitable biomarkers for evaluating the acute toxicological effects of TiO(2)NPs in the respiratory system.

  6. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

    PubMed

    Sagioglou, Niki E; Manta, Areti K; Giannarakis, Ioannis K; Skouroliakou, Aikaterini S; Margaritis, Lukas H

    2016-01-01

    Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary.

  7. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  8. Risk of Exposure to Zika Virus and Impact on Cord Blood Banking and Adult Unrelated Donors in Hematopoietic Cell Transplantation: The Canadian Blood Services Experience.

    PubMed

    Adams, Zachary; Morris, Gail; Campbell, Todd; Mostert, Karen; Dibdin, Nicholas; Fearon, Margaret; Elmoazzen, Heidi; Mercer, Dena; Young, Kimberly; Allan, David

    2018-04-01

    Zika virus has emerged as a potential threat to the Canadian blood supply system. Stem cell donors within Canadian Blood Services' Cord Blood Bank (CBB) and OneMatch Stem Cell and Marrow Network (OM) now undergo screening measures designed to reduce the risk of Zika virus transmission. The impact these screening measures have on cord blood and unrelated adult stem cell donations is currently unknown. Among 146 donor workups initiated by OM between July 2016 and May 2017, 102 were completed and 44 workups were canceled. There were 17 potential donors (11.6%) with a risk of Zika virus exposure identified by the donor questionnaire (13 completed, 4 canceled workups). None of the workups involved a donor diagnosed with confirmed Zika virus within the past 6 months. Only 1 of the 44 canceled workups (and only 1 of 4 cases with a risk of Zika transmission) was canceled because of the risk of Zika transmission, and a backup donor was selected. Canadian Blood Services' CBB identified 25 of 875 cord blood units (2.9%) from women who donated their infants' cord blood and underwent screening that otherwise met the initial cell number thresholds for banking and had at least 1 risk factor for exposure to Zika virus. No women were diagnosed with Zika virus at any point of their pregnancy. All 25 units were discarded. Unrelated donors at OM have a higher incidence of a risk of exposure to Zika virus compared with cord blood donors. Only rarely did transplant centers cancel donor workups due to potential Zika virus exposure. The impact of screening for Zika virus exposure risk on cord blood banking was minor. Continued vigilance and surveillance is recommended. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  9. Assessment of potential damage to DNA in urine of coke oven workers: an assay of unscheduled DNA synthesis.

    PubMed Central

    Roos, F; Renier, A; Ettlinger, J; Iwatsubo, Y; Letourneux, M; Haguenoer, J M; Jaurand, M C; Pairon, J C

    1997-01-01

    OBJECTIVES: A study was conducted in coke oven workers to evaluate the biological consequences of the exposure of these workers, particularly production of potential genotoxic factors. METHODS: 60 coke oven workers and 40 controls were recruited in the same iron and steel works. Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed by job and measurement of 1-hydroxypyrene (1OHP) in urine samples. An unscheduled DNA synthesis assay was performed on rat pleural mesothelial cells used as a test system to evaluate the effect of the workers' filtered urine on the DNA repair capacity of rat cells to determine whether DNA damaging agents are present in the urine of these workers. RESULTS: Urinary concentrations of 1OHP ranged from 0.06 to 24.2 (mean (SD) 2.1 (3.6)) mumol/mol creatinine in exposed coke oven workers, and from 0.01 to 0.9 in controls (0.12 (0.15)). These high concentrations in coke oven workers reflected recent exposure to PAHs and were in agreement with the assessment of exposure by job. No significant difference was found between coke oven workers and controls in the DNA repair level of rat cells treated with urine samples. However, the rat cell repair capacity decreased with increasing 1OHP concentrations in the exposed population (r = -0.28, P < 0.05). CONCLUSIONS: As high concentrations of 1OHP were found in the urine of some workers, a more stringent control of exposures to PAHs in the workplace is required. Exposure to PAHs was not associated with a clear cut modification of the urinary excretion of DNA damaging factors in this test, as shown by the absence of increased unscheduled DNA synthesis in rat cells. However, impairment of some repair mechanisms by urinary constituents is suspected. PMID:9470892

  10. Photon-Weighted Midpoint Exposure Meter for Keck/HIRES Extrasolar Planet Research

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Grant was received for research involving the construction of a photon-weighting midpoint exposure meter for the Keck HIRES spectrometer, and for support of our NASA/Keck-based planet research with this instrumentation. The research funds were also to be used to make our iodine cell calibration system and exposure meter available to the NASA Keck observing community. Progress this past year, the second of the 3-year granting period, involved work in 4 areas: 1) Further construction of the midpoint exposure meter. 2) Assisting observers with use of the Iodine system. 3) Acquisition of precision radial velocity data on our program star sample with continued monitoring to proceed in subsequent years as available telescope time permits. 4) Reduction and analysis of incoming precision radial velocity data to reject problematic and uninteresting program stars, and to identify promising planet candidates.

  11. Short-term exposure to JP-8 jet fuel results in long-term immunotoxicity.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to have adverse effects on human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans, and to decrease sensorimotor speed. Due to the decision by the United States Air Force to implement the widespread use of JP-8 jet fuel in its operations, a thorough understanding of its potential effects upon exposed personnel is both critical and necessary. Exposure to potential environmental toxicants such as JP-8 may have significant effects on host systems beyond those readily visible (i.e., physiology, cardiology, respiratory, etc.); e.g., the immune system. Previous studies have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system, which should have serious consequences for the exposed host in terms of susceptibility to infectious agents. If these alterations in immune function were long-lasting, it might also result in an increased likelihood of development and/or progression of cancer, as well as autoimmune disease. In the current study, mice were exposed for 1 h/day for 7 days to a moderate (1000 mg/m3) and a high (2500 mg/m3) concentration of aerosolized JP-8 jet fuel to stimulate occupational exposures. One to 28 days after the last exposure the mice were analyzed for effects of the exposure on their immune systems. It was observed that decrease in viable immune cell numbers and immune organ weights found at 24 h after exposure persisted for extended periods of time. Further, JP-8 exposure resulted in significantly decreased immune infection, as analyzed by mitogenesis assays, which persisted for up to 4 weeks post-exposure. Thus, short-term exposure of mice to JP-8 jet fuel caused significant toxicological effects on the immune system, which were long-lasting and persistent. It appears that the immune system may be the most sensitive indicator of toxicological damage due to JP-8 exposure. Such long-term changes in immune status may have significant effects on the health of the exposed individual.

  12. Different cell responses induced by exposure to maghemite nanoparticles.

    PubMed

    Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto; Serrano, M Concepción

    2013-12-07

    Recent advances in nanotechnology have permitted the development of a wide repertoire of inorganic magnetic nanoparticles (NPs) with extensive promise for biomedical applications. Despite this remarkable potential, many questions still arise concerning the biocompatible nature of NPs when in contact with biological systems. Herein, we have investigated how controlled changes in the physicochemical properties of iron oxide NPs at their surface (i.e., surface charge and hydrodynamic size) affect, first, their interaction with cell media components and, subsequently, cell responses to NP exposure. For that purpose, we have prepared iron oxide NPs with three different coatings (i.e., dimercaptosuccinic acid - DMSA, (3-aminopropyl)triethoxysilane - APS and dextran) and explored the response of two different cell types, murine L929 fibroblasts and human Saos-2 osteoblasts, to their exposure. Interestingly, different cell responses were found depending on the NP concentration, surface charge and cell type. In this sense, neutral NPs, as those coated with dextran, induced negligible cell damage, as their cellular internalization was significantly reduced. In contrast, surface-charged NPs (i.e., those coated with DMSA and APS) caused significant cellular changes in viability, morphology and cell cycle under certain culture conditions, as a result of a more active cellular internalization. These results also revealed a particular cellular ability to detect and remember the original physicochemical properties of the NPs, despite the formation of a protein corona when incubated in culture media. Overall, conclusions from these studies are of crucial interest for future biomedical applications of iron oxide NPs.

  13. Nephrogenic Systemic Fibrosis Manifesting a Decade After Exposure to Gadolinium.

    PubMed

    Larson, Krista N; Gagnon, Amy L; Darling, Melissa D; Patterson, James W; Cropley, Thomas G

    2015-10-01

    Nephrogenic systemic fibrosis (NSF) is a fibrosing skin disorder that develops in patients with kidney failure and has been linked to exposure to gadolinium-containing contrast agents. The time between exposure to gadolinium and the initial presentation of NSF is typically weeks to months but has been documented to be as long as 3½ years. We report a case of NSF developing 10 years after exposure to gadolinium. A long-term hemodialysis patient was exposed to gadolinium several times between 1998 and 2004 during magnetic resonance angiography of his abdominal vessels and arteriovenous fistula. In 2014, he was seen at our clinic with new dermal papules and plaques. Biopsy of affected skin showed thickening of collagen, CD34+ spindle cells, and increased mucin in the dermis, supporting the diagnosis of NSF. The clinical history and histopathological features of this case support the diagnosis of NSF 10 years after exposure to gadolinium. Although the use of gadolinium contrast agents in patients with kidney failure has markedly decreased, patients with exposure to gadolinium years to decades previously may manifest the disease.

  14. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma

    PubMed Central

    Graham, Christine E.; Basappa, Johnvesly; Turcan, Sevin; Vetter, Douglas E.

    2011-01-01

    A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body. PMID:21909974

  15. Inflammatory and oxidative stress-related effects associated with neurotoxicity are maintained after exclusively prenatal trichloroethylene exposure.

    PubMed

    Blossom, Sarah J; Melnyk, Stepan B; Li, Ming; Wessinger, William D; Cooney, Craig A

    2017-03-01

    Trichloroethylene (TCE) is a widespread environmental toxicant with immunotoxic and neurotoxic potential. Previous studies have shown that continuous developmental exposure to TCE encompassing gestation and early life as well as postnatal only exposure in the drinking water of MRL+/+ mice promoted CD4 + T cell immunotoxicity, glutathione depletion and oxidative stress in the cerebellum, as well increased locomotor activity in male offspring. The purpose of this study was to characterize the effects of exclusively prenatal exposure on these parameters. Another goal was to investigate potential plasma oxidative stress/inflammatory biomarkers to possibly be used as predictors of TCE-mediated neurotoxicity. In the current study, 6 week old male offspring of dams exposed gestationally to 0, 0.01, and 0.1mg/ml TCE in the drinking water were evaluated. Our results confirmed that the oxidized phenotype in plasma and cerebellum was maintained after exclusively prenatal exposure. A Phenotypic analysis by flow cytometry revealed that TCE exposure expanded the effector/memory subset of peripheral CD4 + T cells in association with increased production of pro-inflammatory cytokines IFN-γ and IL-17. Serum biomarkers of oxidative stress and inflammation were also elevated in plasma suggesting that systemic effects are important and may be used to predict neurotoxicity in our model. These results suggested that the prenatal period is a critical stage of life by which the developing CNS and immune system are susceptible to long-lasting changes mediated by TCE. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Impact of Environmental Exposures on the Mutagenicity/Carcinogenicity of Heterocyclic Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felton, J S; Knize, M G; Bennett, L M

    2003-12-19

    Carcinogenic heterocyclic amines are produced from overcooked foods and are highly mutagenic in most short-term test systems. One of the most abundant of these amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), induces breast, colon and prostate tumors in rats. Human dietary epidemiology studies suggest a strong correlation between either meat consumption or well-done muscle meat consumption and cancers of the colon, breast, stomach, lung and esophagus. For over 20 years our laboratory has helped define the human exposure to these dietary carcinogens. In this report we describe how various environmental exposures may modulate the risk from exposure to heterocyclic amines, especially PhIP. To assessmore » the impact of foods on PhIP metabolism in humans, we developed an LC/MS/MS method to analyze the four major PhIP urinary metabolites following the consumption of a single portion of grilled chicken. Adding broccoli to the volunteers' diet altered the kinetics of PhIP metabolism. At the cellular level we have found that PhIP itself stimulates a significant estrogenic response in MCF-7 cells, but even more interestingly, co-incubation of the cells with herbal teas appear to enhance the response. Numerous environmental chemicals found in food or the atmosphere can impact the exposure, metabolism, and cell proliferation response of heterocyclic amines.« less

  17. Influence of aging in the modulation of epigenetic biomarkers of carcinogenesis after exposure to air pollution.

    PubMed

    Fougère, Bertrand; Landkocz, Yann; Lepers, Capucine; Martin, Perrine J; Armand, Lucie; Grossin, Nicolas; Verdin, Anthony; Boulanger, Eric; Gosset, Pierre; Sichel, François; Shirali, Pirouz; Billet, Sylvain

    2018-05-31

    Classified as carcinogenic to humans by the IARC in 2013, fine air particulate matter (PM 2.5 ) can be inhaled and retained into the lung or reach the systemic circulation. This can cause or exacerbate numerous pathologies to which the elderly are often more sensitive. In order to estimate the influence of age on the development of early cellular epigenetic alterations involved in carcinogenesis, peripheral blood mononuclear cells sampled from 90 patients from three age classes (25-30, 50-55 and 75-80 years old) were ex vivo exposed to urban PM 2.5 . Particles exposure led to variations in telomerase activity and telomeres length in all age groups without any influence of age. Conversely, P16 INK4A gene expression increased significantly with age after exposure to PM 2.5 . Age could enhance MGMT gene expression after exposure to particles, by decreasing the level of promoter methylation in the oldest people. Hence, our results demonstrated several tendencies in cells modification depending on age, even if all epigenetic assays were carried out after a limited exposure time allowing only one or two cell cycles. Since lung cancer symptoms appear only at an advanced stage, our results underline the needs for further investigation on the studied biomarkers for early diagnosis of carcinogenesis to improve survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Epidermal 'alarm substance' cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation.

    PubMed

    Chivers, Douglas P; Wisenden, Brian D; Hindman, Carrie J; Michalak, Tracy A; Kusch, Robin C; Kaminskyj, Susan G W; Jack, Kristin L; Ferrari, Maud C O; Pollock, Robyn J; Halbgewachs, Colin F; Pollock, Michael S; Alemadi, Shireen; James, Clayton T; Savaloja, Rachel K; Goater, Cameron P; Corwin, Amber; Mirza, Reehan S; Kiesecker, Joseph M; Brown, Grant E; Adrian, James C; Krone, Patrick H; Blaustein, Andrew R; Mathis, Alicia

    2007-10-22

    Many fishes possess specialized epidermal cells that are ruptured by the teeth of predators, thus reliably indicating the presence of an actively foraging predator. Understanding the evolution of these cells has intrigued evolutionary ecologists because the release of these alarm chemicals is not voluntary. Here, we show that predation pressure does not influence alarm cell production in fishes. Alarm cell production is stimulated by exposure to skin-penetrating pathogens (water moulds: Saprolegnia ferax and Saprolegnia parasitica), skin-penetrating parasites (larval trematodes: Teleorchis sp. and Uvulifer sp.) and correlated with exposure to UV radiation. Suppression of the immune system with environmentally relevant levels of Cd inhibits alarm cell production of fishes challenged with Saprolegnia. These data are the first evidence that alarm substance cells have an immune function against ubiquitous environmental challenges to epidermal integrity. Our results indicate that these specialized cells arose and are maintained by natural selection owing to selfish benefits unrelated to predator-prey interactions. Cell contents released when these cells are damaged in predator attacks have secondarily acquired an ecological role as alarm cues because selection favours receivers to detect and respond adaptively to public information about predation.

  19. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  20. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    PubMed

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cutaneous exposure to vesicant phosgene oxime: Acute effects on the skin and systemic toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewari-Singh, Neera, E-mail: Neera.tewari-singh@uc

    Phosgene Oxime (CX), an urticant or nettle agent categorized as a vesicant, is a potential chemical warfare and terrorist weapon. Its exposure can result in widespread and devastating effects including high mortality due to its fast penetration and ability to cause immediate severe cutaneous injury. It is one of the least studied chemical warfare agents with no effective therapy available. Thus, our goal was to examine the acute effects of CX following its cutaneous exposure in SKH-1 hairless mice to help establish a relevant injury model. Results from our study show that topical cutaneous exposure to CX vapor causes blanchingmore » of exposed skin with an erythematous ring, necrosis, edema, mild urticaria and erythema within minutes after exposure out to 8 h post-exposure. These clinical skin manifestations were accompanied with increases in skin thickness, apoptotic cell death, mast cell degranulation, myeloperoxidase activity indicating neutrophil infiltration, p53 phosphorylation and accumulation, and an increase in COX-2 and TNFα levels. Topical CX-exposure also resulted in the dilatation of the peripheral vessels with a robust increase in RBCs in vessels of the liver, spleen, kidney, lungs and heart tissues. These events could cause a drop in blood pressure leading to shock, hypoxia and death. Together, this is the first report on effects of CX cutaneous exposure, which could help design further comprehensive studies evaluating the acute and chronic skin injuries from CX topical exposure and elucidate the related mechanism of action to aid in the identification of therapeutic targets and mitigation of injury. - Highlights: • Phosgene oxime cutaneous exposure causes skin blanching, edema and urticaria. • Penetration of phosgene oxime causes dilation of vasculature in internal organs. • Mast cells could play an important role in phosgene oxime-induced skin injury. • Phosgene oxime could induce low blood pressure and hypoxia leading to mortality. • Data is significant for developing a phosgene oxime-induced skin injury model.« less

  2. GaP betavoltaic cells as a power source

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Stella, Paul M.; Anspaugh, B.

    1991-01-01

    Maximum power output for the GaP cells of this study was found to be on the order of 1 microW. This resulted from exposure to 200 and 40 KeV electrons at a flux of 2 x 10(exp 9) electrons/sq cm/s, equivalent to a 54 mCurie source. The efficiencies of the cells ranged from 5 to 9 percent for 200 and 40 KeV electrons respectively. The lower efficiency at higher energy is due to a substantial fraction of energy deposition in the substrate, further than a diffusion length from the depletion region of the cell. Radiation damage was clearly observed in GaP after exposure to 200 KeV electrons at a fluence of 2 x 10(exp 12) electrons/sq cm. No discernable damage was observed after exposure to 40 KeV electrons at the same fluence. Analysis indicates that a GaP betavoltaic system would not be practical if limited to low energy beta sources. The power available would be too low even in the ideal case. By utilizing high activity beta sources, such as Sr-90/Y-90, it may be possible to achieve performance that could be suitable for some space power applications. However, to utilize such a source the problem of radiation damage in the beta cell material must be overcome.

  3. The natural compound sanguinarine perturbs the regenerative capabilities of planarians.

    PubMed

    Balestrini, Linda; Di Donfrancesco, Alessia; Rossi, Leonardo; Marracci, Silvia; Isolani, Maria E; Bianucci, Anna M; Batistoni, Renata

    2017-01-01

    The natural alkaloid sanguinarine has remarkable therapeutic properties and has been used for centuries as a folk remedy. This compound exhibits interesting anticancer properties and is currently receiving attention as a potential chemotherapeutic agent. Nevertheless, limited information exists regarding its safety for developing organisms. Planarians are an animal model known for their extraordinary stem cell-based regenerative capabilities and are increasingly used for toxicological and pharmacological studies. Here, we report that sanguinarine, at micromolar concentrations, perturbs the regeneration process in the planarian Dugesia japonica. We show that sanguinarine exposure causes defects during anterior regeneration and visual system recovery, as well as anomalous remodelling of pre-existing structures. Investigating the effects of sanguinarine on stem cells, we found that sanguinarine perturbs the transcriptional profile of early and late stem cell progeny markers. Our results indicate that sanguinarine exposure alters cell dynamics and induces apoptosis without affecting cell proliferation. Finally, sanguinarine exposure influences the expression level of H + , K + -ATPase α subunit, a gene of the P-type-ATPase pump family which plays a crucial role during anterior regeneration in planaria. On the whole, our data reveal that sanguinarine perturbs multiple mechanisms which regulate regeneration dynamics and contribute to a better understanding of the safety profile of this alkaloid in developing organisms.

  4. Effects of intermediate frequency magnetic fields on male fertility indicators in mice.

    PubMed

    Kumari, K; Capstick, M; Cassara, A M; Herrala, M; Koivisto, H; Naarala, J; Tanila, H; Viluksela, M; Juutilainen, J

    2017-08-01

    Human exposure to intermediate frequency (IF) fields is increasing due to new applications such as electronic article surveillance systems, wireless power transfer and induction heating cookers. However, limited data is available on effects of IF magnetic fields (MF) on male fertility function. This study was conducted to assess possible effects on fertility indicators from exposure to IF MF. Male C57BL/6J mice were exposed continuously for 5 weeks to 7.5kHz MF at 12 and 120μT. Sperm cells from cauda epididymis were analysed for motility, total sperm counts, and head abnormalities. Motile sperm cells were classified as progressive or non-progressive. Testicular spermatid heads were counted as well. The body weight development and reproductive tissue weights were not affected. No exposure-related differences were observed in sperm counts or sperm head abnormalities. Proportion of non-motile cells was significantly decreased in the 120µT group, and a corresponding increase was seen in the percentage of motile cells (significant in non-progressive motile cells). In conclusion, no adverse effects on fertility indicators were observed. Increased sperm motility is an interesting finding that needs to be confirmed in further studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The effects of ozone exposure and associated injury mechanisms on the central nervous system.

    PubMed

    Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos

    2013-01-01

    Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.

  6. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    NASA Technical Reports Server (NTRS)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  7. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Desinia B.

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk ormore » following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These effects were largely reversible upon one week recovery. • Ozone exposure did not cause liver or muscle insulin resistance. • Subchronic ozone exposure led to decrease in serum insulin. • Ozone severely impaired beta cell insulin secretion in response to glucose.« less

  8. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    PubMed Central

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization. PMID:24409127

  9. Gene-Chemical Interactions in the Developing Mammalian Nervous System: Effects on Proliferation, Neurogenesis and Differentiation

    PubMed Central

    Fox, Donald A.; Opanashuk, Lisa; Zharkovsky, Aleksander; Weiss, Bernie

    2010-01-01

    The orderly formation of the nervous system requires a multitude of complex, integrated and simultaneously occurring processes. Neural progenitor cells expand through proliferation, commit to different cell fates, exit the cell cycle, generate different neuronal and glial cell types, and new neurons migrate to specified areas and establish synaptic connections. Gestational and perinatal exposure to environmental toxicants, pharmacological agents and drugs of abuse produce immediate, persistent or late-onset alterations in behavioral, cognitive, sensory and/or motor functions. These alterations reflect the disruption of the underlying processes of CNS formation and development. To determine the neurotoxic mechanisms that underlie these deficits it is necessary to analyze and dissect the complex molecular processes that occur during the proliferation, neurogenesis and differentiation of cells. This symposium will provide a framework for understanding the orchestrated events of neurogenesis, the coordination of proliferation and cell fate specification by selected genes, and the effects of well-known neurotoxicants on neurogenesis in the retina, hippocampus and cerebellum. These three tissues share common developmental profiles, mediate diverse neuronal activities and function, and thus provide important substrates for analysis. This paper summarizes four invited talks that were presented at the 12th International Neurotoxicology Association meeting held in Jerusalem, Israel during the summer of 2009. Donald A. Fox described the structural and functional alterations following low-level gestational lead exposure in children and rodents that produced a supernormal electroretinogram and selective increases in neurogenesis and cell proliferation of late-born retinal neurons (rod photoreceptors and bipolar cells), but not Müller glia cells, in mice. Lisa Opanashuk discussed how dioxin [TCDD] binding to the arylhydrocarbon receptor [AhR], a transcription factor that regulates xenobiotic metabolizing enzymes and growth factors, increased granule cell formation and apoptosis in the developing mouse cerebellum. Alex Zharkovsky described how postnatal early postnatal lead exposure decreased cell proliferation, neurogenesis and gene expression in the dentate gyrus of the adult hippocampus and its resultant behavioral effects. Bernard Weiss illustrated how environmental endocrine disruptors produced age- and gender-dependent alterations in synaptogenesis and cognitive behavior. PMID:20381523

  10. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective.

    PubMed

    Wilhelm, Clare J; Guizzetti, Marina

    2015-01-01

    Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.

  11. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study

    PubMed Central

    Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L.; Agha, Golareh; Colicino, Elena; Just, Allan C.; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A.; DeMeo, Dawn L.; Gillman, Matthew W.; Wright, Robert O.; Oken, Emily

    2017-01-01

    Background: Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. Objectives: We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Methods: Among 268 mother–infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. Results: The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (−1.4% per doubling increase in lead exposure; p=2.3×10−7) and was annotated to C-Type Lectin Domain Family 11, Member A (CLEC11A), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (−4.3% per doubling increase in lead exposure; p=1.1×10−06), was annotated to Dynein Heavy Chain Domain 1 gene (DNHD1) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Conclusion: Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246 PMID:28858830

  12. Exposure to Low Levels of Lead in Utero and Umbilical Cord Blood DNA Methylation in Project Viva: An Epigenome-Wide Association Study.

    PubMed

    Wu, Shaowei; Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L; Agha, Golareh; Colicino, Elena; Just, Allan C; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A; DeMeo, Dawn L; Gillman, Matthew W; Wright, Robert O; Oken, Emily; Baccarelli, Andrea A

    2017-08-25

    Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Among 268 mother-infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (-1.4% per doubling increase in lead exposure; p=2.3×10-7) and was annotated to C-Type Lectin Domain Family 11, Member A ( CLEC11A ), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (-4.3% per doubling increase in lead exposure; p=1.1×10-06), was annotated to Dynein Heavy Chain Domain 1 gene ( DNHD1 ) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246.

  13. Prenatal and Postnatal Cell Phone Exposures and Headaches in Children.

    PubMed

    Sudan, Madhuri; Kheifets, Leeka; Arah, Onyebuchi; Olsen, Jorn; Zeltzer, Lonnie

    2012-12-05

    Children today are exposed to cell phones early in life, and may be at the greatest risk if exposure is harmful to health. We investigated associations between cell phone exposures and headaches in children. The Danish National Birth Cohort enrolled pregnant women between 1996 and 2002. When their children reached age seven years, mothers completed a questionnaire regarding the child's health, behaviors, and exposures. We used multivariable adjusted models to relate prenatal only, postnatal only, or both prenatal and postnatal cell phone exposure to whether the child had migraines and headache-related symptoms. Our analyses included data from 52,680 children. Children with cell phone exposure had higher odds of migraines and headache-related symptoms than children with no exposure. The odds ratio for migraines was 1.30 (95% confidence interval: 1.01-1.68) and for headache-related symptoms was 1.32 (95% confidence interval: 1.23-1.40) for children with both prenatal and postnatal exposure. In this study, cell phone exposures were associated with headaches in children, but the associations may not be causal given the potential for uncontrolled confounding and misclassification in observational studies such as this. However, given the widespread use of cell phones, if a causal effect exists it would have great public health impact.

  14. Bilirubin induces a calcium-dependent inhibition of multifunctional Ca2+/calmodulin-dependent kinase II activity in vitro.

    PubMed

    Churn, S B; DeLorenzo, R J; Shapiro, S M

    1995-12-01

    Excessive bilirubin levels in newborn infants result in long-term neurologic deficits that remain after bilirubin levels return to normal. Much of the observed neurologic deficits can be attributed to bilirubin-induced, delayed neuronal cell death. Inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II) activity that precedes cell death is observed in conditions such as seizure activity, stroke, and glutamate excitotoxicity. Because neonatal bilirubin exposure results in neuronal loss in developing brain systems, we tested whether bilirubin exposure would induce an immediate inhibition of CaM activity, in vitro. P-81 filtration assay of basal and calcium-stimulated kinase activity was performed under standard kinase assay conditions. Bilirubin and/or albumin was added to the reaction vessels to determine the effect of these agents on kinase activity. Bilirubin exposure resulted in a concentration-dependent inhibition of CaM kinase II activity (IC50 = 16.78 microM). At concentrations above 50 microM, bilirubin exposure resulted in a 71 +/- 8% (mean +/- SD) inhibition of kinase activity (p < 0.001, t test, n = 10). Bilirubin exposure did not result in kinase inhibition if excessive bilirubin was removed by albumin binding before stimulation of kinase activity (106.9 +/- 9.6% control activity, n = 5). However, removal of bilirubin by binding with albumin after calcium addition did not restore kinase activity. (36.1 +/- 3.8% control activity, n = 5). Thus, once inhibition was observed, the activity could not be restored by addition of albumin. The data suggest that bilirubin exposure resulted in a calcium-dependent inhibition of CaM kinase II activity that, once induced, was not reversible by removing bilirubin by the addition of albumin. Because inhibition of CaM kinase II activity has been correlated with delayed neuronal cell death in many neuropathologic conditions, bilirubin-induced inhibition of this enzyme may be a cellular mechanism by which bilirubin exposure results in delayed neuronal cell death in developing brain.

  15. A commercial Roundup® formulation induced male germ cell apoptosis by promoting the expression of XAF1 in adult mice.

    PubMed

    Jiang, Xiao; Zhang, Ning; Yin, Li; Zhang, Wen-Long; Han, Fei; Liu, Wen-Bin; Chen, Hong-Qiang; Cao, Jia; Liu, Jin-Yi

    2018-06-14

    Roundup® is extensively used for weed control worldwide. Residues of this compound may lead to side effects of the male reproductive system. However, the toxic effects and mechanisms of Roundup® of male germ cells remain unclear. We aimed to investigate the apoptosis-inducing effects of Roundup® on mouse male germ cells and explore the role of a novel tumor suppressor XAF1 (X-linked inhibitor of apoptosis-associated factor 1) involved in this process. We demonstrated that Roundup® can impair spermatogenesis, decrease sperm motility and concentration, and increase the sperm deformity rate in mice. In addition, excessive apoptosis of germ cells accompanied by the overexpression of XAF1 occurred after Roundup® exposure both in vitro and in vivo. Furthermore, the low expression of XIAP (X-linked inhibitor of apoptosis) induced by Roundup® was inversely correlated with XAF1. Moreover, the knockdown of XAF1 attenuated germ cell apoptosis, improved XIAP expression and inhibited the activation of its downstream target proteins, caspase-3 and PARP, after Roundup® exposure. Taken together, our data indicated that XAF1 plays an important role in Roundup®-induced male germ cell apoptosis. The present study suggested that Roundup® exposure has potential negative implications on male reproductive health in mammals. Copyright © 2018. Published by Elsevier B.V.

  16. Alpha-Particle-Induced Complex Chromosome Exchanges Transmitted through Extra-Thymic Lymphopoiesis In Vitro Show Evidence of Emerging Genomic Instability

    PubMed Central

    Sumption, Natalia; Goodhead, Dudley T.; Anderson, Rhona M.

    2015-01-01

    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure. PMID:26252014

  17. Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep.

    PubMed

    Danker-Hopfe, Heidi; Dorn, Hans; Bahr, Achim; Anderer, Peter; Sauter, Cornelia

    2011-03-01

    In the present double-blind, randomized, sham-controlled cross-over study, possible effects of electromagnetic fields emitted by Global System for Mobile Communications (GSM) 900 and Wideband Code-Division Multiple Access (WCDMA)/Universal Mobile Telecommunications System (UMTS) cell-phones on the macrostructure of sleep were investigated in a laboratory environment. An adaptation night, which served as screening night for sleep disorders and as an adjustment night to the laboratory environment, was followed by 9 study nights (separated by a 2-week interval) in which subjects were exposed to three exposure conditions (sham, GSM 900 and WCDMA/UMTS). The sample comprised 30 healthy male subjects within the age range 18-30 years (mean ± standard deviation: 25.3 ± 2.6 years). A cell-phone usage at maximum radio frequency (RF) output power was simulated and the transmitted power was adjusted in order to approach, but not to exceed, the specific absorption rate (SAR) limits of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines for general public exposure (SAR(10g) = 2.0 W kg(-1)). In this study, possible effects of long-term (8 h) continuous RF exposure on the central nervous system were analysed during sleep, because sleep is a state in which many confounding intrinsic and extrinsic factors (e.g. motivation, personality, attitude) are eliminated or controlled. Thirteen of 177 variables characterizing the initiation and maintenance of sleep in the GSM 900 and three in the WCDMA exposure condition differed from the sham condition. The few significant results are not indicative of a negative impact on sleep architecture. From the present results there is no evidence for a sleep-disturbing effect of GSM 900 and WCDMA exposure. © 2010 European Sleep Research Society.

  18. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    PubMed

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Particulate matter neurotoxicity in culture is size-dependent.

    PubMed

    Gillespie, Patricia; Tajuba, Julianne; Lippmann, Morton; Chen, Lung-Chi; Veronesi, Bellina

    2013-05-01

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (<0.18μm) samples. Rat dopaminergic neurons (N27) were exposed to suspensions of each PM fraction (0, 12.5, 25, 50μm/ml) and cell loss (as measured by Hoechst nuclear stain) measured after 24h exposure. Neuronal loss occurred in response to all tested concentrations of UF (>12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Steady State Dendritic Cells Present Parenchymal Self-Antigen and Contribute to, but Are Not Essential for, Tolerization of Naive and Th1 Effector CD4 Cells1

    PubMed Central

    Hagymasi, Adam T.; Slaiby, Aaron M.; Mihalyo, Marianne A.; Qui, Harry Z.; Zammit, David J.; Lefrançois, Leo; Adler, Adam J.

    2010-01-01

    Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4+CD25+ regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC. PMID:17641018

  1. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  2. Local and systemic toxicity of JP-8 from cutaneous exposures.

    PubMed

    McDougal, James N; Rogers, James V

    2004-04-01

    Jet propellant-8 (JP-8) jet fuel is a version of commercial jet fuel, Jet A, and is a complex mixture of primarily aliphatic (but also aromatic) hydrocarbons that varies in composition from batch to batch. There is potential for dermal exposure to jet fuels with personnel involved in aircraft refueling and maintenance operations as well as ground personnel. Cutaneous exposures have the potential to cause skin irritation, sensitization or skin cancer. JP-8 has been shown to be irritating and causes molecular changes in the skin of laboratory animals. The mechanisms of some of these effects have been investigated in intact skin and cultured skin cells. Hydrocarbons have also been shown to cause skin cancer with repeated application to the skin. Additionally, there is concern about systemic toxicity from dermal exposures to jet fuels, such as JP-8. Assessing risks from systemic absorption of hydrocarbon components is complex because most of the components are present in the mixture in small quantities (less than 1%). The effect of the fuel as a vehicle, different rates of penetration through the skin and different target organ toxicities all complicate the assessment of the hazards of cutaneous exposures. The purpose of this manuscript is to review studies of local and systemic toxicity of JP-8.

  3. Newly Developed Neutralized pH Icodextrin Dialysis Fluid: Nonclinical Evaluation.

    PubMed

    Yamaguchi, Naoya; Miyamoto, Keiichi; Murata, Tomohiro; Ishikawa, Eiji; Horiuchi, Takashi

    2016-08-01

    A two-compartment system (NICOPELIQ; NICO, Terumo Co., Tokyo, Japan) has recently been developed to neutralize icodextrin peritoneal dialysis fluid (PDF). In this study, a nonclinical evaluation of NICO was carried out to evaluate biocompatibility as well as water transport ability. Glucose degradation products (GDPs) in the icodextrin PDFs were analyzed via high-performance liquid chromatography (HPLC). The cell viability of human peritoneal mesothelial cells derived from peritoneal dialysis effluent (PDE-HPMCs) was evaluated as well as the amount of lactate dehydrogenase (LDH) released after exposure to different PDFs (NICO and EXTRANEAL [EX, Baxter Healthcare Corp., Chicago, IL, USA]) and neutralized pH glucose PDF MIDPELIQ 250 (M250, Terumo). The water transport ability of NICO, EX, and M250 was tested using dialysis tube membranes with various pore sizes: 1, 2, 6-8, and 12-16 kDa. Although cell viability decreased by 30% after 30 min exposure to NICO, it was maintained for 6 h while a significant decrease was observed after 6 h exposure to EX. However, following adjustment of the pH to the same pre-exposure pH value, there was no significant difference in cell viability within the same pH group despite a doubling of the difference in the total amount of GDPs (44.6 ± 8.6 µM in NICO and 91.9 ± 9.5 µM in EX, respectively). In contrast, a significant decrease in cell viability was observed when the pH decreased to less than pH 6. Levels of released LDH, a cytotoxic marker, were within 5% after a 6-h exposure of NICO to PDE-HPMCs. There was no significant difference in water transport ability represented as overall osmotic gradients between NICO and EX. In conclusion, neutralization of icodextrin PDF is beneficial for maintaining cell viability and minimizing LDH release while water transport ability is comparable to the conventional icodextrin PDF. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. A Multiple Parameters Biodosimetry Tool with Various Blood Cell Counts - the Hemodose Approach

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen

    2014-01-01

    There continue to be important concerns about the possibility of the occurrence of acute radiation syndromes following nuclear and radiological terrorism or accidents that may result in mass casualties in densely populated areas. To guide medical personnel in their clinical decisions for effective medical management and treatment of the exposed individuals, biological markers are usually applied to examine radiation induced biological changes to assess the severity of radiation injury to sensitive organ systems. Among these the peripheral blood cell counts are widely used to assess the extent of radiation induced bone marrow injury. This is due to the fact that the hematopoietic system is the most vulnerable part of the human body to radiation damage. Particularly, the lymphocyte, granulocyte, and platelet cells are the most radiosensitive of the blood elements, and monitoring their changes after exposure is regarded as a practical and recommended laboratory test to estimate radiation dose and injury. Based upon years of physiological and pathophysiological investigation of mammalian hematopoietic systems, and rigorous coarse-grained bio-mathematical modeling and validation on species from mouse, to dog, monkey, and human, we have developed a set of software tools Hemodose, which can use single or serial granulocyte, lymphocyte, leukocyte, or platelet counts after exposure to estimate absorbed doses of adult victims very rapidly and accurately. Some patient data from historical accidents are utilized as examples to demonstrate the capabilities of these tools as a rapid point-of-care diagnostic or centralized high-throughput assay system in a large-scale radiological disaster scenario. Most significant to the improvement of national and local preparedness of a potential nuclear/radiological disaster, this HemoDose approach establishes robust correlations between the absorbed doses and victim's various types of blood cell counts not only in the early time window (1 or 2 days), but also in the very late phase (up to 4 weeks) after exposure.

  5. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  6. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment

    PubMed Central

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Background: Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes–anthracyclines. Methods: Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. Results: A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. Conclusion: A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer. PMID:29558872

  7. Expression of NK Cell Surface Receptors in Breast Cancer Tissue as Predictors of Resistance to Antineoplastic Treatment.

    PubMed

    Mariel, Garcia-Chagollan; Edith, Carranza-Torres Irma; Pilar, Carranza-Rosales; Elena, Guzmán-Delgado Nancy; Humberto, Ramírez-Montoya; Guadalupe, Martínez-Silva María; Ignacio, Mariscal-Ramirez; Alfredo, Barrón-Gallardo Carlos; Laura, Pereira-Suárez Ana; Adriana, Aguilar-Lemarroy; Felipe, Jave-Suárez Luis

    2018-01-01

    Currently, one of the most used strategies for the treatment of newly diagnosed patients with breast cancer is neoadjuvant chemotherapy based on the application of taxanes and anthracyclines. However, despite the high number of patients who develop a complete pathological clinical response, resistance and relapse following this therapy continue to be a clinical challenge. As a component of the innate immune system, the cytotoxic function of Natural Killer (NK) cells plays an important role in the elimination of tumor cells. However, the role of NK cells in resistance to systemic therapy in breast cancer remains unclear. The present project aims to evaluate the gene expression profile of human NK cells in breast cancer tissue resistant to treatment with taxanes-anthracyclines. Biopsies from tumor tissues were obtained from patients with breast cancer without prior treatment. Histopathological analysis and ex vivo exposure to antineoplastic chemotherapeutics were carried out. Alamar blue and lactate dehydrogenase release assays were performed for quantitative analysis of tumor viability. Gene expression profiles from tumor tissues without prior exposure to therapeutic drugs were analyzed by gene expression microarrays and verified by polymerase chain reaction. A significant decrease in gene expression of cell-surface receptors related to NK cells was observed in tumor samples resistant to antineoplastic treatment compared with those that were sensitive to treatment. A decrease in NK cell infiltration into tumor tissue might be a predictive marker for failure of chemotherapeutic treatment in breast cancer.

  8. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaccone, Eric J.; Goldsmith, W. Travis; Shimko, Michael J.

    Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance, we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity. We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl ormore » 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (R{sub t}) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na{sup +} transport, without affecting Cl{sup −} transport or Na{sup +},K{sup +}-pump activity. R{sub t} was unaffected. Na{sup +} transport recovered 18 h after exposure. Concentrations (100–360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. - Highlights: • Butter flavoring vapor effects on human cultured airway epithelium were studied. • Na transport was reduced by a 6-h exposure to 25 ppm diacetyl and 2,3-pentanedione. • Na transport recovered 18 h after exposure. • > 60 ppm transepithelial voltage and resistance were abolished; cells were damaged. • Cells metabolized diacetyl and 2,3-pentanedione into acetoin and 2-OH-3-pentanone.« less

  9. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    PubMed Central

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y-H.; Jaspers, I.; Jeffries, H. E.

    2013-01-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) – even if the gas-phase pollutants are not considered likely to partition to the condensed phase: the VOC-modified-PM showed significantly more damage and inflammation to lung cells than did the original PM. Because gases and PM are transported and deposited differently within the atmosphere and the lungs, these results have significant consequences. For example, current US policies for research and regulation of PM do not recognize this “effect modification” phenomena (NAS, 2004). These results present an unambiguous demonstration that – even in these simple mixtures – physical and thermal interactions alone can cause a modification of the distribution of species among the phases of airborne pollution mixtures and can result in a non-toxic phase becoming toxic due to atmospheric thermal processes only. Subsequent work extends the simple results reported here to systems with photochemical transformations of complex urban mixtures and to systems with diesel exhaust produced by different fuels. PMID:23457430

  10. Summary of materials and hardware performance on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Pippin, Gary; Teichman, Lou

    1993-01-01

    A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.

  11. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists

    PubMed Central

    Thomas, Sunil; Izard, Jacques; Walsh, Emily; Batich, Kristen; Chongsathidkiet, Pakawat; Clarke, Gerard; Sela, David A.; Muller, Alexander J.; Mullin, James M.; Albert, Korin; Gilligan, John P.; DiGuilio, Katherine; Dilbarova, Rima; Alexander, Walker; Prendergast, George C.

    2017-01-01

    Humans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well-being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases and even neuropsychiatric disorders. Thus, an interaction of microorganisms with the host immune system is required for a healthy body. Exposure to microorganisms from the moment we are born and appropriate microbiome assembly during childhood are essential for establishing an active immune system necessary to prevent disease later in life. Exposure to microorganisms educates the immune system, induces adaptive immunity and initiates memory B and T cells that are essential to combat various pathogens. The correct microbial-based education of immune cells may be critical in preventing the development of autoimmune diseases and cancer. This review provides a broad overview of the importance of the host microbiome and accumulating knowledge of how it regulates and maintains a healthy human system. PMID:28292977

  12. HEMODOSE: A Set of Multi-parameter Biodosimetry Tools

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Blakely, William F.; Cucinotta, Francis A.

    2014-01-01

    There continues to be important concerns of the possibility of the occurrence of acute radiation syndromes following nuclear and radiological terrorism or accidents that may result in mass casualties in densely populated areas. To guide medical personnel in their clinical decisions for effective medical management and treatment of the exposed individuals, biological markers are usually applied to examine radiation induced biological changes to assess the severity of radiation injury to sensitive organ systems. Among these the peripheral blood cell counts are widely used to assess the extent of radiation induced bone marrow (BM) injury. This is due to the fact that hematopoietic system is a vulnerable part of the human body to radiation damage. Particularly, the lymphocyte, granulocyte, and platelet cells are the most radiosensitive of the blood elements, and monitoring their changes after exposure is regarded as a practical and recommended laboratory test to estimate radiation dose and injury. In this work we describe the HEMODOSE web tools, which are built upon solid physiological and pathophysiological understanding of mammalian hematopoietic systems, and rigorous coarse-grained biomathematical modeling and validation. Using single or serial granulocyte, lymphocyte, leukocyte, or platelet counts after exposure, these tools can estimate absorbed doses of adult victims very rapidly and accurately to assess the severity of BM radiation injury. Some patient data from historical accidents are utilized as examples to demonstrate the capabilities of these tools as a rapid point-of-care diagnostic or centralized high-throughput assay system in a large-scale radiological disaster scenario. HEMODOSE web tools establish robust correlations between the absorbed doses and victim's various types of blood cell counts not only in the early time window (1 or 2 days), but also in very late phase (up to 4 weeks) after exposure.

  13. Perfluorooctanoic Acid Exposure Suppresses T-independent Antibody Responses

    EPA Science Inventory

    Exposure to  3.75mg/kg of perfluoroocatnoic acid (PFOA) for 15d suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response...

  14. Ultrasound-mediated structural changes in cells revealed by FTIR spectroscopy: a contribution to the optimization of gene and drug delivery.

    PubMed

    Grimaldi, Paola; Di Giambattista, Lucia; Giordani, Serena; Udroiu, Ion; Pozzi, Deleana; Gaudenzi, Silvia; Bedini, Angelico; Giliberti, Claudia; Palomba, Raffaele; Castellano, Agostina Congiu

    2011-12-15

    Ultrasound effects on biological samples are gaining a growing interest concerning in particular, the intracellular delivery of drugs and genes in a safe and in a efficient way. Future progress in this field will require a better understanding of how ultrasound and acoustic cavitation affect the biological system properties. The morphological changes of cells due to ultrasound (US) exposure have been extensively studied, while little attention has been given to the cells structural changes. We have exposed two different cell lines to 1 MHz frequency ultrasound currently used in therapy, Jurkat T-lymphocytes and NIH-3T3 fibroblasts, both employed as models respectively in the apoptosis and in the gene therapy studies. The Fourier Transform Infrared (FTIR) Spectroscopy was used as probe to reveal the structural changes in particular molecular groups belonging to the main biological systems. The genotoxic damage of cells exposed to ultrasound was ascertained by the Cytokinesis-Block Micronucleus (CBMN) assay. The FTIR spectroscopy results, combined with multivariate statistical analysis, regarding all cellular components (lipids, proteins, nucleic acids) of the two cell lines, show that Jurkat cells are more sensitive to therapeutic ultrasound in the lipid and protein regions, whereas the NIH-3T3 cells are more sensitive in the nucleic acids region; a meaningful genotoxic effect is present in both cell lines only for long sonication times while in the Jurkat cells also a significant cytotoxic effect is revealed for long times of exposure to ultrasound. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Responses of neuromuscular systems under gravity or microgravity environment.

    PubMed

    Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu

    2004-11-01

    Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.

  16. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure.

    PubMed

    Suzuki, Ryo; Maruyama, Kazuo

    2010-01-01

    Gene delivery with a physical mechanism using ultrasound (US) and nano/microbubbles is expected as an ideal system in terms of delivering plasmid DNA noninvasively into a specific target site. We developed novel liposomal bubbles (Bubble liposomes (BLs)) containing the lipid nanobubbles of perfluoropropane which were utilized for contrast enhancement in ultrasonography. BLs were smaller in diameter than conventional microbubbles and induced cavitation upon exposure ultrasound. In addition, when coupled with US exposure, BLs could deliver plasmid DNA into various types of cells in vitro and in vivo. The transfection efficiency with BLs and US was higher than that with conventional lipofection method. Therefore, the combination of BLs and US might be an efficient and novel nonviral gene delivery system.

  17. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment.

  18. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when compared to sham treated cells. CHO cells undergoing mitosis after exposure also exhibit improper separation of chromatids which could indicate loss of function of the mitotic spindle checkpoint. Activation and loss of function of checkpoints in CHO but not Jurkat cells after nsPEF exposure suggests that activation of cell cycle checkpoints could be important in defining the character of cell line specific recovery after nsPEF exposure. Moreover, the increased sensitivity in G2/M phase exhibited by both cell lines indicates that cell cycle phase is an important consideration during nsPEF exposure, particularly when aiming to induce apoptosis.

  19. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    PubMed

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  20. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, M.C.; Friedman, M.; Hanley, N.

    1993-06-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) andmore » hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3.« less

Top